xref: /openbmc/linux/drivers/gpu/drm/i915/gt/uc/intel_guc_submission.c (revision e90886291c7cd89577bf11729b205cc0ed42fbec)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include <linux/circ_buf.h>
7 
8 #include "gem/i915_gem_context.h"
9 #include "gt/gen8_engine_cs.h"
10 #include "gt/intel_breadcrumbs.h"
11 #include "gt/intel_context.h"
12 #include "gt/intel_engine_heartbeat.h"
13 #include "gt/intel_engine_pm.h"
14 #include "gt/intel_engine_regs.h"
15 #include "gt/intel_gpu_commands.h"
16 #include "gt/intel_gt.h"
17 #include "gt/intel_gt_clock_utils.h"
18 #include "gt/intel_gt_irq.h"
19 #include "gt/intel_gt_pm.h"
20 #include "gt/intel_gt_regs.h"
21 #include "gt/intel_gt_requests.h"
22 #include "gt/intel_lrc.h"
23 #include "gt/intel_lrc_reg.h"
24 #include "gt/intel_mocs.h"
25 #include "gt/intel_ring.h"
26 
27 #include "intel_guc_ads.h"
28 #include "intel_guc_capture.h"
29 #include "intel_guc_submission.h"
30 
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 
34 /**
35  * DOC: GuC-based command submission
36  *
37  * The Scratch registers:
38  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
39  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
40  * triggers an interrupt on the GuC via another register write (0xC4C8).
41  * Firmware writes a success/fail code back to the action register after
42  * processes the request. The kernel driver polls waiting for this update and
43  * then proceeds.
44  *
45  * Command Transport buffers (CTBs):
46  * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
47  * - G2H) are a message interface between the i915 and GuC.
48  *
49  * Context registration:
50  * Before a context can be submitted it must be registered with the GuC via a
51  * H2G. A unique guc_id is associated with each context. The context is either
52  * registered at request creation time (normal operation) or at submission time
53  * (abnormal operation, e.g. after a reset).
54  *
55  * Context submission:
56  * The i915 updates the LRC tail value in memory. The i915 must enable the
57  * scheduling of the context within the GuC for the GuC to actually consider it.
58  * Therefore, the first time a disabled context is submitted we use a schedule
59  * enable H2G, while follow up submissions are done via the context submit H2G,
60  * which informs the GuC that a previously enabled context has new work
61  * available.
62  *
63  * Context unpin:
64  * To unpin a context a H2G is used to disable scheduling. When the
65  * corresponding G2H returns indicating the scheduling disable operation has
66  * completed it is safe to unpin the context. While a disable is in flight it
67  * isn't safe to resubmit the context so a fence is used to stall all future
68  * requests of that context until the G2H is returned.
69  *
70  * Context deregistration:
71  * Before a context can be destroyed or if we steal its guc_id we must
72  * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
73  * safe to submit anything to this guc_id until the deregister completes so a
74  * fence is used to stall all requests associated with this guc_id until the
75  * corresponding G2H returns indicating the guc_id has been deregistered.
76  *
77  * submission_state.guc_ids:
78  * Unique number associated with private GuC context data passed in during
79  * context registration / submission / deregistration. 64k available. Simple ida
80  * is used for allocation.
81  *
82  * Stealing guc_ids:
83  * If no guc_ids are available they can be stolen from another context at
84  * request creation time if that context is unpinned. If a guc_id can't be found
85  * we punt this problem to the user as we believe this is near impossible to hit
86  * during normal use cases.
87  *
88  * Locking:
89  * In the GuC submission code we have 3 basic spin locks which protect
90  * everything. Details about each below.
91  *
92  * sched_engine->lock
93  * This is the submission lock for all contexts that share an i915 schedule
94  * engine (sched_engine), thus only one of the contexts which share a
95  * sched_engine can be submitting at a time. Currently only one sched_engine is
96  * used for all of GuC submission but that could change in the future.
97  *
98  * guc->submission_state.lock
99  * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
100  * list.
101  *
102  * ce->guc_state.lock
103  * Protects everything under ce->guc_state. Ensures that a context is in the
104  * correct state before issuing a H2G. e.g. We don't issue a schedule disable
105  * on a disabled context (bad idea), we don't issue a schedule enable when a
106  * schedule disable is in flight, etc... Also protects list of inflight requests
107  * on the context and the priority management state. Lock is individual to each
108  * context.
109  *
110  * Lock ordering rules:
111  * sched_engine->lock -> ce->guc_state.lock
112  * guc->submission_state.lock -> ce->guc_state.lock
113  *
114  * Reset races:
115  * When a full GT reset is triggered it is assumed that some G2H responses to
116  * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
117  * fatal as we do certain operations upon receiving a G2H (e.g. destroy
118  * contexts, release guc_ids, etc...). When this occurs we can scrub the
119  * context state and cleanup appropriately, however this is quite racey.
120  * To avoid races, the reset code must disable submission before scrubbing for
121  * the missing G2H, while the submission code must check for submission being
122  * disabled and skip sending H2Gs and updating context states when it is. Both
123  * sides must also make sure to hold the relevant locks.
124  */
125 
126 /* GuC Virtual Engine */
127 struct guc_virtual_engine {
128 	struct intel_engine_cs base;
129 	struct intel_context context;
130 };
131 
132 static struct intel_context *
133 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
134 		   unsigned long flags);
135 
136 static struct intel_context *
137 guc_create_parallel(struct intel_engine_cs **engines,
138 		    unsigned int num_siblings,
139 		    unsigned int width);
140 
141 #define GUC_REQUEST_SIZE 64 /* bytes */
142 
143 /*
144  * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
145  * per the GuC submission interface. A different allocation algorithm is used
146  * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
147  * partition the guc_id space. We believe the number of multi-lrc contexts in
148  * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
149  * multi-lrc.
150  */
151 #define NUMBER_MULTI_LRC_GUC_ID(guc)	\
152 	((guc)->submission_state.num_guc_ids / 16)
153 
154 /*
155  * Below is a set of functions which control the GuC scheduling state which
156  * require a lock.
157  */
158 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER	BIT(0)
159 #define SCHED_STATE_DESTROYED				BIT(1)
160 #define SCHED_STATE_PENDING_DISABLE			BIT(2)
161 #define SCHED_STATE_BANNED				BIT(3)
162 #define SCHED_STATE_ENABLED				BIT(4)
163 #define SCHED_STATE_PENDING_ENABLE			BIT(5)
164 #define SCHED_STATE_REGISTERED				BIT(6)
165 #define SCHED_STATE_POLICY_REQUIRED			BIT(7)
166 #define SCHED_STATE_BLOCKED_SHIFT			8
167 #define SCHED_STATE_BLOCKED		BIT(SCHED_STATE_BLOCKED_SHIFT)
168 #define SCHED_STATE_BLOCKED_MASK	(0xfff << SCHED_STATE_BLOCKED_SHIFT)
169 
170 static inline void init_sched_state(struct intel_context *ce)
171 {
172 	lockdep_assert_held(&ce->guc_state.lock);
173 	ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
174 }
175 
176 __maybe_unused
177 static bool sched_state_is_init(struct intel_context *ce)
178 {
179 	/* Kernel contexts can have SCHED_STATE_REGISTERED after suspend. */
180 	return !(ce->guc_state.sched_state &
181 		 ~(SCHED_STATE_BLOCKED_MASK | SCHED_STATE_REGISTERED));
182 }
183 
184 static inline bool
185 context_wait_for_deregister_to_register(struct intel_context *ce)
186 {
187 	return ce->guc_state.sched_state &
188 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
189 }
190 
191 static inline void
192 set_context_wait_for_deregister_to_register(struct intel_context *ce)
193 {
194 	lockdep_assert_held(&ce->guc_state.lock);
195 	ce->guc_state.sched_state |=
196 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
197 }
198 
199 static inline void
200 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
201 {
202 	lockdep_assert_held(&ce->guc_state.lock);
203 	ce->guc_state.sched_state &=
204 		~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
205 }
206 
207 static inline bool
208 context_destroyed(struct intel_context *ce)
209 {
210 	return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
211 }
212 
213 static inline void
214 set_context_destroyed(struct intel_context *ce)
215 {
216 	lockdep_assert_held(&ce->guc_state.lock);
217 	ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
218 }
219 
220 static inline bool context_pending_disable(struct intel_context *ce)
221 {
222 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
223 }
224 
225 static inline void set_context_pending_disable(struct intel_context *ce)
226 {
227 	lockdep_assert_held(&ce->guc_state.lock);
228 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
229 }
230 
231 static inline void clr_context_pending_disable(struct intel_context *ce)
232 {
233 	lockdep_assert_held(&ce->guc_state.lock);
234 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
235 }
236 
237 static inline bool context_banned(struct intel_context *ce)
238 {
239 	return ce->guc_state.sched_state & SCHED_STATE_BANNED;
240 }
241 
242 static inline void set_context_banned(struct intel_context *ce)
243 {
244 	lockdep_assert_held(&ce->guc_state.lock);
245 	ce->guc_state.sched_state |= SCHED_STATE_BANNED;
246 }
247 
248 static inline void clr_context_banned(struct intel_context *ce)
249 {
250 	lockdep_assert_held(&ce->guc_state.lock);
251 	ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
252 }
253 
254 static inline bool context_enabled(struct intel_context *ce)
255 {
256 	return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
257 }
258 
259 static inline void set_context_enabled(struct intel_context *ce)
260 {
261 	lockdep_assert_held(&ce->guc_state.lock);
262 	ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
263 }
264 
265 static inline void clr_context_enabled(struct intel_context *ce)
266 {
267 	lockdep_assert_held(&ce->guc_state.lock);
268 	ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
269 }
270 
271 static inline bool context_pending_enable(struct intel_context *ce)
272 {
273 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
274 }
275 
276 static inline void set_context_pending_enable(struct intel_context *ce)
277 {
278 	lockdep_assert_held(&ce->guc_state.lock);
279 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
280 }
281 
282 static inline void clr_context_pending_enable(struct intel_context *ce)
283 {
284 	lockdep_assert_held(&ce->guc_state.lock);
285 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
286 }
287 
288 static inline bool context_registered(struct intel_context *ce)
289 {
290 	return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
291 }
292 
293 static inline void set_context_registered(struct intel_context *ce)
294 {
295 	lockdep_assert_held(&ce->guc_state.lock);
296 	ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
297 }
298 
299 static inline void clr_context_registered(struct intel_context *ce)
300 {
301 	lockdep_assert_held(&ce->guc_state.lock);
302 	ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
303 }
304 
305 static inline bool context_policy_required(struct intel_context *ce)
306 {
307 	return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
308 }
309 
310 static inline void set_context_policy_required(struct intel_context *ce)
311 {
312 	lockdep_assert_held(&ce->guc_state.lock);
313 	ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
314 }
315 
316 static inline void clr_context_policy_required(struct intel_context *ce)
317 {
318 	lockdep_assert_held(&ce->guc_state.lock);
319 	ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
320 }
321 
322 static inline u32 context_blocked(struct intel_context *ce)
323 {
324 	return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
325 		SCHED_STATE_BLOCKED_SHIFT;
326 }
327 
328 static inline void incr_context_blocked(struct intel_context *ce)
329 {
330 	lockdep_assert_held(&ce->guc_state.lock);
331 
332 	ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
333 
334 	GEM_BUG_ON(!context_blocked(ce));	/* Overflow check */
335 }
336 
337 static inline void decr_context_blocked(struct intel_context *ce)
338 {
339 	lockdep_assert_held(&ce->guc_state.lock);
340 
341 	GEM_BUG_ON(!context_blocked(ce));	/* Underflow check */
342 
343 	ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
344 }
345 
346 static inline bool context_has_committed_requests(struct intel_context *ce)
347 {
348 	return !!ce->guc_state.number_committed_requests;
349 }
350 
351 static inline void incr_context_committed_requests(struct intel_context *ce)
352 {
353 	lockdep_assert_held(&ce->guc_state.lock);
354 	++ce->guc_state.number_committed_requests;
355 	GEM_BUG_ON(ce->guc_state.number_committed_requests < 0);
356 }
357 
358 static inline void decr_context_committed_requests(struct intel_context *ce)
359 {
360 	lockdep_assert_held(&ce->guc_state.lock);
361 	--ce->guc_state.number_committed_requests;
362 	GEM_BUG_ON(ce->guc_state.number_committed_requests < 0);
363 }
364 
365 static struct intel_context *
366 request_to_scheduling_context(struct i915_request *rq)
367 {
368 	return intel_context_to_parent(rq->context);
369 }
370 
371 static inline bool context_guc_id_invalid(struct intel_context *ce)
372 {
373 	return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
374 }
375 
376 static inline void set_context_guc_id_invalid(struct intel_context *ce)
377 {
378 	ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
379 }
380 
381 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
382 {
383 	return &ce->engine->gt->uc.guc;
384 }
385 
386 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
387 {
388 	return rb_entry(rb, struct i915_priolist, node);
389 }
390 
391 /*
392  * When using multi-lrc submission a scratch memory area is reserved in the
393  * parent's context state for the process descriptor, work queue, and handshake
394  * between the parent + children contexts to insert safe preemption points
395  * between each of the BBs. Currently the scratch area is sized to a page.
396  *
397  * The layout of this scratch area is below:
398  * 0						guc_process_desc
399  * + sizeof(struct guc_process_desc)		child go
400  * + CACHELINE_BYTES				child join[0]
401  * ...
402  * + CACHELINE_BYTES				child join[n - 1]
403  * ...						unused
404  * PARENT_SCRATCH_SIZE / 2			work queue start
405  * ...						work queue
406  * PARENT_SCRATCH_SIZE - 1			work queue end
407  */
408 #define WQ_SIZE			(PARENT_SCRATCH_SIZE / 2)
409 #define WQ_OFFSET		(PARENT_SCRATCH_SIZE - WQ_SIZE)
410 
411 struct sync_semaphore {
412 	u32 semaphore;
413 	u8 unused[CACHELINE_BYTES - sizeof(u32)];
414 };
415 
416 struct parent_scratch {
417 	union guc_descs {
418 		struct guc_sched_wq_desc wq_desc;
419 		struct guc_process_desc_v69 pdesc;
420 	} descs;
421 
422 	struct sync_semaphore go;
423 	struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
424 
425 	u8 unused[WQ_OFFSET - sizeof(union guc_descs) -
426 		sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
427 
428 	u32 wq[WQ_SIZE / sizeof(u32)];
429 };
430 
431 static u32 __get_parent_scratch_offset(struct intel_context *ce)
432 {
433 	GEM_BUG_ON(!ce->parallel.guc.parent_page);
434 
435 	return ce->parallel.guc.parent_page * PAGE_SIZE;
436 }
437 
438 static u32 __get_wq_offset(struct intel_context *ce)
439 {
440 	BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
441 
442 	return __get_parent_scratch_offset(ce) + WQ_OFFSET;
443 }
444 
445 static struct parent_scratch *
446 __get_parent_scratch(struct intel_context *ce)
447 {
448 	BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
449 	BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
450 
451 	/*
452 	 * Need to subtract LRC_STATE_OFFSET here as the
453 	 * parallel.guc.parent_page is the offset into ce->state while
454 	 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
455 	 */
456 	return (struct parent_scratch *)
457 		(ce->lrc_reg_state +
458 		 ((__get_parent_scratch_offset(ce) -
459 		   LRC_STATE_OFFSET) / sizeof(u32)));
460 }
461 
462 static struct guc_process_desc_v69 *
463 __get_process_desc_v69(struct intel_context *ce)
464 {
465 	struct parent_scratch *ps = __get_parent_scratch(ce);
466 
467 	return &ps->descs.pdesc;
468 }
469 
470 static struct guc_sched_wq_desc *
471 __get_wq_desc_v70(struct intel_context *ce)
472 {
473 	struct parent_scratch *ps = __get_parent_scratch(ce);
474 
475 	return &ps->descs.wq_desc;
476 }
477 
478 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size)
479 {
480 	/*
481 	 * Check for space in work queue. Caching a value of head pointer in
482 	 * intel_context structure in order reduce the number accesses to shared
483 	 * GPU memory which may be across a PCIe bus.
484 	 */
485 #define AVAILABLE_SPACE	\
486 	CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
487 	if (wqi_size > AVAILABLE_SPACE) {
488 		ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head);
489 
490 		if (wqi_size > AVAILABLE_SPACE)
491 			return NULL;
492 	}
493 #undef AVAILABLE_SPACE
494 
495 	return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
496 }
497 
498 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
499 {
500 	struct intel_context *ce = xa_load(&guc->context_lookup, id);
501 
502 	GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
503 
504 	return ce;
505 }
506 
507 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index)
508 {
509 	struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69;
510 
511 	if (!base)
512 		return NULL;
513 
514 	GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID);
515 
516 	return &base[index];
517 }
518 
519 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc)
520 {
521 	u32 size;
522 	int ret;
523 
524 	size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) *
525 			  GUC_MAX_CONTEXT_ID);
526 	ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69,
527 					     (void **)&guc->lrc_desc_pool_vaddr_v69);
528 	if (ret)
529 		return ret;
530 
531 	return 0;
532 }
533 
534 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc)
535 {
536 	if (!guc->lrc_desc_pool_vaddr_v69)
537 		return;
538 
539 	guc->lrc_desc_pool_vaddr_v69 = NULL;
540 	i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP);
541 }
542 
543 static inline bool guc_submission_initialized(struct intel_guc *guc)
544 {
545 	return guc->submission_initialized;
546 }
547 
548 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id)
549 {
550 	struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id);
551 
552 	if (desc)
553 		memset(desc, 0, sizeof(*desc));
554 }
555 
556 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
557 {
558 	return __get_context(guc, id);
559 }
560 
561 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
562 				      struct intel_context *ce)
563 {
564 	unsigned long flags;
565 
566 	/*
567 	 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
568 	 * lower level functions directly.
569 	 */
570 	xa_lock_irqsave(&guc->context_lookup, flags);
571 	__xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
572 	xa_unlock_irqrestore(&guc->context_lookup, flags);
573 }
574 
575 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
576 {
577 	unsigned long flags;
578 
579 	if (unlikely(!guc_submission_initialized(guc)))
580 		return;
581 
582 	_reset_lrc_desc_v69(guc, id);
583 
584 	/*
585 	 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
586 	 * the lower level functions directly.
587 	 */
588 	xa_lock_irqsave(&guc->context_lookup, flags);
589 	__xa_erase(&guc->context_lookup, id);
590 	xa_unlock_irqrestore(&guc->context_lookup, flags);
591 }
592 
593 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
594 {
595 	if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
596 		wake_up_all(&guc->ct.wq);
597 }
598 
599 static int guc_submission_send_busy_loop(struct intel_guc *guc,
600 					 const u32 *action,
601 					 u32 len,
602 					 u32 g2h_len_dw,
603 					 bool loop)
604 {
605 	/*
606 	 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
607 	 * so we don't handle the case where we don't get a reply because we
608 	 * aborted the send due to the channel being busy.
609 	 */
610 	GEM_BUG_ON(g2h_len_dw && !loop);
611 
612 	if (g2h_len_dw)
613 		atomic_inc(&guc->outstanding_submission_g2h);
614 
615 	return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
616 }
617 
618 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
619 				   atomic_t *wait_var,
620 				   bool interruptible,
621 				   long timeout)
622 {
623 	const int state = interruptible ?
624 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
625 	DEFINE_WAIT(wait);
626 
627 	might_sleep();
628 	GEM_BUG_ON(timeout < 0);
629 
630 	if (!atomic_read(wait_var))
631 		return 0;
632 
633 	if (!timeout)
634 		return -ETIME;
635 
636 	for (;;) {
637 		prepare_to_wait(&guc->ct.wq, &wait, state);
638 
639 		if (!atomic_read(wait_var))
640 			break;
641 
642 		if (signal_pending_state(state, current)) {
643 			timeout = -EINTR;
644 			break;
645 		}
646 
647 		if (!timeout) {
648 			timeout = -ETIME;
649 			break;
650 		}
651 
652 		timeout = io_schedule_timeout(timeout);
653 	}
654 	finish_wait(&guc->ct.wq, &wait);
655 
656 	return (timeout < 0) ? timeout : 0;
657 }
658 
659 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
660 {
661 	if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
662 		return 0;
663 
664 	return intel_guc_wait_for_pending_msg(guc,
665 					      &guc->outstanding_submission_g2h,
666 					      true, timeout);
667 }
668 
669 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop);
670 static int try_context_registration(struct intel_context *ce, bool loop);
671 
672 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
673 {
674 	int err = 0;
675 	struct intel_context *ce = request_to_scheduling_context(rq);
676 	u32 action[3];
677 	int len = 0;
678 	u32 g2h_len_dw = 0;
679 	bool enabled;
680 
681 	lockdep_assert_held(&rq->engine->sched_engine->lock);
682 
683 	/*
684 	 * Corner case where requests were sitting in the priority list or a
685 	 * request resubmitted after the context was banned.
686 	 */
687 	if (unlikely(intel_context_is_banned(ce))) {
688 		i915_request_put(i915_request_mark_eio(rq));
689 		intel_engine_signal_breadcrumbs(ce->engine);
690 		return 0;
691 	}
692 
693 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
694 	GEM_BUG_ON(context_guc_id_invalid(ce));
695 
696 	if (context_policy_required(ce)) {
697 		err = guc_context_policy_init_v70(ce, false);
698 		if (err)
699 			return err;
700 	}
701 
702 	spin_lock(&ce->guc_state.lock);
703 
704 	/*
705 	 * The request / context will be run on the hardware when scheduling
706 	 * gets enabled in the unblock. For multi-lrc we still submit the
707 	 * context to move the LRC tails.
708 	 */
709 	if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
710 		goto out;
711 
712 	enabled = context_enabled(ce) || context_blocked(ce);
713 
714 	if (!enabled) {
715 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
716 		action[len++] = ce->guc_id.id;
717 		action[len++] = GUC_CONTEXT_ENABLE;
718 		set_context_pending_enable(ce);
719 		intel_context_get(ce);
720 		g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
721 	} else {
722 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
723 		action[len++] = ce->guc_id.id;
724 	}
725 
726 	err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
727 	if (!enabled && !err) {
728 		trace_intel_context_sched_enable(ce);
729 		atomic_inc(&guc->outstanding_submission_g2h);
730 		set_context_enabled(ce);
731 
732 		/*
733 		 * Without multi-lrc KMD does the submission step (moving the
734 		 * lrc tail) so enabling scheduling is sufficient to submit the
735 		 * context. This isn't the case in multi-lrc submission as the
736 		 * GuC needs to move the tails, hence the need for another H2G
737 		 * to submit a multi-lrc context after enabling scheduling.
738 		 */
739 		if (intel_context_is_parent(ce)) {
740 			action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
741 			err = intel_guc_send_nb(guc, action, len - 1, 0);
742 		}
743 	} else if (!enabled) {
744 		clr_context_pending_enable(ce);
745 		intel_context_put(ce);
746 	}
747 	if (likely(!err))
748 		trace_i915_request_guc_submit(rq);
749 
750 out:
751 	spin_unlock(&ce->guc_state.lock);
752 	return err;
753 }
754 
755 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
756 {
757 	int ret = __guc_add_request(guc, rq);
758 
759 	if (unlikely(ret == -EBUSY)) {
760 		guc->stalled_request = rq;
761 		guc->submission_stall_reason = STALL_ADD_REQUEST;
762 	}
763 
764 	return ret;
765 }
766 
767 static inline void guc_set_lrc_tail(struct i915_request *rq)
768 {
769 	rq->context->lrc_reg_state[CTX_RING_TAIL] =
770 		intel_ring_set_tail(rq->ring, rq->tail);
771 }
772 
773 static inline int rq_prio(const struct i915_request *rq)
774 {
775 	return rq->sched.attr.priority;
776 }
777 
778 static bool is_multi_lrc_rq(struct i915_request *rq)
779 {
780 	return intel_context_is_parallel(rq->context);
781 }
782 
783 static bool can_merge_rq(struct i915_request *rq,
784 			 struct i915_request *last)
785 {
786 	return request_to_scheduling_context(rq) ==
787 		request_to_scheduling_context(last);
788 }
789 
790 static u32 wq_space_until_wrap(struct intel_context *ce)
791 {
792 	return (WQ_SIZE - ce->parallel.guc.wqi_tail);
793 }
794 
795 static void write_wqi(struct intel_context *ce, u32 wqi_size)
796 {
797 	BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
798 
799 	/*
800 	 * Ensure WQI are visible before updating tail
801 	 */
802 	intel_guc_write_barrier(ce_to_guc(ce));
803 
804 	ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
805 		(WQ_SIZE - 1);
806 	WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail);
807 }
808 
809 static int guc_wq_noop_append(struct intel_context *ce)
810 {
811 	u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce));
812 	u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
813 
814 	if (!wqi)
815 		return -EBUSY;
816 
817 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
818 
819 	*wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
820 		FIELD_PREP(WQ_LEN_MASK, len_dw);
821 	ce->parallel.guc.wqi_tail = 0;
822 
823 	return 0;
824 }
825 
826 static int __guc_wq_item_append(struct i915_request *rq)
827 {
828 	struct intel_context *ce = request_to_scheduling_context(rq);
829 	struct intel_context *child;
830 	unsigned int wqi_size = (ce->parallel.number_children + 4) *
831 		sizeof(u32);
832 	u32 *wqi;
833 	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
834 	int ret;
835 
836 	/* Ensure context is in correct state updating work queue */
837 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
838 	GEM_BUG_ON(context_guc_id_invalid(ce));
839 	GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
840 	GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
841 
842 	/* Insert NOOP if this work queue item will wrap the tail pointer. */
843 	if (wqi_size > wq_space_until_wrap(ce)) {
844 		ret = guc_wq_noop_append(ce);
845 		if (ret)
846 			return ret;
847 	}
848 
849 	wqi = get_wq_pointer(ce, wqi_size);
850 	if (!wqi)
851 		return -EBUSY;
852 
853 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
854 
855 	*wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
856 		FIELD_PREP(WQ_LEN_MASK, len_dw);
857 	*wqi++ = ce->lrc.lrca;
858 	*wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
859 	       FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
860 	*wqi++ = 0;	/* fence_id */
861 	for_each_child(ce, child)
862 		*wqi++ = child->ring->tail / sizeof(u64);
863 
864 	write_wqi(ce, wqi_size);
865 
866 	return 0;
867 }
868 
869 static int guc_wq_item_append(struct intel_guc *guc,
870 			      struct i915_request *rq)
871 {
872 	struct intel_context *ce = request_to_scheduling_context(rq);
873 	int ret = 0;
874 
875 	if (likely(!intel_context_is_banned(ce))) {
876 		ret = __guc_wq_item_append(rq);
877 
878 		if (unlikely(ret == -EBUSY)) {
879 			guc->stalled_request = rq;
880 			guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
881 		}
882 	}
883 
884 	return ret;
885 }
886 
887 static bool multi_lrc_submit(struct i915_request *rq)
888 {
889 	struct intel_context *ce = request_to_scheduling_context(rq);
890 
891 	intel_ring_set_tail(rq->ring, rq->tail);
892 
893 	/*
894 	 * We expect the front end (execbuf IOCTL) to set this flag on the last
895 	 * request generated from a multi-BB submission. This indicates to the
896 	 * backend (GuC interface) that we should submit this context thus
897 	 * submitting all the requests generated in parallel.
898 	 */
899 	return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
900 		intel_context_is_banned(ce);
901 }
902 
903 static int guc_dequeue_one_context(struct intel_guc *guc)
904 {
905 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
906 	struct i915_request *last = NULL;
907 	bool submit = false;
908 	struct rb_node *rb;
909 	int ret;
910 
911 	lockdep_assert_held(&sched_engine->lock);
912 
913 	if (guc->stalled_request) {
914 		submit = true;
915 		last = guc->stalled_request;
916 
917 		switch (guc->submission_stall_reason) {
918 		case STALL_REGISTER_CONTEXT:
919 			goto register_context;
920 		case STALL_MOVE_LRC_TAIL:
921 			goto move_lrc_tail;
922 		case STALL_ADD_REQUEST:
923 			goto add_request;
924 		default:
925 			MISSING_CASE(guc->submission_stall_reason);
926 		}
927 	}
928 
929 	while ((rb = rb_first_cached(&sched_engine->queue))) {
930 		struct i915_priolist *p = to_priolist(rb);
931 		struct i915_request *rq, *rn;
932 
933 		priolist_for_each_request_consume(rq, rn, p) {
934 			if (last && !can_merge_rq(rq, last))
935 				goto register_context;
936 
937 			list_del_init(&rq->sched.link);
938 
939 			__i915_request_submit(rq);
940 
941 			trace_i915_request_in(rq, 0);
942 			last = rq;
943 
944 			if (is_multi_lrc_rq(rq)) {
945 				/*
946 				 * We need to coalesce all multi-lrc requests in
947 				 * a relationship into a single H2G. We are
948 				 * guaranteed that all of these requests will be
949 				 * submitted sequentially.
950 				 */
951 				if (multi_lrc_submit(rq)) {
952 					submit = true;
953 					goto register_context;
954 				}
955 			} else {
956 				submit = true;
957 			}
958 		}
959 
960 		rb_erase_cached(&p->node, &sched_engine->queue);
961 		i915_priolist_free(p);
962 	}
963 
964 register_context:
965 	if (submit) {
966 		struct intel_context *ce = request_to_scheduling_context(last);
967 
968 		if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
969 			     !intel_context_is_banned(ce))) {
970 			ret = try_context_registration(ce, false);
971 			if (unlikely(ret == -EPIPE)) {
972 				goto deadlk;
973 			} else if (ret == -EBUSY) {
974 				guc->stalled_request = last;
975 				guc->submission_stall_reason =
976 					STALL_REGISTER_CONTEXT;
977 				goto schedule_tasklet;
978 			} else if (ret != 0) {
979 				GEM_WARN_ON(ret);	/* Unexpected */
980 				goto deadlk;
981 			}
982 		}
983 
984 move_lrc_tail:
985 		if (is_multi_lrc_rq(last)) {
986 			ret = guc_wq_item_append(guc, last);
987 			if (ret == -EBUSY) {
988 				goto schedule_tasklet;
989 			} else if (ret != 0) {
990 				GEM_WARN_ON(ret);	/* Unexpected */
991 				goto deadlk;
992 			}
993 		} else {
994 			guc_set_lrc_tail(last);
995 		}
996 
997 add_request:
998 		ret = guc_add_request(guc, last);
999 		if (unlikely(ret == -EPIPE)) {
1000 			goto deadlk;
1001 		} else if (ret == -EBUSY) {
1002 			goto schedule_tasklet;
1003 		} else if (ret != 0) {
1004 			GEM_WARN_ON(ret);	/* Unexpected */
1005 			goto deadlk;
1006 		}
1007 	}
1008 
1009 	guc->stalled_request = NULL;
1010 	guc->submission_stall_reason = STALL_NONE;
1011 	return submit;
1012 
1013 deadlk:
1014 	sched_engine->tasklet.callback = NULL;
1015 	tasklet_disable_nosync(&sched_engine->tasklet);
1016 	return false;
1017 
1018 schedule_tasklet:
1019 	tasklet_schedule(&sched_engine->tasklet);
1020 	return false;
1021 }
1022 
1023 static void guc_submission_tasklet(struct tasklet_struct *t)
1024 {
1025 	struct i915_sched_engine *sched_engine =
1026 		from_tasklet(sched_engine, t, tasklet);
1027 	unsigned long flags;
1028 	bool loop;
1029 
1030 	spin_lock_irqsave(&sched_engine->lock, flags);
1031 
1032 	do {
1033 		loop = guc_dequeue_one_context(sched_engine->private_data);
1034 	} while (loop);
1035 
1036 	i915_sched_engine_reset_on_empty(sched_engine);
1037 
1038 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1039 }
1040 
1041 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
1042 {
1043 	if (iir & GT_RENDER_USER_INTERRUPT)
1044 		intel_engine_signal_breadcrumbs(engine);
1045 }
1046 
1047 static void __guc_context_destroy(struct intel_context *ce);
1048 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
1049 static void guc_signal_context_fence(struct intel_context *ce);
1050 static void guc_cancel_context_requests(struct intel_context *ce);
1051 static void guc_blocked_fence_complete(struct intel_context *ce);
1052 
1053 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1054 {
1055 	struct intel_context *ce;
1056 	unsigned long index, flags;
1057 	bool pending_disable, pending_enable, deregister, destroyed, banned;
1058 
1059 	xa_lock_irqsave(&guc->context_lookup, flags);
1060 	xa_for_each(&guc->context_lookup, index, ce) {
1061 		/*
1062 		 * Corner case where the ref count on the object is zero but and
1063 		 * deregister G2H was lost. In this case we don't touch the ref
1064 		 * count and finish the destroy of the context.
1065 		 */
1066 		bool do_put = kref_get_unless_zero(&ce->ref);
1067 
1068 		xa_unlock(&guc->context_lookup);
1069 
1070 		spin_lock(&ce->guc_state.lock);
1071 
1072 		/*
1073 		 * Once we are at this point submission_disabled() is guaranteed
1074 		 * to be visible to all callers who set the below flags (see above
1075 		 * flush and flushes in reset_prepare). If submission_disabled()
1076 		 * is set, the caller shouldn't set these flags.
1077 		 */
1078 
1079 		destroyed = context_destroyed(ce);
1080 		pending_enable = context_pending_enable(ce);
1081 		pending_disable = context_pending_disable(ce);
1082 		deregister = context_wait_for_deregister_to_register(ce);
1083 		banned = context_banned(ce);
1084 		init_sched_state(ce);
1085 
1086 		spin_unlock(&ce->guc_state.lock);
1087 
1088 		if (pending_enable || destroyed || deregister) {
1089 			decr_outstanding_submission_g2h(guc);
1090 			if (deregister)
1091 				guc_signal_context_fence(ce);
1092 			if (destroyed) {
1093 				intel_gt_pm_put_async(guc_to_gt(guc));
1094 				release_guc_id(guc, ce);
1095 				__guc_context_destroy(ce);
1096 			}
1097 			if (pending_enable || deregister)
1098 				intel_context_put(ce);
1099 		}
1100 
1101 		/* Not mutualy exclusive with above if statement. */
1102 		if (pending_disable) {
1103 			guc_signal_context_fence(ce);
1104 			if (banned) {
1105 				guc_cancel_context_requests(ce);
1106 				intel_engine_signal_breadcrumbs(ce->engine);
1107 			}
1108 			intel_context_sched_disable_unpin(ce);
1109 			decr_outstanding_submission_g2h(guc);
1110 
1111 			spin_lock(&ce->guc_state.lock);
1112 			guc_blocked_fence_complete(ce);
1113 			spin_unlock(&ce->guc_state.lock);
1114 
1115 			intel_context_put(ce);
1116 		}
1117 
1118 		if (do_put)
1119 			intel_context_put(ce);
1120 		xa_lock(&guc->context_lookup);
1121 	}
1122 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1123 }
1124 
1125 /*
1126  * GuC stores busyness stats for each engine at context in/out boundaries. A
1127  * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1128  * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1129  * GuC.
1130  *
1131  * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1132  * is valid (!= ~0) and start is non-zero, the engine is considered to be
1133  * active. For an active engine total busyness = total + (now - start), where
1134  * 'now' is the time at which the busyness is sampled. For inactive engine,
1135  * total busyness = total.
1136  *
1137  * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1138  *
1139  * The start and total values provided by GuC are 32 bits and wrap around in a
1140  * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1141  * increasing ns values, there is a need for this implementation to account for
1142  * overflows and extend the GuC provided values to 64 bits before returning
1143  * busyness to the user. In order to do that, a worker runs periodically at
1144  * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1145  * 27 seconds for a gt clock frequency of 19.2 MHz).
1146  */
1147 
1148 #define WRAP_TIME_CLKS U32_MAX
1149 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1150 
1151 static void
1152 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1153 {
1154 	u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1155 	u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1156 
1157 	if (new_start == lower_32_bits(*prev_start))
1158 		return;
1159 
1160 	/*
1161 	 * When gt is unparked, we update the gt timestamp and start the ping
1162 	 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1163 	 * is unparked, all switched in contexts will have a start time that is
1164 	 * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1165 	 *
1166 	 * If neither gt_stamp nor new_start has rolled over, then the
1167 	 * gt_stamp_hi does not need to be adjusted, however if one of them has
1168 	 * rolled over, we need to adjust gt_stamp_hi accordingly.
1169 	 *
1170 	 * The below conditions address the cases of new_start rollover and
1171 	 * gt_stamp_last rollover respectively.
1172 	 */
1173 	if (new_start < gt_stamp_last &&
1174 	    (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1175 		gt_stamp_hi++;
1176 
1177 	if (new_start > gt_stamp_last &&
1178 	    (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1179 		gt_stamp_hi--;
1180 
1181 	*prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1182 }
1183 
1184 #define record_read(map_, field_) \
1185 	iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1186 
1187 /*
1188  * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1189  * we run into a race where the value read is inconsistent. Sometimes the
1190  * inconsistency is in reading the upper MSB bytes of the last_in value when
1191  * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1192  * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1193  * determine validity of these values. Instead we read the values multiple times
1194  * until they are consistent. In test runs, 3 attempts results in consistent
1195  * values. The upper bound is set to 6 attempts and may need to be tuned as per
1196  * any new occurences.
1197  */
1198 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1199 				      u32 *last_in, u32 *id, u32 *total)
1200 {
1201 	struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1202 	int i = 0;
1203 
1204 	do {
1205 		*last_in = record_read(&rec_map, last_switch_in_stamp);
1206 		*id = record_read(&rec_map, current_context_index);
1207 		*total = record_read(&rec_map, total_runtime);
1208 
1209 		if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1210 		    record_read(&rec_map, current_context_index) == *id &&
1211 		    record_read(&rec_map, total_runtime) == *total)
1212 			break;
1213 	} while (++i < 6);
1214 }
1215 
1216 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1217 {
1218 	struct intel_engine_guc_stats *stats = &engine->stats.guc;
1219 	struct intel_guc *guc = &engine->gt->uc.guc;
1220 	u32 last_switch, ctx_id, total;
1221 
1222 	lockdep_assert_held(&guc->timestamp.lock);
1223 
1224 	__get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1225 
1226 	stats->running = ctx_id != ~0U && last_switch;
1227 	if (stats->running)
1228 		__extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1229 
1230 	/*
1231 	 * Instead of adjusting the total for overflow, just add the
1232 	 * difference from previous sample stats->total_gt_clks
1233 	 */
1234 	if (total && total != ~0U) {
1235 		stats->total_gt_clks += (u32)(total - stats->prev_total);
1236 		stats->prev_total = total;
1237 	}
1238 }
1239 
1240 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1241 {
1242 	intel_wakeref_t wakeref;
1243 	u32 reg, shift;
1244 
1245 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1246 		reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1247 
1248 	shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
1249 		GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;
1250 
1251 	return 3 - shift;
1252 }
1253 
1254 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1255 {
1256 	struct intel_gt *gt = guc_to_gt(guc);
1257 	u32 gt_stamp_lo, gt_stamp_hi;
1258 	u64 gpm_ts;
1259 
1260 	lockdep_assert_held(&guc->timestamp.lock);
1261 
1262 	gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1263 	gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1264 					  MISC_STATUS1) >> guc->timestamp.shift;
1265 	gt_stamp_lo = lower_32_bits(gpm_ts);
1266 	*now = ktime_get();
1267 
1268 	if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1269 		gt_stamp_hi++;
1270 
1271 	guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1272 }
1273 
1274 /*
1275  * Unlike the execlist mode of submission total and active times are in terms of
1276  * gt clocks. The *now parameter is retained to return the cpu time at which the
1277  * busyness was sampled.
1278  */
1279 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1280 {
1281 	struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1282 	struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1283 	struct intel_gt *gt = engine->gt;
1284 	struct intel_guc *guc = &gt->uc.guc;
1285 	u64 total, gt_stamp_saved;
1286 	unsigned long flags;
1287 	u32 reset_count;
1288 	bool in_reset;
1289 
1290 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1291 
1292 	/*
1293 	 * If a reset happened, we risk reading partially updated engine
1294 	 * busyness from GuC, so we just use the driver stored copy of busyness.
1295 	 * Synchronize with gt reset using reset_count and the
1296 	 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1297 	 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1298 	 * usable by checking the flag afterwards.
1299 	 */
1300 	reset_count = i915_reset_count(gpu_error);
1301 	in_reset = test_bit(I915_RESET_BACKOFF, &gt->reset.flags);
1302 
1303 	*now = ktime_get();
1304 
1305 	/*
1306 	 * The active busyness depends on start_gt_clk and gt_stamp.
1307 	 * gt_stamp is updated by i915 only when gt is awake and the
1308 	 * start_gt_clk is derived from GuC state. To get a consistent
1309 	 * view of activity, we query the GuC state only if gt is awake.
1310 	 */
1311 	if (!in_reset && intel_gt_pm_get_if_awake(gt)) {
1312 		stats_saved = *stats;
1313 		gt_stamp_saved = guc->timestamp.gt_stamp;
1314 		/*
1315 		 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1316 		 * start_gt_clk' calculation below for active engines.
1317 		 */
1318 		guc_update_engine_gt_clks(engine);
1319 		guc_update_pm_timestamp(guc, now);
1320 		intel_gt_pm_put_async(gt);
1321 		if (i915_reset_count(gpu_error) != reset_count) {
1322 			*stats = stats_saved;
1323 			guc->timestamp.gt_stamp = gt_stamp_saved;
1324 		}
1325 	}
1326 
1327 	total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1328 	if (stats->running) {
1329 		u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1330 
1331 		total += intel_gt_clock_interval_to_ns(gt, clk);
1332 	}
1333 
1334 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1335 
1336 	return ns_to_ktime(total);
1337 }
1338 
1339 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1340 {
1341 	struct intel_gt *gt = guc_to_gt(guc);
1342 	struct intel_engine_cs *engine;
1343 	enum intel_engine_id id;
1344 	unsigned long flags;
1345 	ktime_t unused;
1346 
1347 	cancel_delayed_work_sync(&guc->timestamp.work);
1348 
1349 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1350 
1351 	guc_update_pm_timestamp(guc, &unused);
1352 	for_each_engine(engine, gt, id) {
1353 		guc_update_engine_gt_clks(engine);
1354 		engine->stats.guc.prev_total = 0;
1355 	}
1356 
1357 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1358 }
1359 
1360 static void __update_guc_busyness_stats(struct intel_guc *guc)
1361 {
1362 	struct intel_gt *gt = guc_to_gt(guc);
1363 	struct intel_engine_cs *engine;
1364 	enum intel_engine_id id;
1365 	unsigned long flags;
1366 	ktime_t unused;
1367 
1368 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1369 
1370 	guc_update_pm_timestamp(guc, &unused);
1371 	for_each_engine(engine, gt, id)
1372 		guc_update_engine_gt_clks(engine);
1373 
1374 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1375 }
1376 
1377 static void guc_timestamp_ping(struct work_struct *wrk)
1378 {
1379 	struct intel_guc *guc = container_of(wrk, typeof(*guc),
1380 					     timestamp.work.work);
1381 	struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1382 	struct intel_gt *gt = guc_to_gt(guc);
1383 	intel_wakeref_t wakeref;
1384 	int srcu, ret;
1385 
1386 	/*
1387 	 * Synchronize with gt reset to make sure the worker does not
1388 	 * corrupt the engine/guc stats.
1389 	 */
1390 	ret = intel_gt_reset_trylock(gt, &srcu);
1391 	if (ret)
1392 		return;
1393 
1394 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
1395 		__update_guc_busyness_stats(guc);
1396 
1397 	intel_gt_reset_unlock(gt, srcu);
1398 
1399 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
1400 			 guc->timestamp.ping_delay);
1401 }
1402 
1403 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1404 {
1405 	u32 offset = intel_guc_engine_usage_offset(guc);
1406 	u32 action[] = {
1407 		INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1408 		offset,
1409 		0,
1410 	};
1411 
1412 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
1413 }
1414 
1415 static void guc_init_engine_stats(struct intel_guc *guc)
1416 {
1417 	struct intel_gt *gt = guc_to_gt(guc);
1418 	intel_wakeref_t wakeref;
1419 
1420 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
1421 			 guc->timestamp.ping_delay);
1422 
1423 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
1424 		int ret = guc_action_enable_usage_stats(guc);
1425 
1426 		if (ret)
1427 			drm_err(&gt->i915->drm,
1428 				"Failed to enable usage stats: %d!\n", ret);
1429 	}
1430 }
1431 
1432 void intel_guc_busyness_park(struct intel_gt *gt)
1433 {
1434 	struct intel_guc *guc = &gt->uc.guc;
1435 
1436 	if (!guc_submission_initialized(guc))
1437 		return;
1438 
1439 	cancel_delayed_work(&guc->timestamp.work);
1440 	__update_guc_busyness_stats(guc);
1441 }
1442 
1443 void intel_guc_busyness_unpark(struct intel_gt *gt)
1444 {
1445 	struct intel_guc *guc = &gt->uc.guc;
1446 	unsigned long flags;
1447 	ktime_t unused;
1448 
1449 	if (!guc_submission_initialized(guc))
1450 		return;
1451 
1452 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1453 	guc_update_pm_timestamp(guc, &unused);
1454 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1455 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
1456 			 guc->timestamp.ping_delay);
1457 }
1458 
1459 static inline bool
1460 submission_disabled(struct intel_guc *guc)
1461 {
1462 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1463 
1464 	return unlikely(!sched_engine ||
1465 			!__tasklet_is_enabled(&sched_engine->tasklet) ||
1466 			intel_gt_is_wedged(guc_to_gt(guc)));
1467 }
1468 
1469 static void disable_submission(struct intel_guc *guc)
1470 {
1471 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1472 
1473 	if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1474 		GEM_BUG_ON(!guc->ct.enabled);
1475 		__tasklet_disable_sync_once(&sched_engine->tasklet);
1476 		sched_engine->tasklet.callback = NULL;
1477 	}
1478 }
1479 
1480 static void enable_submission(struct intel_guc *guc)
1481 {
1482 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1483 	unsigned long flags;
1484 
1485 	spin_lock_irqsave(&guc->sched_engine->lock, flags);
1486 	sched_engine->tasklet.callback = guc_submission_tasklet;
1487 	wmb();	/* Make sure callback visible */
1488 	if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1489 	    __tasklet_enable(&sched_engine->tasklet)) {
1490 		GEM_BUG_ON(!guc->ct.enabled);
1491 
1492 		/* And kick in case we missed a new request submission. */
1493 		tasklet_hi_schedule(&sched_engine->tasklet);
1494 	}
1495 	spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1496 }
1497 
1498 static void guc_flush_submissions(struct intel_guc *guc)
1499 {
1500 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1501 	unsigned long flags;
1502 
1503 	spin_lock_irqsave(&sched_engine->lock, flags);
1504 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1505 }
1506 
1507 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1508 
1509 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1510 {
1511 	if (unlikely(!guc_submission_initialized(guc))) {
1512 		/* Reset called during driver load? GuC not yet initialised! */
1513 		return;
1514 	}
1515 
1516 	intel_gt_park_heartbeats(guc_to_gt(guc));
1517 	disable_submission(guc);
1518 	guc->interrupts.disable(guc);
1519 	__reset_guc_busyness_stats(guc);
1520 
1521 	/* Flush IRQ handler */
1522 	spin_lock_irq(&guc_to_gt(guc)->irq_lock);
1523 	spin_unlock_irq(&guc_to_gt(guc)->irq_lock);
1524 
1525 	guc_flush_submissions(guc);
1526 	guc_flush_destroyed_contexts(guc);
1527 	flush_work(&guc->ct.requests.worker);
1528 
1529 	scrub_guc_desc_for_outstanding_g2h(guc);
1530 }
1531 
1532 static struct intel_engine_cs *
1533 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1534 {
1535 	struct intel_engine_cs *engine;
1536 	intel_engine_mask_t tmp, mask = ve->mask;
1537 	unsigned int num_siblings = 0;
1538 
1539 	for_each_engine_masked(engine, ve->gt, mask, tmp)
1540 		if (num_siblings++ == sibling)
1541 			return engine;
1542 
1543 	return NULL;
1544 }
1545 
1546 static inline struct intel_engine_cs *
1547 __context_to_physical_engine(struct intel_context *ce)
1548 {
1549 	struct intel_engine_cs *engine = ce->engine;
1550 
1551 	if (intel_engine_is_virtual(engine))
1552 		engine = guc_virtual_get_sibling(engine, 0);
1553 
1554 	return engine;
1555 }
1556 
1557 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1558 {
1559 	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1560 
1561 	if (intel_context_is_banned(ce))
1562 		return;
1563 
1564 	GEM_BUG_ON(!intel_context_is_pinned(ce));
1565 
1566 	/*
1567 	 * We want a simple context + ring to execute the breadcrumb update.
1568 	 * We cannot rely on the context being intact across the GPU hang,
1569 	 * so clear it and rebuild just what we need for the breadcrumb.
1570 	 * All pending requests for this context will be zapped, and any
1571 	 * future request will be after userspace has had the opportunity
1572 	 * to recreate its own state.
1573 	 */
1574 	if (scrub)
1575 		lrc_init_regs(ce, engine, true);
1576 
1577 	/* Rerun the request; its payload has been neutered (if guilty). */
1578 	lrc_update_regs(ce, engine, head);
1579 }
1580 
1581 static u32 __cs_pending_mi_force_wakes(struct intel_engine_cs *engine)
1582 {
1583 	static const i915_reg_t _reg[I915_NUM_ENGINES] = {
1584 		[RCS0] = MSG_IDLE_CS,
1585 		[BCS0] = MSG_IDLE_BCS,
1586 		[VCS0] = MSG_IDLE_VCS0,
1587 		[VCS1] = MSG_IDLE_VCS1,
1588 		[VCS2] = MSG_IDLE_VCS2,
1589 		[VCS3] = MSG_IDLE_VCS3,
1590 		[VCS4] = MSG_IDLE_VCS4,
1591 		[VCS5] = MSG_IDLE_VCS5,
1592 		[VCS6] = MSG_IDLE_VCS6,
1593 		[VCS7] = MSG_IDLE_VCS7,
1594 		[VECS0] = MSG_IDLE_VECS0,
1595 		[VECS1] = MSG_IDLE_VECS1,
1596 		[VECS2] = MSG_IDLE_VECS2,
1597 		[VECS3] = MSG_IDLE_VECS3,
1598 		[CCS0] = MSG_IDLE_CS,
1599 		[CCS1] = MSG_IDLE_CS,
1600 		[CCS2] = MSG_IDLE_CS,
1601 		[CCS3] = MSG_IDLE_CS,
1602 	};
1603 	u32 val;
1604 
1605 	if (!_reg[engine->id].reg)
1606 		return 0;
1607 
1608 	val = intel_uncore_read(engine->uncore, _reg[engine->id]);
1609 
1610 	/* bits[29:25] & bits[13:9] >> shift */
1611 	return (val & (val >> 16) & MSG_IDLE_FW_MASK) >> MSG_IDLE_FW_SHIFT;
1612 }
1613 
1614 static void __gpm_wait_for_fw_complete(struct intel_gt *gt, u32 fw_mask)
1615 {
1616 	int ret;
1617 
1618 	/* Ensure GPM receives fw up/down after CS is stopped */
1619 	udelay(1);
1620 
1621 	/* Wait for forcewake request to complete in GPM */
1622 	ret =  __intel_wait_for_register_fw(gt->uncore,
1623 					    GEN9_PWRGT_DOMAIN_STATUS,
1624 					    fw_mask, fw_mask, 5000, 0, NULL);
1625 
1626 	/* Ensure CS receives fw ack from GPM */
1627 	udelay(1);
1628 
1629 	if (ret)
1630 		GT_TRACE(gt, "Failed to complete pending forcewake %d\n", ret);
1631 }
1632 
1633 /*
1634  * Wa_22011802037:gen12: In addition to stopping the cs, we need to wait for any
1635  * pending MI_FORCE_WAKEUP requests that the CS has initiated to complete. The
1636  * pending status is indicated by bits[13:9] (masked by bits[ 29:25]) in the
1637  * MSG_IDLE register. There's one MSG_IDLE register per reset domain. Since we
1638  * are concerned only with the gt reset here, we use a logical OR of pending
1639  * forcewakeups from all reset domains and then wait for them to complete by
1640  * querying PWRGT_DOMAIN_STATUS.
1641  */
1642 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1643 {
1644 	u32 fw_pending;
1645 
1646 	if (GRAPHICS_VER(engine->i915) != 12)
1647 		return;
1648 
1649 	/*
1650 	 * Wa_22011802037
1651 	 * TODO: Occasionally trying to stop the cs times out, but does not
1652 	 * adversely affect functionality. The timeout is set as a config
1653 	 * parameter that defaults to 100ms. Assuming that this timeout is
1654 	 * sufficient for any pending MI_FORCEWAKEs to complete, ignore the
1655 	 * timeout returned here until it is root caused.
1656 	 */
1657 	intel_engine_stop_cs(engine);
1658 
1659 	fw_pending = __cs_pending_mi_force_wakes(engine);
1660 	if (fw_pending)
1661 		__gpm_wait_for_fw_complete(engine->gt, fw_pending);
1662 }
1663 
1664 static void guc_reset_nop(struct intel_engine_cs *engine)
1665 {
1666 }
1667 
1668 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1669 {
1670 }
1671 
1672 static void
1673 __unwind_incomplete_requests(struct intel_context *ce)
1674 {
1675 	struct i915_request *rq, *rn;
1676 	struct list_head *pl;
1677 	int prio = I915_PRIORITY_INVALID;
1678 	struct i915_sched_engine * const sched_engine =
1679 		ce->engine->sched_engine;
1680 	unsigned long flags;
1681 
1682 	spin_lock_irqsave(&sched_engine->lock, flags);
1683 	spin_lock(&ce->guc_state.lock);
1684 	list_for_each_entry_safe_reverse(rq, rn,
1685 					 &ce->guc_state.requests,
1686 					 sched.link) {
1687 		if (i915_request_completed(rq))
1688 			continue;
1689 
1690 		list_del_init(&rq->sched.link);
1691 		__i915_request_unsubmit(rq);
1692 
1693 		/* Push the request back into the queue for later resubmission. */
1694 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1695 		if (rq_prio(rq) != prio) {
1696 			prio = rq_prio(rq);
1697 			pl = i915_sched_lookup_priolist(sched_engine, prio);
1698 		}
1699 		GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1700 
1701 		list_add(&rq->sched.link, pl);
1702 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1703 	}
1704 	spin_unlock(&ce->guc_state.lock);
1705 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1706 }
1707 
1708 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1709 {
1710 	bool guilty;
1711 	struct i915_request *rq;
1712 	unsigned long flags;
1713 	u32 head;
1714 	int i, number_children = ce->parallel.number_children;
1715 	struct intel_context *parent = ce;
1716 
1717 	GEM_BUG_ON(intel_context_is_child(ce));
1718 
1719 	intel_context_get(ce);
1720 
1721 	/*
1722 	 * GuC will implicitly mark the context as non-schedulable when it sends
1723 	 * the reset notification. Make sure our state reflects this change. The
1724 	 * context will be marked enabled on resubmission.
1725 	 */
1726 	spin_lock_irqsave(&ce->guc_state.lock, flags);
1727 	clr_context_enabled(ce);
1728 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1729 
1730 	/*
1731 	 * For each context in the relationship find the hanging request
1732 	 * resetting each context / request as needed
1733 	 */
1734 	for (i = 0; i < number_children + 1; ++i) {
1735 		if (!intel_context_is_pinned(ce))
1736 			goto next_context;
1737 
1738 		guilty = false;
1739 		rq = intel_context_find_active_request(ce);
1740 		if (!rq) {
1741 			head = ce->ring->tail;
1742 			goto out_replay;
1743 		}
1744 
1745 		if (i915_request_started(rq))
1746 			guilty = stalled & ce->engine->mask;
1747 
1748 		GEM_BUG_ON(i915_active_is_idle(&ce->active));
1749 		head = intel_ring_wrap(ce->ring, rq->head);
1750 
1751 		__i915_request_reset(rq, guilty);
1752 out_replay:
1753 		guc_reset_state(ce, head, guilty);
1754 next_context:
1755 		if (i != number_children)
1756 			ce = list_next_entry(ce, parallel.child_link);
1757 	}
1758 
1759 	__unwind_incomplete_requests(parent);
1760 	intel_context_put(parent);
1761 }
1762 
1763 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1764 {
1765 	struct intel_context *ce;
1766 	unsigned long index;
1767 	unsigned long flags;
1768 
1769 	if (unlikely(!guc_submission_initialized(guc))) {
1770 		/* Reset called during driver load? GuC not yet initialised! */
1771 		return;
1772 	}
1773 
1774 	xa_lock_irqsave(&guc->context_lookup, flags);
1775 	xa_for_each(&guc->context_lookup, index, ce) {
1776 		if (!kref_get_unless_zero(&ce->ref))
1777 			continue;
1778 
1779 		xa_unlock(&guc->context_lookup);
1780 
1781 		if (intel_context_is_pinned(ce) &&
1782 		    !intel_context_is_child(ce))
1783 			__guc_reset_context(ce, stalled);
1784 
1785 		intel_context_put(ce);
1786 
1787 		xa_lock(&guc->context_lookup);
1788 	}
1789 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1790 
1791 	/* GuC is blown away, drop all references to contexts */
1792 	xa_destroy(&guc->context_lookup);
1793 }
1794 
1795 static void guc_cancel_context_requests(struct intel_context *ce)
1796 {
1797 	struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1798 	struct i915_request *rq;
1799 	unsigned long flags;
1800 
1801 	/* Mark all executing requests as skipped. */
1802 	spin_lock_irqsave(&sched_engine->lock, flags);
1803 	spin_lock(&ce->guc_state.lock);
1804 	list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1805 		i915_request_put(i915_request_mark_eio(rq));
1806 	spin_unlock(&ce->guc_state.lock);
1807 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1808 }
1809 
1810 static void
1811 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1812 {
1813 	struct i915_request *rq, *rn;
1814 	struct rb_node *rb;
1815 	unsigned long flags;
1816 
1817 	/* Can be called during boot if GuC fails to load */
1818 	if (!sched_engine)
1819 		return;
1820 
1821 	/*
1822 	 * Before we call engine->cancel_requests(), we should have exclusive
1823 	 * access to the submission state. This is arranged for us by the
1824 	 * caller disabling the interrupt generation, the tasklet and other
1825 	 * threads that may then access the same state, giving us a free hand
1826 	 * to reset state. However, we still need to let lockdep be aware that
1827 	 * we know this state may be accessed in hardirq context, so we
1828 	 * disable the irq around this manipulation and we want to keep
1829 	 * the spinlock focused on its duties and not accidentally conflate
1830 	 * coverage to the submission's irq state. (Similarly, although we
1831 	 * shouldn't need to disable irq around the manipulation of the
1832 	 * submission's irq state, we also wish to remind ourselves that
1833 	 * it is irq state.)
1834 	 */
1835 	spin_lock_irqsave(&sched_engine->lock, flags);
1836 
1837 	/* Flush the queued requests to the timeline list (for retiring). */
1838 	while ((rb = rb_first_cached(&sched_engine->queue))) {
1839 		struct i915_priolist *p = to_priolist(rb);
1840 
1841 		priolist_for_each_request_consume(rq, rn, p) {
1842 			list_del_init(&rq->sched.link);
1843 
1844 			__i915_request_submit(rq);
1845 
1846 			i915_request_put(i915_request_mark_eio(rq));
1847 		}
1848 
1849 		rb_erase_cached(&p->node, &sched_engine->queue);
1850 		i915_priolist_free(p);
1851 	}
1852 
1853 	/* Remaining _unready_ requests will be nop'ed when submitted */
1854 
1855 	sched_engine->queue_priority_hint = INT_MIN;
1856 	sched_engine->queue = RB_ROOT_CACHED;
1857 
1858 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1859 }
1860 
1861 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
1862 {
1863 	struct intel_context *ce;
1864 	unsigned long index;
1865 	unsigned long flags;
1866 
1867 	xa_lock_irqsave(&guc->context_lookup, flags);
1868 	xa_for_each(&guc->context_lookup, index, ce) {
1869 		if (!kref_get_unless_zero(&ce->ref))
1870 			continue;
1871 
1872 		xa_unlock(&guc->context_lookup);
1873 
1874 		if (intel_context_is_pinned(ce) &&
1875 		    !intel_context_is_child(ce))
1876 			guc_cancel_context_requests(ce);
1877 
1878 		intel_context_put(ce);
1879 
1880 		xa_lock(&guc->context_lookup);
1881 	}
1882 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1883 
1884 	guc_cancel_sched_engine_requests(guc->sched_engine);
1885 
1886 	/* GuC is blown away, drop all references to contexts */
1887 	xa_destroy(&guc->context_lookup);
1888 }
1889 
1890 void intel_guc_submission_reset_finish(struct intel_guc *guc)
1891 {
1892 	/* Reset called during driver load or during wedge? */
1893 	if (unlikely(!guc_submission_initialized(guc) ||
1894 		     intel_gt_is_wedged(guc_to_gt(guc)))) {
1895 		return;
1896 	}
1897 
1898 	/*
1899 	 * Technically possible for either of these values to be non-zero here,
1900 	 * but very unlikely + harmless. Regardless let's add a warn so we can
1901 	 * see in CI if this happens frequently / a precursor to taking down the
1902 	 * machine.
1903 	 */
1904 	GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h));
1905 	atomic_set(&guc->outstanding_submission_g2h, 0);
1906 
1907 	intel_guc_global_policies_update(guc);
1908 	enable_submission(guc);
1909 	intel_gt_unpark_heartbeats(guc_to_gt(guc));
1910 }
1911 
1912 static void destroyed_worker_func(struct work_struct *w);
1913 static void reset_fail_worker_func(struct work_struct *w);
1914 
1915 /*
1916  * Set up the memory resources to be shared with the GuC (via the GGTT)
1917  * at firmware loading time.
1918  */
1919 int intel_guc_submission_init(struct intel_guc *guc)
1920 {
1921 	struct intel_gt *gt = guc_to_gt(guc);
1922 	int ret;
1923 
1924 	if (guc->submission_initialized)
1925 		return 0;
1926 
1927 	if (guc->fw.major_ver_found < 70) {
1928 		ret = guc_lrc_desc_pool_create_v69(guc);
1929 		if (ret)
1930 			return ret;
1931 	}
1932 
1933 	guc->submission_state.guc_ids_bitmap =
1934 		bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
1935 	if (!guc->submission_state.guc_ids_bitmap) {
1936 		ret = -ENOMEM;
1937 		goto destroy_pool;
1938 	}
1939 
1940 	guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
1941 	guc->timestamp.shift = gpm_timestamp_shift(gt);
1942 	guc->submission_initialized = true;
1943 
1944 	return 0;
1945 
1946 destroy_pool:
1947 	guc_lrc_desc_pool_destroy_v69(guc);
1948 
1949 	return ret;
1950 }
1951 
1952 void intel_guc_submission_fini(struct intel_guc *guc)
1953 {
1954 	if (!guc->submission_initialized)
1955 		return;
1956 
1957 	guc_flush_destroyed_contexts(guc);
1958 	guc_lrc_desc_pool_destroy_v69(guc);
1959 	i915_sched_engine_put(guc->sched_engine);
1960 	bitmap_free(guc->submission_state.guc_ids_bitmap);
1961 	guc->submission_initialized = false;
1962 }
1963 
1964 static inline void queue_request(struct i915_sched_engine *sched_engine,
1965 				 struct i915_request *rq,
1966 				 int prio)
1967 {
1968 	GEM_BUG_ON(!list_empty(&rq->sched.link));
1969 	list_add_tail(&rq->sched.link,
1970 		      i915_sched_lookup_priolist(sched_engine, prio));
1971 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1972 	tasklet_hi_schedule(&sched_engine->tasklet);
1973 }
1974 
1975 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
1976 				     struct i915_request *rq)
1977 {
1978 	int ret = 0;
1979 
1980 	__i915_request_submit(rq);
1981 
1982 	trace_i915_request_in(rq, 0);
1983 
1984 	if (is_multi_lrc_rq(rq)) {
1985 		if (multi_lrc_submit(rq)) {
1986 			ret = guc_wq_item_append(guc, rq);
1987 			if (!ret)
1988 				ret = guc_add_request(guc, rq);
1989 		}
1990 	} else {
1991 		guc_set_lrc_tail(rq);
1992 		ret = guc_add_request(guc, rq);
1993 	}
1994 
1995 	if (unlikely(ret == -EPIPE))
1996 		disable_submission(guc);
1997 
1998 	return ret;
1999 }
2000 
2001 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
2002 {
2003 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2004 	struct intel_context *ce = request_to_scheduling_context(rq);
2005 
2006 	return submission_disabled(guc) || guc->stalled_request ||
2007 		!i915_sched_engine_is_empty(sched_engine) ||
2008 		!ctx_id_mapped(guc, ce->guc_id.id);
2009 }
2010 
2011 static void guc_submit_request(struct i915_request *rq)
2012 {
2013 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2014 	struct intel_guc *guc = &rq->engine->gt->uc.guc;
2015 	unsigned long flags;
2016 
2017 	/* Will be called from irq-context when using foreign fences. */
2018 	spin_lock_irqsave(&sched_engine->lock, flags);
2019 
2020 	if (need_tasklet(guc, rq))
2021 		queue_request(sched_engine, rq, rq_prio(rq));
2022 	else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
2023 		tasklet_hi_schedule(&sched_engine->tasklet);
2024 
2025 	spin_unlock_irqrestore(&sched_engine->lock, flags);
2026 }
2027 
2028 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
2029 {
2030 	int ret;
2031 
2032 	GEM_BUG_ON(intel_context_is_child(ce));
2033 
2034 	if (intel_context_is_parent(ce))
2035 		ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
2036 					      NUMBER_MULTI_LRC_GUC_ID(guc),
2037 					      order_base_2(ce->parallel.number_children
2038 							   + 1));
2039 	else
2040 		ret = ida_simple_get(&guc->submission_state.guc_ids,
2041 				     NUMBER_MULTI_LRC_GUC_ID(guc),
2042 				     guc->submission_state.num_guc_ids,
2043 				     GFP_KERNEL | __GFP_RETRY_MAYFAIL |
2044 				     __GFP_NOWARN);
2045 	if (unlikely(ret < 0))
2046 		return ret;
2047 
2048 	ce->guc_id.id = ret;
2049 	return 0;
2050 }
2051 
2052 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2053 {
2054 	GEM_BUG_ON(intel_context_is_child(ce));
2055 
2056 	if (!context_guc_id_invalid(ce)) {
2057 		if (intel_context_is_parent(ce))
2058 			bitmap_release_region(guc->submission_state.guc_ids_bitmap,
2059 					      ce->guc_id.id,
2060 					      order_base_2(ce->parallel.number_children
2061 							   + 1));
2062 		else
2063 			ida_simple_remove(&guc->submission_state.guc_ids,
2064 					  ce->guc_id.id);
2065 		clr_ctx_id_mapping(guc, ce->guc_id.id);
2066 		set_context_guc_id_invalid(ce);
2067 	}
2068 	if (!list_empty(&ce->guc_id.link))
2069 		list_del_init(&ce->guc_id.link);
2070 }
2071 
2072 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2073 {
2074 	unsigned long flags;
2075 
2076 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2077 	__release_guc_id(guc, ce);
2078 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2079 }
2080 
2081 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
2082 {
2083 	struct intel_context *cn;
2084 
2085 	lockdep_assert_held(&guc->submission_state.lock);
2086 	GEM_BUG_ON(intel_context_is_child(ce));
2087 	GEM_BUG_ON(intel_context_is_parent(ce));
2088 
2089 	if (!list_empty(&guc->submission_state.guc_id_list)) {
2090 		cn = list_first_entry(&guc->submission_state.guc_id_list,
2091 				      struct intel_context,
2092 				      guc_id.link);
2093 
2094 		GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
2095 		GEM_BUG_ON(context_guc_id_invalid(cn));
2096 		GEM_BUG_ON(intel_context_is_child(cn));
2097 		GEM_BUG_ON(intel_context_is_parent(cn));
2098 
2099 		list_del_init(&cn->guc_id.link);
2100 		ce->guc_id.id = cn->guc_id.id;
2101 
2102 		spin_lock(&cn->guc_state.lock);
2103 		clr_context_registered(cn);
2104 		spin_unlock(&cn->guc_state.lock);
2105 
2106 		set_context_guc_id_invalid(cn);
2107 
2108 #ifdef CONFIG_DRM_I915_SELFTEST
2109 		guc->number_guc_id_stolen++;
2110 #endif
2111 
2112 		return 0;
2113 	} else {
2114 		return -EAGAIN;
2115 	}
2116 }
2117 
2118 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2119 {
2120 	int ret;
2121 
2122 	lockdep_assert_held(&guc->submission_state.lock);
2123 	GEM_BUG_ON(intel_context_is_child(ce));
2124 
2125 	ret = new_guc_id(guc, ce);
2126 	if (unlikely(ret < 0)) {
2127 		if (intel_context_is_parent(ce))
2128 			return -ENOSPC;
2129 
2130 		ret = steal_guc_id(guc, ce);
2131 		if (ret < 0)
2132 			return ret;
2133 	}
2134 
2135 	if (intel_context_is_parent(ce)) {
2136 		struct intel_context *child;
2137 		int i = 1;
2138 
2139 		for_each_child(ce, child)
2140 			child->guc_id.id = ce->guc_id.id + i++;
2141 	}
2142 
2143 	return 0;
2144 }
2145 
2146 #define PIN_GUC_ID_TRIES	4
2147 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2148 {
2149 	int ret = 0;
2150 	unsigned long flags, tries = PIN_GUC_ID_TRIES;
2151 
2152 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2153 
2154 try_again:
2155 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2156 
2157 	might_lock(&ce->guc_state.lock);
2158 
2159 	if (context_guc_id_invalid(ce)) {
2160 		ret = assign_guc_id(guc, ce);
2161 		if (ret)
2162 			goto out_unlock;
2163 		ret = 1;	/* Indidcates newly assigned guc_id */
2164 	}
2165 	if (!list_empty(&ce->guc_id.link))
2166 		list_del_init(&ce->guc_id.link);
2167 	atomic_inc(&ce->guc_id.ref);
2168 
2169 out_unlock:
2170 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2171 
2172 	/*
2173 	 * -EAGAIN indicates no guc_id are available, let's retire any
2174 	 * outstanding requests to see if that frees up a guc_id. If the first
2175 	 * retire didn't help, insert a sleep with the timeslice duration before
2176 	 * attempting to retire more requests. Double the sleep period each
2177 	 * subsequent pass before finally giving up. The sleep period has max of
2178 	 * 100ms and minimum of 1ms.
2179 	 */
2180 	if (ret == -EAGAIN && --tries) {
2181 		if (PIN_GUC_ID_TRIES - tries > 1) {
2182 			unsigned int timeslice_shifted =
2183 				ce->engine->props.timeslice_duration_ms <<
2184 				(PIN_GUC_ID_TRIES - tries - 2);
2185 			unsigned int max = min_t(unsigned int, 100,
2186 						 timeslice_shifted);
2187 
2188 			msleep(max_t(unsigned int, max, 1));
2189 		}
2190 		intel_gt_retire_requests(guc_to_gt(guc));
2191 		goto try_again;
2192 	}
2193 
2194 	return ret;
2195 }
2196 
2197 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2198 {
2199 	unsigned long flags;
2200 
2201 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2202 	GEM_BUG_ON(intel_context_is_child(ce));
2203 
2204 	if (unlikely(context_guc_id_invalid(ce) ||
2205 		     intel_context_is_parent(ce)))
2206 		return;
2207 
2208 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2209 	if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2210 	    !atomic_read(&ce->guc_id.ref))
2211 		list_add_tail(&ce->guc_id.link,
2212 			      &guc->submission_state.guc_id_list);
2213 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2214 }
2215 
2216 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc,
2217 					       struct intel_context *ce,
2218 					       u32 guc_id,
2219 					       u32 offset,
2220 					       bool loop)
2221 {
2222 	struct intel_context *child;
2223 	u32 action[4 + MAX_ENGINE_INSTANCE];
2224 	int len = 0;
2225 
2226 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2227 
2228 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2229 	action[len++] = guc_id;
2230 	action[len++] = ce->parallel.number_children + 1;
2231 	action[len++] = offset;
2232 	for_each_child(ce, child) {
2233 		offset += sizeof(struct guc_lrc_desc_v69);
2234 		action[len++] = offset;
2235 	}
2236 
2237 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2238 }
2239 
2240 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc,
2241 					       struct intel_context *ce,
2242 					       struct guc_ctxt_registration_info *info,
2243 					       bool loop)
2244 {
2245 	struct intel_context *child;
2246 	u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2247 	int len = 0;
2248 	u32 next_id;
2249 
2250 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2251 
2252 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2253 	action[len++] = info->flags;
2254 	action[len++] = info->context_idx;
2255 	action[len++] = info->engine_class;
2256 	action[len++] = info->engine_submit_mask;
2257 	action[len++] = info->wq_desc_lo;
2258 	action[len++] = info->wq_desc_hi;
2259 	action[len++] = info->wq_base_lo;
2260 	action[len++] = info->wq_base_hi;
2261 	action[len++] = info->wq_size;
2262 	action[len++] = ce->parallel.number_children + 1;
2263 	action[len++] = info->hwlrca_lo;
2264 	action[len++] = info->hwlrca_hi;
2265 
2266 	next_id = info->context_idx + 1;
2267 	for_each_child(ce, child) {
2268 		GEM_BUG_ON(next_id++ != child->guc_id.id);
2269 
2270 		/*
2271 		 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2272 		 * only supports 32 bit currently.
2273 		 */
2274 		action[len++] = lower_32_bits(child->lrc.lrca);
2275 		action[len++] = upper_32_bits(child->lrc.lrca);
2276 	}
2277 
2278 	GEM_BUG_ON(len > ARRAY_SIZE(action));
2279 
2280 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2281 }
2282 
2283 static int __guc_action_register_context_v69(struct intel_guc *guc,
2284 					     u32 guc_id,
2285 					     u32 offset,
2286 					     bool loop)
2287 {
2288 	u32 action[] = {
2289 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2290 		guc_id,
2291 		offset,
2292 	};
2293 
2294 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2295 					     0, loop);
2296 }
2297 
2298 static int __guc_action_register_context_v70(struct intel_guc *guc,
2299 					     struct guc_ctxt_registration_info *info,
2300 					     bool loop)
2301 {
2302 	u32 action[] = {
2303 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2304 		info->flags,
2305 		info->context_idx,
2306 		info->engine_class,
2307 		info->engine_submit_mask,
2308 		info->wq_desc_lo,
2309 		info->wq_desc_hi,
2310 		info->wq_base_lo,
2311 		info->wq_base_hi,
2312 		info->wq_size,
2313 		info->hwlrca_lo,
2314 		info->hwlrca_hi,
2315 	};
2316 
2317 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2318 					     0, loop);
2319 }
2320 
2321 static void prepare_context_registration_info_v69(struct intel_context *ce);
2322 static void prepare_context_registration_info_v70(struct intel_context *ce,
2323 						  struct guc_ctxt_registration_info *info);
2324 
2325 static int
2326 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop)
2327 {
2328 	u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) +
2329 		ce->guc_id.id * sizeof(struct guc_lrc_desc_v69);
2330 
2331 	prepare_context_registration_info_v69(ce);
2332 
2333 	if (intel_context_is_parent(ce))
2334 		return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id,
2335 							   offset, loop);
2336 	else
2337 		return __guc_action_register_context_v69(guc, ce->guc_id.id,
2338 							 offset, loop);
2339 }
2340 
2341 static int
2342 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop)
2343 {
2344 	struct guc_ctxt_registration_info info;
2345 
2346 	prepare_context_registration_info_v70(ce, &info);
2347 
2348 	if (intel_context_is_parent(ce))
2349 		return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop);
2350 	else
2351 		return __guc_action_register_context_v70(guc, &info, loop);
2352 }
2353 
2354 static int register_context(struct intel_context *ce, bool loop)
2355 {
2356 	struct intel_guc *guc = ce_to_guc(ce);
2357 	int ret;
2358 
2359 	GEM_BUG_ON(intel_context_is_child(ce));
2360 	trace_intel_context_register(ce);
2361 
2362 	if (guc->fw.major_ver_found >= 70)
2363 		ret = register_context_v70(guc, ce, loop);
2364 	else
2365 		ret = register_context_v69(guc, ce, loop);
2366 
2367 	if (likely(!ret)) {
2368 		unsigned long flags;
2369 
2370 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2371 		set_context_registered(ce);
2372 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2373 
2374 		if (guc->fw.major_ver_found >= 70)
2375 			guc_context_policy_init_v70(ce, loop);
2376 	}
2377 
2378 	return ret;
2379 }
2380 
2381 static int __guc_action_deregister_context(struct intel_guc *guc,
2382 					   u32 guc_id)
2383 {
2384 	u32 action[] = {
2385 		INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2386 		guc_id,
2387 	};
2388 
2389 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2390 					     G2H_LEN_DW_DEREGISTER_CONTEXT,
2391 					     true);
2392 }
2393 
2394 static int deregister_context(struct intel_context *ce, u32 guc_id)
2395 {
2396 	struct intel_guc *guc = ce_to_guc(ce);
2397 
2398 	GEM_BUG_ON(intel_context_is_child(ce));
2399 	trace_intel_context_deregister(ce);
2400 
2401 	return __guc_action_deregister_context(guc, guc_id);
2402 }
2403 
2404 static inline void clear_children_join_go_memory(struct intel_context *ce)
2405 {
2406 	struct parent_scratch *ps = __get_parent_scratch(ce);
2407 	int i;
2408 
2409 	ps->go.semaphore = 0;
2410 	for (i = 0; i < ce->parallel.number_children + 1; ++i)
2411 		ps->join[i].semaphore = 0;
2412 }
2413 
2414 static inline u32 get_children_go_value(struct intel_context *ce)
2415 {
2416 	return __get_parent_scratch(ce)->go.semaphore;
2417 }
2418 
2419 static inline u32 get_children_join_value(struct intel_context *ce,
2420 					  u8 child_index)
2421 {
2422 	return __get_parent_scratch(ce)->join[child_index].semaphore;
2423 }
2424 
2425 struct context_policy {
2426 	u32 count;
2427 	struct guc_update_context_policy h2g;
2428 };
2429 
2430 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2431 {
2432 	size_t bytes = sizeof(policy->h2g.header) +
2433 		       (sizeof(policy->h2g.klv[0]) * policy->count);
2434 
2435 	return bytes / sizeof(u32);
2436 }
2437 
2438 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2439 {
2440 	policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2441 	policy->h2g.header.ctx_id = guc_id;
2442 	policy->count = 0;
2443 }
2444 
2445 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2446 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2447 { \
2448 	GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2449 	policy->h2g.klv[policy->count].kl = \
2450 		FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2451 		FIELD_PREP(GUC_KLV_0_LEN, 1); \
2452 	policy->h2g.klv[policy->count].value = data; \
2453 	policy->count++; \
2454 }
2455 
2456 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2457 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2458 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2459 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2460 
2461 #undef MAKE_CONTEXT_POLICY_ADD
2462 
2463 static int __guc_context_set_context_policies(struct intel_guc *guc,
2464 					      struct context_policy *policy,
2465 					      bool loop)
2466 {
2467 	return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2468 					__guc_context_policy_action_size(policy),
2469 					0, loop);
2470 }
2471 
2472 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop)
2473 {
2474 	struct intel_engine_cs *engine = ce->engine;
2475 	struct intel_guc *guc = &engine->gt->uc.guc;
2476 	struct context_policy policy;
2477 	u32 execution_quantum;
2478 	u32 preemption_timeout;
2479 	bool missing = false;
2480 	unsigned long flags;
2481 	int ret;
2482 
2483 	/* NB: For both of these, zero means disabled. */
2484 	execution_quantum = engine->props.timeslice_duration_ms * 1000;
2485 	preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2486 
2487 	__guc_context_policy_start_klv(&policy, ce->guc_id.id);
2488 
2489 	__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2490 	__guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2491 	__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2492 
2493 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2494 		__guc_context_policy_add_preempt_to_idle(&policy, 1);
2495 
2496 	ret = __guc_context_set_context_policies(guc, &policy, loop);
2497 	missing = ret != 0;
2498 
2499 	if (!missing && intel_context_is_parent(ce)) {
2500 		struct intel_context *child;
2501 
2502 		for_each_child(ce, child) {
2503 			__guc_context_policy_start_klv(&policy, child->guc_id.id);
2504 
2505 			if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2506 				__guc_context_policy_add_preempt_to_idle(&policy, 1);
2507 
2508 			child->guc_state.prio = ce->guc_state.prio;
2509 			__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2510 			__guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2511 			__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2512 
2513 			ret = __guc_context_set_context_policies(guc, &policy, loop);
2514 			if (ret) {
2515 				missing = true;
2516 				break;
2517 			}
2518 		}
2519 	}
2520 
2521 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2522 	if (missing)
2523 		set_context_policy_required(ce);
2524 	else
2525 		clr_context_policy_required(ce);
2526 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2527 
2528 	return ret;
2529 }
2530 
2531 static void guc_context_policy_init_v69(struct intel_engine_cs *engine,
2532 					struct guc_lrc_desc_v69 *desc)
2533 {
2534 	desc->policy_flags = 0;
2535 
2536 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2537 		desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69;
2538 
2539 	/* NB: For both of these, zero means disabled. */
2540 	desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
2541 	desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2542 }
2543 
2544 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio)
2545 {
2546 	/*
2547 	 * this matches the mapping we do in map_i915_prio_to_guc_prio()
2548 	 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL)
2549 	 */
2550 	switch (prio) {
2551 	default:
2552 		MISSING_CASE(prio);
2553 		fallthrough;
2554 	case GUC_CLIENT_PRIORITY_KMD_NORMAL:
2555 		return GEN12_CTX_PRIORITY_NORMAL;
2556 	case GUC_CLIENT_PRIORITY_NORMAL:
2557 		return GEN12_CTX_PRIORITY_LOW;
2558 	case GUC_CLIENT_PRIORITY_HIGH:
2559 	case GUC_CLIENT_PRIORITY_KMD_HIGH:
2560 		return GEN12_CTX_PRIORITY_HIGH;
2561 	}
2562 }
2563 
2564 static void prepare_context_registration_info_v69(struct intel_context *ce)
2565 {
2566 	struct intel_engine_cs *engine = ce->engine;
2567 	struct intel_guc *guc = &engine->gt->uc.guc;
2568 	u32 ctx_id = ce->guc_id.id;
2569 	struct guc_lrc_desc_v69 *desc;
2570 	struct intel_context *child;
2571 
2572 	GEM_BUG_ON(!engine->mask);
2573 
2574 	/*
2575 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2576 	 * based on CT vma region.
2577 	 */
2578 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2579 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2580 
2581 	desc = __get_lrc_desc_v69(guc, ctx_id);
2582 	desc->engine_class = engine_class_to_guc_class(engine->class);
2583 	desc->engine_submit_mask = engine->logical_mask;
2584 	desc->hw_context_desc = ce->lrc.lrca;
2585 	desc->priority = ce->guc_state.prio;
2586 	desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2587 	guc_context_policy_init_v69(engine, desc);
2588 
2589 	/*
2590 	 * If context is a parent, we need to register a process descriptor
2591 	 * describing a work queue and register all child contexts.
2592 	 */
2593 	if (intel_context_is_parent(ce)) {
2594 		struct guc_process_desc_v69 *pdesc;
2595 
2596 		ce->parallel.guc.wqi_tail = 0;
2597 		ce->parallel.guc.wqi_head = 0;
2598 
2599 		desc->process_desc = i915_ggtt_offset(ce->state) +
2600 			__get_parent_scratch_offset(ce);
2601 		desc->wq_addr = i915_ggtt_offset(ce->state) +
2602 			__get_wq_offset(ce);
2603 		desc->wq_size = WQ_SIZE;
2604 
2605 		pdesc = __get_process_desc_v69(ce);
2606 		memset(pdesc, 0, sizeof(*(pdesc)));
2607 		pdesc->stage_id = ce->guc_id.id;
2608 		pdesc->wq_base_addr = desc->wq_addr;
2609 		pdesc->wq_size_bytes = desc->wq_size;
2610 		pdesc->wq_status = WQ_STATUS_ACTIVE;
2611 
2612 		ce->parallel.guc.wq_head = &pdesc->head;
2613 		ce->parallel.guc.wq_tail = &pdesc->tail;
2614 		ce->parallel.guc.wq_status = &pdesc->wq_status;
2615 
2616 		for_each_child(ce, child) {
2617 			desc = __get_lrc_desc_v69(guc, child->guc_id.id);
2618 
2619 			desc->engine_class =
2620 				engine_class_to_guc_class(engine->class);
2621 			desc->hw_context_desc = child->lrc.lrca;
2622 			desc->priority = ce->guc_state.prio;
2623 			desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2624 			guc_context_policy_init_v69(engine, desc);
2625 		}
2626 
2627 		clear_children_join_go_memory(ce);
2628 	}
2629 }
2630 
2631 static void prepare_context_registration_info_v70(struct intel_context *ce,
2632 						  struct guc_ctxt_registration_info *info)
2633 {
2634 	struct intel_engine_cs *engine = ce->engine;
2635 	struct intel_guc *guc = &engine->gt->uc.guc;
2636 	u32 ctx_id = ce->guc_id.id;
2637 
2638 	GEM_BUG_ON(!engine->mask);
2639 
2640 	/*
2641 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2642 	 * based on CT vma region.
2643 	 */
2644 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2645 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2646 
2647 	memset(info, 0, sizeof(*info));
2648 	info->context_idx = ctx_id;
2649 	info->engine_class = engine_class_to_guc_class(engine->class);
2650 	info->engine_submit_mask = engine->logical_mask;
2651 	/*
2652 	 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2653 	 * only supports 32 bit currently.
2654 	 */
2655 	info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2656 	info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2657 	if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
2658 		info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio);
2659 	info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2660 
2661 	/*
2662 	 * If context is a parent, we need to register a process descriptor
2663 	 * describing a work queue and register all child contexts.
2664 	 */
2665 	if (intel_context_is_parent(ce)) {
2666 		struct guc_sched_wq_desc *wq_desc;
2667 		u64 wq_desc_offset, wq_base_offset;
2668 
2669 		ce->parallel.guc.wqi_tail = 0;
2670 		ce->parallel.guc.wqi_head = 0;
2671 
2672 		wq_desc_offset = i915_ggtt_offset(ce->state) +
2673 				 __get_parent_scratch_offset(ce);
2674 		wq_base_offset = i915_ggtt_offset(ce->state) +
2675 				 __get_wq_offset(ce);
2676 		info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2677 		info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2678 		info->wq_base_lo = lower_32_bits(wq_base_offset);
2679 		info->wq_base_hi = upper_32_bits(wq_base_offset);
2680 		info->wq_size = WQ_SIZE;
2681 
2682 		wq_desc = __get_wq_desc_v70(ce);
2683 		memset(wq_desc, 0, sizeof(*wq_desc));
2684 		wq_desc->wq_status = WQ_STATUS_ACTIVE;
2685 
2686 		ce->parallel.guc.wq_head = &wq_desc->head;
2687 		ce->parallel.guc.wq_tail = &wq_desc->tail;
2688 		ce->parallel.guc.wq_status = &wq_desc->wq_status;
2689 
2690 		clear_children_join_go_memory(ce);
2691 	}
2692 }
2693 
2694 static int try_context_registration(struct intel_context *ce, bool loop)
2695 {
2696 	struct intel_engine_cs *engine = ce->engine;
2697 	struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2698 	struct intel_guc *guc = &engine->gt->uc.guc;
2699 	intel_wakeref_t wakeref;
2700 	u32 ctx_id = ce->guc_id.id;
2701 	bool context_registered;
2702 	int ret = 0;
2703 
2704 	GEM_BUG_ON(!sched_state_is_init(ce));
2705 
2706 	context_registered = ctx_id_mapped(guc, ctx_id);
2707 
2708 	clr_ctx_id_mapping(guc, ctx_id);
2709 	set_ctx_id_mapping(guc, ctx_id, ce);
2710 
2711 	/*
2712 	 * The context_lookup xarray is used to determine if the hardware
2713 	 * context is currently registered. There are two cases in which it
2714 	 * could be registered either the guc_id has been stolen from another
2715 	 * context or the lrc descriptor address of this context has changed. In
2716 	 * either case the context needs to be deregistered with the GuC before
2717 	 * registering this context.
2718 	 */
2719 	if (context_registered) {
2720 		bool disabled;
2721 		unsigned long flags;
2722 
2723 		trace_intel_context_steal_guc_id(ce);
2724 		GEM_BUG_ON(!loop);
2725 
2726 		/* Seal race with Reset */
2727 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2728 		disabled = submission_disabled(guc);
2729 		if (likely(!disabled)) {
2730 			set_context_wait_for_deregister_to_register(ce);
2731 			intel_context_get(ce);
2732 		}
2733 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2734 		if (unlikely(disabled)) {
2735 			clr_ctx_id_mapping(guc, ctx_id);
2736 			return 0;	/* Will get registered later */
2737 		}
2738 
2739 		/*
2740 		 * If stealing the guc_id, this ce has the same guc_id as the
2741 		 * context whose guc_id was stolen.
2742 		 */
2743 		with_intel_runtime_pm(runtime_pm, wakeref)
2744 			ret = deregister_context(ce, ce->guc_id.id);
2745 		if (unlikely(ret == -ENODEV))
2746 			ret = 0;	/* Will get registered later */
2747 	} else {
2748 		with_intel_runtime_pm(runtime_pm, wakeref)
2749 			ret = register_context(ce, loop);
2750 		if (unlikely(ret == -EBUSY)) {
2751 			clr_ctx_id_mapping(guc, ctx_id);
2752 		} else if (unlikely(ret == -ENODEV)) {
2753 			clr_ctx_id_mapping(guc, ctx_id);
2754 			ret = 0;	/* Will get registered later */
2755 		}
2756 	}
2757 
2758 	return ret;
2759 }
2760 
2761 static int __guc_context_pre_pin(struct intel_context *ce,
2762 				 struct intel_engine_cs *engine,
2763 				 struct i915_gem_ww_ctx *ww,
2764 				 void **vaddr)
2765 {
2766 	return lrc_pre_pin(ce, engine, ww, vaddr);
2767 }
2768 
2769 static int __guc_context_pin(struct intel_context *ce,
2770 			     struct intel_engine_cs *engine,
2771 			     void *vaddr)
2772 {
2773 	if (i915_ggtt_offset(ce->state) !=
2774 	    (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
2775 		set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
2776 
2777 	/*
2778 	 * GuC context gets pinned in guc_request_alloc. See that function for
2779 	 * explaination of why.
2780 	 */
2781 
2782 	return lrc_pin(ce, engine, vaddr);
2783 }
2784 
2785 static int guc_context_pre_pin(struct intel_context *ce,
2786 			       struct i915_gem_ww_ctx *ww,
2787 			       void **vaddr)
2788 {
2789 	return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
2790 }
2791 
2792 static int guc_context_pin(struct intel_context *ce, void *vaddr)
2793 {
2794 	int ret = __guc_context_pin(ce, ce->engine, vaddr);
2795 
2796 	if (likely(!ret && !intel_context_is_barrier(ce)))
2797 		intel_engine_pm_get(ce->engine);
2798 
2799 	return ret;
2800 }
2801 
2802 static void guc_context_unpin(struct intel_context *ce)
2803 {
2804 	struct intel_guc *guc = ce_to_guc(ce);
2805 
2806 	unpin_guc_id(guc, ce);
2807 	lrc_unpin(ce);
2808 
2809 	if (likely(!intel_context_is_barrier(ce)))
2810 		intel_engine_pm_put_async(ce->engine);
2811 }
2812 
2813 static void guc_context_post_unpin(struct intel_context *ce)
2814 {
2815 	lrc_post_unpin(ce);
2816 }
2817 
2818 static void __guc_context_sched_enable(struct intel_guc *guc,
2819 				       struct intel_context *ce)
2820 {
2821 	u32 action[] = {
2822 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2823 		ce->guc_id.id,
2824 		GUC_CONTEXT_ENABLE
2825 	};
2826 
2827 	trace_intel_context_sched_enable(ce);
2828 
2829 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2830 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2831 }
2832 
2833 static void __guc_context_sched_disable(struct intel_guc *guc,
2834 					struct intel_context *ce,
2835 					u16 guc_id)
2836 {
2837 	u32 action[] = {
2838 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2839 		guc_id,	/* ce->guc_id.id not stable */
2840 		GUC_CONTEXT_DISABLE
2841 	};
2842 
2843 	GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
2844 
2845 	GEM_BUG_ON(intel_context_is_child(ce));
2846 	trace_intel_context_sched_disable(ce);
2847 
2848 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2849 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2850 }
2851 
2852 static void guc_blocked_fence_complete(struct intel_context *ce)
2853 {
2854 	lockdep_assert_held(&ce->guc_state.lock);
2855 
2856 	if (!i915_sw_fence_done(&ce->guc_state.blocked))
2857 		i915_sw_fence_complete(&ce->guc_state.blocked);
2858 }
2859 
2860 static void guc_blocked_fence_reinit(struct intel_context *ce)
2861 {
2862 	lockdep_assert_held(&ce->guc_state.lock);
2863 	GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
2864 
2865 	/*
2866 	 * This fence is always complete unless a pending schedule disable is
2867 	 * outstanding. We arm the fence here and complete it when we receive
2868 	 * the pending schedule disable complete message.
2869 	 */
2870 	i915_sw_fence_fini(&ce->guc_state.blocked);
2871 	i915_sw_fence_reinit(&ce->guc_state.blocked);
2872 	i915_sw_fence_await(&ce->guc_state.blocked);
2873 	i915_sw_fence_commit(&ce->guc_state.blocked);
2874 }
2875 
2876 static u16 prep_context_pending_disable(struct intel_context *ce)
2877 {
2878 	lockdep_assert_held(&ce->guc_state.lock);
2879 
2880 	set_context_pending_disable(ce);
2881 	clr_context_enabled(ce);
2882 	guc_blocked_fence_reinit(ce);
2883 	intel_context_get(ce);
2884 
2885 	return ce->guc_id.id;
2886 }
2887 
2888 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
2889 {
2890 	struct intel_guc *guc = ce_to_guc(ce);
2891 	unsigned long flags;
2892 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
2893 	intel_wakeref_t wakeref;
2894 	u16 guc_id;
2895 	bool enabled;
2896 
2897 	GEM_BUG_ON(intel_context_is_child(ce));
2898 
2899 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2900 
2901 	incr_context_blocked(ce);
2902 
2903 	enabled = context_enabled(ce);
2904 	if (unlikely(!enabled || submission_disabled(guc))) {
2905 		if (enabled)
2906 			clr_context_enabled(ce);
2907 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2908 		return &ce->guc_state.blocked;
2909 	}
2910 
2911 	/*
2912 	 * We add +2 here as the schedule disable complete CTB handler calls
2913 	 * intel_context_sched_disable_unpin (-2 to pin_count).
2914 	 */
2915 	atomic_add(2, &ce->pin_count);
2916 
2917 	guc_id = prep_context_pending_disable(ce);
2918 
2919 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2920 
2921 	with_intel_runtime_pm(runtime_pm, wakeref)
2922 		__guc_context_sched_disable(guc, ce, guc_id);
2923 
2924 	return &ce->guc_state.blocked;
2925 }
2926 
2927 #define SCHED_STATE_MULTI_BLOCKED_MASK \
2928 	(SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
2929 #define SCHED_STATE_NO_UNBLOCK \
2930 	(SCHED_STATE_MULTI_BLOCKED_MASK | \
2931 	 SCHED_STATE_PENDING_DISABLE | \
2932 	 SCHED_STATE_BANNED)
2933 
2934 static bool context_cant_unblock(struct intel_context *ce)
2935 {
2936 	lockdep_assert_held(&ce->guc_state.lock);
2937 
2938 	return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
2939 		context_guc_id_invalid(ce) ||
2940 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
2941 		!intel_context_is_pinned(ce);
2942 }
2943 
2944 static void guc_context_unblock(struct intel_context *ce)
2945 {
2946 	struct intel_guc *guc = ce_to_guc(ce);
2947 	unsigned long flags;
2948 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
2949 	intel_wakeref_t wakeref;
2950 	bool enable;
2951 
2952 	GEM_BUG_ON(context_enabled(ce));
2953 	GEM_BUG_ON(intel_context_is_child(ce));
2954 
2955 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2956 
2957 	if (unlikely(submission_disabled(guc) ||
2958 		     context_cant_unblock(ce))) {
2959 		enable = false;
2960 	} else {
2961 		enable = true;
2962 		set_context_pending_enable(ce);
2963 		set_context_enabled(ce);
2964 		intel_context_get(ce);
2965 	}
2966 
2967 	decr_context_blocked(ce);
2968 
2969 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2970 
2971 	if (enable) {
2972 		with_intel_runtime_pm(runtime_pm, wakeref)
2973 			__guc_context_sched_enable(guc, ce);
2974 	}
2975 }
2976 
2977 static void guc_context_cancel_request(struct intel_context *ce,
2978 				       struct i915_request *rq)
2979 {
2980 	struct intel_context *block_context =
2981 		request_to_scheduling_context(rq);
2982 
2983 	if (i915_sw_fence_signaled(&rq->submit)) {
2984 		struct i915_sw_fence *fence;
2985 
2986 		intel_context_get(ce);
2987 		fence = guc_context_block(block_context);
2988 		i915_sw_fence_wait(fence);
2989 		if (!i915_request_completed(rq)) {
2990 			__i915_request_skip(rq);
2991 			guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
2992 					true);
2993 		}
2994 
2995 		guc_context_unblock(block_context);
2996 		intel_context_put(ce);
2997 	}
2998 }
2999 
3000 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
3001 						 u16 guc_id,
3002 						 u32 preemption_timeout)
3003 {
3004 	if (guc->fw.major_ver_found >= 70) {
3005 		struct context_policy policy;
3006 
3007 		__guc_context_policy_start_klv(&policy, guc_id);
3008 		__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
3009 		__guc_context_set_context_policies(guc, &policy, true);
3010 	} else {
3011 		u32 action[] = {
3012 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT,
3013 			guc_id,
3014 			preemption_timeout
3015 		};
3016 
3017 		intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3018 	}
3019 }
3020 
3021 static void guc_context_ban(struct intel_context *ce, struct i915_request *rq)
3022 {
3023 	struct intel_guc *guc = ce_to_guc(ce);
3024 	struct intel_runtime_pm *runtime_pm =
3025 		&ce->engine->gt->i915->runtime_pm;
3026 	intel_wakeref_t wakeref;
3027 	unsigned long flags;
3028 
3029 	GEM_BUG_ON(intel_context_is_child(ce));
3030 
3031 	guc_flush_submissions(guc);
3032 
3033 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3034 	set_context_banned(ce);
3035 
3036 	if (submission_disabled(guc) ||
3037 	    (!context_enabled(ce) && !context_pending_disable(ce))) {
3038 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3039 
3040 		guc_cancel_context_requests(ce);
3041 		intel_engine_signal_breadcrumbs(ce->engine);
3042 	} else if (!context_pending_disable(ce)) {
3043 		u16 guc_id;
3044 
3045 		/*
3046 		 * We add +2 here as the schedule disable complete CTB handler
3047 		 * calls intel_context_sched_disable_unpin (-2 to pin_count).
3048 		 */
3049 		atomic_add(2, &ce->pin_count);
3050 
3051 		guc_id = prep_context_pending_disable(ce);
3052 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3053 
3054 		/*
3055 		 * In addition to disabling scheduling, set the preemption
3056 		 * timeout to the minimum value (1 us) so the banned context
3057 		 * gets kicked off the HW ASAP.
3058 		 */
3059 		with_intel_runtime_pm(runtime_pm, wakeref) {
3060 			__guc_context_set_preemption_timeout(guc, guc_id, 1);
3061 			__guc_context_sched_disable(guc, ce, guc_id);
3062 		}
3063 	} else {
3064 		if (!context_guc_id_invalid(ce))
3065 			with_intel_runtime_pm(runtime_pm, wakeref)
3066 				__guc_context_set_preemption_timeout(guc,
3067 								     ce->guc_id.id,
3068 								     1);
3069 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3070 	}
3071 }
3072 
3073 static void guc_context_sched_disable(struct intel_context *ce)
3074 {
3075 	struct intel_guc *guc = ce_to_guc(ce);
3076 	unsigned long flags;
3077 	struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
3078 	intel_wakeref_t wakeref;
3079 	u16 guc_id;
3080 
3081 	GEM_BUG_ON(intel_context_is_child(ce));
3082 
3083 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3084 
3085 	/*
3086 	 * We have to check if the context has been disabled by another thread,
3087 	 * check if submssion has been disabled to seal a race with reset and
3088 	 * finally check if any more requests have been committed to the
3089 	 * context ensursing that a request doesn't slip through the
3090 	 * 'context_pending_disable' fence.
3091 	 */
3092 	if (unlikely(!context_enabled(ce) || submission_disabled(guc) ||
3093 		     context_has_committed_requests(ce))) {
3094 		clr_context_enabled(ce);
3095 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3096 		goto unpin;
3097 	}
3098 	guc_id = prep_context_pending_disable(ce);
3099 
3100 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3101 
3102 	with_intel_runtime_pm(runtime_pm, wakeref)
3103 		__guc_context_sched_disable(guc, ce, guc_id);
3104 
3105 	return;
3106 unpin:
3107 	intel_context_sched_disable_unpin(ce);
3108 }
3109 
3110 static inline void guc_lrc_desc_unpin(struct intel_context *ce)
3111 {
3112 	struct intel_guc *guc = ce_to_guc(ce);
3113 	struct intel_gt *gt = guc_to_gt(guc);
3114 	unsigned long flags;
3115 	bool disabled;
3116 
3117 	GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
3118 	GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
3119 	GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
3120 	GEM_BUG_ON(context_enabled(ce));
3121 
3122 	/* Seal race with Reset */
3123 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3124 	disabled = submission_disabled(guc);
3125 	if (likely(!disabled)) {
3126 		__intel_gt_pm_get(gt);
3127 		set_context_destroyed(ce);
3128 		clr_context_registered(ce);
3129 	}
3130 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3131 	if (unlikely(disabled)) {
3132 		release_guc_id(guc, ce);
3133 		__guc_context_destroy(ce);
3134 		return;
3135 	}
3136 
3137 	deregister_context(ce, ce->guc_id.id);
3138 }
3139 
3140 static void __guc_context_destroy(struct intel_context *ce)
3141 {
3142 	GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
3143 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
3144 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
3145 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
3146 	GEM_BUG_ON(ce->guc_state.number_committed_requests);
3147 
3148 	lrc_fini(ce);
3149 	intel_context_fini(ce);
3150 
3151 	if (intel_engine_is_virtual(ce->engine)) {
3152 		struct guc_virtual_engine *ve =
3153 			container_of(ce, typeof(*ve), context);
3154 
3155 		if (ve->base.breadcrumbs)
3156 			intel_breadcrumbs_put(ve->base.breadcrumbs);
3157 
3158 		kfree(ve);
3159 	} else {
3160 		intel_context_free(ce);
3161 	}
3162 }
3163 
3164 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
3165 {
3166 	struct intel_context *ce;
3167 	unsigned long flags;
3168 
3169 	GEM_BUG_ON(!submission_disabled(guc) &&
3170 		   guc_submission_initialized(guc));
3171 
3172 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3173 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3174 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3175 					      struct intel_context,
3176 					      destroyed_link);
3177 		if (ce)
3178 			list_del_init(&ce->destroyed_link);
3179 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3180 
3181 		if (!ce)
3182 			break;
3183 
3184 		release_guc_id(guc, ce);
3185 		__guc_context_destroy(ce);
3186 	}
3187 }
3188 
3189 static void deregister_destroyed_contexts(struct intel_guc *guc)
3190 {
3191 	struct intel_context *ce;
3192 	unsigned long flags;
3193 
3194 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3195 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3196 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3197 					      struct intel_context,
3198 					      destroyed_link);
3199 		if (ce)
3200 			list_del_init(&ce->destroyed_link);
3201 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3202 
3203 		if (!ce)
3204 			break;
3205 
3206 		guc_lrc_desc_unpin(ce);
3207 	}
3208 }
3209 
3210 static void destroyed_worker_func(struct work_struct *w)
3211 {
3212 	struct intel_guc *guc = container_of(w, struct intel_guc,
3213 					     submission_state.destroyed_worker);
3214 	struct intel_gt *gt = guc_to_gt(guc);
3215 	int tmp;
3216 
3217 	with_intel_gt_pm(gt, tmp)
3218 		deregister_destroyed_contexts(guc);
3219 }
3220 
3221 static void guc_context_destroy(struct kref *kref)
3222 {
3223 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3224 	struct intel_guc *guc = ce_to_guc(ce);
3225 	unsigned long flags;
3226 	bool destroy;
3227 
3228 	/*
3229 	 * If the guc_id is invalid this context has been stolen and we can free
3230 	 * it immediately. Also can be freed immediately if the context is not
3231 	 * registered with the GuC or the GuC is in the middle of a reset.
3232 	 */
3233 	spin_lock_irqsave(&guc->submission_state.lock, flags);
3234 	destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
3235 		!ctx_id_mapped(guc, ce->guc_id.id);
3236 	if (likely(!destroy)) {
3237 		if (!list_empty(&ce->guc_id.link))
3238 			list_del_init(&ce->guc_id.link);
3239 		list_add_tail(&ce->destroyed_link,
3240 			      &guc->submission_state.destroyed_contexts);
3241 	} else {
3242 		__release_guc_id(guc, ce);
3243 	}
3244 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3245 	if (unlikely(destroy)) {
3246 		__guc_context_destroy(ce);
3247 		return;
3248 	}
3249 
3250 	/*
3251 	 * We use a worker to issue the H2G to deregister the context as we can
3252 	 * take the GT PM for the first time which isn't allowed from an atomic
3253 	 * context.
3254 	 */
3255 	queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
3256 }
3257 
3258 static int guc_context_alloc(struct intel_context *ce)
3259 {
3260 	return lrc_alloc(ce, ce->engine);
3261 }
3262 
3263 static void __guc_context_set_prio(struct intel_guc *guc,
3264 				   struct intel_context *ce)
3265 {
3266 	if (guc->fw.major_ver_found >= 70) {
3267 		struct context_policy policy;
3268 
3269 		__guc_context_policy_start_klv(&policy, ce->guc_id.id);
3270 		__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
3271 		__guc_context_set_context_policies(guc, &policy, true);
3272 	} else {
3273 		u32 action[] = {
3274 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY,
3275 			ce->guc_id.id,
3276 			ce->guc_state.prio,
3277 		};
3278 
3279 		guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3280 	}
3281 }
3282 
3283 static void guc_context_set_prio(struct intel_guc *guc,
3284 				 struct intel_context *ce,
3285 				 u8 prio)
3286 {
3287 	GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
3288 		   prio > GUC_CLIENT_PRIORITY_NORMAL);
3289 	lockdep_assert_held(&ce->guc_state.lock);
3290 
3291 	if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3292 	    !context_registered(ce)) {
3293 		ce->guc_state.prio = prio;
3294 		return;
3295 	}
3296 
3297 	ce->guc_state.prio = prio;
3298 	__guc_context_set_prio(guc, ce);
3299 
3300 	trace_intel_context_set_prio(ce);
3301 }
3302 
3303 static inline u8 map_i915_prio_to_guc_prio(int prio)
3304 {
3305 	if (prio == I915_PRIORITY_NORMAL)
3306 		return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3307 	else if (prio < I915_PRIORITY_NORMAL)
3308 		return GUC_CLIENT_PRIORITY_NORMAL;
3309 	else if (prio < I915_PRIORITY_DISPLAY)
3310 		return GUC_CLIENT_PRIORITY_HIGH;
3311 	else
3312 		return GUC_CLIENT_PRIORITY_KMD_HIGH;
3313 }
3314 
3315 static inline void add_context_inflight_prio(struct intel_context *ce,
3316 					     u8 guc_prio)
3317 {
3318 	lockdep_assert_held(&ce->guc_state.lock);
3319 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3320 
3321 	++ce->guc_state.prio_count[guc_prio];
3322 
3323 	/* Overflow protection */
3324 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3325 }
3326 
3327 static inline void sub_context_inflight_prio(struct intel_context *ce,
3328 					     u8 guc_prio)
3329 {
3330 	lockdep_assert_held(&ce->guc_state.lock);
3331 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3332 
3333 	/* Underflow protection */
3334 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3335 
3336 	--ce->guc_state.prio_count[guc_prio];
3337 }
3338 
3339 static inline void update_context_prio(struct intel_context *ce)
3340 {
3341 	struct intel_guc *guc = &ce->engine->gt->uc.guc;
3342 	int i;
3343 
3344 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3345 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3346 
3347 	lockdep_assert_held(&ce->guc_state.lock);
3348 
3349 	for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3350 		if (ce->guc_state.prio_count[i]) {
3351 			guc_context_set_prio(guc, ce, i);
3352 			break;
3353 		}
3354 	}
3355 }
3356 
3357 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3358 {
3359 	/* Lower value is higher priority */
3360 	return new_guc_prio < old_guc_prio;
3361 }
3362 
3363 static void add_to_context(struct i915_request *rq)
3364 {
3365 	struct intel_context *ce = request_to_scheduling_context(rq);
3366 	u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3367 
3368 	GEM_BUG_ON(intel_context_is_child(ce));
3369 	GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3370 
3371 	spin_lock(&ce->guc_state.lock);
3372 	list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3373 
3374 	if (rq->guc_prio == GUC_PRIO_INIT) {
3375 		rq->guc_prio = new_guc_prio;
3376 		add_context_inflight_prio(ce, rq->guc_prio);
3377 	} else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3378 		sub_context_inflight_prio(ce, rq->guc_prio);
3379 		rq->guc_prio = new_guc_prio;
3380 		add_context_inflight_prio(ce, rq->guc_prio);
3381 	}
3382 	update_context_prio(ce);
3383 
3384 	spin_unlock(&ce->guc_state.lock);
3385 }
3386 
3387 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3388 {
3389 	lockdep_assert_held(&ce->guc_state.lock);
3390 
3391 	if (rq->guc_prio != GUC_PRIO_INIT &&
3392 	    rq->guc_prio != GUC_PRIO_FINI) {
3393 		sub_context_inflight_prio(ce, rq->guc_prio);
3394 		update_context_prio(ce);
3395 	}
3396 	rq->guc_prio = GUC_PRIO_FINI;
3397 }
3398 
3399 static void remove_from_context(struct i915_request *rq)
3400 {
3401 	struct intel_context *ce = request_to_scheduling_context(rq);
3402 
3403 	GEM_BUG_ON(intel_context_is_child(ce));
3404 
3405 	spin_lock_irq(&ce->guc_state.lock);
3406 
3407 	list_del_init(&rq->sched.link);
3408 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3409 
3410 	/* Prevent further __await_execution() registering a cb, then flush */
3411 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3412 
3413 	guc_prio_fini(rq, ce);
3414 
3415 	decr_context_committed_requests(ce);
3416 
3417 	spin_unlock_irq(&ce->guc_state.lock);
3418 
3419 	atomic_dec(&ce->guc_id.ref);
3420 	i915_request_notify_execute_cb_imm(rq);
3421 }
3422 
3423 static const struct intel_context_ops guc_context_ops = {
3424 	.alloc = guc_context_alloc,
3425 
3426 	.pre_pin = guc_context_pre_pin,
3427 	.pin = guc_context_pin,
3428 	.unpin = guc_context_unpin,
3429 	.post_unpin = guc_context_post_unpin,
3430 
3431 	.ban = guc_context_ban,
3432 
3433 	.cancel_request = guc_context_cancel_request,
3434 
3435 	.enter = intel_context_enter_engine,
3436 	.exit = intel_context_exit_engine,
3437 
3438 	.sched_disable = guc_context_sched_disable,
3439 
3440 	.reset = lrc_reset,
3441 	.destroy = guc_context_destroy,
3442 
3443 	.create_virtual = guc_create_virtual,
3444 	.create_parallel = guc_create_parallel,
3445 };
3446 
3447 static void submit_work_cb(struct irq_work *wrk)
3448 {
3449 	struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3450 
3451 	might_lock(&rq->engine->sched_engine->lock);
3452 	i915_sw_fence_complete(&rq->submit);
3453 }
3454 
3455 static void __guc_signal_context_fence(struct intel_context *ce)
3456 {
3457 	struct i915_request *rq, *rn;
3458 
3459 	lockdep_assert_held(&ce->guc_state.lock);
3460 
3461 	if (!list_empty(&ce->guc_state.fences))
3462 		trace_intel_context_fence_release(ce);
3463 
3464 	/*
3465 	 * Use an IRQ to ensure locking order of sched_engine->lock ->
3466 	 * ce->guc_state.lock is preserved.
3467 	 */
3468 	list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3469 				 guc_fence_link) {
3470 		list_del(&rq->guc_fence_link);
3471 		irq_work_queue(&rq->submit_work);
3472 	}
3473 
3474 	INIT_LIST_HEAD(&ce->guc_state.fences);
3475 }
3476 
3477 static void guc_signal_context_fence(struct intel_context *ce)
3478 {
3479 	unsigned long flags;
3480 
3481 	GEM_BUG_ON(intel_context_is_child(ce));
3482 
3483 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3484 	clr_context_wait_for_deregister_to_register(ce);
3485 	__guc_signal_context_fence(ce);
3486 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3487 }
3488 
3489 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3490 {
3491 	return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3492 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3493 		!submission_disabled(ce_to_guc(ce));
3494 }
3495 
3496 static void guc_context_init(struct intel_context *ce)
3497 {
3498 	const struct i915_gem_context *ctx;
3499 	int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3500 
3501 	rcu_read_lock();
3502 	ctx = rcu_dereference(ce->gem_context);
3503 	if (ctx)
3504 		prio = ctx->sched.priority;
3505 	rcu_read_unlock();
3506 
3507 	ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3508 	set_bit(CONTEXT_GUC_INIT, &ce->flags);
3509 }
3510 
3511 static int guc_request_alloc(struct i915_request *rq)
3512 {
3513 	struct intel_context *ce = request_to_scheduling_context(rq);
3514 	struct intel_guc *guc = ce_to_guc(ce);
3515 	unsigned long flags;
3516 	int ret;
3517 
3518 	GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3519 
3520 	/*
3521 	 * Flush enough space to reduce the likelihood of waiting after
3522 	 * we start building the request - in which case we will just
3523 	 * have to repeat work.
3524 	 */
3525 	rq->reserved_space += GUC_REQUEST_SIZE;
3526 
3527 	/*
3528 	 * Note that after this point, we have committed to using
3529 	 * this request as it is being used to both track the
3530 	 * state of engine initialisation and liveness of the
3531 	 * golden renderstate above. Think twice before you try
3532 	 * to cancel/unwind this request now.
3533 	 */
3534 
3535 	/* Unconditionally invalidate GPU caches and TLBs. */
3536 	ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3537 	if (ret)
3538 		return ret;
3539 
3540 	rq->reserved_space -= GUC_REQUEST_SIZE;
3541 
3542 	if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3543 		guc_context_init(ce);
3544 
3545 	/*
3546 	 * Call pin_guc_id here rather than in the pinning step as with
3547 	 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3548 	 * guc_id and creating horrible race conditions. This is especially bad
3549 	 * when guc_id are being stolen due to over subscription. By the time
3550 	 * this function is reached, it is guaranteed that the guc_id will be
3551 	 * persistent until the generated request is retired. Thus, sealing these
3552 	 * race conditions. It is still safe to fail here if guc_id are
3553 	 * exhausted and return -EAGAIN to the user indicating that they can try
3554 	 * again in the future.
3555 	 *
3556 	 * There is no need for a lock here as the timeline mutex ensures at
3557 	 * most one context can be executing this code path at once. The
3558 	 * guc_id_ref is incremented once for every request in flight and
3559 	 * decremented on each retire. When it is zero, a lock around the
3560 	 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3561 	 */
3562 	if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3563 		goto out;
3564 
3565 	ret = pin_guc_id(guc, ce);	/* returns 1 if new guc_id assigned */
3566 	if (unlikely(ret < 0))
3567 		return ret;
3568 	if (context_needs_register(ce, !!ret)) {
3569 		ret = try_context_registration(ce, true);
3570 		if (unlikely(ret)) {	/* unwind */
3571 			if (ret == -EPIPE) {
3572 				disable_submission(guc);
3573 				goto out;	/* GPU will be reset */
3574 			}
3575 			atomic_dec(&ce->guc_id.ref);
3576 			unpin_guc_id(guc, ce);
3577 			return ret;
3578 		}
3579 	}
3580 
3581 	clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3582 
3583 out:
3584 	/*
3585 	 * We block all requests on this context if a G2H is pending for a
3586 	 * schedule disable or context deregistration as the GuC will fail a
3587 	 * schedule enable or context registration if either G2H is pending
3588 	 * respectfully. Once a G2H returns, the fence is released that is
3589 	 * blocking these requests (see guc_signal_context_fence).
3590 	 */
3591 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3592 	if (context_wait_for_deregister_to_register(ce) ||
3593 	    context_pending_disable(ce)) {
3594 		init_irq_work(&rq->submit_work, submit_work_cb);
3595 		i915_sw_fence_await(&rq->submit);
3596 
3597 		list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3598 	}
3599 	incr_context_committed_requests(ce);
3600 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3601 
3602 	return 0;
3603 }
3604 
3605 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3606 				       struct i915_gem_ww_ctx *ww,
3607 				       void **vaddr)
3608 {
3609 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3610 
3611 	return __guc_context_pre_pin(ce, engine, ww, vaddr);
3612 }
3613 
3614 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3615 {
3616 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3617 	int ret = __guc_context_pin(ce, engine, vaddr);
3618 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3619 
3620 	if (likely(!ret))
3621 		for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3622 			intel_engine_pm_get(engine);
3623 
3624 	return ret;
3625 }
3626 
3627 static void guc_virtual_context_unpin(struct intel_context *ce)
3628 {
3629 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3630 	struct intel_engine_cs *engine;
3631 	struct intel_guc *guc = ce_to_guc(ce);
3632 
3633 	GEM_BUG_ON(context_enabled(ce));
3634 	GEM_BUG_ON(intel_context_is_barrier(ce));
3635 
3636 	unpin_guc_id(guc, ce);
3637 	lrc_unpin(ce);
3638 
3639 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3640 		intel_engine_pm_put_async(engine);
3641 }
3642 
3643 static void guc_virtual_context_enter(struct intel_context *ce)
3644 {
3645 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3646 	struct intel_engine_cs *engine;
3647 
3648 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3649 		intel_engine_pm_get(engine);
3650 
3651 	intel_timeline_enter(ce->timeline);
3652 }
3653 
3654 static void guc_virtual_context_exit(struct intel_context *ce)
3655 {
3656 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3657 	struct intel_engine_cs *engine;
3658 
3659 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3660 		intel_engine_pm_put(engine);
3661 
3662 	intel_timeline_exit(ce->timeline);
3663 }
3664 
3665 static int guc_virtual_context_alloc(struct intel_context *ce)
3666 {
3667 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3668 
3669 	return lrc_alloc(ce, engine);
3670 }
3671 
3672 static const struct intel_context_ops virtual_guc_context_ops = {
3673 	.alloc = guc_virtual_context_alloc,
3674 
3675 	.pre_pin = guc_virtual_context_pre_pin,
3676 	.pin = guc_virtual_context_pin,
3677 	.unpin = guc_virtual_context_unpin,
3678 	.post_unpin = guc_context_post_unpin,
3679 
3680 	.ban = guc_context_ban,
3681 
3682 	.cancel_request = guc_context_cancel_request,
3683 
3684 	.enter = guc_virtual_context_enter,
3685 	.exit = guc_virtual_context_exit,
3686 
3687 	.sched_disable = guc_context_sched_disable,
3688 
3689 	.destroy = guc_context_destroy,
3690 
3691 	.get_sibling = guc_virtual_get_sibling,
3692 };
3693 
3694 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
3695 {
3696 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3697 	struct intel_guc *guc = ce_to_guc(ce);
3698 	int ret;
3699 
3700 	GEM_BUG_ON(!intel_context_is_parent(ce));
3701 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3702 
3703 	ret = pin_guc_id(guc, ce);
3704 	if (unlikely(ret < 0))
3705 		return ret;
3706 
3707 	return __guc_context_pin(ce, engine, vaddr);
3708 }
3709 
3710 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
3711 {
3712 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3713 
3714 	GEM_BUG_ON(!intel_context_is_child(ce));
3715 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3716 
3717 	__intel_context_pin(ce->parallel.parent);
3718 	return __guc_context_pin(ce, engine, vaddr);
3719 }
3720 
3721 static void guc_parent_context_unpin(struct intel_context *ce)
3722 {
3723 	struct intel_guc *guc = ce_to_guc(ce);
3724 
3725 	GEM_BUG_ON(context_enabled(ce));
3726 	GEM_BUG_ON(intel_context_is_barrier(ce));
3727 	GEM_BUG_ON(!intel_context_is_parent(ce));
3728 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3729 
3730 	unpin_guc_id(guc, ce);
3731 	lrc_unpin(ce);
3732 }
3733 
3734 static void guc_child_context_unpin(struct intel_context *ce)
3735 {
3736 	GEM_BUG_ON(context_enabled(ce));
3737 	GEM_BUG_ON(intel_context_is_barrier(ce));
3738 	GEM_BUG_ON(!intel_context_is_child(ce));
3739 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3740 
3741 	lrc_unpin(ce);
3742 }
3743 
3744 static void guc_child_context_post_unpin(struct intel_context *ce)
3745 {
3746 	GEM_BUG_ON(!intel_context_is_child(ce));
3747 	GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
3748 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3749 
3750 	lrc_post_unpin(ce);
3751 	intel_context_unpin(ce->parallel.parent);
3752 }
3753 
3754 static void guc_child_context_destroy(struct kref *kref)
3755 {
3756 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3757 
3758 	__guc_context_destroy(ce);
3759 }
3760 
3761 static const struct intel_context_ops virtual_parent_context_ops = {
3762 	.alloc = guc_virtual_context_alloc,
3763 
3764 	.pre_pin = guc_context_pre_pin,
3765 	.pin = guc_parent_context_pin,
3766 	.unpin = guc_parent_context_unpin,
3767 	.post_unpin = guc_context_post_unpin,
3768 
3769 	.ban = guc_context_ban,
3770 
3771 	.cancel_request = guc_context_cancel_request,
3772 
3773 	.enter = guc_virtual_context_enter,
3774 	.exit = guc_virtual_context_exit,
3775 
3776 	.sched_disable = guc_context_sched_disable,
3777 
3778 	.destroy = guc_context_destroy,
3779 
3780 	.get_sibling = guc_virtual_get_sibling,
3781 };
3782 
3783 static const struct intel_context_ops virtual_child_context_ops = {
3784 	.alloc = guc_virtual_context_alloc,
3785 
3786 	.pre_pin = guc_context_pre_pin,
3787 	.pin = guc_child_context_pin,
3788 	.unpin = guc_child_context_unpin,
3789 	.post_unpin = guc_child_context_post_unpin,
3790 
3791 	.cancel_request = guc_context_cancel_request,
3792 
3793 	.enter = guc_virtual_context_enter,
3794 	.exit = guc_virtual_context_exit,
3795 
3796 	.destroy = guc_child_context_destroy,
3797 
3798 	.get_sibling = guc_virtual_get_sibling,
3799 };
3800 
3801 /*
3802  * The below override of the breadcrumbs is enabled when the user configures a
3803  * context for parallel submission (multi-lrc, parent-child).
3804  *
3805  * The overridden breadcrumbs implements an algorithm which allows the GuC to
3806  * safely preempt all the hw contexts configured for parallel submission
3807  * between each BB. The contract between the i915 and GuC is if the parent
3808  * context can be preempted, all the children can be preempted, and the GuC will
3809  * always try to preempt the parent before the children. A handshake between the
3810  * parent / children breadcrumbs ensures the i915 holds up its end of the deal
3811  * creating a window to preempt between each set of BBs.
3812  */
3813 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
3814 						     u64 offset, u32 len,
3815 						     const unsigned int flags);
3816 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
3817 						    u64 offset, u32 len,
3818 						    const unsigned int flags);
3819 static u32 *
3820 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
3821 						 u32 *cs);
3822 static u32 *
3823 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
3824 						u32 *cs);
3825 
3826 static struct intel_context *
3827 guc_create_parallel(struct intel_engine_cs **engines,
3828 		    unsigned int num_siblings,
3829 		    unsigned int width)
3830 {
3831 	struct intel_engine_cs **siblings = NULL;
3832 	struct intel_context *parent = NULL, *ce, *err;
3833 	int i, j;
3834 
3835 	siblings = kmalloc_array(num_siblings,
3836 				 sizeof(*siblings),
3837 				 GFP_KERNEL);
3838 	if (!siblings)
3839 		return ERR_PTR(-ENOMEM);
3840 
3841 	for (i = 0; i < width; ++i) {
3842 		for (j = 0; j < num_siblings; ++j)
3843 			siblings[j] = engines[i * num_siblings + j];
3844 
3845 		ce = intel_engine_create_virtual(siblings, num_siblings,
3846 						 FORCE_VIRTUAL);
3847 		if (IS_ERR(ce)) {
3848 			err = ERR_CAST(ce);
3849 			goto unwind;
3850 		}
3851 
3852 		if (i == 0) {
3853 			parent = ce;
3854 			parent->ops = &virtual_parent_context_ops;
3855 		} else {
3856 			ce->ops = &virtual_child_context_ops;
3857 			intel_context_bind_parent_child(parent, ce);
3858 		}
3859 	}
3860 
3861 	parent->parallel.fence_context = dma_fence_context_alloc(1);
3862 
3863 	parent->engine->emit_bb_start =
3864 		emit_bb_start_parent_no_preempt_mid_batch;
3865 	parent->engine->emit_fini_breadcrumb =
3866 		emit_fini_breadcrumb_parent_no_preempt_mid_batch;
3867 	parent->engine->emit_fini_breadcrumb_dw =
3868 		12 + 4 * parent->parallel.number_children;
3869 	for_each_child(parent, ce) {
3870 		ce->engine->emit_bb_start =
3871 			emit_bb_start_child_no_preempt_mid_batch;
3872 		ce->engine->emit_fini_breadcrumb =
3873 			emit_fini_breadcrumb_child_no_preempt_mid_batch;
3874 		ce->engine->emit_fini_breadcrumb_dw = 16;
3875 	}
3876 
3877 	kfree(siblings);
3878 	return parent;
3879 
3880 unwind:
3881 	if (parent)
3882 		intel_context_put(parent);
3883 	kfree(siblings);
3884 	return err;
3885 }
3886 
3887 static bool
3888 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
3889 {
3890 	struct intel_engine_cs *sibling;
3891 	intel_engine_mask_t tmp, mask = b->engine_mask;
3892 	bool result = false;
3893 
3894 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
3895 		result |= intel_engine_irq_enable(sibling);
3896 
3897 	return result;
3898 }
3899 
3900 static void
3901 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
3902 {
3903 	struct intel_engine_cs *sibling;
3904 	intel_engine_mask_t tmp, mask = b->engine_mask;
3905 
3906 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
3907 		intel_engine_irq_disable(sibling);
3908 }
3909 
3910 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
3911 {
3912 	int i;
3913 
3914 	/*
3915 	 * In GuC submission mode we do not know which physical engine a request
3916 	 * will be scheduled on, this creates a problem because the breadcrumb
3917 	 * interrupt is per physical engine. To work around this we attach
3918 	 * requests and direct all breadcrumb interrupts to the first instance
3919 	 * of an engine per class. In addition all breadcrumb interrupts are
3920 	 * enabled / disabled across an engine class in unison.
3921 	 */
3922 	for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
3923 		struct intel_engine_cs *sibling =
3924 			engine->gt->engine_class[engine->class][i];
3925 
3926 		if (sibling) {
3927 			if (engine->breadcrumbs != sibling->breadcrumbs) {
3928 				intel_breadcrumbs_put(engine->breadcrumbs);
3929 				engine->breadcrumbs =
3930 					intel_breadcrumbs_get(sibling->breadcrumbs);
3931 			}
3932 			break;
3933 		}
3934 	}
3935 
3936 	if (engine->breadcrumbs) {
3937 		engine->breadcrumbs->engine_mask |= engine->mask;
3938 		engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
3939 		engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
3940 	}
3941 }
3942 
3943 static void guc_bump_inflight_request_prio(struct i915_request *rq,
3944 					   int prio)
3945 {
3946 	struct intel_context *ce = request_to_scheduling_context(rq);
3947 	u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
3948 
3949 	/* Short circuit function */
3950 	if (prio < I915_PRIORITY_NORMAL ||
3951 	    rq->guc_prio == GUC_PRIO_FINI ||
3952 	    (rq->guc_prio != GUC_PRIO_INIT &&
3953 	     !new_guc_prio_higher(rq->guc_prio, new_guc_prio)))
3954 		return;
3955 
3956 	spin_lock(&ce->guc_state.lock);
3957 	if (rq->guc_prio != GUC_PRIO_FINI) {
3958 		if (rq->guc_prio != GUC_PRIO_INIT)
3959 			sub_context_inflight_prio(ce, rq->guc_prio);
3960 		rq->guc_prio = new_guc_prio;
3961 		add_context_inflight_prio(ce, rq->guc_prio);
3962 		update_context_prio(ce);
3963 	}
3964 	spin_unlock(&ce->guc_state.lock);
3965 }
3966 
3967 static void guc_retire_inflight_request_prio(struct i915_request *rq)
3968 {
3969 	struct intel_context *ce = request_to_scheduling_context(rq);
3970 
3971 	spin_lock(&ce->guc_state.lock);
3972 	guc_prio_fini(rq, ce);
3973 	spin_unlock(&ce->guc_state.lock);
3974 }
3975 
3976 static void sanitize_hwsp(struct intel_engine_cs *engine)
3977 {
3978 	struct intel_timeline *tl;
3979 
3980 	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
3981 		intel_timeline_reset_seqno(tl);
3982 }
3983 
3984 static void guc_sanitize(struct intel_engine_cs *engine)
3985 {
3986 	/*
3987 	 * Poison residual state on resume, in case the suspend didn't!
3988 	 *
3989 	 * We have to assume that across suspend/resume (or other loss
3990 	 * of control) that the contents of our pinned buffers has been
3991 	 * lost, replaced by garbage. Since this doesn't always happen,
3992 	 * let's poison such state so that we more quickly spot when
3993 	 * we falsely assume it has been preserved.
3994 	 */
3995 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
3996 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
3997 
3998 	/*
3999 	 * The kernel_context HWSP is stored in the status_page. As above,
4000 	 * that may be lost on resume/initialisation, and so we need to
4001 	 * reset the value in the HWSP.
4002 	 */
4003 	sanitize_hwsp(engine);
4004 
4005 	/* And scrub the dirty cachelines for the HWSP */
4006 	drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
4007 
4008 	intel_engine_reset_pinned_contexts(engine);
4009 }
4010 
4011 static void setup_hwsp(struct intel_engine_cs *engine)
4012 {
4013 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
4014 
4015 	ENGINE_WRITE_FW(engine,
4016 			RING_HWS_PGA,
4017 			i915_ggtt_offset(engine->status_page.vma));
4018 }
4019 
4020 static void start_engine(struct intel_engine_cs *engine)
4021 {
4022 	ENGINE_WRITE_FW(engine,
4023 			RING_MODE_GEN7,
4024 			_MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
4025 
4026 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
4027 	ENGINE_POSTING_READ(engine, RING_MI_MODE);
4028 }
4029 
4030 static int guc_resume(struct intel_engine_cs *engine)
4031 {
4032 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
4033 
4034 	intel_mocs_init_engine(engine);
4035 
4036 	intel_breadcrumbs_reset(engine->breadcrumbs);
4037 
4038 	setup_hwsp(engine);
4039 	start_engine(engine);
4040 
4041 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
4042 		xehp_enable_ccs_engines(engine);
4043 
4044 	return 0;
4045 }
4046 
4047 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
4048 {
4049 	return !sched_engine->tasklet.callback;
4050 }
4051 
4052 static void guc_set_default_submission(struct intel_engine_cs *engine)
4053 {
4054 	engine->submit_request = guc_submit_request;
4055 }
4056 
4057 static inline void guc_kernel_context_pin(struct intel_guc *guc,
4058 					  struct intel_context *ce)
4059 {
4060 	/*
4061 	 * Note: we purposefully do not check the returns below because
4062 	 * the registration can only fail if a reset is just starting.
4063 	 * This is called at the end of reset so presumably another reset
4064 	 * isn't happening and even it did this code would be run again.
4065 	 */
4066 
4067 	if (context_guc_id_invalid(ce))
4068 		pin_guc_id(guc, ce);
4069 
4070 	try_context_registration(ce, true);
4071 }
4072 
4073 static inline void guc_init_lrc_mapping(struct intel_guc *guc)
4074 {
4075 	struct intel_gt *gt = guc_to_gt(guc);
4076 	struct intel_engine_cs *engine;
4077 	enum intel_engine_id id;
4078 
4079 	/* make sure all descriptors are clean... */
4080 	xa_destroy(&guc->context_lookup);
4081 
4082 	/*
4083 	 * Some contexts might have been pinned before we enabled GuC
4084 	 * submission, so we need to add them to the GuC bookeeping.
4085 	 * Also, after a reset the of the GuC we want to make sure that the
4086 	 * information shared with GuC is properly reset. The kernel LRCs are
4087 	 * not attached to the gem_context, so they need to be added separately.
4088 	 */
4089 	for_each_engine(engine, gt, id) {
4090 		struct intel_context *ce;
4091 
4092 		list_for_each_entry(ce, &engine->pinned_contexts_list,
4093 				    pinned_contexts_link)
4094 			guc_kernel_context_pin(guc, ce);
4095 	}
4096 }
4097 
4098 static void guc_release(struct intel_engine_cs *engine)
4099 {
4100 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
4101 
4102 	intel_engine_cleanup_common(engine);
4103 	lrc_fini_wa_ctx(engine);
4104 }
4105 
4106 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
4107 {
4108 	struct intel_engine_cs *e;
4109 	intel_engine_mask_t tmp, mask = engine->mask;
4110 
4111 	for_each_engine_masked(e, engine->gt, mask, tmp)
4112 		e->serial++;
4113 }
4114 
4115 static void guc_default_vfuncs(struct intel_engine_cs *engine)
4116 {
4117 	/* Default vfuncs which can be overridden by each engine. */
4118 
4119 	engine->resume = guc_resume;
4120 
4121 	engine->cops = &guc_context_ops;
4122 	engine->request_alloc = guc_request_alloc;
4123 	engine->add_active_request = add_to_context;
4124 	engine->remove_active_request = remove_from_context;
4125 
4126 	engine->sched_engine->schedule = i915_schedule;
4127 
4128 	engine->reset.prepare = guc_engine_reset_prepare;
4129 	engine->reset.rewind = guc_rewind_nop;
4130 	engine->reset.cancel = guc_reset_nop;
4131 	engine->reset.finish = guc_reset_nop;
4132 
4133 	engine->emit_flush = gen8_emit_flush_xcs;
4134 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
4135 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
4136 	if (GRAPHICS_VER(engine->i915) >= 12) {
4137 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
4138 		engine->emit_flush = gen12_emit_flush_xcs;
4139 	}
4140 	engine->set_default_submission = guc_set_default_submission;
4141 	engine->busyness = guc_engine_busyness;
4142 
4143 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4144 	engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4145 	engine->flags |= I915_ENGINE_HAS_TIMESLICES;
4146 
4147 	/* Wa_14014475959:dg2 */
4148 	if (IS_DG2(engine->i915) && engine->class == COMPUTE_CLASS)
4149 		engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT;
4150 
4151 	/*
4152 	 * TODO: GuC supports timeslicing and semaphores as well, but they're
4153 	 * handled by the firmware so some minor tweaks are required before
4154 	 * enabling.
4155 	 *
4156 	 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4157 	 */
4158 
4159 	engine->emit_bb_start = gen8_emit_bb_start;
4160 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
4161 		engine->emit_bb_start = gen125_emit_bb_start;
4162 }
4163 
4164 static void rcs_submission_override(struct intel_engine_cs *engine)
4165 {
4166 	switch (GRAPHICS_VER(engine->i915)) {
4167 	case 12:
4168 		engine->emit_flush = gen12_emit_flush_rcs;
4169 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
4170 		break;
4171 	case 11:
4172 		engine->emit_flush = gen11_emit_flush_rcs;
4173 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
4174 		break;
4175 	default:
4176 		engine->emit_flush = gen8_emit_flush_rcs;
4177 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
4178 		break;
4179 	}
4180 }
4181 
4182 static inline void guc_default_irqs(struct intel_engine_cs *engine)
4183 {
4184 	engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
4185 	intel_engine_set_irq_handler(engine, cs_irq_handler);
4186 }
4187 
4188 static void guc_sched_engine_destroy(struct kref *kref)
4189 {
4190 	struct i915_sched_engine *sched_engine =
4191 		container_of(kref, typeof(*sched_engine), ref);
4192 	struct intel_guc *guc = sched_engine->private_data;
4193 
4194 	guc->sched_engine = NULL;
4195 	tasklet_kill(&sched_engine->tasklet); /* flush the callback */
4196 	kfree(sched_engine);
4197 }
4198 
4199 int intel_guc_submission_setup(struct intel_engine_cs *engine)
4200 {
4201 	struct drm_i915_private *i915 = engine->i915;
4202 	struct intel_guc *guc = &engine->gt->uc.guc;
4203 
4204 	/*
4205 	 * The setup relies on several assumptions (e.g. irqs always enabled)
4206 	 * that are only valid on gen11+
4207 	 */
4208 	GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
4209 
4210 	if (!guc->sched_engine) {
4211 		guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
4212 		if (!guc->sched_engine)
4213 			return -ENOMEM;
4214 
4215 		guc->sched_engine->schedule = i915_schedule;
4216 		guc->sched_engine->disabled = guc_sched_engine_disabled;
4217 		guc->sched_engine->private_data = guc;
4218 		guc->sched_engine->destroy = guc_sched_engine_destroy;
4219 		guc->sched_engine->bump_inflight_request_prio =
4220 			guc_bump_inflight_request_prio;
4221 		guc->sched_engine->retire_inflight_request_prio =
4222 			guc_retire_inflight_request_prio;
4223 		tasklet_setup(&guc->sched_engine->tasklet,
4224 			      guc_submission_tasklet);
4225 	}
4226 	i915_sched_engine_put(engine->sched_engine);
4227 	engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
4228 
4229 	guc_default_vfuncs(engine);
4230 	guc_default_irqs(engine);
4231 	guc_init_breadcrumbs(engine);
4232 
4233 	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
4234 		rcs_submission_override(engine);
4235 
4236 	lrc_init_wa_ctx(engine);
4237 
4238 	/* Finally, take ownership and responsibility for cleanup! */
4239 	engine->sanitize = guc_sanitize;
4240 	engine->release = guc_release;
4241 
4242 	return 0;
4243 }
4244 
4245 void intel_guc_submission_enable(struct intel_guc *guc)
4246 {
4247 	guc_init_lrc_mapping(guc);
4248 	guc_init_engine_stats(guc);
4249 }
4250 
4251 void intel_guc_submission_disable(struct intel_guc *guc)
4252 {
4253 	/* Note: By the time we're here, GuC may have already been reset */
4254 }
4255 
4256 static bool __guc_submission_supported(struct intel_guc *guc)
4257 {
4258 	/* GuC submission is unavailable for pre-Gen11 */
4259 	return intel_guc_is_supported(guc) &&
4260 	       GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11;
4261 }
4262 
4263 static bool __guc_submission_selected(struct intel_guc *guc)
4264 {
4265 	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
4266 
4267 	if (!intel_guc_submission_is_supported(guc))
4268 		return false;
4269 
4270 	return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
4271 }
4272 
4273 void intel_guc_submission_init_early(struct intel_guc *guc)
4274 {
4275 	xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
4276 
4277 	spin_lock_init(&guc->submission_state.lock);
4278 	INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
4279 	ida_init(&guc->submission_state.guc_ids);
4280 	INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
4281 	INIT_WORK(&guc->submission_state.destroyed_worker,
4282 		  destroyed_worker_func);
4283 	INIT_WORK(&guc->submission_state.reset_fail_worker,
4284 		  reset_fail_worker_func);
4285 
4286 	spin_lock_init(&guc->timestamp.lock);
4287 	INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
4288 
4289 	guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
4290 	guc->submission_supported = __guc_submission_supported(guc);
4291 	guc->submission_selected = __guc_submission_selected(guc);
4292 }
4293 
4294 static inline struct intel_context *
4295 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4296 {
4297 	struct intel_context *ce;
4298 
4299 	if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4300 		drm_err(&guc_to_gt(guc)->i915->drm,
4301 			"Invalid ctx_id %u\n", ctx_id);
4302 		return NULL;
4303 	}
4304 
4305 	ce = __get_context(guc, ctx_id);
4306 	if (unlikely(!ce)) {
4307 		drm_err(&guc_to_gt(guc)->i915->drm,
4308 			"Context is NULL, ctx_id %u\n", ctx_id);
4309 		return NULL;
4310 	}
4311 
4312 	if (unlikely(intel_context_is_child(ce))) {
4313 		drm_err(&guc_to_gt(guc)->i915->drm,
4314 			"Context is child, ctx_id %u\n", ctx_id);
4315 		return NULL;
4316 	}
4317 
4318 	return ce;
4319 }
4320 
4321 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
4322 					  const u32 *msg,
4323 					  u32 len)
4324 {
4325 	struct intel_context *ce;
4326 	u32 ctx_id;
4327 
4328 	if (unlikely(len < 1)) {
4329 		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len);
4330 		return -EPROTO;
4331 	}
4332 	ctx_id = msg[0];
4333 
4334 	ce = g2h_context_lookup(guc, ctx_id);
4335 	if (unlikely(!ce))
4336 		return -EPROTO;
4337 
4338 	trace_intel_context_deregister_done(ce);
4339 
4340 #ifdef CONFIG_DRM_I915_SELFTEST
4341 	if (unlikely(ce->drop_deregister)) {
4342 		ce->drop_deregister = false;
4343 		return 0;
4344 	}
4345 #endif
4346 
4347 	if (context_wait_for_deregister_to_register(ce)) {
4348 		struct intel_runtime_pm *runtime_pm =
4349 			&ce->engine->gt->i915->runtime_pm;
4350 		intel_wakeref_t wakeref;
4351 
4352 		/*
4353 		 * Previous owner of this guc_id has been deregistered, now safe
4354 		 * register this context.
4355 		 */
4356 		with_intel_runtime_pm(runtime_pm, wakeref)
4357 			register_context(ce, true);
4358 		guc_signal_context_fence(ce);
4359 		intel_context_put(ce);
4360 	} else if (context_destroyed(ce)) {
4361 		/* Context has been destroyed */
4362 		intel_gt_pm_put_async(guc_to_gt(guc));
4363 		release_guc_id(guc, ce);
4364 		__guc_context_destroy(ce);
4365 	}
4366 
4367 	decr_outstanding_submission_g2h(guc);
4368 
4369 	return 0;
4370 }
4371 
4372 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
4373 				     const u32 *msg,
4374 				     u32 len)
4375 {
4376 	struct intel_context *ce;
4377 	unsigned long flags;
4378 	u32 ctx_id;
4379 
4380 	if (unlikely(len < 2)) {
4381 		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len);
4382 		return -EPROTO;
4383 	}
4384 	ctx_id = msg[0];
4385 
4386 	ce = g2h_context_lookup(guc, ctx_id);
4387 	if (unlikely(!ce))
4388 		return -EPROTO;
4389 
4390 	if (unlikely(context_destroyed(ce) ||
4391 		     (!context_pending_enable(ce) &&
4392 		     !context_pending_disable(ce)))) {
4393 		drm_err(&guc_to_gt(guc)->i915->drm,
4394 			"Bad context sched_state 0x%x, ctx_id %u\n",
4395 			ce->guc_state.sched_state, ctx_id);
4396 		return -EPROTO;
4397 	}
4398 
4399 	trace_intel_context_sched_done(ce);
4400 
4401 	if (context_pending_enable(ce)) {
4402 #ifdef CONFIG_DRM_I915_SELFTEST
4403 		if (unlikely(ce->drop_schedule_enable)) {
4404 			ce->drop_schedule_enable = false;
4405 			return 0;
4406 		}
4407 #endif
4408 
4409 		spin_lock_irqsave(&ce->guc_state.lock, flags);
4410 		clr_context_pending_enable(ce);
4411 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4412 	} else if (context_pending_disable(ce)) {
4413 		bool banned;
4414 
4415 #ifdef CONFIG_DRM_I915_SELFTEST
4416 		if (unlikely(ce->drop_schedule_disable)) {
4417 			ce->drop_schedule_disable = false;
4418 			return 0;
4419 		}
4420 #endif
4421 
4422 		/*
4423 		 * Unpin must be done before __guc_signal_context_fence,
4424 		 * otherwise a race exists between the requests getting
4425 		 * submitted + retired before this unpin completes resulting in
4426 		 * the pin_count going to zero and the context still being
4427 		 * enabled.
4428 		 */
4429 		intel_context_sched_disable_unpin(ce);
4430 
4431 		spin_lock_irqsave(&ce->guc_state.lock, flags);
4432 		banned = context_banned(ce);
4433 		clr_context_banned(ce);
4434 		clr_context_pending_disable(ce);
4435 		__guc_signal_context_fence(ce);
4436 		guc_blocked_fence_complete(ce);
4437 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4438 
4439 		if (banned) {
4440 			guc_cancel_context_requests(ce);
4441 			intel_engine_signal_breadcrumbs(ce->engine);
4442 		}
4443 	}
4444 
4445 	decr_outstanding_submission_g2h(guc);
4446 	intel_context_put(ce);
4447 
4448 	return 0;
4449 }
4450 
4451 static void capture_error_state(struct intel_guc *guc,
4452 				struct intel_context *ce)
4453 {
4454 	struct intel_gt *gt = guc_to_gt(guc);
4455 	struct drm_i915_private *i915 = gt->i915;
4456 	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
4457 	intel_wakeref_t wakeref;
4458 
4459 	intel_engine_set_hung_context(engine, ce);
4460 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
4461 		i915_capture_error_state(gt, engine->mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
4462 	atomic_inc(&i915->gpu_error.reset_engine_count[engine->uabi_class]);
4463 }
4464 
4465 static void guc_context_replay(struct intel_context *ce)
4466 {
4467 	struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
4468 
4469 	__guc_reset_context(ce, ce->engine->mask);
4470 	tasklet_hi_schedule(&sched_engine->tasklet);
4471 }
4472 
4473 static void guc_handle_context_reset(struct intel_guc *guc,
4474 				     struct intel_context *ce)
4475 {
4476 	trace_intel_context_reset(ce);
4477 
4478 	if (likely(!intel_context_is_banned(ce))) {
4479 		capture_error_state(guc, ce);
4480 		guc_context_replay(ce);
4481 	} else {
4482 		drm_info(&guc_to_gt(guc)->i915->drm,
4483 			 "Ignoring context reset notification of banned context 0x%04X on %s",
4484 			 ce->guc_id.id, ce->engine->name);
4485 	}
4486 }
4487 
4488 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
4489 					const u32 *msg, u32 len)
4490 {
4491 	struct intel_context *ce;
4492 	unsigned long flags;
4493 	int ctx_id;
4494 
4495 	if (unlikely(len != 1)) {
4496 		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
4497 		return -EPROTO;
4498 	}
4499 
4500 	ctx_id = msg[0];
4501 
4502 	/*
4503 	 * The context lookup uses the xarray but lookups only require an RCU lock
4504 	 * not the full spinlock. So take the lock explicitly and keep it until the
4505 	 * context has been reference count locked to ensure it can't be destroyed
4506 	 * asynchronously until the reset is done.
4507 	 */
4508 	xa_lock_irqsave(&guc->context_lookup, flags);
4509 	ce = g2h_context_lookup(guc, ctx_id);
4510 	if (ce)
4511 		intel_context_get(ce);
4512 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4513 
4514 	if (unlikely(!ce))
4515 		return -EPROTO;
4516 
4517 	guc_handle_context_reset(guc, ce);
4518 	intel_context_put(ce);
4519 
4520 	return 0;
4521 }
4522 
4523 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
4524 					const u32 *msg, u32 len)
4525 {
4526 	u32 status;
4527 
4528 	if (unlikely(len != 1)) {
4529 		drm_dbg(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
4530 		return -EPROTO;
4531 	}
4532 
4533 	status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
4534 	if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
4535 		drm_warn(&guc_to_gt(guc)->i915->drm, "G2H-Error capture no space");
4536 
4537 	intel_guc_capture_process(guc);
4538 
4539 	return 0;
4540 }
4541 
4542 struct intel_engine_cs *
4543 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
4544 {
4545 	struct intel_gt *gt = guc_to_gt(guc);
4546 	u8 engine_class = guc_class_to_engine_class(guc_class);
4547 
4548 	/* Class index is checked in class converter */
4549 	GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
4550 
4551 	return gt->engine_class[engine_class][instance];
4552 }
4553 
4554 static void reset_fail_worker_func(struct work_struct *w)
4555 {
4556 	struct intel_guc *guc = container_of(w, struct intel_guc,
4557 					     submission_state.reset_fail_worker);
4558 	struct intel_gt *gt = guc_to_gt(guc);
4559 	intel_engine_mask_t reset_fail_mask;
4560 	unsigned long flags;
4561 
4562 	spin_lock_irqsave(&guc->submission_state.lock, flags);
4563 	reset_fail_mask = guc->submission_state.reset_fail_mask;
4564 	guc->submission_state.reset_fail_mask = 0;
4565 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
4566 
4567 	if (likely(reset_fail_mask))
4568 		intel_gt_handle_error(gt, reset_fail_mask,
4569 				      I915_ERROR_CAPTURE,
4570 				      "GuC failed to reset engine mask=0x%x\n",
4571 				      reset_fail_mask);
4572 }
4573 
4574 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
4575 					 const u32 *msg, u32 len)
4576 {
4577 	struct intel_engine_cs *engine;
4578 	struct intel_gt *gt = guc_to_gt(guc);
4579 	u8 guc_class, instance;
4580 	u32 reason;
4581 	unsigned long flags;
4582 
4583 	if (unlikely(len != 3)) {
4584 		drm_err(&gt->i915->drm, "Invalid length %u", len);
4585 		return -EPROTO;
4586 	}
4587 
4588 	guc_class = msg[0];
4589 	instance = msg[1];
4590 	reason = msg[2];
4591 
4592 	engine = intel_guc_lookup_engine(guc, guc_class, instance);
4593 	if (unlikely(!engine)) {
4594 		drm_err(&gt->i915->drm,
4595 			"Invalid engine %d:%d", guc_class, instance);
4596 		return -EPROTO;
4597 	}
4598 
4599 	/*
4600 	 * This is an unexpected failure of a hardware feature. So, log a real
4601 	 * error message not just the informational that comes with the reset.
4602 	 */
4603 	drm_err(&gt->i915->drm, "GuC engine reset request failed on %d:%d (%s) because 0x%08X",
4604 		guc_class, instance, engine->name, reason);
4605 
4606 	spin_lock_irqsave(&guc->submission_state.lock, flags);
4607 	guc->submission_state.reset_fail_mask |= engine->mask;
4608 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
4609 
4610 	/*
4611 	 * A GT reset flushes this worker queue (G2H handler) so we must use
4612 	 * another worker to trigger a GT reset.
4613 	 */
4614 	queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
4615 
4616 	return 0;
4617 }
4618 
4619 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
4620 {
4621 	struct intel_guc *guc = &engine->gt->uc.guc;
4622 	struct intel_context *ce;
4623 	struct i915_request *rq;
4624 	unsigned long index;
4625 	unsigned long flags;
4626 
4627 	/* Reset called during driver load? GuC not yet initialised! */
4628 	if (unlikely(!guc_submission_initialized(guc)))
4629 		return;
4630 
4631 	xa_lock_irqsave(&guc->context_lookup, flags);
4632 	xa_for_each(&guc->context_lookup, index, ce) {
4633 		if (!kref_get_unless_zero(&ce->ref))
4634 			continue;
4635 
4636 		xa_unlock(&guc->context_lookup);
4637 
4638 		if (!intel_context_is_pinned(ce))
4639 			goto next;
4640 
4641 		if (intel_engine_is_virtual(ce->engine)) {
4642 			if (!(ce->engine->mask & engine->mask))
4643 				goto next;
4644 		} else {
4645 			if (ce->engine != engine)
4646 				goto next;
4647 		}
4648 
4649 		list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
4650 			if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
4651 				continue;
4652 
4653 			intel_engine_set_hung_context(engine, ce);
4654 
4655 			/* Can only cope with one hang at a time... */
4656 			intel_context_put(ce);
4657 			xa_lock(&guc->context_lookup);
4658 			goto done;
4659 		}
4660 next:
4661 		intel_context_put(ce);
4662 		xa_lock(&guc->context_lookup);
4663 	}
4664 done:
4665 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4666 }
4667 
4668 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
4669 				    struct i915_request *hung_rq,
4670 				    struct drm_printer *m)
4671 {
4672 	struct intel_guc *guc = &engine->gt->uc.guc;
4673 	struct intel_context *ce;
4674 	unsigned long index;
4675 	unsigned long flags;
4676 
4677 	/* Reset called during driver load? GuC not yet initialised! */
4678 	if (unlikely(!guc_submission_initialized(guc)))
4679 		return;
4680 
4681 	xa_lock_irqsave(&guc->context_lookup, flags);
4682 	xa_for_each(&guc->context_lookup, index, ce) {
4683 		if (!kref_get_unless_zero(&ce->ref))
4684 			continue;
4685 
4686 		xa_unlock(&guc->context_lookup);
4687 
4688 		if (!intel_context_is_pinned(ce))
4689 			goto next;
4690 
4691 		if (intel_engine_is_virtual(ce->engine)) {
4692 			if (!(ce->engine->mask & engine->mask))
4693 				goto next;
4694 		} else {
4695 			if (ce->engine != engine)
4696 				goto next;
4697 		}
4698 
4699 		spin_lock(&ce->guc_state.lock);
4700 		intel_engine_dump_active_requests(&ce->guc_state.requests,
4701 						  hung_rq, m);
4702 		spin_unlock(&ce->guc_state.lock);
4703 
4704 next:
4705 		intel_context_put(ce);
4706 		xa_lock(&guc->context_lookup);
4707 	}
4708 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4709 }
4710 
4711 void intel_guc_submission_print_info(struct intel_guc *guc,
4712 				     struct drm_printer *p)
4713 {
4714 	struct i915_sched_engine *sched_engine = guc->sched_engine;
4715 	struct rb_node *rb;
4716 	unsigned long flags;
4717 
4718 	if (!sched_engine)
4719 		return;
4720 
4721 	drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
4722 		   atomic_read(&guc->outstanding_submission_g2h));
4723 	drm_printf(p, "GuC tasklet count: %u\n\n",
4724 		   atomic_read(&sched_engine->tasklet.count));
4725 
4726 	spin_lock_irqsave(&sched_engine->lock, flags);
4727 	drm_printf(p, "Requests in GuC submit tasklet:\n");
4728 	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
4729 		struct i915_priolist *pl = to_priolist(rb);
4730 		struct i915_request *rq;
4731 
4732 		priolist_for_each_request(rq, pl)
4733 			drm_printf(p, "guc_id=%u, seqno=%llu\n",
4734 				   rq->context->guc_id.id,
4735 				   rq->fence.seqno);
4736 	}
4737 	spin_unlock_irqrestore(&sched_engine->lock, flags);
4738 	drm_printf(p, "\n");
4739 }
4740 
4741 static inline void guc_log_context_priority(struct drm_printer *p,
4742 					    struct intel_context *ce)
4743 {
4744 	int i;
4745 
4746 	drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
4747 	drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
4748 	for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
4749 	     i < GUC_CLIENT_PRIORITY_NUM; ++i) {
4750 		drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
4751 			   i, ce->guc_state.prio_count[i]);
4752 	}
4753 	drm_printf(p, "\n");
4754 }
4755 
4756 static inline void guc_log_context(struct drm_printer *p,
4757 				   struct intel_context *ce)
4758 {
4759 	drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
4760 	drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
4761 	drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
4762 		   ce->ring->head,
4763 		   ce->lrc_reg_state[CTX_RING_HEAD]);
4764 	drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
4765 		   ce->ring->tail,
4766 		   ce->lrc_reg_state[CTX_RING_TAIL]);
4767 	drm_printf(p, "\t\tContext Pin Count: %u\n",
4768 		   atomic_read(&ce->pin_count));
4769 	drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
4770 		   atomic_read(&ce->guc_id.ref));
4771 	drm_printf(p, "\t\tSchedule State: 0x%x\n\n",
4772 		   ce->guc_state.sched_state);
4773 }
4774 
4775 void intel_guc_submission_print_context_info(struct intel_guc *guc,
4776 					     struct drm_printer *p)
4777 {
4778 	struct intel_context *ce;
4779 	unsigned long index;
4780 	unsigned long flags;
4781 
4782 	xa_lock_irqsave(&guc->context_lookup, flags);
4783 	xa_for_each(&guc->context_lookup, index, ce) {
4784 		GEM_BUG_ON(intel_context_is_child(ce));
4785 
4786 		guc_log_context(p, ce);
4787 		guc_log_context_priority(p, ce);
4788 
4789 		if (intel_context_is_parent(ce)) {
4790 			struct intel_context *child;
4791 
4792 			drm_printf(p, "\t\tNumber children: %u\n",
4793 				   ce->parallel.number_children);
4794 
4795 			if (ce->parallel.guc.wq_status) {
4796 				drm_printf(p, "\t\tWQI Head: %u\n",
4797 					   READ_ONCE(*ce->parallel.guc.wq_head));
4798 				drm_printf(p, "\t\tWQI Tail: %u\n",
4799 					   READ_ONCE(*ce->parallel.guc.wq_tail));
4800 				drm_printf(p, "\t\tWQI Status: %u\n\n",
4801 					   READ_ONCE(*ce->parallel.guc.wq_status));
4802 			}
4803 
4804 			if (ce->engine->emit_bb_start ==
4805 			    emit_bb_start_parent_no_preempt_mid_batch) {
4806 				u8 i;
4807 
4808 				drm_printf(p, "\t\tChildren Go: %u\n\n",
4809 					   get_children_go_value(ce));
4810 				for (i = 0; i < ce->parallel.number_children; ++i)
4811 					drm_printf(p, "\t\tChildren Join: %u\n",
4812 						   get_children_join_value(ce, i));
4813 			}
4814 
4815 			for_each_child(ce, child)
4816 				guc_log_context(p, child);
4817 		}
4818 	}
4819 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4820 }
4821 
4822 static inline u32 get_children_go_addr(struct intel_context *ce)
4823 {
4824 	GEM_BUG_ON(!intel_context_is_parent(ce));
4825 
4826 	return i915_ggtt_offset(ce->state) +
4827 		__get_parent_scratch_offset(ce) +
4828 		offsetof(struct parent_scratch, go.semaphore);
4829 }
4830 
4831 static inline u32 get_children_join_addr(struct intel_context *ce,
4832 					 u8 child_index)
4833 {
4834 	GEM_BUG_ON(!intel_context_is_parent(ce));
4835 
4836 	return i915_ggtt_offset(ce->state) +
4837 		__get_parent_scratch_offset(ce) +
4838 		offsetof(struct parent_scratch, join[child_index].semaphore);
4839 }
4840 
4841 #define PARENT_GO_BB			1
4842 #define PARENT_GO_FINI_BREADCRUMB	0
4843 #define CHILD_GO_BB			1
4844 #define CHILD_GO_FINI_BREADCRUMB	0
4845 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
4846 						     u64 offset, u32 len,
4847 						     const unsigned int flags)
4848 {
4849 	struct intel_context *ce = rq->context;
4850 	u32 *cs;
4851 	u8 i;
4852 
4853 	GEM_BUG_ON(!intel_context_is_parent(ce));
4854 
4855 	cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
4856 	if (IS_ERR(cs))
4857 		return PTR_ERR(cs);
4858 
4859 	/* Wait on children */
4860 	for (i = 0; i < ce->parallel.number_children; ++i) {
4861 		*cs++ = (MI_SEMAPHORE_WAIT |
4862 			 MI_SEMAPHORE_GLOBAL_GTT |
4863 			 MI_SEMAPHORE_POLL |
4864 			 MI_SEMAPHORE_SAD_EQ_SDD);
4865 		*cs++ = PARENT_GO_BB;
4866 		*cs++ = get_children_join_addr(ce, i);
4867 		*cs++ = 0;
4868 	}
4869 
4870 	/* Turn off preemption */
4871 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
4872 	*cs++ = MI_NOOP;
4873 
4874 	/* Tell children go */
4875 	cs = gen8_emit_ggtt_write(cs,
4876 				  CHILD_GO_BB,
4877 				  get_children_go_addr(ce),
4878 				  0);
4879 
4880 	/* Jump to batch */
4881 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
4882 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
4883 	*cs++ = lower_32_bits(offset);
4884 	*cs++ = upper_32_bits(offset);
4885 	*cs++ = MI_NOOP;
4886 
4887 	intel_ring_advance(rq, cs);
4888 
4889 	return 0;
4890 }
4891 
4892 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
4893 						    u64 offset, u32 len,
4894 						    const unsigned int flags)
4895 {
4896 	struct intel_context *ce = rq->context;
4897 	struct intel_context *parent = intel_context_to_parent(ce);
4898 	u32 *cs;
4899 
4900 	GEM_BUG_ON(!intel_context_is_child(ce));
4901 
4902 	cs = intel_ring_begin(rq, 12);
4903 	if (IS_ERR(cs))
4904 		return PTR_ERR(cs);
4905 
4906 	/* Signal parent */
4907 	cs = gen8_emit_ggtt_write(cs,
4908 				  PARENT_GO_BB,
4909 				  get_children_join_addr(parent,
4910 							 ce->parallel.child_index),
4911 				  0);
4912 
4913 	/* Wait on parent for go */
4914 	*cs++ = (MI_SEMAPHORE_WAIT |
4915 		 MI_SEMAPHORE_GLOBAL_GTT |
4916 		 MI_SEMAPHORE_POLL |
4917 		 MI_SEMAPHORE_SAD_EQ_SDD);
4918 	*cs++ = CHILD_GO_BB;
4919 	*cs++ = get_children_go_addr(parent);
4920 	*cs++ = 0;
4921 
4922 	/* Turn off preemption */
4923 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
4924 
4925 	/* Jump to batch */
4926 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
4927 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
4928 	*cs++ = lower_32_bits(offset);
4929 	*cs++ = upper_32_bits(offset);
4930 
4931 	intel_ring_advance(rq, cs);
4932 
4933 	return 0;
4934 }
4935 
4936 static u32 *
4937 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4938 						   u32 *cs)
4939 {
4940 	struct intel_context *ce = rq->context;
4941 	u8 i;
4942 
4943 	GEM_BUG_ON(!intel_context_is_parent(ce));
4944 
4945 	/* Wait on children */
4946 	for (i = 0; i < ce->parallel.number_children; ++i) {
4947 		*cs++ = (MI_SEMAPHORE_WAIT |
4948 			 MI_SEMAPHORE_GLOBAL_GTT |
4949 			 MI_SEMAPHORE_POLL |
4950 			 MI_SEMAPHORE_SAD_EQ_SDD);
4951 		*cs++ = PARENT_GO_FINI_BREADCRUMB;
4952 		*cs++ = get_children_join_addr(ce, i);
4953 		*cs++ = 0;
4954 	}
4955 
4956 	/* Turn on preemption */
4957 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
4958 	*cs++ = MI_NOOP;
4959 
4960 	/* Tell children go */
4961 	cs = gen8_emit_ggtt_write(cs,
4962 				  CHILD_GO_FINI_BREADCRUMB,
4963 				  get_children_go_addr(ce),
4964 				  0);
4965 
4966 	return cs;
4967 }
4968 
4969 /*
4970  * If this true, a submission of multi-lrc requests had an error and the
4971  * requests need to be skipped. The front end (execuf IOCTL) should've called
4972  * i915_request_skip which squashes the BB but we still need to emit the fini
4973  * breadrcrumbs seqno write. At this point we don't know how many of the
4974  * requests in the multi-lrc submission were generated so we can't do the
4975  * handshake between the parent and children (e.g. if 4 requests should be
4976  * generated but 2nd hit an error only 1 would be seen by the GuC backend).
4977  * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
4978  * has occurred on any of the requests in submission / relationship.
4979  */
4980 static inline bool skip_handshake(struct i915_request *rq)
4981 {
4982 	return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
4983 }
4984 
4985 #define NON_SKIP_LEN	6
4986 static u32 *
4987 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4988 						 u32 *cs)
4989 {
4990 	struct intel_context *ce = rq->context;
4991 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
4992 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
4993 
4994 	GEM_BUG_ON(!intel_context_is_parent(ce));
4995 
4996 	if (unlikely(skip_handshake(rq))) {
4997 		/*
4998 		 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
4999 		 * the NON_SKIP_LEN comes from the length of the emits below.
5000 		 */
5001 		memset(cs, 0, sizeof(u32) *
5002 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5003 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5004 	} else {
5005 		cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
5006 	}
5007 
5008 	/* Emit fini breadcrumb */
5009 	before_fini_breadcrumb_user_interrupt_cs = cs;
5010 	cs = gen8_emit_ggtt_write(cs,
5011 				  rq->fence.seqno,
5012 				  i915_request_active_timeline(rq)->hwsp_offset,
5013 				  0);
5014 
5015 	/* User interrupt */
5016 	*cs++ = MI_USER_INTERRUPT;
5017 	*cs++ = MI_NOOP;
5018 
5019 	/* Ensure our math for skip + emit is correct */
5020 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5021 		   cs);
5022 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5023 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5024 
5025 	rq->tail = intel_ring_offset(rq, cs);
5026 
5027 	return cs;
5028 }
5029 
5030 static u32 *
5031 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5032 						  u32 *cs)
5033 {
5034 	struct intel_context *ce = rq->context;
5035 	struct intel_context *parent = intel_context_to_parent(ce);
5036 
5037 	GEM_BUG_ON(!intel_context_is_child(ce));
5038 
5039 	/* Turn on preemption */
5040 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5041 	*cs++ = MI_NOOP;
5042 
5043 	/* Signal parent */
5044 	cs = gen8_emit_ggtt_write(cs,
5045 				  PARENT_GO_FINI_BREADCRUMB,
5046 				  get_children_join_addr(parent,
5047 							 ce->parallel.child_index),
5048 				  0);
5049 
5050 	/* Wait parent on for go */
5051 	*cs++ = (MI_SEMAPHORE_WAIT |
5052 		 MI_SEMAPHORE_GLOBAL_GTT |
5053 		 MI_SEMAPHORE_POLL |
5054 		 MI_SEMAPHORE_SAD_EQ_SDD);
5055 	*cs++ = CHILD_GO_FINI_BREADCRUMB;
5056 	*cs++ = get_children_go_addr(parent);
5057 	*cs++ = 0;
5058 
5059 	return cs;
5060 }
5061 
5062 static u32 *
5063 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5064 						u32 *cs)
5065 {
5066 	struct intel_context *ce = rq->context;
5067 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5068 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5069 
5070 	GEM_BUG_ON(!intel_context_is_child(ce));
5071 
5072 	if (unlikely(skip_handshake(rq))) {
5073 		/*
5074 		 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
5075 		 * the NON_SKIP_LEN comes from the length of the emits below.
5076 		 */
5077 		memset(cs, 0, sizeof(u32) *
5078 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5079 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5080 	} else {
5081 		cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
5082 	}
5083 
5084 	/* Emit fini breadcrumb */
5085 	before_fini_breadcrumb_user_interrupt_cs = cs;
5086 	cs = gen8_emit_ggtt_write(cs,
5087 				  rq->fence.seqno,
5088 				  i915_request_active_timeline(rq)->hwsp_offset,
5089 				  0);
5090 
5091 	/* User interrupt */
5092 	*cs++ = MI_USER_INTERRUPT;
5093 	*cs++ = MI_NOOP;
5094 
5095 	/* Ensure our math for skip + emit is correct */
5096 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5097 		   cs);
5098 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5099 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5100 
5101 	rq->tail = intel_ring_offset(rq, cs);
5102 
5103 	return cs;
5104 }
5105 
5106 #undef NON_SKIP_LEN
5107 
5108 static struct intel_context *
5109 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
5110 		   unsigned long flags)
5111 {
5112 	struct guc_virtual_engine *ve;
5113 	struct intel_guc *guc;
5114 	unsigned int n;
5115 	int err;
5116 
5117 	ve = kzalloc(sizeof(*ve), GFP_KERNEL);
5118 	if (!ve)
5119 		return ERR_PTR(-ENOMEM);
5120 
5121 	guc = &siblings[0]->gt->uc.guc;
5122 
5123 	ve->base.i915 = siblings[0]->i915;
5124 	ve->base.gt = siblings[0]->gt;
5125 	ve->base.uncore = siblings[0]->uncore;
5126 	ve->base.id = -1;
5127 
5128 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5129 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5130 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5131 	ve->base.saturated = ALL_ENGINES;
5132 
5133 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5134 
5135 	ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
5136 
5137 	ve->base.cops = &virtual_guc_context_ops;
5138 	ve->base.request_alloc = guc_request_alloc;
5139 	ve->base.bump_serial = virtual_guc_bump_serial;
5140 
5141 	ve->base.submit_request = guc_submit_request;
5142 
5143 	ve->base.flags = I915_ENGINE_IS_VIRTUAL;
5144 
5145 	intel_context_init(&ve->context, &ve->base);
5146 
5147 	for (n = 0; n < count; n++) {
5148 		struct intel_engine_cs *sibling = siblings[n];
5149 
5150 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
5151 		if (sibling->mask & ve->base.mask) {
5152 			DRM_DEBUG("duplicate %s entry in load balancer\n",
5153 				  sibling->name);
5154 			err = -EINVAL;
5155 			goto err_put;
5156 		}
5157 
5158 		ve->base.mask |= sibling->mask;
5159 		ve->base.logical_mask |= sibling->logical_mask;
5160 
5161 		if (n != 0 && ve->base.class != sibling->class) {
5162 			DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
5163 				  sibling->class, ve->base.class);
5164 			err = -EINVAL;
5165 			goto err_put;
5166 		} else if (n == 0) {
5167 			ve->base.class = sibling->class;
5168 			ve->base.uabi_class = sibling->uabi_class;
5169 			snprintf(ve->base.name, sizeof(ve->base.name),
5170 				 "v%dx%d", ve->base.class, count);
5171 			ve->base.context_size = sibling->context_size;
5172 
5173 			ve->base.add_active_request =
5174 				sibling->add_active_request;
5175 			ve->base.remove_active_request =
5176 				sibling->remove_active_request;
5177 			ve->base.emit_bb_start = sibling->emit_bb_start;
5178 			ve->base.emit_flush = sibling->emit_flush;
5179 			ve->base.emit_init_breadcrumb =
5180 				sibling->emit_init_breadcrumb;
5181 			ve->base.emit_fini_breadcrumb =
5182 				sibling->emit_fini_breadcrumb;
5183 			ve->base.emit_fini_breadcrumb_dw =
5184 				sibling->emit_fini_breadcrumb_dw;
5185 			ve->base.breadcrumbs =
5186 				intel_breadcrumbs_get(sibling->breadcrumbs);
5187 
5188 			ve->base.flags |= sibling->flags;
5189 
5190 			ve->base.props.timeslice_duration_ms =
5191 				sibling->props.timeslice_duration_ms;
5192 			ve->base.props.preempt_timeout_ms =
5193 				sibling->props.preempt_timeout_ms;
5194 		}
5195 	}
5196 
5197 	return &ve->context;
5198 
5199 err_put:
5200 	intel_context_put(&ve->context);
5201 	return ERR_PTR(err);
5202 }
5203 
5204 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
5205 {
5206 	struct intel_engine_cs *engine;
5207 	intel_engine_mask_t tmp, mask = ve->mask;
5208 
5209 	for_each_engine_masked(engine, ve->gt, mask, tmp)
5210 		if (READ_ONCE(engine->props.heartbeat_interval_ms))
5211 			return true;
5212 
5213 	return false;
5214 }
5215 
5216 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5217 #include "selftest_guc.c"
5218 #include "selftest_guc_multi_lrc.c"
5219 #endif
5220