1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014 Intel Corporation 4 */ 5 6 #include <linux/circ_buf.h> 7 8 #include "gem/i915_gem_context.h" 9 #include "gem/i915_gem_lmem.h" 10 #include "gt/gen8_engine_cs.h" 11 #include "gt/intel_breadcrumbs.h" 12 #include "gt/intel_context.h" 13 #include "gt/intel_engine_heartbeat.h" 14 #include "gt/intel_engine_pm.h" 15 #include "gt/intel_engine_regs.h" 16 #include "gt/intel_gpu_commands.h" 17 #include "gt/intel_gt.h" 18 #include "gt/intel_gt_clock_utils.h" 19 #include "gt/intel_gt_irq.h" 20 #include "gt/intel_gt_pm.h" 21 #include "gt/intel_gt_regs.h" 22 #include "gt/intel_gt_requests.h" 23 #include "gt/intel_lrc.h" 24 #include "gt/intel_lrc_reg.h" 25 #include "gt/intel_mocs.h" 26 #include "gt/intel_ring.h" 27 28 #include "intel_guc_ads.h" 29 #include "intel_guc_capture.h" 30 #include "intel_guc_submission.h" 31 32 #include "i915_drv.h" 33 #include "i915_reg.h" 34 #include "i915_trace.h" 35 36 /** 37 * DOC: GuC-based command submission 38 * 39 * The Scratch registers: 40 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes 41 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then 42 * triggers an interrupt on the GuC via another register write (0xC4C8). 43 * Firmware writes a success/fail code back to the action register after 44 * processes the request. The kernel driver polls waiting for this update and 45 * then proceeds. 46 * 47 * Command Transport buffers (CTBs): 48 * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host 49 * - G2H) are a message interface between the i915 and GuC. 50 * 51 * Context registration: 52 * Before a context can be submitted it must be registered with the GuC via a 53 * H2G. A unique guc_id is associated with each context. The context is either 54 * registered at request creation time (normal operation) or at submission time 55 * (abnormal operation, e.g. after a reset). 56 * 57 * Context submission: 58 * The i915 updates the LRC tail value in memory. The i915 must enable the 59 * scheduling of the context within the GuC for the GuC to actually consider it. 60 * Therefore, the first time a disabled context is submitted we use a schedule 61 * enable H2G, while follow up submissions are done via the context submit H2G, 62 * which informs the GuC that a previously enabled context has new work 63 * available. 64 * 65 * Context unpin: 66 * To unpin a context a H2G is used to disable scheduling. When the 67 * corresponding G2H returns indicating the scheduling disable operation has 68 * completed it is safe to unpin the context. While a disable is in flight it 69 * isn't safe to resubmit the context so a fence is used to stall all future 70 * requests of that context until the G2H is returned. Because this interaction 71 * with the GuC takes a non-zero amount of time we delay the disabling of 72 * scheduling after the pin count goes to zero by a configurable period of time 73 * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of 74 * time to resubmit something on the context before doing this costly operation. 75 * This delay is only done if the context isn't closed and the guc_id usage is 76 * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD). 77 * 78 * Context deregistration: 79 * Before a context can be destroyed or if we steal its guc_id we must 80 * deregister the context with the GuC via H2G. If stealing the guc_id it isn't 81 * safe to submit anything to this guc_id until the deregister completes so a 82 * fence is used to stall all requests associated with this guc_id until the 83 * corresponding G2H returns indicating the guc_id has been deregistered. 84 * 85 * submission_state.guc_ids: 86 * Unique number associated with private GuC context data passed in during 87 * context registration / submission / deregistration. 64k available. Simple ida 88 * is used for allocation. 89 * 90 * Stealing guc_ids: 91 * If no guc_ids are available they can be stolen from another context at 92 * request creation time if that context is unpinned. If a guc_id can't be found 93 * we punt this problem to the user as we believe this is near impossible to hit 94 * during normal use cases. 95 * 96 * Locking: 97 * In the GuC submission code we have 3 basic spin locks which protect 98 * everything. Details about each below. 99 * 100 * sched_engine->lock 101 * This is the submission lock for all contexts that share an i915 schedule 102 * engine (sched_engine), thus only one of the contexts which share a 103 * sched_engine can be submitting at a time. Currently only one sched_engine is 104 * used for all of GuC submission but that could change in the future. 105 * 106 * guc->submission_state.lock 107 * Global lock for GuC submission state. Protects guc_ids and destroyed contexts 108 * list. 109 * 110 * ce->guc_state.lock 111 * Protects everything under ce->guc_state. Ensures that a context is in the 112 * correct state before issuing a H2G. e.g. We don't issue a schedule disable 113 * on a disabled context (bad idea), we don't issue a schedule enable when a 114 * schedule disable is in flight, etc... Also protects list of inflight requests 115 * on the context and the priority management state. Lock is individual to each 116 * context. 117 * 118 * Lock ordering rules: 119 * sched_engine->lock -> ce->guc_state.lock 120 * guc->submission_state.lock -> ce->guc_state.lock 121 * 122 * Reset races: 123 * When a full GT reset is triggered it is assumed that some G2H responses to 124 * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be 125 * fatal as we do certain operations upon receiving a G2H (e.g. destroy 126 * contexts, release guc_ids, etc...). When this occurs we can scrub the 127 * context state and cleanup appropriately, however this is quite racey. 128 * To avoid races, the reset code must disable submission before scrubbing for 129 * the missing G2H, while the submission code must check for submission being 130 * disabled and skip sending H2Gs and updating context states when it is. Both 131 * sides must also make sure to hold the relevant locks. 132 */ 133 134 /* GuC Virtual Engine */ 135 struct guc_virtual_engine { 136 struct intel_engine_cs base; 137 struct intel_context context; 138 }; 139 140 static struct intel_context * 141 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, 142 unsigned long flags); 143 144 static struct intel_context * 145 guc_create_parallel(struct intel_engine_cs **engines, 146 unsigned int num_siblings, 147 unsigned int width); 148 149 #define GUC_REQUEST_SIZE 64 /* bytes */ 150 151 /* 152 * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous 153 * per the GuC submission interface. A different allocation algorithm is used 154 * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to 155 * partition the guc_id space. We believe the number of multi-lrc contexts in 156 * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for 157 * multi-lrc. 158 */ 159 #define NUMBER_MULTI_LRC_GUC_ID(guc) \ 160 ((guc)->submission_state.num_guc_ids / 16) 161 162 /* 163 * Below is a set of functions which control the GuC scheduling state which 164 * require a lock. 165 */ 166 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER BIT(0) 167 #define SCHED_STATE_DESTROYED BIT(1) 168 #define SCHED_STATE_PENDING_DISABLE BIT(2) 169 #define SCHED_STATE_BANNED BIT(3) 170 #define SCHED_STATE_ENABLED BIT(4) 171 #define SCHED_STATE_PENDING_ENABLE BIT(5) 172 #define SCHED_STATE_REGISTERED BIT(6) 173 #define SCHED_STATE_POLICY_REQUIRED BIT(7) 174 #define SCHED_STATE_CLOSED BIT(8) 175 #define SCHED_STATE_BLOCKED_SHIFT 9 176 #define SCHED_STATE_BLOCKED BIT(SCHED_STATE_BLOCKED_SHIFT) 177 #define SCHED_STATE_BLOCKED_MASK (0xfff << SCHED_STATE_BLOCKED_SHIFT) 178 179 static inline void init_sched_state(struct intel_context *ce) 180 { 181 lockdep_assert_held(&ce->guc_state.lock); 182 ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK; 183 } 184 185 /* 186 * Kernel contexts can have SCHED_STATE_REGISTERED after suspend. 187 * A context close can race with the submission path, so SCHED_STATE_CLOSED 188 * can be set immediately before we try to register. 189 */ 190 #define SCHED_STATE_VALID_INIT \ 191 (SCHED_STATE_BLOCKED_MASK | \ 192 SCHED_STATE_CLOSED | \ 193 SCHED_STATE_REGISTERED) 194 195 __maybe_unused 196 static bool sched_state_is_init(struct intel_context *ce) 197 { 198 return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT); 199 } 200 201 static inline bool 202 context_wait_for_deregister_to_register(struct intel_context *ce) 203 { 204 return ce->guc_state.sched_state & 205 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 206 } 207 208 static inline void 209 set_context_wait_for_deregister_to_register(struct intel_context *ce) 210 { 211 lockdep_assert_held(&ce->guc_state.lock); 212 ce->guc_state.sched_state |= 213 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 214 } 215 216 static inline void 217 clr_context_wait_for_deregister_to_register(struct intel_context *ce) 218 { 219 lockdep_assert_held(&ce->guc_state.lock); 220 ce->guc_state.sched_state &= 221 ~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 222 } 223 224 static inline bool 225 context_destroyed(struct intel_context *ce) 226 { 227 return ce->guc_state.sched_state & SCHED_STATE_DESTROYED; 228 } 229 230 static inline void 231 set_context_destroyed(struct intel_context *ce) 232 { 233 lockdep_assert_held(&ce->guc_state.lock); 234 ce->guc_state.sched_state |= SCHED_STATE_DESTROYED; 235 } 236 237 static inline bool context_pending_disable(struct intel_context *ce) 238 { 239 return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE; 240 } 241 242 static inline void set_context_pending_disable(struct intel_context *ce) 243 { 244 lockdep_assert_held(&ce->guc_state.lock); 245 ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE; 246 } 247 248 static inline void clr_context_pending_disable(struct intel_context *ce) 249 { 250 lockdep_assert_held(&ce->guc_state.lock); 251 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE; 252 } 253 254 static inline bool context_banned(struct intel_context *ce) 255 { 256 return ce->guc_state.sched_state & SCHED_STATE_BANNED; 257 } 258 259 static inline void set_context_banned(struct intel_context *ce) 260 { 261 lockdep_assert_held(&ce->guc_state.lock); 262 ce->guc_state.sched_state |= SCHED_STATE_BANNED; 263 } 264 265 static inline void clr_context_banned(struct intel_context *ce) 266 { 267 lockdep_assert_held(&ce->guc_state.lock); 268 ce->guc_state.sched_state &= ~SCHED_STATE_BANNED; 269 } 270 271 static inline bool context_enabled(struct intel_context *ce) 272 { 273 return ce->guc_state.sched_state & SCHED_STATE_ENABLED; 274 } 275 276 static inline void set_context_enabled(struct intel_context *ce) 277 { 278 lockdep_assert_held(&ce->guc_state.lock); 279 ce->guc_state.sched_state |= SCHED_STATE_ENABLED; 280 } 281 282 static inline void clr_context_enabled(struct intel_context *ce) 283 { 284 lockdep_assert_held(&ce->guc_state.lock); 285 ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED; 286 } 287 288 static inline bool context_pending_enable(struct intel_context *ce) 289 { 290 return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE; 291 } 292 293 static inline void set_context_pending_enable(struct intel_context *ce) 294 { 295 lockdep_assert_held(&ce->guc_state.lock); 296 ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE; 297 } 298 299 static inline void clr_context_pending_enable(struct intel_context *ce) 300 { 301 lockdep_assert_held(&ce->guc_state.lock); 302 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE; 303 } 304 305 static inline bool context_registered(struct intel_context *ce) 306 { 307 return ce->guc_state.sched_state & SCHED_STATE_REGISTERED; 308 } 309 310 static inline void set_context_registered(struct intel_context *ce) 311 { 312 lockdep_assert_held(&ce->guc_state.lock); 313 ce->guc_state.sched_state |= SCHED_STATE_REGISTERED; 314 } 315 316 static inline void clr_context_registered(struct intel_context *ce) 317 { 318 lockdep_assert_held(&ce->guc_state.lock); 319 ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED; 320 } 321 322 static inline bool context_policy_required(struct intel_context *ce) 323 { 324 return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED; 325 } 326 327 static inline void set_context_policy_required(struct intel_context *ce) 328 { 329 lockdep_assert_held(&ce->guc_state.lock); 330 ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED; 331 } 332 333 static inline void clr_context_policy_required(struct intel_context *ce) 334 { 335 lockdep_assert_held(&ce->guc_state.lock); 336 ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED; 337 } 338 339 static inline bool context_close_done(struct intel_context *ce) 340 { 341 return ce->guc_state.sched_state & SCHED_STATE_CLOSED; 342 } 343 344 static inline void set_context_close_done(struct intel_context *ce) 345 { 346 lockdep_assert_held(&ce->guc_state.lock); 347 ce->guc_state.sched_state |= SCHED_STATE_CLOSED; 348 } 349 350 static inline u32 context_blocked(struct intel_context *ce) 351 { 352 return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >> 353 SCHED_STATE_BLOCKED_SHIFT; 354 } 355 356 static inline void incr_context_blocked(struct intel_context *ce) 357 { 358 lockdep_assert_held(&ce->guc_state.lock); 359 360 ce->guc_state.sched_state += SCHED_STATE_BLOCKED; 361 362 GEM_BUG_ON(!context_blocked(ce)); /* Overflow check */ 363 } 364 365 static inline void decr_context_blocked(struct intel_context *ce) 366 { 367 lockdep_assert_held(&ce->guc_state.lock); 368 369 GEM_BUG_ON(!context_blocked(ce)); /* Underflow check */ 370 371 ce->guc_state.sched_state -= SCHED_STATE_BLOCKED; 372 } 373 374 static struct intel_context * 375 request_to_scheduling_context(struct i915_request *rq) 376 { 377 return intel_context_to_parent(rq->context); 378 } 379 380 static inline bool context_guc_id_invalid(struct intel_context *ce) 381 { 382 return ce->guc_id.id == GUC_INVALID_CONTEXT_ID; 383 } 384 385 static inline void set_context_guc_id_invalid(struct intel_context *ce) 386 { 387 ce->guc_id.id = GUC_INVALID_CONTEXT_ID; 388 } 389 390 static inline struct intel_guc *ce_to_guc(struct intel_context *ce) 391 { 392 return &ce->engine->gt->uc.guc; 393 } 394 395 static inline struct i915_priolist *to_priolist(struct rb_node *rb) 396 { 397 return rb_entry(rb, struct i915_priolist, node); 398 } 399 400 /* 401 * When using multi-lrc submission a scratch memory area is reserved in the 402 * parent's context state for the process descriptor, work queue, and handshake 403 * between the parent + children contexts to insert safe preemption points 404 * between each of the BBs. Currently the scratch area is sized to a page. 405 * 406 * The layout of this scratch area is below: 407 * 0 guc_process_desc 408 * + sizeof(struct guc_process_desc) child go 409 * + CACHELINE_BYTES child join[0] 410 * ... 411 * + CACHELINE_BYTES child join[n - 1] 412 * ... unused 413 * PARENT_SCRATCH_SIZE / 2 work queue start 414 * ... work queue 415 * PARENT_SCRATCH_SIZE - 1 work queue end 416 */ 417 #define WQ_SIZE (PARENT_SCRATCH_SIZE / 2) 418 #define WQ_OFFSET (PARENT_SCRATCH_SIZE - WQ_SIZE) 419 420 struct sync_semaphore { 421 u32 semaphore; 422 u8 unused[CACHELINE_BYTES - sizeof(u32)]; 423 }; 424 425 struct parent_scratch { 426 union guc_descs { 427 struct guc_sched_wq_desc wq_desc; 428 struct guc_process_desc_v69 pdesc; 429 } descs; 430 431 struct sync_semaphore go; 432 struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1]; 433 434 u8 unused[WQ_OFFSET - sizeof(union guc_descs) - 435 sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)]; 436 437 u32 wq[WQ_SIZE / sizeof(u32)]; 438 }; 439 440 static u32 __get_parent_scratch_offset(struct intel_context *ce) 441 { 442 GEM_BUG_ON(!ce->parallel.guc.parent_page); 443 444 return ce->parallel.guc.parent_page * PAGE_SIZE; 445 } 446 447 static u32 __get_wq_offset(struct intel_context *ce) 448 { 449 BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET); 450 451 return __get_parent_scratch_offset(ce) + WQ_OFFSET; 452 } 453 454 static struct parent_scratch * 455 __get_parent_scratch(struct intel_context *ce) 456 { 457 BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE); 458 BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES); 459 460 /* 461 * Need to subtract LRC_STATE_OFFSET here as the 462 * parallel.guc.parent_page is the offset into ce->state while 463 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET. 464 */ 465 return (struct parent_scratch *) 466 (ce->lrc_reg_state + 467 ((__get_parent_scratch_offset(ce) - 468 LRC_STATE_OFFSET) / sizeof(u32))); 469 } 470 471 static struct guc_process_desc_v69 * 472 __get_process_desc_v69(struct intel_context *ce) 473 { 474 struct parent_scratch *ps = __get_parent_scratch(ce); 475 476 return &ps->descs.pdesc; 477 } 478 479 static struct guc_sched_wq_desc * 480 __get_wq_desc_v70(struct intel_context *ce) 481 { 482 struct parent_scratch *ps = __get_parent_scratch(ce); 483 484 return &ps->descs.wq_desc; 485 } 486 487 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size) 488 { 489 /* 490 * Check for space in work queue. Caching a value of head pointer in 491 * intel_context structure in order reduce the number accesses to shared 492 * GPU memory which may be across a PCIe bus. 493 */ 494 #define AVAILABLE_SPACE \ 495 CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE) 496 if (wqi_size > AVAILABLE_SPACE) { 497 ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head); 498 499 if (wqi_size > AVAILABLE_SPACE) 500 return NULL; 501 } 502 #undef AVAILABLE_SPACE 503 504 return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)]; 505 } 506 507 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id) 508 { 509 struct intel_context *ce = xa_load(&guc->context_lookup, id); 510 511 GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID); 512 513 return ce; 514 } 515 516 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index) 517 { 518 struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69; 519 520 if (!base) 521 return NULL; 522 523 GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID); 524 525 return &base[index]; 526 } 527 528 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc) 529 { 530 u32 size; 531 int ret; 532 533 size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) * 534 GUC_MAX_CONTEXT_ID); 535 ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69, 536 (void **)&guc->lrc_desc_pool_vaddr_v69); 537 if (ret) 538 return ret; 539 540 return 0; 541 } 542 543 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc) 544 { 545 if (!guc->lrc_desc_pool_vaddr_v69) 546 return; 547 548 guc->lrc_desc_pool_vaddr_v69 = NULL; 549 i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP); 550 } 551 552 static inline bool guc_submission_initialized(struct intel_guc *guc) 553 { 554 return guc->submission_initialized; 555 } 556 557 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id) 558 { 559 struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id); 560 561 if (desc) 562 memset(desc, 0, sizeof(*desc)); 563 } 564 565 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id) 566 { 567 return __get_context(guc, id); 568 } 569 570 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id, 571 struct intel_context *ce) 572 { 573 unsigned long flags; 574 575 /* 576 * xarray API doesn't have xa_save_irqsave wrapper, so calling the 577 * lower level functions directly. 578 */ 579 xa_lock_irqsave(&guc->context_lookup, flags); 580 __xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC); 581 xa_unlock_irqrestore(&guc->context_lookup, flags); 582 } 583 584 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id) 585 { 586 unsigned long flags; 587 588 if (unlikely(!guc_submission_initialized(guc))) 589 return; 590 591 _reset_lrc_desc_v69(guc, id); 592 593 /* 594 * xarray API doesn't have xa_erase_irqsave wrapper, so calling 595 * the lower level functions directly. 596 */ 597 xa_lock_irqsave(&guc->context_lookup, flags); 598 __xa_erase(&guc->context_lookup, id); 599 xa_unlock_irqrestore(&guc->context_lookup, flags); 600 } 601 602 static void decr_outstanding_submission_g2h(struct intel_guc *guc) 603 { 604 if (atomic_dec_and_test(&guc->outstanding_submission_g2h)) 605 wake_up_all(&guc->ct.wq); 606 } 607 608 static int guc_submission_send_busy_loop(struct intel_guc *guc, 609 const u32 *action, 610 u32 len, 611 u32 g2h_len_dw, 612 bool loop) 613 { 614 /* 615 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0), 616 * so we don't handle the case where we don't get a reply because we 617 * aborted the send due to the channel being busy. 618 */ 619 GEM_BUG_ON(g2h_len_dw && !loop); 620 621 if (g2h_len_dw) 622 atomic_inc(&guc->outstanding_submission_g2h); 623 624 return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop); 625 } 626 627 int intel_guc_wait_for_pending_msg(struct intel_guc *guc, 628 atomic_t *wait_var, 629 bool interruptible, 630 long timeout) 631 { 632 const int state = interruptible ? 633 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 634 DEFINE_WAIT(wait); 635 636 might_sleep(); 637 GEM_BUG_ON(timeout < 0); 638 639 if (!atomic_read(wait_var)) 640 return 0; 641 642 if (!timeout) 643 return -ETIME; 644 645 for (;;) { 646 prepare_to_wait(&guc->ct.wq, &wait, state); 647 648 if (!atomic_read(wait_var)) 649 break; 650 651 if (signal_pending_state(state, current)) { 652 timeout = -EINTR; 653 break; 654 } 655 656 if (!timeout) { 657 timeout = -ETIME; 658 break; 659 } 660 661 timeout = io_schedule_timeout(timeout); 662 } 663 finish_wait(&guc->ct.wq, &wait); 664 665 return (timeout < 0) ? timeout : 0; 666 } 667 668 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout) 669 { 670 if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc)) 671 return 0; 672 673 return intel_guc_wait_for_pending_msg(guc, 674 &guc->outstanding_submission_g2h, 675 true, timeout); 676 } 677 678 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop); 679 static int try_context_registration(struct intel_context *ce, bool loop); 680 681 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq) 682 { 683 int err = 0; 684 struct intel_context *ce = request_to_scheduling_context(rq); 685 u32 action[3]; 686 int len = 0; 687 u32 g2h_len_dw = 0; 688 bool enabled; 689 690 lockdep_assert_held(&rq->engine->sched_engine->lock); 691 692 /* 693 * Corner case where requests were sitting in the priority list or a 694 * request resubmitted after the context was banned. 695 */ 696 if (unlikely(!intel_context_is_schedulable(ce))) { 697 i915_request_put(i915_request_mark_eio(rq)); 698 intel_engine_signal_breadcrumbs(ce->engine); 699 return 0; 700 } 701 702 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); 703 GEM_BUG_ON(context_guc_id_invalid(ce)); 704 705 if (context_policy_required(ce)) { 706 err = guc_context_policy_init_v70(ce, false); 707 if (err) 708 return err; 709 } 710 711 spin_lock(&ce->guc_state.lock); 712 713 /* 714 * The request / context will be run on the hardware when scheduling 715 * gets enabled in the unblock. For multi-lrc we still submit the 716 * context to move the LRC tails. 717 */ 718 if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce))) 719 goto out; 720 721 enabled = context_enabled(ce) || context_blocked(ce); 722 723 if (!enabled) { 724 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET; 725 action[len++] = ce->guc_id.id; 726 action[len++] = GUC_CONTEXT_ENABLE; 727 set_context_pending_enable(ce); 728 intel_context_get(ce); 729 g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET; 730 } else { 731 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT; 732 action[len++] = ce->guc_id.id; 733 } 734 735 err = intel_guc_send_nb(guc, action, len, g2h_len_dw); 736 if (!enabled && !err) { 737 trace_intel_context_sched_enable(ce); 738 atomic_inc(&guc->outstanding_submission_g2h); 739 set_context_enabled(ce); 740 741 /* 742 * Without multi-lrc KMD does the submission step (moving the 743 * lrc tail) so enabling scheduling is sufficient to submit the 744 * context. This isn't the case in multi-lrc submission as the 745 * GuC needs to move the tails, hence the need for another H2G 746 * to submit a multi-lrc context after enabling scheduling. 747 */ 748 if (intel_context_is_parent(ce)) { 749 action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT; 750 err = intel_guc_send_nb(guc, action, len - 1, 0); 751 } 752 } else if (!enabled) { 753 clr_context_pending_enable(ce); 754 intel_context_put(ce); 755 } 756 if (likely(!err)) 757 trace_i915_request_guc_submit(rq); 758 759 out: 760 spin_unlock(&ce->guc_state.lock); 761 return err; 762 } 763 764 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq) 765 { 766 int ret = __guc_add_request(guc, rq); 767 768 if (unlikely(ret == -EBUSY)) { 769 guc->stalled_request = rq; 770 guc->submission_stall_reason = STALL_ADD_REQUEST; 771 } 772 773 return ret; 774 } 775 776 static inline void guc_set_lrc_tail(struct i915_request *rq) 777 { 778 rq->context->lrc_reg_state[CTX_RING_TAIL] = 779 intel_ring_set_tail(rq->ring, rq->tail); 780 } 781 782 static inline int rq_prio(const struct i915_request *rq) 783 { 784 return rq->sched.attr.priority; 785 } 786 787 static bool is_multi_lrc_rq(struct i915_request *rq) 788 { 789 return intel_context_is_parallel(rq->context); 790 } 791 792 static bool can_merge_rq(struct i915_request *rq, 793 struct i915_request *last) 794 { 795 return request_to_scheduling_context(rq) == 796 request_to_scheduling_context(last); 797 } 798 799 static u32 wq_space_until_wrap(struct intel_context *ce) 800 { 801 return (WQ_SIZE - ce->parallel.guc.wqi_tail); 802 } 803 804 static void write_wqi(struct intel_context *ce, u32 wqi_size) 805 { 806 BUILD_BUG_ON(!is_power_of_2(WQ_SIZE)); 807 808 /* 809 * Ensure WQI are visible before updating tail 810 */ 811 intel_guc_write_barrier(ce_to_guc(ce)); 812 813 ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) & 814 (WQ_SIZE - 1); 815 WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail); 816 } 817 818 static int guc_wq_noop_append(struct intel_context *ce) 819 { 820 u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce)); 821 u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1; 822 823 if (!wqi) 824 return -EBUSY; 825 826 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); 827 828 *wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) | 829 FIELD_PREP(WQ_LEN_MASK, len_dw); 830 ce->parallel.guc.wqi_tail = 0; 831 832 return 0; 833 } 834 835 static int __guc_wq_item_append(struct i915_request *rq) 836 { 837 struct intel_context *ce = request_to_scheduling_context(rq); 838 struct intel_context *child; 839 unsigned int wqi_size = (ce->parallel.number_children + 4) * 840 sizeof(u32); 841 u32 *wqi; 842 u32 len_dw = (wqi_size / sizeof(u32)) - 1; 843 int ret; 844 845 /* Ensure context is in correct state updating work queue */ 846 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); 847 GEM_BUG_ON(context_guc_id_invalid(ce)); 848 GEM_BUG_ON(context_wait_for_deregister_to_register(ce)); 849 GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)); 850 851 /* Insert NOOP if this work queue item will wrap the tail pointer. */ 852 if (wqi_size > wq_space_until_wrap(ce)) { 853 ret = guc_wq_noop_append(ce); 854 if (ret) 855 return ret; 856 } 857 858 wqi = get_wq_pointer(ce, wqi_size); 859 if (!wqi) 860 return -EBUSY; 861 862 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); 863 864 *wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) | 865 FIELD_PREP(WQ_LEN_MASK, len_dw); 866 *wqi++ = ce->lrc.lrca; 867 *wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) | 868 FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64)); 869 *wqi++ = 0; /* fence_id */ 870 for_each_child(ce, child) 871 *wqi++ = child->ring->tail / sizeof(u64); 872 873 write_wqi(ce, wqi_size); 874 875 return 0; 876 } 877 878 static int guc_wq_item_append(struct intel_guc *guc, 879 struct i915_request *rq) 880 { 881 struct intel_context *ce = request_to_scheduling_context(rq); 882 int ret; 883 884 if (unlikely(!intel_context_is_schedulable(ce))) 885 return 0; 886 887 ret = __guc_wq_item_append(rq); 888 if (unlikely(ret == -EBUSY)) { 889 guc->stalled_request = rq; 890 guc->submission_stall_reason = STALL_MOVE_LRC_TAIL; 891 } 892 893 return ret; 894 } 895 896 static bool multi_lrc_submit(struct i915_request *rq) 897 { 898 struct intel_context *ce = request_to_scheduling_context(rq); 899 900 intel_ring_set_tail(rq->ring, rq->tail); 901 902 /* 903 * We expect the front end (execbuf IOCTL) to set this flag on the last 904 * request generated from a multi-BB submission. This indicates to the 905 * backend (GuC interface) that we should submit this context thus 906 * submitting all the requests generated in parallel. 907 */ 908 return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) || 909 !intel_context_is_schedulable(ce); 910 } 911 912 static int guc_dequeue_one_context(struct intel_guc *guc) 913 { 914 struct i915_sched_engine * const sched_engine = guc->sched_engine; 915 struct i915_request *last = NULL; 916 bool submit = false; 917 struct rb_node *rb; 918 int ret; 919 920 lockdep_assert_held(&sched_engine->lock); 921 922 if (guc->stalled_request) { 923 submit = true; 924 last = guc->stalled_request; 925 926 switch (guc->submission_stall_reason) { 927 case STALL_REGISTER_CONTEXT: 928 goto register_context; 929 case STALL_MOVE_LRC_TAIL: 930 goto move_lrc_tail; 931 case STALL_ADD_REQUEST: 932 goto add_request; 933 default: 934 MISSING_CASE(guc->submission_stall_reason); 935 } 936 } 937 938 while ((rb = rb_first_cached(&sched_engine->queue))) { 939 struct i915_priolist *p = to_priolist(rb); 940 struct i915_request *rq, *rn; 941 942 priolist_for_each_request_consume(rq, rn, p) { 943 if (last && !can_merge_rq(rq, last)) 944 goto register_context; 945 946 list_del_init(&rq->sched.link); 947 948 __i915_request_submit(rq); 949 950 trace_i915_request_in(rq, 0); 951 last = rq; 952 953 if (is_multi_lrc_rq(rq)) { 954 /* 955 * We need to coalesce all multi-lrc requests in 956 * a relationship into a single H2G. We are 957 * guaranteed that all of these requests will be 958 * submitted sequentially. 959 */ 960 if (multi_lrc_submit(rq)) { 961 submit = true; 962 goto register_context; 963 } 964 } else { 965 submit = true; 966 } 967 } 968 969 rb_erase_cached(&p->node, &sched_engine->queue); 970 i915_priolist_free(p); 971 } 972 973 register_context: 974 if (submit) { 975 struct intel_context *ce = request_to_scheduling_context(last); 976 977 if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) && 978 intel_context_is_schedulable(ce))) { 979 ret = try_context_registration(ce, false); 980 if (unlikely(ret == -EPIPE)) { 981 goto deadlk; 982 } else if (ret == -EBUSY) { 983 guc->stalled_request = last; 984 guc->submission_stall_reason = 985 STALL_REGISTER_CONTEXT; 986 goto schedule_tasklet; 987 } else if (ret != 0) { 988 GEM_WARN_ON(ret); /* Unexpected */ 989 goto deadlk; 990 } 991 } 992 993 move_lrc_tail: 994 if (is_multi_lrc_rq(last)) { 995 ret = guc_wq_item_append(guc, last); 996 if (ret == -EBUSY) { 997 goto schedule_tasklet; 998 } else if (ret != 0) { 999 GEM_WARN_ON(ret); /* Unexpected */ 1000 goto deadlk; 1001 } 1002 } else { 1003 guc_set_lrc_tail(last); 1004 } 1005 1006 add_request: 1007 ret = guc_add_request(guc, last); 1008 if (unlikely(ret == -EPIPE)) { 1009 goto deadlk; 1010 } else if (ret == -EBUSY) { 1011 goto schedule_tasklet; 1012 } else if (ret != 0) { 1013 GEM_WARN_ON(ret); /* Unexpected */ 1014 goto deadlk; 1015 } 1016 } 1017 1018 guc->stalled_request = NULL; 1019 guc->submission_stall_reason = STALL_NONE; 1020 return submit; 1021 1022 deadlk: 1023 sched_engine->tasklet.callback = NULL; 1024 tasklet_disable_nosync(&sched_engine->tasklet); 1025 return false; 1026 1027 schedule_tasklet: 1028 tasklet_schedule(&sched_engine->tasklet); 1029 return false; 1030 } 1031 1032 static void guc_submission_tasklet(struct tasklet_struct *t) 1033 { 1034 struct i915_sched_engine *sched_engine = 1035 from_tasklet(sched_engine, t, tasklet); 1036 unsigned long flags; 1037 bool loop; 1038 1039 spin_lock_irqsave(&sched_engine->lock, flags); 1040 1041 do { 1042 loop = guc_dequeue_one_context(sched_engine->private_data); 1043 } while (loop); 1044 1045 i915_sched_engine_reset_on_empty(sched_engine); 1046 1047 spin_unlock_irqrestore(&sched_engine->lock, flags); 1048 } 1049 1050 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir) 1051 { 1052 if (iir & GT_RENDER_USER_INTERRUPT) 1053 intel_engine_signal_breadcrumbs(engine); 1054 } 1055 1056 static void __guc_context_destroy(struct intel_context *ce); 1057 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce); 1058 static void guc_signal_context_fence(struct intel_context *ce); 1059 static void guc_cancel_context_requests(struct intel_context *ce); 1060 static void guc_blocked_fence_complete(struct intel_context *ce); 1061 1062 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc) 1063 { 1064 struct intel_context *ce; 1065 unsigned long index, flags; 1066 bool pending_disable, pending_enable, deregister, destroyed, banned; 1067 1068 xa_lock_irqsave(&guc->context_lookup, flags); 1069 xa_for_each(&guc->context_lookup, index, ce) { 1070 /* 1071 * Corner case where the ref count on the object is zero but and 1072 * deregister G2H was lost. In this case we don't touch the ref 1073 * count and finish the destroy of the context. 1074 */ 1075 bool do_put = kref_get_unless_zero(&ce->ref); 1076 1077 xa_unlock(&guc->context_lookup); 1078 1079 if (test_bit(CONTEXT_GUC_INIT, &ce->flags) && 1080 (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) { 1081 /* successful cancel so jump straight to close it */ 1082 intel_context_sched_disable_unpin(ce); 1083 } 1084 1085 spin_lock(&ce->guc_state.lock); 1086 1087 /* 1088 * Once we are at this point submission_disabled() is guaranteed 1089 * to be visible to all callers who set the below flags (see above 1090 * flush and flushes in reset_prepare). If submission_disabled() 1091 * is set, the caller shouldn't set these flags. 1092 */ 1093 1094 destroyed = context_destroyed(ce); 1095 pending_enable = context_pending_enable(ce); 1096 pending_disable = context_pending_disable(ce); 1097 deregister = context_wait_for_deregister_to_register(ce); 1098 banned = context_banned(ce); 1099 init_sched_state(ce); 1100 1101 spin_unlock(&ce->guc_state.lock); 1102 1103 if (pending_enable || destroyed || deregister) { 1104 decr_outstanding_submission_g2h(guc); 1105 if (deregister) 1106 guc_signal_context_fence(ce); 1107 if (destroyed) { 1108 intel_gt_pm_put_async(guc_to_gt(guc)); 1109 release_guc_id(guc, ce); 1110 __guc_context_destroy(ce); 1111 } 1112 if (pending_enable || deregister) 1113 intel_context_put(ce); 1114 } 1115 1116 /* Not mutualy exclusive with above if statement. */ 1117 if (pending_disable) { 1118 guc_signal_context_fence(ce); 1119 if (banned) { 1120 guc_cancel_context_requests(ce); 1121 intel_engine_signal_breadcrumbs(ce->engine); 1122 } 1123 intel_context_sched_disable_unpin(ce); 1124 decr_outstanding_submission_g2h(guc); 1125 1126 spin_lock(&ce->guc_state.lock); 1127 guc_blocked_fence_complete(ce); 1128 spin_unlock(&ce->guc_state.lock); 1129 1130 intel_context_put(ce); 1131 } 1132 1133 if (do_put) 1134 intel_context_put(ce); 1135 xa_lock(&guc->context_lookup); 1136 } 1137 xa_unlock_irqrestore(&guc->context_lookup, flags); 1138 } 1139 1140 /* 1141 * GuC stores busyness stats for each engine at context in/out boundaries. A 1142 * context 'in' logs execution start time, 'out' adds in -> out delta to total. 1143 * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with 1144 * GuC. 1145 * 1146 * __i915_pmu_event_read samples engine busyness. When sampling, if context id 1147 * is valid (!= ~0) and start is non-zero, the engine is considered to be 1148 * active. For an active engine total busyness = total + (now - start), where 1149 * 'now' is the time at which the busyness is sampled. For inactive engine, 1150 * total busyness = total. 1151 * 1152 * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain. 1153 * 1154 * The start and total values provided by GuC are 32 bits and wrap around in a 1155 * few minutes. Since perf pmu provides busyness as 64 bit monotonically 1156 * increasing ns values, there is a need for this implementation to account for 1157 * overflows and extend the GuC provided values to 64 bits before returning 1158 * busyness to the user. In order to do that, a worker runs periodically at 1159 * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in 1160 * 27 seconds for a gt clock frequency of 19.2 MHz). 1161 */ 1162 1163 #define WRAP_TIME_CLKS U32_MAX 1164 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3) 1165 1166 static void 1167 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start) 1168 { 1169 u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); 1170 u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp); 1171 1172 if (new_start == lower_32_bits(*prev_start)) 1173 return; 1174 1175 /* 1176 * When gt is unparked, we update the gt timestamp and start the ping 1177 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt 1178 * is unparked, all switched in contexts will have a start time that is 1179 * within +/- POLL_TIME_CLKS of the most recent gt_stamp. 1180 * 1181 * If neither gt_stamp nor new_start has rolled over, then the 1182 * gt_stamp_hi does not need to be adjusted, however if one of them has 1183 * rolled over, we need to adjust gt_stamp_hi accordingly. 1184 * 1185 * The below conditions address the cases of new_start rollover and 1186 * gt_stamp_last rollover respectively. 1187 */ 1188 if (new_start < gt_stamp_last && 1189 (new_start - gt_stamp_last) <= POLL_TIME_CLKS) 1190 gt_stamp_hi++; 1191 1192 if (new_start > gt_stamp_last && 1193 (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi) 1194 gt_stamp_hi--; 1195 1196 *prev_start = ((u64)gt_stamp_hi << 32) | new_start; 1197 } 1198 1199 #define record_read(map_, field_) \ 1200 iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_) 1201 1202 /* 1203 * GuC updates shared memory and KMD reads it. Since this is not synchronized, 1204 * we run into a race where the value read is inconsistent. Sometimes the 1205 * inconsistency is in reading the upper MSB bytes of the last_in value when 1206 * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper 1207 * 24 bits are zero. Since these are non-zero values, it is non-trivial to 1208 * determine validity of these values. Instead we read the values multiple times 1209 * until they are consistent. In test runs, 3 attempts results in consistent 1210 * values. The upper bound is set to 6 attempts and may need to be tuned as per 1211 * any new occurences. 1212 */ 1213 static void __get_engine_usage_record(struct intel_engine_cs *engine, 1214 u32 *last_in, u32 *id, u32 *total) 1215 { 1216 struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine); 1217 int i = 0; 1218 1219 do { 1220 *last_in = record_read(&rec_map, last_switch_in_stamp); 1221 *id = record_read(&rec_map, current_context_index); 1222 *total = record_read(&rec_map, total_runtime); 1223 1224 if (record_read(&rec_map, last_switch_in_stamp) == *last_in && 1225 record_read(&rec_map, current_context_index) == *id && 1226 record_read(&rec_map, total_runtime) == *total) 1227 break; 1228 } while (++i < 6); 1229 } 1230 1231 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine) 1232 { 1233 struct intel_engine_guc_stats *stats = &engine->stats.guc; 1234 struct intel_guc *guc = &engine->gt->uc.guc; 1235 u32 last_switch, ctx_id, total; 1236 1237 lockdep_assert_held(&guc->timestamp.lock); 1238 1239 __get_engine_usage_record(engine, &last_switch, &ctx_id, &total); 1240 1241 stats->running = ctx_id != ~0U && last_switch; 1242 if (stats->running) 1243 __extend_last_switch(guc, &stats->start_gt_clk, last_switch); 1244 1245 /* 1246 * Instead of adjusting the total for overflow, just add the 1247 * difference from previous sample stats->total_gt_clks 1248 */ 1249 if (total && total != ~0U) { 1250 stats->total_gt_clks += (u32)(total - stats->prev_total); 1251 stats->prev_total = total; 1252 } 1253 } 1254 1255 static u32 gpm_timestamp_shift(struct intel_gt *gt) 1256 { 1257 intel_wakeref_t wakeref; 1258 u32 reg, shift; 1259 1260 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 1261 reg = intel_uncore_read(gt->uncore, RPM_CONFIG0); 1262 1263 shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >> 1264 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT; 1265 1266 return 3 - shift; 1267 } 1268 1269 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now) 1270 { 1271 struct intel_gt *gt = guc_to_gt(guc); 1272 u32 gt_stamp_lo, gt_stamp_hi; 1273 u64 gpm_ts; 1274 1275 lockdep_assert_held(&guc->timestamp.lock); 1276 1277 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); 1278 gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0, 1279 MISC_STATUS1) >> guc->timestamp.shift; 1280 gt_stamp_lo = lower_32_bits(gpm_ts); 1281 *now = ktime_get(); 1282 1283 if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp)) 1284 gt_stamp_hi++; 1285 1286 guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo; 1287 } 1288 1289 /* 1290 * Unlike the execlist mode of submission total and active times are in terms of 1291 * gt clocks. The *now parameter is retained to return the cpu time at which the 1292 * busyness was sampled. 1293 */ 1294 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now) 1295 { 1296 struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc; 1297 struct i915_gpu_error *gpu_error = &engine->i915->gpu_error; 1298 struct intel_gt *gt = engine->gt; 1299 struct intel_guc *guc = >->uc.guc; 1300 u64 total, gt_stamp_saved; 1301 unsigned long flags; 1302 u32 reset_count; 1303 bool in_reset; 1304 1305 spin_lock_irqsave(&guc->timestamp.lock, flags); 1306 1307 /* 1308 * If a reset happened, we risk reading partially updated engine 1309 * busyness from GuC, so we just use the driver stored copy of busyness. 1310 * Synchronize with gt reset using reset_count and the 1311 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count 1312 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is 1313 * usable by checking the flag afterwards. 1314 */ 1315 reset_count = i915_reset_count(gpu_error); 1316 in_reset = test_bit(I915_RESET_BACKOFF, >->reset.flags); 1317 1318 *now = ktime_get(); 1319 1320 /* 1321 * The active busyness depends on start_gt_clk and gt_stamp. 1322 * gt_stamp is updated by i915 only when gt is awake and the 1323 * start_gt_clk is derived from GuC state. To get a consistent 1324 * view of activity, we query the GuC state only if gt is awake. 1325 */ 1326 if (!in_reset && intel_gt_pm_get_if_awake(gt)) { 1327 stats_saved = *stats; 1328 gt_stamp_saved = guc->timestamp.gt_stamp; 1329 /* 1330 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp - 1331 * start_gt_clk' calculation below for active engines. 1332 */ 1333 guc_update_engine_gt_clks(engine); 1334 guc_update_pm_timestamp(guc, now); 1335 intel_gt_pm_put_async(gt); 1336 if (i915_reset_count(gpu_error) != reset_count) { 1337 *stats = stats_saved; 1338 guc->timestamp.gt_stamp = gt_stamp_saved; 1339 } 1340 } 1341 1342 total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks); 1343 if (stats->running) { 1344 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk; 1345 1346 total += intel_gt_clock_interval_to_ns(gt, clk); 1347 } 1348 1349 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1350 1351 return ns_to_ktime(total); 1352 } 1353 1354 static void __reset_guc_busyness_stats(struct intel_guc *guc) 1355 { 1356 struct intel_gt *gt = guc_to_gt(guc); 1357 struct intel_engine_cs *engine; 1358 enum intel_engine_id id; 1359 unsigned long flags; 1360 ktime_t unused; 1361 1362 cancel_delayed_work_sync(&guc->timestamp.work); 1363 1364 spin_lock_irqsave(&guc->timestamp.lock, flags); 1365 1366 guc_update_pm_timestamp(guc, &unused); 1367 for_each_engine(engine, gt, id) { 1368 guc_update_engine_gt_clks(engine); 1369 engine->stats.guc.prev_total = 0; 1370 } 1371 1372 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1373 } 1374 1375 static void __update_guc_busyness_stats(struct intel_guc *guc) 1376 { 1377 struct intel_gt *gt = guc_to_gt(guc); 1378 struct intel_engine_cs *engine; 1379 enum intel_engine_id id; 1380 unsigned long flags; 1381 ktime_t unused; 1382 1383 guc->timestamp.last_stat_jiffies = jiffies; 1384 1385 spin_lock_irqsave(&guc->timestamp.lock, flags); 1386 1387 guc_update_pm_timestamp(guc, &unused); 1388 for_each_engine(engine, gt, id) 1389 guc_update_engine_gt_clks(engine); 1390 1391 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1392 } 1393 1394 static void guc_timestamp_ping(struct work_struct *wrk) 1395 { 1396 struct intel_guc *guc = container_of(wrk, typeof(*guc), 1397 timestamp.work.work); 1398 struct intel_uc *uc = container_of(guc, typeof(*uc), guc); 1399 struct intel_gt *gt = guc_to_gt(guc); 1400 intel_wakeref_t wakeref; 1401 int srcu, ret; 1402 1403 /* 1404 * Synchronize with gt reset to make sure the worker does not 1405 * corrupt the engine/guc stats. NB: can't actually block waiting 1406 * for a reset to complete as the reset requires flushing out 1407 * this worker thread if started. So waiting would deadlock. 1408 */ 1409 ret = intel_gt_reset_trylock(gt, &srcu); 1410 if (ret) 1411 return; 1412 1413 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) 1414 __update_guc_busyness_stats(guc); 1415 1416 intel_gt_reset_unlock(gt, srcu); 1417 1418 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, 1419 guc->timestamp.ping_delay); 1420 } 1421 1422 static int guc_action_enable_usage_stats(struct intel_guc *guc) 1423 { 1424 u32 offset = intel_guc_engine_usage_offset(guc); 1425 u32 action[] = { 1426 INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF, 1427 offset, 1428 0, 1429 }; 1430 1431 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 1432 } 1433 1434 static void guc_init_engine_stats(struct intel_guc *guc) 1435 { 1436 struct intel_gt *gt = guc_to_gt(guc); 1437 intel_wakeref_t wakeref; 1438 1439 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, 1440 guc->timestamp.ping_delay); 1441 1442 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) { 1443 int ret = guc_action_enable_usage_stats(guc); 1444 1445 if (ret) 1446 drm_err(>->i915->drm, 1447 "Failed to enable usage stats: %d!\n", ret); 1448 } 1449 } 1450 1451 void intel_guc_busyness_park(struct intel_gt *gt) 1452 { 1453 struct intel_guc *guc = >->uc.guc; 1454 1455 if (!guc_submission_initialized(guc)) 1456 return; 1457 1458 /* 1459 * There is a race with suspend flow where the worker runs after suspend 1460 * and causes an unclaimed register access warning. Cancel the worker 1461 * synchronously here. 1462 */ 1463 cancel_delayed_work_sync(&guc->timestamp.work); 1464 1465 /* 1466 * Before parking, we should sample engine busyness stats if we need to. 1467 * We can skip it if we are less than half a ping from the last time we 1468 * sampled the busyness stats. 1469 */ 1470 if (guc->timestamp.last_stat_jiffies && 1471 !time_after(jiffies, guc->timestamp.last_stat_jiffies + 1472 (guc->timestamp.ping_delay / 2))) 1473 return; 1474 1475 __update_guc_busyness_stats(guc); 1476 } 1477 1478 void intel_guc_busyness_unpark(struct intel_gt *gt) 1479 { 1480 struct intel_guc *guc = >->uc.guc; 1481 unsigned long flags; 1482 ktime_t unused; 1483 1484 if (!guc_submission_initialized(guc)) 1485 return; 1486 1487 spin_lock_irqsave(&guc->timestamp.lock, flags); 1488 guc_update_pm_timestamp(guc, &unused); 1489 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1490 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, 1491 guc->timestamp.ping_delay); 1492 } 1493 1494 static inline bool 1495 submission_disabled(struct intel_guc *guc) 1496 { 1497 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1498 1499 return unlikely(!sched_engine || 1500 !__tasklet_is_enabled(&sched_engine->tasklet) || 1501 intel_gt_is_wedged(guc_to_gt(guc))); 1502 } 1503 1504 static void disable_submission(struct intel_guc *guc) 1505 { 1506 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1507 1508 if (__tasklet_is_enabled(&sched_engine->tasklet)) { 1509 GEM_BUG_ON(!guc->ct.enabled); 1510 __tasklet_disable_sync_once(&sched_engine->tasklet); 1511 sched_engine->tasklet.callback = NULL; 1512 } 1513 } 1514 1515 static void enable_submission(struct intel_guc *guc) 1516 { 1517 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1518 unsigned long flags; 1519 1520 spin_lock_irqsave(&guc->sched_engine->lock, flags); 1521 sched_engine->tasklet.callback = guc_submission_tasklet; 1522 wmb(); /* Make sure callback visible */ 1523 if (!__tasklet_is_enabled(&sched_engine->tasklet) && 1524 __tasklet_enable(&sched_engine->tasklet)) { 1525 GEM_BUG_ON(!guc->ct.enabled); 1526 1527 /* And kick in case we missed a new request submission. */ 1528 tasklet_hi_schedule(&sched_engine->tasklet); 1529 } 1530 spin_unlock_irqrestore(&guc->sched_engine->lock, flags); 1531 } 1532 1533 static void guc_flush_submissions(struct intel_guc *guc) 1534 { 1535 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1536 unsigned long flags; 1537 1538 spin_lock_irqsave(&sched_engine->lock, flags); 1539 spin_unlock_irqrestore(&sched_engine->lock, flags); 1540 } 1541 1542 static void guc_flush_destroyed_contexts(struct intel_guc *guc); 1543 1544 void intel_guc_submission_reset_prepare(struct intel_guc *guc) 1545 { 1546 if (unlikely(!guc_submission_initialized(guc))) { 1547 /* Reset called during driver load? GuC not yet initialised! */ 1548 return; 1549 } 1550 1551 intel_gt_park_heartbeats(guc_to_gt(guc)); 1552 disable_submission(guc); 1553 guc->interrupts.disable(guc); 1554 __reset_guc_busyness_stats(guc); 1555 1556 /* Flush IRQ handler */ 1557 spin_lock_irq(guc_to_gt(guc)->irq_lock); 1558 spin_unlock_irq(guc_to_gt(guc)->irq_lock); 1559 1560 guc_flush_submissions(guc); 1561 guc_flush_destroyed_contexts(guc); 1562 flush_work(&guc->ct.requests.worker); 1563 1564 scrub_guc_desc_for_outstanding_g2h(guc); 1565 } 1566 1567 static struct intel_engine_cs * 1568 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling) 1569 { 1570 struct intel_engine_cs *engine; 1571 intel_engine_mask_t tmp, mask = ve->mask; 1572 unsigned int num_siblings = 0; 1573 1574 for_each_engine_masked(engine, ve->gt, mask, tmp) 1575 if (num_siblings++ == sibling) 1576 return engine; 1577 1578 return NULL; 1579 } 1580 1581 static inline struct intel_engine_cs * 1582 __context_to_physical_engine(struct intel_context *ce) 1583 { 1584 struct intel_engine_cs *engine = ce->engine; 1585 1586 if (intel_engine_is_virtual(engine)) 1587 engine = guc_virtual_get_sibling(engine, 0); 1588 1589 return engine; 1590 } 1591 1592 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub) 1593 { 1594 struct intel_engine_cs *engine = __context_to_physical_engine(ce); 1595 1596 if (!intel_context_is_schedulable(ce)) 1597 return; 1598 1599 GEM_BUG_ON(!intel_context_is_pinned(ce)); 1600 1601 /* 1602 * We want a simple context + ring to execute the breadcrumb update. 1603 * We cannot rely on the context being intact across the GPU hang, 1604 * so clear it and rebuild just what we need for the breadcrumb. 1605 * All pending requests for this context will be zapped, and any 1606 * future request will be after userspace has had the opportunity 1607 * to recreate its own state. 1608 */ 1609 if (scrub) 1610 lrc_init_regs(ce, engine, true); 1611 1612 /* Rerun the request; its payload has been neutered (if guilty). */ 1613 lrc_update_regs(ce, engine, head); 1614 } 1615 1616 static void guc_engine_reset_prepare(struct intel_engine_cs *engine) 1617 { 1618 if (!IS_GRAPHICS_VER(engine->i915, 11, 12)) 1619 return; 1620 1621 intel_engine_stop_cs(engine); 1622 1623 /* 1624 * Wa_22011802037:gen11/gen12: In addition to stopping the cs, we need 1625 * to wait for any pending mi force wakeups 1626 */ 1627 intel_engine_wait_for_pending_mi_fw(engine); 1628 } 1629 1630 static void guc_reset_nop(struct intel_engine_cs *engine) 1631 { 1632 } 1633 1634 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled) 1635 { 1636 } 1637 1638 static void 1639 __unwind_incomplete_requests(struct intel_context *ce) 1640 { 1641 struct i915_request *rq, *rn; 1642 struct list_head *pl; 1643 int prio = I915_PRIORITY_INVALID; 1644 struct i915_sched_engine * const sched_engine = 1645 ce->engine->sched_engine; 1646 unsigned long flags; 1647 1648 spin_lock_irqsave(&sched_engine->lock, flags); 1649 spin_lock(&ce->guc_state.lock); 1650 list_for_each_entry_safe_reverse(rq, rn, 1651 &ce->guc_state.requests, 1652 sched.link) { 1653 if (i915_request_completed(rq)) 1654 continue; 1655 1656 list_del_init(&rq->sched.link); 1657 __i915_request_unsubmit(rq); 1658 1659 /* Push the request back into the queue for later resubmission. */ 1660 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID); 1661 if (rq_prio(rq) != prio) { 1662 prio = rq_prio(rq); 1663 pl = i915_sched_lookup_priolist(sched_engine, prio); 1664 } 1665 GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine)); 1666 1667 list_add(&rq->sched.link, pl); 1668 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 1669 } 1670 spin_unlock(&ce->guc_state.lock); 1671 spin_unlock_irqrestore(&sched_engine->lock, flags); 1672 } 1673 1674 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled) 1675 { 1676 bool guilty; 1677 struct i915_request *rq; 1678 unsigned long flags; 1679 u32 head; 1680 int i, number_children = ce->parallel.number_children; 1681 struct intel_context *parent = ce; 1682 1683 GEM_BUG_ON(intel_context_is_child(ce)); 1684 1685 intel_context_get(ce); 1686 1687 /* 1688 * GuC will implicitly mark the context as non-schedulable when it sends 1689 * the reset notification. Make sure our state reflects this change. The 1690 * context will be marked enabled on resubmission. 1691 */ 1692 spin_lock_irqsave(&ce->guc_state.lock, flags); 1693 clr_context_enabled(ce); 1694 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 1695 1696 /* 1697 * For each context in the relationship find the hanging request 1698 * resetting each context / request as needed 1699 */ 1700 for (i = 0; i < number_children + 1; ++i) { 1701 if (!intel_context_is_pinned(ce)) 1702 goto next_context; 1703 1704 guilty = false; 1705 rq = intel_context_find_active_request(ce); 1706 if (!rq) { 1707 head = ce->ring->tail; 1708 goto out_replay; 1709 } 1710 1711 if (i915_request_started(rq)) 1712 guilty = stalled & ce->engine->mask; 1713 1714 GEM_BUG_ON(i915_active_is_idle(&ce->active)); 1715 head = intel_ring_wrap(ce->ring, rq->head); 1716 1717 __i915_request_reset(rq, guilty); 1718 out_replay: 1719 guc_reset_state(ce, head, guilty); 1720 next_context: 1721 if (i != number_children) 1722 ce = list_next_entry(ce, parallel.child_link); 1723 } 1724 1725 __unwind_incomplete_requests(parent); 1726 intel_context_put(parent); 1727 } 1728 1729 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled) 1730 { 1731 struct intel_context *ce; 1732 unsigned long index; 1733 unsigned long flags; 1734 1735 if (unlikely(!guc_submission_initialized(guc))) { 1736 /* Reset called during driver load? GuC not yet initialised! */ 1737 return; 1738 } 1739 1740 xa_lock_irqsave(&guc->context_lookup, flags); 1741 xa_for_each(&guc->context_lookup, index, ce) { 1742 if (!kref_get_unless_zero(&ce->ref)) 1743 continue; 1744 1745 xa_unlock(&guc->context_lookup); 1746 1747 if (intel_context_is_pinned(ce) && 1748 !intel_context_is_child(ce)) 1749 __guc_reset_context(ce, stalled); 1750 1751 intel_context_put(ce); 1752 1753 xa_lock(&guc->context_lookup); 1754 } 1755 xa_unlock_irqrestore(&guc->context_lookup, flags); 1756 1757 /* GuC is blown away, drop all references to contexts */ 1758 xa_destroy(&guc->context_lookup); 1759 } 1760 1761 static void guc_cancel_context_requests(struct intel_context *ce) 1762 { 1763 struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine; 1764 struct i915_request *rq; 1765 unsigned long flags; 1766 1767 /* Mark all executing requests as skipped. */ 1768 spin_lock_irqsave(&sched_engine->lock, flags); 1769 spin_lock(&ce->guc_state.lock); 1770 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) 1771 i915_request_put(i915_request_mark_eio(rq)); 1772 spin_unlock(&ce->guc_state.lock); 1773 spin_unlock_irqrestore(&sched_engine->lock, flags); 1774 } 1775 1776 static void 1777 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine) 1778 { 1779 struct i915_request *rq, *rn; 1780 struct rb_node *rb; 1781 unsigned long flags; 1782 1783 /* Can be called during boot if GuC fails to load */ 1784 if (!sched_engine) 1785 return; 1786 1787 /* 1788 * Before we call engine->cancel_requests(), we should have exclusive 1789 * access to the submission state. This is arranged for us by the 1790 * caller disabling the interrupt generation, the tasklet and other 1791 * threads that may then access the same state, giving us a free hand 1792 * to reset state. However, we still need to let lockdep be aware that 1793 * we know this state may be accessed in hardirq context, so we 1794 * disable the irq around this manipulation and we want to keep 1795 * the spinlock focused on its duties and not accidentally conflate 1796 * coverage to the submission's irq state. (Similarly, although we 1797 * shouldn't need to disable irq around the manipulation of the 1798 * submission's irq state, we also wish to remind ourselves that 1799 * it is irq state.) 1800 */ 1801 spin_lock_irqsave(&sched_engine->lock, flags); 1802 1803 /* Flush the queued requests to the timeline list (for retiring). */ 1804 while ((rb = rb_first_cached(&sched_engine->queue))) { 1805 struct i915_priolist *p = to_priolist(rb); 1806 1807 priolist_for_each_request_consume(rq, rn, p) { 1808 list_del_init(&rq->sched.link); 1809 1810 __i915_request_submit(rq); 1811 1812 i915_request_put(i915_request_mark_eio(rq)); 1813 } 1814 1815 rb_erase_cached(&p->node, &sched_engine->queue); 1816 i915_priolist_free(p); 1817 } 1818 1819 /* Remaining _unready_ requests will be nop'ed when submitted */ 1820 1821 sched_engine->queue_priority_hint = INT_MIN; 1822 sched_engine->queue = RB_ROOT_CACHED; 1823 1824 spin_unlock_irqrestore(&sched_engine->lock, flags); 1825 } 1826 1827 void intel_guc_submission_cancel_requests(struct intel_guc *guc) 1828 { 1829 struct intel_context *ce; 1830 unsigned long index; 1831 unsigned long flags; 1832 1833 xa_lock_irqsave(&guc->context_lookup, flags); 1834 xa_for_each(&guc->context_lookup, index, ce) { 1835 if (!kref_get_unless_zero(&ce->ref)) 1836 continue; 1837 1838 xa_unlock(&guc->context_lookup); 1839 1840 if (intel_context_is_pinned(ce) && 1841 !intel_context_is_child(ce)) 1842 guc_cancel_context_requests(ce); 1843 1844 intel_context_put(ce); 1845 1846 xa_lock(&guc->context_lookup); 1847 } 1848 xa_unlock_irqrestore(&guc->context_lookup, flags); 1849 1850 guc_cancel_sched_engine_requests(guc->sched_engine); 1851 1852 /* GuC is blown away, drop all references to contexts */ 1853 xa_destroy(&guc->context_lookup); 1854 } 1855 1856 void intel_guc_submission_reset_finish(struct intel_guc *guc) 1857 { 1858 /* Reset called during driver load or during wedge? */ 1859 if (unlikely(!guc_submission_initialized(guc) || 1860 intel_gt_is_wedged(guc_to_gt(guc)))) { 1861 return; 1862 } 1863 1864 /* 1865 * Technically possible for either of these values to be non-zero here, 1866 * but very unlikely + harmless. Regardless let's add a warn so we can 1867 * see in CI if this happens frequently / a precursor to taking down the 1868 * machine. 1869 */ 1870 GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h)); 1871 atomic_set(&guc->outstanding_submission_g2h, 0); 1872 1873 intel_guc_global_policies_update(guc); 1874 enable_submission(guc); 1875 intel_gt_unpark_heartbeats(guc_to_gt(guc)); 1876 } 1877 1878 static void destroyed_worker_func(struct work_struct *w); 1879 static void reset_fail_worker_func(struct work_struct *w); 1880 1881 /* 1882 * Set up the memory resources to be shared with the GuC (via the GGTT) 1883 * at firmware loading time. 1884 */ 1885 int intel_guc_submission_init(struct intel_guc *guc) 1886 { 1887 struct intel_gt *gt = guc_to_gt(guc); 1888 int ret; 1889 1890 if (guc->submission_initialized) 1891 return 0; 1892 1893 if (GET_UC_VER(guc) < MAKE_UC_VER(70, 0, 0)) { 1894 ret = guc_lrc_desc_pool_create_v69(guc); 1895 if (ret) 1896 return ret; 1897 } 1898 1899 guc->submission_state.guc_ids_bitmap = 1900 bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL); 1901 if (!guc->submission_state.guc_ids_bitmap) { 1902 ret = -ENOMEM; 1903 goto destroy_pool; 1904 } 1905 1906 guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ; 1907 guc->timestamp.shift = gpm_timestamp_shift(gt); 1908 guc->submission_initialized = true; 1909 1910 return 0; 1911 1912 destroy_pool: 1913 guc_lrc_desc_pool_destroy_v69(guc); 1914 1915 return ret; 1916 } 1917 1918 void intel_guc_submission_fini(struct intel_guc *guc) 1919 { 1920 if (!guc->submission_initialized) 1921 return; 1922 1923 guc_flush_destroyed_contexts(guc); 1924 guc_lrc_desc_pool_destroy_v69(guc); 1925 i915_sched_engine_put(guc->sched_engine); 1926 bitmap_free(guc->submission_state.guc_ids_bitmap); 1927 guc->submission_initialized = false; 1928 } 1929 1930 static inline void queue_request(struct i915_sched_engine *sched_engine, 1931 struct i915_request *rq, 1932 int prio) 1933 { 1934 GEM_BUG_ON(!list_empty(&rq->sched.link)); 1935 list_add_tail(&rq->sched.link, 1936 i915_sched_lookup_priolist(sched_engine, prio)); 1937 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 1938 tasklet_hi_schedule(&sched_engine->tasklet); 1939 } 1940 1941 static int guc_bypass_tasklet_submit(struct intel_guc *guc, 1942 struct i915_request *rq) 1943 { 1944 int ret = 0; 1945 1946 __i915_request_submit(rq); 1947 1948 trace_i915_request_in(rq, 0); 1949 1950 if (is_multi_lrc_rq(rq)) { 1951 if (multi_lrc_submit(rq)) { 1952 ret = guc_wq_item_append(guc, rq); 1953 if (!ret) 1954 ret = guc_add_request(guc, rq); 1955 } 1956 } else { 1957 guc_set_lrc_tail(rq); 1958 ret = guc_add_request(guc, rq); 1959 } 1960 1961 if (unlikely(ret == -EPIPE)) 1962 disable_submission(guc); 1963 1964 return ret; 1965 } 1966 1967 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq) 1968 { 1969 struct i915_sched_engine *sched_engine = rq->engine->sched_engine; 1970 struct intel_context *ce = request_to_scheduling_context(rq); 1971 1972 return submission_disabled(guc) || guc->stalled_request || 1973 !i915_sched_engine_is_empty(sched_engine) || 1974 !ctx_id_mapped(guc, ce->guc_id.id); 1975 } 1976 1977 static void guc_submit_request(struct i915_request *rq) 1978 { 1979 struct i915_sched_engine *sched_engine = rq->engine->sched_engine; 1980 struct intel_guc *guc = &rq->engine->gt->uc.guc; 1981 unsigned long flags; 1982 1983 /* Will be called from irq-context when using foreign fences. */ 1984 spin_lock_irqsave(&sched_engine->lock, flags); 1985 1986 if (need_tasklet(guc, rq)) 1987 queue_request(sched_engine, rq, rq_prio(rq)); 1988 else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY) 1989 tasklet_hi_schedule(&sched_engine->tasklet); 1990 1991 spin_unlock_irqrestore(&sched_engine->lock, flags); 1992 } 1993 1994 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce) 1995 { 1996 int ret; 1997 1998 GEM_BUG_ON(intel_context_is_child(ce)); 1999 2000 if (intel_context_is_parent(ce)) 2001 ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap, 2002 NUMBER_MULTI_LRC_GUC_ID(guc), 2003 order_base_2(ce->parallel.number_children 2004 + 1)); 2005 else 2006 ret = ida_simple_get(&guc->submission_state.guc_ids, 2007 NUMBER_MULTI_LRC_GUC_ID(guc), 2008 guc->submission_state.num_guc_ids, 2009 GFP_KERNEL | __GFP_RETRY_MAYFAIL | 2010 __GFP_NOWARN); 2011 if (unlikely(ret < 0)) 2012 return ret; 2013 2014 if (!intel_context_is_parent(ce)) 2015 ++guc->submission_state.guc_ids_in_use; 2016 2017 ce->guc_id.id = ret; 2018 return 0; 2019 } 2020 2021 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce) 2022 { 2023 GEM_BUG_ON(intel_context_is_child(ce)); 2024 2025 if (!context_guc_id_invalid(ce)) { 2026 if (intel_context_is_parent(ce)) { 2027 bitmap_release_region(guc->submission_state.guc_ids_bitmap, 2028 ce->guc_id.id, 2029 order_base_2(ce->parallel.number_children 2030 + 1)); 2031 } else { 2032 --guc->submission_state.guc_ids_in_use; 2033 ida_simple_remove(&guc->submission_state.guc_ids, 2034 ce->guc_id.id); 2035 } 2036 clr_ctx_id_mapping(guc, ce->guc_id.id); 2037 set_context_guc_id_invalid(ce); 2038 } 2039 if (!list_empty(&ce->guc_id.link)) 2040 list_del_init(&ce->guc_id.link); 2041 } 2042 2043 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce) 2044 { 2045 unsigned long flags; 2046 2047 spin_lock_irqsave(&guc->submission_state.lock, flags); 2048 __release_guc_id(guc, ce); 2049 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2050 } 2051 2052 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce) 2053 { 2054 struct intel_context *cn; 2055 2056 lockdep_assert_held(&guc->submission_state.lock); 2057 GEM_BUG_ON(intel_context_is_child(ce)); 2058 GEM_BUG_ON(intel_context_is_parent(ce)); 2059 2060 if (!list_empty(&guc->submission_state.guc_id_list)) { 2061 cn = list_first_entry(&guc->submission_state.guc_id_list, 2062 struct intel_context, 2063 guc_id.link); 2064 2065 GEM_BUG_ON(atomic_read(&cn->guc_id.ref)); 2066 GEM_BUG_ON(context_guc_id_invalid(cn)); 2067 GEM_BUG_ON(intel_context_is_child(cn)); 2068 GEM_BUG_ON(intel_context_is_parent(cn)); 2069 2070 list_del_init(&cn->guc_id.link); 2071 ce->guc_id.id = cn->guc_id.id; 2072 2073 spin_lock(&cn->guc_state.lock); 2074 clr_context_registered(cn); 2075 spin_unlock(&cn->guc_state.lock); 2076 2077 set_context_guc_id_invalid(cn); 2078 2079 #ifdef CONFIG_DRM_I915_SELFTEST 2080 guc->number_guc_id_stolen++; 2081 #endif 2082 2083 return 0; 2084 } else { 2085 return -EAGAIN; 2086 } 2087 } 2088 2089 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce) 2090 { 2091 int ret; 2092 2093 lockdep_assert_held(&guc->submission_state.lock); 2094 GEM_BUG_ON(intel_context_is_child(ce)); 2095 2096 ret = new_guc_id(guc, ce); 2097 if (unlikely(ret < 0)) { 2098 if (intel_context_is_parent(ce)) 2099 return -ENOSPC; 2100 2101 ret = steal_guc_id(guc, ce); 2102 if (ret < 0) 2103 return ret; 2104 } 2105 2106 if (intel_context_is_parent(ce)) { 2107 struct intel_context *child; 2108 int i = 1; 2109 2110 for_each_child(ce, child) 2111 child->guc_id.id = ce->guc_id.id + i++; 2112 } 2113 2114 return 0; 2115 } 2116 2117 #define PIN_GUC_ID_TRIES 4 2118 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce) 2119 { 2120 int ret = 0; 2121 unsigned long flags, tries = PIN_GUC_ID_TRIES; 2122 2123 GEM_BUG_ON(atomic_read(&ce->guc_id.ref)); 2124 2125 try_again: 2126 spin_lock_irqsave(&guc->submission_state.lock, flags); 2127 2128 might_lock(&ce->guc_state.lock); 2129 2130 if (context_guc_id_invalid(ce)) { 2131 ret = assign_guc_id(guc, ce); 2132 if (ret) 2133 goto out_unlock; 2134 ret = 1; /* Indidcates newly assigned guc_id */ 2135 } 2136 if (!list_empty(&ce->guc_id.link)) 2137 list_del_init(&ce->guc_id.link); 2138 atomic_inc(&ce->guc_id.ref); 2139 2140 out_unlock: 2141 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2142 2143 /* 2144 * -EAGAIN indicates no guc_id are available, let's retire any 2145 * outstanding requests to see if that frees up a guc_id. If the first 2146 * retire didn't help, insert a sleep with the timeslice duration before 2147 * attempting to retire more requests. Double the sleep period each 2148 * subsequent pass before finally giving up. The sleep period has max of 2149 * 100ms and minimum of 1ms. 2150 */ 2151 if (ret == -EAGAIN && --tries) { 2152 if (PIN_GUC_ID_TRIES - tries > 1) { 2153 unsigned int timeslice_shifted = 2154 ce->engine->props.timeslice_duration_ms << 2155 (PIN_GUC_ID_TRIES - tries - 2); 2156 unsigned int max = min_t(unsigned int, 100, 2157 timeslice_shifted); 2158 2159 msleep(max_t(unsigned int, max, 1)); 2160 } 2161 intel_gt_retire_requests(guc_to_gt(guc)); 2162 goto try_again; 2163 } 2164 2165 return ret; 2166 } 2167 2168 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce) 2169 { 2170 unsigned long flags; 2171 2172 GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0); 2173 GEM_BUG_ON(intel_context_is_child(ce)); 2174 2175 if (unlikely(context_guc_id_invalid(ce) || 2176 intel_context_is_parent(ce))) 2177 return; 2178 2179 spin_lock_irqsave(&guc->submission_state.lock, flags); 2180 if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) && 2181 !atomic_read(&ce->guc_id.ref)) 2182 list_add_tail(&ce->guc_id.link, 2183 &guc->submission_state.guc_id_list); 2184 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2185 } 2186 2187 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc, 2188 struct intel_context *ce, 2189 u32 guc_id, 2190 u32 offset, 2191 bool loop) 2192 { 2193 struct intel_context *child; 2194 u32 action[4 + MAX_ENGINE_INSTANCE]; 2195 int len = 0; 2196 2197 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); 2198 2199 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 2200 action[len++] = guc_id; 2201 action[len++] = ce->parallel.number_children + 1; 2202 action[len++] = offset; 2203 for_each_child(ce, child) { 2204 offset += sizeof(struct guc_lrc_desc_v69); 2205 action[len++] = offset; 2206 } 2207 2208 return guc_submission_send_busy_loop(guc, action, len, 0, loop); 2209 } 2210 2211 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc, 2212 struct intel_context *ce, 2213 struct guc_ctxt_registration_info *info, 2214 bool loop) 2215 { 2216 struct intel_context *child; 2217 u32 action[13 + (MAX_ENGINE_INSTANCE * 2)]; 2218 int len = 0; 2219 u32 next_id; 2220 2221 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); 2222 2223 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 2224 action[len++] = info->flags; 2225 action[len++] = info->context_idx; 2226 action[len++] = info->engine_class; 2227 action[len++] = info->engine_submit_mask; 2228 action[len++] = info->wq_desc_lo; 2229 action[len++] = info->wq_desc_hi; 2230 action[len++] = info->wq_base_lo; 2231 action[len++] = info->wq_base_hi; 2232 action[len++] = info->wq_size; 2233 action[len++] = ce->parallel.number_children + 1; 2234 action[len++] = info->hwlrca_lo; 2235 action[len++] = info->hwlrca_hi; 2236 2237 next_id = info->context_idx + 1; 2238 for_each_child(ce, child) { 2239 GEM_BUG_ON(next_id++ != child->guc_id.id); 2240 2241 /* 2242 * NB: GuC interface supports 64 bit LRCA even though i915/HW 2243 * only supports 32 bit currently. 2244 */ 2245 action[len++] = lower_32_bits(child->lrc.lrca); 2246 action[len++] = upper_32_bits(child->lrc.lrca); 2247 } 2248 2249 GEM_BUG_ON(len > ARRAY_SIZE(action)); 2250 2251 return guc_submission_send_busy_loop(guc, action, len, 0, loop); 2252 } 2253 2254 static int __guc_action_register_context_v69(struct intel_guc *guc, 2255 u32 guc_id, 2256 u32 offset, 2257 bool loop) 2258 { 2259 u32 action[] = { 2260 INTEL_GUC_ACTION_REGISTER_CONTEXT, 2261 guc_id, 2262 offset, 2263 }; 2264 2265 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2266 0, loop); 2267 } 2268 2269 static int __guc_action_register_context_v70(struct intel_guc *guc, 2270 struct guc_ctxt_registration_info *info, 2271 bool loop) 2272 { 2273 u32 action[] = { 2274 INTEL_GUC_ACTION_REGISTER_CONTEXT, 2275 info->flags, 2276 info->context_idx, 2277 info->engine_class, 2278 info->engine_submit_mask, 2279 info->wq_desc_lo, 2280 info->wq_desc_hi, 2281 info->wq_base_lo, 2282 info->wq_base_hi, 2283 info->wq_size, 2284 info->hwlrca_lo, 2285 info->hwlrca_hi, 2286 }; 2287 2288 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2289 0, loop); 2290 } 2291 2292 static void prepare_context_registration_info_v69(struct intel_context *ce); 2293 static void prepare_context_registration_info_v70(struct intel_context *ce, 2294 struct guc_ctxt_registration_info *info); 2295 2296 static int 2297 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop) 2298 { 2299 u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) + 2300 ce->guc_id.id * sizeof(struct guc_lrc_desc_v69); 2301 2302 prepare_context_registration_info_v69(ce); 2303 2304 if (intel_context_is_parent(ce)) 2305 return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id, 2306 offset, loop); 2307 else 2308 return __guc_action_register_context_v69(guc, ce->guc_id.id, 2309 offset, loop); 2310 } 2311 2312 static int 2313 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop) 2314 { 2315 struct guc_ctxt_registration_info info; 2316 2317 prepare_context_registration_info_v70(ce, &info); 2318 2319 if (intel_context_is_parent(ce)) 2320 return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop); 2321 else 2322 return __guc_action_register_context_v70(guc, &info, loop); 2323 } 2324 2325 static int register_context(struct intel_context *ce, bool loop) 2326 { 2327 struct intel_guc *guc = ce_to_guc(ce); 2328 int ret; 2329 2330 GEM_BUG_ON(intel_context_is_child(ce)); 2331 trace_intel_context_register(ce); 2332 2333 if (GET_UC_VER(guc) >= MAKE_UC_VER(70, 0, 0)) 2334 ret = register_context_v70(guc, ce, loop); 2335 else 2336 ret = register_context_v69(guc, ce, loop); 2337 2338 if (likely(!ret)) { 2339 unsigned long flags; 2340 2341 spin_lock_irqsave(&ce->guc_state.lock, flags); 2342 set_context_registered(ce); 2343 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2344 2345 if (GET_UC_VER(guc) >= MAKE_UC_VER(70, 0, 0)) 2346 guc_context_policy_init_v70(ce, loop); 2347 } 2348 2349 return ret; 2350 } 2351 2352 static int __guc_action_deregister_context(struct intel_guc *guc, 2353 u32 guc_id) 2354 { 2355 u32 action[] = { 2356 INTEL_GUC_ACTION_DEREGISTER_CONTEXT, 2357 guc_id, 2358 }; 2359 2360 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2361 G2H_LEN_DW_DEREGISTER_CONTEXT, 2362 true); 2363 } 2364 2365 static int deregister_context(struct intel_context *ce, u32 guc_id) 2366 { 2367 struct intel_guc *guc = ce_to_guc(ce); 2368 2369 GEM_BUG_ON(intel_context_is_child(ce)); 2370 trace_intel_context_deregister(ce); 2371 2372 return __guc_action_deregister_context(guc, guc_id); 2373 } 2374 2375 static inline void clear_children_join_go_memory(struct intel_context *ce) 2376 { 2377 struct parent_scratch *ps = __get_parent_scratch(ce); 2378 int i; 2379 2380 ps->go.semaphore = 0; 2381 for (i = 0; i < ce->parallel.number_children + 1; ++i) 2382 ps->join[i].semaphore = 0; 2383 } 2384 2385 static inline u32 get_children_go_value(struct intel_context *ce) 2386 { 2387 return __get_parent_scratch(ce)->go.semaphore; 2388 } 2389 2390 static inline u32 get_children_join_value(struct intel_context *ce, 2391 u8 child_index) 2392 { 2393 return __get_parent_scratch(ce)->join[child_index].semaphore; 2394 } 2395 2396 struct context_policy { 2397 u32 count; 2398 struct guc_update_context_policy h2g; 2399 }; 2400 2401 static u32 __guc_context_policy_action_size(struct context_policy *policy) 2402 { 2403 size_t bytes = sizeof(policy->h2g.header) + 2404 (sizeof(policy->h2g.klv[0]) * policy->count); 2405 2406 return bytes / sizeof(u32); 2407 } 2408 2409 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id) 2410 { 2411 policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES; 2412 policy->h2g.header.ctx_id = guc_id; 2413 policy->count = 0; 2414 } 2415 2416 #define MAKE_CONTEXT_POLICY_ADD(func, id) \ 2417 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \ 2418 { \ 2419 GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \ 2420 policy->h2g.klv[policy->count].kl = \ 2421 FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \ 2422 FIELD_PREP(GUC_KLV_0_LEN, 1); \ 2423 policy->h2g.klv[policy->count].value = data; \ 2424 policy->count++; \ 2425 } 2426 2427 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM) 2428 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT) 2429 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY) 2430 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY) 2431 2432 #undef MAKE_CONTEXT_POLICY_ADD 2433 2434 static int __guc_context_set_context_policies(struct intel_guc *guc, 2435 struct context_policy *policy, 2436 bool loop) 2437 { 2438 return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g, 2439 __guc_context_policy_action_size(policy), 2440 0, loop); 2441 } 2442 2443 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop) 2444 { 2445 struct intel_engine_cs *engine = ce->engine; 2446 struct intel_guc *guc = &engine->gt->uc.guc; 2447 struct context_policy policy; 2448 u32 execution_quantum; 2449 u32 preemption_timeout; 2450 unsigned long flags; 2451 int ret; 2452 2453 /* NB: For both of these, zero means disabled. */ 2454 GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000, 2455 execution_quantum)); 2456 GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000, 2457 preemption_timeout)); 2458 execution_quantum = engine->props.timeslice_duration_ms * 1000; 2459 preemption_timeout = engine->props.preempt_timeout_ms * 1000; 2460 2461 __guc_context_policy_start_klv(&policy, ce->guc_id.id); 2462 2463 __guc_context_policy_add_priority(&policy, ce->guc_state.prio); 2464 __guc_context_policy_add_execution_quantum(&policy, execution_quantum); 2465 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); 2466 2467 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) 2468 __guc_context_policy_add_preempt_to_idle(&policy, 1); 2469 2470 ret = __guc_context_set_context_policies(guc, &policy, loop); 2471 2472 spin_lock_irqsave(&ce->guc_state.lock, flags); 2473 if (ret != 0) 2474 set_context_policy_required(ce); 2475 else 2476 clr_context_policy_required(ce); 2477 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2478 2479 return ret; 2480 } 2481 2482 static void guc_context_policy_init_v69(struct intel_engine_cs *engine, 2483 struct guc_lrc_desc_v69 *desc) 2484 { 2485 desc->policy_flags = 0; 2486 2487 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) 2488 desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69; 2489 2490 /* NB: For both of these, zero means disabled. */ 2491 GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000, 2492 desc->execution_quantum)); 2493 GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000, 2494 desc->preemption_timeout)); 2495 desc->execution_quantum = engine->props.timeslice_duration_ms * 1000; 2496 desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000; 2497 } 2498 2499 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio) 2500 { 2501 /* 2502 * this matches the mapping we do in map_i915_prio_to_guc_prio() 2503 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL) 2504 */ 2505 switch (prio) { 2506 default: 2507 MISSING_CASE(prio); 2508 fallthrough; 2509 case GUC_CLIENT_PRIORITY_KMD_NORMAL: 2510 return GEN12_CTX_PRIORITY_NORMAL; 2511 case GUC_CLIENT_PRIORITY_NORMAL: 2512 return GEN12_CTX_PRIORITY_LOW; 2513 case GUC_CLIENT_PRIORITY_HIGH: 2514 case GUC_CLIENT_PRIORITY_KMD_HIGH: 2515 return GEN12_CTX_PRIORITY_HIGH; 2516 } 2517 } 2518 2519 static void prepare_context_registration_info_v69(struct intel_context *ce) 2520 { 2521 struct intel_engine_cs *engine = ce->engine; 2522 struct intel_guc *guc = &engine->gt->uc.guc; 2523 u32 ctx_id = ce->guc_id.id; 2524 struct guc_lrc_desc_v69 *desc; 2525 struct intel_context *child; 2526 2527 GEM_BUG_ON(!engine->mask); 2528 2529 /* 2530 * Ensure LRC + CT vmas are is same region as write barrier is done 2531 * based on CT vma region. 2532 */ 2533 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != 2534 i915_gem_object_is_lmem(ce->ring->vma->obj)); 2535 2536 desc = __get_lrc_desc_v69(guc, ctx_id); 2537 desc->engine_class = engine_class_to_guc_class(engine->class); 2538 desc->engine_submit_mask = engine->logical_mask; 2539 desc->hw_context_desc = ce->lrc.lrca; 2540 desc->priority = ce->guc_state.prio; 2541 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; 2542 guc_context_policy_init_v69(engine, desc); 2543 2544 /* 2545 * If context is a parent, we need to register a process descriptor 2546 * describing a work queue and register all child contexts. 2547 */ 2548 if (intel_context_is_parent(ce)) { 2549 struct guc_process_desc_v69 *pdesc; 2550 2551 ce->parallel.guc.wqi_tail = 0; 2552 ce->parallel.guc.wqi_head = 0; 2553 2554 desc->process_desc = i915_ggtt_offset(ce->state) + 2555 __get_parent_scratch_offset(ce); 2556 desc->wq_addr = i915_ggtt_offset(ce->state) + 2557 __get_wq_offset(ce); 2558 desc->wq_size = WQ_SIZE; 2559 2560 pdesc = __get_process_desc_v69(ce); 2561 memset(pdesc, 0, sizeof(*(pdesc))); 2562 pdesc->stage_id = ce->guc_id.id; 2563 pdesc->wq_base_addr = desc->wq_addr; 2564 pdesc->wq_size_bytes = desc->wq_size; 2565 pdesc->wq_status = WQ_STATUS_ACTIVE; 2566 2567 ce->parallel.guc.wq_head = &pdesc->head; 2568 ce->parallel.guc.wq_tail = &pdesc->tail; 2569 ce->parallel.guc.wq_status = &pdesc->wq_status; 2570 2571 for_each_child(ce, child) { 2572 desc = __get_lrc_desc_v69(guc, child->guc_id.id); 2573 2574 desc->engine_class = 2575 engine_class_to_guc_class(engine->class); 2576 desc->hw_context_desc = child->lrc.lrca; 2577 desc->priority = ce->guc_state.prio; 2578 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; 2579 guc_context_policy_init_v69(engine, desc); 2580 } 2581 2582 clear_children_join_go_memory(ce); 2583 } 2584 } 2585 2586 static void prepare_context_registration_info_v70(struct intel_context *ce, 2587 struct guc_ctxt_registration_info *info) 2588 { 2589 struct intel_engine_cs *engine = ce->engine; 2590 struct intel_guc *guc = &engine->gt->uc.guc; 2591 u32 ctx_id = ce->guc_id.id; 2592 2593 GEM_BUG_ON(!engine->mask); 2594 2595 /* 2596 * Ensure LRC + CT vmas are is same region as write barrier is done 2597 * based on CT vma region. 2598 */ 2599 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != 2600 i915_gem_object_is_lmem(ce->ring->vma->obj)); 2601 2602 memset(info, 0, sizeof(*info)); 2603 info->context_idx = ctx_id; 2604 info->engine_class = engine_class_to_guc_class(engine->class); 2605 info->engine_submit_mask = engine->logical_mask; 2606 /* 2607 * NB: GuC interface supports 64 bit LRCA even though i915/HW 2608 * only supports 32 bit currently. 2609 */ 2610 info->hwlrca_lo = lower_32_bits(ce->lrc.lrca); 2611 info->hwlrca_hi = upper_32_bits(ce->lrc.lrca); 2612 if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY) 2613 info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio); 2614 info->flags = CONTEXT_REGISTRATION_FLAG_KMD; 2615 2616 /* 2617 * If context is a parent, we need to register a process descriptor 2618 * describing a work queue and register all child contexts. 2619 */ 2620 if (intel_context_is_parent(ce)) { 2621 struct guc_sched_wq_desc *wq_desc; 2622 u64 wq_desc_offset, wq_base_offset; 2623 2624 ce->parallel.guc.wqi_tail = 0; 2625 ce->parallel.guc.wqi_head = 0; 2626 2627 wq_desc_offset = i915_ggtt_offset(ce->state) + 2628 __get_parent_scratch_offset(ce); 2629 wq_base_offset = i915_ggtt_offset(ce->state) + 2630 __get_wq_offset(ce); 2631 info->wq_desc_lo = lower_32_bits(wq_desc_offset); 2632 info->wq_desc_hi = upper_32_bits(wq_desc_offset); 2633 info->wq_base_lo = lower_32_bits(wq_base_offset); 2634 info->wq_base_hi = upper_32_bits(wq_base_offset); 2635 info->wq_size = WQ_SIZE; 2636 2637 wq_desc = __get_wq_desc_v70(ce); 2638 memset(wq_desc, 0, sizeof(*wq_desc)); 2639 wq_desc->wq_status = WQ_STATUS_ACTIVE; 2640 2641 ce->parallel.guc.wq_head = &wq_desc->head; 2642 ce->parallel.guc.wq_tail = &wq_desc->tail; 2643 ce->parallel.guc.wq_status = &wq_desc->wq_status; 2644 2645 clear_children_join_go_memory(ce); 2646 } 2647 } 2648 2649 static int try_context_registration(struct intel_context *ce, bool loop) 2650 { 2651 struct intel_engine_cs *engine = ce->engine; 2652 struct intel_runtime_pm *runtime_pm = engine->uncore->rpm; 2653 struct intel_guc *guc = &engine->gt->uc.guc; 2654 intel_wakeref_t wakeref; 2655 u32 ctx_id = ce->guc_id.id; 2656 bool context_registered; 2657 int ret = 0; 2658 2659 GEM_BUG_ON(!sched_state_is_init(ce)); 2660 2661 context_registered = ctx_id_mapped(guc, ctx_id); 2662 2663 clr_ctx_id_mapping(guc, ctx_id); 2664 set_ctx_id_mapping(guc, ctx_id, ce); 2665 2666 /* 2667 * The context_lookup xarray is used to determine if the hardware 2668 * context is currently registered. There are two cases in which it 2669 * could be registered either the guc_id has been stolen from another 2670 * context or the lrc descriptor address of this context has changed. In 2671 * either case the context needs to be deregistered with the GuC before 2672 * registering this context. 2673 */ 2674 if (context_registered) { 2675 bool disabled; 2676 unsigned long flags; 2677 2678 trace_intel_context_steal_guc_id(ce); 2679 GEM_BUG_ON(!loop); 2680 2681 /* Seal race with Reset */ 2682 spin_lock_irqsave(&ce->guc_state.lock, flags); 2683 disabled = submission_disabled(guc); 2684 if (likely(!disabled)) { 2685 set_context_wait_for_deregister_to_register(ce); 2686 intel_context_get(ce); 2687 } 2688 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2689 if (unlikely(disabled)) { 2690 clr_ctx_id_mapping(guc, ctx_id); 2691 return 0; /* Will get registered later */ 2692 } 2693 2694 /* 2695 * If stealing the guc_id, this ce has the same guc_id as the 2696 * context whose guc_id was stolen. 2697 */ 2698 with_intel_runtime_pm(runtime_pm, wakeref) 2699 ret = deregister_context(ce, ce->guc_id.id); 2700 if (unlikely(ret == -ENODEV)) 2701 ret = 0; /* Will get registered later */ 2702 } else { 2703 with_intel_runtime_pm(runtime_pm, wakeref) 2704 ret = register_context(ce, loop); 2705 if (unlikely(ret == -EBUSY)) { 2706 clr_ctx_id_mapping(guc, ctx_id); 2707 } else if (unlikely(ret == -ENODEV)) { 2708 clr_ctx_id_mapping(guc, ctx_id); 2709 ret = 0; /* Will get registered later */ 2710 } 2711 } 2712 2713 return ret; 2714 } 2715 2716 static int __guc_context_pre_pin(struct intel_context *ce, 2717 struct intel_engine_cs *engine, 2718 struct i915_gem_ww_ctx *ww, 2719 void **vaddr) 2720 { 2721 return lrc_pre_pin(ce, engine, ww, vaddr); 2722 } 2723 2724 static int __guc_context_pin(struct intel_context *ce, 2725 struct intel_engine_cs *engine, 2726 void *vaddr) 2727 { 2728 if (i915_ggtt_offset(ce->state) != 2729 (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK)) 2730 set_bit(CONTEXT_LRCA_DIRTY, &ce->flags); 2731 2732 /* 2733 * GuC context gets pinned in guc_request_alloc. See that function for 2734 * explaination of why. 2735 */ 2736 2737 return lrc_pin(ce, engine, vaddr); 2738 } 2739 2740 static int guc_context_pre_pin(struct intel_context *ce, 2741 struct i915_gem_ww_ctx *ww, 2742 void **vaddr) 2743 { 2744 return __guc_context_pre_pin(ce, ce->engine, ww, vaddr); 2745 } 2746 2747 static int guc_context_pin(struct intel_context *ce, void *vaddr) 2748 { 2749 int ret = __guc_context_pin(ce, ce->engine, vaddr); 2750 2751 if (likely(!ret && !intel_context_is_barrier(ce))) 2752 intel_engine_pm_get(ce->engine); 2753 2754 return ret; 2755 } 2756 2757 static void guc_context_unpin(struct intel_context *ce) 2758 { 2759 struct intel_guc *guc = ce_to_guc(ce); 2760 2761 unpin_guc_id(guc, ce); 2762 lrc_unpin(ce); 2763 2764 if (likely(!intel_context_is_barrier(ce))) 2765 intel_engine_pm_put_async(ce->engine); 2766 } 2767 2768 static void guc_context_post_unpin(struct intel_context *ce) 2769 { 2770 lrc_post_unpin(ce); 2771 } 2772 2773 static void __guc_context_sched_enable(struct intel_guc *guc, 2774 struct intel_context *ce) 2775 { 2776 u32 action[] = { 2777 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, 2778 ce->guc_id.id, 2779 GUC_CONTEXT_ENABLE 2780 }; 2781 2782 trace_intel_context_sched_enable(ce); 2783 2784 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2785 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); 2786 } 2787 2788 static void __guc_context_sched_disable(struct intel_guc *guc, 2789 struct intel_context *ce, 2790 u16 guc_id) 2791 { 2792 u32 action[] = { 2793 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, 2794 guc_id, /* ce->guc_id.id not stable */ 2795 GUC_CONTEXT_DISABLE 2796 }; 2797 2798 GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID); 2799 2800 GEM_BUG_ON(intel_context_is_child(ce)); 2801 trace_intel_context_sched_disable(ce); 2802 2803 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2804 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); 2805 } 2806 2807 static void guc_blocked_fence_complete(struct intel_context *ce) 2808 { 2809 lockdep_assert_held(&ce->guc_state.lock); 2810 2811 if (!i915_sw_fence_done(&ce->guc_state.blocked)) 2812 i915_sw_fence_complete(&ce->guc_state.blocked); 2813 } 2814 2815 static void guc_blocked_fence_reinit(struct intel_context *ce) 2816 { 2817 lockdep_assert_held(&ce->guc_state.lock); 2818 GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked)); 2819 2820 /* 2821 * This fence is always complete unless a pending schedule disable is 2822 * outstanding. We arm the fence here and complete it when we receive 2823 * the pending schedule disable complete message. 2824 */ 2825 i915_sw_fence_fini(&ce->guc_state.blocked); 2826 i915_sw_fence_reinit(&ce->guc_state.blocked); 2827 i915_sw_fence_await(&ce->guc_state.blocked); 2828 i915_sw_fence_commit(&ce->guc_state.blocked); 2829 } 2830 2831 static u16 prep_context_pending_disable(struct intel_context *ce) 2832 { 2833 lockdep_assert_held(&ce->guc_state.lock); 2834 2835 set_context_pending_disable(ce); 2836 clr_context_enabled(ce); 2837 guc_blocked_fence_reinit(ce); 2838 intel_context_get(ce); 2839 2840 return ce->guc_id.id; 2841 } 2842 2843 static struct i915_sw_fence *guc_context_block(struct intel_context *ce) 2844 { 2845 struct intel_guc *guc = ce_to_guc(ce); 2846 unsigned long flags; 2847 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; 2848 intel_wakeref_t wakeref; 2849 u16 guc_id; 2850 bool enabled; 2851 2852 GEM_BUG_ON(intel_context_is_child(ce)); 2853 2854 spin_lock_irqsave(&ce->guc_state.lock, flags); 2855 2856 incr_context_blocked(ce); 2857 2858 enabled = context_enabled(ce); 2859 if (unlikely(!enabled || submission_disabled(guc))) { 2860 if (enabled) 2861 clr_context_enabled(ce); 2862 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2863 return &ce->guc_state.blocked; 2864 } 2865 2866 /* 2867 * We add +2 here as the schedule disable complete CTB handler calls 2868 * intel_context_sched_disable_unpin (-2 to pin_count). 2869 */ 2870 atomic_add(2, &ce->pin_count); 2871 2872 guc_id = prep_context_pending_disable(ce); 2873 2874 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2875 2876 with_intel_runtime_pm(runtime_pm, wakeref) 2877 __guc_context_sched_disable(guc, ce, guc_id); 2878 2879 return &ce->guc_state.blocked; 2880 } 2881 2882 #define SCHED_STATE_MULTI_BLOCKED_MASK \ 2883 (SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED) 2884 #define SCHED_STATE_NO_UNBLOCK \ 2885 (SCHED_STATE_MULTI_BLOCKED_MASK | \ 2886 SCHED_STATE_PENDING_DISABLE | \ 2887 SCHED_STATE_BANNED) 2888 2889 static bool context_cant_unblock(struct intel_context *ce) 2890 { 2891 lockdep_assert_held(&ce->guc_state.lock); 2892 2893 return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) || 2894 context_guc_id_invalid(ce) || 2895 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) || 2896 !intel_context_is_pinned(ce); 2897 } 2898 2899 static void guc_context_unblock(struct intel_context *ce) 2900 { 2901 struct intel_guc *guc = ce_to_guc(ce); 2902 unsigned long flags; 2903 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; 2904 intel_wakeref_t wakeref; 2905 bool enable; 2906 2907 GEM_BUG_ON(context_enabled(ce)); 2908 GEM_BUG_ON(intel_context_is_child(ce)); 2909 2910 spin_lock_irqsave(&ce->guc_state.lock, flags); 2911 2912 if (unlikely(submission_disabled(guc) || 2913 context_cant_unblock(ce))) { 2914 enable = false; 2915 } else { 2916 enable = true; 2917 set_context_pending_enable(ce); 2918 set_context_enabled(ce); 2919 intel_context_get(ce); 2920 } 2921 2922 decr_context_blocked(ce); 2923 2924 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2925 2926 if (enable) { 2927 with_intel_runtime_pm(runtime_pm, wakeref) 2928 __guc_context_sched_enable(guc, ce); 2929 } 2930 } 2931 2932 static void guc_context_cancel_request(struct intel_context *ce, 2933 struct i915_request *rq) 2934 { 2935 struct intel_context *block_context = 2936 request_to_scheduling_context(rq); 2937 2938 if (i915_sw_fence_signaled(&rq->submit)) { 2939 struct i915_sw_fence *fence; 2940 2941 intel_context_get(ce); 2942 fence = guc_context_block(block_context); 2943 i915_sw_fence_wait(fence); 2944 if (!i915_request_completed(rq)) { 2945 __i915_request_skip(rq); 2946 guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head), 2947 true); 2948 } 2949 2950 guc_context_unblock(block_context); 2951 intel_context_put(ce); 2952 } 2953 } 2954 2955 static void __guc_context_set_preemption_timeout(struct intel_guc *guc, 2956 u16 guc_id, 2957 u32 preemption_timeout) 2958 { 2959 if (GET_UC_VER(guc) >= MAKE_UC_VER(70, 0, 0)) { 2960 struct context_policy policy; 2961 2962 __guc_context_policy_start_klv(&policy, guc_id); 2963 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); 2964 __guc_context_set_context_policies(guc, &policy, true); 2965 } else { 2966 u32 action[] = { 2967 INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT, 2968 guc_id, 2969 preemption_timeout 2970 }; 2971 2972 intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); 2973 } 2974 } 2975 2976 static void 2977 guc_context_revoke(struct intel_context *ce, struct i915_request *rq, 2978 unsigned int preempt_timeout_ms) 2979 { 2980 struct intel_guc *guc = ce_to_guc(ce); 2981 struct intel_runtime_pm *runtime_pm = 2982 &ce->engine->gt->i915->runtime_pm; 2983 intel_wakeref_t wakeref; 2984 unsigned long flags; 2985 2986 GEM_BUG_ON(intel_context_is_child(ce)); 2987 2988 guc_flush_submissions(guc); 2989 2990 spin_lock_irqsave(&ce->guc_state.lock, flags); 2991 set_context_banned(ce); 2992 2993 if (submission_disabled(guc) || 2994 (!context_enabled(ce) && !context_pending_disable(ce))) { 2995 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2996 2997 guc_cancel_context_requests(ce); 2998 intel_engine_signal_breadcrumbs(ce->engine); 2999 } else if (!context_pending_disable(ce)) { 3000 u16 guc_id; 3001 3002 /* 3003 * We add +2 here as the schedule disable complete CTB handler 3004 * calls intel_context_sched_disable_unpin (-2 to pin_count). 3005 */ 3006 atomic_add(2, &ce->pin_count); 3007 3008 guc_id = prep_context_pending_disable(ce); 3009 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3010 3011 /* 3012 * In addition to disabling scheduling, set the preemption 3013 * timeout to the minimum value (1 us) so the banned context 3014 * gets kicked off the HW ASAP. 3015 */ 3016 with_intel_runtime_pm(runtime_pm, wakeref) { 3017 __guc_context_set_preemption_timeout(guc, guc_id, 3018 preempt_timeout_ms); 3019 __guc_context_sched_disable(guc, ce, guc_id); 3020 } 3021 } else { 3022 if (!context_guc_id_invalid(ce)) 3023 with_intel_runtime_pm(runtime_pm, wakeref) 3024 __guc_context_set_preemption_timeout(guc, 3025 ce->guc_id.id, 3026 preempt_timeout_ms); 3027 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3028 } 3029 } 3030 3031 static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce, 3032 unsigned long flags) 3033 __releases(ce->guc_state.lock) 3034 { 3035 struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm; 3036 intel_wakeref_t wakeref; 3037 u16 guc_id; 3038 3039 lockdep_assert_held(&ce->guc_state.lock); 3040 guc_id = prep_context_pending_disable(ce); 3041 3042 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3043 3044 with_intel_runtime_pm(runtime_pm, wakeref) 3045 __guc_context_sched_disable(guc, ce, guc_id); 3046 } 3047 3048 static bool bypass_sched_disable(struct intel_guc *guc, 3049 struct intel_context *ce) 3050 { 3051 lockdep_assert_held(&ce->guc_state.lock); 3052 GEM_BUG_ON(intel_context_is_child(ce)); 3053 3054 if (submission_disabled(guc) || context_guc_id_invalid(ce) || 3055 !ctx_id_mapped(guc, ce->guc_id.id)) { 3056 clr_context_enabled(ce); 3057 return true; 3058 } 3059 3060 return !context_enabled(ce); 3061 } 3062 3063 static void __delay_sched_disable(struct work_struct *wrk) 3064 { 3065 struct intel_context *ce = 3066 container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work); 3067 struct intel_guc *guc = ce_to_guc(ce); 3068 unsigned long flags; 3069 3070 spin_lock_irqsave(&ce->guc_state.lock, flags); 3071 3072 if (bypass_sched_disable(guc, ce)) { 3073 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3074 intel_context_sched_disable_unpin(ce); 3075 } else { 3076 do_sched_disable(guc, ce, flags); 3077 } 3078 } 3079 3080 static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce) 3081 { 3082 /* 3083 * parent contexts are perma-pinned, if we are unpinning do schedule 3084 * disable immediately. 3085 */ 3086 if (intel_context_is_parent(ce)) 3087 return true; 3088 3089 /* 3090 * If we are beyond the threshold for avail guc_ids, do schedule disable immediately. 3091 */ 3092 return guc->submission_state.guc_ids_in_use > 3093 guc->submission_state.sched_disable_gucid_threshold; 3094 } 3095 3096 static void guc_context_sched_disable(struct intel_context *ce) 3097 { 3098 struct intel_guc *guc = ce_to_guc(ce); 3099 u64 delay = guc->submission_state.sched_disable_delay_ms; 3100 unsigned long flags; 3101 3102 spin_lock_irqsave(&ce->guc_state.lock, flags); 3103 3104 if (bypass_sched_disable(guc, ce)) { 3105 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3106 intel_context_sched_disable_unpin(ce); 3107 } else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) && 3108 delay) { 3109 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3110 mod_delayed_work(system_unbound_wq, 3111 &ce->guc_state.sched_disable_delay_work, 3112 msecs_to_jiffies(delay)); 3113 } else { 3114 do_sched_disable(guc, ce, flags); 3115 } 3116 } 3117 3118 static void guc_context_close(struct intel_context *ce) 3119 { 3120 unsigned long flags; 3121 3122 if (test_bit(CONTEXT_GUC_INIT, &ce->flags) && 3123 cancel_delayed_work(&ce->guc_state.sched_disable_delay_work)) 3124 __delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work); 3125 3126 spin_lock_irqsave(&ce->guc_state.lock, flags); 3127 set_context_close_done(ce); 3128 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3129 } 3130 3131 static inline void guc_lrc_desc_unpin(struct intel_context *ce) 3132 { 3133 struct intel_guc *guc = ce_to_guc(ce); 3134 struct intel_gt *gt = guc_to_gt(guc); 3135 unsigned long flags; 3136 bool disabled; 3137 3138 GEM_BUG_ON(!intel_gt_pm_is_awake(gt)); 3139 GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id)); 3140 GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id)); 3141 GEM_BUG_ON(context_enabled(ce)); 3142 3143 /* Seal race with Reset */ 3144 spin_lock_irqsave(&ce->guc_state.lock, flags); 3145 disabled = submission_disabled(guc); 3146 if (likely(!disabled)) { 3147 __intel_gt_pm_get(gt); 3148 set_context_destroyed(ce); 3149 clr_context_registered(ce); 3150 } 3151 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3152 if (unlikely(disabled)) { 3153 release_guc_id(guc, ce); 3154 __guc_context_destroy(ce); 3155 return; 3156 } 3157 3158 deregister_context(ce, ce->guc_id.id); 3159 } 3160 3161 static void __guc_context_destroy(struct intel_context *ce) 3162 { 3163 GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] || 3164 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] || 3165 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] || 3166 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]); 3167 3168 lrc_fini(ce); 3169 intel_context_fini(ce); 3170 3171 if (intel_engine_is_virtual(ce->engine)) { 3172 struct guc_virtual_engine *ve = 3173 container_of(ce, typeof(*ve), context); 3174 3175 if (ve->base.breadcrumbs) 3176 intel_breadcrumbs_put(ve->base.breadcrumbs); 3177 3178 kfree(ve); 3179 } else { 3180 intel_context_free(ce); 3181 } 3182 } 3183 3184 static void guc_flush_destroyed_contexts(struct intel_guc *guc) 3185 { 3186 struct intel_context *ce; 3187 unsigned long flags; 3188 3189 GEM_BUG_ON(!submission_disabled(guc) && 3190 guc_submission_initialized(guc)); 3191 3192 while (!list_empty(&guc->submission_state.destroyed_contexts)) { 3193 spin_lock_irqsave(&guc->submission_state.lock, flags); 3194 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, 3195 struct intel_context, 3196 destroyed_link); 3197 if (ce) 3198 list_del_init(&ce->destroyed_link); 3199 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3200 3201 if (!ce) 3202 break; 3203 3204 release_guc_id(guc, ce); 3205 __guc_context_destroy(ce); 3206 } 3207 } 3208 3209 static void deregister_destroyed_contexts(struct intel_guc *guc) 3210 { 3211 struct intel_context *ce; 3212 unsigned long flags; 3213 3214 while (!list_empty(&guc->submission_state.destroyed_contexts)) { 3215 spin_lock_irqsave(&guc->submission_state.lock, flags); 3216 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, 3217 struct intel_context, 3218 destroyed_link); 3219 if (ce) 3220 list_del_init(&ce->destroyed_link); 3221 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3222 3223 if (!ce) 3224 break; 3225 3226 guc_lrc_desc_unpin(ce); 3227 } 3228 } 3229 3230 static void destroyed_worker_func(struct work_struct *w) 3231 { 3232 struct intel_guc *guc = container_of(w, struct intel_guc, 3233 submission_state.destroyed_worker); 3234 struct intel_gt *gt = guc_to_gt(guc); 3235 int tmp; 3236 3237 with_intel_gt_pm(gt, tmp) 3238 deregister_destroyed_contexts(guc); 3239 } 3240 3241 static void guc_context_destroy(struct kref *kref) 3242 { 3243 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 3244 struct intel_guc *guc = ce_to_guc(ce); 3245 unsigned long flags; 3246 bool destroy; 3247 3248 /* 3249 * If the guc_id is invalid this context has been stolen and we can free 3250 * it immediately. Also can be freed immediately if the context is not 3251 * registered with the GuC or the GuC is in the middle of a reset. 3252 */ 3253 spin_lock_irqsave(&guc->submission_state.lock, flags); 3254 destroy = submission_disabled(guc) || context_guc_id_invalid(ce) || 3255 !ctx_id_mapped(guc, ce->guc_id.id); 3256 if (likely(!destroy)) { 3257 if (!list_empty(&ce->guc_id.link)) 3258 list_del_init(&ce->guc_id.link); 3259 list_add_tail(&ce->destroyed_link, 3260 &guc->submission_state.destroyed_contexts); 3261 } else { 3262 __release_guc_id(guc, ce); 3263 } 3264 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3265 if (unlikely(destroy)) { 3266 __guc_context_destroy(ce); 3267 return; 3268 } 3269 3270 /* 3271 * We use a worker to issue the H2G to deregister the context as we can 3272 * take the GT PM for the first time which isn't allowed from an atomic 3273 * context. 3274 */ 3275 queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker); 3276 } 3277 3278 static int guc_context_alloc(struct intel_context *ce) 3279 { 3280 return lrc_alloc(ce, ce->engine); 3281 } 3282 3283 static void __guc_context_set_prio(struct intel_guc *guc, 3284 struct intel_context *ce) 3285 { 3286 if (GET_UC_VER(guc) >= MAKE_UC_VER(70, 0, 0)) { 3287 struct context_policy policy; 3288 3289 __guc_context_policy_start_klv(&policy, ce->guc_id.id); 3290 __guc_context_policy_add_priority(&policy, ce->guc_state.prio); 3291 __guc_context_set_context_policies(guc, &policy, true); 3292 } else { 3293 u32 action[] = { 3294 INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY, 3295 ce->guc_id.id, 3296 ce->guc_state.prio, 3297 }; 3298 3299 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); 3300 } 3301 } 3302 3303 static void guc_context_set_prio(struct intel_guc *guc, 3304 struct intel_context *ce, 3305 u8 prio) 3306 { 3307 GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH || 3308 prio > GUC_CLIENT_PRIORITY_NORMAL); 3309 lockdep_assert_held(&ce->guc_state.lock); 3310 3311 if (ce->guc_state.prio == prio || submission_disabled(guc) || 3312 !context_registered(ce)) { 3313 ce->guc_state.prio = prio; 3314 return; 3315 } 3316 3317 ce->guc_state.prio = prio; 3318 __guc_context_set_prio(guc, ce); 3319 3320 trace_intel_context_set_prio(ce); 3321 } 3322 3323 static inline u8 map_i915_prio_to_guc_prio(int prio) 3324 { 3325 if (prio == I915_PRIORITY_NORMAL) 3326 return GUC_CLIENT_PRIORITY_KMD_NORMAL; 3327 else if (prio < I915_PRIORITY_NORMAL) 3328 return GUC_CLIENT_PRIORITY_NORMAL; 3329 else if (prio < I915_PRIORITY_DISPLAY) 3330 return GUC_CLIENT_PRIORITY_HIGH; 3331 else 3332 return GUC_CLIENT_PRIORITY_KMD_HIGH; 3333 } 3334 3335 static inline void add_context_inflight_prio(struct intel_context *ce, 3336 u8 guc_prio) 3337 { 3338 lockdep_assert_held(&ce->guc_state.lock); 3339 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); 3340 3341 ++ce->guc_state.prio_count[guc_prio]; 3342 3343 /* Overflow protection */ 3344 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); 3345 } 3346 3347 static inline void sub_context_inflight_prio(struct intel_context *ce, 3348 u8 guc_prio) 3349 { 3350 lockdep_assert_held(&ce->guc_state.lock); 3351 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); 3352 3353 /* Underflow protection */ 3354 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); 3355 3356 --ce->guc_state.prio_count[guc_prio]; 3357 } 3358 3359 static inline void update_context_prio(struct intel_context *ce) 3360 { 3361 struct intel_guc *guc = &ce->engine->gt->uc.guc; 3362 int i; 3363 3364 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0); 3365 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL); 3366 3367 lockdep_assert_held(&ce->guc_state.lock); 3368 3369 for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) { 3370 if (ce->guc_state.prio_count[i]) { 3371 guc_context_set_prio(guc, ce, i); 3372 break; 3373 } 3374 } 3375 } 3376 3377 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio) 3378 { 3379 /* Lower value is higher priority */ 3380 return new_guc_prio < old_guc_prio; 3381 } 3382 3383 static void add_to_context(struct i915_request *rq) 3384 { 3385 struct intel_context *ce = request_to_scheduling_context(rq); 3386 u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq)); 3387 3388 GEM_BUG_ON(intel_context_is_child(ce)); 3389 GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI); 3390 3391 spin_lock(&ce->guc_state.lock); 3392 list_move_tail(&rq->sched.link, &ce->guc_state.requests); 3393 3394 if (rq->guc_prio == GUC_PRIO_INIT) { 3395 rq->guc_prio = new_guc_prio; 3396 add_context_inflight_prio(ce, rq->guc_prio); 3397 } else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) { 3398 sub_context_inflight_prio(ce, rq->guc_prio); 3399 rq->guc_prio = new_guc_prio; 3400 add_context_inflight_prio(ce, rq->guc_prio); 3401 } 3402 update_context_prio(ce); 3403 3404 spin_unlock(&ce->guc_state.lock); 3405 } 3406 3407 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce) 3408 { 3409 lockdep_assert_held(&ce->guc_state.lock); 3410 3411 if (rq->guc_prio != GUC_PRIO_INIT && 3412 rq->guc_prio != GUC_PRIO_FINI) { 3413 sub_context_inflight_prio(ce, rq->guc_prio); 3414 update_context_prio(ce); 3415 } 3416 rq->guc_prio = GUC_PRIO_FINI; 3417 } 3418 3419 static void remove_from_context(struct i915_request *rq) 3420 { 3421 struct intel_context *ce = request_to_scheduling_context(rq); 3422 3423 GEM_BUG_ON(intel_context_is_child(ce)); 3424 3425 spin_lock_irq(&ce->guc_state.lock); 3426 3427 list_del_init(&rq->sched.link); 3428 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 3429 3430 /* Prevent further __await_execution() registering a cb, then flush */ 3431 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 3432 3433 guc_prio_fini(rq, ce); 3434 3435 spin_unlock_irq(&ce->guc_state.lock); 3436 3437 atomic_dec(&ce->guc_id.ref); 3438 i915_request_notify_execute_cb_imm(rq); 3439 } 3440 3441 static const struct intel_context_ops guc_context_ops = { 3442 .alloc = guc_context_alloc, 3443 3444 .close = guc_context_close, 3445 3446 .pre_pin = guc_context_pre_pin, 3447 .pin = guc_context_pin, 3448 .unpin = guc_context_unpin, 3449 .post_unpin = guc_context_post_unpin, 3450 3451 .revoke = guc_context_revoke, 3452 3453 .cancel_request = guc_context_cancel_request, 3454 3455 .enter = intel_context_enter_engine, 3456 .exit = intel_context_exit_engine, 3457 3458 .sched_disable = guc_context_sched_disable, 3459 3460 .reset = lrc_reset, 3461 .destroy = guc_context_destroy, 3462 3463 .create_virtual = guc_create_virtual, 3464 .create_parallel = guc_create_parallel, 3465 }; 3466 3467 static void submit_work_cb(struct irq_work *wrk) 3468 { 3469 struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work); 3470 3471 might_lock(&rq->engine->sched_engine->lock); 3472 i915_sw_fence_complete(&rq->submit); 3473 } 3474 3475 static void __guc_signal_context_fence(struct intel_context *ce) 3476 { 3477 struct i915_request *rq, *rn; 3478 3479 lockdep_assert_held(&ce->guc_state.lock); 3480 3481 if (!list_empty(&ce->guc_state.fences)) 3482 trace_intel_context_fence_release(ce); 3483 3484 /* 3485 * Use an IRQ to ensure locking order of sched_engine->lock -> 3486 * ce->guc_state.lock is preserved. 3487 */ 3488 list_for_each_entry_safe(rq, rn, &ce->guc_state.fences, 3489 guc_fence_link) { 3490 list_del(&rq->guc_fence_link); 3491 irq_work_queue(&rq->submit_work); 3492 } 3493 3494 INIT_LIST_HEAD(&ce->guc_state.fences); 3495 } 3496 3497 static void guc_signal_context_fence(struct intel_context *ce) 3498 { 3499 unsigned long flags; 3500 3501 GEM_BUG_ON(intel_context_is_child(ce)); 3502 3503 spin_lock_irqsave(&ce->guc_state.lock, flags); 3504 clr_context_wait_for_deregister_to_register(ce); 3505 __guc_signal_context_fence(ce); 3506 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3507 } 3508 3509 static bool context_needs_register(struct intel_context *ce, bool new_guc_id) 3510 { 3511 return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) || 3512 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) && 3513 !submission_disabled(ce_to_guc(ce)); 3514 } 3515 3516 static void guc_context_init(struct intel_context *ce) 3517 { 3518 const struct i915_gem_context *ctx; 3519 int prio = I915_CONTEXT_DEFAULT_PRIORITY; 3520 3521 rcu_read_lock(); 3522 ctx = rcu_dereference(ce->gem_context); 3523 if (ctx) 3524 prio = ctx->sched.priority; 3525 rcu_read_unlock(); 3526 3527 ce->guc_state.prio = map_i915_prio_to_guc_prio(prio); 3528 3529 INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work, 3530 __delay_sched_disable); 3531 3532 set_bit(CONTEXT_GUC_INIT, &ce->flags); 3533 } 3534 3535 static int guc_request_alloc(struct i915_request *rq) 3536 { 3537 struct intel_context *ce = request_to_scheduling_context(rq); 3538 struct intel_guc *guc = ce_to_guc(ce); 3539 unsigned long flags; 3540 int ret; 3541 3542 GEM_BUG_ON(!intel_context_is_pinned(rq->context)); 3543 3544 /* 3545 * Flush enough space to reduce the likelihood of waiting after 3546 * we start building the request - in which case we will just 3547 * have to repeat work. 3548 */ 3549 rq->reserved_space += GUC_REQUEST_SIZE; 3550 3551 /* 3552 * Note that after this point, we have committed to using 3553 * this request as it is being used to both track the 3554 * state of engine initialisation and liveness of the 3555 * golden renderstate above. Think twice before you try 3556 * to cancel/unwind this request now. 3557 */ 3558 3559 /* Unconditionally invalidate GPU caches and TLBs. */ 3560 ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 3561 if (ret) 3562 return ret; 3563 3564 rq->reserved_space -= GUC_REQUEST_SIZE; 3565 3566 if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags))) 3567 guc_context_init(ce); 3568 3569 /* 3570 * If the context gets closed while the execbuf is ongoing, the context 3571 * close code will race with the below code to cancel the delayed work. 3572 * If the context close wins the race and cancels the work, it will 3573 * immediately call the sched disable (see guc_context_close), so there 3574 * is a chance we can get past this check while the sched_disable code 3575 * is being executed. To make sure that code completes before we check 3576 * the status further down, we wait for the close process to complete. 3577 * Else, this code path could send a request down thinking that the 3578 * context is still in a schedule-enable mode while the GuC ends up 3579 * dropping the request completely because the disable did go from the 3580 * context_close path right to GuC just prior. In the event the CT is 3581 * full, we could potentially need to wait up to 1.5 seconds. 3582 */ 3583 if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work)) 3584 intel_context_sched_disable_unpin(ce); 3585 else if (intel_context_is_closed(ce)) 3586 if (wait_for(context_close_done(ce), 1500)) 3587 drm_warn(&guc_to_gt(guc)->i915->drm, 3588 "timed out waiting on context sched close before realloc\n"); 3589 /* 3590 * Call pin_guc_id here rather than in the pinning step as with 3591 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the 3592 * guc_id and creating horrible race conditions. This is especially bad 3593 * when guc_id are being stolen due to over subscription. By the time 3594 * this function is reached, it is guaranteed that the guc_id will be 3595 * persistent until the generated request is retired. Thus, sealing these 3596 * race conditions. It is still safe to fail here if guc_id are 3597 * exhausted and return -EAGAIN to the user indicating that they can try 3598 * again in the future. 3599 * 3600 * There is no need for a lock here as the timeline mutex ensures at 3601 * most one context can be executing this code path at once. The 3602 * guc_id_ref is incremented once for every request in flight and 3603 * decremented on each retire. When it is zero, a lock around the 3604 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id. 3605 */ 3606 if (atomic_add_unless(&ce->guc_id.ref, 1, 0)) 3607 goto out; 3608 3609 ret = pin_guc_id(guc, ce); /* returns 1 if new guc_id assigned */ 3610 if (unlikely(ret < 0)) 3611 return ret; 3612 if (context_needs_register(ce, !!ret)) { 3613 ret = try_context_registration(ce, true); 3614 if (unlikely(ret)) { /* unwind */ 3615 if (ret == -EPIPE) { 3616 disable_submission(guc); 3617 goto out; /* GPU will be reset */ 3618 } 3619 atomic_dec(&ce->guc_id.ref); 3620 unpin_guc_id(guc, ce); 3621 return ret; 3622 } 3623 } 3624 3625 clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags); 3626 3627 out: 3628 /* 3629 * We block all requests on this context if a G2H is pending for a 3630 * schedule disable or context deregistration as the GuC will fail a 3631 * schedule enable or context registration if either G2H is pending 3632 * respectfully. Once a G2H returns, the fence is released that is 3633 * blocking these requests (see guc_signal_context_fence). 3634 */ 3635 spin_lock_irqsave(&ce->guc_state.lock, flags); 3636 if (context_wait_for_deregister_to_register(ce) || 3637 context_pending_disable(ce)) { 3638 init_irq_work(&rq->submit_work, submit_work_cb); 3639 i915_sw_fence_await(&rq->submit); 3640 3641 list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences); 3642 } 3643 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3644 3645 return 0; 3646 } 3647 3648 static int guc_virtual_context_pre_pin(struct intel_context *ce, 3649 struct i915_gem_ww_ctx *ww, 3650 void **vaddr) 3651 { 3652 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3653 3654 return __guc_context_pre_pin(ce, engine, ww, vaddr); 3655 } 3656 3657 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr) 3658 { 3659 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3660 int ret = __guc_context_pin(ce, engine, vaddr); 3661 intel_engine_mask_t tmp, mask = ce->engine->mask; 3662 3663 if (likely(!ret)) 3664 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3665 intel_engine_pm_get(engine); 3666 3667 return ret; 3668 } 3669 3670 static void guc_virtual_context_unpin(struct intel_context *ce) 3671 { 3672 intel_engine_mask_t tmp, mask = ce->engine->mask; 3673 struct intel_engine_cs *engine; 3674 struct intel_guc *guc = ce_to_guc(ce); 3675 3676 GEM_BUG_ON(context_enabled(ce)); 3677 GEM_BUG_ON(intel_context_is_barrier(ce)); 3678 3679 unpin_guc_id(guc, ce); 3680 lrc_unpin(ce); 3681 3682 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3683 intel_engine_pm_put_async(engine); 3684 } 3685 3686 static void guc_virtual_context_enter(struct intel_context *ce) 3687 { 3688 intel_engine_mask_t tmp, mask = ce->engine->mask; 3689 struct intel_engine_cs *engine; 3690 3691 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3692 intel_engine_pm_get(engine); 3693 3694 intel_timeline_enter(ce->timeline); 3695 } 3696 3697 static void guc_virtual_context_exit(struct intel_context *ce) 3698 { 3699 intel_engine_mask_t tmp, mask = ce->engine->mask; 3700 struct intel_engine_cs *engine; 3701 3702 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3703 intel_engine_pm_put(engine); 3704 3705 intel_timeline_exit(ce->timeline); 3706 } 3707 3708 static int guc_virtual_context_alloc(struct intel_context *ce) 3709 { 3710 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3711 3712 return lrc_alloc(ce, engine); 3713 } 3714 3715 static const struct intel_context_ops virtual_guc_context_ops = { 3716 .alloc = guc_virtual_context_alloc, 3717 3718 .close = guc_context_close, 3719 3720 .pre_pin = guc_virtual_context_pre_pin, 3721 .pin = guc_virtual_context_pin, 3722 .unpin = guc_virtual_context_unpin, 3723 .post_unpin = guc_context_post_unpin, 3724 3725 .revoke = guc_context_revoke, 3726 3727 .cancel_request = guc_context_cancel_request, 3728 3729 .enter = guc_virtual_context_enter, 3730 .exit = guc_virtual_context_exit, 3731 3732 .sched_disable = guc_context_sched_disable, 3733 3734 .destroy = guc_context_destroy, 3735 3736 .get_sibling = guc_virtual_get_sibling, 3737 }; 3738 3739 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr) 3740 { 3741 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3742 struct intel_guc *guc = ce_to_guc(ce); 3743 int ret; 3744 3745 GEM_BUG_ON(!intel_context_is_parent(ce)); 3746 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3747 3748 ret = pin_guc_id(guc, ce); 3749 if (unlikely(ret < 0)) 3750 return ret; 3751 3752 return __guc_context_pin(ce, engine, vaddr); 3753 } 3754 3755 static int guc_child_context_pin(struct intel_context *ce, void *vaddr) 3756 { 3757 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3758 3759 GEM_BUG_ON(!intel_context_is_child(ce)); 3760 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3761 3762 __intel_context_pin(ce->parallel.parent); 3763 return __guc_context_pin(ce, engine, vaddr); 3764 } 3765 3766 static void guc_parent_context_unpin(struct intel_context *ce) 3767 { 3768 struct intel_guc *guc = ce_to_guc(ce); 3769 3770 GEM_BUG_ON(context_enabled(ce)); 3771 GEM_BUG_ON(intel_context_is_barrier(ce)); 3772 GEM_BUG_ON(!intel_context_is_parent(ce)); 3773 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3774 3775 unpin_guc_id(guc, ce); 3776 lrc_unpin(ce); 3777 } 3778 3779 static void guc_child_context_unpin(struct intel_context *ce) 3780 { 3781 GEM_BUG_ON(context_enabled(ce)); 3782 GEM_BUG_ON(intel_context_is_barrier(ce)); 3783 GEM_BUG_ON(!intel_context_is_child(ce)); 3784 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3785 3786 lrc_unpin(ce); 3787 } 3788 3789 static void guc_child_context_post_unpin(struct intel_context *ce) 3790 { 3791 GEM_BUG_ON(!intel_context_is_child(ce)); 3792 GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent)); 3793 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3794 3795 lrc_post_unpin(ce); 3796 intel_context_unpin(ce->parallel.parent); 3797 } 3798 3799 static void guc_child_context_destroy(struct kref *kref) 3800 { 3801 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 3802 3803 __guc_context_destroy(ce); 3804 } 3805 3806 static const struct intel_context_ops virtual_parent_context_ops = { 3807 .alloc = guc_virtual_context_alloc, 3808 3809 .close = guc_context_close, 3810 3811 .pre_pin = guc_context_pre_pin, 3812 .pin = guc_parent_context_pin, 3813 .unpin = guc_parent_context_unpin, 3814 .post_unpin = guc_context_post_unpin, 3815 3816 .revoke = guc_context_revoke, 3817 3818 .cancel_request = guc_context_cancel_request, 3819 3820 .enter = guc_virtual_context_enter, 3821 .exit = guc_virtual_context_exit, 3822 3823 .sched_disable = guc_context_sched_disable, 3824 3825 .destroy = guc_context_destroy, 3826 3827 .get_sibling = guc_virtual_get_sibling, 3828 }; 3829 3830 static const struct intel_context_ops virtual_child_context_ops = { 3831 .alloc = guc_virtual_context_alloc, 3832 3833 .pre_pin = guc_context_pre_pin, 3834 .pin = guc_child_context_pin, 3835 .unpin = guc_child_context_unpin, 3836 .post_unpin = guc_child_context_post_unpin, 3837 3838 .cancel_request = guc_context_cancel_request, 3839 3840 .enter = guc_virtual_context_enter, 3841 .exit = guc_virtual_context_exit, 3842 3843 .destroy = guc_child_context_destroy, 3844 3845 .get_sibling = guc_virtual_get_sibling, 3846 }; 3847 3848 /* 3849 * The below override of the breadcrumbs is enabled when the user configures a 3850 * context for parallel submission (multi-lrc, parent-child). 3851 * 3852 * The overridden breadcrumbs implements an algorithm which allows the GuC to 3853 * safely preempt all the hw contexts configured for parallel submission 3854 * between each BB. The contract between the i915 and GuC is if the parent 3855 * context can be preempted, all the children can be preempted, and the GuC will 3856 * always try to preempt the parent before the children. A handshake between the 3857 * parent / children breadcrumbs ensures the i915 holds up its end of the deal 3858 * creating a window to preempt between each set of BBs. 3859 */ 3860 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, 3861 u64 offset, u32 len, 3862 const unsigned int flags); 3863 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, 3864 u64 offset, u32 len, 3865 const unsigned int flags); 3866 static u32 * 3867 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 3868 u32 *cs); 3869 static u32 * 3870 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 3871 u32 *cs); 3872 3873 static struct intel_context * 3874 guc_create_parallel(struct intel_engine_cs **engines, 3875 unsigned int num_siblings, 3876 unsigned int width) 3877 { 3878 struct intel_engine_cs **siblings = NULL; 3879 struct intel_context *parent = NULL, *ce, *err; 3880 int i, j; 3881 3882 siblings = kmalloc_array(num_siblings, 3883 sizeof(*siblings), 3884 GFP_KERNEL); 3885 if (!siblings) 3886 return ERR_PTR(-ENOMEM); 3887 3888 for (i = 0; i < width; ++i) { 3889 for (j = 0; j < num_siblings; ++j) 3890 siblings[j] = engines[i * num_siblings + j]; 3891 3892 ce = intel_engine_create_virtual(siblings, num_siblings, 3893 FORCE_VIRTUAL); 3894 if (IS_ERR(ce)) { 3895 err = ERR_CAST(ce); 3896 goto unwind; 3897 } 3898 3899 if (i == 0) { 3900 parent = ce; 3901 parent->ops = &virtual_parent_context_ops; 3902 } else { 3903 ce->ops = &virtual_child_context_ops; 3904 intel_context_bind_parent_child(parent, ce); 3905 } 3906 } 3907 3908 parent->parallel.fence_context = dma_fence_context_alloc(1); 3909 3910 parent->engine->emit_bb_start = 3911 emit_bb_start_parent_no_preempt_mid_batch; 3912 parent->engine->emit_fini_breadcrumb = 3913 emit_fini_breadcrumb_parent_no_preempt_mid_batch; 3914 parent->engine->emit_fini_breadcrumb_dw = 3915 12 + 4 * parent->parallel.number_children; 3916 for_each_child(parent, ce) { 3917 ce->engine->emit_bb_start = 3918 emit_bb_start_child_no_preempt_mid_batch; 3919 ce->engine->emit_fini_breadcrumb = 3920 emit_fini_breadcrumb_child_no_preempt_mid_batch; 3921 ce->engine->emit_fini_breadcrumb_dw = 16; 3922 } 3923 3924 kfree(siblings); 3925 return parent; 3926 3927 unwind: 3928 if (parent) 3929 intel_context_put(parent); 3930 kfree(siblings); 3931 return err; 3932 } 3933 3934 static bool 3935 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b) 3936 { 3937 struct intel_engine_cs *sibling; 3938 intel_engine_mask_t tmp, mask = b->engine_mask; 3939 bool result = false; 3940 3941 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) 3942 result |= intel_engine_irq_enable(sibling); 3943 3944 return result; 3945 } 3946 3947 static void 3948 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b) 3949 { 3950 struct intel_engine_cs *sibling; 3951 intel_engine_mask_t tmp, mask = b->engine_mask; 3952 3953 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) 3954 intel_engine_irq_disable(sibling); 3955 } 3956 3957 static void guc_init_breadcrumbs(struct intel_engine_cs *engine) 3958 { 3959 int i; 3960 3961 /* 3962 * In GuC submission mode we do not know which physical engine a request 3963 * will be scheduled on, this creates a problem because the breadcrumb 3964 * interrupt is per physical engine. To work around this we attach 3965 * requests and direct all breadcrumb interrupts to the first instance 3966 * of an engine per class. In addition all breadcrumb interrupts are 3967 * enabled / disabled across an engine class in unison. 3968 */ 3969 for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) { 3970 struct intel_engine_cs *sibling = 3971 engine->gt->engine_class[engine->class][i]; 3972 3973 if (sibling) { 3974 if (engine->breadcrumbs != sibling->breadcrumbs) { 3975 intel_breadcrumbs_put(engine->breadcrumbs); 3976 engine->breadcrumbs = 3977 intel_breadcrumbs_get(sibling->breadcrumbs); 3978 } 3979 break; 3980 } 3981 } 3982 3983 if (engine->breadcrumbs) { 3984 engine->breadcrumbs->engine_mask |= engine->mask; 3985 engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs; 3986 engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs; 3987 } 3988 } 3989 3990 static void guc_bump_inflight_request_prio(struct i915_request *rq, 3991 int prio) 3992 { 3993 struct intel_context *ce = request_to_scheduling_context(rq); 3994 u8 new_guc_prio = map_i915_prio_to_guc_prio(prio); 3995 3996 /* Short circuit function */ 3997 if (prio < I915_PRIORITY_NORMAL || 3998 rq->guc_prio == GUC_PRIO_FINI || 3999 (rq->guc_prio != GUC_PRIO_INIT && 4000 !new_guc_prio_higher(rq->guc_prio, new_guc_prio))) 4001 return; 4002 4003 spin_lock(&ce->guc_state.lock); 4004 if (rq->guc_prio != GUC_PRIO_FINI) { 4005 if (rq->guc_prio != GUC_PRIO_INIT) 4006 sub_context_inflight_prio(ce, rq->guc_prio); 4007 rq->guc_prio = new_guc_prio; 4008 add_context_inflight_prio(ce, rq->guc_prio); 4009 update_context_prio(ce); 4010 } 4011 spin_unlock(&ce->guc_state.lock); 4012 } 4013 4014 static void guc_retire_inflight_request_prio(struct i915_request *rq) 4015 { 4016 struct intel_context *ce = request_to_scheduling_context(rq); 4017 4018 spin_lock(&ce->guc_state.lock); 4019 guc_prio_fini(rq, ce); 4020 spin_unlock(&ce->guc_state.lock); 4021 } 4022 4023 static void sanitize_hwsp(struct intel_engine_cs *engine) 4024 { 4025 struct intel_timeline *tl; 4026 4027 list_for_each_entry(tl, &engine->status_page.timelines, engine_link) 4028 intel_timeline_reset_seqno(tl); 4029 } 4030 4031 static void guc_sanitize(struct intel_engine_cs *engine) 4032 { 4033 /* 4034 * Poison residual state on resume, in case the suspend didn't! 4035 * 4036 * We have to assume that across suspend/resume (or other loss 4037 * of control) that the contents of our pinned buffers has been 4038 * lost, replaced by garbage. Since this doesn't always happen, 4039 * let's poison such state so that we more quickly spot when 4040 * we falsely assume it has been preserved. 4041 */ 4042 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 4043 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE); 4044 4045 /* 4046 * The kernel_context HWSP is stored in the status_page. As above, 4047 * that may be lost on resume/initialisation, and so we need to 4048 * reset the value in the HWSP. 4049 */ 4050 sanitize_hwsp(engine); 4051 4052 /* And scrub the dirty cachelines for the HWSP */ 4053 drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE); 4054 4055 intel_engine_reset_pinned_contexts(engine); 4056 } 4057 4058 static void setup_hwsp(struct intel_engine_cs *engine) 4059 { 4060 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */ 4061 4062 ENGINE_WRITE_FW(engine, 4063 RING_HWS_PGA, 4064 i915_ggtt_offset(engine->status_page.vma)); 4065 } 4066 4067 static void start_engine(struct intel_engine_cs *engine) 4068 { 4069 ENGINE_WRITE_FW(engine, 4070 RING_MODE_GEN7, 4071 _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE)); 4072 4073 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 4074 ENGINE_POSTING_READ(engine, RING_MI_MODE); 4075 } 4076 4077 static int guc_resume(struct intel_engine_cs *engine) 4078 { 4079 assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL); 4080 4081 intel_mocs_init_engine(engine); 4082 4083 intel_breadcrumbs_reset(engine->breadcrumbs); 4084 4085 setup_hwsp(engine); 4086 start_engine(engine); 4087 4088 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) 4089 xehp_enable_ccs_engines(engine); 4090 4091 return 0; 4092 } 4093 4094 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine) 4095 { 4096 return !sched_engine->tasklet.callback; 4097 } 4098 4099 static void guc_set_default_submission(struct intel_engine_cs *engine) 4100 { 4101 engine->submit_request = guc_submit_request; 4102 } 4103 4104 static inline void guc_kernel_context_pin(struct intel_guc *guc, 4105 struct intel_context *ce) 4106 { 4107 /* 4108 * Note: we purposefully do not check the returns below because 4109 * the registration can only fail if a reset is just starting. 4110 * This is called at the end of reset so presumably another reset 4111 * isn't happening and even it did this code would be run again. 4112 */ 4113 4114 if (context_guc_id_invalid(ce)) 4115 pin_guc_id(guc, ce); 4116 4117 if (!test_bit(CONTEXT_GUC_INIT, &ce->flags)) 4118 guc_context_init(ce); 4119 4120 try_context_registration(ce, true); 4121 } 4122 4123 static inline void guc_init_lrc_mapping(struct intel_guc *guc) 4124 { 4125 struct intel_gt *gt = guc_to_gt(guc); 4126 struct intel_engine_cs *engine; 4127 enum intel_engine_id id; 4128 4129 /* make sure all descriptors are clean... */ 4130 xa_destroy(&guc->context_lookup); 4131 4132 /* 4133 * A reset might have occurred while we had a pending stalled request, 4134 * so make sure we clean that up. 4135 */ 4136 guc->stalled_request = NULL; 4137 guc->submission_stall_reason = STALL_NONE; 4138 4139 /* 4140 * Some contexts might have been pinned before we enabled GuC 4141 * submission, so we need to add them to the GuC bookeeping. 4142 * Also, after a reset the of the GuC we want to make sure that the 4143 * information shared with GuC is properly reset. The kernel LRCs are 4144 * not attached to the gem_context, so they need to be added separately. 4145 */ 4146 for_each_engine(engine, gt, id) { 4147 struct intel_context *ce; 4148 4149 list_for_each_entry(ce, &engine->pinned_contexts_list, 4150 pinned_contexts_link) 4151 guc_kernel_context_pin(guc, ce); 4152 } 4153 } 4154 4155 static void guc_release(struct intel_engine_cs *engine) 4156 { 4157 engine->sanitize = NULL; /* no longer in control, nothing to sanitize */ 4158 4159 intel_engine_cleanup_common(engine); 4160 lrc_fini_wa_ctx(engine); 4161 } 4162 4163 static void virtual_guc_bump_serial(struct intel_engine_cs *engine) 4164 { 4165 struct intel_engine_cs *e; 4166 intel_engine_mask_t tmp, mask = engine->mask; 4167 4168 for_each_engine_masked(e, engine->gt, mask, tmp) 4169 e->serial++; 4170 } 4171 4172 static void guc_default_vfuncs(struct intel_engine_cs *engine) 4173 { 4174 /* Default vfuncs which can be overridden by each engine. */ 4175 4176 engine->resume = guc_resume; 4177 4178 engine->cops = &guc_context_ops; 4179 engine->request_alloc = guc_request_alloc; 4180 engine->add_active_request = add_to_context; 4181 engine->remove_active_request = remove_from_context; 4182 4183 engine->sched_engine->schedule = i915_schedule; 4184 4185 engine->reset.prepare = guc_engine_reset_prepare; 4186 engine->reset.rewind = guc_rewind_nop; 4187 engine->reset.cancel = guc_reset_nop; 4188 engine->reset.finish = guc_reset_nop; 4189 4190 engine->emit_flush = gen8_emit_flush_xcs; 4191 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb; 4192 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs; 4193 if (GRAPHICS_VER(engine->i915) >= 12) { 4194 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs; 4195 engine->emit_flush = gen12_emit_flush_xcs; 4196 } 4197 engine->set_default_submission = guc_set_default_submission; 4198 engine->busyness = guc_engine_busyness; 4199 4200 engine->flags |= I915_ENGINE_SUPPORTS_STATS; 4201 engine->flags |= I915_ENGINE_HAS_PREEMPTION; 4202 engine->flags |= I915_ENGINE_HAS_TIMESLICES; 4203 4204 /* Wa_14014475959:dg2 */ 4205 if (IS_DG2(engine->i915) && engine->class == COMPUTE_CLASS) 4206 engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT; 4207 4208 /* 4209 * TODO: GuC supports timeslicing and semaphores as well, but they're 4210 * handled by the firmware so some minor tweaks are required before 4211 * enabling. 4212 * 4213 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES; 4214 */ 4215 4216 engine->emit_bb_start = gen8_emit_bb_start; 4217 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) 4218 engine->emit_bb_start = xehp_emit_bb_start; 4219 } 4220 4221 static void rcs_submission_override(struct intel_engine_cs *engine) 4222 { 4223 switch (GRAPHICS_VER(engine->i915)) { 4224 case 12: 4225 engine->emit_flush = gen12_emit_flush_rcs; 4226 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs; 4227 break; 4228 case 11: 4229 engine->emit_flush = gen11_emit_flush_rcs; 4230 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs; 4231 break; 4232 default: 4233 engine->emit_flush = gen8_emit_flush_rcs; 4234 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs; 4235 break; 4236 } 4237 } 4238 4239 static inline void guc_default_irqs(struct intel_engine_cs *engine) 4240 { 4241 engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT; 4242 intel_engine_set_irq_handler(engine, cs_irq_handler); 4243 } 4244 4245 static void guc_sched_engine_destroy(struct kref *kref) 4246 { 4247 struct i915_sched_engine *sched_engine = 4248 container_of(kref, typeof(*sched_engine), ref); 4249 struct intel_guc *guc = sched_engine->private_data; 4250 4251 guc->sched_engine = NULL; 4252 tasklet_kill(&sched_engine->tasklet); /* flush the callback */ 4253 kfree(sched_engine); 4254 } 4255 4256 int intel_guc_submission_setup(struct intel_engine_cs *engine) 4257 { 4258 struct drm_i915_private *i915 = engine->i915; 4259 struct intel_guc *guc = &engine->gt->uc.guc; 4260 4261 /* 4262 * The setup relies on several assumptions (e.g. irqs always enabled) 4263 * that are only valid on gen11+ 4264 */ 4265 GEM_BUG_ON(GRAPHICS_VER(i915) < 11); 4266 4267 if (!guc->sched_engine) { 4268 guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL); 4269 if (!guc->sched_engine) 4270 return -ENOMEM; 4271 4272 guc->sched_engine->schedule = i915_schedule; 4273 guc->sched_engine->disabled = guc_sched_engine_disabled; 4274 guc->sched_engine->private_data = guc; 4275 guc->sched_engine->destroy = guc_sched_engine_destroy; 4276 guc->sched_engine->bump_inflight_request_prio = 4277 guc_bump_inflight_request_prio; 4278 guc->sched_engine->retire_inflight_request_prio = 4279 guc_retire_inflight_request_prio; 4280 tasklet_setup(&guc->sched_engine->tasklet, 4281 guc_submission_tasklet); 4282 } 4283 i915_sched_engine_put(engine->sched_engine); 4284 engine->sched_engine = i915_sched_engine_get(guc->sched_engine); 4285 4286 guc_default_vfuncs(engine); 4287 guc_default_irqs(engine); 4288 guc_init_breadcrumbs(engine); 4289 4290 if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) 4291 rcs_submission_override(engine); 4292 4293 lrc_init_wa_ctx(engine); 4294 4295 /* Finally, take ownership and responsibility for cleanup! */ 4296 engine->sanitize = guc_sanitize; 4297 engine->release = guc_release; 4298 4299 return 0; 4300 } 4301 4302 struct scheduling_policy { 4303 /* internal data */ 4304 u32 max_words, num_words; 4305 u32 count; 4306 /* API data */ 4307 struct guc_update_scheduling_policy h2g; 4308 }; 4309 4310 static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy) 4311 { 4312 u32 *start = (void *)&policy->h2g; 4313 u32 *end = policy->h2g.data + policy->num_words; 4314 size_t delta = end - start; 4315 4316 return delta; 4317 } 4318 4319 static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy) 4320 { 4321 policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV; 4322 policy->max_words = ARRAY_SIZE(policy->h2g.data); 4323 policy->num_words = 0; 4324 policy->count = 0; 4325 4326 return policy; 4327 } 4328 4329 static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy, 4330 u32 action, u32 *data, u32 len) 4331 { 4332 u32 *klv_ptr = policy->h2g.data + policy->num_words; 4333 4334 GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words); 4335 *(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) | 4336 FIELD_PREP(GUC_KLV_0_LEN, len); 4337 memcpy(klv_ptr, data, sizeof(u32) * len); 4338 policy->num_words += 1 + len; 4339 policy->count++; 4340 } 4341 4342 static int __guc_action_set_scheduling_policies(struct intel_guc *guc, 4343 struct scheduling_policy *policy) 4344 { 4345 int ret; 4346 4347 ret = intel_guc_send(guc, (u32 *)&policy->h2g, 4348 __guc_scheduling_policy_action_size(policy)); 4349 if (ret < 0) 4350 return ret; 4351 4352 if (ret != policy->count) { 4353 drm_warn(&guc_to_gt(guc)->i915->drm, "GuC global scheduler policy processed %d of %d KLVs!", 4354 ret, policy->count); 4355 if (ret > policy->count) 4356 return -EPROTO; 4357 } 4358 4359 return 0; 4360 } 4361 4362 static int guc_init_global_schedule_policy(struct intel_guc *guc) 4363 { 4364 struct scheduling_policy policy; 4365 struct intel_gt *gt = guc_to_gt(guc); 4366 intel_wakeref_t wakeref; 4367 int ret = 0; 4368 4369 if (GET_UC_VER(guc) < MAKE_UC_VER(70, 3, 0)) 4370 return 0; 4371 4372 __guc_scheduling_policy_start_klv(&policy); 4373 4374 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) { 4375 u32 yield[] = { 4376 GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION, 4377 GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO, 4378 }; 4379 4380 __guc_scheduling_policy_add_klv(&policy, 4381 GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD, 4382 yield, ARRAY_SIZE(yield)); 4383 4384 ret = __guc_action_set_scheduling_policies(guc, &policy); 4385 if (ret) 4386 i915_probe_error(gt->i915, 4387 "Failed to configure global scheduling policies: %pe!\n", 4388 ERR_PTR(ret)); 4389 } 4390 4391 return ret; 4392 } 4393 4394 void intel_guc_submission_enable(struct intel_guc *guc) 4395 { 4396 struct intel_gt *gt = guc_to_gt(guc); 4397 4398 /* Enable and route to GuC */ 4399 if (GRAPHICS_VER(gt->i915) >= 12) 4400 intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, 4401 GUC_SEM_INTR_ROUTE_TO_GUC | 4402 GUC_SEM_INTR_ENABLE_ALL); 4403 4404 guc_init_lrc_mapping(guc); 4405 guc_init_engine_stats(guc); 4406 guc_init_global_schedule_policy(guc); 4407 } 4408 4409 void intel_guc_submission_disable(struct intel_guc *guc) 4410 { 4411 struct intel_gt *gt = guc_to_gt(guc); 4412 4413 /* Note: By the time we're here, GuC may have already been reset */ 4414 4415 /* Disable and route to host */ 4416 if (GRAPHICS_VER(gt->i915) >= 12) 4417 intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, 0x0); 4418 } 4419 4420 static bool __guc_submission_supported(struct intel_guc *guc) 4421 { 4422 /* GuC submission is unavailable for pre-Gen11 */ 4423 return intel_guc_is_supported(guc) && 4424 GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11; 4425 } 4426 4427 static bool __guc_submission_selected(struct intel_guc *guc) 4428 { 4429 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 4430 4431 if (!intel_guc_submission_is_supported(guc)) 4432 return false; 4433 4434 return i915->params.enable_guc & ENABLE_GUC_SUBMISSION; 4435 } 4436 4437 int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc) 4438 { 4439 return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc); 4440 } 4441 4442 /* 4443 * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher 4444 * workloads are able to enjoy the latency reduction when delaying the schedule-disable 4445 * operation. This matches the 30fps game-render + encode (real world) workload this 4446 * knob was tested against. 4447 */ 4448 #define SCHED_DISABLE_DELAY_MS 34 4449 4450 /* 4451 * A threshold of 75% is a reasonable starting point considering that real world apps 4452 * generally don't get anywhere near this. 4453 */ 4454 #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \ 4455 (((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4) 4456 4457 void intel_guc_submission_init_early(struct intel_guc *guc) 4458 { 4459 xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ); 4460 4461 spin_lock_init(&guc->submission_state.lock); 4462 INIT_LIST_HEAD(&guc->submission_state.guc_id_list); 4463 ida_init(&guc->submission_state.guc_ids); 4464 INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts); 4465 INIT_WORK(&guc->submission_state.destroyed_worker, 4466 destroyed_worker_func); 4467 INIT_WORK(&guc->submission_state.reset_fail_worker, 4468 reset_fail_worker_func); 4469 4470 spin_lock_init(&guc->timestamp.lock); 4471 INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping); 4472 4473 guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS; 4474 guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID; 4475 guc->submission_state.sched_disable_gucid_threshold = 4476 NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc); 4477 guc->submission_supported = __guc_submission_supported(guc); 4478 guc->submission_selected = __guc_submission_selected(guc); 4479 } 4480 4481 static inline struct intel_context * 4482 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id) 4483 { 4484 struct intel_context *ce; 4485 4486 if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) { 4487 drm_err(&guc_to_gt(guc)->i915->drm, 4488 "Invalid ctx_id %u\n", ctx_id); 4489 return NULL; 4490 } 4491 4492 ce = __get_context(guc, ctx_id); 4493 if (unlikely(!ce)) { 4494 drm_err(&guc_to_gt(guc)->i915->drm, 4495 "Context is NULL, ctx_id %u\n", ctx_id); 4496 return NULL; 4497 } 4498 4499 if (unlikely(intel_context_is_child(ce))) { 4500 drm_err(&guc_to_gt(guc)->i915->drm, 4501 "Context is child, ctx_id %u\n", ctx_id); 4502 return NULL; 4503 } 4504 4505 return ce; 4506 } 4507 4508 int intel_guc_deregister_done_process_msg(struct intel_guc *guc, 4509 const u32 *msg, 4510 u32 len) 4511 { 4512 struct intel_context *ce; 4513 u32 ctx_id; 4514 4515 if (unlikely(len < 1)) { 4516 drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len); 4517 return -EPROTO; 4518 } 4519 ctx_id = msg[0]; 4520 4521 ce = g2h_context_lookup(guc, ctx_id); 4522 if (unlikely(!ce)) 4523 return -EPROTO; 4524 4525 trace_intel_context_deregister_done(ce); 4526 4527 #ifdef CONFIG_DRM_I915_SELFTEST 4528 if (unlikely(ce->drop_deregister)) { 4529 ce->drop_deregister = false; 4530 return 0; 4531 } 4532 #endif 4533 4534 if (context_wait_for_deregister_to_register(ce)) { 4535 struct intel_runtime_pm *runtime_pm = 4536 &ce->engine->gt->i915->runtime_pm; 4537 intel_wakeref_t wakeref; 4538 4539 /* 4540 * Previous owner of this guc_id has been deregistered, now safe 4541 * register this context. 4542 */ 4543 with_intel_runtime_pm(runtime_pm, wakeref) 4544 register_context(ce, true); 4545 guc_signal_context_fence(ce); 4546 intel_context_put(ce); 4547 } else if (context_destroyed(ce)) { 4548 /* Context has been destroyed */ 4549 intel_gt_pm_put_async(guc_to_gt(guc)); 4550 release_guc_id(guc, ce); 4551 __guc_context_destroy(ce); 4552 } 4553 4554 decr_outstanding_submission_g2h(guc); 4555 4556 return 0; 4557 } 4558 4559 int intel_guc_sched_done_process_msg(struct intel_guc *guc, 4560 const u32 *msg, 4561 u32 len) 4562 { 4563 struct intel_context *ce; 4564 unsigned long flags; 4565 u32 ctx_id; 4566 4567 if (unlikely(len < 2)) { 4568 drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len); 4569 return -EPROTO; 4570 } 4571 ctx_id = msg[0]; 4572 4573 ce = g2h_context_lookup(guc, ctx_id); 4574 if (unlikely(!ce)) 4575 return -EPROTO; 4576 4577 if (unlikely(context_destroyed(ce) || 4578 (!context_pending_enable(ce) && 4579 !context_pending_disable(ce)))) { 4580 drm_err(&guc_to_gt(guc)->i915->drm, 4581 "Bad context sched_state 0x%x, ctx_id %u\n", 4582 ce->guc_state.sched_state, ctx_id); 4583 return -EPROTO; 4584 } 4585 4586 trace_intel_context_sched_done(ce); 4587 4588 if (context_pending_enable(ce)) { 4589 #ifdef CONFIG_DRM_I915_SELFTEST 4590 if (unlikely(ce->drop_schedule_enable)) { 4591 ce->drop_schedule_enable = false; 4592 return 0; 4593 } 4594 #endif 4595 4596 spin_lock_irqsave(&ce->guc_state.lock, flags); 4597 clr_context_pending_enable(ce); 4598 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 4599 } else if (context_pending_disable(ce)) { 4600 bool banned; 4601 4602 #ifdef CONFIG_DRM_I915_SELFTEST 4603 if (unlikely(ce->drop_schedule_disable)) { 4604 ce->drop_schedule_disable = false; 4605 return 0; 4606 } 4607 #endif 4608 4609 /* 4610 * Unpin must be done before __guc_signal_context_fence, 4611 * otherwise a race exists between the requests getting 4612 * submitted + retired before this unpin completes resulting in 4613 * the pin_count going to zero and the context still being 4614 * enabled. 4615 */ 4616 intel_context_sched_disable_unpin(ce); 4617 4618 spin_lock_irqsave(&ce->guc_state.lock, flags); 4619 banned = context_banned(ce); 4620 clr_context_banned(ce); 4621 clr_context_pending_disable(ce); 4622 __guc_signal_context_fence(ce); 4623 guc_blocked_fence_complete(ce); 4624 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 4625 4626 if (banned) { 4627 guc_cancel_context_requests(ce); 4628 intel_engine_signal_breadcrumbs(ce->engine); 4629 } 4630 } 4631 4632 decr_outstanding_submission_g2h(guc); 4633 intel_context_put(ce); 4634 4635 return 0; 4636 } 4637 4638 static void capture_error_state(struct intel_guc *guc, 4639 struct intel_context *ce) 4640 { 4641 struct intel_gt *gt = guc_to_gt(guc); 4642 struct drm_i915_private *i915 = gt->i915; 4643 struct intel_engine_cs *engine = __context_to_physical_engine(ce); 4644 intel_wakeref_t wakeref; 4645 4646 intel_engine_set_hung_context(engine, ce); 4647 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 4648 i915_capture_error_state(gt, engine->mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE); 4649 atomic_inc(&i915->gpu_error.reset_engine_count[engine->uabi_class]); 4650 } 4651 4652 static void guc_context_replay(struct intel_context *ce) 4653 { 4654 struct i915_sched_engine *sched_engine = ce->engine->sched_engine; 4655 4656 __guc_reset_context(ce, ce->engine->mask); 4657 tasklet_hi_schedule(&sched_engine->tasklet); 4658 } 4659 4660 static void guc_handle_context_reset(struct intel_guc *guc, 4661 struct intel_context *ce) 4662 { 4663 trace_intel_context_reset(ce); 4664 4665 if (likely(intel_context_is_schedulable(ce))) { 4666 capture_error_state(guc, ce); 4667 guc_context_replay(ce); 4668 } else { 4669 drm_info(&guc_to_gt(guc)->i915->drm, 4670 "Ignoring context reset notification of exiting context 0x%04X on %s", 4671 ce->guc_id.id, ce->engine->name); 4672 } 4673 } 4674 4675 int intel_guc_context_reset_process_msg(struct intel_guc *guc, 4676 const u32 *msg, u32 len) 4677 { 4678 struct intel_context *ce; 4679 unsigned long flags; 4680 int ctx_id; 4681 4682 if (unlikely(len != 1)) { 4683 drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len); 4684 return -EPROTO; 4685 } 4686 4687 ctx_id = msg[0]; 4688 4689 /* 4690 * The context lookup uses the xarray but lookups only require an RCU lock 4691 * not the full spinlock. So take the lock explicitly and keep it until the 4692 * context has been reference count locked to ensure it can't be destroyed 4693 * asynchronously until the reset is done. 4694 */ 4695 xa_lock_irqsave(&guc->context_lookup, flags); 4696 ce = g2h_context_lookup(guc, ctx_id); 4697 if (ce) 4698 intel_context_get(ce); 4699 xa_unlock_irqrestore(&guc->context_lookup, flags); 4700 4701 if (unlikely(!ce)) 4702 return -EPROTO; 4703 4704 guc_handle_context_reset(guc, ce); 4705 intel_context_put(ce); 4706 4707 return 0; 4708 } 4709 4710 int intel_guc_error_capture_process_msg(struct intel_guc *guc, 4711 const u32 *msg, u32 len) 4712 { 4713 u32 status; 4714 4715 if (unlikely(len != 1)) { 4716 drm_dbg(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len); 4717 return -EPROTO; 4718 } 4719 4720 status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK; 4721 if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE) 4722 drm_warn(&guc_to_gt(guc)->i915->drm, "G2H-Error capture no space"); 4723 4724 intel_guc_capture_process(guc); 4725 4726 return 0; 4727 } 4728 4729 struct intel_engine_cs * 4730 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance) 4731 { 4732 struct intel_gt *gt = guc_to_gt(guc); 4733 u8 engine_class = guc_class_to_engine_class(guc_class); 4734 4735 /* Class index is checked in class converter */ 4736 GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE); 4737 4738 return gt->engine_class[engine_class][instance]; 4739 } 4740 4741 static void reset_fail_worker_func(struct work_struct *w) 4742 { 4743 struct intel_guc *guc = container_of(w, struct intel_guc, 4744 submission_state.reset_fail_worker); 4745 struct intel_gt *gt = guc_to_gt(guc); 4746 intel_engine_mask_t reset_fail_mask; 4747 unsigned long flags; 4748 4749 spin_lock_irqsave(&guc->submission_state.lock, flags); 4750 reset_fail_mask = guc->submission_state.reset_fail_mask; 4751 guc->submission_state.reset_fail_mask = 0; 4752 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 4753 4754 if (likely(reset_fail_mask)) 4755 intel_gt_handle_error(gt, reset_fail_mask, 4756 I915_ERROR_CAPTURE, 4757 "GuC failed to reset engine mask=0x%x\n", 4758 reset_fail_mask); 4759 } 4760 4761 int intel_guc_engine_failure_process_msg(struct intel_guc *guc, 4762 const u32 *msg, u32 len) 4763 { 4764 struct intel_engine_cs *engine; 4765 struct intel_gt *gt = guc_to_gt(guc); 4766 u8 guc_class, instance; 4767 u32 reason; 4768 unsigned long flags; 4769 4770 if (unlikely(len != 3)) { 4771 drm_err(>->i915->drm, "Invalid length %u", len); 4772 return -EPROTO; 4773 } 4774 4775 guc_class = msg[0]; 4776 instance = msg[1]; 4777 reason = msg[2]; 4778 4779 engine = intel_guc_lookup_engine(guc, guc_class, instance); 4780 if (unlikely(!engine)) { 4781 drm_err(>->i915->drm, 4782 "Invalid engine %d:%d", guc_class, instance); 4783 return -EPROTO; 4784 } 4785 4786 /* 4787 * This is an unexpected failure of a hardware feature. So, log a real 4788 * error message not just the informational that comes with the reset. 4789 */ 4790 drm_err(>->i915->drm, "GuC engine reset request failed on %d:%d (%s) because 0x%08X", 4791 guc_class, instance, engine->name, reason); 4792 4793 spin_lock_irqsave(&guc->submission_state.lock, flags); 4794 guc->submission_state.reset_fail_mask |= engine->mask; 4795 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 4796 4797 /* 4798 * A GT reset flushes this worker queue (G2H handler) so we must use 4799 * another worker to trigger a GT reset. 4800 */ 4801 queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker); 4802 4803 return 0; 4804 } 4805 4806 void intel_guc_find_hung_context(struct intel_engine_cs *engine) 4807 { 4808 struct intel_guc *guc = &engine->gt->uc.guc; 4809 struct intel_context *ce; 4810 struct i915_request *rq; 4811 unsigned long index; 4812 unsigned long flags; 4813 4814 /* Reset called during driver load? GuC not yet initialised! */ 4815 if (unlikely(!guc_submission_initialized(guc))) 4816 return; 4817 4818 xa_lock_irqsave(&guc->context_lookup, flags); 4819 xa_for_each(&guc->context_lookup, index, ce) { 4820 if (!kref_get_unless_zero(&ce->ref)) 4821 continue; 4822 4823 xa_unlock(&guc->context_lookup); 4824 4825 if (!intel_context_is_pinned(ce)) 4826 goto next; 4827 4828 if (intel_engine_is_virtual(ce->engine)) { 4829 if (!(ce->engine->mask & engine->mask)) 4830 goto next; 4831 } else { 4832 if (ce->engine != engine) 4833 goto next; 4834 } 4835 4836 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) { 4837 if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE) 4838 continue; 4839 4840 intel_engine_set_hung_context(engine, ce); 4841 4842 /* Can only cope with one hang at a time... */ 4843 intel_context_put(ce); 4844 xa_lock(&guc->context_lookup); 4845 goto done; 4846 } 4847 next: 4848 intel_context_put(ce); 4849 xa_lock(&guc->context_lookup); 4850 } 4851 done: 4852 xa_unlock_irqrestore(&guc->context_lookup, flags); 4853 } 4854 4855 void intel_guc_dump_active_requests(struct intel_engine_cs *engine, 4856 struct i915_request *hung_rq, 4857 struct drm_printer *m) 4858 { 4859 struct intel_guc *guc = &engine->gt->uc.guc; 4860 struct intel_context *ce; 4861 unsigned long index; 4862 unsigned long flags; 4863 4864 /* Reset called during driver load? GuC not yet initialised! */ 4865 if (unlikely(!guc_submission_initialized(guc))) 4866 return; 4867 4868 xa_lock_irqsave(&guc->context_lookup, flags); 4869 xa_for_each(&guc->context_lookup, index, ce) { 4870 if (!kref_get_unless_zero(&ce->ref)) 4871 continue; 4872 4873 xa_unlock(&guc->context_lookup); 4874 4875 if (!intel_context_is_pinned(ce)) 4876 goto next; 4877 4878 if (intel_engine_is_virtual(ce->engine)) { 4879 if (!(ce->engine->mask & engine->mask)) 4880 goto next; 4881 } else { 4882 if (ce->engine != engine) 4883 goto next; 4884 } 4885 4886 spin_lock(&ce->guc_state.lock); 4887 intel_engine_dump_active_requests(&ce->guc_state.requests, 4888 hung_rq, m); 4889 spin_unlock(&ce->guc_state.lock); 4890 4891 next: 4892 intel_context_put(ce); 4893 xa_lock(&guc->context_lookup); 4894 } 4895 xa_unlock_irqrestore(&guc->context_lookup, flags); 4896 } 4897 4898 void intel_guc_submission_print_info(struct intel_guc *guc, 4899 struct drm_printer *p) 4900 { 4901 struct i915_sched_engine *sched_engine = guc->sched_engine; 4902 struct rb_node *rb; 4903 unsigned long flags; 4904 4905 if (!sched_engine) 4906 return; 4907 4908 drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n", 4909 atomic_read(&guc->outstanding_submission_g2h)); 4910 drm_printf(p, "GuC tasklet count: %u\n", 4911 atomic_read(&sched_engine->tasklet.count)); 4912 4913 spin_lock_irqsave(&sched_engine->lock, flags); 4914 drm_printf(p, "Requests in GuC submit tasklet:\n"); 4915 for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) { 4916 struct i915_priolist *pl = to_priolist(rb); 4917 struct i915_request *rq; 4918 4919 priolist_for_each_request(rq, pl) 4920 drm_printf(p, "guc_id=%u, seqno=%llu\n", 4921 rq->context->guc_id.id, 4922 rq->fence.seqno); 4923 } 4924 spin_unlock_irqrestore(&sched_engine->lock, flags); 4925 drm_printf(p, "\n"); 4926 } 4927 4928 static inline void guc_log_context_priority(struct drm_printer *p, 4929 struct intel_context *ce) 4930 { 4931 int i; 4932 4933 drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio); 4934 drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n"); 4935 for (i = GUC_CLIENT_PRIORITY_KMD_HIGH; 4936 i < GUC_CLIENT_PRIORITY_NUM; ++i) { 4937 drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n", 4938 i, ce->guc_state.prio_count[i]); 4939 } 4940 drm_printf(p, "\n"); 4941 } 4942 4943 static inline void guc_log_context(struct drm_printer *p, 4944 struct intel_context *ce) 4945 { 4946 drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id); 4947 drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca); 4948 drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n", 4949 ce->ring->head, 4950 ce->lrc_reg_state[CTX_RING_HEAD]); 4951 drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n", 4952 ce->ring->tail, 4953 ce->lrc_reg_state[CTX_RING_TAIL]); 4954 drm_printf(p, "\t\tContext Pin Count: %u\n", 4955 atomic_read(&ce->pin_count)); 4956 drm_printf(p, "\t\tGuC ID Ref Count: %u\n", 4957 atomic_read(&ce->guc_id.ref)); 4958 drm_printf(p, "\t\tSchedule State: 0x%x\n", 4959 ce->guc_state.sched_state); 4960 } 4961 4962 void intel_guc_submission_print_context_info(struct intel_guc *guc, 4963 struct drm_printer *p) 4964 { 4965 struct intel_context *ce; 4966 unsigned long index; 4967 unsigned long flags; 4968 4969 xa_lock_irqsave(&guc->context_lookup, flags); 4970 xa_for_each(&guc->context_lookup, index, ce) { 4971 GEM_BUG_ON(intel_context_is_child(ce)); 4972 4973 guc_log_context(p, ce); 4974 guc_log_context_priority(p, ce); 4975 4976 if (intel_context_is_parent(ce)) { 4977 struct intel_context *child; 4978 4979 drm_printf(p, "\t\tNumber children: %u\n", 4980 ce->parallel.number_children); 4981 4982 if (ce->parallel.guc.wq_status) { 4983 drm_printf(p, "\t\tWQI Head: %u\n", 4984 READ_ONCE(*ce->parallel.guc.wq_head)); 4985 drm_printf(p, "\t\tWQI Tail: %u\n", 4986 READ_ONCE(*ce->parallel.guc.wq_tail)); 4987 drm_printf(p, "\t\tWQI Status: %u\n", 4988 READ_ONCE(*ce->parallel.guc.wq_status)); 4989 } 4990 4991 if (ce->engine->emit_bb_start == 4992 emit_bb_start_parent_no_preempt_mid_batch) { 4993 u8 i; 4994 4995 drm_printf(p, "\t\tChildren Go: %u\n", 4996 get_children_go_value(ce)); 4997 for (i = 0; i < ce->parallel.number_children; ++i) 4998 drm_printf(p, "\t\tChildren Join: %u\n", 4999 get_children_join_value(ce, i)); 5000 } 5001 5002 for_each_child(ce, child) 5003 guc_log_context(p, child); 5004 } 5005 } 5006 xa_unlock_irqrestore(&guc->context_lookup, flags); 5007 } 5008 5009 static inline u32 get_children_go_addr(struct intel_context *ce) 5010 { 5011 GEM_BUG_ON(!intel_context_is_parent(ce)); 5012 5013 return i915_ggtt_offset(ce->state) + 5014 __get_parent_scratch_offset(ce) + 5015 offsetof(struct parent_scratch, go.semaphore); 5016 } 5017 5018 static inline u32 get_children_join_addr(struct intel_context *ce, 5019 u8 child_index) 5020 { 5021 GEM_BUG_ON(!intel_context_is_parent(ce)); 5022 5023 return i915_ggtt_offset(ce->state) + 5024 __get_parent_scratch_offset(ce) + 5025 offsetof(struct parent_scratch, join[child_index].semaphore); 5026 } 5027 5028 #define PARENT_GO_BB 1 5029 #define PARENT_GO_FINI_BREADCRUMB 0 5030 #define CHILD_GO_BB 1 5031 #define CHILD_GO_FINI_BREADCRUMB 0 5032 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, 5033 u64 offset, u32 len, 5034 const unsigned int flags) 5035 { 5036 struct intel_context *ce = rq->context; 5037 u32 *cs; 5038 u8 i; 5039 5040 GEM_BUG_ON(!intel_context_is_parent(ce)); 5041 5042 cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children); 5043 if (IS_ERR(cs)) 5044 return PTR_ERR(cs); 5045 5046 /* Wait on children */ 5047 for (i = 0; i < ce->parallel.number_children; ++i) { 5048 *cs++ = (MI_SEMAPHORE_WAIT | 5049 MI_SEMAPHORE_GLOBAL_GTT | 5050 MI_SEMAPHORE_POLL | 5051 MI_SEMAPHORE_SAD_EQ_SDD); 5052 *cs++ = PARENT_GO_BB; 5053 *cs++ = get_children_join_addr(ce, i); 5054 *cs++ = 0; 5055 } 5056 5057 /* Turn off preemption */ 5058 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 5059 *cs++ = MI_NOOP; 5060 5061 /* Tell children go */ 5062 cs = gen8_emit_ggtt_write(cs, 5063 CHILD_GO_BB, 5064 get_children_go_addr(ce), 5065 0); 5066 5067 /* Jump to batch */ 5068 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 5069 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 5070 *cs++ = lower_32_bits(offset); 5071 *cs++ = upper_32_bits(offset); 5072 *cs++ = MI_NOOP; 5073 5074 intel_ring_advance(rq, cs); 5075 5076 return 0; 5077 } 5078 5079 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, 5080 u64 offset, u32 len, 5081 const unsigned int flags) 5082 { 5083 struct intel_context *ce = rq->context; 5084 struct intel_context *parent = intel_context_to_parent(ce); 5085 u32 *cs; 5086 5087 GEM_BUG_ON(!intel_context_is_child(ce)); 5088 5089 cs = intel_ring_begin(rq, 12); 5090 if (IS_ERR(cs)) 5091 return PTR_ERR(cs); 5092 5093 /* Signal parent */ 5094 cs = gen8_emit_ggtt_write(cs, 5095 PARENT_GO_BB, 5096 get_children_join_addr(parent, 5097 ce->parallel.child_index), 5098 0); 5099 5100 /* Wait on parent for go */ 5101 *cs++ = (MI_SEMAPHORE_WAIT | 5102 MI_SEMAPHORE_GLOBAL_GTT | 5103 MI_SEMAPHORE_POLL | 5104 MI_SEMAPHORE_SAD_EQ_SDD); 5105 *cs++ = CHILD_GO_BB; 5106 *cs++ = get_children_go_addr(parent); 5107 *cs++ = 0; 5108 5109 /* Turn off preemption */ 5110 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 5111 5112 /* Jump to batch */ 5113 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 5114 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 5115 *cs++ = lower_32_bits(offset); 5116 *cs++ = upper_32_bits(offset); 5117 5118 intel_ring_advance(rq, cs); 5119 5120 return 0; 5121 } 5122 5123 static u32 * 5124 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 5125 u32 *cs) 5126 { 5127 struct intel_context *ce = rq->context; 5128 u8 i; 5129 5130 GEM_BUG_ON(!intel_context_is_parent(ce)); 5131 5132 /* Wait on children */ 5133 for (i = 0; i < ce->parallel.number_children; ++i) { 5134 *cs++ = (MI_SEMAPHORE_WAIT | 5135 MI_SEMAPHORE_GLOBAL_GTT | 5136 MI_SEMAPHORE_POLL | 5137 MI_SEMAPHORE_SAD_EQ_SDD); 5138 *cs++ = PARENT_GO_FINI_BREADCRUMB; 5139 *cs++ = get_children_join_addr(ce, i); 5140 *cs++ = 0; 5141 } 5142 5143 /* Turn on preemption */ 5144 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 5145 *cs++ = MI_NOOP; 5146 5147 /* Tell children go */ 5148 cs = gen8_emit_ggtt_write(cs, 5149 CHILD_GO_FINI_BREADCRUMB, 5150 get_children_go_addr(ce), 5151 0); 5152 5153 return cs; 5154 } 5155 5156 /* 5157 * If this true, a submission of multi-lrc requests had an error and the 5158 * requests need to be skipped. The front end (execuf IOCTL) should've called 5159 * i915_request_skip which squashes the BB but we still need to emit the fini 5160 * breadrcrumbs seqno write. At this point we don't know how many of the 5161 * requests in the multi-lrc submission were generated so we can't do the 5162 * handshake between the parent and children (e.g. if 4 requests should be 5163 * generated but 2nd hit an error only 1 would be seen by the GuC backend). 5164 * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error 5165 * has occurred on any of the requests in submission / relationship. 5166 */ 5167 static inline bool skip_handshake(struct i915_request *rq) 5168 { 5169 return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags); 5170 } 5171 5172 #define NON_SKIP_LEN 6 5173 static u32 * 5174 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 5175 u32 *cs) 5176 { 5177 struct intel_context *ce = rq->context; 5178 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; 5179 __maybe_unused u32 *start_fini_breadcrumb_cs = cs; 5180 5181 GEM_BUG_ON(!intel_context_is_parent(ce)); 5182 5183 if (unlikely(skip_handshake(rq))) { 5184 /* 5185 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch, 5186 * the NON_SKIP_LEN comes from the length of the emits below. 5187 */ 5188 memset(cs, 0, sizeof(u32) * 5189 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); 5190 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; 5191 } else { 5192 cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs); 5193 } 5194 5195 /* Emit fini breadcrumb */ 5196 before_fini_breadcrumb_user_interrupt_cs = cs; 5197 cs = gen8_emit_ggtt_write(cs, 5198 rq->fence.seqno, 5199 i915_request_active_timeline(rq)->hwsp_offset, 5200 0); 5201 5202 /* User interrupt */ 5203 *cs++ = MI_USER_INTERRUPT; 5204 *cs++ = MI_NOOP; 5205 5206 /* Ensure our math for skip + emit is correct */ 5207 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != 5208 cs); 5209 GEM_BUG_ON(start_fini_breadcrumb_cs + 5210 ce->engine->emit_fini_breadcrumb_dw != cs); 5211 5212 rq->tail = intel_ring_offset(rq, cs); 5213 5214 return cs; 5215 } 5216 5217 static u32 * 5218 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 5219 u32 *cs) 5220 { 5221 struct intel_context *ce = rq->context; 5222 struct intel_context *parent = intel_context_to_parent(ce); 5223 5224 GEM_BUG_ON(!intel_context_is_child(ce)); 5225 5226 /* Turn on preemption */ 5227 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 5228 *cs++ = MI_NOOP; 5229 5230 /* Signal parent */ 5231 cs = gen8_emit_ggtt_write(cs, 5232 PARENT_GO_FINI_BREADCRUMB, 5233 get_children_join_addr(parent, 5234 ce->parallel.child_index), 5235 0); 5236 5237 /* Wait parent on for go */ 5238 *cs++ = (MI_SEMAPHORE_WAIT | 5239 MI_SEMAPHORE_GLOBAL_GTT | 5240 MI_SEMAPHORE_POLL | 5241 MI_SEMAPHORE_SAD_EQ_SDD); 5242 *cs++ = CHILD_GO_FINI_BREADCRUMB; 5243 *cs++ = get_children_go_addr(parent); 5244 *cs++ = 0; 5245 5246 return cs; 5247 } 5248 5249 static u32 * 5250 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 5251 u32 *cs) 5252 { 5253 struct intel_context *ce = rq->context; 5254 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; 5255 __maybe_unused u32 *start_fini_breadcrumb_cs = cs; 5256 5257 GEM_BUG_ON(!intel_context_is_child(ce)); 5258 5259 if (unlikely(skip_handshake(rq))) { 5260 /* 5261 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch, 5262 * the NON_SKIP_LEN comes from the length of the emits below. 5263 */ 5264 memset(cs, 0, sizeof(u32) * 5265 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); 5266 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; 5267 } else { 5268 cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs); 5269 } 5270 5271 /* Emit fini breadcrumb */ 5272 before_fini_breadcrumb_user_interrupt_cs = cs; 5273 cs = gen8_emit_ggtt_write(cs, 5274 rq->fence.seqno, 5275 i915_request_active_timeline(rq)->hwsp_offset, 5276 0); 5277 5278 /* User interrupt */ 5279 *cs++ = MI_USER_INTERRUPT; 5280 *cs++ = MI_NOOP; 5281 5282 /* Ensure our math for skip + emit is correct */ 5283 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != 5284 cs); 5285 GEM_BUG_ON(start_fini_breadcrumb_cs + 5286 ce->engine->emit_fini_breadcrumb_dw != cs); 5287 5288 rq->tail = intel_ring_offset(rq, cs); 5289 5290 return cs; 5291 } 5292 5293 #undef NON_SKIP_LEN 5294 5295 static struct intel_context * 5296 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, 5297 unsigned long flags) 5298 { 5299 struct guc_virtual_engine *ve; 5300 struct intel_guc *guc; 5301 unsigned int n; 5302 int err; 5303 5304 ve = kzalloc(sizeof(*ve), GFP_KERNEL); 5305 if (!ve) 5306 return ERR_PTR(-ENOMEM); 5307 5308 guc = &siblings[0]->gt->uc.guc; 5309 5310 ve->base.i915 = siblings[0]->i915; 5311 ve->base.gt = siblings[0]->gt; 5312 ve->base.uncore = siblings[0]->uncore; 5313 ve->base.id = -1; 5314 5315 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID; 5316 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 5317 ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 5318 ve->base.saturated = ALL_ENGINES; 5319 5320 snprintf(ve->base.name, sizeof(ve->base.name), "virtual"); 5321 5322 ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine); 5323 5324 ve->base.cops = &virtual_guc_context_ops; 5325 ve->base.request_alloc = guc_request_alloc; 5326 ve->base.bump_serial = virtual_guc_bump_serial; 5327 5328 ve->base.submit_request = guc_submit_request; 5329 5330 ve->base.flags = I915_ENGINE_IS_VIRTUAL; 5331 5332 intel_context_init(&ve->context, &ve->base); 5333 5334 for (n = 0; n < count; n++) { 5335 struct intel_engine_cs *sibling = siblings[n]; 5336 5337 GEM_BUG_ON(!is_power_of_2(sibling->mask)); 5338 if (sibling->mask & ve->base.mask) { 5339 DRM_DEBUG("duplicate %s entry in load balancer\n", 5340 sibling->name); 5341 err = -EINVAL; 5342 goto err_put; 5343 } 5344 5345 ve->base.mask |= sibling->mask; 5346 ve->base.logical_mask |= sibling->logical_mask; 5347 5348 if (n != 0 && ve->base.class != sibling->class) { 5349 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n", 5350 sibling->class, ve->base.class); 5351 err = -EINVAL; 5352 goto err_put; 5353 } else if (n == 0) { 5354 ve->base.class = sibling->class; 5355 ve->base.uabi_class = sibling->uabi_class; 5356 snprintf(ve->base.name, sizeof(ve->base.name), 5357 "v%dx%d", ve->base.class, count); 5358 ve->base.context_size = sibling->context_size; 5359 5360 ve->base.add_active_request = 5361 sibling->add_active_request; 5362 ve->base.remove_active_request = 5363 sibling->remove_active_request; 5364 ve->base.emit_bb_start = sibling->emit_bb_start; 5365 ve->base.emit_flush = sibling->emit_flush; 5366 ve->base.emit_init_breadcrumb = 5367 sibling->emit_init_breadcrumb; 5368 ve->base.emit_fini_breadcrumb = 5369 sibling->emit_fini_breadcrumb; 5370 ve->base.emit_fini_breadcrumb_dw = 5371 sibling->emit_fini_breadcrumb_dw; 5372 ve->base.breadcrumbs = 5373 intel_breadcrumbs_get(sibling->breadcrumbs); 5374 5375 ve->base.flags |= sibling->flags; 5376 5377 ve->base.props.timeslice_duration_ms = 5378 sibling->props.timeslice_duration_ms; 5379 ve->base.props.preempt_timeout_ms = 5380 sibling->props.preempt_timeout_ms; 5381 } 5382 } 5383 5384 return &ve->context; 5385 5386 err_put: 5387 intel_context_put(&ve->context); 5388 return ERR_PTR(err); 5389 } 5390 5391 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve) 5392 { 5393 struct intel_engine_cs *engine; 5394 intel_engine_mask_t tmp, mask = ve->mask; 5395 5396 for_each_engine_masked(engine, ve->gt, mask, tmp) 5397 if (READ_ONCE(engine->props.heartbeat_interval_ms)) 5398 return true; 5399 5400 return false; 5401 } 5402 5403 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5404 #include "selftest_guc.c" 5405 #include "selftest_guc_multi_lrc.c" 5406 #include "selftest_guc_hangcheck.c" 5407 #endif 5408