1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014 Intel Corporation 4 */ 5 6 #include <linux/circ_buf.h> 7 8 #include "gem/i915_gem_context.h" 9 #include "gt/gen8_engine_cs.h" 10 #include "gt/intel_breadcrumbs.h" 11 #include "gt/intel_context.h" 12 #include "gt/intel_engine_heartbeat.h" 13 #include "gt/intel_engine_pm.h" 14 #include "gt/intel_engine_regs.h" 15 #include "gt/intel_gpu_commands.h" 16 #include "gt/intel_gt.h" 17 #include "gt/intel_gt_clock_utils.h" 18 #include "gt/intel_gt_irq.h" 19 #include "gt/intel_gt_pm.h" 20 #include "gt/intel_gt_regs.h" 21 #include "gt/intel_gt_requests.h" 22 #include "gt/intel_lrc.h" 23 #include "gt/intel_lrc_reg.h" 24 #include "gt/intel_mocs.h" 25 #include "gt/intel_ring.h" 26 27 #include "intel_guc_ads.h" 28 #include "intel_guc_capture.h" 29 #include "intel_guc_submission.h" 30 31 #include "i915_drv.h" 32 #include "i915_trace.h" 33 34 /** 35 * DOC: GuC-based command submission 36 * 37 * The Scratch registers: 38 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes 39 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then 40 * triggers an interrupt on the GuC via another register write (0xC4C8). 41 * Firmware writes a success/fail code back to the action register after 42 * processes the request. The kernel driver polls waiting for this update and 43 * then proceeds. 44 * 45 * Command Transport buffers (CTBs): 46 * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host 47 * - G2H) are a message interface between the i915 and GuC. 48 * 49 * Context registration: 50 * Before a context can be submitted it must be registered with the GuC via a 51 * H2G. A unique guc_id is associated with each context. The context is either 52 * registered at request creation time (normal operation) or at submission time 53 * (abnormal operation, e.g. after a reset). 54 * 55 * Context submission: 56 * The i915 updates the LRC tail value in memory. The i915 must enable the 57 * scheduling of the context within the GuC for the GuC to actually consider it. 58 * Therefore, the first time a disabled context is submitted we use a schedule 59 * enable H2G, while follow up submissions are done via the context submit H2G, 60 * which informs the GuC that a previously enabled context has new work 61 * available. 62 * 63 * Context unpin: 64 * To unpin a context a H2G is used to disable scheduling. When the 65 * corresponding G2H returns indicating the scheduling disable operation has 66 * completed it is safe to unpin the context. While a disable is in flight it 67 * isn't safe to resubmit the context so a fence is used to stall all future 68 * requests of that context until the G2H is returned. 69 * 70 * Context deregistration: 71 * Before a context can be destroyed or if we steal its guc_id we must 72 * deregister the context with the GuC via H2G. If stealing the guc_id it isn't 73 * safe to submit anything to this guc_id until the deregister completes so a 74 * fence is used to stall all requests associated with this guc_id until the 75 * corresponding G2H returns indicating the guc_id has been deregistered. 76 * 77 * submission_state.guc_ids: 78 * Unique number associated with private GuC context data passed in during 79 * context registration / submission / deregistration. 64k available. Simple ida 80 * is used for allocation. 81 * 82 * Stealing guc_ids: 83 * If no guc_ids are available they can be stolen from another context at 84 * request creation time if that context is unpinned. If a guc_id can't be found 85 * we punt this problem to the user as we believe this is near impossible to hit 86 * during normal use cases. 87 * 88 * Locking: 89 * In the GuC submission code we have 3 basic spin locks which protect 90 * everything. Details about each below. 91 * 92 * sched_engine->lock 93 * This is the submission lock for all contexts that share an i915 schedule 94 * engine (sched_engine), thus only one of the contexts which share a 95 * sched_engine can be submitting at a time. Currently only one sched_engine is 96 * used for all of GuC submission but that could change in the future. 97 * 98 * guc->submission_state.lock 99 * Global lock for GuC submission state. Protects guc_ids and destroyed contexts 100 * list. 101 * 102 * ce->guc_state.lock 103 * Protects everything under ce->guc_state. Ensures that a context is in the 104 * correct state before issuing a H2G. e.g. We don't issue a schedule disable 105 * on a disabled context (bad idea), we don't issue a schedule enable when a 106 * schedule disable is in flight, etc... Also protects list of inflight requests 107 * on the context and the priority management state. Lock is individual to each 108 * context. 109 * 110 * Lock ordering rules: 111 * sched_engine->lock -> ce->guc_state.lock 112 * guc->submission_state.lock -> ce->guc_state.lock 113 * 114 * Reset races: 115 * When a full GT reset is triggered it is assumed that some G2H responses to 116 * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be 117 * fatal as we do certain operations upon receiving a G2H (e.g. destroy 118 * contexts, release guc_ids, etc...). When this occurs we can scrub the 119 * context state and cleanup appropriately, however this is quite racey. 120 * To avoid races, the reset code must disable submission before scrubbing for 121 * the missing G2H, while the submission code must check for submission being 122 * disabled and skip sending H2Gs and updating context states when it is. Both 123 * sides must also make sure to hold the relevant locks. 124 */ 125 126 /* GuC Virtual Engine */ 127 struct guc_virtual_engine { 128 struct intel_engine_cs base; 129 struct intel_context context; 130 }; 131 132 static struct intel_context * 133 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, 134 unsigned long flags); 135 136 static struct intel_context * 137 guc_create_parallel(struct intel_engine_cs **engines, 138 unsigned int num_siblings, 139 unsigned int width); 140 141 #define GUC_REQUEST_SIZE 64 /* bytes */ 142 143 /* 144 * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous 145 * per the GuC submission interface. A different allocation algorithm is used 146 * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to 147 * partition the guc_id space. We believe the number of multi-lrc contexts in 148 * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for 149 * multi-lrc. 150 */ 151 #define NUMBER_MULTI_LRC_GUC_ID(guc) \ 152 ((guc)->submission_state.num_guc_ids / 16) 153 154 /* 155 * Below is a set of functions which control the GuC scheduling state which 156 * require a lock. 157 */ 158 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER BIT(0) 159 #define SCHED_STATE_DESTROYED BIT(1) 160 #define SCHED_STATE_PENDING_DISABLE BIT(2) 161 #define SCHED_STATE_BANNED BIT(3) 162 #define SCHED_STATE_ENABLED BIT(4) 163 #define SCHED_STATE_PENDING_ENABLE BIT(5) 164 #define SCHED_STATE_REGISTERED BIT(6) 165 #define SCHED_STATE_POLICY_REQUIRED BIT(7) 166 #define SCHED_STATE_BLOCKED_SHIFT 8 167 #define SCHED_STATE_BLOCKED BIT(SCHED_STATE_BLOCKED_SHIFT) 168 #define SCHED_STATE_BLOCKED_MASK (0xfff << SCHED_STATE_BLOCKED_SHIFT) 169 170 static inline void init_sched_state(struct intel_context *ce) 171 { 172 lockdep_assert_held(&ce->guc_state.lock); 173 ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK; 174 } 175 176 __maybe_unused 177 static bool sched_state_is_init(struct intel_context *ce) 178 { 179 /* Kernel contexts can have SCHED_STATE_REGISTERED after suspend. */ 180 return !(ce->guc_state.sched_state & 181 ~(SCHED_STATE_BLOCKED_MASK | SCHED_STATE_REGISTERED)); 182 } 183 184 static inline bool 185 context_wait_for_deregister_to_register(struct intel_context *ce) 186 { 187 return ce->guc_state.sched_state & 188 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 189 } 190 191 static inline void 192 set_context_wait_for_deregister_to_register(struct intel_context *ce) 193 { 194 lockdep_assert_held(&ce->guc_state.lock); 195 ce->guc_state.sched_state |= 196 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 197 } 198 199 static inline void 200 clr_context_wait_for_deregister_to_register(struct intel_context *ce) 201 { 202 lockdep_assert_held(&ce->guc_state.lock); 203 ce->guc_state.sched_state &= 204 ~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 205 } 206 207 static inline bool 208 context_destroyed(struct intel_context *ce) 209 { 210 return ce->guc_state.sched_state & SCHED_STATE_DESTROYED; 211 } 212 213 static inline void 214 set_context_destroyed(struct intel_context *ce) 215 { 216 lockdep_assert_held(&ce->guc_state.lock); 217 ce->guc_state.sched_state |= SCHED_STATE_DESTROYED; 218 } 219 220 static inline bool context_pending_disable(struct intel_context *ce) 221 { 222 return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE; 223 } 224 225 static inline void set_context_pending_disable(struct intel_context *ce) 226 { 227 lockdep_assert_held(&ce->guc_state.lock); 228 ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE; 229 } 230 231 static inline void clr_context_pending_disable(struct intel_context *ce) 232 { 233 lockdep_assert_held(&ce->guc_state.lock); 234 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE; 235 } 236 237 static inline bool context_banned(struct intel_context *ce) 238 { 239 return ce->guc_state.sched_state & SCHED_STATE_BANNED; 240 } 241 242 static inline void set_context_banned(struct intel_context *ce) 243 { 244 lockdep_assert_held(&ce->guc_state.lock); 245 ce->guc_state.sched_state |= SCHED_STATE_BANNED; 246 } 247 248 static inline void clr_context_banned(struct intel_context *ce) 249 { 250 lockdep_assert_held(&ce->guc_state.lock); 251 ce->guc_state.sched_state &= ~SCHED_STATE_BANNED; 252 } 253 254 static inline bool context_enabled(struct intel_context *ce) 255 { 256 return ce->guc_state.sched_state & SCHED_STATE_ENABLED; 257 } 258 259 static inline void set_context_enabled(struct intel_context *ce) 260 { 261 lockdep_assert_held(&ce->guc_state.lock); 262 ce->guc_state.sched_state |= SCHED_STATE_ENABLED; 263 } 264 265 static inline void clr_context_enabled(struct intel_context *ce) 266 { 267 lockdep_assert_held(&ce->guc_state.lock); 268 ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED; 269 } 270 271 static inline bool context_pending_enable(struct intel_context *ce) 272 { 273 return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE; 274 } 275 276 static inline void set_context_pending_enable(struct intel_context *ce) 277 { 278 lockdep_assert_held(&ce->guc_state.lock); 279 ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE; 280 } 281 282 static inline void clr_context_pending_enable(struct intel_context *ce) 283 { 284 lockdep_assert_held(&ce->guc_state.lock); 285 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE; 286 } 287 288 static inline bool context_registered(struct intel_context *ce) 289 { 290 return ce->guc_state.sched_state & SCHED_STATE_REGISTERED; 291 } 292 293 static inline void set_context_registered(struct intel_context *ce) 294 { 295 lockdep_assert_held(&ce->guc_state.lock); 296 ce->guc_state.sched_state |= SCHED_STATE_REGISTERED; 297 } 298 299 static inline void clr_context_registered(struct intel_context *ce) 300 { 301 lockdep_assert_held(&ce->guc_state.lock); 302 ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED; 303 } 304 305 static inline bool context_policy_required(struct intel_context *ce) 306 { 307 return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED; 308 } 309 310 static inline void set_context_policy_required(struct intel_context *ce) 311 { 312 lockdep_assert_held(&ce->guc_state.lock); 313 ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED; 314 } 315 316 static inline void clr_context_policy_required(struct intel_context *ce) 317 { 318 lockdep_assert_held(&ce->guc_state.lock); 319 ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED; 320 } 321 322 static inline u32 context_blocked(struct intel_context *ce) 323 { 324 return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >> 325 SCHED_STATE_BLOCKED_SHIFT; 326 } 327 328 static inline void incr_context_blocked(struct intel_context *ce) 329 { 330 lockdep_assert_held(&ce->guc_state.lock); 331 332 ce->guc_state.sched_state += SCHED_STATE_BLOCKED; 333 334 GEM_BUG_ON(!context_blocked(ce)); /* Overflow check */ 335 } 336 337 static inline void decr_context_blocked(struct intel_context *ce) 338 { 339 lockdep_assert_held(&ce->guc_state.lock); 340 341 GEM_BUG_ON(!context_blocked(ce)); /* Underflow check */ 342 343 ce->guc_state.sched_state -= SCHED_STATE_BLOCKED; 344 } 345 346 static inline bool context_has_committed_requests(struct intel_context *ce) 347 { 348 return !!ce->guc_state.number_committed_requests; 349 } 350 351 static inline void incr_context_committed_requests(struct intel_context *ce) 352 { 353 lockdep_assert_held(&ce->guc_state.lock); 354 ++ce->guc_state.number_committed_requests; 355 GEM_BUG_ON(ce->guc_state.number_committed_requests < 0); 356 } 357 358 static inline void decr_context_committed_requests(struct intel_context *ce) 359 { 360 lockdep_assert_held(&ce->guc_state.lock); 361 --ce->guc_state.number_committed_requests; 362 GEM_BUG_ON(ce->guc_state.number_committed_requests < 0); 363 } 364 365 static struct intel_context * 366 request_to_scheduling_context(struct i915_request *rq) 367 { 368 return intel_context_to_parent(rq->context); 369 } 370 371 static inline bool context_guc_id_invalid(struct intel_context *ce) 372 { 373 return ce->guc_id.id == GUC_INVALID_CONTEXT_ID; 374 } 375 376 static inline void set_context_guc_id_invalid(struct intel_context *ce) 377 { 378 ce->guc_id.id = GUC_INVALID_CONTEXT_ID; 379 } 380 381 static inline struct intel_guc *ce_to_guc(struct intel_context *ce) 382 { 383 return &ce->engine->gt->uc.guc; 384 } 385 386 static inline struct i915_priolist *to_priolist(struct rb_node *rb) 387 { 388 return rb_entry(rb, struct i915_priolist, node); 389 } 390 391 /* 392 * When using multi-lrc submission a scratch memory area is reserved in the 393 * parent's context state for the process descriptor, work queue, and handshake 394 * between the parent + children contexts to insert safe preemption points 395 * between each of the BBs. Currently the scratch area is sized to a page. 396 * 397 * The layout of this scratch area is below: 398 * 0 guc_process_desc 399 * + sizeof(struct guc_process_desc) child go 400 * + CACHELINE_BYTES child join[0] 401 * ... 402 * + CACHELINE_BYTES child join[n - 1] 403 * ... unused 404 * PARENT_SCRATCH_SIZE / 2 work queue start 405 * ... work queue 406 * PARENT_SCRATCH_SIZE - 1 work queue end 407 */ 408 #define WQ_SIZE (PARENT_SCRATCH_SIZE / 2) 409 #define WQ_OFFSET (PARENT_SCRATCH_SIZE - WQ_SIZE) 410 411 struct sync_semaphore { 412 u32 semaphore; 413 u8 unused[CACHELINE_BYTES - sizeof(u32)]; 414 }; 415 416 struct parent_scratch { 417 union guc_descs { 418 struct guc_sched_wq_desc wq_desc; 419 struct guc_process_desc_v69 pdesc; 420 } descs; 421 422 struct sync_semaphore go; 423 struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1]; 424 425 u8 unused[WQ_OFFSET - sizeof(union guc_descs) - 426 sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)]; 427 428 u32 wq[WQ_SIZE / sizeof(u32)]; 429 }; 430 431 static u32 __get_parent_scratch_offset(struct intel_context *ce) 432 { 433 GEM_BUG_ON(!ce->parallel.guc.parent_page); 434 435 return ce->parallel.guc.parent_page * PAGE_SIZE; 436 } 437 438 static u32 __get_wq_offset(struct intel_context *ce) 439 { 440 BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET); 441 442 return __get_parent_scratch_offset(ce) + WQ_OFFSET; 443 } 444 445 static struct parent_scratch * 446 __get_parent_scratch(struct intel_context *ce) 447 { 448 BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE); 449 BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES); 450 451 /* 452 * Need to subtract LRC_STATE_OFFSET here as the 453 * parallel.guc.parent_page is the offset into ce->state while 454 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET. 455 */ 456 return (struct parent_scratch *) 457 (ce->lrc_reg_state + 458 ((__get_parent_scratch_offset(ce) - 459 LRC_STATE_OFFSET) / sizeof(u32))); 460 } 461 462 static struct guc_process_desc_v69 * 463 __get_process_desc_v69(struct intel_context *ce) 464 { 465 struct parent_scratch *ps = __get_parent_scratch(ce); 466 467 return &ps->descs.pdesc; 468 } 469 470 static struct guc_sched_wq_desc * 471 __get_wq_desc_v70(struct intel_context *ce) 472 { 473 struct parent_scratch *ps = __get_parent_scratch(ce); 474 475 return &ps->descs.wq_desc; 476 } 477 478 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size) 479 { 480 /* 481 * Check for space in work queue. Caching a value of head pointer in 482 * intel_context structure in order reduce the number accesses to shared 483 * GPU memory which may be across a PCIe bus. 484 */ 485 #define AVAILABLE_SPACE \ 486 CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE) 487 if (wqi_size > AVAILABLE_SPACE) { 488 ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head); 489 490 if (wqi_size > AVAILABLE_SPACE) 491 return NULL; 492 } 493 #undef AVAILABLE_SPACE 494 495 return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)]; 496 } 497 498 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id) 499 { 500 struct intel_context *ce = xa_load(&guc->context_lookup, id); 501 502 GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID); 503 504 return ce; 505 } 506 507 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index) 508 { 509 struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69; 510 511 if (!base) 512 return NULL; 513 514 GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID); 515 516 return &base[index]; 517 } 518 519 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc) 520 { 521 u32 size; 522 int ret; 523 524 size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) * 525 GUC_MAX_CONTEXT_ID); 526 ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69, 527 (void **)&guc->lrc_desc_pool_vaddr_v69); 528 if (ret) 529 return ret; 530 531 return 0; 532 } 533 534 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc) 535 { 536 if (!guc->lrc_desc_pool_vaddr_v69) 537 return; 538 539 guc->lrc_desc_pool_vaddr_v69 = NULL; 540 i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP); 541 } 542 543 static inline bool guc_submission_initialized(struct intel_guc *guc) 544 { 545 return guc->submission_initialized; 546 } 547 548 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id) 549 { 550 struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id); 551 552 if (desc) 553 memset(desc, 0, sizeof(*desc)); 554 } 555 556 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id) 557 { 558 return __get_context(guc, id); 559 } 560 561 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id, 562 struct intel_context *ce) 563 { 564 unsigned long flags; 565 566 /* 567 * xarray API doesn't have xa_save_irqsave wrapper, so calling the 568 * lower level functions directly. 569 */ 570 xa_lock_irqsave(&guc->context_lookup, flags); 571 __xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC); 572 xa_unlock_irqrestore(&guc->context_lookup, flags); 573 } 574 575 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id) 576 { 577 unsigned long flags; 578 579 if (unlikely(!guc_submission_initialized(guc))) 580 return; 581 582 _reset_lrc_desc_v69(guc, id); 583 584 /* 585 * xarray API doesn't have xa_erase_irqsave wrapper, so calling 586 * the lower level functions directly. 587 */ 588 xa_lock_irqsave(&guc->context_lookup, flags); 589 __xa_erase(&guc->context_lookup, id); 590 xa_unlock_irqrestore(&guc->context_lookup, flags); 591 } 592 593 static void decr_outstanding_submission_g2h(struct intel_guc *guc) 594 { 595 if (atomic_dec_and_test(&guc->outstanding_submission_g2h)) 596 wake_up_all(&guc->ct.wq); 597 } 598 599 static int guc_submission_send_busy_loop(struct intel_guc *guc, 600 const u32 *action, 601 u32 len, 602 u32 g2h_len_dw, 603 bool loop) 604 { 605 /* 606 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0), 607 * so we don't handle the case where we don't get a reply because we 608 * aborted the send due to the channel being busy. 609 */ 610 GEM_BUG_ON(g2h_len_dw && !loop); 611 612 if (g2h_len_dw) 613 atomic_inc(&guc->outstanding_submission_g2h); 614 615 return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop); 616 } 617 618 int intel_guc_wait_for_pending_msg(struct intel_guc *guc, 619 atomic_t *wait_var, 620 bool interruptible, 621 long timeout) 622 { 623 const int state = interruptible ? 624 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 625 DEFINE_WAIT(wait); 626 627 might_sleep(); 628 GEM_BUG_ON(timeout < 0); 629 630 if (!atomic_read(wait_var)) 631 return 0; 632 633 if (!timeout) 634 return -ETIME; 635 636 for (;;) { 637 prepare_to_wait(&guc->ct.wq, &wait, state); 638 639 if (!atomic_read(wait_var)) 640 break; 641 642 if (signal_pending_state(state, current)) { 643 timeout = -EINTR; 644 break; 645 } 646 647 if (!timeout) { 648 timeout = -ETIME; 649 break; 650 } 651 652 timeout = io_schedule_timeout(timeout); 653 } 654 finish_wait(&guc->ct.wq, &wait); 655 656 return (timeout < 0) ? timeout : 0; 657 } 658 659 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout) 660 { 661 if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc)) 662 return 0; 663 664 return intel_guc_wait_for_pending_msg(guc, 665 &guc->outstanding_submission_g2h, 666 true, timeout); 667 } 668 669 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop); 670 static int try_context_registration(struct intel_context *ce, bool loop); 671 672 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq) 673 { 674 int err = 0; 675 struct intel_context *ce = request_to_scheduling_context(rq); 676 u32 action[3]; 677 int len = 0; 678 u32 g2h_len_dw = 0; 679 bool enabled; 680 681 lockdep_assert_held(&rq->engine->sched_engine->lock); 682 683 /* 684 * Corner case where requests were sitting in the priority list or a 685 * request resubmitted after the context was banned. 686 */ 687 if (unlikely(intel_context_is_banned(ce))) { 688 i915_request_put(i915_request_mark_eio(rq)); 689 intel_engine_signal_breadcrumbs(ce->engine); 690 return 0; 691 } 692 693 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); 694 GEM_BUG_ON(context_guc_id_invalid(ce)); 695 696 if (context_policy_required(ce)) { 697 err = guc_context_policy_init_v70(ce, false); 698 if (err) 699 return err; 700 } 701 702 spin_lock(&ce->guc_state.lock); 703 704 /* 705 * The request / context will be run on the hardware when scheduling 706 * gets enabled in the unblock. For multi-lrc we still submit the 707 * context to move the LRC tails. 708 */ 709 if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce))) 710 goto out; 711 712 enabled = context_enabled(ce) || context_blocked(ce); 713 714 if (!enabled) { 715 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET; 716 action[len++] = ce->guc_id.id; 717 action[len++] = GUC_CONTEXT_ENABLE; 718 set_context_pending_enable(ce); 719 intel_context_get(ce); 720 g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET; 721 } else { 722 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT; 723 action[len++] = ce->guc_id.id; 724 } 725 726 err = intel_guc_send_nb(guc, action, len, g2h_len_dw); 727 if (!enabled && !err) { 728 trace_intel_context_sched_enable(ce); 729 atomic_inc(&guc->outstanding_submission_g2h); 730 set_context_enabled(ce); 731 732 /* 733 * Without multi-lrc KMD does the submission step (moving the 734 * lrc tail) so enabling scheduling is sufficient to submit the 735 * context. This isn't the case in multi-lrc submission as the 736 * GuC needs to move the tails, hence the need for another H2G 737 * to submit a multi-lrc context after enabling scheduling. 738 */ 739 if (intel_context_is_parent(ce)) { 740 action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT; 741 err = intel_guc_send_nb(guc, action, len - 1, 0); 742 } 743 } else if (!enabled) { 744 clr_context_pending_enable(ce); 745 intel_context_put(ce); 746 } 747 if (likely(!err)) 748 trace_i915_request_guc_submit(rq); 749 750 out: 751 spin_unlock(&ce->guc_state.lock); 752 return err; 753 } 754 755 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq) 756 { 757 int ret = __guc_add_request(guc, rq); 758 759 if (unlikely(ret == -EBUSY)) { 760 guc->stalled_request = rq; 761 guc->submission_stall_reason = STALL_ADD_REQUEST; 762 } 763 764 return ret; 765 } 766 767 static inline void guc_set_lrc_tail(struct i915_request *rq) 768 { 769 rq->context->lrc_reg_state[CTX_RING_TAIL] = 770 intel_ring_set_tail(rq->ring, rq->tail); 771 } 772 773 static inline int rq_prio(const struct i915_request *rq) 774 { 775 return rq->sched.attr.priority; 776 } 777 778 static bool is_multi_lrc_rq(struct i915_request *rq) 779 { 780 return intel_context_is_parallel(rq->context); 781 } 782 783 static bool can_merge_rq(struct i915_request *rq, 784 struct i915_request *last) 785 { 786 return request_to_scheduling_context(rq) == 787 request_to_scheduling_context(last); 788 } 789 790 static u32 wq_space_until_wrap(struct intel_context *ce) 791 { 792 return (WQ_SIZE - ce->parallel.guc.wqi_tail); 793 } 794 795 static void write_wqi(struct intel_context *ce, u32 wqi_size) 796 { 797 BUILD_BUG_ON(!is_power_of_2(WQ_SIZE)); 798 799 /* 800 * Ensure WQI are visible before updating tail 801 */ 802 intel_guc_write_barrier(ce_to_guc(ce)); 803 804 ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) & 805 (WQ_SIZE - 1); 806 WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail); 807 } 808 809 static int guc_wq_noop_append(struct intel_context *ce) 810 { 811 u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce)); 812 u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1; 813 814 if (!wqi) 815 return -EBUSY; 816 817 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); 818 819 *wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) | 820 FIELD_PREP(WQ_LEN_MASK, len_dw); 821 ce->parallel.guc.wqi_tail = 0; 822 823 return 0; 824 } 825 826 static int __guc_wq_item_append(struct i915_request *rq) 827 { 828 struct intel_context *ce = request_to_scheduling_context(rq); 829 struct intel_context *child; 830 unsigned int wqi_size = (ce->parallel.number_children + 4) * 831 sizeof(u32); 832 u32 *wqi; 833 u32 len_dw = (wqi_size / sizeof(u32)) - 1; 834 int ret; 835 836 /* Ensure context is in correct state updating work queue */ 837 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); 838 GEM_BUG_ON(context_guc_id_invalid(ce)); 839 GEM_BUG_ON(context_wait_for_deregister_to_register(ce)); 840 GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)); 841 842 /* Insert NOOP if this work queue item will wrap the tail pointer. */ 843 if (wqi_size > wq_space_until_wrap(ce)) { 844 ret = guc_wq_noop_append(ce); 845 if (ret) 846 return ret; 847 } 848 849 wqi = get_wq_pointer(ce, wqi_size); 850 if (!wqi) 851 return -EBUSY; 852 853 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); 854 855 *wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) | 856 FIELD_PREP(WQ_LEN_MASK, len_dw); 857 *wqi++ = ce->lrc.lrca; 858 *wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) | 859 FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64)); 860 *wqi++ = 0; /* fence_id */ 861 for_each_child(ce, child) 862 *wqi++ = child->ring->tail / sizeof(u64); 863 864 write_wqi(ce, wqi_size); 865 866 return 0; 867 } 868 869 static int guc_wq_item_append(struct intel_guc *guc, 870 struct i915_request *rq) 871 { 872 struct intel_context *ce = request_to_scheduling_context(rq); 873 int ret = 0; 874 875 if (likely(!intel_context_is_banned(ce))) { 876 ret = __guc_wq_item_append(rq); 877 878 if (unlikely(ret == -EBUSY)) { 879 guc->stalled_request = rq; 880 guc->submission_stall_reason = STALL_MOVE_LRC_TAIL; 881 } 882 } 883 884 return ret; 885 } 886 887 static bool multi_lrc_submit(struct i915_request *rq) 888 { 889 struct intel_context *ce = request_to_scheduling_context(rq); 890 891 intel_ring_set_tail(rq->ring, rq->tail); 892 893 /* 894 * We expect the front end (execbuf IOCTL) to set this flag on the last 895 * request generated from a multi-BB submission. This indicates to the 896 * backend (GuC interface) that we should submit this context thus 897 * submitting all the requests generated in parallel. 898 */ 899 return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) || 900 intel_context_is_banned(ce); 901 } 902 903 static int guc_dequeue_one_context(struct intel_guc *guc) 904 { 905 struct i915_sched_engine * const sched_engine = guc->sched_engine; 906 struct i915_request *last = NULL; 907 bool submit = false; 908 struct rb_node *rb; 909 int ret; 910 911 lockdep_assert_held(&sched_engine->lock); 912 913 if (guc->stalled_request) { 914 submit = true; 915 last = guc->stalled_request; 916 917 switch (guc->submission_stall_reason) { 918 case STALL_REGISTER_CONTEXT: 919 goto register_context; 920 case STALL_MOVE_LRC_TAIL: 921 goto move_lrc_tail; 922 case STALL_ADD_REQUEST: 923 goto add_request; 924 default: 925 MISSING_CASE(guc->submission_stall_reason); 926 } 927 } 928 929 while ((rb = rb_first_cached(&sched_engine->queue))) { 930 struct i915_priolist *p = to_priolist(rb); 931 struct i915_request *rq, *rn; 932 933 priolist_for_each_request_consume(rq, rn, p) { 934 if (last && !can_merge_rq(rq, last)) 935 goto register_context; 936 937 list_del_init(&rq->sched.link); 938 939 __i915_request_submit(rq); 940 941 trace_i915_request_in(rq, 0); 942 last = rq; 943 944 if (is_multi_lrc_rq(rq)) { 945 /* 946 * We need to coalesce all multi-lrc requests in 947 * a relationship into a single H2G. We are 948 * guaranteed that all of these requests will be 949 * submitted sequentially. 950 */ 951 if (multi_lrc_submit(rq)) { 952 submit = true; 953 goto register_context; 954 } 955 } else { 956 submit = true; 957 } 958 } 959 960 rb_erase_cached(&p->node, &sched_engine->queue); 961 i915_priolist_free(p); 962 } 963 964 register_context: 965 if (submit) { 966 struct intel_context *ce = request_to_scheduling_context(last); 967 968 if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) && 969 !intel_context_is_banned(ce))) { 970 ret = try_context_registration(ce, false); 971 if (unlikely(ret == -EPIPE)) { 972 goto deadlk; 973 } else if (ret == -EBUSY) { 974 guc->stalled_request = last; 975 guc->submission_stall_reason = 976 STALL_REGISTER_CONTEXT; 977 goto schedule_tasklet; 978 } else if (ret != 0) { 979 GEM_WARN_ON(ret); /* Unexpected */ 980 goto deadlk; 981 } 982 } 983 984 move_lrc_tail: 985 if (is_multi_lrc_rq(last)) { 986 ret = guc_wq_item_append(guc, last); 987 if (ret == -EBUSY) { 988 goto schedule_tasklet; 989 } else if (ret != 0) { 990 GEM_WARN_ON(ret); /* Unexpected */ 991 goto deadlk; 992 } 993 } else { 994 guc_set_lrc_tail(last); 995 } 996 997 add_request: 998 ret = guc_add_request(guc, last); 999 if (unlikely(ret == -EPIPE)) { 1000 goto deadlk; 1001 } else if (ret == -EBUSY) { 1002 goto schedule_tasklet; 1003 } else if (ret != 0) { 1004 GEM_WARN_ON(ret); /* Unexpected */ 1005 goto deadlk; 1006 } 1007 } 1008 1009 guc->stalled_request = NULL; 1010 guc->submission_stall_reason = STALL_NONE; 1011 return submit; 1012 1013 deadlk: 1014 sched_engine->tasklet.callback = NULL; 1015 tasklet_disable_nosync(&sched_engine->tasklet); 1016 return false; 1017 1018 schedule_tasklet: 1019 tasklet_schedule(&sched_engine->tasklet); 1020 return false; 1021 } 1022 1023 static void guc_submission_tasklet(struct tasklet_struct *t) 1024 { 1025 struct i915_sched_engine *sched_engine = 1026 from_tasklet(sched_engine, t, tasklet); 1027 unsigned long flags; 1028 bool loop; 1029 1030 spin_lock_irqsave(&sched_engine->lock, flags); 1031 1032 do { 1033 loop = guc_dequeue_one_context(sched_engine->private_data); 1034 } while (loop); 1035 1036 i915_sched_engine_reset_on_empty(sched_engine); 1037 1038 spin_unlock_irqrestore(&sched_engine->lock, flags); 1039 } 1040 1041 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir) 1042 { 1043 if (iir & GT_RENDER_USER_INTERRUPT) 1044 intel_engine_signal_breadcrumbs(engine); 1045 } 1046 1047 static void __guc_context_destroy(struct intel_context *ce); 1048 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce); 1049 static void guc_signal_context_fence(struct intel_context *ce); 1050 static void guc_cancel_context_requests(struct intel_context *ce); 1051 static void guc_blocked_fence_complete(struct intel_context *ce); 1052 1053 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc) 1054 { 1055 struct intel_context *ce; 1056 unsigned long index, flags; 1057 bool pending_disable, pending_enable, deregister, destroyed, banned; 1058 1059 xa_lock_irqsave(&guc->context_lookup, flags); 1060 xa_for_each(&guc->context_lookup, index, ce) { 1061 /* 1062 * Corner case where the ref count on the object is zero but and 1063 * deregister G2H was lost. In this case we don't touch the ref 1064 * count and finish the destroy of the context. 1065 */ 1066 bool do_put = kref_get_unless_zero(&ce->ref); 1067 1068 xa_unlock(&guc->context_lookup); 1069 1070 spin_lock(&ce->guc_state.lock); 1071 1072 /* 1073 * Once we are at this point submission_disabled() is guaranteed 1074 * to be visible to all callers who set the below flags (see above 1075 * flush and flushes in reset_prepare). If submission_disabled() 1076 * is set, the caller shouldn't set these flags. 1077 */ 1078 1079 destroyed = context_destroyed(ce); 1080 pending_enable = context_pending_enable(ce); 1081 pending_disable = context_pending_disable(ce); 1082 deregister = context_wait_for_deregister_to_register(ce); 1083 banned = context_banned(ce); 1084 init_sched_state(ce); 1085 1086 spin_unlock(&ce->guc_state.lock); 1087 1088 if (pending_enable || destroyed || deregister) { 1089 decr_outstanding_submission_g2h(guc); 1090 if (deregister) 1091 guc_signal_context_fence(ce); 1092 if (destroyed) { 1093 intel_gt_pm_put_async(guc_to_gt(guc)); 1094 release_guc_id(guc, ce); 1095 __guc_context_destroy(ce); 1096 } 1097 if (pending_enable || deregister) 1098 intel_context_put(ce); 1099 } 1100 1101 /* Not mutualy exclusive with above if statement. */ 1102 if (pending_disable) { 1103 guc_signal_context_fence(ce); 1104 if (banned) { 1105 guc_cancel_context_requests(ce); 1106 intel_engine_signal_breadcrumbs(ce->engine); 1107 } 1108 intel_context_sched_disable_unpin(ce); 1109 decr_outstanding_submission_g2h(guc); 1110 1111 spin_lock(&ce->guc_state.lock); 1112 guc_blocked_fence_complete(ce); 1113 spin_unlock(&ce->guc_state.lock); 1114 1115 intel_context_put(ce); 1116 } 1117 1118 if (do_put) 1119 intel_context_put(ce); 1120 xa_lock(&guc->context_lookup); 1121 } 1122 xa_unlock_irqrestore(&guc->context_lookup, flags); 1123 } 1124 1125 /* 1126 * GuC stores busyness stats for each engine at context in/out boundaries. A 1127 * context 'in' logs execution start time, 'out' adds in -> out delta to total. 1128 * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with 1129 * GuC. 1130 * 1131 * __i915_pmu_event_read samples engine busyness. When sampling, if context id 1132 * is valid (!= ~0) and start is non-zero, the engine is considered to be 1133 * active. For an active engine total busyness = total + (now - start), where 1134 * 'now' is the time at which the busyness is sampled. For inactive engine, 1135 * total busyness = total. 1136 * 1137 * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain. 1138 * 1139 * The start and total values provided by GuC are 32 bits and wrap around in a 1140 * few minutes. Since perf pmu provides busyness as 64 bit monotonically 1141 * increasing ns values, there is a need for this implementation to account for 1142 * overflows and extend the GuC provided values to 64 bits before returning 1143 * busyness to the user. In order to do that, a worker runs periodically at 1144 * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in 1145 * 27 seconds for a gt clock frequency of 19.2 MHz). 1146 */ 1147 1148 #define WRAP_TIME_CLKS U32_MAX 1149 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3) 1150 1151 static void 1152 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start) 1153 { 1154 u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); 1155 u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp); 1156 1157 if (new_start == lower_32_bits(*prev_start)) 1158 return; 1159 1160 /* 1161 * When gt is unparked, we update the gt timestamp and start the ping 1162 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt 1163 * is unparked, all switched in contexts will have a start time that is 1164 * within +/- POLL_TIME_CLKS of the most recent gt_stamp. 1165 * 1166 * If neither gt_stamp nor new_start has rolled over, then the 1167 * gt_stamp_hi does not need to be adjusted, however if one of them has 1168 * rolled over, we need to adjust gt_stamp_hi accordingly. 1169 * 1170 * The below conditions address the cases of new_start rollover and 1171 * gt_stamp_last rollover respectively. 1172 */ 1173 if (new_start < gt_stamp_last && 1174 (new_start - gt_stamp_last) <= POLL_TIME_CLKS) 1175 gt_stamp_hi++; 1176 1177 if (new_start > gt_stamp_last && 1178 (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi) 1179 gt_stamp_hi--; 1180 1181 *prev_start = ((u64)gt_stamp_hi << 32) | new_start; 1182 } 1183 1184 #define record_read(map_, field_) \ 1185 iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_) 1186 1187 /* 1188 * GuC updates shared memory and KMD reads it. Since this is not synchronized, 1189 * we run into a race where the value read is inconsistent. Sometimes the 1190 * inconsistency is in reading the upper MSB bytes of the last_in value when 1191 * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper 1192 * 24 bits are zero. Since these are non-zero values, it is non-trivial to 1193 * determine validity of these values. Instead we read the values multiple times 1194 * until they are consistent. In test runs, 3 attempts results in consistent 1195 * values. The upper bound is set to 6 attempts and may need to be tuned as per 1196 * any new occurences. 1197 */ 1198 static void __get_engine_usage_record(struct intel_engine_cs *engine, 1199 u32 *last_in, u32 *id, u32 *total) 1200 { 1201 struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine); 1202 int i = 0; 1203 1204 do { 1205 *last_in = record_read(&rec_map, last_switch_in_stamp); 1206 *id = record_read(&rec_map, current_context_index); 1207 *total = record_read(&rec_map, total_runtime); 1208 1209 if (record_read(&rec_map, last_switch_in_stamp) == *last_in && 1210 record_read(&rec_map, current_context_index) == *id && 1211 record_read(&rec_map, total_runtime) == *total) 1212 break; 1213 } while (++i < 6); 1214 } 1215 1216 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine) 1217 { 1218 struct intel_engine_guc_stats *stats = &engine->stats.guc; 1219 struct intel_guc *guc = &engine->gt->uc.guc; 1220 u32 last_switch, ctx_id, total; 1221 1222 lockdep_assert_held(&guc->timestamp.lock); 1223 1224 __get_engine_usage_record(engine, &last_switch, &ctx_id, &total); 1225 1226 stats->running = ctx_id != ~0U && last_switch; 1227 if (stats->running) 1228 __extend_last_switch(guc, &stats->start_gt_clk, last_switch); 1229 1230 /* 1231 * Instead of adjusting the total for overflow, just add the 1232 * difference from previous sample stats->total_gt_clks 1233 */ 1234 if (total && total != ~0U) { 1235 stats->total_gt_clks += (u32)(total - stats->prev_total); 1236 stats->prev_total = total; 1237 } 1238 } 1239 1240 static u32 gpm_timestamp_shift(struct intel_gt *gt) 1241 { 1242 intel_wakeref_t wakeref; 1243 u32 reg, shift; 1244 1245 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 1246 reg = intel_uncore_read(gt->uncore, RPM_CONFIG0); 1247 1248 shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >> 1249 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT; 1250 1251 return 3 - shift; 1252 } 1253 1254 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now) 1255 { 1256 struct intel_gt *gt = guc_to_gt(guc); 1257 u32 gt_stamp_lo, gt_stamp_hi; 1258 u64 gpm_ts; 1259 1260 lockdep_assert_held(&guc->timestamp.lock); 1261 1262 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); 1263 gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0, 1264 MISC_STATUS1) >> guc->timestamp.shift; 1265 gt_stamp_lo = lower_32_bits(gpm_ts); 1266 *now = ktime_get(); 1267 1268 if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp)) 1269 gt_stamp_hi++; 1270 1271 guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo; 1272 } 1273 1274 /* 1275 * Unlike the execlist mode of submission total and active times are in terms of 1276 * gt clocks. The *now parameter is retained to return the cpu time at which the 1277 * busyness was sampled. 1278 */ 1279 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now) 1280 { 1281 struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc; 1282 struct i915_gpu_error *gpu_error = &engine->i915->gpu_error; 1283 struct intel_gt *gt = engine->gt; 1284 struct intel_guc *guc = >->uc.guc; 1285 u64 total, gt_stamp_saved; 1286 unsigned long flags; 1287 u32 reset_count; 1288 bool in_reset; 1289 1290 spin_lock_irqsave(&guc->timestamp.lock, flags); 1291 1292 /* 1293 * If a reset happened, we risk reading partially updated engine 1294 * busyness from GuC, so we just use the driver stored copy of busyness. 1295 * Synchronize with gt reset using reset_count and the 1296 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count 1297 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is 1298 * usable by checking the flag afterwards. 1299 */ 1300 reset_count = i915_reset_count(gpu_error); 1301 in_reset = test_bit(I915_RESET_BACKOFF, >->reset.flags); 1302 1303 *now = ktime_get(); 1304 1305 /* 1306 * The active busyness depends on start_gt_clk and gt_stamp. 1307 * gt_stamp is updated by i915 only when gt is awake and the 1308 * start_gt_clk is derived from GuC state. To get a consistent 1309 * view of activity, we query the GuC state only if gt is awake. 1310 */ 1311 if (!in_reset && intel_gt_pm_get_if_awake(gt)) { 1312 stats_saved = *stats; 1313 gt_stamp_saved = guc->timestamp.gt_stamp; 1314 /* 1315 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp - 1316 * start_gt_clk' calculation below for active engines. 1317 */ 1318 guc_update_engine_gt_clks(engine); 1319 guc_update_pm_timestamp(guc, now); 1320 intel_gt_pm_put_async(gt); 1321 if (i915_reset_count(gpu_error) != reset_count) { 1322 *stats = stats_saved; 1323 guc->timestamp.gt_stamp = gt_stamp_saved; 1324 } 1325 } 1326 1327 total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks); 1328 if (stats->running) { 1329 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk; 1330 1331 total += intel_gt_clock_interval_to_ns(gt, clk); 1332 } 1333 1334 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1335 1336 return ns_to_ktime(total); 1337 } 1338 1339 static void __reset_guc_busyness_stats(struct intel_guc *guc) 1340 { 1341 struct intel_gt *gt = guc_to_gt(guc); 1342 struct intel_engine_cs *engine; 1343 enum intel_engine_id id; 1344 unsigned long flags; 1345 ktime_t unused; 1346 1347 cancel_delayed_work_sync(&guc->timestamp.work); 1348 1349 spin_lock_irqsave(&guc->timestamp.lock, flags); 1350 1351 guc_update_pm_timestamp(guc, &unused); 1352 for_each_engine(engine, gt, id) { 1353 guc_update_engine_gt_clks(engine); 1354 engine->stats.guc.prev_total = 0; 1355 } 1356 1357 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1358 } 1359 1360 static void __update_guc_busyness_stats(struct intel_guc *guc) 1361 { 1362 struct intel_gt *gt = guc_to_gt(guc); 1363 struct intel_engine_cs *engine; 1364 enum intel_engine_id id; 1365 unsigned long flags; 1366 ktime_t unused; 1367 1368 guc->timestamp.last_stat_jiffies = jiffies; 1369 1370 spin_lock_irqsave(&guc->timestamp.lock, flags); 1371 1372 guc_update_pm_timestamp(guc, &unused); 1373 for_each_engine(engine, gt, id) 1374 guc_update_engine_gt_clks(engine); 1375 1376 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1377 } 1378 1379 static void guc_timestamp_ping(struct work_struct *wrk) 1380 { 1381 struct intel_guc *guc = container_of(wrk, typeof(*guc), 1382 timestamp.work.work); 1383 struct intel_uc *uc = container_of(guc, typeof(*uc), guc); 1384 struct intel_gt *gt = guc_to_gt(guc); 1385 intel_wakeref_t wakeref; 1386 int srcu, ret; 1387 1388 /* 1389 * Synchronize with gt reset to make sure the worker does not 1390 * corrupt the engine/guc stats. 1391 */ 1392 ret = intel_gt_reset_trylock(gt, &srcu); 1393 if (ret) 1394 return; 1395 1396 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) 1397 __update_guc_busyness_stats(guc); 1398 1399 intel_gt_reset_unlock(gt, srcu); 1400 1401 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, 1402 guc->timestamp.ping_delay); 1403 } 1404 1405 static int guc_action_enable_usage_stats(struct intel_guc *guc) 1406 { 1407 u32 offset = intel_guc_engine_usage_offset(guc); 1408 u32 action[] = { 1409 INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF, 1410 offset, 1411 0, 1412 }; 1413 1414 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 1415 } 1416 1417 static void guc_init_engine_stats(struct intel_guc *guc) 1418 { 1419 struct intel_gt *gt = guc_to_gt(guc); 1420 intel_wakeref_t wakeref; 1421 1422 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, 1423 guc->timestamp.ping_delay); 1424 1425 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) { 1426 int ret = guc_action_enable_usage_stats(guc); 1427 1428 if (ret) 1429 drm_err(>->i915->drm, 1430 "Failed to enable usage stats: %d!\n", ret); 1431 } 1432 } 1433 1434 void intel_guc_busyness_park(struct intel_gt *gt) 1435 { 1436 struct intel_guc *guc = >->uc.guc; 1437 1438 if (!guc_submission_initialized(guc)) 1439 return; 1440 1441 cancel_delayed_work(&guc->timestamp.work); 1442 1443 /* 1444 * Before parking, we should sample engine busyness stats if we need to. 1445 * We can skip it if we are less than half a ping from the last time we 1446 * sampled the busyness stats. 1447 */ 1448 if (guc->timestamp.last_stat_jiffies && 1449 !time_after(jiffies, guc->timestamp.last_stat_jiffies + 1450 (guc->timestamp.ping_delay / 2))) 1451 return; 1452 1453 __update_guc_busyness_stats(guc); 1454 } 1455 1456 void intel_guc_busyness_unpark(struct intel_gt *gt) 1457 { 1458 struct intel_guc *guc = >->uc.guc; 1459 unsigned long flags; 1460 ktime_t unused; 1461 1462 if (!guc_submission_initialized(guc)) 1463 return; 1464 1465 spin_lock_irqsave(&guc->timestamp.lock, flags); 1466 guc_update_pm_timestamp(guc, &unused); 1467 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1468 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, 1469 guc->timestamp.ping_delay); 1470 } 1471 1472 static inline bool 1473 submission_disabled(struct intel_guc *guc) 1474 { 1475 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1476 1477 return unlikely(!sched_engine || 1478 !__tasklet_is_enabled(&sched_engine->tasklet) || 1479 intel_gt_is_wedged(guc_to_gt(guc))); 1480 } 1481 1482 static void disable_submission(struct intel_guc *guc) 1483 { 1484 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1485 1486 if (__tasklet_is_enabled(&sched_engine->tasklet)) { 1487 GEM_BUG_ON(!guc->ct.enabled); 1488 __tasklet_disable_sync_once(&sched_engine->tasklet); 1489 sched_engine->tasklet.callback = NULL; 1490 } 1491 } 1492 1493 static void enable_submission(struct intel_guc *guc) 1494 { 1495 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1496 unsigned long flags; 1497 1498 spin_lock_irqsave(&guc->sched_engine->lock, flags); 1499 sched_engine->tasklet.callback = guc_submission_tasklet; 1500 wmb(); /* Make sure callback visible */ 1501 if (!__tasklet_is_enabled(&sched_engine->tasklet) && 1502 __tasklet_enable(&sched_engine->tasklet)) { 1503 GEM_BUG_ON(!guc->ct.enabled); 1504 1505 /* And kick in case we missed a new request submission. */ 1506 tasklet_hi_schedule(&sched_engine->tasklet); 1507 } 1508 spin_unlock_irqrestore(&guc->sched_engine->lock, flags); 1509 } 1510 1511 static void guc_flush_submissions(struct intel_guc *guc) 1512 { 1513 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1514 unsigned long flags; 1515 1516 spin_lock_irqsave(&sched_engine->lock, flags); 1517 spin_unlock_irqrestore(&sched_engine->lock, flags); 1518 } 1519 1520 static void guc_flush_destroyed_contexts(struct intel_guc *guc); 1521 1522 void intel_guc_submission_reset_prepare(struct intel_guc *guc) 1523 { 1524 if (unlikely(!guc_submission_initialized(guc))) { 1525 /* Reset called during driver load? GuC not yet initialised! */ 1526 return; 1527 } 1528 1529 intel_gt_park_heartbeats(guc_to_gt(guc)); 1530 disable_submission(guc); 1531 guc->interrupts.disable(guc); 1532 __reset_guc_busyness_stats(guc); 1533 1534 /* Flush IRQ handler */ 1535 spin_lock_irq(&guc_to_gt(guc)->irq_lock); 1536 spin_unlock_irq(&guc_to_gt(guc)->irq_lock); 1537 1538 guc_flush_submissions(guc); 1539 guc_flush_destroyed_contexts(guc); 1540 flush_work(&guc->ct.requests.worker); 1541 1542 scrub_guc_desc_for_outstanding_g2h(guc); 1543 } 1544 1545 static struct intel_engine_cs * 1546 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling) 1547 { 1548 struct intel_engine_cs *engine; 1549 intel_engine_mask_t tmp, mask = ve->mask; 1550 unsigned int num_siblings = 0; 1551 1552 for_each_engine_masked(engine, ve->gt, mask, tmp) 1553 if (num_siblings++ == sibling) 1554 return engine; 1555 1556 return NULL; 1557 } 1558 1559 static inline struct intel_engine_cs * 1560 __context_to_physical_engine(struct intel_context *ce) 1561 { 1562 struct intel_engine_cs *engine = ce->engine; 1563 1564 if (intel_engine_is_virtual(engine)) 1565 engine = guc_virtual_get_sibling(engine, 0); 1566 1567 return engine; 1568 } 1569 1570 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub) 1571 { 1572 struct intel_engine_cs *engine = __context_to_physical_engine(ce); 1573 1574 if (intel_context_is_banned(ce)) 1575 return; 1576 1577 GEM_BUG_ON(!intel_context_is_pinned(ce)); 1578 1579 /* 1580 * We want a simple context + ring to execute the breadcrumb update. 1581 * We cannot rely on the context being intact across the GPU hang, 1582 * so clear it and rebuild just what we need for the breadcrumb. 1583 * All pending requests for this context will be zapped, and any 1584 * future request will be after userspace has had the opportunity 1585 * to recreate its own state. 1586 */ 1587 if (scrub) 1588 lrc_init_regs(ce, engine, true); 1589 1590 /* Rerun the request; its payload has been neutered (if guilty). */ 1591 lrc_update_regs(ce, engine, head); 1592 } 1593 1594 static void guc_engine_reset_prepare(struct intel_engine_cs *engine) 1595 { 1596 if (!IS_GRAPHICS_VER(engine->i915, 11, 12)) 1597 return; 1598 1599 intel_engine_stop_cs(engine); 1600 1601 /* 1602 * Wa_22011802037:gen11/gen12: In addition to stopping the cs, we need 1603 * to wait for any pending mi force wakeups 1604 */ 1605 intel_engine_wait_for_pending_mi_fw(engine); 1606 } 1607 1608 static void guc_reset_nop(struct intel_engine_cs *engine) 1609 { 1610 } 1611 1612 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled) 1613 { 1614 } 1615 1616 static void 1617 __unwind_incomplete_requests(struct intel_context *ce) 1618 { 1619 struct i915_request *rq, *rn; 1620 struct list_head *pl; 1621 int prio = I915_PRIORITY_INVALID; 1622 struct i915_sched_engine * const sched_engine = 1623 ce->engine->sched_engine; 1624 unsigned long flags; 1625 1626 spin_lock_irqsave(&sched_engine->lock, flags); 1627 spin_lock(&ce->guc_state.lock); 1628 list_for_each_entry_safe_reverse(rq, rn, 1629 &ce->guc_state.requests, 1630 sched.link) { 1631 if (i915_request_completed(rq)) 1632 continue; 1633 1634 list_del_init(&rq->sched.link); 1635 __i915_request_unsubmit(rq); 1636 1637 /* Push the request back into the queue for later resubmission. */ 1638 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID); 1639 if (rq_prio(rq) != prio) { 1640 prio = rq_prio(rq); 1641 pl = i915_sched_lookup_priolist(sched_engine, prio); 1642 } 1643 GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine)); 1644 1645 list_add(&rq->sched.link, pl); 1646 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 1647 } 1648 spin_unlock(&ce->guc_state.lock); 1649 spin_unlock_irqrestore(&sched_engine->lock, flags); 1650 } 1651 1652 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled) 1653 { 1654 bool guilty; 1655 struct i915_request *rq; 1656 unsigned long flags; 1657 u32 head; 1658 int i, number_children = ce->parallel.number_children; 1659 struct intel_context *parent = ce; 1660 1661 GEM_BUG_ON(intel_context_is_child(ce)); 1662 1663 intel_context_get(ce); 1664 1665 /* 1666 * GuC will implicitly mark the context as non-schedulable when it sends 1667 * the reset notification. Make sure our state reflects this change. The 1668 * context will be marked enabled on resubmission. 1669 */ 1670 spin_lock_irqsave(&ce->guc_state.lock, flags); 1671 clr_context_enabled(ce); 1672 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 1673 1674 /* 1675 * For each context in the relationship find the hanging request 1676 * resetting each context / request as needed 1677 */ 1678 for (i = 0; i < number_children + 1; ++i) { 1679 if (!intel_context_is_pinned(ce)) 1680 goto next_context; 1681 1682 guilty = false; 1683 rq = intel_context_find_active_request(ce); 1684 if (!rq) { 1685 head = ce->ring->tail; 1686 goto out_replay; 1687 } 1688 1689 if (i915_request_started(rq)) 1690 guilty = stalled & ce->engine->mask; 1691 1692 GEM_BUG_ON(i915_active_is_idle(&ce->active)); 1693 head = intel_ring_wrap(ce->ring, rq->head); 1694 1695 __i915_request_reset(rq, guilty); 1696 out_replay: 1697 guc_reset_state(ce, head, guilty); 1698 next_context: 1699 if (i != number_children) 1700 ce = list_next_entry(ce, parallel.child_link); 1701 } 1702 1703 __unwind_incomplete_requests(parent); 1704 intel_context_put(parent); 1705 } 1706 1707 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled) 1708 { 1709 struct intel_context *ce; 1710 unsigned long index; 1711 unsigned long flags; 1712 1713 if (unlikely(!guc_submission_initialized(guc))) { 1714 /* Reset called during driver load? GuC not yet initialised! */ 1715 return; 1716 } 1717 1718 xa_lock_irqsave(&guc->context_lookup, flags); 1719 xa_for_each(&guc->context_lookup, index, ce) { 1720 if (!kref_get_unless_zero(&ce->ref)) 1721 continue; 1722 1723 xa_unlock(&guc->context_lookup); 1724 1725 if (intel_context_is_pinned(ce) && 1726 !intel_context_is_child(ce)) 1727 __guc_reset_context(ce, stalled); 1728 1729 intel_context_put(ce); 1730 1731 xa_lock(&guc->context_lookup); 1732 } 1733 xa_unlock_irqrestore(&guc->context_lookup, flags); 1734 1735 /* GuC is blown away, drop all references to contexts */ 1736 xa_destroy(&guc->context_lookup); 1737 } 1738 1739 static void guc_cancel_context_requests(struct intel_context *ce) 1740 { 1741 struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine; 1742 struct i915_request *rq; 1743 unsigned long flags; 1744 1745 /* Mark all executing requests as skipped. */ 1746 spin_lock_irqsave(&sched_engine->lock, flags); 1747 spin_lock(&ce->guc_state.lock); 1748 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) 1749 i915_request_put(i915_request_mark_eio(rq)); 1750 spin_unlock(&ce->guc_state.lock); 1751 spin_unlock_irqrestore(&sched_engine->lock, flags); 1752 } 1753 1754 static void 1755 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine) 1756 { 1757 struct i915_request *rq, *rn; 1758 struct rb_node *rb; 1759 unsigned long flags; 1760 1761 /* Can be called during boot if GuC fails to load */ 1762 if (!sched_engine) 1763 return; 1764 1765 /* 1766 * Before we call engine->cancel_requests(), we should have exclusive 1767 * access to the submission state. This is arranged for us by the 1768 * caller disabling the interrupt generation, the tasklet and other 1769 * threads that may then access the same state, giving us a free hand 1770 * to reset state. However, we still need to let lockdep be aware that 1771 * we know this state may be accessed in hardirq context, so we 1772 * disable the irq around this manipulation and we want to keep 1773 * the spinlock focused on its duties and not accidentally conflate 1774 * coverage to the submission's irq state. (Similarly, although we 1775 * shouldn't need to disable irq around the manipulation of the 1776 * submission's irq state, we also wish to remind ourselves that 1777 * it is irq state.) 1778 */ 1779 spin_lock_irqsave(&sched_engine->lock, flags); 1780 1781 /* Flush the queued requests to the timeline list (for retiring). */ 1782 while ((rb = rb_first_cached(&sched_engine->queue))) { 1783 struct i915_priolist *p = to_priolist(rb); 1784 1785 priolist_for_each_request_consume(rq, rn, p) { 1786 list_del_init(&rq->sched.link); 1787 1788 __i915_request_submit(rq); 1789 1790 i915_request_put(i915_request_mark_eio(rq)); 1791 } 1792 1793 rb_erase_cached(&p->node, &sched_engine->queue); 1794 i915_priolist_free(p); 1795 } 1796 1797 /* Remaining _unready_ requests will be nop'ed when submitted */ 1798 1799 sched_engine->queue_priority_hint = INT_MIN; 1800 sched_engine->queue = RB_ROOT_CACHED; 1801 1802 spin_unlock_irqrestore(&sched_engine->lock, flags); 1803 } 1804 1805 void intel_guc_submission_cancel_requests(struct intel_guc *guc) 1806 { 1807 struct intel_context *ce; 1808 unsigned long index; 1809 unsigned long flags; 1810 1811 xa_lock_irqsave(&guc->context_lookup, flags); 1812 xa_for_each(&guc->context_lookup, index, ce) { 1813 if (!kref_get_unless_zero(&ce->ref)) 1814 continue; 1815 1816 xa_unlock(&guc->context_lookup); 1817 1818 if (intel_context_is_pinned(ce) && 1819 !intel_context_is_child(ce)) 1820 guc_cancel_context_requests(ce); 1821 1822 intel_context_put(ce); 1823 1824 xa_lock(&guc->context_lookup); 1825 } 1826 xa_unlock_irqrestore(&guc->context_lookup, flags); 1827 1828 guc_cancel_sched_engine_requests(guc->sched_engine); 1829 1830 /* GuC is blown away, drop all references to contexts */ 1831 xa_destroy(&guc->context_lookup); 1832 } 1833 1834 void intel_guc_submission_reset_finish(struct intel_guc *guc) 1835 { 1836 /* Reset called during driver load or during wedge? */ 1837 if (unlikely(!guc_submission_initialized(guc) || 1838 intel_gt_is_wedged(guc_to_gt(guc)))) { 1839 return; 1840 } 1841 1842 /* 1843 * Technically possible for either of these values to be non-zero here, 1844 * but very unlikely + harmless. Regardless let's add a warn so we can 1845 * see in CI if this happens frequently / a precursor to taking down the 1846 * machine. 1847 */ 1848 GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h)); 1849 atomic_set(&guc->outstanding_submission_g2h, 0); 1850 1851 intel_guc_global_policies_update(guc); 1852 enable_submission(guc); 1853 intel_gt_unpark_heartbeats(guc_to_gt(guc)); 1854 } 1855 1856 static void destroyed_worker_func(struct work_struct *w); 1857 static void reset_fail_worker_func(struct work_struct *w); 1858 1859 /* 1860 * Set up the memory resources to be shared with the GuC (via the GGTT) 1861 * at firmware loading time. 1862 */ 1863 int intel_guc_submission_init(struct intel_guc *guc) 1864 { 1865 struct intel_gt *gt = guc_to_gt(guc); 1866 int ret; 1867 1868 if (guc->submission_initialized) 1869 return 0; 1870 1871 if (GET_UC_VER(guc) < MAKE_UC_VER(70, 0, 0)) { 1872 ret = guc_lrc_desc_pool_create_v69(guc); 1873 if (ret) 1874 return ret; 1875 } 1876 1877 guc->submission_state.guc_ids_bitmap = 1878 bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL); 1879 if (!guc->submission_state.guc_ids_bitmap) { 1880 ret = -ENOMEM; 1881 goto destroy_pool; 1882 } 1883 1884 guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ; 1885 guc->timestamp.shift = gpm_timestamp_shift(gt); 1886 guc->submission_initialized = true; 1887 1888 return 0; 1889 1890 destroy_pool: 1891 guc_lrc_desc_pool_destroy_v69(guc); 1892 1893 return ret; 1894 } 1895 1896 void intel_guc_submission_fini(struct intel_guc *guc) 1897 { 1898 if (!guc->submission_initialized) 1899 return; 1900 1901 guc_flush_destroyed_contexts(guc); 1902 guc_lrc_desc_pool_destroy_v69(guc); 1903 i915_sched_engine_put(guc->sched_engine); 1904 bitmap_free(guc->submission_state.guc_ids_bitmap); 1905 guc->submission_initialized = false; 1906 } 1907 1908 static inline void queue_request(struct i915_sched_engine *sched_engine, 1909 struct i915_request *rq, 1910 int prio) 1911 { 1912 GEM_BUG_ON(!list_empty(&rq->sched.link)); 1913 list_add_tail(&rq->sched.link, 1914 i915_sched_lookup_priolist(sched_engine, prio)); 1915 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 1916 tasklet_hi_schedule(&sched_engine->tasklet); 1917 } 1918 1919 static int guc_bypass_tasklet_submit(struct intel_guc *guc, 1920 struct i915_request *rq) 1921 { 1922 int ret = 0; 1923 1924 __i915_request_submit(rq); 1925 1926 trace_i915_request_in(rq, 0); 1927 1928 if (is_multi_lrc_rq(rq)) { 1929 if (multi_lrc_submit(rq)) { 1930 ret = guc_wq_item_append(guc, rq); 1931 if (!ret) 1932 ret = guc_add_request(guc, rq); 1933 } 1934 } else { 1935 guc_set_lrc_tail(rq); 1936 ret = guc_add_request(guc, rq); 1937 } 1938 1939 if (unlikely(ret == -EPIPE)) 1940 disable_submission(guc); 1941 1942 return ret; 1943 } 1944 1945 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq) 1946 { 1947 struct i915_sched_engine *sched_engine = rq->engine->sched_engine; 1948 struct intel_context *ce = request_to_scheduling_context(rq); 1949 1950 return submission_disabled(guc) || guc->stalled_request || 1951 !i915_sched_engine_is_empty(sched_engine) || 1952 !ctx_id_mapped(guc, ce->guc_id.id); 1953 } 1954 1955 static void guc_submit_request(struct i915_request *rq) 1956 { 1957 struct i915_sched_engine *sched_engine = rq->engine->sched_engine; 1958 struct intel_guc *guc = &rq->engine->gt->uc.guc; 1959 unsigned long flags; 1960 1961 /* Will be called from irq-context when using foreign fences. */ 1962 spin_lock_irqsave(&sched_engine->lock, flags); 1963 1964 if (need_tasklet(guc, rq)) 1965 queue_request(sched_engine, rq, rq_prio(rq)); 1966 else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY) 1967 tasklet_hi_schedule(&sched_engine->tasklet); 1968 1969 spin_unlock_irqrestore(&sched_engine->lock, flags); 1970 } 1971 1972 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce) 1973 { 1974 int ret; 1975 1976 GEM_BUG_ON(intel_context_is_child(ce)); 1977 1978 if (intel_context_is_parent(ce)) 1979 ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap, 1980 NUMBER_MULTI_LRC_GUC_ID(guc), 1981 order_base_2(ce->parallel.number_children 1982 + 1)); 1983 else 1984 ret = ida_simple_get(&guc->submission_state.guc_ids, 1985 NUMBER_MULTI_LRC_GUC_ID(guc), 1986 guc->submission_state.num_guc_ids, 1987 GFP_KERNEL | __GFP_RETRY_MAYFAIL | 1988 __GFP_NOWARN); 1989 if (unlikely(ret < 0)) 1990 return ret; 1991 1992 ce->guc_id.id = ret; 1993 return 0; 1994 } 1995 1996 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce) 1997 { 1998 GEM_BUG_ON(intel_context_is_child(ce)); 1999 2000 if (!context_guc_id_invalid(ce)) { 2001 if (intel_context_is_parent(ce)) 2002 bitmap_release_region(guc->submission_state.guc_ids_bitmap, 2003 ce->guc_id.id, 2004 order_base_2(ce->parallel.number_children 2005 + 1)); 2006 else 2007 ida_simple_remove(&guc->submission_state.guc_ids, 2008 ce->guc_id.id); 2009 clr_ctx_id_mapping(guc, ce->guc_id.id); 2010 set_context_guc_id_invalid(ce); 2011 } 2012 if (!list_empty(&ce->guc_id.link)) 2013 list_del_init(&ce->guc_id.link); 2014 } 2015 2016 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce) 2017 { 2018 unsigned long flags; 2019 2020 spin_lock_irqsave(&guc->submission_state.lock, flags); 2021 __release_guc_id(guc, ce); 2022 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2023 } 2024 2025 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce) 2026 { 2027 struct intel_context *cn; 2028 2029 lockdep_assert_held(&guc->submission_state.lock); 2030 GEM_BUG_ON(intel_context_is_child(ce)); 2031 GEM_BUG_ON(intel_context_is_parent(ce)); 2032 2033 if (!list_empty(&guc->submission_state.guc_id_list)) { 2034 cn = list_first_entry(&guc->submission_state.guc_id_list, 2035 struct intel_context, 2036 guc_id.link); 2037 2038 GEM_BUG_ON(atomic_read(&cn->guc_id.ref)); 2039 GEM_BUG_ON(context_guc_id_invalid(cn)); 2040 GEM_BUG_ON(intel_context_is_child(cn)); 2041 GEM_BUG_ON(intel_context_is_parent(cn)); 2042 2043 list_del_init(&cn->guc_id.link); 2044 ce->guc_id.id = cn->guc_id.id; 2045 2046 spin_lock(&cn->guc_state.lock); 2047 clr_context_registered(cn); 2048 spin_unlock(&cn->guc_state.lock); 2049 2050 set_context_guc_id_invalid(cn); 2051 2052 #ifdef CONFIG_DRM_I915_SELFTEST 2053 guc->number_guc_id_stolen++; 2054 #endif 2055 2056 return 0; 2057 } else { 2058 return -EAGAIN; 2059 } 2060 } 2061 2062 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce) 2063 { 2064 int ret; 2065 2066 lockdep_assert_held(&guc->submission_state.lock); 2067 GEM_BUG_ON(intel_context_is_child(ce)); 2068 2069 ret = new_guc_id(guc, ce); 2070 if (unlikely(ret < 0)) { 2071 if (intel_context_is_parent(ce)) 2072 return -ENOSPC; 2073 2074 ret = steal_guc_id(guc, ce); 2075 if (ret < 0) 2076 return ret; 2077 } 2078 2079 if (intel_context_is_parent(ce)) { 2080 struct intel_context *child; 2081 int i = 1; 2082 2083 for_each_child(ce, child) 2084 child->guc_id.id = ce->guc_id.id + i++; 2085 } 2086 2087 return 0; 2088 } 2089 2090 #define PIN_GUC_ID_TRIES 4 2091 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce) 2092 { 2093 int ret = 0; 2094 unsigned long flags, tries = PIN_GUC_ID_TRIES; 2095 2096 GEM_BUG_ON(atomic_read(&ce->guc_id.ref)); 2097 2098 try_again: 2099 spin_lock_irqsave(&guc->submission_state.lock, flags); 2100 2101 might_lock(&ce->guc_state.lock); 2102 2103 if (context_guc_id_invalid(ce)) { 2104 ret = assign_guc_id(guc, ce); 2105 if (ret) 2106 goto out_unlock; 2107 ret = 1; /* Indidcates newly assigned guc_id */ 2108 } 2109 if (!list_empty(&ce->guc_id.link)) 2110 list_del_init(&ce->guc_id.link); 2111 atomic_inc(&ce->guc_id.ref); 2112 2113 out_unlock: 2114 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2115 2116 /* 2117 * -EAGAIN indicates no guc_id are available, let's retire any 2118 * outstanding requests to see if that frees up a guc_id. If the first 2119 * retire didn't help, insert a sleep with the timeslice duration before 2120 * attempting to retire more requests. Double the sleep period each 2121 * subsequent pass before finally giving up. The sleep period has max of 2122 * 100ms and minimum of 1ms. 2123 */ 2124 if (ret == -EAGAIN && --tries) { 2125 if (PIN_GUC_ID_TRIES - tries > 1) { 2126 unsigned int timeslice_shifted = 2127 ce->engine->props.timeslice_duration_ms << 2128 (PIN_GUC_ID_TRIES - tries - 2); 2129 unsigned int max = min_t(unsigned int, 100, 2130 timeslice_shifted); 2131 2132 msleep(max_t(unsigned int, max, 1)); 2133 } 2134 intel_gt_retire_requests(guc_to_gt(guc)); 2135 goto try_again; 2136 } 2137 2138 return ret; 2139 } 2140 2141 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce) 2142 { 2143 unsigned long flags; 2144 2145 GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0); 2146 GEM_BUG_ON(intel_context_is_child(ce)); 2147 2148 if (unlikely(context_guc_id_invalid(ce) || 2149 intel_context_is_parent(ce))) 2150 return; 2151 2152 spin_lock_irqsave(&guc->submission_state.lock, flags); 2153 if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) && 2154 !atomic_read(&ce->guc_id.ref)) 2155 list_add_tail(&ce->guc_id.link, 2156 &guc->submission_state.guc_id_list); 2157 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2158 } 2159 2160 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc, 2161 struct intel_context *ce, 2162 u32 guc_id, 2163 u32 offset, 2164 bool loop) 2165 { 2166 struct intel_context *child; 2167 u32 action[4 + MAX_ENGINE_INSTANCE]; 2168 int len = 0; 2169 2170 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); 2171 2172 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 2173 action[len++] = guc_id; 2174 action[len++] = ce->parallel.number_children + 1; 2175 action[len++] = offset; 2176 for_each_child(ce, child) { 2177 offset += sizeof(struct guc_lrc_desc_v69); 2178 action[len++] = offset; 2179 } 2180 2181 return guc_submission_send_busy_loop(guc, action, len, 0, loop); 2182 } 2183 2184 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc, 2185 struct intel_context *ce, 2186 struct guc_ctxt_registration_info *info, 2187 bool loop) 2188 { 2189 struct intel_context *child; 2190 u32 action[13 + (MAX_ENGINE_INSTANCE * 2)]; 2191 int len = 0; 2192 u32 next_id; 2193 2194 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); 2195 2196 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 2197 action[len++] = info->flags; 2198 action[len++] = info->context_idx; 2199 action[len++] = info->engine_class; 2200 action[len++] = info->engine_submit_mask; 2201 action[len++] = info->wq_desc_lo; 2202 action[len++] = info->wq_desc_hi; 2203 action[len++] = info->wq_base_lo; 2204 action[len++] = info->wq_base_hi; 2205 action[len++] = info->wq_size; 2206 action[len++] = ce->parallel.number_children + 1; 2207 action[len++] = info->hwlrca_lo; 2208 action[len++] = info->hwlrca_hi; 2209 2210 next_id = info->context_idx + 1; 2211 for_each_child(ce, child) { 2212 GEM_BUG_ON(next_id++ != child->guc_id.id); 2213 2214 /* 2215 * NB: GuC interface supports 64 bit LRCA even though i915/HW 2216 * only supports 32 bit currently. 2217 */ 2218 action[len++] = lower_32_bits(child->lrc.lrca); 2219 action[len++] = upper_32_bits(child->lrc.lrca); 2220 } 2221 2222 GEM_BUG_ON(len > ARRAY_SIZE(action)); 2223 2224 return guc_submission_send_busy_loop(guc, action, len, 0, loop); 2225 } 2226 2227 static int __guc_action_register_context_v69(struct intel_guc *guc, 2228 u32 guc_id, 2229 u32 offset, 2230 bool loop) 2231 { 2232 u32 action[] = { 2233 INTEL_GUC_ACTION_REGISTER_CONTEXT, 2234 guc_id, 2235 offset, 2236 }; 2237 2238 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2239 0, loop); 2240 } 2241 2242 static int __guc_action_register_context_v70(struct intel_guc *guc, 2243 struct guc_ctxt_registration_info *info, 2244 bool loop) 2245 { 2246 u32 action[] = { 2247 INTEL_GUC_ACTION_REGISTER_CONTEXT, 2248 info->flags, 2249 info->context_idx, 2250 info->engine_class, 2251 info->engine_submit_mask, 2252 info->wq_desc_lo, 2253 info->wq_desc_hi, 2254 info->wq_base_lo, 2255 info->wq_base_hi, 2256 info->wq_size, 2257 info->hwlrca_lo, 2258 info->hwlrca_hi, 2259 }; 2260 2261 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2262 0, loop); 2263 } 2264 2265 static void prepare_context_registration_info_v69(struct intel_context *ce); 2266 static void prepare_context_registration_info_v70(struct intel_context *ce, 2267 struct guc_ctxt_registration_info *info); 2268 2269 static int 2270 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop) 2271 { 2272 u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) + 2273 ce->guc_id.id * sizeof(struct guc_lrc_desc_v69); 2274 2275 prepare_context_registration_info_v69(ce); 2276 2277 if (intel_context_is_parent(ce)) 2278 return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id, 2279 offset, loop); 2280 else 2281 return __guc_action_register_context_v69(guc, ce->guc_id.id, 2282 offset, loop); 2283 } 2284 2285 static int 2286 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop) 2287 { 2288 struct guc_ctxt_registration_info info; 2289 2290 prepare_context_registration_info_v70(ce, &info); 2291 2292 if (intel_context_is_parent(ce)) 2293 return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop); 2294 else 2295 return __guc_action_register_context_v70(guc, &info, loop); 2296 } 2297 2298 static int register_context(struct intel_context *ce, bool loop) 2299 { 2300 struct intel_guc *guc = ce_to_guc(ce); 2301 int ret; 2302 2303 GEM_BUG_ON(intel_context_is_child(ce)); 2304 trace_intel_context_register(ce); 2305 2306 if (GET_UC_VER(guc) >= MAKE_UC_VER(70, 0, 0)) 2307 ret = register_context_v70(guc, ce, loop); 2308 else 2309 ret = register_context_v69(guc, ce, loop); 2310 2311 if (likely(!ret)) { 2312 unsigned long flags; 2313 2314 spin_lock_irqsave(&ce->guc_state.lock, flags); 2315 set_context_registered(ce); 2316 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2317 2318 if (GET_UC_VER(guc) >= MAKE_UC_VER(70, 0, 0)) 2319 guc_context_policy_init_v70(ce, loop); 2320 } 2321 2322 return ret; 2323 } 2324 2325 static int __guc_action_deregister_context(struct intel_guc *guc, 2326 u32 guc_id) 2327 { 2328 u32 action[] = { 2329 INTEL_GUC_ACTION_DEREGISTER_CONTEXT, 2330 guc_id, 2331 }; 2332 2333 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2334 G2H_LEN_DW_DEREGISTER_CONTEXT, 2335 true); 2336 } 2337 2338 static int deregister_context(struct intel_context *ce, u32 guc_id) 2339 { 2340 struct intel_guc *guc = ce_to_guc(ce); 2341 2342 GEM_BUG_ON(intel_context_is_child(ce)); 2343 trace_intel_context_deregister(ce); 2344 2345 return __guc_action_deregister_context(guc, guc_id); 2346 } 2347 2348 static inline void clear_children_join_go_memory(struct intel_context *ce) 2349 { 2350 struct parent_scratch *ps = __get_parent_scratch(ce); 2351 int i; 2352 2353 ps->go.semaphore = 0; 2354 for (i = 0; i < ce->parallel.number_children + 1; ++i) 2355 ps->join[i].semaphore = 0; 2356 } 2357 2358 static inline u32 get_children_go_value(struct intel_context *ce) 2359 { 2360 return __get_parent_scratch(ce)->go.semaphore; 2361 } 2362 2363 static inline u32 get_children_join_value(struct intel_context *ce, 2364 u8 child_index) 2365 { 2366 return __get_parent_scratch(ce)->join[child_index].semaphore; 2367 } 2368 2369 struct context_policy { 2370 u32 count; 2371 struct guc_update_context_policy h2g; 2372 }; 2373 2374 static u32 __guc_context_policy_action_size(struct context_policy *policy) 2375 { 2376 size_t bytes = sizeof(policy->h2g.header) + 2377 (sizeof(policy->h2g.klv[0]) * policy->count); 2378 2379 return bytes / sizeof(u32); 2380 } 2381 2382 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id) 2383 { 2384 policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES; 2385 policy->h2g.header.ctx_id = guc_id; 2386 policy->count = 0; 2387 } 2388 2389 #define MAKE_CONTEXT_POLICY_ADD(func, id) \ 2390 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \ 2391 { \ 2392 GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \ 2393 policy->h2g.klv[policy->count].kl = \ 2394 FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \ 2395 FIELD_PREP(GUC_KLV_0_LEN, 1); \ 2396 policy->h2g.klv[policy->count].value = data; \ 2397 policy->count++; \ 2398 } 2399 2400 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM) 2401 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT) 2402 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY) 2403 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY) 2404 2405 #undef MAKE_CONTEXT_POLICY_ADD 2406 2407 static int __guc_context_set_context_policies(struct intel_guc *guc, 2408 struct context_policy *policy, 2409 bool loop) 2410 { 2411 return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g, 2412 __guc_context_policy_action_size(policy), 2413 0, loop); 2414 } 2415 2416 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop) 2417 { 2418 struct intel_engine_cs *engine = ce->engine; 2419 struct intel_guc *guc = &engine->gt->uc.guc; 2420 struct context_policy policy; 2421 u32 execution_quantum; 2422 u32 preemption_timeout; 2423 unsigned long flags; 2424 int ret; 2425 2426 /* NB: For both of these, zero means disabled. */ 2427 execution_quantum = engine->props.timeslice_duration_ms * 1000; 2428 preemption_timeout = engine->props.preempt_timeout_ms * 1000; 2429 2430 __guc_context_policy_start_klv(&policy, ce->guc_id.id); 2431 2432 __guc_context_policy_add_priority(&policy, ce->guc_state.prio); 2433 __guc_context_policy_add_execution_quantum(&policy, execution_quantum); 2434 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); 2435 2436 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) 2437 __guc_context_policy_add_preempt_to_idle(&policy, 1); 2438 2439 ret = __guc_context_set_context_policies(guc, &policy, loop); 2440 2441 spin_lock_irqsave(&ce->guc_state.lock, flags); 2442 if (ret != 0) 2443 set_context_policy_required(ce); 2444 else 2445 clr_context_policy_required(ce); 2446 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2447 2448 return ret; 2449 } 2450 2451 static void guc_context_policy_init_v69(struct intel_engine_cs *engine, 2452 struct guc_lrc_desc_v69 *desc) 2453 { 2454 desc->policy_flags = 0; 2455 2456 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) 2457 desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69; 2458 2459 /* NB: For both of these, zero means disabled. */ 2460 desc->execution_quantum = engine->props.timeslice_duration_ms * 1000; 2461 desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000; 2462 } 2463 2464 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio) 2465 { 2466 /* 2467 * this matches the mapping we do in map_i915_prio_to_guc_prio() 2468 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL) 2469 */ 2470 switch (prio) { 2471 default: 2472 MISSING_CASE(prio); 2473 fallthrough; 2474 case GUC_CLIENT_PRIORITY_KMD_NORMAL: 2475 return GEN12_CTX_PRIORITY_NORMAL; 2476 case GUC_CLIENT_PRIORITY_NORMAL: 2477 return GEN12_CTX_PRIORITY_LOW; 2478 case GUC_CLIENT_PRIORITY_HIGH: 2479 case GUC_CLIENT_PRIORITY_KMD_HIGH: 2480 return GEN12_CTX_PRIORITY_HIGH; 2481 } 2482 } 2483 2484 static void prepare_context_registration_info_v69(struct intel_context *ce) 2485 { 2486 struct intel_engine_cs *engine = ce->engine; 2487 struct intel_guc *guc = &engine->gt->uc.guc; 2488 u32 ctx_id = ce->guc_id.id; 2489 struct guc_lrc_desc_v69 *desc; 2490 struct intel_context *child; 2491 2492 GEM_BUG_ON(!engine->mask); 2493 2494 /* 2495 * Ensure LRC + CT vmas are is same region as write barrier is done 2496 * based on CT vma region. 2497 */ 2498 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != 2499 i915_gem_object_is_lmem(ce->ring->vma->obj)); 2500 2501 desc = __get_lrc_desc_v69(guc, ctx_id); 2502 desc->engine_class = engine_class_to_guc_class(engine->class); 2503 desc->engine_submit_mask = engine->logical_mask; 2504 desc->hw_context_desc = ce->lrc.lrca; 2505 desc->priority = ce->guc_state.prio; 2506 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; 2507 guc_context_policy_init_v69(engine, desc); 2508 2509 /* 2510 * If context is a parent, we need to register a process descriptor 2511 * describing a work queue and register all child contexts. 2512 */ 2513 if (intel_context_is_parent(ce)) { 2514 struct guc_process_desc_v69 *pdesc; 2515 2516 ce->parallel.guc.wqi_tail = 0; 2517 ce->parallel.guc.wqi_head = 0; 2518 2519 desc->process_desc = i915_ggtt_offset(ce->state) + 2520 __get_parent_scratch_offset(ce); 2521 desc->wq_addr = i915_ggtt_offset(ce->state) + 2522 __get_wq_offset(ce); 2523 desc->wq_size = WQ_SIZE; 2524 2525 pdesc = __get_process_desc_v69(ce); 2526 memset(pdesc, 0, sizeof(*(pdesc))); 2527 pdesc->stage_id = ce->guc_id.id; 2528 pdesc->wq_base_addr = desc->wq_addr; 2529 pdesc->wq_size_bytes = desc->wq_size; 2530 pdesc->wq_status = WQ_STATUS_ACTIVE; 2531 2532 ce->parallel.guc.wq_head = &pdesc->head; 2533 ce->parallel.guc.wq_tail = &pdesc->tail; 2534 ce->parallel.guc.wq_status = &pdesc->wq_status; 2535 2536 for_each_child(ce, child) { 2537 desc = __get_lrc_desc_v69(guc, child->guc_id.id); 2538 2539 desc->engine_class = 2540 engine_class_to_guc_class(engine->class); 2541 desc->hw_context_desc = child->lrc.lrca; 2542 desc->priority = ce->guc_state.prio; 2543 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; 2544 guc_context_policy_init_v69(engine, desc); 2545 } 2546 2547 clear_children_join_go_memory(ce); 2548 } 2549 } 2550 2551 static void prepare_context_registration_info_v70(struct intel_context *ce, 2552 struct guc_ctxt_registration_info *info) 2553 { 2554 struct intel_engine_cs *engine = ce->engine; 2555 struct intel_guc *guc = &engine->gt->uc.guc; 2556 u32 ctx_id = ce->guc_id.id; 2557 2558 GEM_BUG_ON(!engine->mask); 2559 2560 /* 2561 * Ensure LRC + CT vmas are is same region as write barrier is done 2562 * based on CT vma region. 2563 */ 2564 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != 2565 i915_gem_object_is_lmem(ce->ring->vma->obj)); 2566 2567 memset(info, 0, sizeof(*info)); 2568 info->context_idx = ctx_id; 2569 info->engine_class = engine_class_to_guc_class(engine->class); 2570 info->engine_submit_mask = engine->logical_mask; 2571 /* 2572 * NB: GuC interface supports 64 bit LRCA even though i915/HW 2573 * only supports 32 bit currently. 2574 */ 2575 info->hwlrca_lo = lower_32_bits(ce->lrc.lrca); 2576 info->hwlrca_hi = upper_32_bits(ce->lrc.lrca); 2577 if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY) 2578 info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio); 2579 info->flags = CONTEXT_REGISTRATION_FLAG_KMD; 2580 2581 /* 2582 * If context is a parent, we need to register a process descriptor 2583 * describing a work queue and register all child contexts. 2584 */ 2585 if (intel_context_is_parent(ce)) { 2586 struct guc_sched_wq_desc *wq_desc; 2587 u64 wq_desc_offset, wq_base_offset; 2588 2589 ce->parallel.guc.wqi_tail = 0; 2590 ce->parallel.guc.wqi_head = 0; 2591 2592 wq_desc_offset = i915_ggtt_offset(ce->state) + 2593 __get_parent_scratch_offset(ce); 2594 wq_base_offset = i915_ggtt_offset(ce->state) + 2595 __get_wq_offset(ce); 2596 info->wq_desc_lo = lower_32_bits(wq_desc_offset); 2597 info->wq_desc_hi = upper_32_bits(wq_desc_offset); 2598 info->wq_base_lo = lower_32_bits(wq_base_offset); 2599 info->wq_base_hi = upper_32_bits(wq_base_offset); 2600 info->wq_size = WQ_SIZE; 2601 2602 wq_desc = __get_wq_desc_v70(ce); 2603 memset(wq_desc, 0, sizeof(*wq_desc)); 2604 wq_desc->wq_status = WQ_STATUS_ACTIVE; 2605 2606 ce->parallel.guc.wq_head = &wq_desc->head; 2607 ce->parallel.guc.wq_tail = &wq_desc->tail; 2608 ce->parallel.guc.wq_status = &wq_desc->wq_status; 2609 2610 clear_children_join_go_memory(ce); 2611 } 2612 } 2613 2614 static int try_context_registration(struct intel_context *ce, bool loop) 2615 { 2616 struct intel_engine_cs *engine = ce->engine; 2617 struct intel_runtime_pm *runtime_pm = engine->uncore->rpm; 2618 struct intel_guc *guc = &engine->gt->uc.guc; 2619 intel_wakeref_t wakeref; 2620 u32 ctx_id = ce->guc_id.id; 2621 bool context_registered; 2622 int ret = 0; 2623 2624 GEM_BUG_ON(!sched_state_is_init(ce)); 2625 2626 context_registered = ctx_id_mapped(guc, ctx_id); 2627 2628 clr_ctx_id_mapping(guc, ctx_id); 2629 set_ctx_id_mapping(guc, ctx_id, ce); 2630 2631 /* 2632 * The context_lookup xarray is used to determine if the hardware 2633 * context is currently registered. There are two cases in which it 2634 * could be registered either the guc_id has been stolen from another 2635 * context or the lrc descriptor address of this context has changed. In 2636 * either case the context needs to be deregistered with the GuC before 2637 * registering this context. 2638 */ 2639 if (context_registered) { 2640 bool disabled; 2641 unsigned long flags; 2642 2643 trace_intel_context_steal_guc_id(ce); 2644 GEM_BUG_ON(!loop); 2645 2646 /* Seal race with Reset */ 2647 spin_lock_irqsave(&ce->guc_state.lock, flags); 2648 disabled = submission_disabled(guc); 2649 if (likely(!disabled)) { 2650 set_context_wait_for_deregister_to_register(ce); 2651 intel_context_get(ce); 2652 } 2653 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2654 if (unlikely(disabled)) { 2655 clr_ctx_id_mapping(guc, ctx_id); 2656 return 0; /* Will get registered later */ 2657 } 2658 2659 /* 2660 * If stealing the guc_id, this ce has the same guc_id as the 2661 * context whose guc_id was stolen. 2662 */ 2663 with_intel_runtime_pm(runtime_pm, wakeref) 2664 ret = deregister_context(ce, ce->guc_id.id); 2665 if (unlikely(ret == -ENODEV)) 2666 ret = 0; /* Will get registered later */ 2667 } else { 2668 with_intel_runtime_pm(runtime_pm, wakeref) 2669 ret = register_context(ce, loop); 2670 if (unlikely(ret == -EBUSY)) { 2671 clr_ctx_id_mapping(guc, ctx_id); 2672 } else if (unlikely(ret == -ENODEV)) { 2673 clr_ctx_id_mapping(guc, ctx_id); 2674 ret = 0; /* Will get registered later */ 2675 } 2676 } 2677 2678 return ret; 2679 } 2680 2681 static int __guc_context_pre_pin(struct intel_context *ce, 2682 struct intel_engine_cs *engine, 2683 struct i915_gem_ww_ctx *ww, 2684 void **vaddr) 2685 { 2686 return lrc_pre_pin(ce, engine, ww, vaddr); 2687 } 2688 2689 static int __guc_context_pin(struct intel_context *ce, 2690 struct intel_engine_cs *engine, 2691 void *vaddr) 2692 { 2693 if (i915_ggtt_offset(ce->state) != 2694 (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK)) 2695 set_bit(CONTEXT_LRCA_DIRTY, &ce->flags); 2696 2697 /* 2698 * GuC context gets pinned in guc_request_alloc. See that function for 2699 * explaination of why. 2700 */ 2701 2702 return lrc_pin(ce, engine, vaddr); 2703 } 2704 2705 static int guc_context_pre_pin(struct intel_context *ce, 2706 struct i915_gem_ww_ctx *ww, 2707 void **vaddr) 2708 { 2709 return __guc_context_pre_pin(ce, ce->engine, ww, vaddr); 2710 } 2711 2712 static int guc_context_pin(struct intel_context *ce, void *vaddr) 2713 { 2714 int ret = __guc_context_pin(ce, ce->engine, vaddr); 2715 2716 if (likely(!ret && !intel_context_is_barrier(ce))) 2717 intel_engine_pm_get(ce->engine); 2718 2719 return ret; 2720 } 2721 2722 static void guc_context_unpin(struct intel_context *ce) 2723 { 2724 struct intel_guc *guc = ce_to_guc(ce); 2725 2726 unpin_guc_id(guc, ce); 2727 lrc_unpin(ce); 2728 2729 if (likely(!intel_context_is_barrier(ce))) 2730 intel_engine_pm_put_async(ce->engine); 2731 } 2732 2733 static void guc_context_post_unpin(struct intel_context *ce) 2734 { 2735 lrc_post_unpin(ce); 2736 } 2737 2738 static void __guc_context_sched_enable(struct intel_guc *guc, 2739 struct intel_context *ce) 2740 { 2741 u32 action[] = { 2742 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, 2743 ce->guc_id.id, 2744 GUC_CONTEXT_ENABLE 2745 }; 2746 2747 trace_intel_context_sched_enable(ce); 2748 2749 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2750 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); 2751 } 2752 2753 static void __guc_context_sched_disable(struct intel_guc *guc, 2754 struct intel_context *ce, 2755 u16 guc_id) 2756 { 2757 u32 action[] = { 2758 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, 2759 guc_id, /* ce->guc_id.id not stable */ 2760 GUC_CONTEXT_DISABLE 2761 }; 2762 2763 GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID); 2764 2765 GEM_BUG_ON(intel_context_is_child(ce)); 2766 trace_intel_context_sched_disable(ce); 2767 2768 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2769 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); 2770 } 2771 2772 static void guc_blocked_fence_complete(struct intel_context *ce) 2773 { 2774 lockdep_assert_held(&ce->guc_state.lock); 2775 2776 if (!i915_sw_fence_done(&ce->guc_state.blocked)) 2777 i915_sw_fence_complete(&ce->guc_state.blocked); 2778 } 2779 2780 static void guc_blocked_fence_reinit(struct intel_context *ce) 2781 { 2782 lockdep_assert_held(&ce->guc_state.lock); 2783 GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked)); 2784 2785 /* 2786 * This fence is always complete unless a pending schedule disable is 2787 * outstanding. We arm the fence here and complete it when we receive 2788 * the pending schedule disable complete message. 2789 */ 2790 i915_sw_fence_fini(&ce->guc_state.blocked); 2791 i915_sw_fence_reinit(&ce->guc_state.blocked); 2792 i915_sw_fence_await(&ce->guc_state.blocked); 2793 i915_sw_fence_commit(&ce->guc_state.blocked); 2794 } 2795 2796 static u16 prep_context_pending_disable(struct intel_context *ce) 2797 { 2798 lockdep_assert_held(&ce->guc_state.lock); 2799 2800 set_context_pending_disable(ce); 2801 clr_context_enabled(ce); 2802 guc_blocked_fence_reinit(ce); 2803 intel_context_get(ce); 2804 2805 return ce->guc_id.id; 2806 } 2807 2808 static struct i915_sw_fence *guc_context_block(struct intel_context *ce) 2809 { 2810 struct intel_guc *guc = ce_to_guc(ce); 2811 unsigned long flags; 2812 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; 2813 intel_wakeref_t wakeref; 2814 u16 guc_id; 2815 bool enabled; 2816 2817 GEM_BUG_ON(intel_context_is_child(ce)); 2818 2819 spin_lock_irqsave(&ce->guc_state.lock, flags); 2820 2821 incr_context_blocked(ce); 2822 2823 enabled = context_enabled(ce); 2824 if (unlikely(!enabled || submission_disabled(guc))) { 2825 if (enabled) 2826 clr_context_enabled(ce); 2827 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2828 return &ce->guc_state.blocked; 2829 } 2830 2831 /* 2832 * We add +2 here as the schedule disable complete CTB handler calls 2833 * intel_context_sched_disable_unpin (-2 to pin_count). 2834 */ 2835 atomic_add(2, &ce->pin_count); 2836 2837 guc_id = prep_context_pending_disable(ce); 2838 2839 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2840 2841 with_intel_runtime_pm(runtime_pm, wakeref) 2842 __guc_context_sched_disable(guc, ce, guc_id); 2843 2844 return &ce->guc_state.blocked; 2845 } 2846 2847 #define SCHED_STATE_MULTI_BLOCKED_MASK \ 2848 (SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED) 2849 #define SCHED_STATE_NO_UNBLOCK \ 2850 (SCHED_STATE_MULTI_BLOCKED_MASK | \ 2851 SCHED_STATE_PENDING_DISABLE | \ 2852 SCHED_STATE_BANNED) 2853 2854 static bool context_cant_unblock(struct intel_context *ce) 2855 { 2856 lockdep_assert_held(&ce->guc_state.lock); 2857 2858 return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) || 2859 context_guc_id_invalid(ce) || 2860 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) || 2861 !intel_context_is_pinned(ce); 2862 } 2863 2864 static void guc_context_unblock(struct intel_context *ce) 2865 { 2866 struct intel_guc *guc = ce_to_guc(ce); 2867 unsigned long flags; 2868 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; 2869 intel_wakeref_t wakeref; 2870 bool enable; 2871 2872 GEM_BUG_ON(context_enabled(ce)); 2873 GEM_BUG_ON(intel_context_is_child(ce)); 2874 2875 spin_lock_irqsave(&ce->guc_state.lock, flags); 2876 2877 if (unlikely(submission_disabled(guc) || 2878 context_cant_unblock(ce))) { 2879 enable = false; 2880 } else { 2881 enable = true; 2882 set_context_pending_enable(ce); 2883 set_context_enabled(ce); 2884 intel_context_get(ce); 2885 } 2886 2887 decr_context_blocked(ce); 2888 2889 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2890 2891 if (enable) { 2892 with_intel_runtime_pm(runtime_pm, wakeref) 2893 __guc_context_sched_enable(guc, ce); 2894 } 2895 } 2896 2897 static void guc_context_cancel_request(struct intel_context *ce, 2898 struct i915_request *rq) 2899 { 2900 struct intel_context *block_context = 2901 request_to_scheduling_context(rq); 2902 2903 if (i915_sw_fence_signaled(&rq->submit)) { 2904 struct i915_sw_fence *fence; 2905 2906 intel_context_get(ce); 2907 fence = guc_context_block(block_context); 2908 i915_sw_fence_wait(fence); 2909 if (!i915_request_completed(rq)) { 2910 __i915_request_skip(rq); 2911 guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head), 2912 true); 2913 } 2914 2915 guc_context_unblock(block_context); 2916 intel_context_put(ce); 2917 } 2918 } 2919 2920 static void __guc_context_set_preemption_timeout(struct intel_guc *guc, 2921 u16 guc_id, 2922 u32 preemption_timeout) 2923 { 2924 if (GET_UC_VER(guc) >= MAKE_UC_VER(70, 0, 0)) { 2925 struct context_policy policy; 2926 2927 __guc_context_policy_start_klv(&policy, guc_id); 2928 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); 2929 __guc_context_set_context_policies(guc, &policy, true); 2930 } else { 2931 u32 action[] = { 2932 INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT, 2933 guc_id, 2934 preemption_timeout 2935 }; 2936 2937 intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); 2938 } 2939 } 2940 2941 static void 2942 guc_context_revoke(struct intel_context *ce, struct i915_request *rq, 2943 unsigned int preempt_timeout_ms) 2944 { 2945 struct intel_guc *guc = ce_to_guc(ce); 2946 struct intel_runtime_pm *runtime_pm = 2947 &ce->engine->gt->i915->runtime_pm; 2948 intel_wakeref_t wakeref; 2949 unsigned long flags; 2950 2951 GEM_BUG_ON(intel_context_is_child(ce)); 2952 2953 guc_flush_submissions(guc); 2954 2955 spin_lock_irqsave(&ce->guc_state.lock, flags); 2956 set_context_banned(ce); 2957 2958 if (submission_disabled(guc) || 2959 (!context_enabled(ce) && !context_pending_disable(ce))) { 2960 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2961 2962 guc_cancel_context_requests(ce); 2963 intel_engine_signal_breadcrumbs(ce->engine); 2964 } else if (!context_pending_disable(ce)) { 2965 u16 guc_id; 2966 2967 /* 2968 * We add +2 here as the schedule disable complete CTB handler 2969 * calls intel_context_sched_disable_unpin (-2 to pin_count). 2970 */ 2971 atomic_add(2, &ce->pin_count); 2972 2973 guc_id = prep_context_pending_disable(ce); 2974 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2975 2976 /* 2977 * In addition to disabling scheduling, set the preemption 2978 * timeout to the minimum value (1 us) so the banned context 2979 * gets kicked off the HW ASAP. 2980 */ 2981 with_intel_runtime_pm(runtime_pm, wakeref) { 2982 __guc_context_set_preemption_timeout(guc, guc_id, 2983 preempt_timeout_ms); 2984 __guc_context_sched_disable(guc, ce, guc_id); 2985 } 2986 } else { 2987 if (!context_guc_id_invalid(ce)) 2988 with_intel_runtime_pm(runtime_pm, wakeref) 2989 __guc_context_set_preemption_timeout(guc, 2990 ce->guc_id.id, 2991 preempt_timeout_ms); 2992 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2993 } 2994 } 2995 2996 static void guc_context_sched_disable(struct intel_context *ce) 2997 { 2998 struct intel_guc *guc = ce_to_guc(ce); 2999 unsigned long flags; 3000 struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm; 3001 intel_wakeref_t wakeref; 3002 u16 guc_id; 3003 3004 GEM_BUG_ON(intel_context_is_child(ce)); 3005 3006 spin_lock_irqsave(&ce->guc_state.lock, flags); 3007 3008 /* 3009 * We have to check if the context has been disabled by another thread, 3010 * check if submssion has been disabled to seal a race with reset and 3011 * finally check if any more requests have been committed to the 3012 * context ensursing that a request doesn't slip through the 3013 * 'context_pending_disable' fence. 3014 */ 3015 if (unlikely(!context_enabled(ce) || submission_disabled(guc) || 3016 context_has_committed_requests(ce))) { 3017 clr_context_enabled(ce); 3018 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3019 goto unpin; 3020 } 3021 guc_id = prep_context_pending_disable(ce); 3022 3023 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3024 3025 with_intel_runtime_pm(runtime_pm, wakeref) 3026 __guc_context_sched_disable(guc, ce, guc_id); 3027 3028 return; 3029 unpin: 3030 intel_context_sched_disable_unpin(ce); 3031 } 3032 3033 static inline void guc_lrc_desc_unpin(struct intel_context *ce) 3034 { 3035 struct intel_guc *guc = ce_to_guc(ce); 3036 struct intel_gt *gt = guc_to_gt(guc); 3037 unsigned long flags; 3038 bool disabled; 3039 3040 GEM_BUG_ON(!intel_gt_pm_is_awake(gt)); 3041 GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id)); 3042 GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id)); 3043 GEM_BUG_ON(context_enabled(ce)); 3044 3045 /* Seal race with Reset */ 3046 spin_lock_irqsave(&ce->guc_state.lock, flags); 3047 disabled = submission_disabled(guc); 3048 if (likely(!disabled)) { 3049 __intel_gt_pm_get(gt); 3050 set_context_destroyed(ce); 3051 clr_context_registered(ce); 3052 } 3053 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3054 if (unlikely(disabled)) { 3055 release_guc_id(guc, ce); 3056 __guc_context_destroy(ce); 3057 return; 3058 } 3059 3060 deregister_context(ce, ce->guc_id.id); 3061 } 3062 3063 static void __guc_context_destroy(struct intel_context *ce) 3064 { 3065 GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] || 3066 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] || 3067 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] || 3068 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]); 3069 GEM_BUG_ON(ce->guc_state.number_committed_requests); 3070 3071 lrc_fini(ce); 3072 intel_context_fini(ce); 3073 3074 if (intel_engine_is_virtual(ce->engine)) { 3075 struct guc_virtual_engine *ve = 3076 container_of(ce, typeof(*ve), context); 3077 3078 if (ve->base.breadcrumbs) 3079 intel_breadcrumbs_put(ve->base.breadcrumbs); 3080 3081 kfree(ve); 3082 } else { 3083 intel_context_free(ce); 3084 } 3085 } 3086 3087 static void guc_flush_destroyed_contexts(struct intel_guc *guc) 3088 { 3089 struct intel_context *ce; 3090 unsigned long flags; 3091 3092 GEM_BUG_ON(!submission_disabled(guc) && 3093 guc_submission_initialized(guc)); 3094 3095 while (!list_empty(&guc->submission_state.destroyed_contexts)) { 3096 spin_lock_irqsave(&guc->submission_state.lock, flags); 3097 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, 3098 struct intel_context, 3099 destroyed_link); 3100 if (ce) 3101 list_del_init(&ce->destroyed_link); 3102 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3103 3104 if (!ce) 3105 break; 3106 3107 release_guc_id(guc, ce); 3108 __guc_context_destroy(ce); 3109 } 3110 } 3111 3112 static void deregister_destroyed_contexts(struct intel_guc *guc) 3113 { 3114 struct intel_context *ce; 3115 unsigned long flags; 3116 3117 while (!list_empty(&guc->submission_state.destroyed_contexts)) { 3118 spin_lock_irqsave(&guc->submission_state.lock, flags); 3119 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, 3120 struct intel_context, 3121 destroyed_link); 3122 if (ce) 3123 list_del_init(&ce->destroyed_link); 3124 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3125 3126 if (!ce) 3127 break; 3128 3129 guc_lrc_desc_unpin(ce); 3130 } 3131 } 3132 3133 static void destroyed_worker_func(struct work_struct *w) 3134 { 3135 struct intel_guc *guc = container_of(w, struct intel_guc, 3136 submission_state.destroyed_worker); 3137 struct intel_gt *gt = guc_to_gt(guc); 3138 int tmp; 3139 3140 with_intel_gt_pm(gt, tmp) 3141 deregister_destroyed_contexts(guc); 3142 } 3143 3144 static void guc_context_destroy(struct kref *kref) 3145 { 3146 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 3147 struct intel_guc *guc = ce_to_guc(ce); 3148 unsigned long flags; 3149 bool destroy; 3150 3151 /* 3152 * If the guc_id is invalid this context has been stolen and we can free 3153 * it immediately. Also can be freed immediately if the context is not 3154 * registered with the GuC or the GuC is in the middle of a reset. 3155 */ 3156 spin_lock_irqsave(&guc->submission_state.lock, flags); 3157 destroy = submission_disabled(guc) || context_guc_id_invalid(ce) || 3158 !ctx_id_mapped(guc, ce->guc_id.id); 3159 if (likely(!destroy)) { 3160 if (!list_empty(&ce->guc_id.link)) 3161 list_del_init(&ce->guc_id.link); 3162 list_add_tail(&ce->destroyed_link, 3163 &guc->submission_state.destroyed_contexts); 3164 } else { 3165 __release_guc_id(guc, ce); 3166 } 3167 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3168 if (unlikely(destroy)) { 3169 __guc_context_destroy(ce); 3170 return; 3171 } 3172 3173 /* 3174 * We use a worker to issue the H2G to deregister the context as we can 3175 * take the GT PM for the first time which isn't allowed from an atomic 3176 * context. 3177 */ 3178 queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker); 3179 } 3180 3181 static int guc_context_alloc(struct intel_context *ce) 3182 { 3183 return lrc_alloc(ce, ce->engine); 3184 } 3185 3186 static void __guc_context_set_prio(struct intel_guc *guc, 3187 struct intel_context *ce) 3188 { 3189 if (GET_UC_VER(guc) >= MAKE_UC_VER(70, 0, 0)) { 3190 struct context_policy policy; 3191 3192 __guc_context_policy_start_klv(&policy, ce->guc_id.id); 3193 __guc_context_policy_add_priority(&policy, ce->guc_state.prio); 3194 __guc_context_set_context_policies(guc, &policy, true); 3195 } else { 3196 u32 action[] = { 3197 INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY, 3198 ce->guc_id.id, 3199 ce->guc_state.prio, 3200 }; 3201 3202 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); 3203 } 3204 } 3205 3206 static void guc_context_set_prio(struct intel_guc *guc, 3207 struct intel_context *ce, 3208 u8 prio) 3209 { 3210 GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH || 3211 prio > GUC_CLIENT_PRIORITY_NORMAL); 3212 lockdep_assert_held(&ce->guc_state.lock); 3213 3214 if (ce->guc_state.prio == prio || submission_disabled(guc) || 3215 !context_registered(ce)) { 3216 ce->guc_state.prio = prio; 3217 return; 3218 } 3219 3220 ce->guc_state.prio = prio; 3221 __guc_context_set_prio(guc, ce); 3222 3223 trace_intel_context_set_prio(ce); 3224 } 3225 3226 static inline u8 map_i915_prio_to_guc_prio(int prio) 3227 { 3228 if (prio == I915_PRIORITY_NORMAL) 3229 return GUC_CLIENT_PRIORITY_KMD_NORMAL; 3230 else if (prio < I915_PRIORITY_NORMAL) 3231 return GUC_CLIENT_PRIORITY_NORMAL; 3232 else if (prio < I915_PRIORITY_DISPLAY) 3233 return GUC_CLIENT_PRIORITY_HIGH; 3234 else 3235 return GUC_CLIENT_PRIORITY_KMD_HIGH; 3236 } 3237 3238 static inline void add_context_inflight_prio(struct intel_context *ce, 3239 u8 guc_prio) 3240 { 3241 lockdep_assert_held(&ce->guc_state.lock); 3242 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); 3243 3244 ++ce->guc_state.prio_count[guc_prio]; 3245 3246 /* Overflow protection */ 3247 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); 3248 } 3249 3250 static inline void sub_context_inflight_prio(struct intel_context *ce, 3251 u8 guc_prio) 3252 { 3253 lockdep_assert_held(&ce->guc_state.lock); 3254 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); 3255 3256 /* Underflow protection */ 3257 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); 3258 3259 --ce->guc_state.prio_count[guc_prio]; 3260 } 3261 3262 static inline void update_context_prio(struct intel_context *ce) 3263 { 3264 struct intel_guc *guc = &ce->engine->gt->uc.guc; 3265 int i; 3266 3267 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0); 3268 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL); 3269 3270 lockdep_assert_held(&ce->guc_state.lock); 3271 3272 for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) { 3273 if (ce->guc_state.prio_count[i]) { 3274 guc_context_set_prio(guc, ce, i); 3275 break; 3276 } 3277 } 3278 } 3279 3280 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio) 3281 { 3282 /* Lower value is higher priority */ 3283 return new_guc_prio < old_guc_prio; 3284 } 3285 3286 static void add_to_context(struct i915_request *rq) 3287 { 3288 struct intel_context *ce = request_to_scheduling_context(rq); 3289 u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq)); 3290 3291 GEM_BUG_ON(intel_context_is_child(ce)); 3292 GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI); 3293 3294 spin_lock(&ce->guc_state.lock); 3295 list_move_tail(&rq->sched.link, &ce->guc_state.requests); 3296 3297 if (rq->guc_prio == GUC_PRIO_INIT) { 3298 rq->guc_prio = new_guc_prio; 3299 add_context_inflight_prio(ce, rq->guc_prio); 3300 } else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) { 3301 sub_context_inflight_prio(ce, rq->guc_prio); 3302 rq->guc_prio = new_guc_prio; 3303 add_context_inflight_prio(ce, rq->guc_prio); 3304 } 3305 update_context_prio(ce); 3306 3307 spin_unlock(&ce->guc_state.lock); 3308 } 3309 3310 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce) 3311 { 3312 lockdep_assert_held(&ce->guc_state.lock); 3313 3314 if (rq->guc_prio != GUC_PRIO_INIT && 3315 rq->guc_prio != GUC_PRIO_FINI) { 3316 sub_context_inflight_prio(ce, rq->guc_prio); 3317 update_context_prio(ce); 3318 } 3319 rq->guc_prio = GUC_PRIO_FINI; 3320 } 3321 3322 static void remove_from_context(struct i915_request *rq) 3323 { 3324 struct intel_context *ce = request_to_scheduling_context(rq); 3325 3326 GEM_BUG_ON(intel_context_is_child(ce)); 3327 3328 spin_lock_irq(&ce->guc_state.lock); 3329 3330 list_del_init(&rq->sched.link); 3331 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 3332 3333 /* Prevent further __await_execution() registering a cb, then flush */ 3334 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 3335 3336 guc_prio_fini(rq, ce); 3337 3338 decr_context_committed_requests(ce); 3339 3340 spin_unlock_irq(&ce->guc_state.lock); 3341 3342 atomic_dec(&ce->guc_id.ref); 3343 i915_request_notify_execute_cb_imm(rq); 3344 } 3345 3346 static const struct intel_context_ops guc_context_ops = { 3347 .alloc = guc_context_alloc, 3348 3349 .pre_pin = guc_context_pre_pin, 3350 .pin = guc_context_pin, 3351 .unpin = guc_context_unpin, 3352 .post_unpin = guc_context_post_unpin, 3353 3354 .revoke = guc_context_revoke, 3355 3356 .cancel_request = guc_context_cancel_request, 3357 3358 .enter = intel_context_enter_engine, 3359 .exit = intel_context_exit_engine, 3360 3361 .sched_disable = guc_context_sched_disable, 3362 3363 .reset = lrc_reset, 3364 .destroy = guc_context_destroy, 3365 3366 .create_virtual = guc_create_virtual, 3367 .create_parallel = guc_create_parallel, 3368 }; 3369 3370 static void submit_work_cb(struct irq_work *wrk) 3371 { 3372 struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work); 3373 3374 might_lock(&rq->engine->sched_engine->lock); 3375 i915_sw_fence_complete(&rq->submit); 3376 } 3377 3378 static void __guc_signal_context_fence(struct intel_context *ce) 3379 { 3380 struct i915_request *rq, *rn; 3381 3382 lockdep_assert_held(&ce->guc_state.lock); 3383 3384 if (!list_empty(&ce->guc_state.fences)) 3385 trace_intel_context_fence_release(ce); 3386 3387 /* 3388 * Use an IRQ to ensure locking order of sched_engine->lock -> 3389 * ce->guc_state.lock is preserved. 3390 */ 3391 list_for_each_entry_safe(rq, rn, &ce->guc_state.fences, 3392 guc_fence_link) { 3393 list_del(&rq->guc_fence_link); 3394 irq_work_queue(&rq->submit_work); 3395 } 3396 3397 INIT_LIST_HEAD(&ce->guc_state.fences); 3398 } 3399 3400 static void guc_signal_context_fence(struct intel_context *ce) 3401 { 3402 unsigned long flags; 3403 3404 GEM_BUG_ON(intel_context_is_child(ce)); 3405 3406 spin_lock_irqsave(&ce->guc_state.lock, flags); 3407 clr_context_wait_for_deregister_to_register(ce); 3408 __guc_signal_context_fence(ce); 3409 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3410 } 3411 3412 static bool context_needs_register(struct intel_context *ce, bool new_guc_id) 3413 { 3414 return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) || 3415 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) && 3416 !submission_disabled(ce_to_guc(ce)); 3417 } 3418 3419 static void guc_context_init(struct intel_context *ce) 3420 { 3421 const struct i915_gem_context *ctx; 3422 int prio = I915_CONTEXT_DEFAULT_PRIORITY; 3423 3424 rcu_read_lock(); 3425 ctx = rcu_dereference(ce->gem_context); 3426 if (ctx) 3427 prio = ctx->sched.priority; 3428 rcu_read_unlock(); 3429 3430 ce->guc_state.prio = map_i915_prio_to_guc_prio(prio); 3431 set_bit(CONTEXT_GUC_INIT, &ce->flags); 3432 } 3433 3434 static int guc_request_alloc(struct i915_request *rq) 3435 { 3436 struct intel_context *ce = request_to_scheduling_context(rq); 3437 struct intel_guc *guc = ce_to_guc(ce); 3438 unsigned long flags; 3439 int ret; 3440 3441 GEM_BUG_ON(!intel_context_is_pinned(rq->context)); 3442 3443 /* 3444 * Flush enough space to reduce the likelihood of waiting after 3445 * we start building the request - in which case we will just 3446 * have to repeat work. 3447 */ 3448 rq->reserved_space += GUC_REQUEST_SIZE; 3449 3450 /* 3451 * Note that after this point, we have committed to using 3452 * this request as it is being used to both track the 3453 * state of engine initialisation and liveness of the 3454 * golden renderstate above. Think twice before you try 3455 * to cancel/unwind this request now. 3456 */ 3457 3458 /* Unconditionally invalidate GPU caches and TLBs. */ 3459 ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 3460 if (ret) 3461 return ret; 3462 3463 rq->reserved_space -= GUC_REQUEST_SIZE; 3464 3465 if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags))) 3466 guc_context_init(ce); 3467 3468 /* 3469 * Call pin_guc_id here rather than in the pinning step as with 3470 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the 3471 * guc_id and creating horrible race conditions. This is especially bad 3472 * when guc_id are being stolen due to over subscription. By the time 3473 * this function is reached, it is guaranteed that the guc_id will be 3474 * persistent until the generated request is retired. Thus, sealing these 3475 * race conditions. It is still safe to fail here if guc_id are 3476 * exhausted and return -EAGAIN to the user indicating that they can try 3477 * again in the future. 3478 * 3479 * There is no need for a lock here as the timeline mutex ensures at 3480 * most one context can be executing this code path at once. The 3481 * guc_id_ref is incremented once for every request in flight and 3482 * decremented on each retire. When it is zero, a lock around the 3483 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id. 3484 */ 3485 if (atomic_add_unless(&ce->guc_id.ref, 1, 0)) 3486 goto out; 3487 3488 ret = pin_guc_id(guc, ce); /* returns 1 if new guc_id assigned */ 3489 if (unlikely(ret < 0)) 3490 return ret; 3491 if (context_needs_register(ce, !!ret)) { 3492 ret = try_context_registration(ce, true); 3493 if (unlikely(ret)) { /* unwind */ 3494 if (ret == -EPIPE) { 3495 disable_submission(guc); 3496 goto out; /* GPU will be reset */ 3497 } 3498 atomic_dec(&ce->guc_id.ref); 3499 unpin_guc_id(guc, ce); 3500 return ret; 3501 } 3502 } 3503 3504 clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags); 3505 3506 out: 3507 /* 3508 * We block all requests on this context if a G2H is pending for a 3509 * schedule disable or context deregistration as the GuC will fail a 3510 * schedule enable or context registration if either G2H is pending 3511 * respectfully. Once a G2H returns, the fence is released that is 3512 * blocking these requests (see guc_signal_context_fence). 3513 */ 3514 spin_lock_irqsave(&ce->guc_state.lock, flags); 3515 if (context_wait_for_deregister_to_register(ce) || 3516 context_pending_disable(ce)) { 3517 init_irq_work(&rq->submit_work, submit_work_cb); 3518 i915_sw_fence_await(&rq->submit); 3519 3520 list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences); 3521 } 3522 incr_context_committed_requests(ce); 3523 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3524 3525 return 0; 3526 } 3527 3528 static int guc_virtual_context_pre_pin(struct intel_context *ce, 3529 struct i915_gem_ww_ctx *ww, 3530 void **vaddr) 3531 { 3532 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3533 3534 return __guc_context_pre_pin(ce, engine, ww, vaddr); 3535 } 3536 3537 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr) 3538 { 3539 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3540 int ret = __guc_context_pin(ce, engine, vaddr); 3541 intel_engine_mask_t tmp, mask = ce->engine->mask; 3542 3543 if (likely(!ret)) 3544 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3545 intel_engine_pm_get(engine); 3546 3547 return ret; 3548 } 3549 3550 static void guc_virtual_context_unpin(struct intel_context *ce) 3551 { 3552 intel_engine_mask_t tmp, mask = ce->engine->mask; 3553 struct intel_engine_cs *engine; 3554 struct intel_guc *guc = ce_to_guc(ce); 3555 3556 GEM_BUG_ON(context_enabled(ce)); 3557 GEM_BUG_ON(intel_context_is_barrier(ce)); 3558 3559 unpin_guc_id(guc, ce); 3560 lrc_unpin(ce); 3561 3562 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3563 intel_engine_pm_put_async(engine); 3564 } 3565 3566 static void guc_virtual_context_enter(struct intel_context *ce) 3567 { 3568 intel_engine_mask_t tmp, mask = ce->engine->mask; 3569 struct intel_engine_cs *engine; 3570 3571 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3572 intel_engine_pm_get(engine); 3573 3574 intel_timeline_enter(ce->timeline); 3575 } 3576 3577 static void guc_virtual_context_exit(struct intel_context *ce) 3578 { 3579 intel_engine_mask_t tmp, mask = ce->engine->mask; 3580 struct intel_engine_cs *engine; 3581 3582 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3583 intel_engine_pm_put(engine); 3584 3585 intel_timeline_exit(ce->timeline); 3586 } 3587 3588 static int guc_virtual_context_alloc(struct intel_context *ce) 3589 { 3590 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3591 3592 return lrc_alloc(ce, engine); 3593 } 3594 3595 static const struct intel_context_ops virtual_guc_context_ops = { 3596 .alloc = guc_virtual_context_alloc, 3597 3598 .pre_pin = guc_virtual_context_pre_pin, 3599 .pin = guc_virtual_context_pin, 3600 .unpin = guc_virtual_context_unpin, 3601 .post_unpin = guc_context_post_unpin, 3602 3603 .revoke = guc_context_revoke, 3604 3605 .cancel_request = guc_context_cancel_request, 3606 3607 .enter = guc_virtual_context_enter, 3608 .exit = guc_virtual_context_exit, 3609 3610 .sched_disable = guc_context_sched_disable, 3611 3612 .destroy = guc_context_destroy, 3613 3614 .get_sibling = guc_virtual_get_sibling, 3615 }; 3616 3617 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr) 3618 { 3619 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3620 struct intel_guc *guc = ce_to_guc(ce); 3621 int ret; 3622 3623 GEM_BUG_ON(!intel_context_is_parent(ce)); 3624 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3625 3626 ret = pin_guc_id(guc, ce); 3627 if (unlikely(ret < 0)) 3628 return ret; 3629 3630 return __guc_context_pin(ce, engine, vaddr); 3631 } 3632 3633 static int guc_child_context_pin(struct intel_context *ce, void *vaddr) 3634 { 3635 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3636 3637 GEM_BUG_ON(!intel_context_is_child(ce)); 3638 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3639 3640 __intel_context_pin(ce->parallel.parent); 3641 return __guc_context_pin(ce, engine, vaddr); 3642 } 3643 3644 static void guc_parent_context_unpin(struct intel_context *ce) 3645 { 3646 struct intel_guc *guc = ce_to_guc(ce); 3647 3648 GEM_BUG_ON(context_enabled(ce)); 3649 GEM_BUG_ON(intel_context_is_barrier(ce)); 3650 GEM_BUG_ON(!intel_context_is_parent(ce)); 3651 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3652 3653 unpin_guc_id(guc, ce); 3654 lrc_unpin(ce); 3655 } 3656 3657 static void guc_child_context_unpin(struct intel_context *ce) 3658 { 3659 GEM_BUG_ON(context_enabled(ce)); 3660 GEM_BUG_ON(intel_context_is_barrier(ce)); 3661 GEM_BUG_ON(!intel_context_is_child(ce)); 3662 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3663 3664 lrc_unpin(ce); 3665 } 3666 3667 static void guc_child_context_post_unpin(struct intel_context *ce) 3668 { 3669 GEM_BUG_ON(!intel_context_is_child(ce)); 3670 GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent)); 3671 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3672 3673 lrc_post_unpin(ce); 3674 intel_context_unpin(ce->parallel.parent); 3675 } 3676 3677 static void guc_child_context_destroy(struct kref *kref) 3678 { 3679 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 3680 3681 __guc_context_destroy(ce); 3682 } 3683 3684 static const struct intel_context_ops virtual_parent_context_ops = { 3685 .alloc = guc_virtual_context_alloc, 3686 3687 .pre_pin = guc_context_pre_pin, 3688 .pin = guc_parent_context_pin, 3689 .unpin = guc_parent_context_unpin, 3690 .post_unpin = guc_context_post_unpin, 3691 3692 .revoke = guc_context_revoke, 3693 3694 .cancel_request = guc_context_cancel_request, 3695 3696 .enter = guc_virtual_context_enter, 3697 .exit = guc_virtual_context_exit, 3698 3699 .sched_disable = guc_context_sched_disable, 3700 3701 .destroy = guc_context_destroy, 3702 3703 .get_sibling = guc_virtual_get_sibling, 3704 }; 3705 3706 static const struct intel_context_ops virtual_child_context_ops = { 3707 .alloc = guc_virtual_context_alloc, 3708 3709 .pre_pin = guc_context_pre_pin, 3710 .pin = guc_child_context_pin, 3711 .unpin = guc_child_context_unpin, 3712 .post_unpin = guc_child_context_post_unpin, 3713 3714 .cancel_request = guc_context_cancel_request, 3715 3716 .enter = guc_virtual_context_enter, 3717 .exit = guc_virtual_context_exit, 3718 3719 .destroy = guc_child_context_destroy, 3720 3721 .get_sibling = guc_virtual_get_sibling, 3722 }; 3723 3724 /* 3725 * The below override of the breadcrumbs is enabled when the user configures a 3726 * context for parallel submission (multi-lrc, parent-child). 3727 * 3728 * The overridden breadcrumbs implements an algorithm which allows the GuC to 3729 * safely preempt all the hw contexts configured for parallel submission 3730 * between each BB. The contract between the i915 and GuC is if the parent 3731 * context can be preempted, all the children can be preempted, and the GuC will 3732 * always try to preempt the parent before the children. A handshake between the 3733 * parent / children breadcrumbs ensures the i915 holds up its end of the deal 3734 * creating a window to preempt between each set of BBs. 3735 */ 3736 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, 3737 u64 offset, u32 len, 3738 const unsigned int flags); 3739 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, 3740 u64 offset, u32 len, 3741 const unsigned int flags); 3742 static u32 * 3743 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 3744 u32 *cs); 3745 static u32 * 3746 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 3747 u32 *cs); 3748 3749 static struct intel_context * 3750 guc_create_parallel(struct intel_engine_cs **engines, 3751 unsigned int num_siblings, 3752 unsigned int width) 3753 { 3754 struct intel_engine_cs **siblings = NULL; 3755 struct intel_context *parent = NULL, *ce, *err; 3756 int i, j; 3757 3758 siblings = kmalloc_array(num_siblings, 3759 sizeof(*siblings), 3760 GFP_KERNEL); 3761 if (!siblings) 3762 return ERR_PTR(-ENOMEM); 3763 3764 for (i = 0; i < width; ++i) { 3765 for (j = 0; j < num_siblings; ++j) 3766 siblings[j] = engines[i * num_siblings + j]; 3767 3768 ce = intel_engine_create_virtual(siblings, num_siblings, 3769 FORCE_VIRTUAL); 3770 if (IS_ERR(ce)) { 3771 err = ERR_CAST(ce); 3772 goto unwind; 3773 } 3774 3775 if (i == 0) { 3776 parent = ce; 3777 parent->ops = &virtual_parent_context_ops; 3778 } else { 3779 ce->ops = &virtual_child_context_ops; 3780 intel_context_bind_parent_child(parent, ce); 3781 } 3782 } 3783 3784 parent->parallel.fence_context = dma_fence_context_alloc(1); 3785 3786 parent->engine->emit_bb_start = 3787 emit_bb_start_parent_no_preempt_mid_batch; 3788 parent->engine->emit_fini_breadcrumb = 3789 emit_fini_breadcrumb_parent_no_preempt_mid_batch; 3790 parent->engine->emit_fini_breadcrumb_dw = 3791 12 + 4 * parent->parallel.number_children; 3792 for_each_child(parent, ce) { 3793 ce->engine->emit_bb_start = 3794 emit_bb_start_child_no_preempt_mid_batch; 3795 ce->engine->emit_fini_breadcrumb = 3796 emit_fini_breadcrumb_child_no_preempt_mid_batch; 3797 ce->engine->emit_fini_breadcrumb_dw = 16; 3798 } 3799 3800 kfree(siblings); 3801 return parent; 3802 3803 unwind: 3804 if (parent) 3805 intel_context_put(parent); 3806 kfree(siblings); 3807 return err; 3808 } 3809 3810 static bool 3811 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b) 3812 { 3813 struct intel_engine_cs *sibling; 3814 intel_engine_mask_t tmp, mask = b->engine_mask; 3815 bool result = false; 3816 3817 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) 3818 result |= intel_engine_irq_enable(sibling); 3819 3820 return result; 3821 } 3822 3823 static void 3824 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b) 3825 { 3826 struct intel_engine_cs *sibling; 3827 intel_engine_mask_t tmp, mask = b->engine_mask; 3828 3829 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) 3830 intel_engine_irq_disable(sibling); 3831 } 3832 3833 static void guc_init_breadcrumbs(struct intel_engine_cs *engine) 3834 { 3835 int i; 3836 3837 /* 3838 * In GuC submission mode we do not know which physical engine a request 3839 * will be scheduled on, this creates a problem because the breadcrumb 3840 * interrupt is per physical engine. To work around this we attach 3841 * requests and direct all breadcrumb interrupts to the first instance 3842 * of an engine per class. In addition all breadcrumb interrupts are 3843 * enabled / disabled across an engine class in unison. 3844 */ 3845 for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) { 3846 struct intel_engine_cs *sibling = 3847 engine->gt->engine_class[engine->class][i]; 3848 3849 if (sibling) { 3850 if (engine->breadcrumbs != sibling->breadcrumbs) { 3851 intel_breadcrumbs_put(engine->breadcrumbs); 3852 engine->breadcrumbs = 3853 intel_breadcrumbs_get(sibling->breadcrumbs); 3854 } 3855 break; 3856 } 3857 } 3858 3859 if (engine->breadcrumbs) { 3860 engine->breadcrumbs->engine_mask |= engine->mask; 3861 engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs; 3862 engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs; 3863 } 3864 } 3865 3866 static void guc_bump_inflight_request_prio(struct i915_request *rq, 3867 int prio) 3868 { 3869 struct intel_context *ce = request_to_scheduling_context(rq); 3870 u8 new_guc_prio = map_i915_prio_to_guc_prio(prio); 3871 3872 /* Short circuit function */ 3873 if (prio < I915_PRIORITY_NORMAL || 3874 rq->guc_prio == GUC_PRIO_FINI || 3875 (rq->guc_prio != GUC_PRIO_INIT && 3876 !new_guc_prio_higher(rq->guc_prio, new_guc_prio))) 3877 return; 3878 3879 spin_lock(&ce->guc_state.lock); 3880 if (rq->guc_prio != GUC_PRIO_FINI) { 3881 if (rq->guc_prio != GUC_PRIO_INIT) 3882 sub_context_inflight_prio(ce, rq->guc_prio); 3883 rq->guc_prio = new_guc_prio; 3884 add_context_inflight_prio(ce, rq->guc_prio); 3885 update_context_prio(ce); 3886 } 3887 spin_unlock(&ce->guc_state.lock); 3888 } 3889 3890 static void guc_retire_inflight_request_prio(struct i915_request *rq) 3891 { 3892 struct intel_context *ce = request_to_scheduling_context(rq); 3893 3894 spin_lock(&ce->guc_state.lock); 3895 guc_prio_fini(rq, ce); 3896 spin_unlock(&ce->guc_state.lock); 3897 } 3898 3899 static void sanitize_hwsp(struct intel_engine_cs *engine) 3900 { 3901 struct intel_timeline *tl; 3902 3903 list_for_each_entry(tl, &engine->status_page.timelines, engine_link) 3904 intel_timeline_reset_seqno(tl); 3905 } 3906 3907 static void guc_sanitize(struct intel_engine_cs *engine) 3908 { 3909 /* 3910 * Poison residual state on resume, in case the suspend didn't! 3911 * 3912 * We have to assume that across suspend/resume (or other loss 3913 * of control) that the contents of our pinned buffers has been 3914 * lost, replaced by garbage. Since this doesn't always happen, 3915 * let's poison such state so that we more quickly spot when 3916 * we falsely assume it has been preserved. 3917 */ 3918 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 3919 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE); 3920 3921 /* 3922 * The kernel_context HWSP is stored in the status_page. As above, 3923 * that may be lost on resume/initialisation, and so we need to 3924 * reset the value in the HWSP. 3925 */ 3926 sanitize_hwsp(engine); 3927 3928 /* And scrub the dirty cachelines for the HWSP */ 3929 drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE); 3930 3931 intel_engine_reset_pinned_contexts(engine); 3932 } 3933 3934 static void setup_hwsp(struct intel_engine_cs *engine) 3935 { 3936 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */ 3937 3938 ENGINE_WRITE_FW(engine, 3939 RING_HWS_PGA, 3940 i915_ggtt_offset(engine->status_page.vma)); 3941 } 3942 3943 static void start_engine(struct intel_engine_cs *engine) 3944 { 3945 ENGINE_WRITE_FW(engine, 3946 RING_MODE_GEN7, 3947 _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE)); 3948 3949 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 3950 ENGINE_POSTING_READ(engine, RING_MI_MODE); 3951 } 3952 3953 static int guc_resume(struct intel_engine_cs *engine) 3954 { 3955 assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL); 3956 3957 intel_mocs_init_engine(engine); 3958 3959 intel_breadcrumbs_reset(engine->breadcrumbs); 3960 3961 setup_hwsp(engine); 3962 start_engine(engine); 3963 3964 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) 3965 xehp_enable_ccs_engines(engine); 3966 3967 return 0; 3968 } 3969 3970 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine) 3971 { 3972 return !sched_engine->tasklet.callback; 3973 } 3974 3975 static void guc_set_default_submission(struct intel_engine_cs *engine) 3976 { 3977 engine->submit_request = guc_submit_request; 3978 } 3979 3980 static inline void guc_kernel_context_pin(struct intel_guc *guc, 3981 struct intel_context *ce) 3982 { 3983 /* 3984 * Note: we purposefully do not check the returns below because 3985 * the registration can only fail if a reset is just starting. 3986 * This is called at the end of reset so presumably another reset 3987 * isn't happening and even it did this code would be run again. 3988 */ 3989 3990 if (context_guc_id_invalid(ce)) 3991 pin_guc_id(guc, ce); 3992 3993 try_context_registration(ce, true); 3994 } 3995 3996 static inline void guc_init_lrc_mapping(struct intel_guc *guc) 3997 { 3998 struct intel_gt *gt = guc_to_gt(guc); 3999 struct intel_engine_cs *engine; 4000 enum intel_engine_id id; 4001 4002 /* make sure all descriptors are clean... */ 4003 xa_destroy(&guc->context_lookup); 4004 4005 /* 4006 * A reset might have occurred while we had a pending stalled request, 4007 * so make sure we clean that up. 4008 */ 4009 guc->stalled_request = NULL; 4010 guc->submission_stall_reason = STALL_NONE; 4011 4012 /* 4013 * Some contexts might have been pinned before we enabled GuC 4014 * submission, so we need to add them to the GuC bookeeping. 4015 * Also, after a reset the of the GuC we want to make sure that the 4016 * information shared with GuC is properly reset. The kernel LRCs are 4017 * not attached to the gem_context, so they need to be added separately. 4018 */ 4019 for_each_engine(engine, gt, id) { 4020 struct intel_context *ce; 4021 4022 list_for_each_entry(ce, &engine->pinned_contexts_list, 4023 pinned_contexts_link) 4024 guc_kernel_context_pin(guc, ce); 4025 } 4026 } 4027 4028 static void guc_release(struct intel_engine_cs *engine) 4029 { 4030 engine->sanitize = NULL; /* no longer in control, nothing to sanitize */ 4031 4032 intel_engine_cleanup_common(engine); 4033 lrc_fini_wa_ctx(engine); 4034 } 4035 4036 static void virtual_guc_bump_serial(struct intel_engine_cs *engine) 4037 { 4038 struct intel_engine_cs *e; 4039 intel_engine_mask_t tmp, mask = engine->mask; 4040 4041 for_each_engine_masked(e, engine->gt, mask, tmp) 4042 e->serial++; 4043 } 4044 4045 static void guc_default_vfuncs(struct intel_engine_cs *engine) 4046 { 4047 /* Default vfuncs which can be overridden by each engine. */ 4048 4049 engine->resume = guc_resume; 4050 4051 engine->cops = &guc_context_ops; 4052 engine->request_alloc = guc_request_alloc; 4053 engine->add_active_request = add_to_context; 4054 engine->remove_active_request = remove_from_context; 4055 4056 engine->sched_engine->schedule = i915_schedule; 4057 4058 engine->reset.prepare = guc_engine_reset_prepare; 4059 engine->reset.rewind = guc_rewind_nop; 4060 engine->reset.cancel = guc_reset_nop; 4061 engine->reset.finish = guc_reset_nop; 4062 4063 engine->emit_flush = gen8_emit_flush_xcs; 4064 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb; 4065 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs; 4066 if (GRAPHICS_VER(engine->i915) >= 12) { 4067 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs; 4068 engine->emit_flush = gen12_emit_flush_xcs; 4069 } 4070 engine->set_default_submission = guc_set_default_submission; 4071 engine->busyness = guc_engine_busyness; 4072 4073 engine->flags |= I915_ENGINE_SUPPORTS_STATS; 4074 engine->flags |= I915_ENGINE_HAS_PREEMPTION; 4075 engine->flags |= I915_ENGINE_HAS_TIMESLICES; 4076 4077 /* Wa_14014475959:dg2 */ 4078 if (IS_DG2(engine->i915) && engine->class == COMPUTE_CLASS) 4079 engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT; 4080 4081 /* 4082 * TODO: GuC supports timeslicing and semaphores as well, but they're 4083 * handled by the firmware so some minor tweaks are required before 4084 * enabling. 4085 * 4086 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES; 4087 */ 4088 4089 engine->emit_bb_start = gen8_emit_bb_start; 4090 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) 4091 engine->emit_bb_start = gen125_emit_bb_start; 4092 } 4093 4094 static void rcs_submission_override(struct intel_engine_cs *engine) 4095 { 4096 switch (GRAPHICS_VER(engine->i915)) { 4097 case 12: 4098 engine->emit_flush = gen12_emit_flush_rcs; 4099 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs; 4100 break; 4101 case 11: 4102 engine->emit_flush = gen11_emit_flush_rcs; 4103 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs; 4104 break; 4105 default: 4106 engine->emit_flush = gen8_emit_flush_rcs; 4107 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs; 4108 break; 4109 } 4110 } 4111 4112 static inline void guc_default_irqs(struct intel_engine_cs *engine) 4113 { 4114 engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT; 4115 intel_engine_set_irq_handler(engine, cs_irq_handler); 4116 } 4117 4118 static void guc_sched_engine_destroy(struct kref *kref) 4119 { 4120 struct i915_sched_engine *sched_engine = 4121 container_of(kref, typeof(*sched_engine), ref); 4122 struct intel_guc *guc = sched_engine->private_data; 4123 4124 guc->sched_engine = NULL; 4125 tasklet_kill(&sched_engine->tasklet); /* flush the callback */ 4126 kfree(sched_engine); 4127 } 4128 4129 int intel_guc_submission_setup(struct intel_engine_cs *engine) 4130 { 4131 struct drm_i915_private *i915 = engine->i915; 4132 struct intel_guc *guc = &engine->gt->uc.guc; 4133 4134 /* 4135 * The setup relies on several assumptions (e.g. irqs always enabled) 4136 * that are only valid on gen11+ 4137 */ 4138 GEM_BUG_ON(GRAPHICS_VER(i915) < 11); 4139 4140 if (!guc->sched_engine) { 4141 guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL); 4142 if (!guc->sched_engine) 4143 return -ENOMEM; 4144 4145 guc->sched_engine->schedule = i915_schedule; 4146 guc->sched_engine->disabled = guc_sched_engine_disabled; 4147 guc->sched_engine->private_data = guc; 4148 guc->sched_engine->destroy = guc_sched_engine_destroy; 4149 guc->sched_engine->bump_inflight_request_prio = 4150 guc_bump_inflight_request_prio; 4151 guc->sched_engine->retire_inflight_request_prio = 4152 guc_retire_inflight_request_prio; 4153 tasklet_setup(&guc->sched_engine->tasklet, 4154 guc_submission_tasklet); 4155 } 4156 i915_sched_engine_put(engine->sched_engine); 4157 engine->sched_engine = i915_sched_engine_get(guc->sched_engine); 4158 4159 guc_default_vfuncs(engine); 4160 guc_default_irqs(engine); 4161 guc_init_breadcrumbs(engine); 4162 4163 if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) 4164 rcs_submission_override(engine); 4165 4166 lrc_init_wa_ctx(engine); 4167 4168 /* Finally, take ownership and responsibility for cleanup! */ 4169 engine->sanitize = guc_sanitize; 4170 engine->release = guc_release; 4171 4172 return 0; 4173 } 4174 4175 void intel_guc_submission_enable(struct intel_guc *guc) 4176 { 4177 struct intel_gt *gt = guc_to_gt(guc); 4178 4179 /* Enable and route to GuC */ 4180 if (GRAPHICS_VER(gt->i915) >= 12) 4181 intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, 4182 GUC_SEM_INTR_ROUTE_TO_GUC | 4183 GUC_SEM_INTR_ENABLE_ALL); 4184 4185 guc_init_lrc_mapping(guc); 4186 guc_init_engine_stats(guc); 4187 } 4188 4189 void intel_guc_submission_disable(struct intel_guc *guc) 4190 { 4191 struct intel_gt *gt = guc_to_gt(guc); 4192 4193 /* Note: By the time we're here, GuC may have already been reset */ 4194 4195 /* Disable and route to host */ 4196 if (GRAPHICS_VER(gt->i915) >= 12) 4197 intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, 0x0); 4198 } 4199 4200 static bool __guc_submission_supported(struct intel_guc *guc) 4201 { 4202 /* GuC submission is unavailable for pre-Gen11 */ 4203 return intel_guc_is_supported(guc) && 4204 GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11; 4205 } 4206 4207 static bool __guc_submission_selected(struct intel_guc *guc) 4208 { 4209 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 4210 4211 if (!intel_guc_submission_is_supported(guc)) 4212 return false; 4213 4214 return i915->params.enable_guc & ENABLE_GUC_SUBMISSION; 4215 } 4216 4217 void intel_guc_submission_init_early(struct intel_guc *guc) 4218 { 4219 xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ); 4220 4221 spin_lock_init(&guc->submission_state.lock); 4222 INIT_LIST_HEAD(&guc->submission_state.guc_id_list); 4223 ida_init(&guc->submission_state.guc_ids); 4224 INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts); 4225 INIT_WORK(&guc->submission_state.destroyed_worker, 4226 destroyed_worker_func); 4227 INIT_WORK(&guc->submission_state.reset_fail_worker, 4228 reset_fail_worker_func); 4229 4230 spin_lock_init(&guc->timestamp.lock); 4231 INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping); 4232 4233 guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID; 4234 guc->submission_supported = __guc_submission_supported(guc); 4235 guc->submission_selected = __guc_submission_selected(guc); 4236 } 4237 4238 static inline struct intel_context * 4239 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id) 4240 { 4241 struct intel_context *ce; 4242 4243 if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) { 4244 drm_err(&guc_to_gt(guc)->i915->drm, 4245 "Invalid ctx_id %u\n", ctx_id); 4246 return NULL; 4247 } 4248 4249 ce = __get_context(guc, ctx_id); 4250 if (unlikely(!ce)) { 4251 drm_err(&guc_to_gt(guc)->i915->drm, 4252 "Context is NULL, ctx_id %u\n", ctx_id); 4253 return NULL; 4254 } 4255 4256 if (unlikely(intel_context_is_child(ce))) { 4257 drm_err(&guc_to_gt(guc)->i915->drm, 4258 "Context is child, ctx_id %u\n", ctx_id); 4259 return NULL; 4260 } 4261 4262 return ce; 4263 } 4264 4265 int intel_guc_deregister_done_process_msg(struct intel_guc *guc, 4266 const u32 *msg, 4267 u32 len) 4268 { 4269 struct intel_context *ce; 4270 u32 ctx_id; 4271 4272 if (unlikely(len < 1)) { 4273 drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len); 4274 return -EPROTO; 4275 } 4276 ctx_id = msg[0]; 4277 4278 ce = g2h_context_lookup(guc, ctx_id); 4279 if (unlikely(!ce)) 4280 return -EPROTO; 4281 4282 trace_intel_context_deregister_done(ce); 4283 4284 #ifdef CONFIG_DRM_I915_SELFTEST 4285 if (unlikely(ce->drop_deregister)) { 4286 ce->drop_deregister = false; 4287 return 0; 4288 } 4289 #endif 4290 4291 if (context_wait_for_deregister_to_register(ce)) { 4292 struct intel_runtime_pm *runtime_pm = 4293 &ce->engine->gt->i915->runtime_pm; 4294 intel_wakeref_t wakeref; 4295 4296 /* 4297 * Previous owner of this guc_id has been deregistered, now safe 4298 * register this context. 4299 */ 4300 with_intel_runtime_pm(runtime_pm, wakeref) 4301 register_context(ce, true); 4302 guc_signal_context_fence(ce); 4303 intel_context_put(ce); 4304 } else if (context_destroyed(ce)) { 4305 /* Context has been destroyed */ 4306 intel_gt_pm_put_async(guc_to_gt(guc)); 4307 release_guc_id(guc, ce); 4308 __guc_context_destroy(ce); 4309 } 4310 4311 decr_outstanding_submission_g2h(guc); 4312 4313 return 0; 4314 } 4315 4316 int intel_guc_sched_done_process_msg(struct intel_guc *guc, 4317 const u32 *msg, 4318 u32 len) 4319 { 4320 struct intel_context *ce; 4321 unsigned long flags; 4322 u32 ctx_id; 4323 4324 if (unlikely(len < 2)) { 4325 drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len); 4326 return -EPROTO; 4327 } 4328 ctx_id = msg[0]; 4329 4330 ce = g2h_context_lookup(guc, ctx_id); 4331 if (unlikely(!ce)) 4332 return -EPROTO; 4333 4334 if (unlikely(context_destroyed(ce) || 4335 (!context_pending_enable(ce) && 4336 !context_pending_disable(ce)))) { 4337 drm_err(&guc_to_gt(guc)->i915->drm, 4338 "Bad context sched_state 0x%x, ctx_id %u\n", 4339 ce->guc_state.sched_state, ctx_id); 4340 return -EPROTO; 4341 } 4342 4343 trace_intel_context_sched_done(ce); 4344 4345 if (context_pending_enable(ce)) { 4346 #ifdef CONFIG_DRM_I915_SELFTEST 4347 if (unlikely(ce->drop_schedule_enable)) { 4348 ce->drop_schedule_enable = false; 4349 return 0; 4350 } 4351 #endif 4352 4353 spin_lock_irqsave(&ce->guc_state.lock, flags); 4354 clr_context_pending_enable(ce); 4355 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 4356 } else if (context_pending_disable(ce)) { 4357 bool banned; 4358 4359 #ifdef CONFIG_DRM_I915_SELFTEST 4360 if (unlikely(ce->drop_schedule_disable)) { 4361 ce->drop_schedule_disable = false; 4362 return 0; 4363 } 4364 #endif 4365 4366 /* 4367 * Unpin must be done before __guc_signal_context_fence, 4368 * otherwise a race exists between the requests getting 4369 * submitted + retired before this unpin completes resulting in 4370 * the pin_count going to zero and the context still being 4371 * enabled. 4372 */ 4373 intel_context_sched_disable_unpin(ce); 4374 4375 spin_lock_irqsave(&ce->guc_state.lock, flags); 4376 banned = context_banned(ce); 4377 clr_context_banned(ce); 4378 clr_context_pending_disable(ce); 4379 __guc_signal_context_fence(ce); 4380 guc_blocked_fence_complete(ce); 4381 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 4382 4383 if (banned) { 4384 guc_cancel_context_requests(ce); 4385 intel_engine_signal_breadcrumbs(ce->engine); 4386 } 4387 } 4388 4389 decr_outstanding_submission_g2h(guc); 4390 intel_context_put(ce); 4391 4392 return 0; 4393 } 4394 4395 static void capture_error_state(struct intel_guc *guc, 4396 struct intel_context *ce) 4397 { 4398 struct intel_gt *gt = guc_to_gt(guc); 4399 struct drm_i915_private *i915 = gt->i915; 4400 struct intel_engine_cs *engine = __context_to_physical_engine(ce); 4401 intel_wakeref_t wakeref; 4402 4403 intel_engine_set_hung_context(engine, ce); 4404 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 4405 i915_capture_error_state(gt, engine->mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE); 4406 atomic_inc(&i915->gpu_error.reset_engine_count[engine->uabi_class]); 4407 } 4408 4409 static void guc_context_replay(struct intel_context *ce) 4410 { 4411 struct i915_sched_engine *sched_engine = ce->engine->sched_engine; 4412 4413 __guc_reset_context(ce, ce->engine->mask); 4414 tasklet_hi_schedule(&sched_engine->tasklet); 4415 } 4416 4417 static void guc_handle_context_reset(struct intel_guc *guc, 4418 struct intel_context *ce) 4419 { 4420 trace_intel_context_reset(ce); 4421 4422 if (likely(!intel_context_is_banned(ce))) { 4423 capture_error_state(guc, ce); 4424 guc_context_replay(ce); 4425 } else { 4426 drm_info(&guc_to_gt(guc)->i915->drm, 4427 "Ignoring context reset notification of banned context 0x%04X on %s", 4428 ce->guc_id.id, ce->engine->name); 4429 } 4430 } 4431 4432 int intel_guc_context_reset_process_msg(struct intel_guc *guc, 4433 const u32 *msg, u32 len) 4434 { 4435 struct intel_context *ce; 4436 unsigned long flags; 4437 int ctx_id; 4438 4439 if (unlikely(len != 1)) { 4440 drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len); 4441 return -EPROTO; 4442 } 4443 4444 ctx_id = msg[0]; 4445 4446 /* 4447 * The context lookup uses the xarray but lookups only require an RCU lock 4448 * not the full spinlock. So take the lock explicitly and keep it until the 4449 * context has been reference count locked to ensure it can't be destroyed 4450 * asynchronously until the reset is done. 4451 */ 4452 xa_lock_irqsave(&guc->context_lookup, flags); 4453 ce = g2h_context_lookup(guc, ctx_id); 4454 if (ce) 4455 intel_context_get(ce); 4456 xa_unlock_irqrestore(&guc->context_lookup, flags); 4457 4458 if (unlikely(!ce)) 4459 return -EPROTO; 4460 4461 guc_handle_context_reset(guc, ce); 4462 intel_context_put(ce); 4463 4464 return 0; 4465 } 4466 4467 int intel_guc_error_capture_process_msg(struct intel_guc *guc, 4468 const u32 *msg, u32 len) 4469 { 4470 u32 status; 4471 4472 if (unlikely(len != 1)) { 4473 drm_dbg(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len); 4474 return -EPROTO; 4475 } 4476 4477 status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK; 4478 if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE) 4479 drm_warn(&guc_to_gt(guc)->i915->drm, "G2H-Error capture no space"); 4480 4481 intel_guc_capture_process(guc); 4482 4483 return 0; 4484 } 4485 4486 struct intel_engine_cs * 4487 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance) 4488 { 4489 struct intel_gt *gt = guc_to_gt(guc); 4490 u8 engine_class = guc_class_to_engine_class(guc_class); 4491 4492 /* Class index is checked in class converter */ 4493 GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE); 4494 4495 return gt->engine_class[engine_class][instance]; 4496 } 4497 4498 static void reset_fail_worker_func(struct work_struct *w) 4499 { 4500 struct intel_guc *guc = container_of(w, struct intel_guc, 4501 submission_state.reset_fail_worker); 4502 struct intel_gt *gt = guc_to_gt(guc); 4503 intel_engine_mask_t reset_fail_mask; 4504 unsigned long flags; 4505 4506 spin_lock_irqsave(&guc->submission_state.lock, flags); 4507 reset_fail_mask = guc->submission_state.reset_fail_mask; 4508 guc->submission_state.reset_fail_mask = 0; 4509 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 4510 4511 if (likely(reset_fail_mask)) 4512 intel_gt_handle_error(gt, reset_fail_mask, 4513 I915_ERROR_CAPTURE, 4514 "GuC failed to reset engine mask=0x%x\n", 4515 reset_fail_mask); 4516 } 4517 4518 int intel_guc_engine_failure_process_msg(struct intel_guc *guc, 4519 const u32 *msg, u32 len) 4520 { 4521 struct intel_engine_cs *engine; 4522 struct intel_gt *gt = guc_to_gt(guc); 4523 u8 guc_class, instance; 4524 u32 reason; 4525 unsigned long flags; 4526 4527 if (unlikely(len != 3)) { 4528 drm_err(>->i915->drm, "Invalid length %u", len); 4529 return -EPROTO; 4530 } 4531 4532 guc_class = msg[0]; 4533 instance = msg[1]; 4534 reason = msg[2]; 4535 4536 engine = intel_guc_lookup_engine(guc, guc_class, instance); 4537 if (unlikely(!engine)) { 4538 drm_err(>->i915->drm, 4539 "Invalid engine %d:%d", guc_class, instance); 4540 return -EPROTO; 4541 } 4542 4543 /* 4544 * This is an unexpected failure of a hardware feature. So, log a real 4545 * error message not just the informational that comes with the reset. 4546 */ 4547 drm_err(>->i915->drm, "GuC engine reset request failed on %d:%d (%s) because 0x%08X", 4548 guc_class, instance, engine->name, reason); 4549 4550 spin_lock_irqsave(&guc->submission_state.lock, flags); 4551 guc->submission_state.reset_fail_mask |= engine->mask; 4552 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 4553 4554 /* 4555 * A GT reset flushes this worker queue (G2H handler) so we must use 4556 * another worker to trigger a GT reset. 4557 */ 4558 queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker); 4559 4560 return 0; 4561 } 4562 4563 void intel_guc_find_hung_context(struct intel_engine_cs *engine) 4564 { 4565 struct intel_guc *guc = &engine->gt->uc.guc; 4566 struct intel_context *ce; 4567 struct i915_request *rq; 4568 unsigned long index; 4569 unsigned long flags; 4570 4571 /* Reset called during driver load? GuC not yet initialised! */ 4572 if (unlikely(!guc_submission_initialized(guc))) 4573 return; 4574 4575 xa_lock_irqsave(&guc->context_lookup, flags); 4576 xa_for_each(&guc->context_lookup, index, ce) { 4577 if (!kref_get_unless_zero(&ce->ref)) 4578 continue; 4579 4580 xa_unlock(&guc->context_lookup); 4581 4582 if (!intel_context_is_pinned(ce)) 4583 goto next; 4584 4585 if (intel_engine_is_virtual(ce->engine)) { 4586 if (!(ce->engine->mask & engine->mask)) 4587 goto next; 4588 } else { 4589 if (ce->engine != engine) 4590 goto next; 4591 } 4592 4593 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) { 4594 if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE) 4595 continue; 4596 4597 intel_engine_set_hung_context(engine, ce); 4598 4599 /* Can only cope with one hang at a time... */ 4600 intel_context_put(ce); 4601 xa_lock(&guc->context_lookup); 4602 goto done; 4603 } 4604 next: 4605 intel_context_put(ce); 4606 xa_lock(&guc->context_lookup); 4607 } 4608 done: 4609 xa_unlock_irqrestore(&guc->context_lookup, flags); 4610 } 4611 4612 void intel_guc_dump_active_requests(struct intel_engine_cs *engine, 4613 struct i915_request *hung_rq, 4614 struct drm_printer *m) 4615 { 4616 struct intel_guc *guc = &engine->gt->uc.guc; 4617 struct intel_context *ce; 4618 unsigned long index; 4619 unsigned long flags; 4620 4621 /* Reset called during driver load? GuC not yet initialised! */ 4622 if (unlikely(!guc_submission_initialized(guc))) 4623 return; 4624 4625 xa_lock_irqsave(&guc->context_lookup, flags); 4626 xa_for_each(&guc->context_lookup, index, ce) { 4627 if (!kref_get_unless_zero(&ce->ref)) 4628 continue; 4629 4630 xa_unlock(&guc->context_lookup); 4631 4632 if (!intel_context_is_pinned(ce)) 4633 goto next; 4634 4635 if (intel_engine_is_virtual(ce->engine)) { 4636 if (!(ce->engine->mask & engine->mask)) 4637 goto next; 4638 } else { 4639 if (ce->engine != engine) 4640 goto next; 4641 } 4642 4643 spin_lock(&ce->guc_state.lock); 4644 intel_engine_dump_active_requests(&ce->guc_state.requests, 4645 hung_rq, m); 4646 spin_unlock(&ce->guc_state.lock); 4647 4648 next: 4649 intel_context_put(ce); 4650 xa_lock(&guc->context_lookup); 4651 } 4652 xa_unlock_irqrestore(&guc->context_lookup, flags); 4653 } 4654 4655 void intel_guc_submission_print_info(struct intel_guc *guc, 4656 struct drm_printer *p) 4657 { 4658 struct i915_sched_engine *sched_engine = guc->sched_engine; 4659 struct rb_node *rb; 4660 unsigned long flags; 4661 4662 if (!sched_engine) 4663 return; 4664 4665 drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n", 4666 atomic_read(&guc->outstanding_submission_g2h)); 4667 drm_printf(p, "GuC tasklet count: %u\n\n", 4668 atomic_read(&sched_engine->tasklet.count)); 4669 4670 spin_lock_irqsave(&sched_engine->lock, flags); 4671 drm_printf(p, "Requests in GuC submit tasklet:\n"); 4672 for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) { 4673 struct i915_priolist *pl = to_priolist(rb); 4674 struct i915_request *rq; 4675 4676 priolist_for_each_request(rq, pl) 4677 drm_printf(p, "guc_id=%u, seqno=%llu\n", 4678 rq->context->guc_id.id, 4679 rq->fence.seqno); 4680 } 4681 spin_unlock_irqrestore(&sched_engine->lock, flags); 4682 drm_printf(p, "\n"); 4683 } 4684 4685 static inline void guc_log_context_priority(struct drm_printer *p, 4686 struct intel_context *ce) 4687 { 4688 int i; 4689 4690 drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio); 4691 drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n"); 4692 for (i = GUC_CLIENT_PRIORITY_KMD_HIGH; 4693 i < GUC_CLIENT_PRIORITY_NUM; ++i) { 4694 drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n", 4695 i, ce->guc_state.prio_count[i]); 4696 } 4697 drm_printf(p, "\n"); 4698 } 4699 4700 static inline void guc_log_context(struct drm_printer *p, 4701 struct intel_context *ce) 4702 { 4703 drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id); 4704 drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca); 4705 drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n", 4706 ce->ring->head, 4707 ce->lrc_reg_state[CTX_RING_HEAD]); 4708 drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n", 4709 ce->ring->tail, 4710 ce->lrc_reg_state[CTX_RING_TAIL]); 4711 drm_printf(p, "\t\tContext Pin Count: %u\n", 4712 atomic_read(&ce->pin_count)); 4713 drm_printf(p, "\t\tGuC ID Ref Count: %u\n", 4714 atomic_read(&ce->guc_id.ref)); 4715 drm_printf(p, "\t\tSchedule State: 0x%x\n\n", 4716 ce->guc_state.sched_state); 4717 } 4718 4719 void intel_guc_submission_print_context_info(struct intel_guc *guc, 4720 struct drm_printer *p) 4721 { 4722 struct intel_context *ce; 4723 unsigned long index; 4724 unsigned long flags; 4725 4726 xa_lock_irqsave(&guc->context_lookup, flags); 4727 xa_for_each(&guc->context_lookup, index, ce) { 4728 GEM_BUG_ON(intel_context_is_child(ce)); 4729 4730 guc_log_context(p, ce); 4731 guc_log_context_priority(p, ce); 4732 4733 if (intel_context_is_parent(ce)) { 4734 struct intel_context *child; 4735 4736 drm_printf(p, "\t\tNumber children: %u\n", 4737 ce->parallel.number_children); 4738 4739 if (ce->parallel.guc.wq_status) { 4740 drm_printf(p, "\t\tWQI Head: %u\n", 4741 READ_ONCE(*ce->parallel.guc.wq_head)); 4742 drm_printf(p, "\t\tWQI Tail: %u\n", 4743 READ_ONCE(*ce->parallel.guc.wq_tail)); 4744 drm_printf(p, "\t\tWQI Status: %u\n\n", 4745 READ_ONCE(*ce->parallel.guc.wq_status)); 4746 } 4747 4748 if (ce->engine->emit_bb_start == 4749 emit_bb_start_parent_no_preempt_mid_batch) { 4750 u8 i; 4751 4752 drm_printf(p, "\t\tChildren Go: %u\n\n", 4753 get_children_go_value(ce)); 4754 for (i = 0; i < ce->parallel.number_children; ++i) 4755 drm_printf(p, "\t\tChildren Join: %u\n", 4756 get_children_join_value(ce, i)); 4757 } 4758 4759 for_each_child(ce, child) 4760 guc_log_context(p, child); 4761 } 4762 } 4763 xa_unlock_irqrestore(&guc->context_lookup, flags); 4764 } 4765 4766 static inline u32 get_children_go_addr(struct intel_context *ce) 4767 { 4768 GEM_BUG_ON(!intel_context_is_parent(ce)); 4769 4770 return i915_ggtt_offset(ce->state) + 4771 __get_parent_scratch_offset(ce) + 4772 offsetof(struct parent_scratch, go.semaphore); 4773 } 4774 4775 static inline u32 get_children_join_addr(struct intel_context *ce, 4776 u8 child_index) 4777 { 4778 GEM_BUG_ON(!intel_context_is_parent(ce)); 4779 4780 return i915_ggtt_offset(ce->state) + 4781 __get_parent_scratch_offset(ce) + 4782 offsetof(struct parent_scratch, join[child_index].semaphore); 4783 } 4784 4785 #define PARENT_GO_BB 1 4786 #define PARENT_GO_FINI_BREADCRUMB 0 4787 #define CHILD_GO_BB 1 4788 #define CHILD_GO_FINI_BREADCRUMB 0 4789 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, 4790 u64 offset, u32 len, 4791 const unsigned int flags) 4792 { 4793 struct intel_context *ce = rq->context; 4794 u32 *cs; 4795 u8 i; 4796 4797 GEM_BUG_ON(!intel_context_is_parent(ce)); 4798 4799 cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children); 4800 if (IS_ERR(cs)) 4801 return PTR_ERR(cs); 4802 4803 /* Wait on children */ 4804 for (i = 0; i < ce->parallel.number_children; ++i) { 4805 *cs++ = (MI_SEMAPHORE_WAIT | 4806 MI_SEMAPHORE_GLOBAL_GTT | 4807 MI_SEMAPHORE_POLL | 4808 MI_SEMAPHORE_SAD_EQ_SDD); 4809 *cs++ = PARENT_GO_BB; 4810 *cs++ = get_children_join_addr(ce, i); 4811 *cs++ = 0; 4812 } 4813 4814 /* Turn off preemption */ 4815 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 4816 *cs++ = MI_NOOP; 4817 4818 /* Tell children go */ 4819 cs = gen8_emit_ggtt_write(cs, 4820 CHILD_GO_BB, 4821 get_children_go_addr(ce), 4822 0); 4823 4824 /* Jump to batch */ 4825 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 4826 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 4827 *cs++ = lower_32_bits(offset); 4828 *cs++ = upper_32_bits(offset); 4829 *cs++ = MI_NOOP; 4830 4831 intel_ring_advance(rq, cs); 4832 4833 return 0; 4834 } 4835 4836 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, 4837 u64 offset, u32 len, 4838 const unsigned int flags) 4839 { 4840 struct intel_context *ce = rq->context; 4841 struct intel_context *parent = intel_context_to_parent(ce); 4842 u32 *cs; 4843 4844 GEM_BUG_ON(!intel_context_is_child(ce)); 4845 4846 cs = intel_ring_begin(rq, 12); 4847 if (IS_ERR(cs)) 4848 return PTR_ERR(cs); 4849 4850 /* Signal parent */ 4851 cs = gen8_emit_ggtt_write(cs, 4852 PARENT_GO_BB, 4853 get_children_join_addr(parent, 4854 ce->parallel.child_index), 4855 0); 4856 4857 /* Wait on parent for go */ 4858 *cs++ = (MI_SEMAPHORE_WAIT | 4859 MI_SEMAPHORE_GLOBAL_GTT | 4860 MI_SEMAPHORE_POLL | 4861 MI_SEMAPHORE_SAD_EQ_SDD); 4862 *cs++ = CHILD_GO_BB; 4863 *cs++ = get_children_go_addr(parent); 4864 *cs++ = 0; 4865 4866 /* Turn off preemption */ 4867 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 4868 4869 /* Jump to batch */ 4870 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 4871 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 4872 *cs++ = lower_32_bits(offset); 4873 *cs++ = upper_32_bits(offset); 4874 4875 intel_ring_advance(rq, cs); 4876 4877 return 0; 4878 } 4879 4880 static u32 * 4881 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 4882 u32 *cs) 4883 { 4884 struct intel_context *ce = rq->context; 4885 u8 i; 4886 4887 GEM_BUG_ON(!intel_context_is_parent(ce)); 4888 4889 /* Wait on children */ 4890 for (i = 0; i < ce->parallel.number_children; ++i) { 4891 *cs++ = (MI_SEMAPHORE_WAIT | 4892 MI_SEMAPHORE_GLOBAL_GTT | 4893 MI_SEMAPHORE_POLL | 4894 MI_SEMAPHORE_SAD_EQ_SDD); 4895 *cs++ = PARENT_GO_FINI_BREADCRUMB; 4896 *cs++ = get_children_join_addr(ce, i); 4897 *cs++ = 0; 4898 } 4899 4900 /* Turn on preemption */ 4901 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 4902 *cs++ = MI_NOOP; 4903 4904 /* Tell children go */ 4905 cs = gen8_emit_ggtt_write(cs, 4906 CHILD_GO_FINI_BREADCRUMB, 4907 get_children_go_addr(ce), 4908 0); 4909 4910 return cs; 4911 } 4912 4913 /* 4914 * If this true, a submission of multi-lrc requests had an error and the 4915 * requests need to be skipped. The front end (execuf IOCTL) should've called 4916 * i915_request_skip which squashes the BB but we still need to emit the fini 4917 * breadrcrumbs seqno write. At this point we don't know how many of the 4918 * requests in the multi-lrc submission were generated so we can't do the 4919 * handshake between the parent and children (e.g. if 4 requests should be 4920 * generated but 2nd hit an error only 1 would be seen by the GuC backend). 4921 * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error 4922 * has occurred on any of the requests in submission / relationship. 4923 */ 4924 static inline bool skip_handshake(struct i915_request *rq) 4925 { 4926 return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags); 4927 } 4928 4929 #define NON_SKIP_LEN 6 4930 static u32 * 4931 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 4932 u32 *cs) 4933 { 4934 struct intel_context *ce = rq->context; 4935 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; 4936 __maybe_unused u32 *start_fini_breadcrumb_cs = cs; 4937 4938 GEM_BUG_ON(!intel_context_is_parent(ce)); 4939 4940 if (unlikely(skip_handshake(rq))) { 4941 /* 4942 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch, 4943 * the NON_SKIP_LEN comes from the length of the emits below. 4944 */ 4945 memset(cs, 0, sizeof(u32) * 4946 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); 4947 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; 4948 } else { 4949 cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs); 4950 } 4951 4952 /* Emit fini breadcrumb */ 4953 before_fini_breadcrumb_user_interrupt_cs = cs; 4954 cs = gen8_emit_ggtt_write(cs, 4955 rq->fence.seqno, 4956 i915_request_active_timeline(rq)->hwsp_offset, 4957 0); 4958 4959 /* User interrupt */ 4960 *cs++ = MI_USER_INTERRUPT; 4961 *cs++ = MI_NOOP; 4962 4963 /* Ensure our math for skip + emit is correct */ 4964 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != 4965 cs); 4966 GEM_BUG_ON(start_fini_breadcrumb_cs + 4967 ce->engine->emit_fini_breadcrumb_dw != cs); 4968 4969 rq->tail = intel_ring_offset(rq, cs); 4970 4971 return cs; 4972 } 4973 4974 static u32 * 4975 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 4976 u32 *cs) 4977 { 4978 struct intel_context *ce = rq->context; 4979 struct intel_context *parent = intel_context_to_parent(ce); 4980 4981 GEM_BUG_ON(!intel_context_is_child(ce)); 4982 4983 /* Turn on preemption */ 4984 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 4985 *cs++ = MI_NOOP; 4986 4987 /* Signal parent */ 4988 cs = gen8_emit_ggtt_write(cs, 4989 PARENT_GO_FINI_BREADCRUMB, 4990 get_children_join_addr(parent, 4991 ce->parallel.child_index), 4992 0); 4993 4994 /* Wait parent on for go */ 4995 *cs++ = (MI_SEMAPHORE_WAIT | 4996 MI_SEMAPHORE_GLOBAL_GTT | 4997 MI_SEMAPHORE_POLL | 4998 MI_SEMAPHORE_SAD_EQ_SDD); 4999 *cs++ = CHILD_GO_FINI_BREADCRUMB; 5000 *cs++ = get_children_go_addr(parent); 5001 *cs++ = 0; 5002 5003 return cs; 5004 } 5005 5006 static u32 * 5007 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 5008 u32 *cs) 5009 { 5010 struct intel_context *ce = rq->context; 5011 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; 5012 __maybe_unused u32 *start_fini_breadcrumb_cs = cs; 5013 5014 GEM_BUG_ON(!intel_context_is_child(ce)); 5015 5016 if (unlikely(skip_handshake(rq))) { 5017 /* 5018 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch, 5019 * the NON_SKIP_LEN comes from the length of the emits below. 5020 */ 5021 memset(cs, 0, sizeof(u32) * 5022 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); 5023 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; 5024 } else { 5025 cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs); 5026 } 5027 5028 /* Emit fini breadcrumb */ 5029 before_fini_breadcrumb_user_interrupt_cs = cs; 5030 cs = gen8_emit_ggtt_write(cs, 5031 rq->fence.seqno, 5032 i915_request_active_timeline(rq)->hwsp_offset, 5033 0); 5034 5035 /* User interrupt */ 5036 *cs++ = MI_USER_INTERRUPT; 5037 *cs++ = MI_NOOP; 5038 5039 /* Ensure our math for skip + emit is correct */ 5040 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != 5041 cs); 5042 GEM_BUG_ON(start_fini_breadcrumb_cs + 5043 ce->engine->emit_fini_breadcrumb_dw != cs); 5044 5045 rq->tail = intel_ring_offset(rq, cs); 5046 5047 return cs; 5048 } 5049 5050 #undef NON_SKIP_LEN 5051 5052 static struct intel_context * 5053 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, 5054 unsigned long flags) 5055 { 5056 struct guc_virtual_engine *ve; 5057 struct intel_guc *guc; 5058 unsigned int n; 5059 int err; 5060 5061 ve = kzalloc(sizeof(*ve), GFP_KERNEL); 5062 if (!ve) 5063 return ERR_PTR(-ENOMEM); 5064 5065 guc = &siblings[0]->gt->uc.guc; 5066 5067 ve->base.i915 = siblings[0]->i915; 5068 ve->base.gt = siblings[0]->gt; 5069 ve->base.uncore = siblings[0]->uncore; 5070 ve->base.id = -1; 5071 5072 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID; 5073 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 5074 ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 5075 ve->base.saturated = ALL_ENGINES; 5076 5077 snprintf(ve->base.name, sizeof(ve->base.name), "virtual"); 5078 5079 ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine); 5080 5081 ve->base.cops = &virtual_guc_context_ops; 5082 ve->base.request_alloc = guc_request_alloc; 5083 ve->base.bump_serial = virtual_guc_bump_serial; 5084 5085 ve->base.submit_request = guc_submit_request; 5086 5087 ve->base.flags = I915_ENGINE_IS_VIRTUAL; 5088 5089 intel_context_init(&ve->context, &ve->base); 5090 5091 for (n = 0; n < count; n++) { 5092 struct intel_engine_cs *sibling = siblings[n]; 5093 5094 GEM_BUG_ON(!is_power_of_2(sibling->mask)); 5095 if (sibling->mask & ve->base.mask) { 5096 DRM_DEBUG("duplicate %s entry in load balancer\n", 5097 sibling->name); 5098 err = -EINVAL; 5099 goto err_put; 5100 } 5101 5102 ve->base.mask |= sibling->mask; 5103 ve->base.logical_mask |= sibling->logical_mask; 5104 5105 if (n != 0 && ve->base.class != sibling->class) { 5106 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n", 5107 sibling->class, ve->base.class); 5108 err = -EINVAL; 5109 goto err_put; 5110 } else if (n == 0) { 5111 ve->base.class = sibling->class; 5112 ve->base.uabi_class = sibling->uabi_class; 5113 snprintf(ve->base.name, sizeof(ve->base.name), 5114 "v%dx%d", ve->base.class, count); 5115 ve->base.context_size = sibling->context_size; 5116 5117 ve->base.add_active_request = 5118 sibling->add_active_request; 5119 ve->base.remove_active_request = 5120 sibling->remove_active_request; 5121 ve->base.emit_bb_start = sibling->emit_bb_start; 5122 ve->base.emit_flush = sibling->emit_flush; 5123 ve->base.emit_init_breadcrumb = 5124 sibling->emit_init_breadcrumb; 5125 ve->base.emit_fini_breadcrumb = 5126 sibling->emit_fini_breadcrumb; 5127 ve->base.emit_fini_breadcrumb_dw = 5128 sibling->emit_fini_breadcrumb_dw; 5129 ve->base.breadcrumbs = 5130 intel_breadcrumbs_get(sibling->breadcrumbs); 5131 5132 ve->base.flags |= sibling->flags; 5133 5134 ve->base.props.timeslice_duration_ms = 5135 sibling->props.timeslice_duration_ms; 5136 ve->base.props.preempt_timeout_ms = 5137 sibling->props.preempt_timeout_ms; 5138 } 5139 } 5140 5141 return &ve->context; 5142 5143 err_put: 5144 intel_context_put(&ve->context); 5145 return ERR_PTR(err); 5146 } 5147 5148 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve) 5149 { 5150 struct intel_engine_cs *engine; 5151 intel_engine_mask_t tmp, mask = ve->mask; 5152 5153 for_each_engine_masked(engine, ve->gt, mask, tmp) 5154 if (READ_ONCE(engine->props.heartbeat_interval_ms)) 5155 return true; 5156 5157 return false; 5158 } 5159 5160 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5161 #include "selftest_guc.c" 5162 #include "selftest_guc_multi_lrc.c" 5163 #include "selftest_guc_hangcheck.c" 5164 #endif 5165