xref: /openbmc/linux/drivers/gpu/drm/i915/gt/uc/intel_guc_submission.c (revision 7b73a9c8e26ce5769c41d4b787767c10fe7269db)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include <linux/circ_buf.h>
7 
8 #include "gem/i915_gem_context.h"
9 #include "gt/intel_context.h"
10 #include "gt/intel_engine_pm.h"
11 #include "gt/intel_gt.h"
12 #include "gt/intel_gt_pm.h"
13 #include "gt/intel_lrc_reg.h"
14 #include "gt/intel_ring.h"
15 
16 #include "intel_guc_submission.h"
17 
18 #include "i915_drv.h"
19 #include "i915_trace.h"
20 
21 enum {
22 	GUC_PREEMPT_NONE = 0,
23 	GUC_PREEMPT_INPROGRESS,
24 	GUC_PREEMPT_FINISHED,
25 };
26 #define GUC_PREEMPT_BREADCRUMB_DWORDS	0x8
27 #define GUC_PREEMPT_BREADCRUMB_BYTES	\
28 	(sizeof(u32) * GUC_PREEMPT_BREADCRUMB_DWORDS)
29 
30 /**
31  * DOC: GuC-based command submission
32  *
33  * IMPORTANT NOTE: GuC submission is currently not supported in i915. The GuC
34  * firmware is moving to an updated submission interface and we plan to
35  * turn submission back on when that lands. The below documentation (and related
36  * code) matches the old submission model and will be updated as part of the
37  * upgrade to the new flow.
38  *
39  * GuC client:
40  * A intel_guc_client refers to a submission path through GuC. Currently, there
41  * is only one client, which is charged with all submissions to the GuC. This
42  * struct is the owner of a doorbell, a process descriptor and a workqueue (all
43  * of them inside a single gem object that contains all required pages for these
44  * elements).
45  *
46  * GuC stage descriptor:
47  * During initialization, the driver allocates a static pool of 1024 such
48  * descriptors, and shares them with the GuC.
49  * Currently, there exists a 1:1 mapping between a intel_guc_client and a
50  * guc_stage_desc (via the client's stage_id), so effectively only one
51  * gets used. This stage descriptor lets the GuC know about the doorbell,
52  * workqueue and process descriptor. Theoretically, it also lets the GuC
53  * know about our HW contexts (context ID, etc...), but we actually
54  * employ a kind of submission where the GuC uses the LRCA sent via the work
55  * item instead (the single guc_stage_desc associated to execbuf client
56  * contains information about the default kernel context only, but this is
57  * essentially unused). This is called a "proxy" submission.
58  *
59  * The Scratch registers:
60  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
61  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
62  * triggers an interrupt on the GuC via another register write (0xC4C8).
63  * Firmware writes a success/fail code back to the action register after
64  * processes the request. The kernel driver polls waiting for this update and
65  * then proceeds.
66  * See intel_guc_send()
67  *
68  * Doorbells:
69  * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW)
70  * mapped into process space.
71  *
72  * Work Items:
73  * There are several types of work items that the host may place into a
74  * workqueue, each with its own requirements and limitations. Currently only
75  * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which
76  * represents in-order queue. The kernel driver packs ring tail pointer and an
77  * ELSP context descriptor dword into Work Item.
78  * See guc_add_request()
79  *
80  */
81 
82 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
83 {
84 	return rb_entry(rb, struct i915_priolist, node);
85 }
86 
87 static inline bool is_high_priority(struct intel_guc_client *client)
88 {
89 	return (client->priority == GUC_CLIENT_PRIORITY_KMD_HIGH ||
90 		client->priority == GUC_CLIENT_PRIORITY_HIGH);
91 }
92 
93 static int reserve_doorbell(struct intel_guc_client *client)
94 {
95 	unsigned long offset;
96 	unsigned long end;
97 	u16 id;
98 
99 	GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID);
100 
101 	/*
102 	 * The bitmap tracks which doorbell registers are currently in use.
103 	 * It is split into two halves; the first half is used for normal
104 	 * priority contexts, the second half for high-priority ones.
105 	 */
106 	offset = 0;
107 	end = GUC_NUM_DOORBELLS / 2;
108 	if (is_high_priority(client)) {
109 		offset = end;
110 		end += offset;
111 	}
112 
113 	id = find_next_zero_bit(client->guc->doorbell_bitmap, end, offset);
114 	if (id == end)
115 		return -ENOSPC;
116 
117 	__set_bit(id, client->guc->doorbell_bitmap);
118 	client->doorbell_id = id;
119 	DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n",
120 			 client->stage_id, yesno(is_high_priority(client)),
121 			 id);
122 	return 0;
123 }
124 
125 static bool has_doorbell(struct intel_guc_client *client)
126 {
127 	if (client->doorbell_id == GUC_DOORBELL_INVALID)
128 		return false;
129 
130 	return test_bit(client->doorbell_id, client->guc->doorbell_bitmap);
131 }
132 
133 static void unreserve_doorbell(struct intel_guc_client *client)
134 {
135 	GEM_BUG_ON(!has_doorbell(client));
136 
137 	__clear_bit(client->doorbell_id, client->guc->doorbell_bitmap);
138 	client->doorbell_id = GUC_DOORBELL_INVALID;
139 }
140 
141 /*
142  * Tell the GuC to allocate or deallocate a specific doorbell
143  */
144 
145 static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id)
146 {
147 	u32 action[] = {
148 		INTEL_GUC_ACTION_ALLOCATE_DOORBELL,
149 		stage_id
150 	};
151 
152 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
153 }
154 
155 static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id)
156 {
157 	u32 action[] = {
158 		INTEL_GUC_ACTION_DEALLOCATE_DOORBELL,
159 		stage_id
160 	};
161 
162 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
163 }
164 
165 static struct guc_stage_desc *__get_stage_desc(struct intel_guc_client *client)
166 {
167 	struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr;
168 
169 	return &base[client->stage_id];
170 }
171 
172 /*
173  * Initialise, update, or clear doorbell data shared with the GuC
174  *
175  * These functions modify shared data and so need access to the mapped
176  * client object which contains the page being used for the doorbell
177  */
178 
179 static void __update_doorbell_desc(struct intel_guc_client *client, u16 new_id)
180 {
181 	struct guc_stage_desc *desc;
182 
183 	/* Update the GuC's idea of the doorbell ID */
184 	desc = __get_stage_desc(client);
185 	desc->db_id = new_id;
186 }
187 
188 static struct guc_doorbell_info *__get_doorbell(struct intel_guc_client *client)
189 {
190 	return client->vaddr + client->doorbell_offset;
191 }
192 
193 static bool __doorbell_valid(struct intel_guc *guc, u16 db_id)
194 {
195 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
196 
197 	GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS);
198 	return intel_uncore_read(uncore, GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID;
199 }
200 
201 static void __init_doorbell(struct intel_guc_client *client)
202 {
203 	struct guc_doorbell_info *doorbell;
204 
205 	doorbell = __get_doorbell(client);
206 	doorbell->db_status = GUC_DOORBELL_ENABLED;
207 	doorbell->cookie = 0;
208 }
209 
210 static void __fini_doorbell(struct intel_guc_client *client)
211 {
212 	struct guc_doorbell_info *doorbell;
213 	u16 db_id = client->doorbell_id;
214 
215 	doorbell = __get_doorbell(client);
216 	doorbell->db_status = GUC_DOORBELL_DISABLED;
217 
218 	/* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit
219 	 * to go to zero after updating db_status before we call the GuC to
220 	 * release the doorbell
221 	 */
222 	if (wait_for_us(!__doorbell_valid(client->guc, db_id), 10))
223 		WARN_ONCE(true, "Doorbell never became invalid after disable\n");
224 }
225 
226 static int create_doorbell(struct intel_guc_client *client)
227 {
228 	int ret;
229 
230 	if (WARN_ON(!has_doorbell(client)))
231 		return -ENODEV; /* internal setup error, should never happen */
232 
233 	__update_doorbell_desc(client, client->doorbell_id);
234 	__init_doorbell(client);
235 
236 	ret = __guc_allocate_doorbell(client->guc, client->stage_id);
237 	if (ret) {
238 		__fini_doorbell(client);
239 		__update_doorbell_desc(client, GUC_DOORBELL_INVALID);
240 		DRM_DEBUG_DRIVER("Couldn't create client %u doorbell: %d\n",
241 				 client->stage_id, ret);
242 		return ret;
243 	}
244 
245 	return 0;
246 }
247 
248 static int destroy_doorbell(struct intel_guc_client *client)
249 {
250 	int ret;
251 
252 	GEM_BUG_ON(!has_doorbell(client));
253 
254 	__fini_doorbell(client);
255 	ret = __guc_deallocate_doorbell(client->guc, client->stage_id);
256 	if (ret)
257 		DRM_ERROR("Couldn't destroy client %u doorbell: %d\n",
258 			  client->stage_id, ret);
259 
260 	__update_doorbell_desc(client, GUC_DOORBELL_INVALID);
261 
262 	return ret;
263 }
264 
265 static unsigned long __select_cacheline(struct intel_guc *guc)
266 {
267 	unsigned long offset;
268 
269 	/* Doorbell uses a single cache line within a page */
270 	offset = offset_in_page(guc->db_cacheline);
271 
272 	/* Moving to next cache line to reduce contention */
273 	guc->db_cacheline += cache_line_size();
274 
275 	DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n",
276 			 offset, guc->db_cacheline, cache_line_size());
277 	return offset;
278 }
279 
280 static inline struct guc_process_desc *
281 __get_process_desc(struct intel_guc_client *client)
282 {
283 	return client->vaddr + client->proc_desc_offset;
284 }
285 
286 /*
287  * Initialise the process descriptor shared with the GuC firmware.
288  */
289 static void guc_proc_desc_init(struct intel_guc_client *client)
290 {
291 	struct guc_process_desc *desc;
292 
293 	desc = memset(__get_process_desc(client), 0, sizeof(*desc));
294 
295 	/*
296 	 * XXX: pDoorbell and WQVBaseAddress are pointers in process address
297 	 * space for ring3 clients (set them as in mmap_ioctl) or kernel
298 	 * space for kernel clients (map on demand instead? May make debug
299 	 * easier to have it mapped).
300 	 */
301 	desc->wq_base_addr = 0;
302 	desc->db_base_addr = 0;
303 
304 	desc->stage_id = client->stage_id;
305 	desc->wq_size_bytes = GUC_WQ_SIZE;
306 	desc->wq_status = WQ_STATUS_ACTIVE;
307 	desc->priority = client->priority;
308 }
309 
310 static void guc_proc_desc_fini(struct intel_guc_client *client)
311 {
312 	struct guc_process_desc *desc;
313 
314 	desc = __get_process_desc(client);
315 	memset(desc, 0, sizeof(*desc));
316 }
317 
318 static int guc_stage_desc_pool_create(struct intel_guc *guc)
319 {
320 	struct i915_vma *vma;
321 	void *vaddr;
322 
323 	vma = intel_guc_allocate_vma(guc,
324 				     PAGE_ALIGN(sizeof(struct guc_stage_desc) *
325 				     GUC_MAX_STAGE_DESCRIPTORS));
326 	if (IS_ERR(vma))
327 		return PTR_ERR(vma);
328 
329 	vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
330 	if (IS_ERR(vaddr)) {
331 		i915_vma_unpin_and_release(&vma, 0);
332 		return PTR_ERR(vaddr);
333 	}
334 
335 	guc->stage_desc_pool = vma;
336 	guc->stage_desc_pool_vaddr = vaddr;
337 	ida_init(&guc->stage_ids);
338 
339 	return 0;
340 }
341 
342 static void guc_stage_desc_pool_destroy(struct intel_guc *guc)
343 {
344 	ida_destroy(&guc->stage_ids);
345 	i915_vma_unpin_and_release(&guc->stage_desc_pool, I915_VMA_RELEASE_MAP);
346 }
347 
348 /*
349  * Initialise/clear the stage descriptor shared with the GuC firmware.
350  *
351  * This descriptor tells the GuC where (in GGTT space) to find the important
352  * data structures relating to this client (doorbell, process descriptor,
353  * write queue, etc).
354  */
355 static void guc_stage_desc_init(struct intel_guc_client *client)
356 {
357 	struct intel_guc *guc = client->guc;
358 	struct guc_stage_desc *desc;
359 	u32 gfx_addr;
360 
361 	desc = __get_stage_desc(client);
362 	memset(desc, 0, sizeof(*desc));
363 
364 	desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE |
365 			  GUC_STAGE_DESC_ATTR_KERNEL;
366 	if (is_high_priority(client))
367 		desc->attribute |= GUC_STAGE_DESC_ATTR_PREEMPT;
368 	desc->stage_id = client->stage_id;
369 	desc->priority = client->priority;
370 	desc->db_id = client->doorbell_id;
371 
372 	/*
373 	 * The doorbell, process descriptor, and workqueue are all parts
374 	 * of the client object, which the GuC will reference via the GGTT
375 	 */
376 	gfx_addr = intel_guc_ggtt_offset(guc, client->vma);
377 	desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) +
378 				client->doorbell_offset;
379 	desc->db_trigger_cpu = ptr_to_u64(__get_doorbell(client));
380 	desc->db_trigger_uk = gfx_addr + client->doorbell_offset;
381 	desc->process_desc = gfx_addr + client->proc_desc_offset;
382 	desc->wq_addr = gfx_addr + GUC_DB_SIZE;
383 	desc->wq_size = GUC_WQ_SIZE;
384 
385 	desc->desc_private = ptr_to_u64(client);
386 }
387 
388 static void guc_stage_desc_fini(struct intel_guc_client *client)
389 {
390 	struct guc_stage_desc *desc;
391 
392 	desc = __get_stage_desc(client);
393 	memset(desc, 0, sizeof(*desc));
394 }
395 
396 /* Construct a Work Item and append it to the GuC's Work Queue */
397 static void guc_wq_item_append(struct intel_guc_client *client,
398 			       u32 target_engine, u32 context_desc,
399 			       u32 ring_tail, u32 fence_id)
400 {
401 	/* wqi_len is in DWords, and does not include the one-word header */
402 	const size_t wqi_size = sizeof(struct guc_wq_item);
403 	const u32 wqi_len = wqi_size / sizeof(u32) - 1;
404 	struct guc_process_desc *desc = __get_process_desc(client);
405 	struct guc_wq_item *wqi;
406 	u32 wq_off;
407 
408 	lockdep_assert_held(&client->wq_lock);
409 
410 	/* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we
411 	 * should not have the case where structure wqi is across page, neither
412 	 * wrapped to the beginning. This simplifies the implementation below.
413 	 *
414 	 * XXX: if not the case, we need save data to a temp wqi and copy it to
415 	 * workqueue buffer dw by dw.
416 	 */
417 	BUILD_BUG_ON(wqi_size != 16);
418 
419 	/* We expect the WQ to be active if we're appending items to it */
420 	GEM_BUG_ON(desc->wq_status != WQ_STATUS_ACTIVE);
421 
422 	/* Free space is guaranteed. */
423 	wq_off = READ_ONCE(desc->tail);
424 	GEM_BUG_ON(CIRC_SPACE(wq_off, READ_ONCE(desc->head),
425 			      GUC_WQ_SIZE) < wqi_size);
426 	GEM_BUG_ON(wq_off & (wqi_size - 1));
427 
428 	/* WQ starts from the page after doorbell / process_desc */
429 	wqi = client->vaddr + wq_off + GUC_DB_SIZE;
430 
431 	if (I915_SELFTEST_ONLY(client->use_nop_wqi)) {
432 		wqi->header = WQ_TYPE_NOOP | (wqi_len << WQ_LEN_SHIFT);
433 	} else {
434 		/* Now fill in the 4-word work queue item */
435 		wqi->header = WQ_TYPE_INORDER |
436 			      (wqi_len << WQ_LEN_SHIFT) |
437 			      (target_engine << WQ_TARGET_SHIFT) |
438 			      WQ_NO_WCFLUSH_WAIT;
439 		wqi->context_desc = context_desc;
440 		wqi->submit_element_info = ring_tail << WQ_RING_TAIL_SHIFT;
441 		GEM_BUG_ON(ring_tail > WQ_RING_TAIL_MAX);
442 		wqi->fence_id = fence_id;
443 	}
444 
445 	/* Make the update visible to GuC */
446 	WRITE_ONCE(desc->tail, (wq_off + wqi_size) & (GUC_WQ_SIZE - 1));
447 }
448 
449 static void guc_ring_doorbell(struct intel_guc_client *client)
450 {
451 	struct guc_doorbell_info *db;
452 	u32 cookie;
453 
454 	lockdep_assert_held(&client->wq_lock);
455 
456 	/* pointer of current doorbell cacheline */
457 	db = __get_doorbell(client);
458 
459 	/*
460 	 * We're not expecting the doorbell cookie to change behind our back,
461 	 * we also need to treat 0 as a reserved value.
462 	 */
463 	cookie = READ_ONCE(db->cookie);
464 	WARN_ON_ONCE(xchg(&db->cookie, cookie + 1 ?: cookie + 2) != cookie);
465 
466 	/* XXX: doorbell was lost and need to acquire it again */
467 	GEM_BUG_ON(db->db_status != GUC_DOORBELL_ENABLED);
468 }
469 
470 static void guc_add_request(struct intel_guc *guc, struct i915_request *rq)
471 {
472 	struct intel_guc_client *client = guc->execbuf_client;
473 	struct intel_engine_cs *engine = rq->engine;
474 	u32 ctx_desc = lower_32_bits(rq->hw_context->lrc_desc);
475 	u32 ring_tail = intel_ring_set_tail(rq->ring, rq->tail) / sizeof(u64);
476 
477 	guc_wq_item_append(client, engine->guc_id, ctx_desc,
478 			   ring_tail, rq->fence.seqno);
479 	guc_ring_doorbell(client);
480 }
481 
482 /*
483  * When we're doing submissions using regular execlists backend, writing to
484  * ELSP from CPU side is enough to make sure that writes to ringbuffer pages
485  * pinned in mappable aperture portion of GGTT are visible to command streamer.
486  * Writes done by GuC on our behalf are not guaranteeing such ordering,
487  * therefore, to ensure the flush, we're issuing a POSTING READ.
488  */
489 static void flush_ggtt_writes(struct i915_vma *vma)
490 {
491 	struct drm_i915_private *i915 = vma->vm->i915;
492 
493 	if (i915_vma_is_map_and_fenceable(vma))
494 		intel_uncore_posting_read_fw(&i915->uncore, GUC_STATUS);
495 }
496 
497 static void guc_submit(struct intel_engine_cs *engine,
498 		       struct i915_request **out,
499 		       struct i915_request **end)
500 {
501 	struct intel_guc *guc = &engine->gt->uc.guc;
502 	struct intel_guc_client *client = guc->execbuf_client;
503 
504 	spin_lock(&client->wq_lock);
505 
506 	do {
507 		struct i915_request *rq = *out++;
508 
509 		flush_ggtt_writes(rq->ring->vma);
510 		guc_add_request(guc, rq);
511 	} while (out != end);
512 
513 	spin_unlock(&client->wq_lock);
514 }
515 
516 static inline int rq_prio(const struct i915_request *rq)
517 {
518 	return rq->sched.attr.priority | __NO_PREEMPTION;
519 }
520 
521 static struct i915_request *schedule_in(struct i915_request *rq, int idx)
522 {
523 	trace_i915_request_in(rq, idx);
524 
525 	/*
526 	 * Currently we are not tracking the rq->context being inflight
527 	 * (ce->inflight = rq->engine). It is only used by the execlists
528 	 * backend at the moment, a similar counting strategy would be
529 	 * required if we generalise the inflight tracking.
530 	 */
531 
532 	intel_gt_pm_get(rq->engine->gt);
533 	return i915_request_get(rq);
534 }
535 
536 static void schedule_out(struct i915_request *rq)
537 {
538 	trace_i915_request_out(rq);
539 
540 	intel_gt_pm_put(rq->engine->gt);
541 	i915_request_put(rq);
542 }
543 
544 static void __guc_dequeue(struct intel_engine_cs *engine)
545 {
546 	struct intel_engine_execlists * const execlists = &engine->execlists;
547 	struct i915_request **first = execlists->inflight;
548 	struct i915_request ** const last_port = first + execlists->port_mask;
549 	struct i915_request *last = first[0];
550 	struct i915_request **port;
551 	bool submit = false;
552 	struct rb_node *rb;
553 
554 	lockdep_assert_held(&engine->active.lock);
555 
556 	if (last) {
557 		if (*++first)
558 			return;
559 
560 		last = NULL;
561 	}
562 
563 	/*
564 	 * We write directly into the execlists->inflight queue and don't use
565 	 * the execlists->pending queue, as we don't have a distinct switch
566 	 * event.
567 	 */
568 	port = first;
569 	while ((rb = rb_first_cached(&execlists->queue))) {
570 		struct i915_priolist *p = to_priolist(rb);
571 		struct i915_request *rq, *rn;
572 		int i;
573 
574 		priolist_for_each_request_consume(rq, rn, p, i) {
575 			if (last && rq->hw_context != last->hw_context) {
576 				if (port == last_port)
577 					goto done;
578 
579 				*port = schedule_in(last,
580 						    port - execlists->inflight);
581 				port++;
582 			}
583 
584 			list_del_init(&rq->sched.link);
585 			__i915_request_submit(rq);
586 			submit = true;
587 			last = rq;
588 		}
589 
590 		rb_erase_cached(&p->node, &execlists->queue);
591 		i915_priolist_free(p);
592 	}
593 done:
594 	execlists->queue_priority_hint =
595 		rb ? to_priolist(rb)->priority : INT_MIN;
596 	if (submit) {
597 		*port = schedule_in(last, port - execlists->inflight);
598 		*++port = NULL;
599 		guc_submit(engine, first, port);
600 	}
601 	execlists->active = execlists->inflight;
602 }
603 
604 static void guc_submission_tasklet(unsigned long data)
605 {
606 	struct intel_engine_cs * const engine = (struct intel_engine_cs *)data;
607 	struct intel_engine_execlists * const execlists = &engine->execlists;
608 	struct i915_request **port, *rq;
609 	unsigned long flags;
610 
611 	spin_lock_irqsave(&engine->active.lock, flags);
612 
613 	for (port = execlists->inflight; (rq = *port); port++) {
614 		if (!i915_request_completed(rq))
615 			break;
616 
617 		schedule_out(rq);
618 	}
619 	if (port != execlists->inflight) {
620 		int idx = port - execlists->inflight;
621 		int rem = ARRAY_SIZE(execlists->inflight) - idx;
622 		memmove(execlists->inflight, port, rem * sizeof(*port));
623 	}
624 
625 	__guc_dequeue(engine);
626 
627 	spin_unlock_irqrestore(&engine->active.lock, flags);
628 }
629 
630 static void guc_reset_prepare(struct intel_engine_cs *engine)
631 {
632 	struct intel_engine_execlists * const execlists = &engine->execlists;
633 
634 	GEM_TRACE("%s\n", engine->name);
635 
636 	/*
637 	 * Prevent request submission to the hardware until we have
638 	 * completed the reset in i915_gem_reset_finish(). If a request
639 	 * is completed by one engine, it may then queue a request
640 	 * to a second via its execlists->tasklet *just* as we are
641 	 * calling engine->init_hw() and also writing the ELSP.
642 	 * Turning off the execlists->tasklet until the reset is over
643 	 * prevents the race.
644 	 */
645 	__tasklet_disable_sync_once(&execlists->tasklet);
646 }
647 
648 static void
649 cancel_port_requests(struct intel_engine_execlists * const execlists)
650 {
651 	struct i915_request * const *port, *rq;
652 
653 	/* Note we are only using the inflight and not the pending queue */
654 
655 	for (port = execlists->active; (rq = *port); port++)
656 		schedule_out(rq);
657 	execlists->active =
658 		memset(execlists->inflight, 0, sizeof(execlists->inflight));
659 }
660 
661 static void guc_reset(struct intel_engine_cs *engine, bool stalled)
662 {
663 	struct intel_engine_execlists * const execlists = &engine->execlists;
664 	struct i915_request *rq;
665 	unsigned long flags;
666 
667 	spin_lock_irqsave(&engine->active.lock, flags);
668 
669 	cancel_port_requests(execlists);
670 
671 	/* Push back any incomplete requests for replay after the reset. */
672 	rq = execlists_unwind_incomplete_requests(execlists);
673 	if (!rq)
674 		goto out_unlock;
675 
676 	if (!i915_request_started(rq))
677 		stalled = false;
678 
679 	__i915_request_reset(rq, stalled);
680 	intel_lr_context_reset(engine, rq->hw_context, rq->head, stalled);
681 
682 out_unlock:
683 	spin_unlock_irqrestore(&engine->active.lock, flags);
684 }
685 
686 static void guc_cancel_requests(struct intel_engine_cs *engine)
687 {
688 	struct intel_engine_execlists * const execlists = &engine->execlists;
689 	struct i915_request *rq, *rn;
690 	struct rb_node *rb;
691 	unsigned long flags;
692 
693 	GEM_TRACE("%s\n", engine->name);
694 
695 	/*
696 	 * Before we call engine->cancel_requests(), we should have exclusive
697 	 * access to the submission state. This is arranged for us by the
698 	 * caller disabling the interrupt generation, the tasklet and other
699 	 * threads that may then access the same state, giving us a free hand
700 	 * to reset state. However, we still need to let lockdep be aware that
701 	 * we know this state may be accessed in hardirq context, so we
702 	 * disable the irq around this manipulation and we want to keep
703 	 * the spinlock focused on its duties and not accidentally conflate
704 	 * coverage to the submission's irq state. (Similarly, although we
705 	 * shouldn't need to disable irq around the manipulation of the
706 	 * submission's irq state, we also wish to remind ourselves that
707 	 * it is irq state.)
708 	 */
709 	spin_lock_irqsave(&engine->active.lock, flags);
710 
711 	/* Cancel the requests on the HW and clear the ELSP tracker. */
712 	cancel_port_requests(execlists);
713 
714 	/* Mark all executing requests as skipped. */
715 	list_for_each_entry(rq, &engine->active.requests, sched.link) {
716 		if (!i915_request_signaled(rq))
717 			dma_fence_set_error(&rq->fence, -EIO);
718 
719 		i915_request_mark_complete(rq);
720 	}
721 
722 	/* Flush the queued requests to the timeline list (for retiring). */
723 	while ((rb = rb_first_cached(&execlists->queue))) {
724 		struct i915_priolist *p = to_priolist(rb);
725 		int i;
726 
727 		priolist_for_each_request_consume(rq, rn, p, i) {
728 			list_del_init(&rq->sched.link);
729 			__i915_request_submit(rq);
730 			dma_fence_set_error(&rq->fence, -EIO);
731 			i915_request_mark_complete(rq);
732 		}
733 
734 		rb_erase_cached(&p->node, &execlists->queue);
735 		i915_priolist_free(p);
736 	}
737 
738 	/* Remaining _unready_ requests will be nop'ed when submitted */
739 
740 	execlists->queue_priority_hint = INT_MIN;
741 	execlists->queue = RB_ROOT_CACHED;
742 
743 	spin_unlock_irqrestore(&engine->active.lock, flags);
744 }
745 
746 static void guc_reset_finish(struct intel_engine_cs *engine)
747 {
748 	struct intel_engine_execlists * const execlists = &engine->execlists;
749 
750 	if (__tasklet_enable(&execlists->tasklet))
751 		/* And kick in case we missed a new request submission. */
752 		tasklet_hi_schedule(&execlists->tasklet);
753 
754 	GEM_TRACE("%s: depth->%d\n", engine->name,
755 		  atomic_read(&execlists->tasklet.count));
756 }
757 
758 /*
759  * Everything below here is concerned with setup & teardown, and is
760  * therefore not part of the somewhat time-critical batch-submission
761  * path of guc_submit() above.
762  */
763 
764 /* Check that a doorbell register is in the expected state */
765 static bool doorbell_ok(struct intel_guc *guc, u16 db_id)
766 {
767 	bool valid;
768 
769 	GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS);
770 
771 	valid = __doorbell_valid(guc, db_id);
772 
773 	if (test_bit(db_id, guc->doorbell_bitmap) == valid)
774 		return true;
775 
776 	DRM_DEBUG_DRIVER("Doorbell %u has unexpected state: valid=%s\n",
777 			 db_id, yesno(valid));
778 
779 	return false;
780 }
781 
782 static bool guc_verify_doorbells(struct intel_guc *guc)
783 {
784 	bool doorbells_ok = true;
785 	u16 db_id;
786 
787 	for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id)
788 		if (!doorbell_ok(guc, db_id))
789 			doorbells_ok = false;
790 
791 	return doorbells_ok;
792 }
793 
794 /**
795  * guc_client_alloc() - Allocate an intel_guc_client
796  * @guc:	the intel_guc structure
797  * @priority:	four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW
798  *		The kernel client to replace ExecList submission is created with
799  *		NORMAL priority. Priority of a client for scheduler can be HIGH,
800  *		while a preemption context can use CRITICAL.
801  *
802  * Return:	An intel_guc_client object if success, else NULL.
803  */
804 static struct intel_guc_client *
805 guc_client_alloc(struct intel_guc *guc, u32 priority)
806 {
807 	struct intel_guc_client *client;
808 	struct i915_vma *vma;
809 	void *vaddr;
810 	int ret;
811 
812 	client = kzalloc(sizeof(*client), GFP_KERNEL);
813 	if (!client)
814 		return ERR_PTR(-ENOMEM);
815 
816 	client->guc = guc;
817 	client->priority = priority;
818 	client->doorbell_id = GUC_DOORBELL_INVALID;
819 	spin_lock_init(&client->wq_lock);
820 
821 	ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS,
822 			     GFP_KERNEL);
823 	if (ret < 0)
824 		goto err_client;
825 
826 	client->stage_id = ret;
827 
828 	/* The first page is doorbell/proc_desc. Two followed pages are wq. */
829 	vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE);
830 	if (IS_ERR(vma)) {
831 		ret = PTR_ERR(vma);
832 		goto err_id;
833 	}
834 
835 	/* We'll keep just the first (doorbell/proc) page permanently kmap'd. */
836 	client->vma = vma;
837 
838 	vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
839 	if (IS_ERR(vaddr)) {
840 		ret = PTR_ERR(vaddr);
841 		goto err_vma;
842 	}
843 	client->vaddr = vaddr;
844 
845 	ret = reserve_doorbell(client);
846 	if (ret)
847 		goto err_vaddr;
848 
849 	client->doorbell_offset = __select_cacheline(guc);
850 
851 	/*
852 	 * Since the doorbell only requires a single cacheline, we can save
853 	 * space by putting the application process descriptor in the same
854 	 * page. Use the half of the page that doesn't include the doorbell.
855 	 */
856 	if (client->doorbell_offset >= (GUC_DB_SIZE / 2))
857 		client->proc_desc_offset = 0;
858 	else
859 		client->proc_desc_offset = (GUC_DB_SIZE / 2);
860 
861 	DRM_DEBUG_DRIVER("new priority %u client %p: stage_id %u\n",
862 			 priority, client, client->stage_id);
863 	DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n",
864 			 client->doorbell_id, client->doorbell_offset);
865 
866 	return client;
867 
868 err_vaddr:
869 	i915_gem_object_unpin_map(client->vma->obj);
870 err_vma:
871 	i915_vma_unpin_and_release(&client->vma, 0);
872 err_id:
873 	ida_simple_remove(&guc->stage_ids, client->stage_id);
874 err_client:
875 	kfree(client);
876 	return ERR_PTR(ret);
877 }
878 
879 static void guc_client_free(struct intel_guc_client *client)
880 {
881 	unreserve_doorbell(client);
882 	i915_vma_unpin_and_release(&client->vma, I915_VMA_RELEASE_MAP);
883 	ida_simple_remove(&client->guc->stage_ids, client->stage_id);
884 	kfree(client);
885 }
886 
887 static inline bool ctx_save_restore_disabled(struct intel_context *ce)
888 {
889 	u32 sr = ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1];
890 
891 #define SR_DISABLED \
892 	_MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT | \
893 			   CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT)
894 
895 	return (sr & SR_DISABLED) == SR_DISABLED;
896 
897 #undef SR_DISABLED
898 }
899 
900 static int guc_clients_create(struct intel_guc *guc)
901 {
902 	struct intel_guc_client *client;
903 
904 	GEM_BUG_ON(guc->execbuf_client);
905 
906 	client = guc_client_alloc(guc, GUC_CLIENT_PRIORITY_KMD_NORMAL);
907 	if (IS_ERR(client)) {
908 		DRM_ERROR("Failed to create GuC client for submission!\n");
909 		return PTR_ERR(client);
910 	}
911 	guc->execbuf_client = client;
912 
913 	return 0;
914 }
915 
916 static void guc_clients_destroy(struct intel_guc *guc)
917 {
918 	struct intel_guc_client *client;
919 
920 	client = fetch_and_zero(&guc->execbuf_client);
921 	if (client)
922 		guc_client_free(client);
923 }
924 
925 static int __guc_client_enable(struct intel_guc_client *client)
926 {
927 	int ret;
928 
929 	guc_proc_desc_init(client);
930 	guc_stage_desc_init(client);
931 
932 	ret = create_doorbell(client);
933 	if (ret)
934 		goto fail;
935 
936 	return 0;
937 
938 fail:
939 	guc_stage_desc_fini(client);
940 	guc_proc_desc_fini(client);
941 	return ret;
942 }
943 
944 static void __guc_client_disable(struct intel_guc_client *client)
945 {
946 	/*
947 	 * By the time we're here, GuC may have already been reset. if that is
948 	 * the case, instead of trying (in vain) to communicate with it, let's
949 	 * just cleanup the doorbell HW and our internal state.
950 	 */
951 	if (intel_guc_is_running(client->guc))
952 		destroy_doorbell(client);
953 	else
954 		__fini_doorbell(client);
955 
956 	guc_stage_desc_fini(client);
957 	guc_proc_desc_fini(client);
958 }
959 
960 static int guc_clients_enable(struct intel_guc *guc)
961 {
962 	return __guc_client_enable(guc->execbuf_client);
963 }
964 
965 static void guc_clients_disable(struct intel_guc *guc)
966 {
967 	if (guc->execbuf_client)
968 		__guc_client_disable(guc->execbuf_client);
969 }
970 
971 /*
972  * Set up the memory resources to be shared with the GuC (via the GGTT)
973  * at firmware loading time.
974  */
975 int intel_guc_submission_init(struct intel_guc *guc)
976 {
977 	int ret;
978 
979 	if (guc->stage_desc_pool)
980 		return 0;
981 
982 	ret = guc_stage_desc_pool_create(guc);
983 	if (ret)
984 		return ret;
985 	/*
986 	 * Keep static analysers happy, let them know that we allocated the
987 	 * vma after testing that it didn't exist earlier.
988 	 */
989 	GEM_BUG_ON(!guc->stage_desc_pool);
990 
991 	WARN_ON(!guc_verify_doorbells(guc));
992 	ret = guc_clients_create(guc);
993 	if (ret)
994 		goto err_pool;
995 
996 	return 0;
997 
998 err_pool:
999 	guc_stage_desc_pool_destroy(guc);
1000 	return ret;
1001 }
1002 
1003 void intel_guc_submission_fini(struct intel_guc *guc)
1004 {
1005 	guc_clients_destroy(guc);
1006 	WARN_ON(!guc_verify_doorbells(guc));
1007 
1008 	if (guc->stage_desc_pool)
1009 		guc_stage_desc_pool_destroy(guc);
1010 }
1011 
1012 static void guc_interrupts_capture(struct intel_gt *gt)
1013 {
1014 	struct intel_rps *rps = &gt->rps;
1015 	struct intel_uncore *uncore = gt->uncore;
1016 	struct intel_engine_cs *engine;
1017 	enum intel_engine_id id;
1018 	int irqs;
1019 
1020 	/* tell all command streamers to forward interrupts (but not vblank)
1021 	 * to GuC
1022 	 */
1023 	irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING);
1024 	for_each_engine(engine, gt, id)
1025 		ENGINE_WRITE(engine, RING_MODE_GEN7, irqs);
1026 
1027 	/* route USER_INTERRUPT to Host, all others are sent to GuC. */
1028 	irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
1029 	       GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT;
1030 	/* These three registers have the same bit definitions */
1031 	intel_uncore_write(uncore, GUC_BCS_RCS_IER, ~irqs);
1032 	intel_uncore_write(uncore, GUC_VCS2_VCS1_IER, ~irqs);
1033 	intel_uncore_write(uncore, GUC_WD_VECS_IER, ~irqs);
1034 
1035 	/*
1036 	 * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all
1037 	 * (unmasked) PM interrupts to the GuC. All other bits of this
1038 	 * register *disable* generation of a specific interrupt.
1039 	 *
1040 	 * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when
1041 	 * writing to the PM interrupt mask register, i.e. interrupts
1042 	 * that must not be disabled.
1043 	 *
1044 	 * If the GuC is handling these interrupts, then we must not let
1045 	 * the PM code disable ANY interrupt that the GuC is expecting.
1046 	 * So for each ENABLED (0) bit in this register, we must SET the
1047 	 * bit in pm_intrmsk_mbz so that it's left enabled for the GuC.
1048 	 * GuC needs ARAT expired interrupt unmasked hence it is set in
1049 	 * pm_intrmsk_mbz.
1050 	 *
1051 	 * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will
1052 	 * result in the register bit being left SET!
1053 	 */
1054 	rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK;
1055 	rps->pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1056 }
1057 
1058 static void guc_interrupts_release(struct intel_gt *gt)
1059 {
1060 	struct intel_rps *rps = &gt->rps;
1061 	struct intel_uncore *uncore = gt->uncore;
1062 	struct intel_engine_cs *engine;
1063 	enum intel_engine_id id;
1064 	int irqs;
1065 
1066 	/*
1067 	 * tell all command streamers NOT to forward interrupts or vblank
1068 	 * to GuC.
1069 	 */
1070 	irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER);
1071 	irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING);
1072 	for_each_engine(engine, gt, id)
1073 		ENGINE_WRITE(engine, RING_MODE_GEN7, irqs);
1074 
1075 	/* route all GT interrupts to the host */
1076 	intel_uncore_write(uncore, GUC_BCS_RCS_IER, 0);
1077 	intel_uncore_write(uncore, GUC_VCS2_VCS1_IER, 0);
1078 	intel_uncore_write(uncore, GUC_WD_VECS_IER, 0);
1079 
1080 	rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC;
1081 	rps->pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK;
1082 }
1083 
1084 static void guc_set_default_submission(struct intel_engine_cs *engine)
1085 {
1086 	/*
1087 	 * We inherit a bunch of functions from execlists that we'd like
1088 	 * to keep using:
1089 	 *
1090 	 *    engine->submit_request = execlists_submit_request;
1091 	 *    engine->cancel_requests = execlists_cancel_requests;
1092 	 *    engine->schedule = execlists_schedule;
1093 	 *
1094 	 * But we need to override the actual submission backend in order
1095 	 * to talk to the GuC.
1096 	 */
1097 	intel_execlists_set_default_submission(engine);
1098 
1099 	engine->execlists.tasklet.func = guc_submission_tasklet;
1100 
1101 	/* do not use execlists park/unpark */
1102 	engine->park = engine->unpark = NULL;
1103 
1104 	engine->reset.prepare = guc_reset_prepare;
1105 	engine->reset.reset = guc_reset;
1106 	engine->reset.finish = guc_reset_finish;
1107 
1108 	engine->cancel_requests = guc_cancel_requests;
1109 
1110 	engine->flags &= ~I915_ENGINE_SUPPORTS_STATS;
1111 	engine->flags |= I915_ENGINE_NEEDS_BREADCRUMB_TASKLET;
1112 
1113 	/*
1114 	 * For the breadcrumb irq to work we need the interrupts to stay
1115 	 * enabled. However, on all platforms on which we'll have support for
1116 	 * GuC submission we don't allow disabling the interrupts at runtime, so
1117 	 * we're always safe with the current flow.
1118 	 */
1119 	GEM_BUG_ON(engine->irq_enable || engine->irq_disable);
1120 }
1121 
1122 int intel_guc_submission_enable(struct intel_guc *guc)
1123 {
1124 	struct intel_gt *gt = guc_to_gt(guc);
1125 	struct intel_engine_cs *engine;
1126 	enum intel_engine_id id;
1127 	int err;
1128 
1129 	err = i915_inject_probe_error(gt->i915, -ENXIO);
1130 	if (err)
1131 		return err;
1132 
1133 	/*
1134 	 * We're using GuC work items for submitting work through GuC. Since
1135 	 * we're coalescing multiple requests from a single context into a
1136 	 * single work item prior to assigning it to execlist_port, we can
1137 	 * never have more work items than the total number of ports (for all
1138 	 * engines). The GuC firmware is controlling the HEAD of work queue,
1139 	 * and it is guaranteed that it will remove the work item from the
1140 	 * queue before our request is completed.
1141 	 */
1142 	BUILD_BUG_ON(ARRAY_SIZE(engine->execlists.inflight) *
1143 		     sizeof(struct guc_wq_item) *
1144 		     I915_NUM_ENGINES > GUC_WQ_SIZE);
1145 
1146 	GEM_BUG_ON(!guc->execbuf_client);
1147 
1148 	err = guc_clients_enable(guc);
1149 	if (err)
1150 		return err;
1151 
1152 	/* Take over from manual control of ELSP (execlists) */
1153 	guc_interrupts_capture(gt);
1154 
1155 	for_each_engine(engine, gt, id) {
1156 		engine->set_default_submission = guc_set_default_submission;
1157 		engine->set_default_submission(engine);
1158 	}
1159 
1160 	return 0;
1161 }
1162 
1163 void intel_guc_submission_disable(struct intel_guc *guc)
1164 {
1165 	struct intel_gt *gt = guc_to_gt(guc);
1166 
1167 	GEM_BUG_ON(gt->awake); /* GT should be parked first */
1168 
1169 	guc_interrupts_release(gt);
1170 	guc_clients_disable(guc);
1171 }
1172 
1173 static bool __guc_submission_support(struct intel_guc *guc)
1174 {
1175 	/* XXX: GuC submission is unavailable for now */
1176 	return false;
1177 
1178 	if (!intel_guc_is_supported(guc))
1179 		return false;
1180 
1181 	return i915_modparams.enable_guc & ENABLE_GUC_SUBMISSION;
1182 }
1183 
1184 void intel_guc_submission_init_early(struct intel_guc *guc)
1185 {
1186 	guc->submission_supported = __guc_submission_support(guc);
1187 }
1188 
1189 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1190 #include "selftest_guc.c"
1191 #endif
1192