1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014 Intel Corporation 4 */ 5 6 #include <linux/circ_buf.h> 7 8 #include "gem/i915_gem_context.h" 9 #include "gem/i915_gem_lmem.h" 10 #include "gt/gen8_engine_cs.h" 11 #include "gt/intel_breadcrumbs.h" 12 #include "gt/intel_context.h" 13 #include "gt/intel_engine_heartbeat.h" 14 #include "gt/intel_engine_pm.h" 15 #include "gt/intel_engine_regs.h" 16 #include "gt/intel_gpu_commands.h" 17 #include "gt/intel_gt.h" 18 #include "gt/intel_gt_clock_utils.h" 19 #include "gt/intel_gt_irq.h" 20 #include "gt/intel_gt_pm.h" 21 #include "gt/intel_gt_regs.h" 22 #include "gt/intel_gt_requests.h" 23 #include "gt/intel_lrc.h" 24 #include "gt/intel_lrc_reg.h" 25 #include "gt/intel_mocs.h" 26 #include "gt/intel_ring.h" 27 28 #include "intel_guc_ads.h" 29 #include "intel_guc_capture.h" 30 #include "intel_guc_print.h" 31 #include "intel_guc_submission.h" 32 33 #include "i915_drv.h" 34 #include "i915_reg.h" 35 #include "i915_trace.h" 36 37 /** 38 * DOC: GuC-based command submission 39 * 40 * The Scratch registers: 41 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes 42 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then 43 * triggers an interrupt on the GuC via another register write (0xC4C8). 44 * Firmware writes a success/fail code back to the action register after 45 * processes the request. The kernel driver polls waiting for this update and 46 * then proceeds. 47 * 48 * Command Transport buffers (CTBs): 49 * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host 50 * - G2H) are a message interface between the i915 and GuC. 51 * 52 * Context registration: 53 * Before a context can be submitted it must be registered with the GuC via a 54 * H2G. A unique guc_id is associated with each context. The context is either 55 * registered at request creation time (normal operation) or at submission time 56 * (abnormal operation, e.g. after a reset). 57 * 58 * Context submission: 59 * The i915 updates the LRC tail value in memory. The i915 must enable the 60 * scheduling of the context within the GuC for the GuC to actually consider it. 61 * Therefore, the first time a disabled context is submitted we use a schedule 62 * enable H2G, while follow up submissions are done via the context submit H2G, 63 * which informs the GuC that a previously enabled context has new work 64 * available. 65 * 66 * Context unpin: 67 * To unpin a context a H2G is used to disable scheduling. When the 68 * corresponding G2H returns indicating the scheduling disable operation has 69 * completed it is safe to unpin the context. While a disable is in flight it 70 * isn't safe to resubmit the context so a fence is used to stall all future 71 * requests of that context until the G2H is returned. Because this interaction 72 * with the GuC takes a non-zero amount of time we delay the disabling of 73 * scheduling after the pin count goes to zero by a configurable period of time 74 * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of 75 * time to resubmit something on the context before doing this costly operation. 76 * This delay is only done if the context isn't closed and the guc_id usage is 77 * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD). 78 * 79 * Context deregistration: 80 * Before a context can be destroyed or if we steal its guc_id we must 81 * deregister the context with the GuC via H2G. If stealing the guc_id it isn't 82 * safe to submit anything to this guc_id until the deregister completes so a 83 * fence is used to stall all requests associated with this guc_id until the 84 * corresponding G2H returns indicating the guc_id has been deregistered. 85 * 86 * submission_state.guc_ids: 87 * Unique number associated with private GuC context data passed in during 88 * context registration / submission / deregistration. 64k available. Simple ida 89 * is used for allocation. 90 * 91 * Stealing guc_ids: 92 * If no guc_ids are available they can be stolen from another context at 93 * request creation time if that context is unpinned. If a guc_id can't be found 94 * we punt this problem to the user as we believe this is near impossible to hit 95 * during normal use cases. 96 * 97 * Locking: 98 * In the GuC submission code we have 3 basic spin locks which protect 99 * everything. Details about each below. 100 * 101 * sched_engine->lock 102 * This is the submission lock for all contexts that share an i915 schedule 103 * engine (sched_engine), thus only one of the contexts which share a 104 * sched_engine can be submitting at a time. Currently only one sched_engine is 105 * used for all of GuC submission but that could change in the future. 106 * 107 * guc->submission_state.lock 108 * Global lock for GuC submission state. Protects guc_ids and destroyed contexts 109 * list. 110 * 111 * ce->guc_state.lock 112 * Protects everything under ce->guc_state. Ensures that a context is in the 113 * correct state before issuing a H2G. e.g. We don't issue a schedule disable 114 * on a disabled context (bad idea), we don't issue a schedule enable when a 115 * schedule disable is in flight, etc... Also protects list of inflight requests 116 * on the context and the priority management state. Lock is individual to each 117 * context. 118 * 119 * Lock ordering rules: 120 * sched_engine->lock -> ce->guc_state.lock 121 * guc->submission_state.lock -> ce->guc_state.lock 122 * 123 * Reset races: 124 * When a full GT reset is triggered it is assumed that some G2H responses to 125 * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be 126 * fatal as we do certain operations upon receiving a G2H (e.g. destroy 127 * contexts, release guc_ids, etc...). When this occurs we can scrub the 128 * context state and cleanup appropriately, however this is quite racey. 129 * To avoid races, the reset code must disable submission before scrubbing for 130 * the missing G2H, while the submission code must check for submission being 131 * disabled and skip sending H2Gs and updating context states when it is. Both 132 * sides must also make sure to hold the relevant locks. 133 */ 134 135 /* GuC Virtual Engine */ 136 struct guc_virtual_engine { 137 struct intel_engine_cs base; 138 struct intel_context context; 139 }; 140 141 static struct intel_context * 142 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, 143 unsigned long flags); 144 145 static struct intel_context * 146 guc_create_parallel(struct intel_engine_cs **engines, 147 unsigned int num_siblings, 148 unsigned int width); 149 150 #define GUC_REQUEST_SIZE 64 /* bytes */ 151 152 /* 153 * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous 154 * per the GuC submission interface. A different allocation algorithm is used 155 * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to 156 * partition the guc_id space. We believe the number of multi-lrc contexts in 157 * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for 158 * multi-lrc. 159 */ 160 #define NUMBER_MULTI_LRC_GUC_ID(guc) \ 161 ((guc)->submission_state.num_guc_ids / 16) 162 163 /* 164 * Below is a set of functions which control the GuC scheduling state which 165 * require a lock. 166 */ 167 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER BIT(0) 168 #define SCHED_STATE_DESTROYED BIT(1) 169 #define SCHED_STATE_PENDING_DISABLE BIT(2) 170 #define SCHED_STATE_BANNED BIT(3) 171 #define SCHED_STATE_ENABLED BIT(4) 172 #define SCHED_STATE_PENDING_ENABLE BIT(5) 173 #define SCHED_STATE_REGISTERED BIT(6) 174 #define SCHED_STATE_POLICY_REQUIRED BIT(7) 175 #define SCHED_STATE_CLOSED BIT(8) 176 #define SCHED_STATE_BLOCKED_SHIFT 9 177 #define SCHED_STATE_BLOCKED BIT(SCHED_STATE_BLOCKED_SHIFT) 178 #define SCHED_STATE_BLOCKED_MASK (0xfff << SCHED_STATE_BLOCKED_SHIFT) 179 180 static inline void init_sched_state(struct intel_context *ce) 181 { 182 lockdep_assert_held(&ce->guc_state.lock); 183 ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK; 184 } 185 186 /* 187 * Kernel contexts can have SCHED_STATE_REGISTERED after suspend. 188 * A context close can race with the submission path, so SCHED_STATE_CLOSED 189 * can be set immediately before we try to register. 190 */ 191 #define SCHED_STATE_VALID_INIT \ 192 (SCHED_STATE_BLOCKED_MASK | \ 193 SCHED_STATE_CLOSED | \ 194 SCHED_STATE_REGISTERED) 195 196 __maybe_unused 197 static bool sched_state_is_init(struct intel_context *ce) 198 { 199 return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT); 200 } 201 202 static inline bool 203 context_wait_for_deregister_to_register(struct intel_context *ce) 204 { 205 return ce->guc_state.sched_state & 206 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 207 } 208 209 static inline void 210 set_context_wait_for_deregister_to_register(struct intel_context *ce) 211 { 212 lockdep_assert_held(&ce->guc_state.lock); 213 ce->guc_state.sched_state |= 214 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 215 } 216 217 static inline void 218 clr_context_wait_for_deregister_to_register(struct intel_context *ce) 219 { 220 lockdep_assert_held(&ce->guc_state.lock); 221 ce->guc_state.sched_state &= 222 ~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 223 } 224 225 static inline bool 226 context_destroyed(struct intel_context *ce) 227 { 228 return ce->guc_state.sched_state & SCHED_STATE_DESTROYED; 229 } 230 231 static inline void 232 set_context_destroyed(struct intel_context *ce) 233 { 234 lockdep_assert_held(&ce->guc_state.lock); 235 ce->guc_state.sched_state |= SCHED_STATE_DESTROYED; 236 } 237 238 static inline bool context_pending_disable(struct intel_context *ce) 239 { 240 return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE; 241 } 242 243 static inline void set_context_pending_disable(struct intel_context *ce) 244 { 245 lockdep_assert_held(&ce->guc_state.lock); 246 ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE; 247 } 248 249 static inline void clr_context_pending_disable(struct intel_context *ce) 250 { 251 lockdep_assert_held(&ce->guc_state.lock); 252 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE; 253 } 254 255 static inline bool context_banned(struct intel_context *ce) 256 { 257 return ce->guc_state.sched_state & SCHED_STATE_BANNED; 258 } 259 260 static inline void set_context_banned(struct intel_context *ce) 261 { 262 lockdep_assert_held(&ce->guc_state.lock); 263 ce->guc_state.sched_state |= SCHED_STATE_BANNED; 264 } 265 266 static inline void clr_context_banned(struct intel_context *ce) 267 { 268 lockdep_assert_held(&ce->guc_state.lock); 269 ce->guc_state.sched_state &= ~SCHED_STATE_BANNED; 270 } 271 272 static inline bool context_enabled(struct intel_context *ce) 273 { 274 return ce->guc_state.sched_state & SCHED_STATE_ENABLED; 275 } 276 277 static inline void set_context_enabled(struct intel_context *ce) 278 { 279 lockdep_assert_held(&ce->guc_state.lock); 280 ce->guc_state.sched_state |= SCHED_STATE_ENABLED; 281 } 282 283 static inline void clr_context_enabled(struct intel_context *ce) 284 { 285 lockdep_assert_held(&ce->guc_state.lock); 286 ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED; 287 } 288 289 static inline bool context_pending_enable(struct intel_context *ce) 290 { 291 return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE; 292 } 293 294 static inline void set_context_pending_enable(struct intel_context *ce) 295 { 296 lockdep_assert_held(&ce->guc_state.lock); 297 ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE; 298 } 299 300 static inline void clr_context_pending_enable(struct intel_context *ce) 301 { 302 lockdep_assert_held(&ce->guc_state.lock); 303 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE; 304 } 305 306 static inline bool context_registered(struct intel_context *ce) 307 { 308 return ce->guc_state.sched_state & SCHED_STATE_REGISTERED; 309 } 310 311 static inline void set_context_registered(struct intel_context *ce) 312 { 313 lockdep_assert_held(&ce->guc_state.lock); 314 ce->guc_state.sched_state |= SCHED_STATE_REGISTERED; 315 } 316 317 static inline void clr_context_registered(struct intel_context *ce) 318 { 319 lockdep_assert_held(&ce->guc_state.lock); 320 ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED; 321 } 322 323 static inline bool context_policy_required(struct intel_context *ce) 324 { 325 return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED; 326 } 327 328 static inline void set_context_policy_required(struct intel_context *ce) 329 { 330 lockdep_assert_held(&ce->guc_state.lock); 331 ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED; 332 } 333 334 static inline void clr_context_policy_required(struct intel_context *ce) 335 { 336 lockdep_assert_held(&ce->guc_state.lock); 337 ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED; 338 } 339 340 static inline bool context_close_done(struct intel_context *ce) 341 { 342 return ce->guc_state.sched_state & SCHED_STATE_CLOSED; 343 } 344 345 static inline void set_context_close_done(struct intel_context *ce) 346 { 347 lockdep_assert_held(&ce->guc_state.lock); 348 ce->guc_state.sched_state |= SCHED_STATE_CLOSED; 349 } 350 351 static inline u32 context_blocked(struct intel_context *ce) 352 { 353 return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >> 354 SCHED_STATE_BLOCKED_SHIFT; 355 } 356 357 static inline void incr_context_blocked(struct intel_context *ce) 358 { 359 lockdep_assert_held(&ce->guc_state.lock); 360 361 ce->guc_state.sched_state += SCHED_STATE_BLOCKED; 362 363 GEM_BUG_ON(!context_blocked(ce)); /* Overflow check */ 364 } 365 366 static inline void decr_context_blocked(struct intel_context *ce) 367 { 368 lockdep_assert_held(&ce->guc_state.lock); 369 370 GEM_BUG_ON(!context_blocked(ce)); /* Underflow check */ 371 372 ce->guc_state.sched_state -= SCHED_STATE_BLOCKED; 373 } 374 375 static struct intel_context * 376 request_to_scheduling_context(struct i915_request *rq) 377 { 378 return intel_context_to_parent(rq->context); 379 } 380 381 static inline bool context_guc_id_invalid(struct intel_context *ce) 382 { 383 return ce->guc_id.id == GUC_INVALID_CONTEXT_ID; 384 } 385 386 static inline void set_context_guc_id_invalid(struct intel_context *ce) 387 { 388 ce->guc_id.id = GUC_INVALID_CONTEXT_ID; 389 } 390 391 static inline struct intel_guc *ce_to_guc(struct intel_context *ce) 392 { 393 return &ce->engine->gt->uc.guc; 394 } 395 396 static inline struct i915_priolist *to_priolist(struct rb_node *rb) 397 { 398 return rb_entry(rb, struct i915_priolist, node); 399 } 400 401 /* 402 * When using multi-lrc submission a scratch memory area is reserved in the 403 * parent's context state for the process descriptor, work queue, and handshake 404 * between the parent + children contexts to insert safe preemption points 405 * between each of the BBs. Currently the scratch area is sized to a page. 406 * 407 * The layout of this scratch area is below: 408 * 0 guc_process_desc 409 * + sizeof(struct guc_process_desc) child go 410 * + CACHELINE_BYTES child join[0] 411 * ... 412 * + CACHELINE_BYTES child join[n - 1] 413 * ... unused 414 * PARENT_SCRATCH_SIZE / 2 work queue start 415 * ... work queue 416 * PARENT_SCRATCH_SIZE - 1 work queue end 417 */ 418 #define WQ_SIZE (PARENT_SCRATCH_SIZE / 2) 419 #define WQ_OFFSET (PARENT_SCRATCH_SIZE - WQ_SIZE) 420 421 struct sync_semaphore { 422 u32 semaphore; 423 u8 unused[CACHELINE_BYTES - sizeof(u32)]; 424 }; 425 426 struct parent_scratch { 427 union guc_descs { 428 struct guc_sched_wq_desc wq_desc; 429 struct guc_process_desc_v69 pdesc; 430 } descs; 431 432 struct sync_semaphore go; 433 struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1]; 434 435 u8 unused[WQ_OFFSET - sizeof(union guc_descs) - 436 sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)]; 437 438 u32 wq[WQ_SIZE / sizeof(u32)]; 439 }; 440 441 static u32 __get_parent_scratch_offset(struct intel_context *ce) 442 { 443 GEM_BUG_ON(!ce->parallel.guc.parent_page); 444 445 return ce->parallel.guc.parent_page * PAGE_SIZE; 446 } 447 448 static u32 __get_wq_offset(struct intel_context *ce) 449 { 450 BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET); 451 452 return __get_parent_scratch_offset(ce) + WQ_OFFSET; 453 } 454 455 static struct parent_scratch * 456 __get_parent_scratch(struct intel_context *ce) 457 { 458 BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE); 459 BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES); 460 461 /* 462 * Need to subtract LRC_STATE_OFFSET here as the 463 * parallel.guc.parent_page is the offset into ce->state while 464 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET. 465 */ 466 return (struct parent_scratch *) 467 (ce->lrc_reg_state + 468 ((__get_parent_scratch_offset(ce) - 469 LRC_STATE_OFFSET) / sizeof(u32))); 470 } 471 472 static struct guc_process_desc_v69 * 473 __get_process_desc_v69(struct intel_context *ce) 474 { 475 struct parent_scratch *ps = __get_parent_scratch(ce); 476 477 return &ps->descs.pdesc; 478 } 479 480 static struct guc_sched_wq_desc * 481 __get_wq_desc_v70(struct intel_context *ce) 482 { 483 struct parent_scratch *ps = __get_parent_scratch(ce); 484 485 return &ps->descs.wq_desc; 486 } 487 488 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size) 489 { 490 /* 491 * Check for space in work queue. Caching a value of head pointer in 492 * intel_context structure in order reduce the number accesses to shared 493 * GPU memory which may be across a PCIe bus. 494 */ 495 #define AVAILABLE_SPACE \ 496 CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE) 497 if (wqi_size > AVAILABLE_SPACE) { 498 ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head); 499 500 if (wqi_size > AVAILABLE_SPACE) 501 return NULL; 502 } 503 #undef AVAILABLE_SPACE 504 505 return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)]; 506 } 507 508 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id) 509 { 510 struct intel_context *ce = xa_load(&guc->context_lookup, id); 511 512 GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID); 513 514 return ce; 515 } 516 517 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index) 518 { 519 struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69; 520 521 if (!base) 522 return NULL; 523 524 GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID); 525 526 return &base[index]; 527 } 528 529 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc) 530 { 531 u32 size; 532 int ret; 533 534 size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) * 535 GUC_MAX_CONTEXT_ID); 536 ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69, 537 (void **)&guc->lrc_desc_pool_vaddr_v69); 538 if (ret) 539 return ret; 540 541 return 0; 542 } 543 544 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc) 545 { 546 if (!guc->lrc_desc_pool_vaddr_v69) 547 return; 548 549 guc->lrc_desc_pool_vaddr_v69 = NULL; 550 i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP); 551 } 552 553 static inline bool guc_submission_initialized(struct intel_guc *guc) 554 { 555 return guc->submission_initialized; 556 } 557 558 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id) 559 { 560 struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id); 561 562 if (desc) 563 memset(desc, 0, sizeof(*desc)); 564 } 565 566 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id) 567 { 568 return __get_context(guc, id); 569 } 570 571 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id, 572 struct intel_context *ce) 573 { 574 unsigned long flags; 575 576 /* 577 * xarray API doesn't have xa_save_irqsave wrapper, so calling the 578 * lower level functions directly. 579 */ 580 xa_lock_irqsave(&guc->context_lookup, flags); 581 __xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC); 582 xa_unlock_irqrestore(&guc->context_lookup, flags); 583 } 584 585 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id) 586 { 587 unsigned long flags; 588 589 if (unlikely(!guc_submission_initialized(guc))) 590 return; 591 592 _reset_lrc_desc_v69(guc, id); 593 594 /* 595 * xarray API doesn't have xa_erase_irqsave wrapper, so calling 596 * the lower level functions directly. 597 */ 598 xa_lock_irqsave(&guc->context_lookup, flags); 599 __xa_erase(&guc->context_lookup, id); 600 xa_unlock_irqrestore(&guc->context_lookup, flags); 601 } 602 603 static void decr_outstanding_submission_g2h(struct intel_guc *guc) 604 { 605 if (atomic_dec_and_test(&guc->outstanding_submission_g2h)) 606 wake_up_all(&guc->ct.wq); 607 } 608 609 static int guc_submission_send_busy_loop(struct intel_guc *guc, 610 const u32 *action, 611 u32 len, 612 u32 g2h_len_dw, 613 bool loop) 614 { 615 /* 616 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0), 617 * so we don't handle the case where we don't get a reply because we 618 * aborted the send due to the channel being busy. 619 */ 620 GEM_BUG_ON(g2h_len_dw && !loop); 621 622 if (g2h_len_dw) 623 atomic_inc(&guc->outstanding_submission_g2h); 624 625 return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop); 626 } 627 628 int intel_guc_wait_for_pending_msg(struct intel_guc *guc, 629 atomic_t *wait_var, 630 bool interruptible, 631 long timeout) 632 { 633 const int state = interruptible ? 634 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 635 DEFINE_WAIT(wait); 636 637 might_sleep(); 638 GEM_BUG_ON(timeout < 0); 639 640 if (!atomic_read(wait_var)) 641 return 0; 642 643 if (!timeout) 644 return -ETIME; 645 646 for (;;) { 647 prepare_to_wait(&guc->ct.wq, &wait, state); 648 649 if (!atomic_read(wait_var)) 650 break; 651 652 if (signal_pending_state(state, current)) { 653 timeout = -EINTR; 654 break; 655 } 656 657 if (!timeout) { 658 timeout = -ETIME; 659 break; 660 } 661 662 timeout = io_schedule_timeout(timeout); 663 } 664 finish_wait(&guc->ct.wq, &wait); 665 666 return (timeout < 0) ? timeout : 0; 667 } 668 669 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout) 670 { 671 if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc)) 672 return 0; 673 674 return intel_guc_wait_for_pending_msg(guc, 675 &guc->outstanding_submission_g2h, 676 true, timeout); 677 } 678 679 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop); 680 static int try_context_registration(struct intel_context *ce, bool loop); 681 682 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq) 683 { 684 int err = 0; 685 struct intel_context *ce = request_to_scheduling_context(rq); 686 u32 action[3]; 687 int len = 0; 688 u32 g2h_len_dw = 0; 689 bool enabled; 690 691 lockdep_assert_held(&rq->engine->sched_engine->lock); 692 693 /* 694 * Corner case where requests were sitting in the priority list or a 695 * request resubmitted after the context was banned. 696 */ 697 if (unlikely(!intel_context_is_schedulable(ce))) { 698 i915_request_put(i915_request_mark_eio(rq)); 699 intel_engine_signal_breadcrumbs(ce->engine); 700 return 0; 701 } 702 703 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); 704 GEM_BUG_ON(context_guc_id_invalid(ce)); 705 706 if (context_policy_required(ce)) { 707 err = guc_context_policy_init_v70(ce, false); 708 if (err) 709 return err; 710 } 711 712 spin_lock(&ce->guc_state.lock); 713 714 /* 715 * The request / context will be run on the hardware when scheduling 716 * gets enabled in the unblock. For multi-lrc we still submit the 717 * context to move the LRC tails. 718 */ 719 if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce))) 720 goto out; 721 722 enabled = context_enabled(ce) || context_blocked(ce); 723 724 if (!enabled) { 725 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET; 726 action[len++] = ce->guc_id.id; 727 action[len++] = GUC_CONTEXT_ENABLE; 728 set_context_pending_enable(ce); 729 intel_context_get(ce); 730 g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET; 731 } else { 732 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT; 733 action[len++] = ce->guc_id.id; 734 } 735 736 err = intel_guc_send_nb(guc, action, len, g2h_len_dw); 737 if (!enabled && !err) { 738 trace_intel_context_sched_enable(ce); 739 atomic_inc(&guc->outstanding_submission_g2h); 740 set_context_enabled(ce); 741 742 /* 743 * Without multi-lrc KMD does the submission step (moving the 744 * lrc tail) so enabling scheduling is sufficient to submit the 745 * context. This isn't the case in multi-lrc submission as the 746 * GuC needs to move the tails, hence the need for another H2G 747 * to submit a multi-lrc context after enabling scheduling. 748 */ 749 if (intel_context_is_parent(ce)) { 750 action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT; 751 err = intel_guc_send_nb(guc, action, len - 1, 0); 752 } 753 } else if (!enabled) { 754 clr_context_pending_enable(ce); 755 intel_context_put(ce); 756 } 757 if (likely(!err)) 758 trace_i915_request_guc_submit(rq); 759 760 out: 761 spin_unlock(&ce->guc_state.lock); 762 return err; 763 } 764 765 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq) 766 { 767 int ret = __guc_add_request(guc, rq); 768 769 if (unlikely(ret == -EBUSY)) { 770 guc->stalled_request = rq; 771 guc->submission_stall_reason = STALL_ADD_REQUEST; 772 } 773 774 return ret; 775 } 776 777 static inline void guc_set_lrc_tail(struct i915_request *rq) 778 { 779 rq->context->lrc_reg_state[CTX_RING_TAIL] = 780 intel_ring_set_tail(rq->ring, rq->tail); 781 } 782 783 static inline int rq_prio(const struct i915_request *rq) 784 { 785 return rq->sched.attr.priority; 786 } 787 788 static bool is_multi_lrc_rq(struct i915_request *rq) 789 { 790 return intel_context_is_parallel(rq->context); 791 } 792 793 static bool can_merge_rq(struct i915_request *rq, 794 struct i915_request *last) 795 { 796 return request_to_scheduling_context(rq) == 797 request_to_scheduling_context(last); 798 } 799 800 static u32 wq_space_until_wrap(struct intel_context *ce) 801 { 802 return (WQ_SIZE - ce->parallel.guc.wqi_tail); 803 } 804 805 static void write_wqi(struct intel_context *ce, u32 wqi_size) 806 { 807 BUILD_BUG_ON(!is_power_of_2(WQ_SIZE)); 808 809 /* 810 * Ensure WQI are visible before updating tail 811 */ 812 intel_guc_write_barrier(ce_to_guc(ce)); 813 814 ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) & 815 (WQ_SIZE - 1); 816 WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail); 817 } 818 819 static int guc_wq_noop_append(struct intel_context *ce) 820 { 821 u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce)); 822 u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1; 823 824 if (!wqi) 825 return -EBUSY; 826 827 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); 828 829 *wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) | 830 FIELD_PREP(WQ_LEN_MASK, len_dw); 831 ce->parallel.guc.wqi_tail = 0; 832 833 return 0; 834 } 835 836 static int __guc_wq_item_append(struct i915_request *rq) 837 { 838 struct intel_context *ce = request_to_scheduling_context(rq); 839 struct intel_context *child; 840 unsigned int wqi_size = (ce->parallel.number_children + 4) * 841 sizeof(u32); 842 u32 *wqi; 843 u32 len_dw = (wqi_size / sizeof(u32)) - 1; 844 int ret; 845 846 /* Ensure context is in correct state updating work queue */ 847 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); 848 GEM_BUG_ON(context_guc_id_invalid(ce)); 849 GEM_BUG_ON(context_wait_for_deregister_to_register(ce)); 850 GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)); 851 852 /* Insert NOOP if this work queue item will wrap the tail pointer. */ 853 if (wqi_size > wq_space_until_wrap(ce)) { 854 ret = guc_wq_noop_append(ce); 855 if (ret) 856 return ret; 857 } 858 859 wqi = get_wq_pointer(ce, wqi_size); 860 if (!wqi) 861 return -EBUSY; 862 863 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); 864 865 *wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) | 866 FIELD_PREP(WQ_LEN_MASK, len_dw); 867 *wqi++ = ce->lrc.lrca; 868 *wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) | 869 FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64)); 870 *wqi++ = 0; /* fence_id */ 871 for_each_child(ce, child) 872 *wqi++ = child->ring->tail / sizeof(u64); 873 874 write_wqi(ce, wqi_size); 875 876 return 0; 877 } 878 879 static int guc_wq_item_append(struct intel_guc *guc, 880 struct i915_request *rq) 881 { 882 struct intel_context *ce = request_to_scheduling_context(rq); 883 int ret; 884 885 if (unlikely(!intel_context_is_schedulable(ce))) 886 return 0; 887 888 ret = __guc_wq_item_append(rq); 889 if (unlikely(ret == -EBUSY)) { 890 guc->stalled_request = rq; 891 guc->submission_stall_reason = STALL_MOVE_LRC_TAIL; 892 } 893 894 return ret; 895 } 896 897 static bool multi_lrc_submit(struct i915_request *rq) 898 { 899 struct intel_context *ce = request_to_scheduling_context(rq); 900 901 intel_ring_set_tail(rq->ring, rq->tail); 902 903 /* 904 * We expect the front end (execbuf IOCTL) to set this flag on the last 905 * request generated from a multi-BB submission. This indicates to the 906 * backend (GuC interface) that we should submit this context thus 907 * submitting all the requests generated in parallel. 908 */ 909 return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) || 910 !intel_context_is_schedulable(ce); 911 } 912 913 static int guc_dequeue_one_context(struct intel_guc *guc) 914 { 915 struct i915_sched_engine * const sched_engine = guc->sched_engine; 916 struct i915_request *last = NULL; 917 bool submit = false; 918 struct rb_node *rb; 919 int ret; 920 921 lockdep_assert_held(&sched_engine->lock); 922 923 if (guc->stalled_request) { 924 submit = true; 925 last = guc->stalled_request; 926 927 switch (guc->submission_stall_reason) { 928 case STALL_REGISTER_CONTEXT: 929 goto register_context; 930 case STALL_MOVE_LRC_TAIL: 931 goto move_lrc_tail; 932 case STALL_ADD_REQUEST: 933 goto add_request; 934 default: 935 MISSING_CASE(guc->submission_stall_reason); 936 } 937 } 938 939 while ((rb = rb_first_cached(&sched_engine->queue))) { 940 struct i915_priolist *p = to_priolist(rb); 941 struct i915_request *rq, *rn; 942 943 priolist_for_each_request_consume(rq, rn, p) { 944 if (last && !can_merge_rq(rq, last)) 945 goto register_context; 946 947 list_del_init(&rq->sched.link); 948 949 __i915_request_submit(rq); 950 951 trace_i915_request_in(rq, 0); 952 last = rq; 953 954 if (is_multi_lrc_rq(rq)) { 955 /* 956 * We need to coalesce all multi-lrc requests in 957 * a relationship into a single H2G. We are 958 * guaranteed that all of these requests will be 959 * submitted sequentially. 960 */ 961 if (multi_lrc_submit(rq)) { 962 submit = true; 963 goto register_context; 964 } 965 } else { 966 submit = true; 967 } 968 } 969 970 rb_erase_cached(&p->node, &sched_engine->queue); 971 i915_priolist_free(p); 972 } 973 974 register_context: 975 if (submit) { 976 struct intel_context *ce = request_to_scheduling_context(last); 977 978 if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) && 979 intel_context_is_schedulable(ce))) { 980 ret = try_context_registration(ce, false); 981 if (unlikely(ret == -EPIPE)) { 982 goto deadlk; 983 } else if (ret == -EBUSY) { 984 guc->stalled_request = last; 985 guc->submission_stall_reason = 986 STALL_REGISTER_CONTEXT; 987 goto schedule_tasklet; 988 } else if (ret != 0) { 989 GEM_WARN_ON(ret); /* Unexpected */ 990 goto deadlk; 991 } 992 } 993 994 move_lrc_tail: 995 if (is_multi_lrc_rq(last)) { 996 ret = guc_wq_item_append(guc, last); 997 if (ret == -EBUSY) { 998 goto schedule_tasklet; 999 } else if (ret != 0) { 1000 GEM_WARN_ON(ret); /* Unexpected */ 1001 goto deadlk; 1002 } 1003 } else { 1004 guc_set_lrc_tail(last); 1005 } 1006 1007 add_request: 1008 ret = guc_add_request(guc, last); 1009 if (unlikely(ret == -EPIPE)) { 1010 goto deadlk; 1011 } else if (ret == -EBUSY) { 1012 goto schedule_tasklet; 1013 } else if (ret != 0) { 1014 GEM_WARN_ON(ret); /* Unexpected */ 1015 goto deadlk; 1016 } 1017 } 1018 1019 guc->stalled_request = NULL; 1020 guc->submission_stall_reason = STALL_NONE; 1021 return submit; 1022 1023 deadlk: 1024 sched_engine->tasklet.callback = NULL; 1025 tasklet_disable_nosync(&sched_engine->tasklet); 1026 return false; 1027 1028 schedule_tasklet: 1029 tasklet_schedule(&sched_engine->tasklet); 1030 return false; 1031 } 1032 1033 static void guc_submission_tasklet(struct tasklet_struct *t) 1034 { 1035 struct i915_sched_engine *sched_engine = 1036 from_tasklet(sched_engine, t, tasklet); 1037 unsigned long flags; 1038 bool loop; 1039 1040 spin_lock_irqsave(&sched_engine->lock, flags); 1041 1042 do { 1043 loop = guc_dequeue_one_context(sched_engine->private_data); 1044 } while (loop); 1045 1046 i915_sched_engine_reset_on_empty(sched_engine); 1047 1048 spin_unlock_irqrestore(&sched_engine->lock, flags); 1049 } 1050 1051 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir) 1052 { 1053 if (iir & GT_RENDER_USER_INTERRUPT) 1054 intel_engine_signal_breadcrumbs(engine); 1055 } 1056 1057 static void __guc_context_destroy(struct intel_context *ce); 1058 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce); 1059 static void guc_signal_context_fence(struct intel_context *ce); 1060 static void guc_cancel_context_requests(struct intel_context *ce); 1061 static void guc_blocked_fence_complete(struct intel_context *ce); 1062 1063 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc) 1064 { 1065 struct intel_context *ce; 1066 unsigned long index, flags; 1067 bool pending_disable, pending_enable, deregister, destroyed, banned; 1068 1069 xa_lock_irqsave(&guc->context_lookup, flags); 1070 xa_for_each(&guc->context_lookup, index, ce) { 1071 /* 1072 * Corner case where the ref count on the object is zero but and 1073 * deregister G2H was lost. In this case we don't touch the ref 1074 * count and finish the destroy of the context. 1075 */ 1076 bool do_put = kref_get_unless_zero(&ce->ref); 1077 1078 xa_unlock(&guc->context_lookup); 1079 1080 if (test_bit(CONTEXT_GUC_INIT, &ce->flags) && 1081 (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) { 1082 /* successful cancel so jump straight to close it */ 1083 intel_context_sched_disable_unpin(ce); 1084 } 1085 1086 spin_lock(&ce->guc_state.lock); 1087 1088 /* 1089 * Once we are at this point submission_disabled() is guaranteed 1090 * to be visible to all callers who set the below flags (see above 1091 * flush and flushes in reset_prepare). If submission_disabled() 1092 * is set, the caller shouldn't set these flags. 1093 */ 1094 1095 destroyed = context_destroyed(ce); 1096 pending_enable = context_pending_enable(ce); 1097 pending_disable = context_pending_disable(ce); 1098 deregister = context_wait_for_deregister_to_register(ce); 1099 banned = context_banned(ce); 1100 init_sched_state(ce); 1101 1102 spin_unlock(&ce->guc_state.lock); 1103 1104 if (pending_enable || destroyed || deregister) { 1105 decr_outstanding_submission_g2h(guc); 1106 if (deregister) 1107 guc_signal_context_fence(ce); 1108 if (destroyed) { 1109 intel_gt_pm_put_async(guc_to_gt(guc)); 1110 release_guc_id(guc, ce); 1111 __guc_context_destroy(ce); 1112 } 1113 if (pending_enable || deregister) 1114 intel_context_put(ce); 1115 } 1116 1117 /* Not mutualy exclusive with above if statement. */ 1118 if (pending_disable) { 1119 guc_signal_context_fence(ce); 1120 if (banned) { 1121 guc_cancel_context_requests(ce); 1122 intel_engine_signal_breadcrumbs(ce->engine); 1123 } 1124 intel_context_sched_disable_unpin(ce); 1125 decr_outstanding_submission_g2h(guc); 1126 1127 spin_lock(&ce->guc_state.lock); 1128 guc_blocked_fence_complete(ce); 1129 spin_unlock(&ce->guc_state.lock); 1130 1131 intel_context_put(ce); 1132 } 1133 1134 if (do_put) 1135 intel_context_put(ce); 1136 xa_lock(&guc->context_lookup); 1137 } 1138 xa_unlock_irqrestore(&guc->context_lookup, flags); 1139 } 1140 1141 /* 1142 * GuC stores busyness stats for each engine at context in/out boundaries. A 1143 * context 'in' logs execution start time, 'out' adds in -> out delta to total. 1144 * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with 1145 * GuC. 1146 * 1147 * __i915_pmu_event_read samples engine busyness. When sampling, if context id 1148 * is valid (!= ~0) and start is non-zero, the engine is considered to be 1149 * active. For an active engine total busyness = total + (now - start), where 1150 * 'now' is the time at which the busyness is sampled. For inactive engine, 1151 * total busyness = total. 1152 * 1153 * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain. 1154 * 1155 * The start and total values provided by GuC are 32 bits and wrap around in a 1156 * few minutes. Since perf pmu provides busyness as 64 bit monotonically 1157 * increasing ns values, there is a need for this implementation to account for 1158 * overflows and extend the GuC provided values to 64 bits before returning 1159 * busyness to the user. In order to do that, a worker runs periodically at 1160 * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in 1161 * 27 seconds for a gt clock frequency of 19.2 MHz). 1162 */ 1163 1164 #define WRAP_TIME_CLKS U32_MAX 1165 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3) 1166 1167 static void 1168 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start) 1169 { 1170 u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); 1171 u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp); 1172 1173 if (new_start == lower_32_bits(*prev_start)) 1174 return; 1175 1176 /* 1177 * When gt is unparked, we update the gt timestamp and start the ping 1178 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt 1179 * is unparked, all switched in contexts will have a start time that is 1180 * within +/- POLL_TIME_CLKS of the most recent gt_stamp. 1181 * 1182 * If neither gt_stamp nor new_start has rolled over, then the 1183 * gt_stamp_hi does not need to be adjusted, however if one of them has 1184 * rolled over, we need to adjust gt_stamp_hi accordingly. 1185 * 1186 * The below conditions address the cases of new_start rollover and 1187 * gt_stamp_last rollover respectively. 1188 */ 1189 if (new_start < gt_stamp_last && 1190 (new_start - gt_stamp_last) <= POLL_TIME_CLKS) 1191 gt_stamp_hi++; 1192 1193 if (new_start > gt_stamp_last && 1194 (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi) 1195 gt_stamp_hi--; 1196 1197 *prev_start = ((u64)gt_stamp_hi << 32) | new_start; 1198 } 1199 1200 #define record_read(map_, field_) \ 1201 iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_) 1202 1203 /* 1204 * GuC updates shared memory and KMD reads it. Since this is not synchronized, 1205 * we run into a race where the value read is inconsistent. Sometimes the 1206 * inconsistency is in reading the upper MSB bytes of the last_in value when 1207 * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper 1208 * 24 bits are zero. Since these are non-zero values, it is non-trivial to 1209 * determine validity of these values. Instead we read the values multiple times 1210 * until they are consistent. In test runs, 3 attempts results in consistent 1211 * values. The upper bound is set to 6 attempts and may need to be tuned as per 1212 * any new occurences. 1213 */ 1214 static void __get_engine_usage_record(struct intel_engine_cs *engine, 1215 u32 *last_in, u32 *id, u32 *total) 1216 { 1217 struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine); 1218 int i = 0; 1219 1220 do { 1221 *last_in = record_read(&rec_map, last_switch_in_stamp); 1222 *id = record_read(&rec_map, current_context_index); 1223 *total = record_read(&rec_map, total_runtime); 1224 1225 if (record_read(&rec_map, last_switch_in_stamp) == *last_in && 1226 record_read(&rec_map, current_context_index) == *id && 1227 record_read(&rec_map, total_runtime) == *total) 1228 break; 1229 } while (++i < 6); 1230 } 1231 1232 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine) 1233 { 1234 struct intel_engine_guc_stats *stats = &engine->stats.guc; 1235 struct intel_guc *guc = &engine->gt->uc.guc; 1236 u32 last_switch, ctx_id, total; 1237 1238 lockdep_assert_held(&guc->timestamp.lock); 1239 1240 __get_engine_usage_record(engine, &last_switch, &ctx_id, &total); 1241 1242 stats->running = ctx_id != ~0U && last_switch; 1243 if (stats->running) 1244 __extend_last_switch(guc, &stats->start_gt_clk, last_switch); 1245 1246 /* 1247 * Instead of adjusting the total for overflow, just add the 1248 * difference from previous sample stats->total_gt_clks 1249 */ 1250 if (total && total != ~0U) { 1251 stats->total_gt_clks += (u32)(total - stats->prev_total); 1252 stats->prev_total = total; 1253 } 1254 } 1255 1256 static u32 gpm_timestamp_shift(struct intel_gt *gt) 1257 { 1258 intel_wakeref_t wakeref; 1259 u32 reg, shift; 1260 1261 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 1262 reg = intel_uncore_read(gt->uncore, RPM_CONFIG0); 1263 1264 shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >> 1265 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT; 1266 1267 return 3 - shift; 1268 } 1269 1270 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now) 1271 { 1272 struct intel_gt *gt = guc_to_gt(guc); 1273 u32 gt_stamp_lo, gt_stamp_hi; 1274 u64 gpm_ts; 1275 1276 lockdep_assert_held(&guc->timestamp.lock); 1277 1278 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); 1279 gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0, 1280 MISC_STATUS1) >> guc->timestamp.shift; 1281 gt_stamp_lo = lower_32_bits(gpm_ts); 1282 *now = ktime_get(); 1283 1284 if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp)) 1285 gt_stamp_hi++; 1286 1287 guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo; 1288 } 1289 1290 /* 1291 * Unlike the execlist mode of submission total and active times are in terms of 1292 * gt clocks. The *now parameter is retained to return the cpu time at which the 1293 * busyness was sampled. 1294 */ 1295 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now) 1296 { 1297 struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc; 1298 struct i915_gpu_error *gpu_error = &engine->i915->gpu_error; 1299 struct intel_gt *gt = engine->gt; 1300 struct intel_guc *guc = >->uc.guc; 1301 u64 total, gt_stamp_saved; 1302 unsigned long flags; 1303 u32 reset_count; 1304 bool in_reset; 1305 1306 spin_lock_irqsave(&guc->timestamp.lock, flags); 1307 1308 /* 1309 * If a reset happened, we risk reading partially updated engine 1310 * busyness from GuC, so we just use the driver stored copy of busyness. 1311 * Synchronize with gt reset using reset_count and the 1312 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count 1313 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is 1314 * usable by checking the flag afterwards. 1315 */ 1316 reset_count = i915_reset_count(gpu_error); 1317 in_reset = test_bit(I915_RESET_BACKOFF, >->reset.flags); 1318 1319 *now = ktime_get(); 1320 1321 /* 1322 * The active busyness depends on start_gt_clk and gt_stamp. 1323 * gt_stamp is updated by i915 only when gt is awake and the 1324 * start_gt_clk is derived from GuC state. To get a consistent 1325 * view of activity, we query the GuC state only if gt is awake. 1326 */ 1327 if (!in_reset && intel_gt_pm_get_if_awake(gt)) { 1328 stats_saved = *stats; 1329 gt_stamp_saved = guc->timestamp.gt_stamp; 1330 /* 1331 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp - 1332 * start_gt_clk' calculation below for active engines. 1333 */ 1334 guc_update_engine_gt_clks(engine); 1335 guc_update_pm_timestamp(guc, now); 1336 intel_gt_pm_put_async(gt); 1337 if (i915_reset_count(gpu_error) != reset_count) { 1338 *stats = stats_saved; 1339 guc->timestamp.gt_stamp = gt_stamp_saved; 1340 } 1341 } 1342 1343 total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks); 1344 if (stats->running) { 1345 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk; 1346 1347 total += intel_gt_clock_interval_to_ns(gt, clk); 1348 } 1349 1350 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1351 1352 return ns_to_ktime(total); 1353 } 1354 1355 static void guc_enable_busyness_worker(struct intel_guc *guc) 1356 { 1357 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, guc->timestamp.ping_delay); 1358 } 1359 1360 static void guc_cancel_busyness_worker(struct intel_guc *guc) 1361 { 1362 cancel_delayed_work_sync(&guc->timestamp.work); 1363 } 1364 1365 static void __reset_guc_busyness_stats(struct intel_guc *guc) 1366 { 1367 struct intel_gt *gt = guc_to_gt(guc); 1368 struct intel_engine_cs *engine; 1369 enum intel_engine_id id; 1370 unsigned long flags; 1371 ktime_t unused; 1372 1373 guc_cancel_busyness_worker(guc); 1374 1375 spin_lock_irqsave(&guc->timestamp.lock, flags); 1376 1377 guc_update_pm_timestamp(guc, &unused); 1378 for_each_engine(engine, gt, id) { 1379 guc_update_engine_gt_clks(engine); 1380 engine->stats.guc.prev_total = 0; 1381 } 1382 1383 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1384 } 1385 1386 static void __update_guc_busyness_stats(struct intel_guc *guc) 1387 { 1388 struct intel_gt *gt = guc_to_gt(guc); 1389 struct intel_engine_cs *engine; 1390 enum intel_engine_id id; 1391 unsigned long flags; 1392 ktime_t unused; 1393 1394 guc->timestamp.last_stat_jiffies = jiffies; 1395 1396 spin_lock_irqsave(&guc->timestamp.lock, flags); 1397 1398 guc_update_pm_timestamp(guc, &unused); 1399 for_each_engine(engine, gt, id) 1400 guc_update_engine_gt_clks(engine); 1401 1402 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1403 } 1404 1405 static void guc_timestamp_ping(struct work_struct *wrk) 1406 { 1407 struct intel_guc *guc = container_of(wrk, typeof(*guc), 1408 timestamp.work.work); 1409 struct intel_uc *uc = container_of(guc, typeof(*uc), guc); 1410 struct intel_gt *gt = guc_to_gt(guc); 1411 intel_wakeref_t wakeref; 1412 int srcu, ret; 1413 1414 /* 1415 * Synchronize with gt reset to make sure the worker does not 1416 * corrupt the engine/guc stats. NB: can't actually block waiting 1417 * for a reset to complete as the reset requires flushing out 1418 * this worker thread if started. So waiting would deadlock. 1419 */ 1420 ret = intel_gt_reset_trylock(gt, &srcu); 1421 if (ret) 1422 return; 1423 1424 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) 1425 __update_guc_busyness_stats(guc); 1426 1427 intel_gt_reset_unlock(gt, srcu); 1428 1429 guc_enable_busyness_worker(guc); 1430 } 1431 1432 static int guc_action_enable_usage_stats(struct intel_guc *guc) 1433 { 1434 u32 offset = intel_guc_engine_usage_offset(guc); 1435 u32 action[] = { 1436 INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF, 1437 offset, 1438 0, 1439 }; 1440 1441 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 1442 } 1443 1444 static int guc_init_engine_stats(struct intel_guc *guc) 1445 { 1446 struct intel_gt *gt = guc_to_gt(guc); 1447 intel_wakeref_t wakeref; 1448 int ret; 1449 1450 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) 1451 ret = guc_action_enable_usage_stats(guc); 1452 1453 if (ret) 1454 guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret)); 1455 else 1456 guc_enable_busyness_worker(guc); 1457 1458 return ret; 1459 } 1460 1461 static void guc_fini_engine_stats(struct intel_guc *guc) 1462 { 1463 guc_cancel_busyness_worker(guc); 1464 } 1465 1466 void intel_guc_busyness_park(struct intel_gt *gt) 1467 { 1468 struct intel_guc *guc = >->uc.guc; 1469 1470 if (!guc_submission_initialized(guc)) 1471 return; 1472 1473 /* 1474 * There is a race with suspend flow where the worker runs after suspend 1475 * and causes an unclaimed register access warning. Cancel the worker 1476 * synchronously here. 1477 */ 1478 guc_cancel_busyness_worker(guc); 1479 1480 /* 1481 * Before parking, we should sample engine busyness stats if we need to. 1482 * We can skip it if we are less than half a ping from the last time we 1483 * sampled the busyness stats. 1484 */ 1485 if (guc->timestamp.last_stat_jiffies && 1486 !time_after(jiffies, guc->timestamp.last_stat_jiffies + 1487 (guc->timestamp.ping_delay / 2))) 1488 return; 1489 1490 __update_guc_busyness_stats(guc); 1491 } 1492 1493 void intel_guc_busyness_unpark(struct intel_gt *gt) 1494 { 1495 struct intel_guc *guc = >->uc.guc; 1496 unsigned long flags; 1497 ktime_t unused; 1498 1499 if (!guc_submission_initialized(guc)) 1500 return; 1501 1502 spin_lock_irqsave(&guc->timestamp.lock, flags); 1503 guc_update_pm_timestamp(guc, &unused); 1504 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1505 guc_enable_busyness_worker(guc); 1506 } 1507 1508 static inline bool 1509 submission_disabled(struct intel_guc *guc) 1510 { 1511 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1512 1513 return unlikely(!sched_engine || 1514 !__tasklet_is_enabled(&sched_engine->tasklet) || 1515 intel_gt_is_wedged(guc_to_gt(guc))); 1516 } 1517 1518 static void disable_submission(struct intel_guc *guc) 1519 { 1520 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1521 1522 if (__tasklet_is_enabled(&sched_engine->tasklet)) { 1523 GEM_BUG_ON(!guc->ct.enabled); 1524 __tasklet_disable_sync_once(&sched_engine->tasklet); 1525 sched_engine->tasklet.callback = NULL; 1526 } 1527 } 1528 1529 static void enable_submission(struct intel_guc *guc) 1530 { 1531 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1532 unsigned long flags; 1533 1534 spin_lock_irqsave(&guc->sched_engine->lock, flags); 1535 sched_engine->tasklet.callback = guc_submission_tasklet; 1536 wmb(); /* Make sure callback visible */ 1537 if (!__tasklet_is_enabled(&sched_engine->tasklet) && 1538 __tasklet_enable(&sched_engine->tasklet)) { 1539 GEM_BUG_ON(!guc->ct.enabled); 1540 1541 /* And kick in case we missed a new request submission. */ 1542 tasklet_hi_schedule(&sched_engine->tasklet); 1543 } 1544 spin_unlock_irqrestore(&guc->sched_engine->lock, flags); 1545 } 1546 1547 static void guc_flush_submissions(struct intel_guc *guc) 1548 { 1549 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1550 unsigned long flags; 1551 1552 spin_lock_irqsave(&sched_engine->lock, flags); 1553 spin_unlock_irqrestore(&sched_engine->lock, flags); 1554 } 1555 1556 static void guc_flush_destroyed_contexts(struct intel_guc *guc); 1557 1558 void intel_guc_submission_reset_prepare(struct intel_guc *guc) 1559 { 1560 if (unlikely(!guc_submission_initialized(guc))) { 1561 /* Reset called during driver load? GuC not yet initialised! */ 1562 return; 1563 } 1564 1565 intel_gt_park_heartbeats(guc_to_gt(guc)); 1566 disable_submission(guc); 1567 guc->interrupts.disable(guc); 1568 __reset_guc_busyness_stats(guc); 1569 1570 /* Flush IRQ handler */ 1571 spin_lock_irq(guc_to_gt(guc)->irq_lock); 1572 spin_unlock_irq(guc_to_gt(guc)->irq_lock); 1573 1574 guc_flush_submissions(guc); 1575 guc_flush_destroyed_contexts(guc); 1576 flush_work(&guc->ct.requests.worker); 1577 1578 scrub_guc_desc_for_outstanding_g2h(guc); 1579 } 1580 1581 static struct intel_engine_cs * 1582 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling) 1583 { 1584 struct intel_engine_cs *engine; 1585 intel_engine_mask_t tmp, mask = ve->mask; 1586 unsigned int num_siblings = 0; 1587 1588 for_each_engine_masked(engine, ve->gt, mask, tmp) 1589 if (num_siblings++ == sibling) 1590 return engine; 1591 1592 return NULL; 1593 } 1594 1595 static inline struct intel_engine_cs * 1596 __context_to_physical_engine(struct intel_context *ce) 1597 { 1598 struct intel_engine_cs *engine = ce->engine; 1599 1600 if (intel_engine_is_virtual(engine)) 1601 engine = guc_virtual_get_sibling(engine, 0); 1602 1603 return engine; 1604 } 1605 1606 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub) 1607 { 1608 struct intel_engine_cs *engine = __context_to_physical_engine(ce); 1609 1610 if (!intel_context_is_schedulable(ce)) 1611 return; 1612 1613 GEM_BUG_ON(!intel_context_is_pinned(ce)); 1614 1615 /* 1616 * We want a simple context + ring to execute the breadcrumb update. 1617 * We cannot rely on the context being intact across the GPU hang, 1618 * so clear it and rebuild just what we need for the breadcrumb. 1619 * All pending requests for this context will be zapped, and any 1620 * future request will be after userspace has had the opportunity 1621 * to recreate its own state. 1622 */ 1623 if (scrub) 1624 lrc_init_regs(ce, engine, true); 1625 1626 /* Rerun the request; its payload has been neutered (if guilty). */ 1627 lrc_update_regs(ce, engine, head); 1628 } 1629 1630 static void guc_engine_reset_prepare(struct intel_engine_cs *engine) 1631 { 1632 if (!IS_GRAPHICS_VER(engine->i915, 11, 12)) 1633 return; 1634 1635 intel_engine_stop_cs(engine); 1636 1637 /* 1638 * Wa_22011802037: In addition to stopping the cs, we need 1639 * to wait for any pending mi force wakeups 1640 */ 1641 intel_engine_wait_for_pending_mi_fw(engine); 1642 } 1643 1644 static void guc_reset_nop(struct intel_engine_cs *engine) 1645 { 1646 } 1647 1648 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled) 1649 { 1650 } 1651 1652 static void 1653 __unwind_incomplete_requests(struct intel_context *ce) 1654 { 1655 struct i915_request *rq, *rn; 1656 struct list_head *pl; 1657 int prio = I915_PRIORITY_INVALID; 1658 struct i915_sched_engine * const sched_engine = 1659 ce->engine->sched_engine; 1660 unsigned long flags; 1661 1662 spin_lock_irqsave(&sched_engine->lock, flags); 1663 spin_lock(&ce->guc_state.lock); 1664 list_for_each_entry_safe_reverse(rq, rn, 1665 &ce->guc_state.requests, 1666 sched.link) { 1667 if (i915_request_completed(rq)) 1668 continue; 1669 1670 list_del_init(&rq->sched.link); 1671 __i915_request_unsubmit(rq); 1672 1673 /* Push the request back into the queue for later resubmission. */ 1674 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID); 1675 if (rq_prio(rq) != prio) { 1676 prio = rq_prio(rq); 1677 pl = i915_sched_lookup_priolist(sched_engine, prio); 1678 } 1679 GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine)); 1680 1681 list_add(&rq->sched.link, pl); 1682 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 1683 } 1684 spin_unlock(&ce->guc_state.lock); 1685 spin_unlock_irqrestore(&sched_engine->lock, flags); 1686 } 1687 1688 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled) 1689 { 1690 bool guilty; 1691 struct i915_request *rq; 1692 unsigned long flags; 1693 u32 head; 1694 int i, number_children = ce->parallel.number_children; 1695 struct intel_context *parent = ce; 1696 1697 GEM_BUG_ON(intel_context_is_child(ce)); 1698 1699 intel_context_get(ce); 1700 1701 /* 1702 * GuC will implicitly mark the context as non-schedulable when it sends 1703 * the reset notification. Make sure our state reflects this change. The 1704 * context will be marked enabled on resubmission. 1705 */ 1706 spin_lock_irqsave(&ce->guc_state.lock, flags); 1707 clr_context_enabled(ce); 1708 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 1709 1710 /* 1711 * For each context in the relationship find the hanging request 1712 * resetting each context / request as needed 1713 */ 1714 for (i = 0; i < number_children + 1; ++i) { 1715 if (!intel_context_is_pinned(ce)) 1716 goto next_context; 1717 1718 guilty = false; 1719 rq = intel_context_get_active_request(ce); 1720 if (!rq) { 1721 head = ce->ring->tail; 1722 goto out_replay; 1723 } 1724 1725 if (i915_request_started(rq)) 1726 guilty = stalled & ce->engine->mask; 1727 1728 GEM_BUG_ON(i915_active_is_idle(&ce->active)); 1729 head = intel_ring_wrap(ce->ring, rq->head); 1730 1731 __i915_request_reset(rq, guilty); 1732 i915_request_put(rq); 1733 out_replay: 1734 guc_reset_state(ce, head, guilty); 1735 next_context: 1736 if (i != number_children) 1737 ce = list_next_entry(ce, parallel.child_link); 1738 } 1739 1740 __unwind_incomplete_requests(parent); 1741 intel_context_put(parent); 1742 } 1743 1744 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled) 1745 { 1746 struct intel_context *ce; 1747 unsigned long index; 1748 unsigned long flags; 1749 1750 if (unlikely(!guc_submission_initialized(guc))) { 1751 /* Reset called during driver load? GuC not yet initialised! */ 1752 return; 1753 } 1754 1755 xa_lock_irqsave(&guc->context_lookup, flags); 1756 xa_for_each(&guc->context_lookup, index, ce) { 1757 if (!kref_get_unless_zero(&ce->ref)) 1758 continue; 1759 1760 xa_unlock(&guc->context_lookup); 1761 1762 if (intel_context_is_pinned(ce) && 1763 !intel_context_is_child(ce)) 1764 __guc_reset_context(ce, stalled); 1765 1766 intel_context_put(ce); 1767 1768 xa_lock(&guc->context_lookup); 1769 } 1770 xa_unlock_irqrestore(&guc->context_lookup, flags); 1771 1772 /* GuC is blown away, drop all references to contexts */ 1773 xa_destroy(&guc->context_lookup); 1774 } 1775 1776 static void guc_cancel_context_requests(struct intel_context *ce) 1777 { 1778 struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine; 1779 struct i915_request *rq; 1780 unsigned long flags; 1781 1782 /* Mark all executing requests as skipped. */ 1783 spin_lock_irqsave(&sched_engine->lock, flags); 1784 spin_lock(&ce->guc_state.lock); 1785 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) 1786 i915_request_put(i915_request_mark_eio(rq)); 1787 spin_unlock(&ce->guc_state.lock); 1788 spin_unlock_irqrestore(&sched_engine->lock, flags); 1789 } 1790 1791 static void 1792 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine) 1793 { 1794 struct i915_request *rq, *rn; 1795 struct rb_node *rb; 1796 unsigned long flags; 1797 1798 /* Can be called during boot if GuC fails to load */ 1799 if (!sched_engine) 1800 return; 1801 1802 /* 1803 * Before we call engine->cancel_requests(), we should have exclusive 1804 * access to the submission state. This is arranged for us by the 1805 * caller disabling the interrupt generation, the tasklet and other 1806 * threads that may then access the same state, giving us a free hand 1807 * to reset state. However, we still need to let lockdep be aware that 1808 * we know this state may be accessed in hardirq context, so we 1809 * disable the irq around this manipulation and we want to keep 1810 * the spinlock focused on its duties and not accidentally conflate 1811 * coverage to the submission's irq state. (Similarly, although we 1812 * shouldn't need to disable irq around the manipulation of the 1813 * submission's irq state, we also wish to remind ourselves that 1814 * it is irq state.) 1815 */ 1816 spin_lock_irqsave(&sched_engine->lock, flags); 1817 1818 /* Flush the queued requests to the timeline list (for retiring). */ 1819 while ((rb = rb_first_cached(&sched_engine->queue))) { 1820 struct i915_priolist *p = to_priolist(rb); 1821 1822 priolist_for_each_request_consume(rq, rn, p) { 1823 list_del_init(&rq->sched.link); 1824 1825 __i915_request_submit(rq); 1826 1827 i915_request_put(i915_request_mark_eio(rq)); 1828 } 1829 1830 rb_erase_cached(&p->node, &sched_engine->queue); 1831 i915_priolist_free(p); 1832 } 1833 1834 /* Remaining _unready_ requests will be nop'ed when submitted */ 1835 1836 sched_engine->queue_priority_hint = INT_MIN; 1837 sched_engine->queue = RB_ROOT_CACHED; 1838 1839 spin_unlock_irqrestore(&sched_engine->lock, flags); 1840 } 1841 1842 void intel_guc_submission_cancel_requests(struct intel_guc *guc) 1843 { 1844 struct intel_context *ce; 1845 unsigned long index; 1846 unsigned long flags; 1847 1848 xa_lock_irqsave(&guc->context_lookup, flags); 1849 xa_for_each(&guc->context_lookup, index, ce) { 1850 if (!kref_get_unless_zero(&ce->ref)) 1851 continue; 1852 1853 xa_unlock(&guc->context_lookup); 1854 1855 if (intel_context_is_pinned(ce) && 1856 !intel_context_is_child(ce)) 1857 guc_cancel_context_requests(ce); 1858 1859 intel_context_put(ce); 1860 1861 xa_lock(&guc->context_lookup); 1862 } 1863 xa_unlock_irqrestore(&guc->context_lookup, flags); 1864 1865 guc_cancel_sched_engine_requests(guc->sched_engine); 1866 1867 /* GuC is blown away, drop all references to contexts */ 1868 xa_destroy(&guc->context_lookup); 1869 } 1870 1871 void intel_guc_submission_reset_finish(struct intel_guc *guc) 1872 { 1873 /* Reset called during driver load or during wedge? */ 1874 if (unlikely(!guc_submission_initialized(guc) || 1875 intel_gt_is_wedged(guc_to_gt(guc)))) { 1876 return; 1877 } 1878 1879 /* 1880 * Technically possible for either of these values to be non-zero here, 1881 * but very unlikely + harmless. Regardless let's add a warn so we can 1882 * see in CI if this happens frequently / a precursor to taking down the 1883 * machine. 1884 */ 1885 GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h)); 1886 atomic_set(&guc->outstanding_submission_g2h, 0); 1887 1888 intel_guc_global_policies_update(guc); 1889 enable_submission(guc); 1890 intel_gt_unpark_heartbeats(guc_to_gt(guc)); 1891 } 1892 1893 static void destroyed_worker_func(struct work_struct *w); 1894 static void reset_fail_worker_func(struct work_struct *w); 1895 1896 /* 1897 * Set up the memory resources to be shared with the GuC (via the GGTT) 1898 * at firmware loading time. 1899 */ 1900 int intel_guc_submission_init(struct intel_guc *guc) 1901 { 1902 struct intel_gt *gt = guc_to_gt(guc); 1903 int ret; 1904 1905 if (guc->submission_initialized) 1906 return 0; 1907 1908 if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) { 1909 ret = guc_lrc_desc_pool_create_v69(guc); 1910 if (ret) 1911 return ret; 1912 } 1913 1914 guc->submission_state.guc_ids_bitmap = 1915 bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL); 1916 if (!guc->submission_state.guc_ids_bitmap) { 1917 ret = -ENOMEM; 1918 goto destroy_pool; 1919 } 1920 1921 guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ; 1922 guc->timestamp.shift = gpm_timestamp_shift(gt); 1923 guc->submission_initialized = true; 1924 1925 return 0; 1926 1927 destroy_pool: 1928 guc_lrc_desc_pool_destroy_v69(guc); 1929 1930 return ret; 1931 } 1932 1933 void intel_guc_submission_fini(struct intel_guc *guc) 1934 { 1935 if (!guc->submission_initialized) 1936 return; 1937 1938 guc_flush_destroyed_contexts(guc); 1939 guc_lrc_desc_pool_destroy_v69(guc); 1940 i915_sched_engine_put(guc->sched_engine); 1941 bitmap_free(guc->submission_state.guc_ids_bitmap); 1942 guc->submission_initialized = false; 1943 } 1944 1945 static inline void queue_request(struct i915_sched_engine *sched_engine, 1946 struct i915_request *rq, 1947 int prio) 1948 { 1949 GEM_BUG_ON(!list_empty(&rq->sched.link)); 1950 list_add_tail(&rq->sched.link, 1951 i915_sched_lookup_priolist(sched_engine, prio)); 1952 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 1953 tasklet_hi_schedule(&sched_engine->tasklet); 1954 } 1955 1956 static int guc_bypass_tasklet_submit(struct intel_guc *guc, 1957 struct i915_request *rq) 1958 { 1959 int ret = 0; 1960 1961 __i915_request_submit(rq); 1962 1963 trace_i915_request_in(rq, 0); 1964 1965 if (is_multi_lrc_rq(rq)) { 1966 if (multi_lrc_submit(rq)) { 1967 ret = guc_wq_item_append(guc, rq); 1968 if (!ret) 1969 ret = guc_add_request(guc, rq); 1970 } 1971 } else { 1972 guc_set_lrc_tail(rq); 1973 ret = guc_add_request(guc, rq); 1974 } 1975 1976 if (unlikely(ret == -EPIPE)) 1977 disable_submission(guc); 1978 1979 return ret; 1980 } 1981 1982 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq) 1983 { 1984 struct i915_sched_engine *sched_engine = rq->engine->sched_engine; 1985 struct intel_context *ce = request_to_scheduling_context(rq); 1986 1987 return submission_disabled(guc) || guc->stalled_request || 1988 !i915_sched_engine_is_empty(sched_engine) || 1989 !ctx_id_mapped(guc, ce->guc_id.id); 1990 } 1991 1992 static void guc_submit_request(struct i915_request *rq) 1993 { 1994 struct i915_sched_engine *sched_engine = rq->engine->sched_engine; 1995 struct intel_guc *guc = &rq->engine->gt->uc.guc; 1996 unsigned long flags; 1997 1998 /* Will be called from irq-context when using foreign fences. */ 1999 spin_lock_irqsave(&sched_engine->lock, flags); 2000 2001 if (need_tasklet(guc, rq)) 2002 queue_request(sched_engine, rq, rq_prio(rq)); 2003 else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY) 2004 tasklet_hi_schedule(&sched_engine->tasklet); 2005 2006 spin_unlock_irqrestore(&sched_engine->lock, flags); 2007 } 2008 2009 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce) 2010 { 2011 int ret; 2012 2013 GEM_BUG_ON(intel_context_is_child(ce)); 2014 2015 if (intel_context_is_parent(ce)) 2016 ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap, 2017 NUMBER_MULTI_LRC_GUC_ID(guc), 2018 order_base_2(ce->parallel.number_children 2019 + 1)); 2020 else 2021 ret = ida_simple_get(&guc->submission_state.guc_ids, 2022 NUMBER_MULTI_LRC_GUC_ID(guc), 2023 guc->submission_state.num_guc_ids, 2024 GFP_KERNEL | __GFP_RETRY_MAYFAIL | 2025 __GFP_NOWARN); 2026 if (unlikely(ret < 0)) 2027 return ret; 2028 2029 if (!intel_context_is_parent(ce)) 2030 ++guc->submission_state.guc_ids_in_use; 2031 2032 ce->guc_id.id = ret; 2033 return 0; 2034 } 2035 2036 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce) 2037 { 2038 GEM_BUG_ON(intel_context_is_child(ce)); 2039 2040 if (!context_guc_id_invalid(ce)) { 2041 if (intel_context_is_parent(ce)) { 2042 bitmap_release_region(guc->submission_state.guc_ids_bitmap, 2043 ce->guc_id.id, 2044 order_base_2(ce->parallel.number_children 2045 + 1)); 2046 } else { 2047 --guc->submission_state.guc_ids_in_use; 2048 ida_simple_remove(&guc->submission_state.guc_ids, 2049 ce->guc_id.id); 2050 } 2051 clr_ctx_id_mapping(guc, ce->guc_id.id); 2052 set_context_guc_id_invalid(ce); 2053 } 2054 if (!list_empty(&ce->guc_id.link)) 2055 list_del_init(&ce->guc_id.link); 2056 } 2057 2058 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce) 2059 { 2060 unsigned long flags; 2061 2062 spin_lock_irqsave(&guc->submission_state.lock, flags); 2063 __release_guc_id(guc, ce); 2064 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2065 } 2066 2067 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce) 2068 { 2069 struct intel_context *cn; 2070 2071 lockdep_assert_held(&guc->submission_state.lock); 2072 GEM_BUG_ON(intel_context_is_child(ce)); 2073 GEM_BUG_ON(intel_context_is_parent(ce)); 2074 2075 if (!list_empty(&guc->submission_state.guc_id_list)) { 2076 cn = list_first_entry(&guc->submission_state.guc_id_list, 2077 struct intel_context, 2078 guc_id.link); 2079 2080 GEM_BUG_ON(atomic_read(&cn->guc_id.ref)); 2081 GEM_BUG_ON(context_guc_id_invalid(cn)); 2082 GEM_BUG_ON(intel_context_is_child(cn)); 2083 GEM_BUG_ON(intel_context_is_parent(cn)); 2084 2085 list_del_init(&cn->guc_id.link); 2086 ce->guc_id.id = cn->guc_id.id; 2087 2088 spin_lock(&cn->guc_state.lock); 2089 clr_context_registered(cn); 2090 spin_unlock(&cn->guc_state.lock); 2091 2092 set_context_guc_id_invalid(cn); 2093 2094 #ifdef CONFIG_DRM_I915_SELFTEST 2095 guc->number_guc_id_stolen++; 2096 #endif 2097 2098 return 0; 2099 } else { 2100 return -EAGAIN; 2101 } 2102 } 2103 2104 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce) 2105 { 2106 int ret; 2107 2108 lockdep_assert_held(&guc->submission_state.lock); 2109 GEM_BUG_ON(intel_context_is_child(ce)); 2110 2111 ret = new_guc_id(guc, ce); 2112 if (unlikely(ret < 0)) { 2113 if (intel_context_is_parent(ce)) 2114 return -ENOSPC; 2115 2116 ret = steal_guc_id(guc, ce); 2117 if (ret < 0) 2118 return ret; 2119 } 2120 2121 if (intel_context_is_parent(ce)) { 2122 struct intel_context *child; 2123 int i = 1; 2124 2125 for_each_child(ce, child) 2126 child->guc_id.id = ce->guc_id.id + i++; 2127 } 2128 2129 return 0; 2130 } 2131 2132 #define PIN_GUC_ID_TRIES 4 2133 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce) 2134 { 2135 int ret = 0; 2136 unsigned long flags, tries = PIN_GUC_ID_TRIES; 2137 2138 GEM_BUG_ON(atomic_read(&ce->guc_id.ref)); 2139 2140 try_again: 2141 spin_lock_irqsave(&guc->submission_state.lock, flags); 2142 2143 might_lock(&ce->guc_state.lock); 2144 2145 if (context_guc_id_invalid(ce)) { 2146 ret = assign_guc_id(guc, ce); 2147 if (ret) 2148 goto out_unlock; 2149 ret = 1; /* Indidcates newly assigned guc_id */ 2150 } 2151 if (!list_empty(&ce->guc_id.link)) 2152 list_del_init(&ce->guc_id.link); 2153 atomic_inc(&ce->guc_id.ref); 2154 2155 out_unlock: 2156 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2157 2158 /* 2159 * -EAGAIN indicates no guc_id are available, let's retire any 2160 * outstanding requests to see if that frees up a guc_id. If the first 2161 * retire didn't help, insert a sleep with the timeslice duration before 2162 * attempting to retire more requests. Double the sleep period each 2163 * subsequent pass before finally giving up. The sleep period has max of 2164 * 100ms and minimum of 1ms. 2165 */ 2166 if (ret == -EAGAIN && --tries) { 2167 if (PIN_GUC_ID_TRIES - tries > 1) { 2168 unsigned int timeslice_shifted = 2169 ce->engine->props.timeslice_duration_ms << 2170 (PIN_GUC_ID_TRIES - tries - 2); 2171 unsigned int max = min_t(unsigned int, 100, 2172 timeslice_shifted); 2173 2174 msleep(max_t(unsigned int, max, 1)); 2175 } 2176 intel_gt_retire_requests(guc_to_gt(guc)); 2177 goto try_again; 2178 } 2179 2180 return ret; 2181 } 2182 2183 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce) 2184 { 2185 unsigned long flags; 2186 2187 GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0); 2188 GEM_BUG_ON(intel_context_is_child(ce)); 2189 2190 if (unlikely(context_guc_id_invalid(ce) || 2191 intel_context_is_parent(ce))) 2192 return; 2193 2194 spin_lock_irqsave(&guc->submission_state.lock, flags); 2195 if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) && 2196 !atomic_read(&ce->guc_id.ref)) 2197 list_add_tail(&ce->guc_id.link, 2198 &guc->submission_state.guc_id_list); 2199 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2200 } 2201 2202 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc, 2203 struct intel_context *ce, 2204 u32 guc_id, 2205 u32 offset, 2206 bool loop) 2207 { 2208 struct intel_context *child; 2209 u32 action[4 + MAX_ENGINE_INSTANCE]; 2210 int len = 0; 2211 2212 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); 2213 2214 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 2215 action[len++] = guc_id; 2216 action[len++] = ce->parallel.number_children + 1; 2217 action[len++] = offset; 2218 for_each_child(ce, child) { 2219 offset += sizeof(struct guc_lrc_desc_v69); 2220 action[len++] = offset; 2221 } 2222 2223 return guc_submission_send_busy_loop(guc, action, len, 0, loop); 2224 } 2225 2226 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc, 2227 struct intel_context *ce, 2228 struct guc_ctxt_registration_info *info, 2229 bool loop) 2230 { 2231 struct intel_context *child; 2232 u32 action[13 + (MAX_ENGINE_INSTANCE * 2)]; 2233 int len = 0; 2234 u32 next_id; 2235 2236 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); 2237 2238 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 2239 action[len++] = info->flags; 2240 action[len++] = info->context_idx; 2241 action[len++] = info->engine_class; 2242 action[len++] = info->engine_submit_mask; 2243 action[len++] = info->wq_desc_lo; 2244 action[len++] = info->wq_desc_hi; 2245 action[len++] = info->wq_base_lo; 2246 action[len++] = info->wq_base_hi; 2247 action[len++] = info->wq_size; 2248 action[len++] = ce->parallel.number_children + 1; 2249 action[len++] = info->hwlrca_lo; 2250 action[len++] = info->hwlrca_hi; 2251 2252 next_id = info->context_idx + 1; 2253 for_each_child(ce, child) { 2254 GEM_BUG_ON(next_id++ != child->guc_id.id); 2255 2256 /* 2257 * NB: GuC interface supports 64 bit LRCA even though i915/HW 2258 * only supports 32 bit currently. 2259 */ 2260 action[len++] = lower_32_bits(child->lrc.lrca); 2261 action[len++] = upper_32_bits(child->lrc.lrca); 2262 } 2263 2264 GEM_BUG_ON(len > ARRAY_SIZE(action)); 2265 2266 return guc_submission_send_busy_loop(guc, action, len, 0, loop); 2267 } 2268 2269 static int __guc_action_register_context_v69(struct intel_guc *guc, 2270 u32 guc_id, 2271 u32 offset, 2272 bool loop) 2273 { 2274 u32 action[] = { 2275 INTEL_GUC_ACTION_REGISTER_CONTEXT, 2276 guc_id, 2277 offset, 2278 }; 2279 2280 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2281 0, loop); 2282 } 2283 2284 static int __guc_action_register_context_v70(struct intel_guc *guc, 2285 struct guc_ctxt_registration_info *info, 2286 bool loop) 2287 { 2288 u32 action[] = { 2289 INTEL_GUC_ACTION_REGISTER_CONTEXT, 2290 info->flags, 2291 info->context_idx, 2292 info->engine_class, 2293 info->engine_submit_mask, 2294 info->wq_desc_lo, 2295 info->wq_desc_hi, 2296 info->wq_base_lo, 2297 info->wq_base_hi, 2298 info->wq_size, 2299 info->hwlrca_lo, 2300 info->hwlrca_hi, 2301 }; 2302 2303 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2304 0, loop); 2305 } 2306 2307 static void prepare_context_registration_info_v69(struct intel_context *ce); 2308 static void prepare_context_registration_info_v70(struct intel_context *ce, 2309 struct guc_ctxt_registration_info *info); 2310 2311 static int 2312 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop) 2313 { 2314 u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) + 2315 ce->guc_id.id * sizeof(struct guc_lrc_desc_v69); 2316 2317 prepare_context_registration_info_v69(ce); 2318 2319 if (intel_context_is_parent(ce)) 2320 return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id, 2321 offset, loop); 2322 else 2323 return __guc_action_register_context_v69(guc, ce->guc_id.id, 2324 offset, loop); 2325 } 2326 2327 static int 2328 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop) 2329 { 2330 struct guc_ctxt_registration_info info; 2331 2332 prepare_context_registration_info_v70(ce, &info); 2333 2334 if (intel_context_is_parent(ce)) 2335 return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop); 2336 else 2337 return __guc_action_register_context_v70(guc, &info, loop); 2338 } 2339 2340 static int register_context(struct intel_context *ce, bool loop) 2341 { 2342 struct intel_guc *guc = ce_to_guc(ce); 2343 int ret; 2344 2345 GEM_BUG_ON(intel_context_is_child(ce)); 2346 trace_intel_context_register(ce); 2347 2348 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) 2349 ret = register_context_v70(guc, ce, loop); 2350 else 2351 ret = register_context_v69(guc, ce, loop); 2352 2353 if (likely(!ret)) { 2354 unsigned long flags; 2355 2356 spin_lock_irqsave(&ce->guc_state.lock, flags); 2357 set_context_registered(ce); 2358 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2359 2360 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) 2361 guc_context_policy_init_v70(ce, loop); 2362 } 2363 2364 return ret; 2365 } 2366 2367 static int __guc_action_deregister_context(struct intel_guc *guc, 2368 u32 guc_id) 2369 { 2370 u32 action[] = { 2371 INTEL_GUC_ACTION_DEREGISTER_CONTEXT, 2372 guc_id, 2373 }; 2374 2375 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2376 G2H_LEN_DW_DEREGISTER_CONTEXT, 2377 true); 2378 } 2379 2380 static int deregister_context(struct intel_context *ce, u32 guc_id) 2381 { 2382 struct intel_guc *guc = ce_to_guc(ce); 2383 2384 GEM_BUG_ON(intel_context_is_child(ce)); 2385 trace_intel_context_deregister(ce); 2386 2387 return __guc_action_deregister_context(guc, guc_id); 2388 } 2389 2390 static inline void clear_children_join_go_memory(struct intel_context *ce) 2391 { 2392 struct parent_scratch *ps = __get_parent_scratch(ce); 2393 int i; 2394 2395 ps->go.semaphore = 0; 2396 for (i = 0; i < ce->parallel.number_children + 1; ++i) 2397 ps->join[i].semaphore = 0; 2398 } 2399 2400 static inline u32 get_children_go_value(struct intel_context *ce) 2401 { 2402 return __get_parent_scratch(ce)->go.semaphore; 2403 } 2404 2405 static inline u32 get_children_join_value(struct intel_context *ce, 2406 u8 child_index) 2407 { 2408 return __get_parent_scratch(ce)->join[child_index].semaphore; 2409 } 2410 2411 struct context_policy { 2412 u32 count; 2413 struct guc_update_context_policy h2g; 2414 }; 2415 2416 static u32 __guc_context_policy_action_size(struct context_policy *policy) 2417 { 2418 size_t bytes = sizeof(policy->h2g.header) + 2419 (sizeof(policy->h2g.klv[0]) * policy->count); 2420 2421 return bytes / sizeof(u32); 2422 } 2423 2424 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id) 2425 { 2426 policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES; 2427 policy->h2g.header.ctx_id = guc_id; 2428 policy->count = 0; 2429 } 2430 2431 #define MAKE_CONTEXT_POLICY_ADD(func, id) \ 2432 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \ 2433 { \ 2434 GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \ 2435 policy->h2g.klv[policy->count].kl = \ 2436 FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \ 2437 FIELD_PREP(GUC_KLV_0_LEN, 1); \ 2438 policy->h2g.klv[policy->count].value = data; \ 2439 policy->count++; \ 2440 } 2441 2442 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM) 2443 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT) 2444 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY) 2445 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY) 2446 2447 #undef MAKE_CONTEXT_POLICY_ADD 2448 2449 static int __guc_context_set_context_policies(struct intel_guc *guc, 2450 struct context_policy *policy, 2451 bool loop) 2452 { 2453 return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g, 2454 __guc_context_policy_action_size(policy), 2455 0, loop); 2456 } 2457 2458 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop) 2459 { 2460 struct intel_engine_cs *engine = ce->engine; 2461 struct intel_guc *guc = &engine->gt->uc.guc; 2462 struct context_policy policy; 2463 u32 execution_quantum; 2464 u32 preemption_timeout; 2465 unsigned long flags; 2466 int ret; 2467 2468 /* NB: For both of these, zero means disabled. */ 2469 GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000, 2470 execution_quantum)); 2471 GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000, 2472 preemption_timeout)); 2473 execution_quantum = engine->props.timeslice_duration_ms * 1000; 2474 preemption_timeout = engine->props.preempt_timeout_ms * 1000; 2475 2476 __guc_context_policy_start_klv(&policy, ce->guc_id.id); 2477 2478 __guc_context_policy_add_priority(&policy, ce->guc_state.prio); 2479 __guc_context_policy_add_execution_quantum(&policy, execution_quantum); 2480 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); 2481 2482 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) 2483 __guc_context_policy_add_preempt_to_idle(&policy, 1); 2484 2485 ret = __guc_context_set_context_policies(guc, &policy, loop); 2486 2487 spin_lock_irqsave(&ce->guc_state.lock, flags); 2488 if (ret != 0) 2489 set_context_policy_required(ce); 2490 else 2491 clr_context_policy_required(ce); 2492 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2493 2494 return ret; 2495 } 2496 2497 static void guc_context_policy_init_v69(struct intel_engine_cs *engine, 2498 struct guc_lrc_desc_v69 *desc) 2499 { 2500 desc->policy_flags = 0; 2501 2502 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) 2503 desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69; 2504 2505 /* NB: For both of these, zero means disabled. */ 2506 GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000, 2507 desc->execution_quantum)); 2508 GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000, 2509 desc->preemption_timeout)); 2510 desc->execution_quantum = engine->props.timeslice_duration_ms * 1000; 2511 desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000; 2512 } 2513 2514 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio) 2515 { 2516 /* 2517 * this matches the mapping we do in map_i915_prio_to_guc_prio() 2518 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL) 2519 */ 2520 switch (prio) { 2521 default: 2522 MISSING_CASE(prio); 2523 fallthrough; 2524 case GUC_CLIENT_PRIORITY_KMD_NORMAL: 2525 return GEN12_CTX_PRIORITY_NORMAL; 2526 case GUC_CLIENT_PRIORITY_NORMAL: 2527 return GEN12_CTX_PRIORITY_LOW; 2528 case GUC_CLIENT_PRIORITY_HIGH: 2529 case GUC_CLIENT_PRIORITY_KMD_HIGH: 2530 return GEN12_CTX_PRIORITY_HIGH; 2531 } 2532 } 2533 2534 static void prepare_context_registration_info_v69(struct intel_context *ce) 2535 { 2536 struct intel_engine_cs *engine = ce->engine; 2537 struct intel_guc *guc = &engine->gt->uc.guc; 2538 u32 ctx_id = ce->guc_id.id; 2539 struct guc_lrc_desc_v69 *desc; 2540 struct intel_context *child; 2541 2542 GEM_BUG_ON(!engine->mask); 2543 2544 /* 2545 * Ensure LRC + CT vmas are is same region as write barrier is done 2546 * based on CT vma region. 2547 */ 2548 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != 2549 i915_gem_object_is_lmem(ce->ring->vma->obj)); 2550 2551 desc = __get_lrc_desc_v69(guc, ctx_id); 2552 GEM_BUG_ON(!desc); 2553 desc->engine_class = engine_class_to_guc_class(engine->class); 2554 desc->engine_submit_mask = engine->logical_mask; 2555 desc->hw_context_desc = ce->lrc.lrca; 2556 desc->priority = ce->guc_state.prio; 2557 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; 2558 guc_context_policy_init_v69(engine, desc); 2559 2560 /* 2561 * If context is a parent, we need to register a process descriptor 2562 * describing a work queue and register all child contexts. 2563 */ 2564 if (intel_context_is_parent(ce)) { 2565 struct guc_process_desc_v69 *pdesc; 2566 2567 ce->parallel.guc.wqi_tail = 0; 2568 ce->parallel.guc.wqi_head = 0; 2569 2570 desc->process_desc = i915_ggtt_offset(ce->state) + 2571 __get_parent_scratch_offset(ce); 2572 desc->wq_addr = i915_ggtt_offset(ce->state) + 2573 __get_wq_offset(ce); 2574 desc->wq_size = WQ_SIZE; 2575 2576 pdesc = __get_process_desc_v69(ce); 2577 memset(pdesc, 0, sizeof(*(pdesc))); 2578 pdesc->stage_id = ce->guc_id.id; 2579 pdesc->wq_base_addr = desc->wq_addr; 2580 pdesc->wq_size_bytes = desc->wq_size; 2581 pdesc->wq_status = WQ_STATUS_ACTIVE; 2582 2583 ce->parallel.guc.wq_head = &pdesc->head; 2584 ce->parallel.guc.wq_tail = &pdesc->tail; 2585 ce->parallel.guc.wq_status = &pdesc->wq_status; 2586 2587 for_each_child(ce, child) { 2588 desc = __get_lrc_desc_v69(guc, child->guc_id.id); 2589 2590 desc->engine_class = 2591 engine_class_to_guc_class(engine->class); 2592 desc->hw_context_desc = child->lrc.lrca; 2593 desc->priority = ce->guc_state.prio; 2594 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; 2595 guc_context_policy_init_v69(engine, desc); 2596 } 2597 2598 clear_children_join_go_memory(ce); 2599 } 2600 } 2601 2602 static void prepare_context_registration_info_v70(struct intel_context *ce, 2603 struct guc_ctxt_registration_info *info) 2604 { 2605 struct intel_engine_cs *engine = ce->engine; 2606 struct intel_guc *guc = &engine->gt->uc.guc; 2607 u32 ctx_id = ce->guc_id.id; 2608 2609 GEM_BUG_ON(!engine->mask); 2610 2611 /* 2612 * Ensure LRC + CT vmas are is same region as write barrier is done 2613 * based on CT vma region. 2614 */ 2615 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != 2616 i915_gem_object_is_lmem(ce->ring->vma->obj)); 2617 2618 memset(info, 0, sizeof(*info)); 2619 info->context_idx = ctx_id; 2620 info->engine_class = engine_class_to_guc_class(engine->class); 2621 info->engine_submit_mask = engine->logical_mask; 2622 /* 2623 * NB: GuC interface supports 64 bit LRCA even though i915/HW 2624 * only supports 32 bit currently. 2625 */ 2626 info->hwlrca_lo = lower_32_bits(ce->lrc.lrca); 2627 info->hwlrca_hi = upper_32_bits(ce->lrc.lrca); 2628 if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY) 2629 info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio); 2630 info->flags = CONTEXT_REGISTRATION_FLAG_KMD; 2631 2632 /* 2633 * If context is a parent, we need to register a process descriptor 2634 * describing a work queue and register all child contexts. 2635 */ 2636 if (intel_context_is_parent(ce)) { 2637 struct guc_sched_wq_desc *wq_desc; 2638 u64 wq_desc_offset, wq_base_offset; 2639 2640 ce->parallel.guc.wqi_tail = 0; 2641 ce->parallel.guc.wqi_head = 0; 2642 2643 wq_desc_offset = i915_ggtt_offset(ce->state) + 2644 __get_parent_scratch_offset(ce); 2645 wq_base_offset = i915_ggtt_offset(ce->state) + 2646 __get_wq_offset(ce); 2647 info->wq_desc_lo = lower_32_bits(wq_desc_offset); 2648 info->wq_desc_hi = upper_32_bits(wq_desc_offset); 2649 info->wq_base_lo = lower_32_bits(wq_base_offset); 2650 info->wq_base_hi = upper_32_bits(wq_base_offset); 2651 info->wq_size = WQ_SIZE; 2652 2653 wq_desc = __get_wq_desc_v70(ce); 2654 memset(wq_desc, 0, sizeof(*wq_desc)); 2655 wq_desc->wq_status = WQ_STATUS_ACTIVE; 2656 2657 ce->parallel.guc.wq_head = &wq_desc->head; 2658 ce->parallel.guc.wq_tail = &wq_desc->tail; 2659 ce->parallel.guc.wq_status = &wq_desc->wq_status; 2660 2661 clear_children_join_go_memory(ce); 2662 } 2663 } 2664 2665 static int try_context_registration(struct intel_context *ce, bool loop) 2666 { 2667 struct intel_engine_cs *engine = ce->engine; 2668 struct intel_runtime_pm *runtime_pm = engine->uncore->rpm; 2669 struct intel_guc *guc = &engine->gt->uc.guc; 2670 intel_wakeref_t wakeref; 2671 u32 ctx_id = ce->guc_id.id; 2672 bool context_registered; 2673 int ret = 0; 2674 2675 GEM_BUG_ON(!sched_state_is_init(ce)); 2676 2677 context_registered = ctx_id_mapped(guc, ctx_id); 2678 2679 clr_ctx_id_mapping(guc, ctx_id); 2680 set_ctx_id_mapping(guc, ctx_id, ce); 2681 2682 /* 2683 * The context_lookup xarray is used to determine if the hardware 2684 * context is currently registered. There are two cases in which it 2685 * could be registered either the guc_id has been stolen from another 2686 * context or the lrc descriptor address of this context has changed. In 2687 * either case the context needs to be deregistered with the GuC before 2688 * registering this context. 2689 */ 2690 if (context_registered) { 2691 bool disabled; 2692 unsigned long flags; 2693 2694 trace_intel_context_steal_guc_id(ce); 2695 GEM_BUG_ON(!loop); 2696 2697 /* Seal race with Reset */ 2698 spin_lock_irqsave(&ce->guc_state.lock, flags); 2699 disabled = submission_disabled(guc); 2700 if (likely(!disabled)) { 2701 set_context_wait_for_deregister_to_register(ce); 2702 intel_context_get(ce); 2703 } 2704 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2705 if (unlikely(disabled)) { 2706 clr_ctx_id_mapping(guc, ctx_id); 2707 return 0; /* Will get registered later */ 2708 } 2709 2710 /* 2711 * If stealing the guc_id, this ce has the same guc_id as the 2712 * context whose guc_id was stolen. 2713 */ 2714 with_intel_runtime_pm(runtime_pm, wakeref) 2715 ret = deregister_context(ce, ce->guc_id.id); 2716 if (unlikely(ret == -ENODEV)) 2717 ret = 0; /* Will get registered later */ 2718 } else { 2719 with_intel_runtime_pm(runtime_pm, wakeref) 2720 ret = register_context(ce, loop); 2721 if (unlikely(ret == -EBUSY)) { 2722 clr_ctx_id_mapping(guc, ctx_id); 2723 } else if (unlikely(ret == -ENODEV)) { 2724 clr_ctx_id_mapping(guc, ctx_id); 2725 ret = 0; /* Will get registered later */ 2726 } 2727 } 2728 2729 return ret; 2730 } 2731 2732 static int __guc_context_pre_pin(struct intel_context *ce, 2733 struct intel_engine_cs *engine, 2734 struct i915_gem_ww_ctx *ww, 2735 void **vaddr) 2736 { 2737 return lrc_pre_pin(ce, engine, ww, vaddr); 2738 } 2739 2740 static int __guc_context_pin(struct intel_context *ce, 2741 struct intel_engine_cs *engine, 2742 void *vaddr) 2743 { 2744 if (i915_ggtt_offset(ce->state) != 2745 (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK)) 2746 set_bit(CONTEXT_LRCA_DIRTY, &ce->flags); 2747 2748 /* 2749 * GuC context gets pinned in guc_request_alloc. See that function for 2750 * explaination of why. 2751 */ 2752 2753 return lrc_pin(ce, engine, vaddr); 2754 } 2755 2756 static int guc_context_pre_pin(struct intel_context *ce, 2757 struct i915_gem_ww_ctx *ww, 2758 void **vaddr) 2759 { 2760 return __guc_context_pre_pin(ce, ce->engine, ww, vaddr); 2761 } 2762 2763 static int guc_context_pin(struct intel_context *ce, void *vaddr) 2764 { 2765 int ret = __guc_context_pin(ce, ce->engine, vaddr); 2766 2767 if (likely(!ret && !intel_context_is_barrier(ce))) 2768 intel_engine_pm_get(ce->engine); 2769 2770 return ret; 2771 } 2772 2773 static void guc_context_unpin(struct intel_context *ce) 2774 { 2775 struct intel_guc *guc = ce_to_guc(ce); 2776 2777 unpin_guc_id(guc, ce); 2778 lrc_unpin(ce); 2779 2780 if (likely(!intel_context_is_barrier(ce))) 2781 intel_engine_pm_put_async(ce->engine); 2782 } 2783 2784 static void guc_context_post_unpin(struct intel_context *ce) 2785 { 2786 lrc_post_unpin(ce); 2787 } 2788 2789 static void __guc_context_sched_enable(struct intel_guc *guc, 2790 struct intel_context *ce) 2791 { 2792 u32 action[] = { 2793 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, 2794 ce->guc_id.id, 2795 GUC_CONTEXT_ENABLE 2796 }; 2797 2798 trace_intel_context_sched_enable(ce); 2799 2800 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2801 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); 2802 } 2803 2804 static void __guc_context_sched_disable(struct intel_guc *guc, 2805 struct intel_context *ce, 2806 u16 guc_id) 2807 { 2808 u32 action[] = { 2809 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, 2810 guc_id, /* ce->guc_id.id not stable */ 2811 GUC_CONTEXT_DISABLE 2812 }; 2813 2814 GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID); 2815 2816 GEM_BUG_ON(intel_context_is_child(ce)); 2817 trace_intel_context_sched_disable(ce); 2818 2819 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2820 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); 2821 } 2822 2823 static void guc_blocked_fence_complete(struct intel_context *ce) 2824 { 2825 lockdep_assert_held(&ce->guc_state.lock); 2826 2827 if (!i915_sw_fence_done(&ce->guc_state.blocked)) 2828 i915_sw_fence_complete(&ce->guc_state.blocked); 2829 } 2830 2831 static void guc_blocked_fence_reinit(struct intel_context *ce) 2832 { 2833 lockdep_assert_held(&ce->guc_state.lock); 2834 GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked)); 2835 2836 /* 2837 * This fence is always complete unless a pending schedule disable is 2838 * outstanding. We arm the fence here and complete it when we receive 2839 * the pending schedule disable complete message. 2840 */ 2841 i915_sw_fence_fini(&ce->guc_state.blocked); 2842 i915_sw_fence_reinit(&ce->guc_state.blocked); 2843 i915_sw_fence_await(&ce->guc_state.blocked); 2844 i915_sw_fence_commit(&ce->guc_state.blocked); 2845 } 2846 2847 static u16 prep_context_pending_disable(struct intel_context *ce) 2848 { 2849 lockdep_assert_held(&ce->guc_state.lock); 2850 2851 set_context_pending_disable(ce); 2852 clr_context_enabled(ce); 2853 guc_blocked_fence_reinit(ce); 2854 intel_context_get(ce); 2855 2856 return ce->guc_id.id; 2857 } 2858 2859 static struct i915_sw_fence *guc_context_block(struct intel_context *ce) 2860 { 2861 struct intel_guc *guc = ce_to_guc(ce); 2862 unsigned long flags; 2863 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; 2864 intel_wakeref_t wakeref; 2865 u16 guc_id; 2866 bool enabled; 2867 2868 GEM_BUG_ON(intel_context_is_child(ce)); 2869 2870 spin_lock_irqsave(&ce->guc_state.lock, flags); 2871 2872 incr_context_blocked(ce); 2873 2874 enabled = context_enabled(ce); 2875 if (unlikely(!enabled || submission_disabled(guc))) { 2876 if (enabled) 2877 clr_context_enabled(ce); 2878 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2879 return &ce->guc_state.blocked; 2880 } 2881 2882 /* 2883 * We add +2 here as the schedule disable complete CTB handler calls 2884 * intel_context_sched_disable_unpin (-2 to pin_count). 2885 */ 2886 atomic_add(2, &ce->pin_count); 2887 2888 guc_id = prep_context_pending_disable(ce); 2889 2890 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2891 2892 with_intel_runtime_pm(runtime_pm, wakeref) 2893 __guc_context_sched_disable(guc, ce, guc_id); 2894 2895 return &ce->guc_state.blocked; 2896 } 2897 2898 #define SCHED_STATE_MULTI_BLOCKED_MASK \ 2899 (SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED) 2900 #define SCHED_STATE_NO_UNBLOCK \ 2901 (SCHED_STATE_MULTI_BLOCKED_MASK | \ 2902 SCHED_STATE_PENDING_DISABLE | \ 2903 SCHED_STATE_BANNED) 2904 2905 static bool context_cant_unblock(struct intel_context *ce) 2906 { 2907 lockdep_assert_held(&ce->guc_state.lock); 2908 2909 return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) || 2910 context_guc_id_invalid(ce) || 2911 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) || 2912 !intel_context_is_pinned(ce); 2913 } 2914 2915 static void guc_context_unblock(struct intel_context *ce) 2916 { 2917 struct intel_guc *guc = ce_to_guc(ce); 2918 unsigned long flags; 2919 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; 2920 intel_wakeref_t wakeref; 2921 bool enable; 2922 2923 GEM_BUG_ON(context_enabled(ce)); 2924 GEM_BUG_ON(intel_context_is_child(ce)); 2925 2926 spin_lock_irqsave(&ce->guc_state.lock, flags); 2927 2928 if (unlikely(submission_disabled(guc) || 2929 context_cant_unblock(ce))) { 2930 enable = false; 2931 } else { 2932 enable = true; 2933 set_context_pending_enable(ce); 2934 set_context_enabled(ce); 2935 intel_context_get(ce); 2936 } 2937 2938 decr_context_blocked(ce); 2939 2940 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2941 2942 if (enable) { 2943 with_intel_runtime_pm(runtime_pm, wakeref) 2944 __guc_context_sched_enable(guc, ce); 2945 } 2946 } 2947 2948 static void guc_context_cancel_request(struct intel_context *ce, 2949 struct i915_request *rq) 2950 { 2951 struct intel_context *block_context = 2952 request_to_scheduling_context(rq); 2953 2954 if (i915_sw_fence_signaled(&rq->submit)) { 2955 struct i915_sw_fence *fence; 2956 2957 intel_context_get(ce); 2958 fence = guc_context_block(block_context); 2959 i915_sw_fence_wait(fence); 2960 if (!i915_request_completed(rq)) { 2961 __i915_request_skip(rq); 2962 guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head), 2963 true); 2964 } 2965 2966 guc_context_unblock(block_context); 2967 intel_context_put(ce); 2968 } 2969 } 2970 2971 static void __guc_context_set_preemption_timeout(struct intel_guc *guc, 2972 u16 guc_id, 2973 u32 preemption_timeout) 2974 { 2975 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) { 2976 struct context_policy policy; 2977 2978 __guc_context_policy_start_klv(&policy, guc_id); 2979 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); 2980 __guc_context_set_context_policies(guc, &policy, true); 2981 } else { 2982 u32 action[] = { 2983 INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT, 2984 guc_id, 2985 preemption_timeout 2986 }; 2987 2988 intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); 2989 } 2990 } 2991 2992 static void 2993 guc_context_revoke(struct intel_context *ce, struct i915_request *rq, 2994 unsigned int preempt_timeout_ms) 2995 { 2996 struct intel_guc *guc = ce_to_guc(ce); 2997 struct intel_runtime_pm *runtime_pm = 2998 &ce->engine->gt->i915->runtime_pm; 2999 intel_wakeref_t wakeref; 3000 unsigned long flags; 3001 3002 GEM_BUG_ON(intel_context_is_child(ce)); 3003 3004 guc_flush_submissions(guc); 3005 3006 spin_lock_irqsave(&ce->guc_state.lock, flags); 3007 set_context_banned(ce); 3008 3009 if (submission_disabled(guc) || 3010 (!context_enabled(ce) && !context_pending_disable(ce))) { 3011 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3012 3013 guc_cancel_context_requests(ce); 3014 intel_engine_signal_breadcrumbs(ce->engine); 3015 } else if (!context_pending_disable(ce)) { 3016 u16 guc_id; 3017 3018 /* 3019 * We add +2 here as the schedule disable complete CTB handler 3020 * calls intel_context_sched_disable_unpin (-2 to pin_count). 3021 */ 3022 atomic_add(2, &ce->pin_count); 3023 3024 guc_id = prep_context_pending_disable(ce); 3025 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3026 3027 /* 3028 * In addition to disabling scheduling, set the preemption 3029 * timeout to the minimum value (1 us) so the banned context 3030 * gets kicked off the HW ASAP. 3031 */ 3032 with_intel_runtime_pm(runtime_pm, wakeref) { 3033 __guc_context_set_preemption_timeout(guc, guc_id, 3034 preempt_timeout_ms); 3035 __guc_context_sched_disable(guc, ce, guc_id); 3036 } 3037 } else { 3038 if (!context_guc_id_invalid(ce)) 3039 with_intel_runtime_pm(runtime_pm, wakeref) 3040 __guc_context_set_preemption_timeout(guc, 3041 ce->guc_id.id, 3042 preempt_timeout_ms); 3043 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3044 } 3045 } 3046 3047 static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce, 3048 unsigned long flags) 3049 __releases(ce->guc_state.lock) 3050 { 3051 struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm; 3052 intel_wakeref_t wakeref; 3053 u16 guc_id; 3054 3055 lockdep_assert_held(&ce->guc_state.lock); 3056 guc_id = prep_context_pending_disable(ce); 3057 3058 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3059 3060 with_intel_runtime_pm(runtime_pm, wakeref) 3061 __guc_context_sched_disable(guc, ce, guc_id); 3062 } 3063 3064 static bool bypass_sched_disable(struct intel_guc *guc, 3065 struct intel_context *ce) 3066 { 3067 lockdep_assert_held(&ce->guc_state.lock); 3068 GEM_BUG_ON(intel_context_is_child(ce)); 3069 3070 if (submission_disabled(guc) || context_guc_id_invalid(ce) || 3071 !ctx_id_mapped(guc, ce->guc_id.id)) { 3072 clr_context_enabled(ce); 3073 return true; 3074 } 3075 3076 return !context_enabled(ce); 3077 } 3078 3079 static void __delay_sched_disable(struct work_struct *wrk) 3080 { 3081 struct intel_context *ce = 3082 container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work); 3083 struct intel_guc *guc = ce_to_guc(ce); 3084 unsigned long flags; 3085 3086 spin_lock_irqsave(&ce->guc_state.lock, flags); 3087 3088 if (bypass_sched_disable(guc, ce)) { 3089 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3090 intel_context_sched_disable_unpin(ce); 3091 } else { 3092 do_sched_disable(guc, ce, flags); 3093 } 3094 } 3095 3096 static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce) 3097 { 3098 /* 3099 * parent contexts are perma-pinned, if we are unpinning do schedule 3100 * disable immediately. 3101 */ 3102 if (intel_context_is_parent(ce)) 3103 return true; 3104 3105 /* 3106 * If we are beyond the threshold for avail guc_ids, do schedule disable immediately. 3107 */ 3108 return guc->submission_state.guc_ids_in_use > 3109 guc->submission_state.sched_disable_gucid_threshold; 3110 } 3111 3112 static void guc_context_sched_disable(struct intel_context *ce) 3113 { 3114 struct intel_guc *guc = ce_to_guc(ce); 3115 u64 delay = guc->submission_state.sched_disable_delay_ms; 3116 unsigned long flags; 3117 3118 spin_lock_irqsave(&ce->guc_state.lock, flags); 3119 3120 if (bypass_sched_disable(guc, ce)) { 3121 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3122 intel_context_sched_disable_unpin(ce); 3123 } else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) && 3124 delay) { 3125 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3126 mod_delayed_work(system_unbound_wq, 3127 &ce->guc_state.sched_disable_delay_work, 3128 msecs_to_jiffies(delay)); 3129 } else { 3130 do_sched_disable(guc, ce, flags); 3131 } 3132 } 3133 3134 static void guc_context_close(struct intel_context *ce) 3135 { 3136 unsigned long flags; 3137 3138 if (test_bit(CONTEXT_GUC_INIT, &ce->flags) && 3139 cancel_delayed_work(&ce->guc_state.sched_disable_delay_work)) 3140 __delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work); 3141 3142 spin_lock_irqsave(&ce->guc_state.lock, flags); 3143 set_context_close_done(ce); 3144 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3145 } 3146 3147 static inline void guc_lrc_desc_unpin(struct intel_context *ce) 3148 { 3149 struct intel_guc *guc = ce_to_guc(ce); 3150 struct intel_gt *gt = guc_to_gt(guc); 3151 unsigned long flags; 3152 bool disabled; 3153 3154 GEM_BUG_ON(!intel_gt_pm_is_awake(gt)); 3155 GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id)); 3156 GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id)); 3157 GEM_BUG_ON(context_enabled(ce)); 3158 3159 /* Seal race with Reset */ 3160 spin_lock_irqsave(&ce->guc_state.lock, flags); 3161 disabled = submission_disabled(guc); 3162 if (likely(!disabled)) { 3163 __intel_gt_pm_get(gt); 3164 set_context_destroyed(ce); 3165 clr_context_registered(ce); 3166 } 3167 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3168 if (unlikely(disabled)) { 3169 release_guc_id(guc, ce); 3170 __guc_context_destroy(ce); 3171 return; 3172 } 3173 3174 deregister_context(ce, ce->guc_id.id); 3175 } 3176 3177 static void __guc_context_destroy(struct intel_context *ce) 3178 { 3179 GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] || 3180 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] || 3181 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] || 3182 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]); 3183 3184 lrc_fini(ce); 3185 intel_context_fini(ce); 3186 3187 if (intel_engine_is_virtual(ce->engine)) { 3188 struct guc_virtual_engine *ve = 3189 container_of(ce, typeof(*ve), context); 3190 3191 if (ve->base.breadcrumbs) 3192 intel_breadcrumbs_put(ve->base.breadcrumbs); 3193 3194 kfree(ve); 3195 } else { 3196 intel_context_free(ce); 3197 } 3198 } 3199 3200 static void guc_flush_destroyed_contexts(struct intel_guc *guc) 3201 { 3202 struct intel_context *ce; 3203 unsigned long flags; 3204 3205 GEM_BUG_ON(!submission_disabled(guc) && 3206 guc_submission_initialized(guc)); 3207 3208 while (!list_empty(&guc->submission_state.destroyed_contexts)) { 3209 spin_lock_irqsave(&guc->submission_state.lock, flags); 3210 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, 3211 struct intel_context, 3212 destroyed_link); 3213 if (ce) 3214 list_del_init(&ce->destroyed_link); 3215 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3216 3217 if (!ce) 3218 break; 3219 3220 release_guc_id(guc, ce); 3221 __guc_context_destroy(ce); 3222 } 3223 } 3224 3225 static void deregister_destroyed_contexts(struct intel_guc *guc) 3226 { 3227 struct intel_context *ce; 3228 unsigned long flags; 3229 3230 while (!list_empty(&guc->submission_state.destroyed_contexts)) { 3231 spin_lock_irqsave(&guc->submission_state.lock, flags); 3232 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, 3233 struct intel_context, 3234 destroyed_link); 3235 if (ce) 3236 list_del_init(&ce->destroyed_link); 3237 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3238 3239 if (!ce) 3240 break; 3241 3242 guc_lrc_desc_unpin(ce); 3243 } 3244 } 3245 3246 static void destroyed_worker_func(struct work_struct *w) 3247 { 3248 struct intel_guc *guc = container_of(w, struct intel_guc, 3249 submission_state.destroyed_worker); 3250 struct intel_gt *gt = guc_to_gt(guc); 3251 int tmp; 3252 3253 with_intel_gt_pm(gt, tmp) 3254 deregister_destroyed_contexts(guc); 3255 } 3256 3257 static void guc_context_destroy(struct kref *kref) 3258 { 3259 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 3260 struct intel_guc *guc = ce_to_guc(ce); 3261 unsigned long flags; 3262 bool destroy; 3263 3264 /* 3265 * If the guc_id is invalid this context has been stolen and we can free 3266 * it immediately. Also can be freed immediately if the context is not 3267 * registered with the GuC or the GuC is in the middle of a reset. 3268 */ 3269 spin_lock_irqsave(&guc->submission_state.lock, flags); 3270 destroy = submission_disabled(guc) || context_guc_id_invalid(ce) || 3271 !ctx_id_mapped(guc, ce->guc_id.id); 3272 if (likely(!destroy)) { 3273 if (!list_empty(&ce->guc_id.link)) 3274 list_del_init(&ce->guc_id.link); 3275 list_add_tail(&ce->destroyed_link, 3276 &guc->submission_state.destroyed_contexts); 3277 } else { 3278 __release_guc_id(guc, ce); 3279 } 3280 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3281 if (unlikely(destroy)) { 3282 __guc_context_destroy(ce); 3283 return; 3284 } 3285 3286 /* 3287 * We use a worker to issue the H2G to deregister the context as we can 3288 * take the GT PM for the first time which isn't allowed from an atomic 3289 * context. 3290 */ 3291 queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker); 3292 } 3293 3294 static int guc_context_alloc(struct intel_context *ce) 3295 { 3296 return lrc_alloc(ce, ce->engine); 3297 } 3298 3299 static void __guc_context_set_prio(struct intel_guc *guc, 3300 struct intel_context *ce) 3301 { 3302 if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) { 3303 struct context_policy policy; 3304 3305 __guc_context_policy_start_klv(&policy, ce->guc_id.id); 3306 __guc_context_policy_add_priority(&policy, ce->guc_state.prio); 3307 __guc_context_set_context_policies(guc, &policy, true); 3308 } else { 3309 u32 action[] = { 3310 INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY, 3311 ce->guc_id.id, 3312 ce->guc_state.prio, 3313 }; 3314 3315 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); 3316 } 3317 } 3318 3319 static void guc_context_set_prio(struct intel_guc *guc, 3320 struct intel_context *ce, 3321 u8 prio) 3322 { 3323 GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH || 3324 prio > GUC_CLIENT_PRIORITY_NORMAL); 3325 lockdep_assert_held(&ce->guc_state.lock); 3326 3327 if (ce->guc_state.prio == prio || submission_disabled(guc) || 3328 !context_registered(ce)) { 3329 ce->guc_state.prio = prio; 3330 return; 3331 } 3332 3333 ce->guc_state.prio = prio; 3334 __guc_context_set_prio(guc, ce); 3335 3336 trace_intel_context_set_prio(ce); 3337 } 3338 3339 static inline u8 map_i915_prio_to_guc_prio(int prio) 3340 { 3341 if (prio == I915_PRIORITY_NORMAL) 3342 return GUC_CLIENT_PRIORITY_KMD_NORMAL; 3343 else if (prio < I915_PRIORITY_NORMAL) 3344 return GUC_CLIENT_PRIORITY_NORMAL; 3345 else if (prio < I915_PRIORITY_DISPLAY) 3346 return GUC_CLIENT_PRIORITY_HIGH; 3347 else 3348 return GUC_CLIENT_PRIORITY_KMD_HIGH; 3349 } 3350 3351 static inline void add_context_inflight_prio(struct intel_context *ce, 3352 u8 guc_prio) 3353 { 3354 lockdep_assert_held(&ce->guc_state.lock); 3355 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); 3356 3357 ++ce->guc_state.prio_count[guc_prio]; 3358 3359 /* Overflow protection */ 3360 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); 3361 } 3362 3363 static inline void sub_context_inflight_prio(struct intel_context *ce, 3364 u8 guc_prio) 3365 { 3366 lockdep_assert_held(&ce->guc_state.lock); 3367 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); 3368 3369 /* Underflow protection */ 3370 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); 3371 3372 --ce->guc_state.prio_count[guc_prio]; 3373 } 3374 3375 static inline void update_context_prio(struct intel_context *ce) 3376 { 3377 struct intel_guc *guc = &ce->engine->gt->uc.guc; 3378 int i; 3379 3380 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0); 3381 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL); 3382 3383 lockdep_assert_held(&ce->guc_state.lock); 3384 3385 for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) { 3386 if (ce->guc_state.prio_count[i]) { 3387 guc_context_set_prio(guc, ce, i); 3388 break; 3389 } 3390 } 3391 } 3392 3393 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio) 3394 { 3395 /* Lower value is higher priority */ 3396 return new_guc_prio < old_guc_prio; 3397 } 3398 3399 static void add_to_context(struct i915_request *rq) 3400 { 3401 struct intel_context *ce = request_to_scheduling_context(rq); 3402 u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq)); 3403 3404 GEM_BUG_ON(intel_context_is_child(ce)); 3405 GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI); 3406 3407 spin_lock(&ce->guc_state.lock); 3408 list_move_tail(&rq->sched.link, &ce->guc_state.requests); 3409 3410 if (rq->guc_prio == GUC_PRIO_INIT) { 3411 rq->guc_prio = new_guc_prio; 3412 add_context_inflight_prio(ce, rq->guc_prio); 3413 } else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) { 3414 sub_context_inflight_prio(ce, rq->guc_prio); 3415 rq->guc_prio = new_guc_prio; 3416 add_context_inflight_prio(ce, rq->guc_prio); 3417 } 3418 update_context_prio(ce); 3419 3420 spin_unlock(&ce->guc_state.lock); 3421 } 3422 3423 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce) 3424 { 3425 lockdep_assert_held(&ce->guc_state.lock); 3426 3427 if (rq->guc_prio != GUC_PRIO_INIT && 3428 rq->guc_prio != GUC_PRIO_FINI) { 3429 sub_context_inflight_prio(ce, rq->guc_prio); 3430 update_context_prio(ce); 3431 } 3432 rq->guc_prio = GUC_PRIO_FINI; 3433 } 3434 3435 static void remove_from_context(struct i915_request *rq) 3436 { 3437 struct intel_context *ce = request_to_scheduling_context(rq); 3438 3439 GEM_BUG_ON(intel_context_is_child(ce)); 3440 3441 spin_lock_irq(&ce->guc_state.lock); 3442 3443 list_del_init(&rq->sched.link); 3444 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 3445 3446 /* Prevent further __await_execution() registering a cb, then flush */ 3447 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 3448 3449 guc_prio_fini(rq, ce); 3450 3451 spin_unlock_irq(&ce->guc_state.lock); 3452 3453 atomic_dec(&ce->guc_id.ref); 3454 i915_request_notify_execute_cb_imm(rq); 3455 } 3456 3457 static const struct intel_context_ops guc_context_ops = { 3458 .alloc = guc_context_alloc, 3459 3460 .close = guc_context_close, 3461 3462 .pre_pin = guc_context_pre_pin, 3463 .pin = guc_context_pin, 3464 .unpin = guc_context_unpin, 3465 .post_unpin = guc_context_post_unpin, 3466 3467 .revoke = guc_context_revoke, 3468 3469 .cancel_request = guc_context_cancel_request, 3470 3471 .enter = intel_context_enter_engine, 3472 .exit = intel_context_exit_engine, 3473 3474 .sched_disable = guc_context_sched_disable, 3475 3476 .reset = lrc_reset, 3477 .destroy = guc_context_destroy, 3478 3479 .create_virtual = guc_create_virtual, 3480 .create_parallel = guc_create_parallel, 3481 }; 3482 3483 static void submit_work_cb(struct irq_work *wrk) 3484 { 3485 struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work); 3486 3487 might_lock(&rq->engine->sched_engine->lock); 3488 i915_sw_fence_complete(&rq->submit); 3489 } 3490 3491 static void __guc_signal_context_fence(struct intel_context *ce) 3492 { 3493 struct i915_request *rq, *rn; 3494 3495 lockdep_assert_held(&ce->guc_state.lock); 3496 3497 if (!list_empty(&ce->guc_state.fences)) 3498 trace_intel_context_fence_release(ce); 3499 3500 /* 3501 * Use an IRQ to ensure locking order of sched_engine->lock -> 3502 * ce->guc_state.lock is preserved. 3503 */ 3504 list_for_each_entry_safe(rq, rn, &ce->guc_state.fences, 3505 guc_fence_link) { 3506 list_del(&rq->guc_fence_link); 3507 irq_work_queue(&rq->submit_work); 3508 } 3509 3510 INIT_LIST_HEAD(&ce->guc_state.fences); 3511 } 3512 3513 static void guc_signal_context_fence(struct intel_context *ce) 3514 { 3515 unsigned long flags; 3516 3517 GEM_BUG_ON(intel_context_is_child(ce)); 3518 3519 spin_lock_irqsave(&ce->guc_state.lock, flags); 3520 clr_context_wait_for_deregister_to_register(ce); 3521 __guc_signal_context_fence(ce); 3522 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3523 } 3524 3525 static bool context_needs_register(struct intel_context *ce, bool new_guc_id) 3526 { 3527 return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) || 3528 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) && 3529 !submission_disabled(ce_to_guc(ce)); 3530 } 3531 3532 static void guc_context_init(struct intel_context *ce) 3533 { 3534 const struct i915_gem_context *ctx; 3535 int prio = I915_CONTEXT_DEFAULT_PRIORITY; 3536 3537 rcu_read_lock(); 3538 ctx = rcu_dereference(ce->gem_context); 3539 if (ctx) 3540 prio = ctx->sched.priority; 3541 rcu_read_unlock(); 3542 3543 ce->guc_state.prio = map_i915_prio_to_guc_prio(prio); 3544 3545 INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work, 3546 __delay_sched_disable); 3547 3548 set_bit(CONTEXT_GUC_INIT, &ce->flags); 3549 } 3550 3551 static int guc_request_alloc(struct i915_request *rq) 3552 { 3553 struct intel_context *ce = request_to_scheduling_context(rq); 3554 struct intel_guc *guc = ce_to_guc(ce); 3555 unsigned long flags; 3556 int ret; 3557 3558 GEM_BUG_ON(!intel_context_is_pinned(rq->context)); 3559 3560 /* 3561 * Flush enough space to reduce the likelihood of waiting after 3562 * we start building the request - in which case we will just 3563 * have to repeat work. 3564 */ 3565 rq->reserved_space += GUC_REQUEST_SIZE; 3566 3567 /* 3568 * Note that after this point, we have committed to using 3569 * this request as it is being used to both track the 3570 * state of engine initialisation and liveness of the 3571 * golden renderstate above. Think twice before you try 3572 * to cancel/unwind this request now. 3573 */ 3574 3575 /* Unconditionally invalidate GPU caches and TLBs. */ 3576 ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 3577 if (ret) 3578 return ret; 3579 3580 rq->reserved_space -= GUC_REQUEST_SIZE; 3581 3582 if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags))) 3583 guc_context_init(ce); 3584 3585 /* 3586 * If the context gets closed while the execbuf is ongoing, the context 3587 * close code will race with the below code to cancel the delayed work. 3588 * If the context close wins the race and cancels the work, it will 3589 * immediately call the sched disable (see guc_context_close), so there 3590 * is a chance we can get past this check while the sched_disable code 3591 * is being executed. To make sure that code completes before we check 3592 * the status further down, we wait for the close process to complete. 3593 * Else, this code path could send a request down thinking that the 3594 * context is still in a schedule-enable mode while the GuC ends up 3595 * dropping the request completely because the disable did go from the 3596 * context_close path right to GuC just prior. In the event the CT is 3597 * full, we could potentially need to wait up to 1.5 seconds. 3598 */ 3599 if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work)) 3600 intel_context_sched_disable_unpin(ce); 3601 else if (intel_context_is_closed(ce)) 3602 if (wait_for(context_close_done(ce), 1500)) 3603 guc_warn(guc, "timed out waiting on context sched close before realloc\n"); 3604 /* 3605 * Call pin_guc_id here rather than in the pinning step as with 3606 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the 3607 * guc_id and creating horrible race conditions. This is especially bad 3608 * when guc_id are being stolen due to over subscription. By the time 3609 * this function is reached, it is guaranteed that the guc_id will be 3610 * persistent until the generated request is retired. Thus, sealing these 3611 * race conditions. It is still safe to fail here if guc_id are 3612 * exhausted and return -EAGAIN to the user indicating that they can try 3613 * again in the future. 3614 * 3615 * There is no need for a lock here as the timeline mutex ensures at 3616 * most one context can be executing this code path at once. The 3617 * guc_id_ref is incremented once for every request in flight and 3618 * decremented on each retire. When it is zero, a lock around the 3619 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id. 3620 */ 3621 if (atomic_add_unless(&ce->guc_id.ref, 1, 0)) 3622 goto out; 3623 3624 ret = pin_guc_id(guc, ce); /* returns 1 if new guc_id assigned */ 3625 if (unlikely(ret < 0)) 3626 return ret; 3627 if (context_needs_register(ce, !!ret)) { 3628 ret = try_context_registration(ce, true); 3629 if (unlikely(ret)) { /* unwind */ 3630 if (ret == -EPIPE) { 3631 disable_submission(guc); 3632 goto out; /* GPU will be reset */ 3633 } 3634 atomic_dec(&ce->guc_id.ref); 3635 unpin_guc_id(guc, ce); 3636 return ret; 3637 } 3638 } 3639 3640 clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags); 3641 3642 out: 3643 /* 3644 * We block all requests on this context if a G2H is pending for a 3645 * schedule disable or context deregistration as the GuC will fail a 3646 * schedule enable or context registration if either G2H is pending 3647 * respectfully. Once a G2H returns, the fence is released that is 3648 * blocking these requests (see guc_signal_context_fence). 3649 */ 3650 spin_lock_irqsave(&ce->guc_state.lock, flags); 3651 if (context_wait_for_deregister_to_register(ce) || 3652 context_pending_disable(ce)) { 3653 init_irq_work(&rq->submit_work, submit_work_cb); 3654 i915_sw_fence_await(&rq->submit); 3655 3656 list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences); 3657 } 3658 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3659 3660 return 0; 3661 } 3662 3663 static int guc_virtual_context_pre_pin(struct intel_context *ce, 3664 struct i915_gem_ww_ctx *ww, 3665 void **vaddr) 3666 { 3667 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3668 3669 return __guc_context_pre_pin(ce, engine, ww, vaddr); 3670 } 3671 3672 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr) 3673 { 3674 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3675 int ret = __guc_context_pin(ce, engine, vaddr); 3676 intel_engine_mask_t tmp, mask = ce->engine->mask; 3677 3678 if (likely(!ret)) 3679 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3680 intel_engine_pm_get(engine); 3681 3682 return ret; 3683 } 3684 3685 static void guc_virtual_context_unpin(struct intel_context *ce) 3686 { 3687 intel_engine_mask_t tmp, mask = ce->engine->mask; 3688 struct intel_engine_cs *engine; 3689 struct intel_guc *guc = ce_to_guc(ce); 3690 3691 GEM_BUG_ON(context_enabled(ce)); 3692 GEM_BUG_ON(intel_context_is_barrier(ce)); 3693 3694 unpin_guc_id(guc, ce); 3695 lrc_unpin(ce); 3696 3697 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3698 intel_engine_pm_put_async(engine); 3699 } 3700 3701 static void guc_virtual_context_enter(struct intel_context *ce) 3702 { 3703 intel_engine_mask_t tmp, mask = ce->engine->mask; 3704 struct intel_engine_cs *engine; 3705 3706 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3707 intel_engine_pm_get(engine); 3708 3709 intel_timeline_enter(ce->timeline); 3710 } 3711 3712 static void guc_virtual_context_exit(struct intel_context *ce) 3713 { 3714 intel_engine_mask_t tmp, mask = ce->engine->mask; 3715 struct intel_engine_cs *engine; 3716 3717 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3718 intel_engine_pm_put(engine); 3719 3720 intel_timeline_exit(ce->timeline); 3721 } 3722 3723 static int guc_virtual_context_alloc(struct intel_context *ce) 3724 { 3725 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3726 3727 return lrc_alloc(ce, engine); 3728 } 3729 3730 static const struct intel_context_ops virtual_guc_context_ops = { 3731 .alloc = guc_virtual_context_alloc, 3732 3733 .close = guc_context_close, 3734 3735 .pre_pin = guc_virtual_context_pre_pin, 3736 .pin = guc_virtual_context_pin, 3737 .unpin = guc_virtual_context_unpin, 3738 .post_unpin = guc_context_post_unpin, 3739 3740 .revoke = guc_context_revoke, 3741 3742 .cancel_request = guc_context_cancel_request, 3743 3744 .enter = guc_virtual_context_enter, 3745 .exit = guc_virtual_context_exit, 3746 3747 .sched_disable = guc_context_sched_disable, 3748 3749 .destroy = guc_context_destroy, 3750 3751 .get_sibling = guc_virtual_get_sibling, 3752 }; 3753 3754 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr) 3755 { 3756 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3757 struct intel_guc *guc = ce_to_guc(ce); 3758 int ret; 3759 3760 GEM_BUG_ON(!intel_context_is_parent(ce)); 3761 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3762 3763 ret = pin_guc_id(guc, ce); 3764 if (unlikely(ret < 0)) 3765 return ret; 3766 3767 return __guc_context_pin(ce, engine, vaddr); 3768 } 3769 3770 static int guc_child_context_pin(struct intel_context *ce, void *vaddr) 3771 { 3772 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3773 3774 GEM_BUG_ON(!intel_context_is_child(ce)); 3775 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3776 3777 __intel_context_pin(ce->parallel.parent); 3778 return __guc_context_pin(ce, engine, vaddr); 3779 } 3780 3781 static void guc_parent_context_unpin(struct intel_context *ce) 3782 { 3783 struct intel_guc *guc = ce_to_guc(ce); 3784 3785 GEM_BUG_ON(context_enabled(ce)); 3786 GEM_BUG_ON(intel_context_is_barrier(ce)); 3787 GEM_BUG_ON(!intel_context_is_parent(ce)); 3788 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3789 3790 unpin_guc_id(guc, ce); 3791 lrc_unpin(ce); 3792 } 3793 3794 static void guc_child_context_unpin(struct intel_context *ce) 3795 { 3796 GEM_BUG_ON(context_enabled(ce)); 3797 GEM_BUG_ON(intel_context_is_barrier(ce)); 3798 GEM_BUG_ON(!intel_context_is_child(ce)); 3799 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3800 3801 lrc_unpin(ce); 3802 } 3803 3804 static void guc_child_context_post_unpin(struct intel_context *ce) 3805 { 3806 GEM_BUG_ON(!intel_context_is_child(ce)); 3807 GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent)); 3808 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3809 3810 lrc_post_unpin(ce); 3811 intel_context_unpin(ce->parallel.parent); 3812 } 3813 3814 static void guc_child_context_destroy(struct kref *kref) 3815 { 3816 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 3817 3818 __guc_context_destroy(ce); 3819 } 3820 3821 static const struct intel_context_ops virtual_parent_context_ops = { 3822 .alloc = guc_virtual_context_alloc, 3823 3824 .close = guc_context_close, 3825 3826 .pre_pin = guc_context_pre_pin, 3827 .pin = guc_parent_context_pin, 3828 .unpin = guc_parent_context_unpin, 3829 .post_unpin = guc_context_post_unpin, 3830 3831 .revoke = guc_context_revoke, 3832 3833 .cancel_request = guc_context_cancel_request, 3834 3835 .enter = guc_virtual_context_enter, 3836 .exit = guc_virtual_context_exit, 3837 3838 .sched_disable = guc_context_sched_disable, 3839 3840 .destroy = guc_context_destroy, 3841 3842 .get_sibling = guc_virtual_get_sibling, 3843 }; 3844 3845 static const struct intel_context_ops virtual_child_context_ops = { 3846 .alloc = guc_virtual_context_alloc, 3847 3848 .pre_pin = guc_context_pre_pin, 3849 .pin = guc_child_context_pin, 3850 .unpin = guc_child_context_unpin, 3851 .post_unpin = guc_child_context_post_unpin, 3852 3853 .cancel_request = guc_context_cancel_request, 3854 3855 .enter = guc_virtual_context_enter, 3856 .exit = guc_virtual_context_exit, 3857 3858 .destroy = guc_child_context_destroy, 3859 3860 .get_sibling = guc_virtual_get_sibling, 3861 }; 3862 3863 /* 3864 * The below override of the breadcrumbs is enabled when the user configures a 3865 * context for parallel submission (multi-lrc, parent-child). 3866 * 3867 * The overridden breadcrumbs implements an algorithm which allows the GuC to 3868 * safely preempt all the hw contexts configured for parallel submission 3869 * between each BB. The contract between the i915 and GuC is if the parent 3870 * context can be preempted, all the children can be preempted, and the GuC will 3871 * always try to preempt the parent before the children. A handshake between the 3872 * parent / children breadcrumbs ensures the i915 holds up its end of the deal 3873 * creating a window to preempt between each set of BBs. 3874 */ 3875 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, 3876 u64 offset, u32 len, 3877 const unsigned int flags); 3878 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, 3879 u64 offset, u32 len, 3880 const unsigned int flags); 3881 static u32 * 3882 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 3883 u32 *cs); 3884 static u32 * 3885 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 3886 u32 *cs); 3887 3888 static struct intel_context * 3889 guc_create_parallel(struct intel_engine_cs **engines, 3890 unsigned int num_siblings, 3891 unsigned int width) 3892 { 3893 struct intel_engine_cs **siblings = NULL; 3894 struct intel_context *parent = NULL, *ce, *err; 3895 int i, j; 3896 3897 siblings = kmalloc_array(num_siblings, 3898 sizeof(*siblings), 3899 GFP_KERNEL); 3900 if (!siblings) 3901 return ERR_PTR(-ENOMEM); 3902 3903 for (i = 0; i < width; ++i) { 3904 for (j = 0; j < num_siblings; ++j) 3905 siblings[j] = engines[i * num_siblings + j]; 3906 3907 ce = intel_engine_create_virtual(siblings, num_siblings, 3908 FORCE_VIRTUAL); 3909 if (IS_ERR(ce)) { 3910 err = ERR_CAST(ce); 3911 goto unwind; 3912 } 3913 3914 if (i == 0) { 3915 parent = ce; 3916 parent->ops = &virtual_parent_context_ops; 3917 } else { 3918 ce->ops = &virtual_child_context_ops; 3919 intel_context_bind_parent_child(parent, ce); 3920 } 3921 } 3922 3923 parent->parallel.fence_context = dma_fence_context_alloc(1); 3924 3925 parent->engine->emit_bb_start = 3926 emit_bb_start_parent_no_preempt_mid_batch; 3927 parent->engine->emit_fini_breadcrumb = 3928 emit_fini_breadcrumb_parent_no_preempt_mid_batch; 3929 parent->engine->emit_fini_breadcrumb_dw = 3930 12 + 4 * parent->parallel.number_children; 3931 for_each_child(parent, ce) { 3932 ce->engine->emit_bb_start = 3933 emit_bb_start_child_no_preempt_mid_batch; 3934 ce->engine->emit_fini_breadcrumb = 3935 emit_fini_breadcrumb_child_no_preempt_mid_batch; 3936 ce->engine->emit_fini_breadcrumb_dw = 16; 3937 } 3938 3939 kfree(siblings); 3940 return parent; 3941 3942 unwind: 3943 if (parent) 3944 intel_context_put(parent); 3945 kfree(siblings); 3946 return err; 3947 } 3948 3949 static bool 3950 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b) 3951 { 3952 struct intel_engine_cs *sibling; 3953 intel_engine_mask_t tmp, mask = b->engine_mask; 3954 bool result = false; 3955 3956 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) 3957 result |= intel_engine_irq_enable(sibling); 3958 3959 return result; 3960 } 3961 3962 static void 3963 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b) 3964 { 3965 struct intel_engine_cs *sibling; 3966 intel_engine_mask_t tmp, mask = b->engine_mask; 3967 3968 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) 3969 intel_engine_irq_disable(sibling); 3970 } 3971 3972 static void guc_init_breadcrumbs(struct intel_engine_cs *engine) 3973 { 3974 int i; 3975 3976 /* 3977 * In GuC submission mode we do not know which physical engine a request 3978 * will be scheduled on, this creates a problem because the breadcrumb 3979 * interrupt is per physical engine. To work around this we attach 3980 * requests and direct all breadcrumb interrupts to the first instance 3981 * of an engine per class. In addition all breadcrumb interrupts are 3982 * enabled / disabled across an engine class in unison. 3983 */ 3984 for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) { 3985 struct intel_engine_cs *sibling = 3986 engine->gt->engine_class[engine->class][i]; 3987 3988 if (sibling) { 3989 if (engine->breadcrumbs != sibling->breadcrumbs) { 3990 intel_breadcrumbs_put(engine->breadcrumbs); 3991 engine->breadcrumbs = 3992 intel_breadcrumbs_get(sibling->breadcrumbs); 3993 } 3994 break; 3995 } 3996 } 3997 3998 if (engine->breadcrumbs) { 3999 engine->breadcrumbs->engine_mask |= engine->mask; 4000 engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs; 4001 engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs; 4002 } 4003 } 4004 4005 static void guc_bump_inflight_request_prio(struct i915_request *rq, 4006 int prio) 4007 { 4008 struct intel_context *ce = request_to_scheduling_context(rq); 4009 u8 new_guc_prio = map_i915_prio_to_guc_prio(prio); 4010 4011 /* Short circuit function */ 4012 if (prio < I915_PRIORITY_NORMAL || 4013 rq->guc_prio == GUC_PRIO_FINI || 4014 (rq->guc_prio != GUC_PRIO_INIT && 4015 !new_guc_prio_higher(rq->guc_prio, new_guc_prio))) 4016 return; 4017 4018 spin_lock(&ce->guc_state.lock); 4019 if (rq->guc_prio != GUC_PRIO_FINI) { 4020 if (rq->guc_prio != GUC_PRIO_INIT) 4021 sub_context_inflight_prio(ce, rq->guc_prio); 4022 rq->guc_prio = new_guc_prio; 4023 add_context_inflight_prio(ce, rq->guc_prio); 4024 update_context_prio(ce); 4025 } 4026 spin_unlock(&ce->guc_state.lock); 4027 } 4028 4029 static void guc_retire_inflight_request_prio(struct i915_request *rq) 4030 { 4031 struct intel_context *ce = request_to_scheduling_context(rq); 4032 4033 spin_lock(&ce->guc_state.lock); 4034 guc_prio_fini(rq, ce); 4035 spin_unlock(&ce->guc_state.lock); 4036 } 4037 4038 static void sanitize_hwsp(struct intel_engine_cs *engine) 4039 { 4040 struct intel_timeline *tl; 4041 4042 list_for_each_entry(tl, &engine->status_page.timelines, engine_link) 4043 intel_timeline_reset_seqno(tl); 4044 } 4045 4046 static void guc_sanitize(struct intel_engine_cs *engine) 4047 { 4048 /* 4049 * Poison residual state on resume, in case the suspend didn't! 4050 * 4051 * We have to assume that across suspend/resume (or other loss 4052 * of control) that the contents of our pinned buffers has been 4053 * lost, replaced by garbage. Since this doesn't always happen, 4054 * let's poison such state so that we more quickly spot when 4055 * we falsely assume it has been preserved. 4056 */ 4057 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 4058 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE); 4059 4060 /* 4061 * The kernel_context HWSP is stored in the status_page. As above, 4062 * that may be lost on resume/initialisation, and so we need to 4063 * reset the value in the HWSP. 4064 */ 4065 sanitize_hwsp(engine); 4066 4067 /* And scrub the dirty cachelines for the HWSP */ 4068 drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE); 4069 4070 intel_engine_reset_pinned_contexts(engine); 4071 } 4072 4073 static void setup_hwsp(struct intel_engine_cs *engine) 4074 { 4075 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */ 4076 4077 ENGINE_WRITE_FW(engine, 4078 RING_HWS_PGA, 4079 i915_ggtt_offset(engine->status_page.vma)); 4080 } 4081 4082 static void start_engine(struct intel_engine_cs *engine) 4083 { 4084 ENGINE_WRITE_FW(engine, 4085 RING_MODE_GEN7, 4086 _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE)); 4087 4088 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 4089 ENGINE_POSTING_READ(engine, RING_MI_MODE); 4090 } 4091 4092 static int guc_resume(struct intel_engine_cs *engine) 4093 { 4094 assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL); 4095 4096 intel_mocs_init_engine(engine); 4097 4098 intel_breadcrumbs_reset(engine->breadcrumbs); 4099 4100 setup_hwsp(engine); 4101 start_engine(engine); 4102 4103 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) 4104 xehp_enable_ccs_engines(engine); 4105 4106 return 0; 4107 } 4108 4109 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine) 4110 { 4111 return !sched_engine->tasklet.callback; 4112 } 4113 4114 static void guc_set_default_submission(struct intel_engine_cs *engine) 4115 { 4116 engine->submit_request = guc_submit_request; 4117 } 4118 4119 static inline int guc_kernel_context_pin(struct intel_guc *guc, 4120 struct intel_context *ce) 4121 { 4122 int ret; 4123 4124 /* 4125 * Note: we purposefully do not check the returns below because 4126 * the registration can only fail if a reset is just starting. 4127 * This is called at the end of reset so presumably another reset 4128 * isn't happening and even it did this code would be run again. 4129 */ 4130 4131 if (context_guc_id_invalid(ce)) { 4132 ret = pin_guc_id(guc, ce); 4133 4134 if (ret < 0) 4135 return ret; 4136 } 4137 4138 if (!test_bit(CONTEXT_GUC_INIT, &ce->flags)) 4139 guc_context_init(ce); 4140 4141 ret = try_context_registration(ce, true); 4142 if (ret) 4143 unpin_guc_id(guc, ce); 4144 4145 return ret; 4146 } 4147 4148 static inline int guc_init_submission(struct intel_guc *guc) 4149 { 4150 struct intel_gt *gt = guc_to_gt(guc); 4151 struct intel_engine_cs *engine; 4152 enum intel_engine_id id; 4153 4154 /* make sure all descriptors are clean... */ 4155 xa_destroy(&guc->context_lookup); 4156 4157 /* 4158 * A reset might have occurred while we had a pending stalled request, 4159 * so make sure we clean that up. 4160 */ 4161 guc->stalled_request = NULL; 4162 guc->submission_stall_reason = STALL_NONE; 4163 4164 /* 4165 * Some contexts might have been pinned before we enabled GuC 4166 * submission, so we need to add them to the GuC bookeeping. 4167 * Also, after a reset the of the GuC we want to make sure that the 4168 * information shared with GuC is properly reset. The kernel LRCs are 4169 * not attached to the gem_context, so they need to be added separately. 4170 */ 4171 for_each_engine(engine, gt, id) { 4172 struct intel_context *ce; 4173 4174 list_for_each_entry(ce, &engine->pinned_contexts_list, 4175 pinned_contexts_link) { 4176 int ret = guc_kernel_context_pin(guc, ce); 4177 4178 if (ret) { 4179 /* No point in trying to clean up as i915 will wedge on failure */ 4180 return ret; 4181 } 4182 } 4183 } 4184 4185 return 0; 4186 } 4187 4188 static void guc_release(struct intel_engine_cs *engine) 4189 { 4190 engine->sanitize = NULL; /* no longer in control, nothing to sanitize */ 4191 4192 intel_engine_cleanup_common(engine); 4193 lrc_fini_wa_ctx(engine); 4194 } 4195 4196 static void virtual_guc_bump_serial(struct intel_engine_cs *engine) 4197 { 4198 struct intel_engine_cs *e; 4199 intel_engine_mask_t tmp, mask = engine->mask; 4200 4201 for_each_engine_masked(e, engine->gt, mask, tmp) 4202 e->serial++; 4203 } 4204 4205 static void guc_default_vfuncs(struct intel_engine_cs *engine) 4206 { 4207 /* Default vfuncs which can be overridden by each engine. */ 4208 4209 engine->resume = guc_resume; 4210 4211 engine->cops = &guc_context_ops; 4212 engine->request_alloc = guc_request_alloc; 4213 engine->add_active_request = add_to_context; 4214 engine->remove_active_request = remove_from_context; 4215 4216 engine->sched_engine->schedule = i915_schedule; 4217 4218 engine->reset.prepare = guc_engine_reset_prepare; 4219 engine->reset.rewind = guc_rewind_nop; 4220 engine->reset.cancel = guc_reset_nop; 4221 engine->reset.finish = guc_reset_nop; 4222 4223 engine->emit_flush = gen8_emit_flush_xcs; 4224 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb; 4225 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs; 4226 if (GRAPHICS_VER(engine->i915) >= 12) { 4227 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs; 4228 engine->emit_flush = gen12_emit_flush_xcs; 4229 } 4230 engine->set_default_submission = guc_set_default_submission; 4231 engine->busyness = guc_engine_busyness; 4232 4233 engine->flags |= I915_ENGINE_SUPPORTS_STATS; 4234 engine->flags |= I915_ENGINE_HAS_PREEMPTION; 4235 engine->flags |= I915_ENGINE_HAS_TIMESLICES; 4236 4237 /* Wa_14014475959:dg2 */ 4238 if (engine->class == COMPUTE_CLASS) 4239 if (IS_MTL_GRAPHICS_STEP(engine->i915, M, STEP_A0, STEP_B0) || 4240 IS_DG2(engine->i915)) 4241 engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT; 4242 4243 /* 4244 * TODO: GuC supports timeslicing and semaphores as well, but they're 4245 * handled by the firmware so some minor tweaks are required before 4246 * enabling. 4247 * 4248 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES; 4249 */ 4250 4251 engine->emit_bb_start = gen8_emit_bb_start; 4252 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) 4253 engine->emit_bb_start = xehp_emit_bb_start; 4254 } 4255 4256 static void rcs_submission_override(struct intel_engine_cs *engine) 4257 { 4258 switch (GRAPHICS_VER(engine->i915)) { 4259 case 12: 4260 engine->emit_flush = gen12_emit_flush_rcs; 4261 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs; 4262 break; 4263 case 11: 4264 engine->emit_flush = gen11_emit_flush_rcs; 4265 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs; 4266 break; 4267 default: 4268 engine->emit_flush = gen8_emit_flush_rcs; 4269 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs; 4270 break; 4271 } 4272 } 4273 4274 static inline void guc_default_irqs(struct intel_engine_cs *engine) 4275 { 4276 engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT; 4277 intel_engine_set_irq_handler(engine, cs_irq_handler); 4278 } 4279 4280 static void guc_sched_engine_destroy(struct kref *kref) 4281 { 4282 struct i915_sched_engine *sched_engine = 4283 container_of(kref, typeof(*sched_engine), ref); 4284 struct intel_guc *guc = sched_engine->private_data; 4285 4286 guc->sched_engine = NULL; 4287 tasklet_kill(&sched_engine->tasklet); /* flush the callback */ 4288 kfree(sched_engine); 4289 } 4290 4291 int intel_guc_submission_setup(struct intel_engine_cs *engine) 4292 { 4293 struct drm_i915_private *i915 = engine->i915; 4294 struct intel_guc *guc = &engine->gt->uc.guc; 4295 4296 /* 4297 * The setup relies on several assumptions (e.g. irqs always enabled) 4298 * that are only valid on gen11+ 4299 */ 4300 GEM_BUG_ON(GRAPHICS_VER(i915) < 11); 4301 4302 if (!guc->sched_engine) { 4303 guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL); 4304 if (!guc->sched_engine) 4305 return -ENOMEM; 4306 4307 guc->sched_engine->schedule = i915_schedule; 4308 guc->sched_engine->disabled = guc_sched_engine_disabled; 4309 guc->sched_engine->private_data = guc; 4310 guc->sched_engine->destroy = guc_sched_engine_destroy; 4311 guc->sched_engine->bump_inflight_request_prio = 4312 guc_bump_inflight_request_prio; 4313 guc->sched_engine->retire_inflight_request_prio = 4314 guc_retire_inflight_request_prio; 4315 tasklet_setup(&guc->sched_engine->tasklet, 4316 guc_submission_tasklet); 4317 } 4318 i915_sched_engine_put(engine->sched_engine); 4319 engine->sched_engine = i915_sched_engine_get(guc->sched_engine); 4320 4321 guc_default_vfuncs(engine); 4322 guc_default_irqs(engine); 4323 guc_init_breadcrumbs(engine); 4324 4325 if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) 4326 rcs_submission_override(engine); 4327 4328 lrc_init_wa_ctx(engine); 4329 4330 /* Finally, take ownership and responsibility for cleanup! */ 4331 engine->sanitize = guc_sanitize; 4332 engine->release = guc_release; 4333 4334 return 0; 4335 } 4336 4337 struct scheduling_policy { 4338 /* internal data */ 4339 u32 max_words, num_words; 4340 u32 count; 4341 /* API data */ 4342 struct guc_update_scheduling_policy h2g; 4343 }; 4344 4345 static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy) 4346 { 4347 u32 *start = (void *)&policy->h2g; 4348 u32 *end = policy->h2g.data + policy->num_words; 4349 size_t delta = end - start; 4350 4351 return delta; 4352 } 4353 4354 static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy) 4355 { 4356 policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV; 4357 policy->max_words = ARRAY_SIZE(policy->h2g.data); 4358 policy->num_words = 0; 4359 policy->count = 0; 4360 4361 return policy; 4362 } 4363 4364 static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy, 4365 u32 action, u32 *data, u32 len) 4366 { 4367 u32 *klv_ptr = policy->h2g.data + policy->num_words; 4368 4369 GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words); 4370 *(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) | 4371 FIELD_PREP(GUC_KLV_0_LEN, len); 4372 memcpy(klv_ptr, data, sizeof(u32) * len); 4373 policy->num_words += 1 + len; 4374 policy->count++; 4375 } 4376 4377 static int __guc_action_set_scheduling_policies(struct intel_guc *guc, 4378 struct scheduling_policy *policy) 4379 { 4380 int ret; 4381 4382 ret = intel_guc_send(guc, (u32 *)&policy->h2g, 4383 __guc_scheduling_policy_action_size(policy)); 4384 if (ret < 0) { 4385 guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n", 4386 ERR_PTR(ret)); 4387 return ret; 4388 } 4389 4390 if (ret != policy->count) { 4391 guc_warn(guc, "global scheduler policy processed %d of %d KLVs!", 4392 ret, policy->count); 4393 if (ret > policy->count) 4394 return -EPROTO; 4395 } 4396 4397 return 0; 4398 } 4399 4400 static int guc_init_global_schedule_policy(struct intel_guc *guc) 4401 { 4402 struct scheduling_policy policy; 4403 struct intel_gt *gt = guc_to_gt(guc); 4404 intel_wakeref_t wakeref; 4405 int ret; 4406 4407 if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0)) 4408 return 0; 4409 4410 __guc_scheduling_policy_start_klv(&policy); 4411 4412 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) { 4413 u32 yield[] = { 4414 GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION, 4415 GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO, 4416 }; 4417 4418 __guc_scheduling_policy_add_klv(&policy, 4419 GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD, 4420 yield, ARRAY_SIZE(yield)); 4421 4422 ret = __guc_action_set_scheduling_policies(guc, &policy); 4423 } 4424 4425 return ret; 4426 } 4427 4428 static void guc_route_semaphores(struct intel_guc *guc, bool to_guc) 4429 { 4430 struct intel_gt *gt = guc_to_gt(guc); 4431 u32 val; 4432 4433 if (GRAPHICS_VER(gt->i915) < 12) 4434 return; 4435 4436 if (to_guc) 4437 val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL; 4438 else 4439 val = 0; 4440 4441 intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val); 4442 } 4443 4444 int intel_guc_submission_enable(struct intel_guc *guc) 4445 { 4446 int ret; 4447 4448 /* Semaphore interrupt enable and route to GuC */ 4449 guc_route_semaphores(guc, true); 4450 4451 ret = guc_init_submission(guc); 4452 if (ret) 4453 goto fail_sem; 4454 4455 ret = guc_init_engine_stats(guc); 4456 if (ret) 4457 goto fail_sem; 4458 4459 ret = guc_init_global_schedule_policy(guc); 4460 if (ret) 4461 goto fail_stats; 4462 4463 return 0; 4464 4465 fail_stats: 4466 guc_fini_engine_stats(guc); 4467 fail_sem: 4468 guc_route_semaphores(guc, false); 4469 return ret; 4470 } 4471 4472 /* Note: By the time we're here, GuC may have already been reset */ 4473 void intel_guc_submission_disable(struct intel_guc *guc) 4474 { 4475 guc_cancel_busyness_worker(guc); 4476 4477 /* Semaphore interrupt disable and route to host */ 4478 guc_route_semaphores(guc, false); 4479 } 4480 4481 static bool __guc_submission_supported(struct intel_guc *guc) 4482 { 4483 /* GuC submission is unavailable for pre-Gen11 */ 4484 return intel_guc_is_supported(guc) && 4485 GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11; 4486 } 4487 4488 static bool __guc_submission_selected(struct intel_guc *guc) 4489 { 4490 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 4491 4492 if (!intel_guc_submission_is_supported(guc)) 4493 return false; 4494 4495 return i915->params.enable_guc & ENABLE_GUC_SUBMISSION; 4496 } 4497 4498 int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc) 4499 { 4500 return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc); 4501 } 4502 4503 /* 4504 * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher 4505 * workloads are able to enjoy the latency reduction when delaying the schedule-disable 4506 * operation. This matches the 30fps game-render + encode (real world) workload this 4507 * knob was tested against. 4508 */ 4509 #define SCHED_DISABLE_DELAY_MS 34 4510 4511 /* 4512 * A threshold of 75% is a reasonable starting point considering that real world apps 4513 * generally don't get anywhere near this. 4514 */ 4515 #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \ 4516 (((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4) 4517 4518 void intel_guc_submission_init_early(struct intel_guc *guc) 4519 { 4520 xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ); 4521 4522 spin_lock_init(&guc->submission_state.lock); 4523 INIT_LIST_HEAD(&guc->submission_state.guc_id_list); 4524 ida_init(&guc->submission_state.guc_ids); 4525 INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts); 4526 INIT_WORK(&guc->submission_state.destroyed_worker, 4527 destroyed_worker_func); 4528 INIT_WORK(&guc->submission_state.reset_fail_worker, 4529 reset_fail_worker_func); 4530 4531 spin_lock_init(&guc->timestamp.lock); 4532 INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping); 4533 4534 guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS; 4535 guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID; 4536 guc->submission_state.sched_disable_gucid_threshold = 4537 NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc); 4538 guc->submission_supported = __guc_submission_supported(guc); 4539 guc->submission_selected = __guc_submission_selected(guc); 4540 } 4541 4542 static inline struct intel_context * 4543 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id) 4544 { 4545 struct intel_context *ce; 4546 4547 if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) { 4548 guc_err(guc, "Invalid ctx_id %u\n", ctx_id); 4549 return NULL; 4550 } 4551 4552 ce = __get_context(guc, ctx_id); 4553 if (unlikely(!ce)) { 4554 guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id); 4555 return NULL; 4556 } 4557 4558 if (unlikely(intel_context_is_child(ce))) { 4559 guc_err(guc, "Context is child, ctx_id %u\n", ctx_id); 4560 return NULL; 4561 } 4562 4563 return ce; 4564 } 4565 4566 int intel_guc_deregister_done_process_msg(struct intel_guc *guc, 4567 const u32 *msg, 4568 u32 len) 4569 { 4570 struct intel_context *ce; 4571 u32 ctx_id; 4572 4573 if (unlikely(len < 1)) { 4574 guc_err(guc, "Invalid length %u\n", len); 4575 return -EPROTO; 4576 } 4577 ctx_id = msg[0]; 4578 4579 ce = g2h_context_lookup(guc, ctx_id); 4580 if (unlikely(!ce)) 4581 return -EPROTO; 4582 4583 trace_intel_context_deregister_done(ce); 4584 4585 #ifdef CONFIG_DRM_I915_SELFTEST 4586 if (unlikely(ce->drop_deregister)) { 4587 ce->drop_deregister = false; 4588 return 0; 4589 } 4590 #endif 4591 4592 if (context_wait_for_deregister_to_register(ce)) { 4593 struct intel_runtime_pm *runtime_pm = 4594 &ce->engine->gt->i915->runtime_pm; 4595 intel_wakeref_t wakeref; 4596 4597 /* 4598 * Previous owner of this guc_id has been deregistered, now safe 4599 * register this context. 4600 */ 4601 with_intel_runtime_pm(runtime_pm, wakeref) 4602 register_context(ce, true); 4603 guc_signal_context_fence(ce); 4604 intel_context_put(ce); 4605 } else if (context_destroyed(ce)) { 4606 /* Context has been destroyed */ 4607 intel_gt_pm_put_async(guc_to_gt(guc)); 4608 release_guc_id(guc, ce); 4609 __guc_context_destroy(ce); 4610 } 4611 4612 decr_outstanding_submission_g2h(guc); 4613 4614 return 0; 4615 } 4616 4617 int intel_guc_sched_done_process_msg(struct intel_guc *guc, 4618 const u32 *msg, 4619 u32 len) 4620 { 4621 struct intel_context *ce; 4622 unsigned long flags; 4623 u32 ctx_id; 4624 4625 if (unlikely(len < 2)) { 4626 guc_err(guc, "Invalid length %u\n", len); 4627 return -EPROTO; 4628 } 4629 ctx_id = msg[0]; 4630 4631 ce = g2h_context_lookup(guc, ctx_id); 4632 if (unlikely(!ce)) 4633 return -EPROTO; 4634 4635 if (unlikely(context_destroyed(ce) || 4636 (!context_pending_enable(ce) && 4637 !context_pending_disable(ce)))) { 4638 guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n", 4639 ce->guc_state.sched_state, ctx_id); 4640 return -EPROTO; 4641 } 4642 4643 trace_intel_context_sched_done(ce); 4644 4645 if (context_pending_enable(ce)) { 4646 #ifdef CONFIG_DRM_I915_SELFTEST 4647 if (unlikely(ce->drop_schedule_enable)) { 4648 ce->drop_schedule_enable = false; 4649 return 0; 4650 } 4651 #endif 4652 4653 spin_lock_irqsave(&ce->guc_state.lock, flags); 4654 clr_context_pending_enable(ce); 4655 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 4656 } else if (context_pending_disable(ce)) { 4657 bool banned; 4658 4659 #ifdef CONFIG_DRM_I915_SELFTEST 4660 if (unlikely(ce->drop_schedule_disable)) { 4661 ce->drop_schedule_disable = false; 4662 return 0; 4663 } 4664 #endif 4665 4666 /* 4667 * Unpin must be done before __guc_signal_context_fence, 4668 * otherwise a race exists between the requests getting 4669 * submitted + retired before this unpin completes resulting in 4670 * the pin_count going to zero and the context still being 4671 * enabled. 4672 */ 4673 intel_context_sched_disable_unpin(ce); 4674 4675 spin_lock_irqsave(&ce->guc_state.lock, flags); 4676 banned = context_banned(ce); 4677 clr_context_banned(ce); 4678 clr_context_pending_disable(ce); 4679 __guc_signal_context_fence(ce); 4680 guc_blocked_fence_complete(ce); 4681 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 4682 4683 if (banned) { 4684 guc_cancel_context_requests(ce); 4685 intel_engine_signal_breadcrumbs(ce->engine); 4686 } 4687 } 4688 4689 decr_outstanding_submission_g2h(guc); 4690 intel_context_put(ce); 4691 4692 return 0; 4693 } 4694 4695 static void capture_error_state(struct intel_guc *guc, 4696 struct intel_context *ce) 4697 { 4698 struct intel_gt *gt = guc_to_gt(guc); 4699 struct drm_i915_private *i915 = gt->i915; 4700 struct intel_engine_cs *engine = __context_to_physical_engine(ce); 4701 intel_wakeref_t wakeref; 4702 4703 intel_engine_set_hung_context(engine, ce); 4704 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 4705 i915_capture_error_state(gt, engine->mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE); 4706 atomic_inc(&i915->gpu_error.reset_engine_count[engine->uabi_class]); 4707 } 4708 4709 static void guc_context_replay(struct intel_context *ce) 4710 { 4711 struct i915_sched_engine *sched_engine = ce->engine->sched_engine; 4712 4713 __guc_reset_context(ce, ce->engine->mask); 4714 tasklet_hi_schedule(&sched_engine->tasklet); 4715 } 4716 4717 static void guc_handle_context_reset(struct intel_guc *guc, 4718 struct intel_context *ce) 4719 { 4720 trace_intel_context_reset(ce); 4721 4722 guc_dbg(guc, "Got context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n", 4723 ce->guc_id.id, ce->engine->name, 4724 str_yes_no(intel_context_is_exiting(ce)), 4725 str_yes_no(intel_context_is_banned(ce))); 4726 4727 if (likely(intel_context_is_schedulable(ce))) { 4728 capture_error_state(guc, ce); 4729 guc_context_replay(ce); 4730 } else { 4731 guc_info(guc, "Ignoring context reset notification of exiting context 0x%04X on %s", 4732 ce->guc_id.id, ce->engine->name); 4733 } 4734 } 4735 4736 int intel_guc_context_reset_process_msg(struct intel_guc *guc, 4737 const u32 *msg, u32 len) 4738 { 4739 struct intel_context *ce; 4740 unsigned long flags; 4741 int ctx_id; 4742 4743 if (unlikely(len != 1)) { 4744 guc_err(guc, "Invalid length %u", len); 4745 return -EPROTO; 4746 } 4747 4748 ctx_id = msg[0]; 4749 4750 /* 4751 * The context lookup uses the xarray but lookups only require an RCU lock 4752 * not the full spinlock. So take the lock explicitly and keep it until the 4753 * context has been reference count locked to ensure it can't be destroyed 4754 * asynchronously until the reset is done. 4755 */ 4756 xa_lock_irqsave(&guc->context_lookup, flags); 4757 ce = g2h_context_lookup(guc, ctx_id); 4758 if (ce) 4759 intel_context_get(ce); 4760 xa_unlock_irqrestore(&guc->context_lookup, flags); 4761 4762 if (unlikely(!ce)) 4763 return -EPROTO; 4764 4765 guc_handle_context_reset(guc, ce); 4766 intel_context_put(ce); 4767 4768 return 0; 4769 } 4770 4771 int intel_guc_error_capture_process_msg(struct intel_guc *guc, 4772 const u32 *msg, u32 len) 4773 { 4774 u32 status; 4775 4776 if (unlikely(len != 1)) { 4777 guc_dbg(guc, "Invalid length %u", len); 4778 return -EPROTO; 4779 } 4780 4781 status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK; 4782 if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE) 4783 guc_warn(guc, "No space for error capture"); 4784 4785 intel_guc_capture_process(guc); 4786 4787 return 0; 4788 } 4789 4790 struct intel_engine_cs * 4791 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance) 4792 { 4793 struct intel_gt *gt = guc_to_gt(guc); 4794 u8 engine_class = guc_class_to_engine_class(guc_class); 4795 4796 /* Class index is checked in class converter */ 4797 GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE); 4798 4799 return gt->engine_class[engine_class][instance]; 4800 } 4801 4802 static void reset_fail_worker_func(struct work_struct *w) 4803 { 4804 struct intel_guc *guc = container_of(w, struct intel_guc, 4805 submission_state.reset_fail_worker); 4806 struct intel_gt *gt = guc_to_gt(guc); 4807 intel_engine_mask_t reset_fail_mask; 4808 unsigned long flags; 4809 4810 spin_lock_irqsave(&guc->submission_state.lock, flags); 4811 reset_fail_mask = guc->submission_state.reset_fail_mask; 4812 guc->submission_state.reset_fail_mask = 0; 4813 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 4814 4815 if (likely(reset_fail_mask)) { 4816 struct intel_engine_cs *engine; 4817 enum intel_engine_id id; 4818 4819 /* 4820 * GuC is toast at this point - it dead loops after sending the failed 4821 * reset notification. So need to manually determine the guilty context. 4822 * Note that it should be reliable to do this here because the GuC is 4823 * toast and will not be scheduling behind the KMD's back. 4824 */ 4825 for_each_engine_masked(engine, gt, reset_fail_mask, id) 4826 intel_guc_find_hung_context(engine); 4827 4828 intel_gt_handle_error(gt, reset_fail_mask, 4829 I915_ERROR_CAPTURE, 4830 "GuC failed to reset engine mask=0x%x", 4831 reset_fail_mask); 4832 } 4833 } 4834 4835 int intel_guc_engine_failure_process_msg(struct intel_guc *guc, 4836 const u32 *msg, u32 len) 4837 { 4838 struct intel_engine_cs *engine; 4839 u8 guc_class, instance; 4840 u32 reason; 4841 unsigned long flags; 4842 4843 if (unlikely(len != 3)) { 4844 guc_err(guc, "Invalid length %u", len); 4845 return -EPROTO; 4846 } 4847 4848 guc_class = msg[0]; 4849 instance = msg[1]; 4850 reason = msg[2]; 4851 4852 engine = intel_guc_lookup_engine(guc, guc_class, instance); 4853 if (unlikely(!engine)) { 4854 guc_err(guc, "Invalid engine %d:%d", guc_class, instance); 4855 return -EPROTO; 4856 } 4857 4858 /* 4859 * This is an unexpected failure of a hardware feature. So, log a real 4860 * error message not just the informational that comes with the reset. 4861 */ 4862 guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X", 4863 guc_class, instance, engine->name, reason); 4864 4865 spin_lock_irqsave(&guc->submission_state.lock, flags); 4866 guc->submission_state.reset_fail_mask |= engine->mask; 4867 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 4868 4869 /* 4870 * A GT reset flushes this worker queue (G2H handler) so we must use 4871 * another worker to trigger a GT reset. 4872 */ 4873 queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker); 4874 4875 return 0; 4876 } 4877 4878 void intel_guc_find_hung_context(struct intel_engine_cs *engine) 4879 { 4880 struct intel_guc *guc = &engine->gt->uc.guc; 4881 struct intel_context *ce; 4882 struct i915_request *rq; 4883 unsigned long index; 4884 unsigned long flags; 4885 4886 /* Reset called during driver load? GuC not yet initialised! */ 4887 if (unlikely(!guc_submission_initialized(guc))) 4888 return; 4889 4890 xa_lock_irqsave(&guc->context_lookup, flags); 4891 xa_for_each(&guc->context_lookup, index, ce) { 4892 bool found; 4893 4894 if (!kref_get_unless_zero(&ce->ref)) 4895 continue; 4896 4897 xa_unlock(&guc->context_lookup); 4898 4899 if (!intel_context_is_pinned(ce)) 4900 goto next; 4901 4902 if (intel_engine_is_virtual(ce->engine)) { 4903 if (!(ce->engine->mask & engine->mask)) 4904 goto next; 4905 } else { 4906 if (ce->engine != engine) 4907 goto next; 4908 } 4909 4910 found = false; 4911 spin_lock(&ce->guc_state.lock); 4912 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) { 4913 if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE) 4914 continue; 4915 4916 found = true; 4917 break; 4918 } 4919 spin_unlock(&ce->guc_state.lock); 4920 4921 if (found) { 4922 intel_engine_set_hung_context(engine, ce); 4923 4924 /* Can only cope with one hang at a time... */ 4925 intel_context_put(ce); 4926 xa_lock(&guc->context_lookup); 4927 goto done; 4928 } 4929 4930 next: 4931 intel_context_put(ce); 4932 xa_lock(&guc->context_lookup); 4933 } 4934 done: 4935 xa_unlock_irqrestore(&guc->context_lookup, flags); 4936 } 4937 4938 void intel_guc_dump_active_requests(struct intel_engine_cs *engine, 4939 struct i915_request *hung_rq, 4940 struct drm_printer *m) 4941 { 4942 struct intel_guc *guc = &engine->gt->uc.guc; 4943 struct intel_context *ce; 4944 unsigned long index; 4945 unsigned long flags; 4946 4947 /* Reset called during driver load? GuC not yet initialised! */ 4948 if (unlikely(!guc_submission_initialized(guc))) 4949 return; 4950 4951 xa_lock_irqsave(&guc->context_lookup, flags); 4952 xa_for_each(&guc->context_lookup, index, ce) { 4953 if (!kref_get_unless_zero(&ce->ref)) 4954 continue; 4955 4956 xa_unlock(&guc->context_lookup); 4957 4958 if (!intel_context_is_pinned(ce)) 4959 goto next; 4960 4961 if (intel_engine_is_virtual(ce->engine)) { 4962 if (!(ce->engine->mask & engine->mask)) 4963 goto next; 4964 } else { 4965 if (ce->engine != engine) 4966 goto next; 4967 } 4968 4969 spin_lock(&ce->guc_state.lock); 4970 intel_engine_dump_active_requests(&ce->guc_state.requests, 4971 hung_rq, m); 4972 spin_unlock(&ce->guc_state.lock); 4973 4974 next: 4975 intel_context_put(ce); 4976 xa_lock(&guc->context_lookup); 4977 } 4978 xa_unlock_irqrestore(&guc->context_lookup, flags); 4979 } 4980 4981 void intel_guc_submission_print_info(struct intel_guc *guc, 4982 struct drm_printer *p) 4983 { 4984 struct i915_sched_engine *sched_engine = guc->sched_engine; 4985 struct rb_node *rb; 4986 unsigned long flags; 4987 4988 if (!sched_engine) 4989 return; 4990 4991 drm_printf(p, "GuC Submission API Version: %d.%d.%d\n", 4992 guc->submission_version.major, guc->submission_version.minor, 4993 guc->submission_version.patch); 4994 drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n", 4995 atomic_read(&guc->outstanding_submission_g2h)); 4996 drm_printf(p, "GuC tasklet count: %u\n", 4997 atomic_read(&sched_engine->tasklet.count)); 4998 4999 spin_lock_irqsave(&sched_engine->lock, flags); 5000 drm_printf(p, "Requests in GuC submit tasklet:\n"); 5001 for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) { 5002 struct i915_priolist *pl = to_priolist(rb); 5003 struct i915_request *rq; 5004 5005 priolist_for_each_request(rq, pl) 5006 drm_printf(p, "guc_id=%u, seqno=%llu\n", 5007 rq->context->guc_id.id, 5008 rq->fence.seqno); 5009 } 5010 spin_unlock_irqrestore(&sched_engine->lock, flags); 5011 drm_printf(p, "\n"); 5012 } 5013 5014 static inline void guc_log_context_priority(struct drm_printer *p, 5015 struct intel_context *ce) 5016 { 5017 int i; 5018 5019 drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio); 5020 drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n"); 5021 for (i = GUC_CLIENT_PRIORITY_KMD_HIGH; 5022 i < GUC_CLIENT_PRIORITY_NUM; ++i) { 5023 drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n", 5024 i, ce->guc_state.prio_count[i]); 5025 } 5026 drm_printf(p, "\n"); 5027 } 5028 5029 static inline void guc_log_context(struct drm_printer *p, 5030 struct intel_context *ce) 5031 { 5032 drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id); 5033 drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca); 5034 drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n", 5035 ce->ring->head, 5036 ce->lrc_reg_state[CTX_RING_HEAD]); 5037 drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n", 5038 ce->ring->tail, 5039 ce->lrc_reg_state[CTX_RING_TAIL]); 5040 drm_printf(p, "\t\tContext Pin Count: %u\n", 5041 atomic_read(&ce->pin_count)); 5042 drm_printf(p, "\t\tGuC ID Ref Count: %u\n", 5043 atomic_read(&ce->guc_id.ref)); 5044 drm_printf(p, "\t\tSchedule State: 0x%x\n", 5045 ce->guc_state.sched_state); 5046 } 5047 5048 void intel_guc_submission_print_context_info(struct intel_guc *guc, 5049 struct drm_printer *p) 5050 { 5051 struct intel_context *ce; 5052 unsigned long index; 5053 unsigned long flags; 5054 5055 xa_lock_irqsave(&guc->context_lookup, flags); 5056 xa_for_each(&guc->context_lookup, index, ce) { 5057 GEM_BUG_ON(intel_context_is_child(ce)); 5058 5059 guc_log_context(p, ce); 5060 guc_log_context_priority(p, ce); 5061 5062 if (intel_context_is_parent(ce)) { 5063 struct intel_context *child; 5064 5065 drm_printf(p, "\t\tNumber children: %u\n", 5066 ce->parallel.number_children); 5067 5068 if (ce->parallel.guc.wq_status) { 5069 drm_printf(p, "\t\tWQI Head: %u\n", 5070 READ_ONCE(*ce->parallel.guc.wq_head)); 5071 drm_printf(p, "\t\tWQI Tail: %u\n", 5072 READ_ONCE(*ce->parallel.guc.wq_tail)); 5073 drm_printf(p, "\t\tWQI Status: %u\n", 5074 READ_ONCE(*ce->parallel.guc.wq_status)); 5075 } 5076 5077 if (ce->engine->emit_bb_start == 5078 emit_bb_start_parent_no_preempt_mid_batch) { 5079 u8 i; 5080 5081 drm_printf(p, "\t\tChildren Go: %u\n", 5082 get_children_go_value(ce)); 5083 for (i = 0; i < ce->parallel.number_children; ++i) 5084 drm_printf(p, "\t\tChildren Join: %u\n", 5085 get_children_join_value(ce, i)); 5086 } 5087 5088 for_each_child(ce, child) 5089 guc_log_context(p, child); 5090 } 5091 } 5092 xa_unlock_irqrestore(&guc->context_lookup, flags); 5093 } 5094 5095 static inline u32 get_children_go_addr(struct intel_context *ce) 5096 { 5097 GEM_BUG_ON(!intel_context_is_parent(ce)); 5098 5099 return i915_ggtt_offset(ce->state) + 5100 __get_parent_scratch_offset(ce) + 5101 offsetof(struct parent_scratch, go.semaphore); 5102 } 5103 5104 static inline u32 get_children_join_addr(struct intel_context *ce, 5105 u8 child_index) 5106 { 5107 GEM_BUG_ON(!intel_context_is_parent(ce)); 5108 5109 return i915_ggtt_offset(ce->state) + 5110 __get_parent_scratch_offset(ce) + 5111 offsetof(struct parent_scratch, join[child_index].semaphore); 5112 } 5113 5114 #define PARENT_GO_BB 1 5115 #define PARENT_GO_FINI_BREADCRUMB 0 5116 #define CHILD_GO_BB 1 5117 #define CHILD_GO_FINI_BREADCRUMB 0 5118 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, 5119 u64 offset, u32 len, 5120 const unsigned int flags) 5121 { 5122 struct intel_context *ce = rq->context; 5123 u32 *cs; 5124 u8 i; 5125 5126 GEM_BUG_ON(!intel_context_is_parent(ce)); 5127 5128 cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children); 5129 if (IS_ERR(cs)) 5130 return PTR_ERR(cs); 5131 5132 /* Wait on children */ 5133 for (i = 0; i < ce->parallel.number_children; ++i) { 5134 *cs++ = (MI_SEMAPHORE_WAIT | 5135 MI_SEMAPHORE_GLOBAL_GTT | 5136 MI_SEMAPHORE_POLL | 5137 MI_SEMAPHORE_SAD_EQ_SDD); 5138 *cs++ = PARENT_GO_BB; 5139 *cs++ = get_children_join_addr(ce, i); 5140 *cs++ = 0; 5141 } 5142 5143 /* Turn off preemption */ 5144 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 5145 *cs++ = MI_NOOP; 5146 5147 /* Tell children go */ 5148 cs = gen8_emit_ggtt_write(cs, 5149 CHILD_GO_BB, 5150 get_children_go_addr(ce), 5151 0); 5152 5153 /* Jump to batch */ 5154 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 5155 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 5156 *cs++ = lower_32_bits(offset); 5157 *cs++ = upper_32_bits(offset); 5158 *cs++ = MI_NOOP; 5159 5160 intel_ring_advance(rq, cs); 5161 5162 return 0; 5163 } 5164 5165 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, 5166 u64 offset, u32 len, 5167 const unsigned int flags) 5168 { 5169 struct intel_context *ce = rq->context; 5170 struct intel_context *parent = intel_context_to_parent(ce); 5171 u32 *cs; 5172 5173 GEM_BUG_ON(!intel_context_is_child(ce)); 5174 5175 cs = intel_ring_begin(rq, 12); 5176 if (IS_ERR(cs)) 5177 return PTR_ERR(cs); 5178 5179 /* Signal parent */ 5180 cs = gen8_emit_ggtt_write(cs, 5181 PARENT_GO_BB, 5182 get_children_join_addr(parent, 5183 ce->parallel.child_index), 5184 0); 5185 5186 /* Wait on parent for go */ 5187 *cs++ = (MI_SEMAPHORE_WAIT | 5188 MI_SEMAPHORE_GLOBAL_GTT | 5189 MI_SEMAPHORE_POLL | 5190 MI_SEMAPHORE_SAD_EQ_SDD); 5191 *cs++ = CHILD_GO_BB; 5192 *cs++ = get_children_go_addr(parent); 5193 *cs++ = 0; 5194 5195 /* Turn off preemption */ 5196 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 5197 5198 /* Jump to batch */ 5199 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 5200 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 5201 *cs++ = lower_32_bits(offset); 5202 *cs++ = upper_32_bits(offset); 5203 5204 intel_ring_advance(rq, cs); 5205 5206 return 0; 5207 } 5208 5209 static u32 * 5210 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 5211 u32 *cs) 5212 { 5213 struct intel_context *ce = rq->context; 5214 u8 i; 5215 5216 GEM_BUG_ON(!intel_context_is_parent(ce)); 5217 5218 /* Wait on children */ 5219 for (i = 0; i < ce->parallel.number_children; ++i) { 5220 *cs++ = (MI_SEMAPHORE_WAIT | 5221 MI_SEMAPHORE_GLOBAL_GTT | 5222 MI_SEMAPHORE_POLL | 5223 MI_SEMAPHORE_SAD_EQ_SDD); 5224 *cs++ = PARENT_GO_FINI_BREADCRUMB; 5225 *cs++ = get_children_join_addr(ce, i); 5226 *cs++ = 0; 5227 } 5228 5229 /* Turn on preemption */ 5230 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 5231 *cs++ = MI_NOOP; 5232 5233 /* Tell children go */ 5234 cs = gen8_emit_ggtt_write(cs, 5235 CHILD_GO_FINI_BREADCRUMB, 5236 get_children_go_addr(ce), 5237 0); 5238 5239 return cs; 5240 } 5241 5242 /* 5243 * If this true, a submission of multi-lrc requests had an error and the 5244 * requests need to be skipped. The front end (execuf IOCTL) should've called 5245 * i915_request_skip which squashes the BB but we still need to emit the fini 5246 * breadrcrumbs seqno write. At this point we don't know how many of the 5247 * requests in the multi-lrc submission were generated so we can't do the 5248 * handshake between the parent and children (e.g. if 4 requests should be 5249 * generated but 2nd hit an error only 1 would be seen by the GuC backend). 5250 * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error 5251 * has occurred on any of the requests in submission / relationship. 5252 */ 5253 static inline bool skip_handshake(struct i915_request *rq) 5254 { 5255 return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags); 5256 } 5257 5258 #define NON_SKIP_LEN 6 5259 static u32 * 5260 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 5261 u32 *cs) 5262 { 5263 struct intel_context *ce = rq->context; 5264 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; 5265 __maybe_unused u32 *start_fini_breadcrumb_cs = cs; 5266 5267 GEM_BUG_ON(!intel_context_is_parent(ce)); 5268 5269 if (unlikely(skip_handshake(rq))) { 5270 /* 5271 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch, 5272 * the NON_SKIP_LEN comes from the length of the emits below. 5273 */ 5274 memset(cs, 0, sizeof(u32) * 5275 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); 5276 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; 5277 } else { 5278 cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs); 5279 } 5280 5281 /* Emit fini breadcrumb */ 5282 before_fini_breadcrumb_user_interrupt_cs = cs; 5283 cs = gen8_emit_ggtt_write(cs, 5284 rq->fence.seqno, 5285 i915_request_active_timeline(rq)->hwsp_offset, 5286 0); 5287 5288 /* User interrupt */ 5289 *cs++ = MI_USER_INTERRUPT; 5290 *cs++ = MI_NOOP; 5291 5292 /* Ensure our math for skip + emit is correct */ 5293 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != 5294 cs); 5295 GEM_BUG_ON(start_fini_breadcrumb_cs + 5296 ce->engine->emit_fini_breadcrumb_dw != cs); 5297 5298 rq->tail = intel_ring_offset(rq, cs); 5299 5300 return cs; 5301 } 5302 5303 static u32 * 5304 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 5305 u32 *cs) 5306 { 5307 struct intel_context *ce = rq->context; 5308 struct intel_context *parent = intel_context_to_parent(ce); 5309 5310 GEM_BUG_ON(!intel_context_is_child(ce)); 5311 5312 /* Turn on preemption */ 5313 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 5314 *cs++ = MI_NOOP; 5315 5316 /* Signal parent */ 5317 cs = gen8_emit_ggtt_write(cs, 5318 PARENT_GO_FINI_BREADCRUMB, 5319 get_children_join_addr(parent, 5320 ce->parallel.child_index), 5321 0); 5322 5323 /* Wait parent on for go */ 5324 *cs++ = (MI_SEMAPHORE_WAIT | 5325 MI_SEMAPHORE_GLOBAL_GTT | 5326 MI_SEMAPHORE_POLL | 5327 MI_SEMAPHORE_SAD_EQ_SDD); 5328 *cs++ = CHILD_GO_FINI_BREADCRUMB; 5329 *cs++ = get_children_go_addr(parent); 5330 *cs++ = 0; 5331 5332 return cs; 5333 } 5334 5335 static u32 * 5336 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 5337 u32 *cs) 5338 { 5339 struct intel_context *ce = rq->context; 5340 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; 5341 __maybe_unused u32 *start_fini_breadcrumb_cs = cs; 5342 5343 GEM_BUG_ON(!intel_context_is_child(ce)); 5344 5345 if (unlikely(skip_handshake(rq))) { 5346 /* 5347 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch, 5348 * the NON_SKIP_LEN comes from the length of the emits below. 5349 */ 5350 memset(cs, 0, sizeof(u32) * 5351 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); 5352 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; 5353 } else { 5354 cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs); 5355 } 5356 5357 /* Emit fini breadcrumb */ 5358 before_fini_breadcrumb_user_interrupt_cs = cs; 5359 cs = gen8_emit_ggtt_write(cs, 5360 rq->fence.seqno, 5361 i915_request_active_timeline(rq)->hwsp_offset, 5362 0); 5363 5364 /* User interrupt */ 5365 *cs++ = MI_USER_INTERRUPT; 5366 *cs++ = MI_NOOP; 5367 5368 /* Ensure our math for skip + emit is correct */ 5369 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != 5370 cs); 5371 GEM_BUG_ON(start_fini_breadcrumb_cs + 5372 ce->engine->emit_fini_breadcrumb_dw != cs); 5373 5374 rq->tail = intel_ring_offset(rq, cs); 5375 5376 return cs; 5377 } 5378 5379 #undef NON_SKIP_LEN 5380 5381 static struct intel_context * 5382 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, 5383 unsigned long flags) 5384 { 5385 struct guc_virtual_engine *ve; 5386 struct intel_guc *guc; 5387 unsigned int n; 5388 int err; 5389 5390 ve = kzalloc(sizeof(*ve), GFP_KERNEL); 5391 if (!ve) 5392 return ERR_PTR(-ENOMEM); 5393 5394 guc = &siblings[0]->gt->uc.guc; 5395 5396 ve->base.i915 = siblings[0]->i915; 5397 ve->base.gt = siblings[0]->gt; 5398 ve->base.uncore = siblings[0]->uncore; 5399 ve->base.id = -1; 5400 5401 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID; 5402 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 5403 ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 5404 ve->base.saturated = ALL_ENGINES; 5405 5406 snprintf(ve->base.name, sizeof(ve->base.name), "virtual"); 5407 5408 ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine); 5409 5410 ve->base.cops = &virtual_guc_context_ops; 5411 ve->base.request_alloc = guc_request_alloc; 5412 ve->base.bump_serial = virtual_guc_bump_serial; 5413 5414 ve->base.submit_request = guc_submit_request; 5415 5416 ve->base.flags = I915_ENGINE_IS_VIRTUAL; 5417 5418 intel_context_init(&ve->context, &ve->base); 5419 5420 for (n = 0; n < count; n++) { 5421 struct intel_engine_cs *sibling = siblings[n]; 5422 5423 GEM_BUG_ON(!is_power_of_2(sibling->mask)); 5424 if (sibling->mask & ve->base.mask) { 5425 guc_dbg(guc, "duplicate %s entry in load balancer\n", 5426 sibling->name); 5427 err = -EINVAL; 5428 goto err_put; 5429 } 5430 5431 ve->base.mask |= sibling->mask; 5432 ve->base.logical_mask |= sibling->logical_mask; 5433 5434 if (n != 0 && ve->base.class != sibling->class) { 5435 guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n", 5436 sibling->class, ve->base.class); 5437 err = -EINVAL; 5438 goto err_put; 5439 } else if (n == 0) { 5440 ve->base.class = sibling->class; 5441 ve->base.uabi_class = sibling->uabi_class; 5442 snprintf(ve->base.name, sizeof(ve->base.name), 5443 "v%dx%d", ve->base.class, count); 5444 ve->base.context_size = sibling->context_size; 5445 5446 ve->base.add_active_request = 5447 sibling->add_active_request; 5448 ve->base.remove_active_request = 5449 sibling->remove_active_request; 5450 ve->base.emit_bb_start = sibling->emit_bb_start; 5451 ve->base.emit_flush = sibling->emit_flush; 5452 ve->base.emit_init_breadcrumb = 5453 sibling->emit_init_breadcrumb; 5454 ve->base.emit_fini_breadcrumb = 5455 sibling->emit_fini_breadcrumb; 5456 ve->base.emit_fini_breadcrumb_dw = 5457 sibling->emit_fini_breadcrumb_dw; 5458 ve->base.breadcrumbs = 5459 intel_breadcrumbs_get(sibling->breadcrumbs); 5460 5461 ve->base.flags |= sibling->flags; 5462 5463 ve->base.props.timeslice_duration_ms = 5464 sibling->props.timeslice_duration_ms; 5465 ve->base.props.preempt_timeout_ms = 5466 sibling->props.preempt_timeout_ms; 5467 } 5468 } 5469 5470 return &ve->context; 5471 5472 err_put: 5473 intel_context_put(&ve->context); 5474 return ERR_PTR(err); 5475 } 5476 5477 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve) 5478 { 5479 struct intel_engine_cs *engine; 5480 intel_engine_mask_t tmp, mask = ve->mask; 5481 5482 for_each_engine_masked(engine, ve->gt, mask, tmp) 5483 if (READ_ONCE(engine->props.heartbeat_interval_ms)) 5484 return true; 5485 5486 return false; 5487 } 5488 5489 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5490 #include "selftest_guc.c" 5491 #include "selftest_guc_multi_lrc.c" 5492 #include "selftest_guc_hangcheck.c" 5493 #endif 5494