1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014 Intel Corporation 4 */ 5 6 #include <linux/circ_buf.h> 7 8 #include "gem/i915_gem_context.h" 9 #include "gt/gen8_engine_cs.h" 10 #include "gt/intel_breadcrumbs.h" 11 #include "gt/intel_context.h" 12 #include "gt/intel_engine_heartbeat.h" 13 #include "gt/intel_engine_pm.h" 14 #include "gt/intel_engine_regs.h" 15 #include "gt/intel_gpu_commands.h" 16 #include "gt/intel_gt.h" 17 #include "gt/intel_gt_clock_utils.h" 18 #include "gt/intel_gt_irq.h" 19 #include "gt/intel_gt_pm.h" 20 #include "gt/intel_gt_regs.h" 21 #include "gt/intel_gt_requests.h" 22 #include "gt/intel_lrc.h" 23 #include "gt/intel_lrc_reg.h" 24 #include "gt/intel_mocs.h" 25 #include "gt/intel_ring.h" 26 27 #include "intel_guc_ads.h" 28 #include "intel_guc_capture.h" 29 #include "intel_guc_submission.h" 30 31 #include "i915_drv.h" 32 #include "i915_trace.h" 33 34 /** 35 * DOC: GuC-based command submission 36 * 37 * The Scratch registers: 38 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes 39 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then 40 * triggers an interrupt on the GuC via another register write (0xC4C8). 41 * Firmware writes a success/fail code back to the action register after 42 * processes the request. The kernel driver polls waiting for this update and 43 * then proceeds. 44 * 45 * Command Transport buffers (CTBs): 46 * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host 47 * - G2H) are a message interface between the i915 and GuC. 48 * 49 * Context registration: 50 * Before a context can be submitted it must be registered with the GuC via a 51 * H2G. A unique guc_id is associated with each context. The context is either 52 * registered at request creation time (normal operation) or at submission time 53 * (abnormal operation, e.g. after a reset). 54 * 55 * Context submission: 56 * The i915 updates the LRC tail value in memory. The i915 must enable the 57 * scheduling of the context within the GuC for the GuC to actually consider it. 58 * Therefore, the first time a disabled context is submitted we use a schedule 59 * enable H2G, while follow up submissions are done via the context submit H2G, 60 * which informs the GuC that a previously enabled context has new work 61 * available. 62 * 63 * Context unpin: 64 * To unpin a context a H2G is used to disable scheduling. When the 65 * corresponding G2H returns indicating the scheduling disable operation has 66 * completed it is safe to unpin the context. While a disable is in flight it 67 * isn't safe to resubmit the context so a fence is used to stall all future 68 * requests of that context until the G2H is returned. 69 * 70 * Context deregistration: 71 * Before a context can be destroyed or if we steal its guc_id we must 72 * deregister the context with the GuC via H2G. If stealing the guc_id it isn't 73 * safe to submit anything to this guc_id until the deregister completes so a 74 * fence is used to stall all requests associated with this guc_id until the 75 * corresponding G2H returns indicating the guc_id has been deregistered. 76 * 77 * submission_state.guc_ids: 78 * Unique number associated with private GuC context data passed in during 79 * context registration / submission / deregistration. 64k available. Simple ida 80 * is used for allocation. 81 * 82 * Stealing guc_ids: 83 * If no guc_ids are available they can be stolen from another context at 84 * request creation time if that context is unpinned. If a guc_id can't be found 85 * we punt this problem to the user as we believe this is near impossible to hit 86 * during normal use cases. 87 * 88 * Locking: 89 * In the GuC submission code we have 3 basic spin locks which protect 90 * everything. Details about each below. 91 * 92 * sched_engine->lock 93 * This is the submission lock for all contexts that share an i915 schedule 94 * engine (sched_engine), thus only one of the contexts which share a 95 * sched_engine can be submitting at a time. Currently only one sched_engine is 96 * used for all of GuC submission but that could change in the future. 97 * 98 * guc->submission_state.lock 99 * Global lock for GuC submission state. Protects guc_ids and destroyed contexts 100 * list. 101 * 102 * ce->guc_state.lock 103 * Protects everything under ce->guc_state. Ensures that a context is in the 104 * correct state before issuing a H2G. e.g. We don't issue a schedule disable 105 * on a disabled context (bad idea), we don't issue a schedule enable when a 106 * schedule disable is in flight, etc... Also protects list of inflight requests 107 * on the context and the priority management state. Lock is individual to each 108 * context. 109 * 110 * Lock ordering rules: 111 * sched_engine->lock -> ce->guc_state.lock 112 * guc->submission_state.lock -> ce->guc_state.lock 113 * 114 * Reset races: 115 * When a full GT reset is triggered it is assumed that some G2H responses to 116 * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be 117 * fatal as we do certain operations upon receiving a G2H (e.g. destroy 118 * contexts, release guc_ids, etc...). When this occurs we can scrub the 119 * context state and cleanup appropriately, however this is quite racey. 120 * To avoid races, the reset code must disable submission before scrubbing for 121 * the missing G2H, while the submission code must check for submission being 122 * disabled and skip sending H2Gs and updating context states when it is. Both 123 * sides must also make sure to hold the relevant locks. 124 */ 125 126 /* GuC Virtual Engine */ 127 struct guc_virtual_engine { 128 struct intel_engine_cs base; 129 struct intel_context context; 130 }; 131 132 static struct intel_context * 133 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, 134 unsigned long flags); 135 136 static struct intel_context * 137 guc_create_parallel(struct intel_engine_cs **engines, 138 unsigned int num_siblings, 139 unsigned int width); 140 141 #define GUC_REQUEST_SIZE 64 /* bytes */ 142 143 /* 144 * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous 145 * per the GuC submission interface. A different allocation algorithm is used 146 * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to 147 * partition the guc_id space. We believe the number of multi-lrc contexts in 148 * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for 149 * multi-lrc. 150 */ 151 #define NUMBER_MULTI_LRC_GUC_ID(guc) \ 152 ((guc)->submission_state.num_guc_ids / 16) 153 154 /* 155 * Below is a set of functions which control the GuC scheduling state which 156 * require a lock. 157 */ 158 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER BIT(0) 159 #define SCHED_STATE_DESTROYED BIT(1) 160 #define SCHED_STATE_PENDING_DISABLE BIT(2) 161 #define SCHED_STATE_BANNED BIT(3) 162 #define SCHED_STATE_ENABLED BIT(4) 163 #define SCHED_STATE_PENDING_ENABLE BIT(5) 164 #define SCHED_STATE_REGISTERED BIT(6) 165 #define SCHED_STATE_POLICY_REQUIRED BIT(7) 166 #define SCHED_STATE_BLOCKED_SHIFT 8 167 #define SCHED_STATE_BLOCKED BIT(SCHED_STATE_BLOCKED_SHIFT) 168 #define SCHED_STATE_BLOCKED_MASK (0xfff << SCHED_STATE_BLOCKED_SHIFT) 169 170 static inline void init_sched_state(struct intel_context *ce) 171 { 172 lockdep_assert_held(&ce->guc_state.lock); 173 ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK; 174 } 175 176 __maybe_unused 177 static bool sched_state_is_init(struct intel_context *ce) 178 { 179 /* Kernel contexts can have SCHED_STATE_REGISTERED after suspend. */ 180 return !(ce->guc_state.sched_state & 181 ~(SCHED_STATE_BLOCKED_MASK | SCHED_STATE_REGISTERED)); 182 } 183 184 static inline bool 185 context_wait_for_deregister_to_register(struct intel_context *ce) 186 { 187 return ce->guc_state.sched_state & 188 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 189 } 190 191 static inline void 192 set_context_wait_for_deregister_to_register(struct intel_context *ce) 193 { 194 lockdep_assert_held(&ce->guc_state.lock); 195 ce->guc_state.sched_state |= 196 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 197 } 198 199 static inline void 200 clr_context_wait_for_deregister_to_register(struct intel_context *ce) 201 { 202 lockdep_assert_held(&ce->guc_state.lock); 203 ce->guc_state.sched_state &= 204 ~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 205 } 206 207 static inline bool 208 context_destroyed(struct intel_context *ce) 209 { 210 return ce->guc_state.sched_state & SCHED_STATE_DESTROYED; 211 } 212 213 static inline void 214 set_context_destroyed(struct intel_context *ce) 215 { 216 lockdep_assert_held(&ce->guc_state.lock); 217 ce->guc_state.sched_state |= SCHED_STATE_DESTROYED; 218 } 219 220 static inline bool context_pending_disable(struct intel_context *ce) 221 { 222 return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE; 223 } 224 225 static inline void set_context_pending_disable(struct intel_context *ce) 226 { 227 lockdep_assert_held(&ce->guc_state.lock); 228 ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE; 229 } 230 231 static inline void clr_context_pending_disable(struct intel_context *ce) 232 { 233 lockdep_assert_held(&ce->guc_state.lock); 234 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE; 235 } 236 237 static inline bool context_banned(struct intel_context *ce) 238 { 239 return ce->guc_state.sched_state & SCHED_STATE_BANNED; 240 } 241 242 static inline void set_context_banned(struct intel_context *ce) 243 { 244 lockdep_assert_held(&ce->guc_state.lock); 245 ce->guc_state.sched_state |= SCHED_STATE_BANNED; 246 } 247 248 static inline void clr_context_banned(struct intel_context *ce) 249 { 250 lockdep_assert_held(&ce->guc_state.lock); 251 ce->guc_state.sched_state &= ~SCHED_STATE_BANNED; 252 } 253 254 static inline bool context_enabled(struct intel_context *ce) 255 { 256 return ce->guc_state.sched_state & SCHED_STATE_ENABLED; 257 } 258 259 static inline void set_context_enabled(struct intel_context *ce) 260 { 261 lockdep_assert_held(&ce->guc_state.lock); 262 ce->guc_state.sched_state |= SCHED_STATE_ENABLED; 263 } 264 265 static inline void clr_context_enabled(struct intel_context *ce) 266 { 267 lockdep_assert_held(&ce->guc_state.lock); 268 ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED; 269 } 270 271 static inline bool context_pending_enable(struct intel_context *ce) 272 { 273 return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE; 274 } 275 276 static inline void set_context_pending_enable(struct intel_context *ce) 277 { 278 lockdep_assert_held(&ce->guc_state.lock); 279 ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE; 280 } 281 282 static inline void clr_context_pending_enable(struct intel_context *ce) 283 { 284 lockdep_assert_held(&ce->guc_state.lock); 285 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE; 286 } 287 288 static inline bool context_registered(struct intel_context *ce) 289 { 290 return ce->guc_state.sched_state & SCHED_STATE_REGISTERED; 291 } 292 293 static inline void set_context_registered(struct intel_context *ce) 294 { 295 lockdep_assert_held(&ce->guc_state.lock); 296 ce->guc_state.sched_state |= SCHED_STATE_REGISTERED; 297 } 298 299 static inline void clr_context_registered(struct intel_context *ce) 300 { 301 lockdep_assert_held(&ce->guc_state.lock); 302 ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED; 303 } 304 305 static inline bool context_policy_required(struct intel_context *ce) 306 { 307 return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED; 308 } 309 310 static inline void set_context_policy_required(struct intel_context *ce) 311 { 312 lockdep_assert_held(&ce->guc_state.lock); 313 ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED; 314 } 315 316 static inline void clr_context_policy_required(struct intel_context *ce) 317 { 318 lockdep_assert_held(&ce->guc_state.lock); 319 ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED; 320 } 321 322 static inline u32 context_blocked(struct intel_context *ce) 323 { 324 return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >> 325 SCHED_STATE_BLOCKED_SHIFT; 326 } 327 328 static inline void incr_context_blocked(struct intel_context *ce) 329 { 330 lockdep_assert_held(&ce->guc_state.lock); 331 332 ce->guc_state.sched_state += SCHED_STATE_BLOCKED; 333 334 GEM_BUG_ON(!context_blocked(ce)); /* Overflow check */ 335 } 336 337 static inline void decr_context_blocked(struct intel_context *ce) 338 { 339 lockdep_assert_held(&ce->guc_state.lock); 340 341 GEM_BUG_ON(!context_blocked(ce)); /* Underflow check */ 342 343 ce->guc_state.sched_state -= SCHED_STATE_BLOCKED; 344 } 345 346 static inline bool context_has_committed_requests(struct intel_context *ce) 347 { 348 return !!ce->guc_state.number_committed_requests; 349 } 350 351 static inline void incr_context_committed_requests(struct intel_context *ce) 352 { 353 lockdep_assert_held(&ce->guc_state.lock); 354 ++ce->guc_state.number_committed_requests; 355 GEM_BUG_ON(ce->guc_state.number_committed_requests < 0); 356 } 357 358 static inline void decr_context_committed_requests(struct intel_context *ce) 359 { 360 lockdep_assert_held(&ce->guc_state.lock); 361 --ce->guc_state.number_committed_requests; 362 GEM_BUG_ON(ce->guc_state.number_committed_requests < 0); 363 } 364 365 static struct intel_context * 366 request_to_scheduling_context(struct i915_request *rq) 367 { 368 return intel_context_to_parent(rq->context); 369 } 370 371 static inline bool context_guc_id_invalid(struct intel_context *ce) 372 { 373 return ce->guc_id.id == GUC_INVALID_CONTEXT_ID; 374 } 375 376 static inline void set_context_guc_id_invalid(struct intel_context *ce) 377 { 378 ce->guc_id.id = GUC_INVALID_CONTEXT_ID; 379 } 380 381 static inline struct intel_guc *ce_to_guc(struct intel_context *ce) 382 { 383 return &ce->engine->gt->uc.guc; 384 } 385 386 static inline struct i915_priolist *to_priolist(struct rb_node *rb) 387 { 388 return rb_entry(rb, struct i915_priolist, node); 389 } 390 391 /* 392 * When using multi-lrc submission a scratch memory area is reserved in the 393 * parent's context state for the process descriptor, work queue, and handshake 394 * between the parent + children contexts to insert safe preemption points 395 * between each of the BBs. Currently the scratch area is sized to a page. 396 * 397 * The layout of this scratch area is below: 398 * 0 guc_process_desc 399 * + sizeof(struct guc_process_desc) child go 400 * + CACHELINE_BYTES child join[0] 401 * ... 402 * + CACHELINE_BYTES child join[n - 1] 403 * ... unused 404 * PARENT_SCRATCH_SIZE / 2 work queue start 405 * ... work queue 406 * PARENT_SCRATCH_SIZE - 1 work queue end 407 */ 408 #define WQ_SIZE (PARENT_SCRATCH_SIZE / 2) 409 #define WQ_OFFSET (PARENT_SCRATCH_SIZE - WQ_SIZE) 410 411 struct sync_semaphore { 412 u32 semaphore; 413 u8 unused[CACHELINE_BYTES - sizeof(u32)]; 414 }; 415 416 struct parent_scratch { 417 union guc_descs { 418 struct guc_sched_wq_desc wq_desc; 419 struct guc_process_desc_v69 pdesc; 420 } descs; 421 422 struct sync_semaphore go; 423 struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1]; 424 425 u8 unused[WQ_OFFSET - sizeof(union guc_descs) - 426 sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)]; 427 428 u32 wq[WQ_SIZE / sizeof(u32)]; 429 }; 430 431 static u32 __get_parent_scratch_offset(struct intel_context *ce) 432 { 433 GEM_BUG_ON(!ce->parallel.guc.parent_page); 434 435 return ce->parallel.guc.parent_page * PAGE_SIZE; 436 } 437 438 static u32 __get_wq_offset(struct intel_context *ce) 439 { 440 BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET); 441 442 return __get_parent_scratch_offset(ce) + WQ_OFFSET; 443 } 444 445 static struct parent_scratch * 446 __get_parent_scratch(struct intel_context *ce) 447 { 448 BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE); 449 BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES); 450 451 /* 452 * Need to subtract LRC_STATE_OFFSET here as the 453 * parallel.guc.parent_page is the offset into ce->state while 454 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET. 455 */ 456 return (struct parent_scratch *) 457 (ce->lrc_reg_state + 458 ((__get_parent_scratch_offset(ce) - 459 LRC_STATE_OFFSET) / sizeof(u32))); 460 } 461 462 static struct guc_process_desc_v69 * 463 __get_process_desc_v69(struct intel_context *ce) 464 { 465 struct parent_scratch *ps = __get_parent_scratch(ce); 466 467 return &ps->descs.pdesc; 468 } 469 470 static struct guc_sched_wq_desc * 471 __get_wq_desc_v70(struct intel_context *ce) 472 { 473 struct parent_scratch *ps = __get_parent_scratch(ce); 474 475 return &ps->descs.wq_desc; 476 } 477 478 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size) 479 { 480 /* 481 * Check for space in work queue. Caching a value of head pointer in 482 * intel_context structure in order reduce the number accesses to shared 483 * GPU memory which may be across a PCIe bus. 484 */ 485 #define AVAILABLE_SPACE \ 486 CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE) 487 if (wqi_size > AVAILABLE_SPACE) { 488 ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head); 489 490 if (wqi_size > AVAILABLE_SPACE) 491 return NULL; 492 } 493 #undef AVAILABLE_SPACE 494 495 return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)]; 496 } 497 498 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id) 499 { 500 struct intel_context *ce = xa_load(&guc->context_lookup, id); 501 502 GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID); 503 504 return ce; 505 } 506 507 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index) 508 { 509 struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69; 510 511 if (!base) 512 return NULL; 513 514 GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID); 515 516 return &base[index]; 517 } 518 519 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc) 520 { 521 u32 size; 522 int ret; 523 524 size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) * 525 GUC_MAX_CONTEXT_ID); 526 ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69, 527 (void **)&guc->lrc_desc_pool_vaddr_v69); 528 if (ret) 529 return ret; 530 531 return 0; 532 } 533 534 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc) 535 { 536 if (!guc->lrc_desc_pool_vaddr_v69) 537 return; 538 539 guc->lrc_desc_pool_vaddr_v69 = NULL; 540 i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP); 541 } 542 543 static inline bool guc_submission_initialized(struct intel_guc *guc) 544 { 545 return guc->submission_initialized; 546 } 547 548 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id) 549 { 550 struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id); 551 552 if (desc) 553 memset(desc, 0, sizeof(*desc)); 554 } 555 556 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id) 557 { 558 return __get_context(guc, id); 559 } 560 561 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id, 562 struct intel_context *ce) 563 { 564 unsigned long flags; 565 566 /* 567 * xarray API doesn't have xa_save_irqsave wrapper, so calling the 568 * lower level functions directly. 569 */ 570 xa_lock_irqsave(&guc->context_lookup, flags); 571 __xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC); 572 xa_unlock_irqrestore(&guc->context_lookup, flags); 573 } 574 575 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id) 576 { 577 unsigned long flags; 578 579 if (unlikely(!guc_submission_initialized(guc))) 580 return; 581 582 _reset_lrc_desc_v69(guc, id); 583 584 /* 585 * xarray API doesn't have xa_erase_irqsave wrapper, so calling 586 * the lower level functions directly. 587 */ 588 xa_lock_irqsave(&guc->context_lookup, flags); 589 __xa_erase(&guc->context_lookup, id); 590 xa_unlock_irqrestore(&guc->context_lookup, flags); 591 } 592 593 static void decr_outstanding_submission_g2h(struct intel_guc *guc) 594 { 595 if (atomic_dec_and_test(&guc->outstanding_submission_g2h)) 596 wake_up_all(&guc->ct.wq); 597 } 598 599 static int guc_submission_send_busy_loop(struct intel_guc *guc, 600 const u32 *action, 601 u32 len, 602 u32 g2h_len_dw, 603 bool loop) 604 { 605 /* 606 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0), 607 * so we don't handle the case where we don't get a reply because we 608 * aborted the send due to the channel being busy. 609 */ 610 GEM_BUG_ON(g2h_len_dw && !loop); 611 612 if (g2h_len_dw) 613 atomic_inc(&guc->outstanding_submission_g2h); 614 615 return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop); 616 } 617 618 int intel_guc_wait_for_pending_msg(struct intel_guc *guc, 619 atomic_t *wait_var, 620 bool interruptible, 621 long timeout) 622 { 623 const int state = interruptible ? 624 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 625 DEFINE_WAIT(wait); 626 627 might_sleep(); 628 GEM_BUG_ON(timeout < 0); 629 630 if (!atomic_read(wait_var)) 631 return 0; 632 633 if (!timeout) 634 return -ETIME; 635 636 for (;;) { 637 prepare_to_wait(&guc->ct.wq, &wait, state); 638 639 if (!atomic_read(wait_var)) 640 break; 641 642 if (signal_pending_state(state, current)) { 643 timeout = -EINTR; 644 break; 645 } 646 647 if (!timeout) { 648 timeout = -ETIME; 649 break; 650 } 651 652 timeout = io_schedule_timeout(timeout); 653 } 654 finish_wait(&guc->ct.wq, &wait); 655 656 return (timeout < 0) ? timeout : 0; 657 } 658 659 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout) 660 { 661 if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc)) 662 return 0; 663 664 return intel_guc_wait_for_pending_msg(guc, 665 &guc->outstanding_submission_g2h, 666 true, timeout); 667 } 668 669 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop); 670 static int try_context_registration(struct intel_context *ce, bool loop); 671 672 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq) 673 { 674 int err = 0; 675 struct intel_context *ce = request_to_scheduling_context(rq); 676 u32 action[3]; 677 int len = 0; 678 u32 g2h_len_dw = 0; 679 bool enabled; 680 681 lockdep_assert_held(&rq->engine->sched_engine->lock); 682 683 /* 684 * Corner case where requests were sitting in the priority list or a 685 * request resubmitted after the context was banned. 686 */ 687 if (unlikely(intel_context_is_banned(ce))) { 688 i915_request_put(i915_request_mark_eio(rq)); 689 intel_engine_signal_breadcrumbs(ce->engine); 690 return 0; 691 } 692 693 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); 694 GEM_BUG_ON(context_guc_id_invalid(ce)); 695 696 if (context_policy_required(ce)) { 697 err = guc_context_policy_init_v70(ce, false); 698 if (err) 699 return err; 700 } 701 702 spin_lock(&ce->guc_state.lock); 703 704 /* 705 * The request / context will be run on the hardware when scheduling 706 * gets enabled in the unblock. For multi-lrc we still submit the 707 * context to move the LRC tails. 708 */ 709 if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce))) 710 goto out; 711 712 enabled = context_enabled(ce) || context_blocked(ce); 713 714 if (!enabled) { 715 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET; 716 action[len++] = ce->guc_id.id; 717 action[len++] = GUC_CONTEXT_ENABLE; 718 set_context_pending_enable(ce); 719 intel_context_get(ce); 720 g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET; 721 } else { 722 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT; 723 action[len++] = ce->guc_id.id; 724 } 725 726 err = intel_guc_send_nb(guc, action, len, g2h_len_dw); 727 if (!enabled && !err) { 728 trace_intel_context_sched_enable(ce); 729 atomic_inc(&guc->outstanding_submission_g2h); 730 set_context_enabled(ce); 731 732 /* 733 * Without multi-lrc KMD does the submission step (moving the 734 * lrc tail) so enabling scheduling is sufficient to submit the 735 * context. This isn't the case in multi-lrc submission as the 736 * GuC needs to move the tails, hence the need for another H2G 737 * to submit a multi-lrc context after enabling scheduling. 738 */ 739 if (intel_context_is_parent(ce)) { 740 action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT; 741 err = intel_guc_send_nb(guc, action, len - 1, 0); 742 } 743 } else if (!enabled) { 744 clr_context_pending_enable(ce); 745 intel_context_put(ce); 746 } 747 if (likely(!err)) 748 trace_i915_request_guc_submit(rq); 749 750 out: 751 spin_unlock(&ce->guc_state.lock); 752 return err; 753 } 754 755 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq) 756 { 757 int ret = __guc_add_request(guc, rq); 758 759 if (unlikely(ret == -EBUSY)) { 760 guc->stalled_request = rq; 761 guc->submission_stall_reason = STALL_ADD_REQUEST; 762 } 763 764 return ret; 765 } 766 767 static inline void guc_set_lrc_tail(struct i915_request *rq) 768 { 769 rq->context->lrc_reg_state[CTX_RING_TAIL] = 770 intel_ring_set_tail(rq->ring, rq->tail); 771 } 772 773 static inline int rq_prio(const struct i915_request *rq) 774 { 775 return rq->sched.attr.priority; 776 } 777 778 static bool is_multi_lrc_rq(struct i915_request *rq) 779 { 780 return intel_context_is_parallel(rq->context); 781 } 782 783 static bool can_merge_rq(struct i915_request *rq, 784 struct i915_request *last) 785 { 786 return request_to_scheduling_context(rq) == 787 request_to_scheduling_context(last); 788 } 789 790 static u32 wq_space_until_wrap(struct intel_context *ce) 791 { 792 return (WQ_SIZE - ce->parallel.guc.wqi_tail); 793 } 794 795 static void write_wqi(struct intel_context *ce, u32 wqi_size) 796 { 797 BUILD_BUG_ON(!is_power_of_2(WQ_SIZE)); 798 799 /* 800 * Ensure WQI are visible before updating tail 801 */ 802 intel_guc_write_barrier(ce_to_guc(ce)); 803 804 ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) & 805 (WQ_SIZE - 1); 806 WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail); 807 } 808 809 static int guc_wq_noop_append(struct intel_context *ce) 810 { 811 u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce)); 812 u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1; 813 814 if (!wqi) 815 return -EBUSY; 816 817 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); 818 819 *wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) | 820 FIELD_PREP(WQ_LEN_MASK, len_dw); 821 ce->parallel.guc.wqi_tail = 0; 822 823 return 0; 824 } 825 826 static int __guc_wq_item_append(struct i915_request *rq) 827 { 828 struct intel_context *ce = request_to_scheduling_context(rq); 829 struct intel_context *child; 830 unsigned int wqi_size = (ce->parallel.number_children + 4) * 831 sizeof(u32); 832 u32 *wqi; 833 u32 len_dw = (wqi_size / sizeof(u32)) - 1; 834 int ret; 835 836 /* Ensure context is in correct state updating work queue */ 837 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); 838 GEM_BUG_ON(context_guc_id_invalid(ce)); 839 GEM_BUG_ON(context_wait_for_deregister_to_register(ce)); 840 GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)); 841 842 /* Insert NOOP if this work queue item will wrap the tail pointer. */ 843 if (wqi_size > wq_space_until_wrap(ce)) { 844 ret = guc_wq_noop_append(ce); 845 if (ret) 846 return ret; 847 } 848 849 wqi = get_wq_pointer(ce, wqi_size); 850 if (!wqi) 851 return -EBUSY; 852 853 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); 854 855 *wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) | 856 FIELD_PREP(WQ_LEN_MASK, len_dw); 857 *wqi++ = ce->lrc.lrca; 858 *wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) | 859 FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64)); 860 *wqi++ = 0; /* fence_id */ 861 for_each_child(ce, child) 862 *wqi++ = child->ring->tail / sizeof(u64); 863 864 write_wqi(ce, wqi_size); 865 866 return 0; 867 } 868 869 static int guc_wq_item_append(struct intel_guc *guc, 870 struct i915_request *rq) 871 { 872 struct intel_context *ce = request_to_scheduling_context(rq); 873 int ret = 0; 874 875 if (likely(!intel_context_is_banned(ce))) { 876 ret = __guc_wq_item_append(rq); 877 878 if (unlikely(ret == -EBUSY)) { 879 guc->stalled_request = rq; 880 guc->submission_stall_reason = STALL_MOVE_LRC_TAIL; 881 } 882 } 883 884 return ret; 885 } 886 887 static bool multi_lrc_submit(struct i915_request *rq) 888 { 889 struct intel_context *ce = request_to_scheduling_context(rq); 890 891 intel_ring_set_tail(rq->ring, rq->tail); 892 893 /* 894 * We expect the front end (execbuf IOCTL) to set this flag on the last 895 * request generated from a multi-BB submission. This indicates to the 896 * backend (GuC interface) that we should submit this context thus 897 * submitting all the requests generated in parallel. 898 */ 899 return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) || 900 intel_context_is_banned(ce); 901 } 902 903 static int guc_dequeue_one_context(struct intel_guc *guc) 904 { 905 struct i915_sched_engine * const sched_engine = guc->sched_engine; 906 struct i915_request *last = NULL; 907 bool submit = false; 908 struct rb_node *rb; 909 int ret; 910 911 lockdep_assert_held(&sched_engine->lock); 912 913 if (guc->stalled_request) { 914 submit = true; 915 last = guc->stalled_request; 916 917 switch (guc->submission_stall_reason) { 918 case STALL_REGISTER_CONTEXT: 919 goto register_context; 920 case STALL_MOVE_LRC_TAIL: 921 goto move_lrc_tail; 922 case STALL_ADD_REQUEST: 923 goto add_request; 924 default: 925 MISSING_CASE(guc->submission_stall_reason); 926 } 927 } 928 929 while ((rb = rb_first_cached(&sched_engine->queue))) { 930 struct i915_priolist *p = to_priolist(rb); 931 struct i915_request *rq, *rn; 932 933 priolist_for_each_request_consume(rq, rn, p) { 934 if (last && !can_merge_rq(rq, last)) 935 goto register_context; 936 937 list_del_init(&rq->sched.link); 938 939 __i915_request_submit(rq); 940 941 trace_i915_request_in(rq, 0); 942 last = rq; 943 944 if (is_multi_lrc_rq(rq)) { 945 /* 946 * We need to coalesce all multi-lrc requests in 947 * a relationship into a single H2G. We are 948 * guaranteed that all of these requests will be 949 * submitted sequentially. 950 */ 951 if (multi_lrc_submit(rq)) { 952 submit = true; 953 goto register_context; 954 } 955 } else { 956 submit = true; 957 } 958 } 959 960 rb_erase_cached(&p->node, &sched_engine->queue); 961 i915_priolist_free(p); 962 } 963 964 register_context: 965 if (submit) { 966 struct intel_context *ce = request_to_scheduling_context(last); 967 968 if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) && 969 !intel_context_is_banned(ce))) { 970 ret = try_context_registration(ce, false); 971 if (unlikely(ret == -EPIPE)) { 972 goto deadlk; 973 } else if (ret == -EBUSY) { 974 guc->stalled_request = last; 975 guc->submission_stall_reason = 976 STALL_REGISTER_CONTEXT; 977 goto schedule_tasklet; 978 } else if (ret != 0) { 979 GEM_WARN_ON(ret); /* Unexpected */ 980 goto deadlk; 981 } 982 } 983 984 move_lrc_tail: 985 if (is_multi_lrc_rq(last)) { 986 ret = guc_wq_item_append(guc, last); 987 if (ret == -EBUSY) { 988 goto schedule_tasklet; 989 } else if (ret != 0) { 990 GEM_WARN_ON(ret); /* Unexpected */ 991 goto deadlk; 992 } 993 } else { 994 guc_set_lrc_tail(last); 995 } 996 997 add_request: 998 ret = guc_add_request(guc, last); 999 if (unlikely(ret == -EPIPE)) { 1000 goto deadlk; 1001 } else if (ret == -EBUSY) { 1002 goto schedule_tasklet; 1003 } else if (ret != 0) { 1004 GEM_WARN_ON(ret); /* Unexpected */ 1005 goto deadlk; 1006 } 1007 } 1008 1009 guc->stalled_request = NULL; 1010 guc->submission_stall_reason = STALL_NONE; 1011 return submit; 1012 1013 deadlk: 1014 sched_engine->tasklet.callback = NULL; 1015 tasklet_disable_nosync(&sched_engine->tasklet); 1016 return false; 1017 1018 schedule_tasklet: 1019 tasklet_schedule(&sched_engine->tasklet); 1020 return false; 1021 } 1022 1023 static void guc_submission_tasklet(struct tasklet_struct *t) 1024 { 1025 struct i915_sched_engine *sched_engine = 1026 from_tasklet(sched_engine, t, tasklet); 1027 unsigned long flags; 1028 bool loop; 1029 1030 spin_lock_irqsave(&sched_engine->lock, flags); 1031 1032 do { 1033 loop = guc_dequeue_one_context(sched_engine->private_data); 1034 } while (loop); 1035 1036 i915_sched_engine_reset_on_empty(sched_engine); 1037 1038 spin_unlock_irqrestore(&sched_engine->lock, flags); 1039 } 1040 1041 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir) 1042 { 1043 if (iir & GT_RENDER_USER_INTERRUPT) 1044 intel_engine_signal_breadcrumbs(engine); 1045 } 1046 1047 static void __guc_context_destroy(struct intel_context *ce); 1048 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce); 1049 static void guc_signal_context_fence(struct intel_context *ce); 1050 static void guc_cancel_context_requests(struct intel_context *ce); 1051 static void guc_blocked_fence_complete(struct intel_context *ce); 1052 1053 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc) 1054 { 1055 struct intel_context *ce; 1056 unsigned long index, flags; 1057 bool pending_disable, pending_enable, deregister, destroyed, banned; 1058 1059 xa_lock_irqsave(&guc->context_lookup, flags); 1060 xa_for_each(&guc->context_lookup, index, ce) { 1061 /* 1062 * Corner case where the ref count on the object is zero but and 1063 * deregister G2H was lost. In this case we don't touch the ref 1064 * count and finish the destroy of the context. 1065 */ 1066 bool do_put = kref_get_unless_zero(&ce->ref); 1067 1068 xa_unlock(&guc->context_lookup); 1069 1070 spin_lock(&ce->guc_state.lock); 1071 1072 /* 1073 * Once we are at this point submission_disabled() is guaranteed 1074 * to be visible to all callers who set the below flags (see above 1075 * flush and flushes in reset_prepare). If submission_disabled() 1076 * is set, the caller shouldn't set these flags. 1077 */ 1078 1079 destroyed = context_destroyed(ce); 1080 pending_enable = context_pending_enable(ce); 1081 pending_disable = context_pending_disable(ce); 1082 deregister = context_wait_for_deregister_to_register(ce); 1083 banned = context_banned(ce); 1084 init_sched_state(ce); 1085 1086 spin_unlock(&ce->guc_state.lock); 1087 1088 if (pending_enable || destroyed || deregister) { 1089 decr_outstanding_submission_g2h(guc); 1090 if (deregister) 1091 guc_signal_context_fence(ce); 1092 if (destroyed) { 1093 intel_gt_pm_put_async(guc_to_gt(guc)); 1094 release_guc_id(guc, ce); 1095 __guc_context_destroy(ce); 1096 } 1097 if (pending_enable || deregister) 1098 intel_context_put(ce); 1099 } 1100 1101 /* Not mutualy exclusive with above if statement. */ 1102 if (pending_disable) { 1103 guc_signal_context_fence(ce); 1104 if (banned) { 1105 guc_cancel_context_requests(ce); 1106 intel_engine_signal_breadcrumbs(ce->engine); 1107 } 1108 intel_context_sched_disable_unpin(ce); 1109 decr_outstanding_submission_g2h(guc); 1110 1111 spin_lock(&ce->guc_state.lock); 1112 guc_blocked_fence_complete(ce); 1113 spin_unlock(&ce->guc_state.lock); 1114 1115 intel_context_put(ce); 1116 } 1117 1118 if (do_put) 1119 intel_context_put(ce); 1120 xa_lock(&guc->context_lookup); 1121 } 1122 xa_unlock_irqrestore(&guc->context_lookup, flags); 1123 } 1124 1125 /* 1126 * GuC stores busyness stats for each engine at context in/out boundaries. A 1127 * context 'in' logs execution start time, 'out' adds in -> out delta to total. 1128 * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with 1129 * GuC. 1130 * 1131 * __i915_pmu_event_read samples engine busyness. When sampling, if context id 1132 * is valid (!= ~0) and start is non-zero, the engine is considered to be 1133 * active. For an active engine total busyness = total + (now - start), where 1134 * 'now' is the time at which the busyness is sampled. For inactive engine, 1135 * total busyness = total. 1136 * 1137 * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain. 1138 * 1139 * The start and total values provided by GuC are 32 bits and wrap around in a 1140 * few minutes. Since perf pmu provides busyness as 64 bit monotonically 1141 * increasing ns values, there is a need for this implementation to account for 1142 * overflows and extend the GuC provided values to 64 bits before returning 1143 * busyness to the user. In order to do that, a worker runs periodically at 1144 * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in 1145 * 27 seconds for a gt clock frequency of 19.2 MHz). 1146 */ 1147 1148 #define WRAP_TIME_CLKS U32_MAX 1149 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3) 1150 1151 static void 1152 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start) 1153 { 1154 u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); 1155 u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp); 1156 1157 if (new_start == lower_32_bits(*prev_start)) 1158 return; 1159 1160 /* 1161 * When gt is unparked, we update the gt timestamp and start the ping 1162 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt 1163 * is unparked, all switched in contexts will have a start time that is 1164 * within +/- POLL_TIME_CLKS of the most recent gt_stamp. 1165 * 1166 * If neither gt_stamp nor new_start has rolled over, then the 1167 * gt_stamp_hi does not need to be adjusted, however if one of them has 1168 * rolled over, we need to adjust gt_stamp_hi accordingly. 1169 * 1170 * The below conditions address the cases of new_start rollover and 1171 * gt_stamp_last rollover respectively. 1172 */ 1173 if (new_start < gt_stamp_last && 1174 (new_start - gt_stamp_last) <= POLL_TIME_CLKS) 1175 gt_stamp_hi++; 1176 1177 if (new_start > gt_stamp_last && 1178 (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi) 1179 gt_stamp_hi--; 1180 1181 *prev_start = ((u64)gt_stamp_hi << 32) | new_start; 1182 } 1183 1184 #define record_read(map_, field_) \ 1185 iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_) 1186 1187 /* 1188 * GuC updates shared memory and KMD reads it. Since this is not synchronized, 1189 * we run into a race where the value read is inconsistent. Sometimes the 1190 * inconsistency is in reading the upper MSB bytes of the last_in value when 1191 * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper 1192 * 24 bits are zero. Since these are non-zero values, it is non-trivial to 1193 * determine validity of these values. Instead we read the values multiple times 1194 * until they are consistent. In test runs, 3 attempts results in consistent 1195 * values. The upper bound is set to 6 attempts and may need to be tuned as per 1196 * any new occurences. 1197 */ 1198 static void __get_engine_usage_record(struct intel_engine_cs *engine, 1199 u32 *last_in, u32 *id, u32 *total) 1200 { 1201 struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine); 1202 int i = 0; 1203 1204 do { 1205 *last_in = record_read(&rec_map, last_switch_in_stamp); 1206 *id = record_read(&rec_map, current_context_index); 1207 *total = record_read(&rec_map, total_runtime); 1208 1209 if (record_read(&rec_map, last_switch_in_stamp) == *last_in && 1210 record_read(&rec_map, current_context_index) == *id && 1211 record_read(&rec_map, total_runtime) == *total) 1212 break; 1213 } while (++i < 6); 1214 } 1215 1216 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine) 1217 { 1218 struct intel_engine_guc_stats *stats = &engine->stats.guc; 1219 struct intel_guc *guc = &engine->gt->uc.guc; 1220 u32 last_switch, ctx_id, total; 1221 1222 lockdep_assert_held(&guc->timestamp.lock); 1223 1224 __get_engine_usage_record(engine, &last_switch, &ctx_id, &total); 1225 1226 stats->running = ctx_id != ~0U && last_switch; 1227 if (stats->running) 1228 __extend_last_switch(guc, &stats->start_gt_clk, last_switch); 1229 1230 /* 1231 * Instead of adjusting the total for overflow, just add the 1232 * difference from previous sample stats->total_gt_clks 1233 */ 1234 if (total && total != ~0U) { 1235 stats->total_gt_clks += (u32)(total - stats->prev_total); 1236 stats->prev_total = total; 1237 } 1238 } 1239 1240 static u32 gpm_timestamp_shift(struct intel_gt *gt) 1241 { 1242 intel_wakeref_t wakeref; 1243 u32 reg, shift; 1244 1245 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 1246 reg = intel_uncore_read(gt->uncore, RPM_CONFIG0); 1247 1248 shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >> 1249 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT; 1250 1251 return 3 - shift; 1252 } 1253 1254 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now) 1255 { 1256 struct intel_gt *gt = guc_to_gt(guc); 1257 u32 gt_stamp_lo, gt_stamp_hi; 1258 u64 gpm_ts; 1259 1260 lockdep_assert_held(&guc->timestamp.lock); 1261 1262 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); 1263 gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0, 1264 MISC_STATUS1) >> guc->timestamp.shift; 1265 gt_stamp_lo = lower_32_bits(gpm_ts); 1266 *now = ktime_get(); 1267 1268 if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp)) 1269 gt_stamp_hi++; 1270 1271 guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo; 1272 } 1273 1274 /* 1275 * Unlike the execlist mode of submission total and active times are in terms of 1276 * gt clocks. The *now parameter is retained to return the cpu time at which the 1277 * busyness was sampled. 1278 */ 1279 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now) 1280 { 1281 struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc; 1282 struct i915_gpu_error *gpu_error = &engine->i915->gpu_error; 1283 struct intel_gt *gt = engine->gt; 1284 struct intel_guc *guc = >->uc.guc; 1285 u64 total, gt_stamp_saved; 1286 unsigned long flags; 1287 u32 reset_count; 1288 bool in_reset; 1289 1290 spin_lock_irqsave(&guc->timestamp.lock, flags); 1291 1292 /* 1293 * If a reset happened, we risk reading partially updated engine 1294 * busyness from GuC, so we just use the driver stored copy of busyness. 1295 * Synchronize with gt reset using reset_count and the 1296 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count 1297 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is 1298 * usable by checking the flag afterwards. 1299 */ 1300 reset_count = i915_reset_count(gpu_error); 1301 in_reset = test_bit(I915_RESET_BACKOFF, >->reset.flags); 1302 1303 *now = ktime_get(); 1304 1305 /* 1306 * The active busyness depends on start_gt_clk and gt_stamp. 1307 * gt_stamp is updated by i915 only when gt is awake and the 1308 * start_gt_clk is derived from GuC state. To get a consistent 1309 * view of activity, we query the GuC state only if gt is awake. 1310 */ 1311 if (!in_reset && intel_gt_pm_get_if_awake(gt)) { 1312 stats_saved = *stats; 1313 gt_stamp_saved = guc->timestamp.gt_stamp; 1314 /* 1315 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp - 1316 * start_gt_clk' calculation below for active engines. 1317 */ 1318 guc_update_engine_gt_clks(engine); 1319 guc_update_pm_timestamp(guc, now); 1320 intel_gt_pm_put_async(gt); 1321 if (i915_reset_count(gpu_error) != reset_count) { 1322 *stats = stats_saved; 1323 guc->timestamp.gt_stamp = gt_stamp_saved; 1324 } 1325 } 1326 1327 total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks); 1328 if (stats->running) { 1329 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk; 1330 1331 total += intel_gt_clock_interval_to_ns(gt, clk); 1332 } 1333 1334 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1335 1336 return ns_to_ktime(total); 1337 } 1338 1339 static void __reset_guc_busyness_stats(struct intel_guc *guc) 1340 { 1341 struct intel_gt *gt = guc_to_gt(guc); 1342 struct intel_engine_cs *engine; 1343 enum intel_engine_id id; 1344 unsigned long flags; 1345 ktime_t unused; 1346 1347 cancel_delayed_work_sync(&guc->timestamp.work); 1348 1349 spin_lock_irqsave(&guc->timestamp.lock, flags); 1350 1351 guc_update_pm_timestamp(guc, &unused); 1352 for_each_engine(engine, gt, id) { 1353 guc_update_engine_gt_clks(engine); 1354 engine->stats.guc.prev_total = 0; 1355 } 1356 1357 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1358 } 1359 1360 static void __update_guc_busyness_stats(struct intel_guc *guc) 1361 { 1362 struct intel_gt *gt = guc_to_gt(guc); 1363 struct intel_engine_cs *engine; 1364 enum intel_engine_id id; 1365 unsigned long flags; 1366 ktime_t unused; 1367 1368 guc->timestamp.last_stat_jiffies = jiffies; 1369 1370 spin_lock_irqsave(&guc->timestamp.lock, flags); 1371 1372 guc_update_pm_timestamp(guc, &unused); 1373 for_each_engine(engine, gt, id) 1374 guc_update_engine_gt_clks(engine); 1375 1376 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1377 } 1378 1379 static void guc_timestamp_ping(struct work_struct *wrk) 1380 { 1381 struct intel_guc *guc = container_of(wrk, typeof(*guc), 1382 timestamp.work.work); 1383 struct intel_uc *uc = container_of(guc, typeof(*uc), guc); 1384 struct intel_gt *gt = guc_to_gt(guc); 1385 intel_wakeref_t wakeref; 1386 int srcu, ret; 1387 1388 /* 1389 * Synchronize with gt reset to make sure the worker does not 1390 * corrupt the engine/guc stats. 1391 */ 1392 ret = intel_gt_reset_trylock(gt, &srcu); 1393 if (ret) 1394 return; 1395 1396 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) 1397 __update_guc_busyness_stats(guc); 1398 1399 intel_gt_reset_unlock(gt, srcu); 1400 1401 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, 1402 guc->timestamp.ping_delay); 1403 } 1404 1405 static int guc_action_enable_usage_stats(struct intel_guc *guc) 1406 { 1407 u32 offset = intel_guc_engine_usage_offset(guc); 1408 u32 action[] = { 1409 INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF, 1410 offset, 1411 0, 1412 }; 1413 1414 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 1415 } 1416 1417 static void guc_init_engine_stats(struct intel_guc *guc) 1418 { 1419 struct intel_gt *gt = guc_to_gt(guc); 1420 intel_wakeref_t wakeref; 1421 1422 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, 1423 guc->timestamp.ping_delay); 1424 1425 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) { 1426 int ret = guc_action_enable_usage_stats(guc); 1427 1428 if (ret) 1429 drm_err(>->i915->drm, 1430 "Failed to enable usage stats: %d!\n", ret); 1431 } 1432 } 1433 1434 void intel_guc_busyness_park(struct intel_gt *gt) 1435 { 1436 struct intel_guc *guc = >->uc.guc; 1437 1438 if (!guc_submission_initialized(guc)) 1439 return; 1440 1441 cancel_delayed_work(&guc->timestamp.work); 1442 1443 /* 1444 * Before parking, we should sample engine busyness stats if we need to. 1445 * We can skip it if we are less than half a ping from the last time we 1446 * sampled the busyness stats. 1447 */ 1448 if (guc->timestamp.last_stat_jiffies && 1449 !time_after(jiffies, guc->timestamp.last_stat_jiffies + 1450 (guc->timestamp.ping_delay / 2))) 1451 return; 1452 1453 __update_guc_busyness_stats(guc); 1454 } 1455 1456 void intel_guc_busyness_unpark(struct intel_gt *gt) 1457 { 1458 struct intel_guc *guc = >->uc.guc; 1459 unsigned long flags; 1460 ktime_t unused; 1461 1462 if (!guc_submission_initialized(guc)) 1463 return; 1464 1465 spin_lock_irqsave(&guc->timestamp.lock, flags); 1466 guc_update_pm_timestamp(guc, &unused); 1467 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1468 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, 1469 guc->timestamp.ping_delay); 1470 } 1471 1472 static inline bool 1473 submission_disabled(struct intel_guc *guc) 1474 { 1475 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1476 1477 return unlikely(!sched_engine || 1478 !__tasklet_is_enabled(&sched_engine->tasklet) || 1479 intel_gt_is_wedged(guc_to_gt(guc))); 1480 } 1481 1482 static void disable_submission(struct intel_guc *guc) 1483 { 1484 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1485 1486 if (__tasklet_is_enabled(&sched_engine->tasklet)) { 1487 GEM_BUG_ON(!guc->ct.enabled); 1488 __tasklet_disable_sync_once(&sched_engine->tasklet); 1489 sched_engine->tasklet.callback = NULL; 1490 } 1491 } 1492 1493 static void enable_submission(struct intel_guc *guc) 1494 { 1495 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1496 unsigned long flags; 1497 1498 spin_lock_irqsave(&guc->sched_engine->lock, flags); 1499 sched_engine->tasklet.callback = guc_submission_tasklet; 1500 wmb(); /* Make sure callback visible */ 1501 if (!__tasklet_is_enabled(&sched_engine->tasklet) && 1502 __tasklet_enable(&sched_engine->tasklet)) { 1503 GEM_BUG_ON(!guc->ct.enabled); 1504 1505 /* And kick in case we missed a new request submission. */ 1506 tasklet_hi_schedule(&sched_engine->tasklet); 1507 } 1508 spin_unlock_irqrestore(&guc->sched_engine->lock, flags); 1509 } 1510 1511 static void guc_flush_submissions(struct intel_guc *guc) 1512 { 1513 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1514 unsigned long flags; 1515 1516 spin_lock_irqsave(&sched_engine->lock, flags); 1517 spin_unlock_irqrestore(&sched_engine->lock, flags); 1518 } 1519 1520 static void guc_flush_destroyed_contexts(struct intel_guc *guc); 1521 1522 void intel_guc_submission_reset_prepare(struct intel_guc *guc) 1523 { 1524 if (unlikely(!guc_submission_initialized(guc))) { 1525 /* Reset called during driver load? GuC not yet initialised! */ 1526 return; 1527 } 1528 1529 intel_gt_park_heartbeats(guc_to_gt(guc)); 1530 disable_submission(guc); 1531 guc->interrupts.disable(guc); 1532 __reset_guc_busyness_stats(guc); 1533 1534 /* Flush IRQ handler */ 1535 spin_lock_irq(&guc_to_gt(guc)->irq_lock); 1536 spin_unlock_irq(&guc_to_gt(guc)->irq_lock); 1537 1538 guc_flush_submissions(guc); 1539 guc_flush_destroyed_contexts(guc); 1540 flush_work(&guc->ct.requests.worker); 1541 1542 scrub_guc_desc_for_outstanding_g2h(guc); 1543 } 1544 1545 static struct intel_engine_cs * 1546 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling) 1547 { 1548 struct intel_engine_cs *engine; 1549 intel_engine_mask_t tmp, mask = ve->mask; 1550 unsigned int num_siblings = 0; 1551 1552 for_each_engine_masked(engine, ve->gt, mask, tmp) 1553 if (num_siblings++ == sibling) 1554 return engine; 1555 1556 return NULL; 1557 } 1558 1559 static inline struct intel_engine_cs * 1560 __context_to_physical_engine(struct intel_context *ce) 1561 { 1562 struct intel_engine_cs *engine = ce->engine; 1563 1564 if (intel_engine_is_virtual(engine)) 1565 engine = guc_virtual_get_sibling(engine, 0); 1566 1567 return engine; 1568 } 1569 1570 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub) 1571 { 1572 struct intel_engine_cs *engine = __context_to_physical_engine(ce); 1573 1574 if (intel_context_is_banned(ce)) 1575 return; 1576 1577 GEM_BUG_ON(!intel_context_is_pinned(ce)); 1578 1579 /* 1580 * We want a simple context + ring to execute the breadcrumb update. 1581 * We cannot rely on the context being intact across the GPU hang, 1582 * so clear it and rebuild just what we need for the breadcrumb. 1583 * All pending requests for this context will be zapped, and any 1584 * future request will be after userspace has had the opportunity 1585 * to recreate its own state. 1586 */ 1587 if (scrub) 1588 lrc_init_regs(ce, engine, true); 1589 1590 /* Rerun the request; its payload has been neutered (if guilty). */ 1591 lrc_update_regs(ce, engine, head); 1592 } 1593 1594 static void guc_engine_reset_prepare(struct intel_engine_cs *engine) 1595 { 1596 if (!IS_GRAPHICS_VER(engine->i915, 11, 12)) 1597 return; 1598 1599 intel_engine_stop_cs(engine); 1600 1601 /* 1602 * Wa_22011802037:gen11/gen12: In addition to stopping the cs, we need 1603 * to wait for any pending mi force wakeups 1604 */ 1605 intel_engine_wait_for_pending_mi_fw(engine); 1606 } 1607 1608 static void guc_reset_nop(struct intel_engine_cs *engine) 1609 { 1610 } 1611 1612 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled) 1613 { 1614 } 1615 1616 static void 1617 __unwind_incomplete_requests(struct intel_context *ce) 1618 { 1619 struct i915_request *rq, *rn; 1620 struct list_head *pl; 1621 int prio = I915_PRIORITY_INVALID; 1622 struct i915_sched_engine * const sched_engine = 1623 ce->engine->sched_engine; 1624 unsigned long flags; 1625 1626 spin_lock_irqsave(&sched_engine->lock, flags); 1627 spin_lock(&ce->guc_state.lock); 1628 list_for_each_entry_safe_reverse(rq, rn, 1629 &ce->guc_state.requests, 1630 sched.link) { 1631 if (i915_request_completed(rq)) 1632 continue; 1633 1634 list_del_init(&rq->sched.link); 1635 __i915_request_unsubmit(rq); 1636 1637 /* Push the request back into the queue for later resubmission. */ 1638 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID); 1639 if (rq_prio(rq) != prio) { 1640 prio = rq_prio(rq); 1641 pl = i915_sched_lookup_priolist(sched_engine, prio); 1642 } 1643 GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine)); 1644 1645 list_add(&rq->sched.link, pl); 1646 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 1647 } 1648 spin_unlock(&ce->guc_state.lock); 1649 spin_unlock_irqrestore(&sched_engine->lock, flags); 1650 } 1651 1652 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled) 1653 { 1654 bool guilty; 1655 struct i915_request *rq; 1656 unsigned long flags; 1657 u32 head; 1658 int i, number_children = ce->parallel.number_children; 1659 struct intel_context *parent = ce; 1660 1661 GEM_BUG_ON(intel_context_is_child(ce)); 1662 1663 intel_context_get(ce); 1664 1665 /* 1666 * GuC will implicitly mark the context as non-schedulable when it sends 1667 * the reset notification. Make sure our state reflects this change. The 1668 * context will be marked enabled on resubmission. 1669 */ 1670 spin_lock_irqsave(&ce->guc_state.lock, flags); 1671 clr_context_enabled(ce); 1672 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 1673 1674 /* 1675 * For each context in the relationship find the hanging request 1676 * resetting each context / request as needed 1677 */ 1678 for (i = 0; i < number_children + 1; ++i) { 1679 if (!intel_context_is_pinned(ce)) 1680 goto next_context; 1681 1682 guilty = false; 1683 rq = intel_context_find_active_request(ce); 1684 if (!rq) { 1685 head = ce->ring->tail; 1686 goto out_replay; 1687 } 1688 1689 if (i915_request_started(rq)) 1690 guilty = stalled & ce->engine->mask; 1691 1692 GEM_BUG_ON(i915_active_is_idle(&ce->active)); 1693 head = intel_ring_wrap(ce->ring, rq->head); 1694 1695 __i915_request_reset(rq, guilty); 1696 out_replay: 1697 guc_reset_state(ce, head, guilty); 1698 next_context: 1699 if (i != number_children) 1700 ce = list_next_entry(ce, parallel.child_link); 1701 } 1702 1703 __unwind_incomplete_requests(parent); 1704 intel_context_put(parent); 1705 } 1706 1707 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled) 1708 { 1709 struct intel_context *ce; 1710 unsigned long index; 1711 unsigned long flags; 1712 1713 if (unlikely(!guc_submission_initialized(guc))) { 1714 /* Reset called during driver load? GuC not yet initialised! */ 1715 return; 1716 } 1717 1718 xa_lock_irqsave(&guc->context_lookup, flags); 1719 xa_for_each(&guc->context_lookup, index, ce) { 1720 if (!kref_get_unless_zero(&ce->ref)) 1721 continue; 1722 1723 xa_unlock(&guc->context_lookup); 1724 1725 if (intel_context_is_pinned(ce) && 1726 !intel_context_is_child(ce)) 1727 __guc_reset_context(ce, stalled); 1728 1729 intel_context_put(ce); 1730 1731 xa_lock(&guc->context_lookup); 1732 } 1733 xa_unlock_irqrestore(&guc->context_lookup, flags); 1734 1735 /* GuC is blown away, drop all references to contexts */ 1736 xa_destroy(&guc->context_lookup); 1737 } 1738 1739 static void guc_cancel_context_requests(struct intel_context *ce) 1740 { 1741 struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine; 1742 struct i915_request *rq; 1743 unsigned long flags; 1744 1745 /* Mark all executing requests as skipped. */ 1746 spin_lock_irqsave(&sched_engine->lock, flags); 1747 spin_lock(&ce->guc_state.lock); 1748 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) 1749 i915_request_put(i915_request_mark_eio(rq)); 1750 spin_unlock(&ce->guc_state.lock); 1751 spin_unlock_irqrestore(&sched_engine->lock, flags); 1752 } 1753 1754 static void 1755 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine) 1756 { 1757 struct i915_request *rq, *rn; 1758 struct rb_node *rb; 1759 unsigned long flags; 1760 1761 /* Can be called during boot if GuC fails to load */ 1762 if (!sched_engine) 1763 return; 1764 1765 /* 1766 * Before we call engine->cancel_requests(), we should have exclusive 1767 * access to the submission state. This is arranged for us by the 1768 * caller disabling the interrupt generation, the tasklet and other 1769 * threads that may then access the same state, giving us a free hand 1770 * to reset state. However, we still need to let lockdep be aware that 1771 * we know this state may be accessed in hardirq context, so we 1772 * disable the irq around this manipulation and we want to keep 1773 * the spinlock focused on its duties and not accidentally conflate 1774 * coverage to the submission's irq state. (Similarly, although we 1775 * shouldn't need to disable irq around the manipulation of the 1776 * submission's irq state, we also wish to remind ourselves that 1777 * it is irq state.) 1778 */ 1779 spin_lock_irqsave(&sched_engine->lock, flags); 1780 1781 /* Flush the queued requests to the timeline list (for retiring). */ 1782 while ((rb = rb_first_cached(&sched_engine->queue))) { 1783 struct i915_priolist *p = to_priolist(rb); 1784 1785 priolist_for_each_request_consume(rq, rn, p) { 1786 list_del_init(&rq->sched.link); 1787 1788 __i915_request_submit(rq); 1789 1790 i915_request_put(i915_request_mark_eio(rq)); 1791 } 1792 1793 rb_erase_cached(&p->node, &sched_engine->queue); 1794 i915_priolist_free(p); 1795 } 1796 1797 /* Remaining _unready_ requests will be nop'ed when submitted */ 1798 1799 sched_engine->queue_priority_hint = INT_MIN; 1800 sched_engine->queue = RB_ROOT_CACHED; 1801 1802 spin_unlock_irqrestore(&sched_engine->lock, flags); 1803 } 1804 1805 void intel_guc_submission_cancel_requests(struct intel_guc *guc) 1806 { 1807 struct intel_context *ce; 1808 unsigned long index; 1809 unsigned long flags; 1810 1811 xa_lock_irqsave(&guc->context_lookup, flags); 1812 xa_for_each(&guc->context_lookup, index, ce) { 1813 if (!kref_get_unless_zero(&ce->ref)) 1814 continue; 1815 1816 xa_unlock(&guc->context_lookup); 1817 1818 if (intel_context_is_pinned(ce) && 1819 !intel_context_is_child(ce)) 1820 guc_cancel_context_requests(ce); 1821 1822 intel_context_put(ce); 1823 1824 xa_lock(&guc->context_lookup); 1825 } 1826 xa_unlock_irqrestore(&guc->context_lookup, flags); 1827 1828 guc_cancel_sched_engine_requests(guc->sched_engine); 1829 1830 /* GuC is blown away, drop all references to contexts */ 1831 xa_destroy(&guc->context_lookup); 1832 } 1833 1834 void intel_guc_submission_reset_finish(struct intel_guc *guc) 1835 { 1836 /* Reset called during driver load or during wedge? */ 1837 if (unlikely(!guc_submission_initialized(guc) || 1838 intel_gt_is_wedged(guc_to_gt(guc)))) { 1839 return; 1840 } 1841 1842 /* 1843 * Technically possible for either of these values to be non-zero here, 1844 * but very unlikely + harmless. Regardless let's add a warn so we can 1845 * see in CI if this happens frequently / a precursor to taking down the 1846 * machine. 1847 */ 1848 GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h)); 1849 atomic_set(&guc->outstanding_submission_g2h, 0); 1850 1851 intel_guc_global_policies_update(guc); 1852 enable_submission(guc); 1853 intel_gt_unpark_heartbeats(guc_to_gt(guc)); 1854 } 1855 1856 static void destroyed_worker_func(struct work_struct *w); 1857 static void reset_fail_worker_func(struct work_struct *w); 1858 1859 /* 1860 * Set up the memory resources to be shared with the GuC (via the GGTT) 1861 * at firmware loading time. 1862 */ 1863 int intel_guc_submission_init(struct intel_guc *guc) 1864 { 1865 struct intel_gt *gt = guc_to_gt(guc); 1866 int ret; 1867 1868 if (guc->submission_initialized) 1869 return 0; 1870 1871 if (guc->fw.major_ver_found < 70) { 1872 ret = guc_lrc_desc_pool_create_v69(guc); 1873 if (ret) 1874 return ret; 1875 } 1876 1877 guc->submission_state.guc_ids_bitmap = 1878 bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL); 1879 if (!guc->submission_state.guc_ids_bitmap) { 1880 ret = -ENOMEM; 1881 goto destroy_pool; 1882 } 1883 1884 guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ; 1885 guc->timestamp.shift = gpm_timestamp_shift(gt); 1886 guc->submission_initialized = true; 1887 1888 return 0; 1889 1890 destroy_pool: 1891 guc_lrc_desc_pool_destroy_v69(guc); 1892 1893 return ret; 1894 } 1895 1896 void intel_guc_submission_fini(struct intel_guc *guc) 1897 { 1898 if (!guc->submission_initialized) 1899 return; 1900 1901 guc_flush_destroyed_contexts(guc); 1902 guc_lrc_desc_pool_destroy_v69(guc); 1903 i915_sched_engine_put(guc->sched_engine); 1904 bitmap_free(guc->submission_state.guc_ids_bitmap); 1905 guc->submission_initialized = false; 1906 } 1907 1908 static inline void queue_request(struct i915_sched_engine *sched_engine, 1909 struct i915_request *rq, 1910 int prio) 1911 { 1912 GEM_BUG_ON(!list_empty(&rq->sched.link)); 1913 list_add_tail(&rq->sched.link, 1914 i915_sched_lookup_priolist(sched_engine, prio)); 1915 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 1916 tasklet_hi_schedule(&sched_engine->tasklet); 1917 } 1918 1919 static int guc_bypass_tasklet_submit(struct intel_guc *guc, 1920 struct i915_request *rq) 1921 { 1922 int ret = 0; 1923 1924 __i915_request_submit(rq); 1925 1926 trace_i915_request_in(rq, 0); 1927 1928 if (is_multi_lrc_rq(rq)) { 1929 if (multi_lrc_submit(rq)) { 1930 ret = guc_wq_item_append(guc, rq); 1931 if (!ret) 1932 ret = guc_add_request(guc, rq); 1933 } 1934 } else { 1935 guc_set_lrc_tail(rq); 1936 ret = guc_add_request(guc, rq); 1937 } 1938 1939 if (unlikely(ret == -EPIPE)) 1940 disable_submission(guc); 1941 1942 return ret; 1943 } 1944 1945 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq) 1946 { 1947 struct i915_sched_engine *sched_engine = rq->engine->sched_engine; 1948 struct intel_context *ce = request_to_scheduling_context(rq); 1949 1950 return submission_disabled(guc) || guc->stalled_request || 1951 !i915_sched_engine_is_empty(sched_engine) || 1952 !ctx_id_mapped(guc, ce->guc_id.id); 1953 } 1954 1955 static void guc_submit_request(struct i915_request *rq) 1956 { 1957 struct i915_sched_engine *sched_engine = rq->engine->sched_engine; 1958 struct intel_guc *guc = &rq->engine->gt->uc.guc; 1959 unsigned long flags; 1960 1961 /* Will be called from irq-context when using foreign fences. */ 1962 spin_lock_irqsave(&sched_engine->lock, flags); 1963 1964 if (need_tasklet(guc, rq)) 1965 queue_request(sched_engine, rq, rq_prio(rq)); 1966 else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY) 1967 tasklet_hi_schedule(&sched_engine->tasklet); 1968 1969 spin_unlock_irqrestore(&sched_engine->lock, flags); 1970 } 1971 1972 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce) 1973 { 1974 int ret; 1975 1976 GEM_BUG_ON(intel_context_is_child(ce)); 1977 1978 if (intel_context_is_parent(ce)) 1979 ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap, 1980 NUMBER_MULTI_LRC_GUC_ID(guc), 1981 order_base_2(ce->parallel.number_children 1982 + 1)); 1983 else 1984 ret = ida_simple_get(&guc->submission_state.guc_ids, 1985 NUMBER_MULTI_LRC_GUC_ID(guc), 1986 guc->submission_state.num_guc_ids, 1987 GFP_KERNEL | __GFP_RETRY_MAYFAIL | 1988 __GFP_NOWARN); 1989 if (unlikely(ret < 0)) 1990 return ret; 1991 1992 ce->guc_id.id = ret; 1993 return 0; 1994 } 1995 1996 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce) 1997 { 1998 GEM_BUG_ON(intel_context_is_child(ce)); 1999 2000 if (!context_guc_id_invalid(ce)) { 2001 if (intel_context_is_parent(ce)) 2002 bitmap_release_region(guc->submission_state.guc_ids_bitmap, 2003 ce->guc_id.id, 2004 order_base_2(ce->parallel.number_children 2005 + 1)); 2006 else 2007 ida_simple_remove(&guc->submission_state.guc_ids, 2008 ce->guc_id.id); 2009 clr_ctx_id_mapping(guc, ce->guc_id.id); 2010 set_context_guc_id_invalid(ce); 2011 } 2012 if (!list_empty(&ce->guc_id.link)) 2013 list_del_init(&ce->guc_id.link); 2014 } 2015 2016 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce) 2017 { 2018 unsigned long flags; 2019 2020 spin_lock_irqsave(&guc->submission_state.lock, flags); 2021 __release_guc_id(guc, ce); 2022 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2023 } 2024 2025 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce) 2026 { 2027 struct intel_context *cn; 2028 2029 lockdep_assert_held(&guc->submission_state.lock); 2030 GEM_BUG_ON(intel_context_is_child(ce)); 2031 GEM_BUG_ON(intel_context_is_parent(ce)); 2032 2033 if (!list_empty(&guc->submission_state.guc_id_list)) { 2034 cn = list_first_entry(&guc->submission_state.guc_id_list, 2035 struct intel_context, 2036 guc_id.link); 2037 2038 GEM_BUG_ON(atomic_read(&cn->guc_id.ref)); 2039 GEM_BUG_ON(context_guc_id_invalid(cn)); 2040 GEM_BUG_ON(intel_context_is_child(cn)); 2041 GEM_BUG_ON(intel_context_is_parent(cn)); 2042 2043 list_del_init(&cn->guc_id.link); 2044 ce->guc_id.id = cn->guc_id.id; 2045 2046 spin_lock(&cn->guc_state.lock); 2047 clr_context_registered(cn); 2048 spin_unlock(&cn->guc_state.lock); 2049 2050 set_context_guc_id_invalid(cn); 2051 2052 #ifdef CONFIG_DRM_I915_SELFTEST 2053 guc->number_guc_id_stolen++; 2054 #endif 2055 2056 return 0; 2057 } else { 2058 return -EAGAIN; 2059 } 2060 } 2061 2062 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce) 2063 { 2064 int ret; 2065 2066 lockdep_assert_held(&guc->submission_state.lock); 2067 GEM_BUG_ON(intel_context_is_child(ce)); 2068 2069 ret = new_guc_id(guc, ce); 2070 if (unlikely(ret < 0)) { 2071 if (intel_context_is_parent(ce)) 2072 return -ENOSPC; 2073 2074 ret = steal_guc_id(guc, ce); 2075 if (ret < 0) 2076 return ret; 2077 } 2078 2079 if (intel_context_is_parent(ce)) { 2080 struct intel_context *child; 2081 int i = 1; 2082 2083 for_each_child(ce, child) 2084 child->guc_id.id = ce->guc_id.id + i++; 2085 } 2086 2087 return 0; 2088 } 2089 2090 #define PIN_GUC_ID_TRIES 4 2091 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce) 2092 { 2093 int ret = 0; 2094 unsigned long flags, tries = PIN_GUC_ID_TRIES; 2095 2096 GEM_BUG_ON(atomic_read(&ce->guc_id.ref)); 2097 2098 try_again: 2099 spin_lock_irqsave(&guc->submission_state.lock, flags); 2100 2101 might_lock(&ce->guc_state.lock); 2102 2103 if (context_guc_id_invalid(ce)) { 2104 ret = assign_guc_id(guc, ce); 2105 if (ret) 2106 goto out_unlock; 2107 ret = 1; /* Indidcates newly assigned guc_id */ 2108 } 2109 if (!list_empty(&ce->guc_id.link)) 2110 list_del_init(&ce->guc_id.link); 2111 atomic_inc(&ce->guc_id.ref); 2112 2113 out_unlock: 2114 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2115 2116 /* 2117 * -EAGAIN indicates no guc_id are available, let's retire any 2118 * outstanding requests to see if that frees up a guc_id. If the first 2119 * retire didn't help, insert a sleep with the timeslice duration before 2120 * attempting to retire more requests. Double the sleep period each 2121 * subsequent pass before finally giving up. The sleep period has max of 2122 * 100ms and minimum of 1ms. 2123 */ 2124 if (ret == -EAGAIN && --tries) { 2125 if (PIN_GUC_ID_TRIES - tries > 1) { 2126 unsigned int timeslice_shifted = 2127 ce->engine->props.timeslice_duration_ms << 2128 (PIN_GUC_ID_TRIES - tries - 2); 2129 unsigned int max = min_t(unsigned int, 100, 2130 timeslice_shifted); 2131 2132 msleep(max_t(unsigned int, max, 1)); 2133 } 2134 intel_gt_retire_requests(guc_to_gt(guc)); 2135 goto try_again; 2136 } 2137 2138 return ret; 2139 } 2140 2141 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce) 2142 { 2143 unsigned long flags; 2144 2145 GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0); 2146 GEM_BUG_ON(intel_context_is_child(ce)); 2147 2148 if (unlikely(context_guc_id_invalid(ce) || 2149 intel_context_is_parent(ce))) 2150 return; 2151 2152 spin_lock_irqsave(&guc->submission_state.lock, flags); 2153 if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) && 2154 !atomic_read(&ce->guc_id.ref)) 2155 list_add_tail(&ce->guc_id.link, 2156 &guc->submission_state.guc_id_list); 2157 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2158 } 2159 2160 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc, 2161 struct intel_context *ce, 2162 u32 guc_id, 2163 u32 offset, 2164 bool loop) 2165 { 2166 struct intel_context *child; 2167 u32 action[4 + MAX_ENGINE_INSTANCE]; 2168 int len = 0; 2169 2170 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); 2171 2172 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 2173 action[len++] = guc_id; 2174 action[len++] = ce->parallel.number_children + 1; 2175 action[len++] = offset; 2176 for_each_child(ce, child) { 2177 offset += sizeof(struct guc_lrc_desc_v69); 2178 action[len++] = offset; 2179 } 2180 2181 return guc_submission_send_busy_loop(guc, action, len, 0, loop); 2182 } 2183 2184 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc, 2185 struct intel_context *ce, 2186 struct guc_ctxt_registration_info *info, 2187 bool loop) 2188 { 2189 struct intel_context *child; 2190 u32 action[13 + (MAX_ENGINE_INSTANCE * 2)]; 2191 int len = 0; 2192 u32 next_id; 2193 2194 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); 2195 2196 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 2197 action[len++] = info->flags; 2198 action[len++] = info->context_idx; 2199 action[len++] = info->engine_class; 2200 action[len++] = info->engine_submit_mask; 2201 action[len++] = info->wq_desc_lo; 2202 action[len++] = info->wq_desc_hi; 2203 action[len++] = info->wq_base_lo; 2204 action[len++] = info->wq_base_hi; 2205 action[len++] = info->wq_size; 2206 action[len++] = ce->parallel.number_children + 1; 2207 action[len++] = info->hwlrca_lo; 2208 action[len++] = info->hwlrca_hi; 2209 2210 next_id = info->context_idx + 1; 2211 for_each_child(ce, child) { 2212 GEM_BUG_ON(next_id++ != child->guc_id.id); 2213 2214 /* 2215 * NB: GuC interface supports 64 bit LRCA even though i915/HW 2216 * only supports 32 bit currently. 2217 */ 2218 action[len++] = lower_32_bits(child->lrc.lrca); 2219 action[len++] = upper_32_bits(child->lrc.lrca); 2220 } 2221 2222 GEM_BUG_ON(len > ARRAY_SIZE(action)); 2223 2224 return guc_submission_send_busy_loop(guc, action, len, 0, loop); 2225 } 2226 2227 static int __guc_action_register_context_v69(struct intel_guc *guc, 2228 u32 guc_id, 2229 u32 offset, 2230 bool loop) 2231 { 2232 u32 action[] = { 2233 INTEL_GUC_ACTION_REGISTER_CONTEXT, 2234 guc_id, 2235 offset, 2236 }; 2237 2238 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2239 0, loop); 2240 } 2241 2242 static int __guc_action_register_context_v70(struct intel_guc *guc, 2243 struct guc_ctxt_registration_info *info, 2244 bool loop) 2245 { 2246 u32 action[] = { 2247 INTEL_GUC_ACTION_REGISTER_CONTEXT, 2248 info->flags, 2249 info->context_idx, 2250 info->engine_class, 2251 info->engine_submit_mask, 2252 info->wq_desc_lo, 2253 info->wq_desc_hi, 2254 info->wq_base_lo, 2255 info->wq_base_hi, 2256 info->wq_size, 2257 info->hwlrca_lo, 2258 info->hwlrca_hi, 2259 }; 2260 2261 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2262 0, loop); 2263 } 2264 2265 static void prepare_context_registration_info_v69(struct intel_context *ce); 2266 static void prepare_context_registration_info_v70(struct intel_context *ce, 2267 struct guc_ctxt_registration_info *info); 2268 2269 static int 2270 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop) 2271 { 2272 u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) + 2273 ce->guc_id.id * sizeof(struct guc_lrc_desc_v69); 2274 2275 prepare_context_registration_info_v69(ce); 2276 2277 if (intel_context_is_parent(ce)) 2278 return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id, 2279 offset, loop); 2280 else 2281 return __guc_action_register_context_v69(guc, ce->guc_id.id, 2282 offset, loop); 2283 } 2284 2285 static int 2286 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop) 2287 { 2288 struct guc_ctxt_registration_info info; 2289 2290 prepare_context_registration_info_v70(ce, &info); 2291 2292 if (intel_context_is_parent(ce)) 2293 return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop); 2294 else 2295 return __guc_action_register_context_v70(guc, &info, loop); 2296 } 2297 2298 static int register_context(struct intel_context *ce, bool loop) 2299 { 2300 struct intel_guc *guc = ce_to_guc(ce); 2301 int ret; 2302 2303 GEM_BUG_ON(intel_context_is_child(ce)); 2304 trace_intel_context_register(ce); 2305 2306 if (guc->fw.major_ver_found >= 70) 2307 ret = register_context_v70(guc, ce, loop); 2308 else 2309 ret = register_context_v69(guc, ce, loop); 2310 2311 if (likely(!ret)) { 2312 unsigned long flags; 2313 2314 spin_lock_irqsave(&ce->guc_state.lock, flags); 2315 set_context_registered(ce); 2316 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2317 2318 if (guc->fw.major_ver_found >= 70) 2319 guc_context_policy_init_v70(ce, loop); 2320 } 2321 2322 return ret; 2323 } 2324 2325 static int __guc_action_deregister_context(struct intel_guc *guc, 2326 u32 guc_id) 2327 { 2328 u32 action[] = { 2329 INTEL_GUC_ACTION_DEREGISTER_CONTEXT, 2330 guc_id, 2331 }; 2332 2333 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2334 G2H_LEN_DW_DEREGISTER_CONTEXT, 2335 true); 2336 } 2337 2338 static int deregister_context(struct intel_context *ce, u32 guc_id) 2339 { 2340 struct intel_guc *guc = ce_to_guc(ce); 2341 2342 GEM_BUG_ON(intel_context_is_child(ce)); 2343 trace_intel_context_deregister(ce); 2344 2345 return __guc_action_deregister_context(guc, guc_id); 2346 } 2347 2348 static inline void clear_children_join_go_memory(struct intel_context *ce) 2349 { 2350 struct parent_scratch *ps = __get_parent_scratch(ce); 2351 int i; 2352 2353 ps->go.semaphore = 0; 2354 for (i = 0; i < ce->parallel.number_children + 1; ++i) 2355 ps->join[i].semaphore = 0; 2356 } 2357 2358 static inline u32 get_children_go_value(struct intel_context *ce) 2359 { 2360 return __get_parent_scratch(ce)->go.semaphore; 2361 } 2362 2363 static inline u32 get_children_join_value(struct intel_context *ce, 2364 u8 child_index) 2365 { 2366 return __get_parent_scratch(ce)->join[child_index].semaphore; 2367 } 2368 2369 struct context_policy { 2370 u32 count; 2371 struct guc_update_context_policy h2g; 2372 }; 2373 2374 static u32 __guc_context_policy_action_size(struct context_policy *policy) 2375 { 2376 size_t bytes = sizeof(policy->h2g.header) + 2377 (sizeof(policy->h2g.klv[0]) * policy->count); 2378 2379 return bytes / sizeof(u32); 2380 } 2381 2382 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id) 2383 { 2384 policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES; 2385 policy->h2g.header.ctx_id = guc_id; 2386 policy->count = 0; 2387 } 2388 2389 #define MAKE_CONTEXT_POLICY_ADD(func, id) \ 2390 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \ 2391 { \ 2392 GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \ 2393 policy->h2g.klv[policy->count].kl = \ 2394 FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \ 2395 FIELD_PREP(GUC_KLV_0_LEN, 1); \ 2396 policy->h2g.klv[policy->count].value = data; \ 2397 policy->count++; \ 2398 } 2399 2400 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM) 2401 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT) 2402 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY) 2403 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY) 2404 2405 #undef MAKE_CONTEXT_POLICY_ADD 2406 2407 static int __guc_context_set_context_policies(struct intel_guc *guc, 2408 struct context_policy *policy, 2409 bool loop) 2410 { 2411 return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g, 2412 __guc_context_policy_action_size(policy), 2413 0, loop); 2414 } 2415 2416 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop) 2417 { 2418 struct intel_engine_cs *engine = ce->engine; 2419 struct intel_guc *guc = &engine->gt->uc.guc; 2420 struct context_policy policy; 2421 u32 execution_quantum; 2422 u32 preemption_timeout; 2423 bool missing = false; 2424 unsigned long flags; 2425 int ret; 2426 2427 /* NB: For both of these, zero means disabled. */ 2428 execution_quantum = engine->props.timeslice_duration_ms * 1000; 2429 preemption_timeout = engine->props.preempt_timeout_ms * 1000; 2430 2431 __guc_context_policy_start_klv(&policy, ce->guc_id.id); 2432 2433 __guc_context_policy_add_priority(&policy, ce->guc_state.prio); 2434 __guc_context_policy_add_execution_quantum(&policy, execution_quantum); 2435 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); 2436 2437 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) 2438 __guc_context_policy_add_preempt_to_idle(&policy, 1); 2439 2440 ret = __guc_context_set_context_policies(guc, &policy, loop); 2441 missing = ret != 0; 2442 2443 if (!missing && intel_context_is_parent(ce)) { 2444 struct intel_context *child; 2445 2446 for_each_child(ce, child) { 2447 __guc_context_policy_start_klv(&policy, child->guc_id.id); 2448 2449 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) 2450 __guc_context_policy_add_preempt_to_idle(&policy, 1); 2451 2452 child->guc_state.prio = ce->guc_state.prio; 2453 __guc_context_policy_add_priority(&policy, ce->guc_state.prio); 2454 __guc_context_policy_add_execution_quantum(&policy, execution_quantum); 2455 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); 2456 2457 ret = __guc_context_set_context_policies(guc, &policy, loop); 2458 if (ret) { 2459 missing = true; 2460 break; 2461 } 2462 } 2463 } 2464 2465 spin_lock_irqsave(&ce->guc_state.lock, flags); 2466 if (missing) 2467 set_context_policy_required(ce); 2468 else 2469 clr_context_policy_required(ce); 2470 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2471 2472 return ret; 2473 } 2474 2475 static void guc_context_policy_init_v69(struct intel_engine_cs *engine, 2476 struct guc_lrc_desc_v69 *desc) 2477 { 2478 desc->policy_flags = 0; 2479 2480 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) 2481 desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69; 2482 2483 /* NB: For both of these, zero means disabled. */ 2484 desc->execution_quantum = engine->props.timeslice_duration_ms * 1000; 2485 desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000; 2486 } 2487 2488 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio) 2489 { 2490 /* 2491 * this matches the mapping we do in map_i915_prio_to_guc_prio() 2492 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL) 2493 */ 2494 switch (prio) { 2495 default: 2496 MISSING_CASE(prio); 2497 fallthrough; 2498 case GUC_CLIENT_PRIORITY_KMD_NORMAL: 2499 return GEN12_CTX_PRIORITY_NORMAL; 2500 case GUC_CLIENT_PRIORITY_NORMAL: 2501 return GEN12_CTX_PRIORITY_LOW; 2502 case GUC_CLIENT_PRIORITY_HIGH: 2503 case GUC_CLIENT_PRIORITY_KMD_HIGH: 2504 return GEN12_CTX_PRIORITY_HIGH; 2505 } 2506 } 2507 2508 static void prepare_context_registration_info_v69(struct intel_context *ce) 2509 { 2510 struct intel_engine_cs *engine = ce->engine; 2511 struct intel_guc *guc = &engine->gt->uc.guc; 2512 u32 ctx_id = ce->guc_id.id; 2513 struct guc_lrc_desc_v69 *desc; 2514 struct intel_context *child; 2515 2516 GEM_BUG_ON(!engine->mask); 2517 2518 /* 2519 * Ensure LRC + CT vmas are is same region as write barrier is done 2520 * based on CT vma region. 2521 */ 2522 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != 2523 i915_gem_object_is_lmem(ce->ring->vma->obj)); 2524 2525 desc = __get_lrc_desc_v69(guc, ctx_id); 2526 desc->engine_class = engine_class_to_guc_class(engine->class); 2527 desc->engine_submit_mask = engine->logical_mask; 2528 desc->hw_context_desc = ce->lrc.lrca; 2529 desc->priority = ce->guc_state.prio; 2530 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; 2531 guc_context_policy_init_v69(engine, desc); 2532 2533 /* 2534 * If context is a parent, we need to register a process descriptor 2535 * describing a work queue and register all child contexts. 2536 */ 2537 if (intel_context_is_parent(ce)) { 2538 struct guc_process_desc_v69 *pdesc; 2539 2540 ce->parallel.guc.wqi_tail = 0; 2541 ce->parallel.guc.wqi_head = 0; 2542 2543 desc->process_desc = i915_ggtt_offset(ce->state) + 2544 __get_parent_scratch_offset(ce); 2545 desc->wq_addr = i915_ggtt_offset(ce->state) + 2546 __get_wq_offset(ce); 2547 desc->wq_size = WQ_SIZE; 2548 2549 pdesc = __get_process_desc_v69(ce); 2550 memset(pdesc, 0, sizeof(*(pdesc))); 2551 pdesc->stage_id = ce->guc_id.id; 2552 pdesc->wq_base_addr = desc->wq_addr; 2553 pdesc->wq_size_bytes = desc->wq_size; 2554 pdesc->wq_status = WQ_STATUS_ACTIVE; 2555 2556 ce->parallel.guc.wq_head = &pdesc->head; 2557 ce->parallel.guc.wq_tail = &pdesc->tail; 2558 ce->parallel.guc.wq_status = &pdesc->wq_status; 2559 2560 for_each_child(ce, child) { 2561 desc = __get_lrc_desc_v69(guc, child->guc_id.id); 2562 2563 desc->engine_class = 2564 engine_class_to_guc_class(engine->class); 2565 desc->hw_context_desc = child->lrc.lrca; 2566 desc->priority = ce->guc_state.prio; 2567 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; 2568 guc_context_policy_init_v69(engine, desc); 2569 } 2570 2571 clear_children_join_go_memory(ce); 2572 } 2573 } 2574 2575 static void prepare_context_registration_info_v70(struct intel_context *ce, 2576 struct guc_ctxt_registration_info *info) 2577 { 2578 struct intel_engine_cs *engine = ce->engine; 2579 struct intel_guc *guc = &engine->gt->uc.guc; 2580 u32 ctx_id = ce->guc_id.id; 2581 2582 GEM_BUG_ON(!engine->mask); 2583 2584 /* 2585 * Ensure LRC + CT vmas are is same region as write barrier is done 2586 * based on CT vma region. 2587 */ 2588 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != 2589 i915_gem_object_is_lmem(ce->ring->vma->obj)); 2590 2591 memset(info, 0, sizeof(*info)); 2592 info->context_idx = ctx_id; 2593 info->engine_class = engine_class_to_guc_class(engine->class); 2594 info->engine_submit_mask = engine->logical_mask; 2595 /* 2596 * NB: GuC interface supports 64 bit LRCA even though i915/HW 2597 * only supports 32 bit currently. 2598 */ 2599 info->hwlrca_lo = lower_32_bits(ce->lrc.lrca); 2600 info->hwlrca_hi = upper_32_bits(ce->lrc.lrca); 2601 if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY) 2602 info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio); 2603 info->flags = CONTEXT_REGISTRATION_FLAG_KMD; 2604 2605 /* 2606 * If context is a parent, we need to register a process descriptor 2607 * describing a work queue and register all child contexts. 2608 */ 2609 if (intel_context_is_parent(ce)) { 2610 struct guc_sched_wq_desc *wq_desc; 2611 u64 wq_desc_offset, wq_base_offset; 2612 2613 ce->parallel.guc.wqi_tail = 0; 2614 ce->parallel.guc.wqi_head = 0; 2615 2616 wq_desc_offset = i915_ggtt_offset(ce->state) + 2617 __get_parent_scratch_offset(ce); 2618 wq_base_offset = i915_ggtt_offset(ce->state) + 2619 __get_wq_offset(ce); 2620 info->wq_desc_lo = lower_32_bits(wq_desc_offset); 2621 info->wq_desc_hi = upper_32_bits(wq_desc_offset); 2622 info->wq_base_lo = lower_32_bits(wq_base_offset); 2623 info->wq_base_hi = upper_32_bits(wq_base_offset); 2624 info->wq_size = WQ_SIZE; 2625 2626 wq_desc = __get_wq_desc_v70(ce); 2627 memset(wq_desc, 0, sizeof(*wq_desc)); 2628 wq_desc->wq_status = WQ_STATUS_ACTIVE; 2629 2630 ce->parallel.guc.wq_head = &wq_desc->head; 2631 ce->parallel.guc.wq_tail = &wq_desc->tail; 2632 ce->parallel.guc.wq_status = &wq_desc->wq_status; 2633 2634 clear_children_join_go_memory(ce); 2635 } 2636 } 2637 2638 static int try_context_registration(struct intel_context *ce, bool loop) 2639 { 2640 struct intel_engine_cs *engine = ce->engine; 2641 struct intel_runtime_pm *runtime_pm = engine->uncore->rpm; 2642 struct intel_guc *guc = &engine->gt->uc.guc; 2643 intel_wakeref_t wakeref; 2644 u32 ctx_id = ce->guc_id.id; 2645 bool context_registered; 2646 int ret = 0; 2647 2648 GEM_BUG_ON(!sched_state_is_init(ce)); 2649 2650 context_registered = ctx_id_mapped(guc, ctx_id); 2651 2652 clr_ctx_id_mapping(guc, ctx_id); 2653 set_ctx_id_mapping(guc, ctx_id, ce); 2654 2655 /* 2656 * The context_lookup xarray is used to determine if the hardware 2657 * context is currently registered. There are two cases in which it 2658 * could be registered either the guc_id has been stolen from another 2659 * context or the lrc descriptor address of this context has changed. In 2660 * either case the context needs to be deregistered with the GuC before 2661 * registering this context. 2662 */ 2663 if (context_registered) { 2664 bool disabled; 2665 unsigned long flags; 2666 2667 trace_intel_context_steal_guc_id(ce); 2668 GEM_BUG_ON(!loop); 2669 2670 /* Seal race with Reset */ 2671 spin_lock_irqsave(&ce->guc_state.lock, flags); 2672 disabled = submission_disabled(guc); 2673 if (likely(!disabled)) { 2674 set_context_wait_for_deregister_to_register(ce); 2675 intel_context_get(ce); 2676 } 2677 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2678 if (unlikely(disabled)) { 2679 clr_ctx_id_mapping(guc, ctx_id); 2680 return 0; /* Will get registered later */ 2681 } 2682 2683 /* 2684 * If stealing the guc_id, this ce has the same guc_id as the 2685 * context whose guc_id was stolen. 2686 */ 2687 with_intel_runtime_pm(runtime_pm, wakeref) 2688 ret = deregister_context(ce, ce->guc_id.id); 2689 if (unlikely(ret == -ENODEV)) 2690 ret = 0; /* Will get registered later */ 2691 } else { 2692 with_intel_runtime_pm(runtime_pm, wakeref) 2693 ret = register_context(ce, loop); 2694 if (unlikely(ret == -EBUSY)) { 2695 clr_ctx_id_mapping(guc, ctx_id); 2696 } else if (unlikely(ret == -ENODEV)) { 2697 clr_ctx_id_mapping(guc, ctx_id); 2698 ret = 0; /* Will get registered later */ 2699 } 2700 } 2701 2702 return ret; 2703 } 2704 2705 static int __guc_context_pre_pin(struct intel_context *ce, 2706 struct intel_engine_cs *engine, 2707 struct i915_gem_ww_ctx *ww, 2708 void **vaddr) 2709 { 2710 return lrc_pre_pin(ce, engine, ww, vaddr); 2711 } 2712 2713 static int __guc_context_pin(struct intel_context *ce, 2714 struct intel_engine_cs *engine, 2715 void *vaddr) 2716 { 2717 if (i915_ggtt_offset(ce->state) != 2718 (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK)) 2719 set_bit(CONTEXT_LRCA_DIRTY, &ce->flags); 2720 2721 /* 2722 * GuC context gets pinned in guc_request_alloc. See that function for 2723 * explaination of why. 2724 */ 2725 2726 return lrc_pin(ce, engine, vaddr); 2727 } 2728 2729 static int guc_context_pre_pin(struct intel_context *ce, 2730 struct i915_gem_ww_ctx *ww, 2731 void **vaddr) 2732 { 2733 return __guc_context_pre_pin(ce, ce->engine, ww, vaddr); 2734 } 2735 2736 static int guc_context_pin(struct intel_context *ce, void *vaddr) 2737 { 2738 int ret = __guc_context_pin(ce, ce->engine, vaddr); 2739 2740 if (likely(!ret && !intel_context_is_barrier(ce))) 2741 intel_engine_pm_get(ce->engine); 2742 2743 return ret; 2744 } 2745 2746 static void guc_context_unpin(struct intel_context *ce) 2747 { 2748 struct intel_guc *guc = ce_to_guc(ce); 2749 2750 unpin_guc_id(guc, ce); 2751 lrc_unpin(ce); 2752 2753 if (likely(!intel_context_is_barrier(ce))) 2754 intel_engine_pm_put_async(ce->engine); 2755 } 2756 2757 static void guc_context_post_unpin(struct intel_context *ce) 2758 { 2759 lrc_post_unpin(ce); 2760 } 2761 2762 static void __guc_context_sched_enable(struct intel_guc *guc, 2763 struct intel_context *ce) 2764 { 2765 u32 action[] = { 2766 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, 2767 ce->guc_id.id, 2768 GUC_CONTEXT_ENABLE 2769 }; 2770 2771 trace_intel_context_sched_enable(ce); 2772 2773 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2774 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); 2775 } 2776 2777 static void __guc_context_sched_disable(struct intel_guc *guc, 2778 struct intel_context *ce, 2779 u16 guc_id) 2780 { 2781 u32 action[] = { 2782 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, 2783 guc_id, /* ce->guc_id.id not stable */ 2784 GUC_CONTEXT_DISABLE 2785 }; 2786 2787 GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID); 2788 2789 GEM_BUG_ON(intel_context_is_child(ce)); 2790 trace_intel_context_sched_disable(ce); 2791 2792 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2793 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); 2794 } 2795 2796 static void guc_blocked_fence_complete(struct intel_context *ce) 2797 { 2798 lockdep_assert_held(&ce->guc_state.lock); 2799 2800 if (!i915_sw_fence_done(&ce->guc_state.blocked)) 2801 i915_sw_fence_complete(&ce->guc_state.blocked); 2802 } 2803 2804 static void guc_blocked_fence_reinit(struct intel_context *ce) 2805 { 2806 lockdep_assert_held(&ce->guc_state.lock); 2807 GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked)); 2808 2809 /* 2810 * This fence is always complete unless a pending schedule disable is 2811 * outstanding. We arm the fence here and complete it when we receive 2812 * the pending schedule disable complete message. 2813 */ 2814 i915_sw_fence_fini(&ce->guc_state.blocked); 2815 i915_sw_fence_reinit(&ce->guc_state.blocked); 2816 i915_sw_fence_await(&ce->guc_state.blocked); 2817 i915_sw_fence_commit(&ce->guc_state.blocked); 2818 } 2819 2820 static u16 prep_context_pending_disable(struct intel_context *ce) 2821 { 2822 lockdep_assert_held(&ce->guc_state.lock); 2823 2824 set_context_pending_disable(ce); 2825 clr_context_enabled(ce); 2826 guc_blocked_fence_reinit(ce); 2827 intel_context_get(ce); 2828 2829 return ce->guc_id.id; 2830 } 2831 2832 static struct i915_sw_fence *guc_context_block(struct intel_context *ce) 2833 { 2834 struct intel_guc *guc = ce_to_guc(ce); 2835 unsigned long flags; 2836 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; 2837 intel_wakeref_t wakeref; 2838 u16 guc_id; 2839 bool enabled; 2840 2841 GEM_BUG_ON(intel_context_is_child(ce)); 2842 2843 spin_lock_irqsave(&ce->guc_state.lock, flags); 2844 2845 incr_context_blocked(ce); 2846 2847 enabled = context_enabled(ce); 2848 if (unlikely(!enabled || submission_disabled(guc))) { 2849 if (enabled) 2850 clr_context_enabled(ce); 2851 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2852 return &ce->guc_state.blocked; 2853 } 2854 2855 /* 2856 * We add +2 here as the schedule disable complete CTB handler calls 2857 * intel_context_sched_disable_unpin (-2 to pin_count). 2858 */ 2859 atomic_add(2, &ce->pin_count); 2860 2861 guc_id = prep_context_pending_disable(ce); 2862 2863 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2864 2865 with_intel_runtime_pm(runtime_pm, wakeref) 2866 __guc_context_sched_disable(guc, ce, guc_id); 2867 2868 return &ce->guc_state.blocked; 2869 } 2870 2871 #define SCHED_STATE_MULTI_BLOCKED_MASK \ 2872 (SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED) 2873 #define SCHED_STATE_NO_UNBLOCK \ 2874 (SCHED_STATE_MULTI_BLOCKED_MASK | \ 2875 SCHED_STATE_PENDING_DISABLE | \ 2876 SCHED_STATE_BANNED) 2877 2878 static bool context_cant_unblock(struct intel_context *ce) 2879 { 2880 lockdep_assert_held(&ce->guc_state.lock); 2881 2882 return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) || 2883 context_guc_id_invalid(ce) || 2884 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) || 2885 !intel_context_is_pinned(ce); 2886 } 2887 2888 static void guc_context_unblock(struct intel_context *ce) 2889 { 2890 struct intel_guc *guc = ce_to_guc(ce); 2891 unsigned long flags; 2892 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; 2893 intel_wakeref_t wakeref; 2894 bool enable; 2895 2896 GEM_BUG_ON(context_enabled(ce)); 2897 GEM_BUG_ON(intel_context_is_child(ce)); 2898 2899 spin_lock_irqsave(&ce->guc_state.lock, flags); 2900 2901 if (unlikely(submission_disabled(guc) || 2902 context_cant_unblock(ce))) { 2903 enable = false; 2904 } else { 2905 enable = true; 2906 set_context_pending_enable(ce); 2907 set_context_enabled(ce); 2908 intel_context_get(ce); 2909 } 2910 2911 decr_context_blocked(ce); 2912 2913 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2914 2915 if (enable) { 2916 with_intel_runtime_pm(runtime_pm, wakeref) 2917 __guc_context_sched_enable(guc, ce); 2918 } 2919 } 2920 2921 static void guc_context_cancel_request(struct intel_context *ce, 2922 struct i915_request *rq) 2923 { 2924 struct intel_context *block_context = 2925 request_to_scheduling_context(rq); 2926 2927 if (i915_sw_fence_signaled(&rq->submit)) { 2928 struct i915_sw_fence *fence; 2929 2930 intel_context_get(ce); 2931 fence = guc_context_block(block_context); 2932 i915_sw_fence_wait(fence); 2933 if (!i915_request_completed(rq)) { 2934 __i915_request_skip(rq); 2935 guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head), 2936 true); 2937 } 2938 2939 guc_context_unblock(block_context); 2940 intel_context_put(ce); 2941 } 2942 } 2943 2944 static void __guc_context_set_preemption_timeout(struct intel_guc *guc, 2945 u16 guc_id, 2946 u32 preemption_timeout) 2947 { 2948 if (guc->fw.major_ver_found >= 70) { 2949 struct context_policy policy; 2950 2951 __guc_context_policy_start_klv(&policy, guc_id); 2952 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); 2953 __guc_context_set_context_policies(guc, &policy, true); 2954 } else { 2955 u32 action[] = { 2956 INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT, 2957 guc_id, 2958 preemption_timeout 2959 }; 2960 2961 intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); 2962 } 2963 } 2964 2965 static void 2966 guc_context_revoke(struct intel_context *ce, struct i915_request *rq, 2967 unsigned int preempt_timeout_ms) 2968 { 2969 struct intel_guc *guc = ce_to_guc(ce); 2970 struct intel_runtime_pm *runtime_pm = 2971 &ce->engine->gt->i915->runtime_pm; 2972 intel_wakeref_t wakeref; 2973 unsigned long flags; 2974 2975 GEM_BUG_ON(intel_context_is_child(ce)); 2976 2977 guc_flush_submissions(guc); 2978 2979 spin_lock_irqsave(&ce->guc_state.lock, flags); 2980 set_context_banned(ce); 2981 2982 if (submission_disabled(guc) || 2983 (!context_enabled(ce) && !context_pending_disable(ce))) { 2984 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2985 2986 guc_cancel_context_requests(ce); 2987 intel_engine_signal_breadcrumbs(ce->engine); 2988 } else if (!context_pending_disable(ce)) { 2989 u16 guc_id; 2990 2991 /* 2992 * We add +2 here as the schedule disable complete CTB handler 2993 * calls intel_context_sched_disable_unpin (-2 to pin_count). 2994 */ 2995 atomic_add(2, &ce->pin_count); 2996 2997 guc_id = prep_context_pending_disable(ce); 2998 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2999 3000 /* 3001 * In addition to disabling scheduling, set the preemption 3002 * timeout to the minimum value (1 us) so the banned context 3003 * gets kicked off the HW ASAP. 3004 */ 3005 with_intel_runtime_pm(runtime_pm, wakeref) { 3006 __guc_context_set_preemption_timeout(guc, guc_id, 3007 preempt_timeout_ms); 3008 __guc_context_sched_disable(guc, ce, guc_id); 3009 } 3010 } else { 3011 if (!context_guc_id_invalid(ce)) 3012 with_intel_runtime_pm(runtime_pm, wakeref) 3013 __guc_context_set_preemption_timeout(guc, 3014 ce->guc_id.id, 3015 preempt_timeout_ms); 3016 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3017 } 3018 } 3019 3020 static void guc_context_sched_disable(struct intel_context *ce) 3021 { 3022 struct intel_guc *guc = ce_to_guc(ce); 3023 unsigned long flags; 3024 struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm; 3025 intel_wakeref_t wakeref; 3026 u16 guc_id; 3027 3028 GEM_BUG_ON(intel_context_is_child(ce)); 3029 3030 spin_lock_irqsave(&ce->guc_state.lock, flags); 3031 3032 /* 3033 * We have to check if the context has been disabled by another thread, 3034 * check if submssion has been disabled to seal a race with reset and 3035 * finally check if any more requests have been committed to the 3036 * context ensursing that a request doesn't slip through the 3037 * 'context_pending_disable' fence. 3038 */ 3039 if (unlikely(!context_enabled(ce) || submission_disabled(guc) || 3040 context_has_committed_requests(ce))) { 3041 clr_context_enabled(ce); 3042 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3043 goto unpin; 3044 } 3045 guc_id = prep_context_pending_disable(ce); 3046 3047 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3048 3049 with_intel_runtime_pm(runtime_pm, wakeref) 3050 __guc_context_sched_disable(guc, ce, guc_id); 3051 3052 return; 3053 unpin: 3054 intel_context_sched_disable_unpin(ce); 3055 } 3056 3057 static inline void guc_lrc_desc_unpin(struct intel_context *ce) 3058 { 3059 struct intel_guc *guc = ce_to_guc(ce); 3060 struct intel_gt *gt = guc_to_gt(guc); 3061 unsigned long flags; 3062 bool disabled; 3063 3064 GEM_BUG_ON(!intel_gt_pm_is_awake(gt)); 3065 GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id)); 3066 GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id)); 3067 GEM_BUG_ON(context_enabled(ce)); 3068 3069 /* Seal race with Reset */ 3070 spin_lock_irqsave(&ce->guc_state.lock, flags); 3071 disabled = submission_disabled(guc); 3072 if (likely(!disabled)) { 3073 __intel_gt_pm_get(gt); 3074 set_context_destroyed(ce); 3075 clr_context_registered(ce); 3076 } 3077 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3078 if (unlikely(disabled)) { 3079 release_guc_id(guc, ce); 3080 __guc_context_destroy(ce); 3081 return; 3082 } 3083 3084 deregister_context(ce, ce->guc_id.id); 3085 } 3086 3087 static void __guc_context_destroy(struct intel_context *ce) 3088 { 3089 GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] || 3090 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] || 3091 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] || 3092 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]); 3093 GEM_BUG_ON(ce->guc_state.number_committed_requests); 3094 3095 lrc_fini(ce); 3096 intel_context_fini(ce); 3097 3098 if (intel_engine_is_virtual(ce->engine)) { 3099 struct guc_virtual_engine *ve = 3100 container_of(ce, typeof(*ve), context); 3101 3102 if (ve->base.breadcrumbs) 3103 intel_breadcrumbs_put(ve->base.breadcrumbs); 3104 3105 kfree(ve); 3106 } else { 3107 intel_context_free(ce); 3108 } 3109 } 3110 3111 static void guc_flush_destroyed_contexts(struct intel_guc *guc) 3112 { 3113 struct intel_context *ce; 3114 unsigned long flags; 3115 3116 GEM_BUG_ON(!submission_disabled(guc) && 3117 guc_submission_initialized(guc)); 3118 3119 while (!list_empty(&guc->submission_state.destroyed_contexts)) { 3120 spin_lock_irqsave(&guc->submission_state.lock, flags); 3121 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, 3122 struct intel_context, 3123 destroyed_link); 3124 if (ce) 3125 list_del_init(&ce->destroyed_link); 3126 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3127 3128 if (!ce) 3129 break; 3130 3131 release_guc_id(guc, ce); 3132 __guc_context_destroy(ce); 3133 } 3134 } 3135 3136 static void deregister_destroyed_contexts(struct intel_guc *guc) 3137 { 3138 struct intel_context *ce; 3139 unsigned long flags; 3140 3141 while (!list_empty(&guc->submission_state.destroyed_contexts)) { 3142 spin_lock_irqsave(&guc->submission_state.lock, flags); 3143 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, 3144 struct intel_context, 3145 destroyed_link); 3146 if (ce) 3147 list_del_init(&ce->destroyed_link); 3148 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3149 3150 if (!ce) 3151 break; 3152 3153 guc_lrc_desc_unpin(ce); 3154 } 3155 } 3156 3157 static void destroyed_worker_func(struct work_struct *w) 3158 { 3159 struct intel_guc *guc = container_of(w, struct intel_guc, 3160 submission_state.destroyed_worker); 3161 struct intel_gt *gt = guc_to_gt(guc); 3162 int tmp; 3163 3164 with_intel_gt_pm(gt, tmp) 3165 deregister_destroyed_contexts(guc); 3166 } 3167 3168 static void guc_context_destroy(struct kref *kref) 3169 { 3170 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 3171 struct intel_guc *guc = ce_to_guc(ce); 3172 unsigned long flags; 3173 bool destroy; 3174 3175 /* 3176 * If the guc_id is invalid this context has been stolen and we can free 3177 * it immediately. Also can be freed immediately if the context is not 3178 * registered with the GuC or the GuC is in the middle of a reset. 3179 */ 3180 spin_lock_irqsave(&guc->submission_state.lock, flags); 3181 destroy = submission_disabled(guc) || context_guc_id_invalid(ce) || 3182 !ctx_id_mapped(guc, ce->guc_id.id); 3183 if (likely(!destroy)) { 3184 if (!list_empty(&ce->guc_id.link)) 3185 list_del_init(&ce->guc_id.link); 3186 list_add_tail(&ce->destroyed_link, 3187 &guc->submission_state.destroyed_contexts); 3188 } else { 3189 __release_guc_id(guc, ce); 3190 } 3191 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3192 if (unlikely(destroy)) { 3193 __guc_context_destroy(ce); 3194 return; 3195 } 3196 3197 /* 3198 * We use a worker to issue the H2G to deregister the context as we can 3199 * take the GT PM for the first time which isn't allowed from an atomic 3200 * context. 3201 */ 3202 queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker); 3203 } 3204 3205 static int guc_context_alloc(struct intel_context *ce) 3206 { 3207 return lrc_alloc(ce, ce->engine); 3208 } 3209 3210 static void __guc_context_set_prio(struct intel_guc *guc, 3211 struct intel_context *ce) 3212 { 3213 if (guc->fw.major_ver_found >= 70) { 3214 struct context_policy policy; 3215 3216 __guc_context_policy_start_klv(&policy, ce->guc_id.id); 3217 __guc_context_policy_add_priority(&policy, ce->guc_state.prio); 3218 __guc_context_set_context_policies(guc, &policy, true); 3219 } else { 3220 u32 action[] = { 3221 INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY, 3222 ce->guc_id.id, 3223 ce->guc_state.prio, 3224 }; 3225 3226 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); 3227 } 3228 } 3229 3230 static void guc_context_set_prio(struct intel_guc *guc, 3231 struct intel_context *ce, 3232 u8 prio) 3233 { 3234 GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH || 3235 prio > GUC_CLIENT_PRIORITY_NORMAL); 3236 lockdep_assert_held(&ce->guc_state.lock); 3237 3238 if (ce->guc_state.prio == prio || submission_disabled(guc) || 3239 !context_registered(ce)) { 3240 ce->guc_state.prio = prio; 3241 return; 3242 } 3243 3244 ce->guc_state.prio = prio; 3245 __guc_context_set_prio(guc, ce); 3246 3247 trace_intel_context_set_prio(ce); 3248 } 3249 3250 static inline u8 map_i915_prio_to_guc_prio(int prio) 3251 { 3252 if (prio == I915_PRIORITY_NORMAL) 3253 return GUC_CLIENT_PRIORITY_KMD_NORMAL; 3254 else if (prio < I915_PRIORITY_NORMAL) 3255 return GUC_CLIENT_PRIORITY_NORMAL; 3256 else if (prio < I915_PRIORITY_DISPLAY) 3257 return GUC_CLIENT_PRIORITY_HIGH; 3258 else 3259 return GUC_CLIENT_PRIORITY_KMD_HIGH; 3260 } 3261 3262 static inline void add_context_inflight_prio(struct intel_context *ce, 3263 u8 guc_prio) 3264 { 3265 lockdep_assert_held(&ce->guc_state.lock); 3266 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); 3267 3268 ++ce->guc_state.prio_count[guc_prio]; 3269 3270 /* Overflow protection */ 3271 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); 3272 } 3273 3274 static inline void sub_context_inflight_prio(struct intel_context *ce, 3275 u8 guc_prio) 3276 { 3277 lockdep_assert_held(&ce->guc_state.lock); 3278 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); 3279 3280 /* Underflow protection */ 3281 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); 3282 3283 --ce->guc_state.prio_count[guc_prio]; 3284 } 3285 3286 static inline void update_context_prio(struct intel_context *ce) 3287 { 3288 struct intel_guc *guc = &ce->engine->gt->uc.guc; 3289 int i; 3290 3291 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0); 3292 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL); 3293 3294 lockdep_assert_held(&ce->guc_state.lock); 3295 3296 for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) { 3297 if (ce->guc_state.prio_count[i]) { 3298 guc_context_set_prio(guc, ce, i); 3299 break; 3300 } 3301 } 3302 } 3303 3304 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio) 3305 { 3306 /* Lower value is higher priority */ 3307 return new_guc_prio < old_guc_prio; 3308 } 3309 3310 static void add_to_context(struct i915_request *rq) 3311 { 3312 struct intel_context *ce = request_to_scheduling_context(rq); 3313 u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq)); 3314 3315 GEM_BUG_ON(intel_context_is_child(ce)); 3316 GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI); 3317 3318 spin_lock(&ce->guc_state.lock); 3319 list_move_tail(&rq->sched.link, &ce->guc_state.requests); 3320 3321 if (rq->guc_prio == GUC_PRIO_INIT) { 3322 rq->guc_prio = new_guc_prio; 3323 add_context_inflight_prio(ce, rq->guc_prio); 3324 } else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) { 3325 sub_context_inflight_prio(ce, rq->guc_prio); 3326 rq->guc_prio = new_guc_prio; 3327 add_context_inflight_prio(ce, rq->guc_prio); 3328 } 3329 update_context_prio(ce); 3330 3331 spin_unlock(&ce->guc_state.lock); 3332 } 3333 3334 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce) 3335 { 3336 lockdep_assert_held(&ce->guc_state.lock); 3337 3338 if (rq->guc_prio != GUC_PRIO_INIT && 3339 rq->guc_prio != GUC_PRIO_FINI) { 3340 sub_context_inflight_prio(ce, rq->guc_prio); 3341 update_context_prio(ce); 3342 } 3343 rq->guc_prio = GUC_PRIO_FINI; 3344 } 3345 3346 static void remove_from_context(struct i915_request *rq) 3347 { 3348 struct intel_context *ce = request_to_scheduling_context(rq); 3349 3350 GEM_BUG_ON(intel_context_is_child(ce)); 3351 3352 spin_lock_irq(&ce->guc_state.lock); 3353 3354 list_del_init(&rq->sched.link); 3355 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 3356 3357 /* Prevent further __await_execution() registering a cb, then flush */ 3358 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 3359 3360 guc_prio_fini(rq, ce); 3361 3362 decr_context_committed_requests(ce); 3363 3364 spin_unlock_irq(&ce->guc_state.lock); 3365 3366 atomic_dec(&ce->guc_id.ref); 3367 i915_request_notify_execute_cb_imm(rq); 3368 } 3369 3370 static const struct intel_context_ops guc_context_ops = { 3371 .alloc = guc_context_alloc, 3372 3373 .pre_pin = guc_context_pre_pin, 3374 .pin = guc_context_pin, 3375 .unpin = guc_context_unpin, 3376 .post_unpin = guc_context_post_unpin, 3377 3378 .revoke = guc_context_revoke, 3379 3380 .cancel_request = guc_context_cancel_request, 3381 3382 .enter = intel_context_enter_engine, 3383 .exit = intel_context_exit_engine, 3384 3385 .sched_disable = guc_context_sched_disable, 3386 3387 .reset = lrc_reset, 3388 .destroy = guc_context_destroy, 3389 3390 .create_virtual = guc_create_virtual, 3391 .create_parallel = guc_create_parallel, 3392 }; 3393 3394 static void submit_work_cb(struct irq_work *wrk) 3395 { 3396 struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work); 3397 3398 might_lock(&rq->engine->sched_engine->lock); 3399 i915_sw_fence_complete(&rq->submit); 3400 } 3401 3402 static void __guc_signal_context_fence(struct intel_context *ce) 3403 { 3404 struct i915_request *rq, *rn; 3405 3406 lockdep_assert_held(&ce->guc_state.lock); 3407 3408 if (!list_empty(&ce->guc_state.fences)) 3409 trace_intel_context_fence_release(ce); 3410 3411 /* 3412 * Use an IRQ to ensure locking order of sched_engine->lock -> 3413 * ce->guc_state.lock is preserved. 3414 */ 3415 list_for_each_entry_safe(rq, rn, &ce->guc_state.fences, 3416 guc_fence_link) { 3417 list_del(&rq->guc_fence_link); 3418 irq_work_queue(&rq->submit_work); 3419 } 3420 3421 INIT_LIST_HEAD(&ce->guc_state.fences); 3422 } 3423 3424 static void guc_signal_context_fence(struct intel_context *ce) 3425 { 3426 unsigned long flags; 3427 3428 GEM_BUG_ON(intel_context_is_child(ce)); 3429 3430 spin_lock_irqsave(&ce->guc_state.lock, flags); 3431 clr_context_wait_for_deregister_to_register(ce); 3432 __guc_signal_context_fence(ce); 3433 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3434 } 3435 3436 static bool context_needs_register(struct intel_context *ce, bool new_guc_id) 3437 { 3438 return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) || 3439 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) && 3440 !submission_disabled(ce_to_guc(ce)); 3441 } 3442 3443 static void guc_context_init(struct intel_context *ce) 3444 { 3445 const struct i915_gem_context *ctx; 3446 int prio = I915_CONTEXT_DEFAULT_PRIORITY; 3447 3448 rcu_read_lock(); 3449 ctx = rcu_dereference(ce->gem_context); 3450 if (ctx) 3451 prio = ctx->sched.priority; 3452 rcu_read_unlock(); 3453 3454 ce->guc_state.prio = map_i915_prio_to_guc_prio(prio); 3455 set_bit(CONTEXT_GUC_INIT, &ce->flags); 3456 } 3457 3458 static int guc_request_alloc(struct i915_request *rq) 3459 { 3460 struct intel_context *ce = request_to_scheduling_context(rq); 3461 struct intel_guc *guc = ce_to_guc(ce); 3462 unsigned long flags; 3463 int ret; 3464 3465 GEM_BUG_ON(!intel_context_is_pinned(rq->context)); 3466 3467 /* 3468 * Flush enough space to reduce the likelihood of waiting after 3469 * we start building the request - in which case we will just 3470 * have to repeat work. 3471 */ 3472 rq->reserved_space += GUC_REQUEST_SIZE; 3473 3474 /* 3475 * Note that after this point, we have committed to using 3476 * this request as it is being used to both track the 3477 * state of engine initialisation and liveness of the 3478 * golden renderstate above. Think twice before you try 3479 * to cancel/unwind this request now. 3480 */ 3481 3482 /* Unconditionally invalidate GPU caches and TLBs. */ 3483 ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 3484 if (ret) 3485 return ret; 3486 3487 rq->reserved_space -= GUC_REQUEST_SIZE; 3488 3489 if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags))) 3490 guc_context_init(ce); 3491 3492 /* 3493 * Call pin_guc_id here rather than in the pinning step as with 3494 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the 3495 * guc_id and creating horrible race conditions. This is especially bad 3496 * when guc_id are being stolen due to over subscription. By the time 3497 * this function is reached, it is guaranteed that the guc_id will be 3498 * persistent until the generated request is retired. Thus, sealing these 3499 * race conditions. It is still safe to fail here if guc_id are 3500 * exhausted and return -EAGAIN to the user indicating that they can try 3501 * again in the future. 3502 * 3503 * There is no need for a lock here as the timeline mutex ensures at 3504 * most one context can be executing this code path at once. The 3505 * guc_id_ref is incremented once for every request in flight and 3506 * decremented on each retire. When it is zero, a lock around the 3507 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id. 3508 */ 3509 if (atomic_add_unless(&ce->guc_id.ref, 1, 0)) 3510 goto out; 3511 3512 ret = pin_guc_id(guc, ce); /* returns 1 if new guc_id assigned */ 3513 if (unlikely(ret < 0)) 3514 return ret; 3515 if (context_needs_register(ce, !!ret)) { 3516 ret = try_context_registration(ce, true); 3517 if (unlikely(ret)) { /* unwind */ 3518 if (ret == -EPIPE) { 3519 disable_submission(guc); 3520 goto out; /* GPU will be reset */ 3521 } 3522 atomic_dec(&ce->guc_id.ref); 3523 unpin_guc_id(guc, ce); 3524 return ret; 3525 } 3526 } 3527 3528 clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags); 3529 3530 out: 3531 /* 3532 * We block all requests on this context if a G2H is pending for a 3533 * schedule disable or context deregistration as the GuC will fail a 3534 * schedule enable or context registration if either G2H is pending 3535 * respectfully. Once a G2H returns, the fence is released that is 3536 * blocking these requests (see guc_signal_context_fence). 3537 */ 3538 spin_lock_irqsave(&ce->guc_state.lock, flags); 3539 if (context_wait_for_deregister_to_register(ce) || 3540 context_pending_disable(ce)) { 3541 init_irq_work(&rq->submit_work, submit_work_cb); 3542 i915_sw_fence_await(&rq->submit); 3543 3544 list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences); 3545 } 3546 incr_context_committed_requests(ce); 3547 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3548 3549 return 0; 3550 } 3551 3552 static int guc_virtual_context_pre_pin(struct intel_context *ce, 3553 struct i915_gem_ww_ctx *ww, 3554 void **vaddr) 3555 { 3556 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3557 3558 return __guc_context_pre_pin(ce, engine, ww, vaddr); 3559 } 3560 3561 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr) 3562 { 3563 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3564 int ret = __guc_context_pin(ce, engine, vaddr); 3565 intel_engine_mask_t tmp, mask = ce->engine->mask; 3566 3567 if (likely(!ret)) 3568 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3569 intel_engine_pm_get(engine); 3570 3571 return ret; 3572 } 3573 3574 static void guc_virtual_context_unpin(struct intel_context *ce) 3575 { 3576 intel_engine_mask_t tmp, mask = ce->engine->mask; 3577 struct intel_engine_cs *engine; 3578 struct intel_guc *guc = ce_to_guc(ce); 3579 3580 GEM_BUG_ON(context_enabled(ce)); 3581 GEM_BUG_ON(intel_context_is_barrier(ce)); 3582 3583 unpin_guc_id(guc, ce); 3584 lrc_unpin(ce); 3585 3586 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3587 intel_engine_pm_put_async(engine); 3588 } 3589 3590 static void guc_virtual_context_enter(struct intel_context *ce) 3591 { 3592 intel_engine_mask_t tmp, mask = ce->engine->mask; 3593 struct intel_engine_cs *engine; 3594 3595 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3596 intel_engine_pm_get(engine); 3597 3598 intel_timeline_enter(ce->timeline); 3599 } 3600 3601 static void guc_virtual_context_exit(struct intel_context *ce) 3602 { 3603 intel_engine_mask_t tmp, mask = ce->engine->mask; 3604 struct intel_engine_cs *engine; 3605 3606 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3607 intel_engine_pm_put(engine); 3608 3609 intel_timeline_exit(ce->timeline); 3610 } 3611 3612 static int guc_virtual_context_alloc(struct intel_context *ce) 3613 { 3614 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3615 3616 return lrc_alloc(ce, engine); 3617 } 3618 3619 static const struct intel_context_ops virtual_guc_context_ops = { 3620 .alloc = guc_virtual_context_alloc, 3621 3622 .pre_pin = guc_virtual_context_pre_pin, 3623 .pin = guc_virtual_context_pin, 3624 .unpin = guc_virtual_context_unpin, 3625 .post_unpin = guc_context_post_unpin, 3626 3627 .revoke = guc_context_revoke, 3628 3629 .cancel_request = guc_context_cancel_request, 3630 3631 .enter = guc_virtual_context_enter, 3632 .exit = guc_virtual_context_exit, 3633 3634 .sched_disable = guc_context_sched_disable, 3635 3636 .destroy = guc_context_destroy, 3637 3638 .get_sibling = guc_virtual_get_sibling, 3639 }; 3640 3641 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr) 3642 { 3643 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3644 struct intel_guc *guc = ce_to_guc(ce); 3645 int ret; 3646 3647 GEM_BUG_ON(!intel_context_is_parent(ce)); 3648 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3649 3650 ret = pin_guc_id(guc, ce); 3651 if (unlikely(ret < 0)) 3652 return ret; 3653 3654 return __guc_context_pin(ce, engine, vaddr); 3655 } 3656 3657 static int guc_child_context_pin(struct intel_context *ce, void *vaddr) 3658 { 3659 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3660 3661 GEM_BUG_ON(!intel_context_is_child(ce)); 3662 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3663 3664 __intel_context_pin(ce->parallel.parent); 3665 return __guc_context_pin(ce, engine, vaddr); 3666 } 3667 3668 static void guc_parent_context_unpin(struct intel_context *ce) 3669 { 3670 struct intel_guc *guc = ce_to_guc(ce); 3671 3672 GEM_BUG_ON(context_enabled(ce)); 3673 GEM_BUG_ON(intel_context_is_barrier(ce)); 3674 GEM_BUG_ON(!intel_context_is_parent(ce)); 3675 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3676 3677 unpin_guc_id(guc, ce); 3678 lrc_unpin(ce); 3679 } 3680 3681 static void guc_child_context_unpin(struct intel_context *ce) 3682 { 3683 GEM_BUG_ON(context_enabled(ce)); 3684 GEM_BUG_ON(intel_context_is_barrier(ce)); 3685 GEM_BUG_ON(!intel_context_is_child(ce)); 3686 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3687 3688 lrc_unpin(ce); 3689 } 3690 3691 static void guc_child_context_post_unpin(struct intel_context *ce) 3692 { 3693 GEM_BUG_ON(!intel_context_is_child(ce)); 3694 GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent)); 3695 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3696 3697 lrc_post_unpin(ce); 3698 intel_context_unpin(ce->parallel.parent); 3699 } 3700 3701 static void guc_child_context_destroy(struct kref *kref) 3702 { 3703 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 3704 3705 __guc_context_destroy(ce); 3706 } 3707 3708 static const struct intel_context_ops virtual_parent_context_ops = { 3709 .alloc = guc_virtual_context_alloc, 3710 3711 .pre_pin = guc_context_pre_pin, 3712 .pin = guc_parent_context_pin, 3713 .unpin = guc_parent_context_unpin, 3714 .post_unpin = guc_context_post_unpin, 3715 3716 .revoke = guc_context_revoke, 3717 3718 .cancel_request = guc_context_cancel_request, 3719 3720 .enter = guc_virtual_context_enter, 3721 .exit = guc_virtual_context_exit, 3722 3723 .sched_disable = guc_context_sched_disable, 3724 3725 .destroy = guc_context_destroy, 3726 3727 .get_sibling = guc_virtual_get_sibling, 3728 }; 3729 3730 static const struct intel_context_ops virtual_child_context_ops = { 3731 .alloc = guc_virtual_context_alloc, 3732 3733 .pre_pin = guc_context_pre_pin, 3734 .pin = guc_child_context_pin, 3735 .unpin = guc_child_context_unpin, 3736 .post_unpin = guc_child_context_post_unpin, 3737 3738 .cancel_request = guc_context_cancel_request, 3739 3740 .enter = guc_virtual_context_enter, 3741 .exit = guc_virtual_context_exit, 3742 3743 .destroy = guc_child_context_destroy, 3744 3745 .get_sibling = guc_virtual_get_sibling, 3746 }; 3747 3748 /* 3749 * The below override of the breadcrumbs is enabled when the user configures a 3750 * context for parallel submission (multi-lrc, parent-child). 3751 * 3752 * The overridden breadcrumbs implements an algorithm which allows the GuC to 3753 * safely preempt all the hw contexts configured for parallel submission 3754 * between each BB. The contract between the i915 and GuC is if the parent 3755 * context can be preempted, all the children can be preempted, and the GuC will 3756 * always try to preempt the parent before the children. A handshake between the 3757 * parent / children breadcrumbs ensures the i915 holds up its end of the deal 3758 * creating a window to preempt between each set of BBs. 3759 */ 3760 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, 3761 u64 offset, u32 len, 3762 const unsigned int flags); 3763 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, 3764 u64 offset, u32 len, 3765 const unsigned int flags); 3766 static u32 * 3767 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 3768 u32 *cs); 3769 static u32 * 3770 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 3771 u32 *cs); 3772 3773 static struct intel_context * 3774 guc_create_parallel(struct intel_engine_cs **engines, 3775 unsigned int num_siblings, 3776 unsigned int width) 3777 { 3778 struct intel_engine_cs **siblings = NULL; 3779 struct intel_context *parent = NULL, *ce, *err; 3780 int i, j; 3781 3782 siblings = kmalloc_array(num_siblings, 3783 sizeof(*siblings), 3784 GFP_KERNEL); 3785 if (!siblings) 3786 return ERR_PTR(-ENOMEM); 3787 3788 for (i = 0; i < width; ++i) { 3789 for (j = 0; j < num_siblings; ++j) 3790 siblings[j] = engines[i * num_siblings + j]; 3791 3792 ce = intel_engine_create_virtual(siblings, num_siblings, 3793 FORCE_VIRTUAL); 3794 if (IS_ERR(ce)) { 3795 err = ERR_CAST(ce); 3796 goto unwind; 3797 } 3798 3799 if (i == 0) { 3800 parent = ce; 3801 parent->ops = &virtual_parent_context_ops; 3802 } else { 3803 ce->ops = &virtual_child_context_ops; 3804 intel_context_bind_parent_child(parent, ce); 3805 } 3806 } 3807 3808 parent->parallel.fence_context = dma_fence_context_alloc(1); 3809 3810 parent->engine->emit_bb_start = 3811 emit_bb_start_parent_no_preempt_mid_batch; 3812 parent->engine->emit_fini_breadcrumb = 3813 emit_fini_breadcrumb_parent_no_preempt_mid_batch; 3814 parent->engine->emit_fini_breadcrumb_dw = 3815 12 + 4 * parent->parallel.number_children; 3816 for_each_child(parent, ce) { 3817 ce->engine->emit_bb_start = 3818 emit_bb_start_child_no_preempt_mid_batch; 3819 ce->engine->emit_fini_breadcrumb = 3820 emit_fini_breadcrumb_child_no_preempt_mid_batch; 3821 ce->engine->emit_fini_breadcrumb_dw = 16; 3822 } 3823 3824 kfree(siblings); 3825 return parent; 3826 3827 unwind: 3828 if (parent) 3829 intel_context_put(parent); 3830 kfree(siblings); 3831 return err; 3832 } 3833 3834 static bool 3835 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b) 3836 { 3837 struct intel_engine_cs *sibling; 3838 intel_engine_mask_t tmp, mask = b->engine_mask; 3839 bool result = false; 3840 3841 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) 3842 result |= intel_engine_irq_enable(sibling); 3843 3844 return result; 3845 } 3846 3847 static void 3848 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b) 3849 { 3850 struct intel_engine_cs *sibling; 3851 intel_engine_mask_t tmp, mask = b->engine_mask; 3852 3853 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) 3854 intel_engine_irq_disable(sibling); 3855 } 3856 3857 static void guc_init_breadcrumbs(struct intel_engine_cs *engine) 3858 { 3859 int i; 3860 3861 /* 3862 * In GuC submission mode we do not know which physical engine a request 3863 * will be scheduled on, this creates a problem because the breadcrumb 3864 * interrupt is per physical engine. To work around this we attach 3865 * requests and direct all breadcrumb interrupts to the first instance 3866 * of an engine per class. In addition all breadcrumb interrupts are 3867 * enabled / disabled across an engine class in unison. 3868 */ 3869 for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) { 3870 struct intel_engine_cs *sibling = 3871 engine->gt->engine_class[engine->class][i]; 3872 3873 if (sibling) { 3874 if (engine->breadcrumbs != sibling->breadcrumbs) { 3875 intel_breadcrumbs_put(engine->breadcrumbs); 3876 engine->breadcrumbs = 3877 intel_breadcrumbs_get(sibling->breadcrumbs); 3878 } 3879 break; 3880 } 3881 } 3882 3883 if (engine->breadcrumbs) { 3884 engine->breadcrumbs->engine_mask |= engine->mask; 3885 engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs; 3886 engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs; 3887 } 3888 } 3889 3890 static void guc_bump_inflight_request_prio(struct i915_request *rq, 3891 int prio) 3892 { 3893 struct intel_context *ce = request_to_scheduling_context(rq); 3894 u8 new_guc_prio = map_i915_prio_to_guc_prio(prio); 3895 3896 /* Short circuit function */ 3897 if (prio < I915_PRIORITY_NORMAL || 3898 rq->guc_prio == GUC_PRIO_FINI || 3899 (rq->guc_prio != GUC_PRIO_INIT && 3900 !new_guc_prio_higher(rq->guc_prio, new_guc_prio))) 3901 return; 3902 3903 spin_lock(&ce->guc_state.lock); 3904 if (rq->guc_prio != GUC_PRIO_FINI) { 3905 if (rq->guc_prio != GUC_PRIO_INIT) 3906 sub_context_inflight_prio(ce, rq->guc_prio); 3907 rq->guc_prio = new_guc_prio; 3908 add_context_inflight_prio(ce, rq->guc_prio); 3909 update_context_prio(ce); 3910 } 3911 spin_unlock(&ce->guc_state.lock); 3912 } 3913 3914 static void guc_retire_inflight_request_prio(struct i915_request *rq) 3915 { 3916 struct intel_context *ce = request_to_scheduling_context(rq); 3917 3918 spin_lock(&ce->guc_state.lock); 3919 guc_prio_fini(rq, ce); 3920 spin_unlock(&ce->guc_state.lock); 3921 } 3922 3923 static void sanitize_hwsp(struct intel_engine_cs *engine) 3924 { 3925 struct intel_timeline *tl; 3926 3927 list_for_each_entry(tl, &engine->status_page.timelines, engine_link) 3928 intel_timeline_reset_seqno(tl); 3929 } 3930 3931 static void guc_sanitize(struct intel_engine_cs *engine) 3932 { 3933 /* 3934 * Poison residual state on resume, in case the suspend didn't! 3935 * 3936 * We have to assume that across suspend/resume (or other loss 3937 * of control) that the contents of our pinned buffers has been 3938 * lost, replaced by garbage. Since this doesn't always happen, 3939 * let's poison such state so that we more quickly spot when 3940 * we falsely assume it has been preserved. 3941 */ 3942 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 3943 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE); 3944 3945 /* 3946 * The kernel_context HWSP is stored in the status_page. As above, 3947 * that may be lost on resume/initialisation, and so we need to 3948 * reset the value in the HWSP. 3949 */ 3950 sanitize_hwsp(engine); 3951 3952 /* And scrub the dirty cachelines for the HWSP */ 3953 drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE); 3954 3955 intel_engine_reset_pinned_contexts(engine); 3956 } 3957 3958 static void setup_hwsp(struct intel_engine_cs *engine) 3959 { 3960 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */ 3961 3962 ENGINE_WRITE_FW(engine, 3963 RING_HWS_PGA, 3964 i915_ggtt_offset(engine->status_page.vma)); 3965 } 3966 3967 static void start_engine(struct intel_engine_cs *engine) 3968 { 3969 ENGINE_WRITE_FW(engine, 3970 RING_MODE_GEN7, 3971 _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE)); 3972 3973 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 3974 ENGINE_POSTING_READ(engine, RING_MI_MODE); 3975 } 3976 3977 static int guc_resume(struct intel_engine_cs *engine) 3978 { 3979 assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL); 3980 3981 intel_mocs_init_engine(engine); 3982 3983 intel_breadcrumbs_reset(engine->breadcrumbs); 3984 3985 setup_hwsp(engine); 3986 start_engine(engine); 3987 3988 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) 3989 xehp_enable_ccs_engines(engine); 3990 3991 return 0; 3992 } 3993 3994 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine) 3995 { 3996 return !sched_engine->tasklet.callback; 3997 } 3998 3999 static void guc_set_default_submission(struct intel_engine_cs *engine) 4000 { 4001 engine->submit_request = guc_submit_request; 4002 } 4003 4004 static inline void guc_kernel_context_pin(struct intel_guc *guc, 4005 struct intel_context *ce) 4006 { 4007 /* 4008 * Note: we purposefully do not check the returns below because 4009 * the registration can only fail if a reset is just starting. 4010 * This is called at the end of reset so presumably another reset 4011 * isn't happening and even it did this code would be run again. 4012 */ 4013 4014 if (context_guc_id_invalid(ce)) 4015 pin_guc_id(guc, ce); 4016 4017 try_context_registration(ce, true); 4018 } 4019 4020 static inline void guc_init_lrc_mapping(struct intel_guc *guc) 4021 { 4022 struct intel_gt *gt = guc_to_gt(guc); 4023 struct intel_engine_cs *engine; 4024 enum intel_engine_id id; 4025 4026 /* make sure all descriptors are clean... */ 4027 xa_destroy(&guc->context_lookup); 4028 4029 /* 4030 * Some contexts might have been pinned before we enabled GuC 4031 * submission, so we need to add them to the GuC bookeeping. 4032 * Also, after a reset the of the GuC we want to make sure that the 4033 * information shared with GuC is properly reset. The kernel LRCs are 4034 * not attached to the gem_context, so they need to be added separately. 4035 */ 4036 for_each_engine(engine, gt, id) { 4037 struct intel_context *ce; 4038 4039 list_for_each_entry(ce, &engine->pinned_contexts_list, 4040 pinned_contexts_link) 4041 guc_kernel_context_pin(guc, ce); 4042 } 4043 } 4044 4045 static void guc_release(struct intel_engine_cs *engine) 4046 { 4047 engine->sanitize = NULL; /* no longer in control, nothing to sanitize */ 4048 4049 intel_engine_cleanup_common(engine); 4050 lrc_fini_wa_ctx(engine); 4051 } 4052 4053 static void virtual_guc_bump_serial(struct intel_engine_cs *engine) 4054 { 4055 struct intel_engine_cs *e; 4056 intel_engine_mask_t tmp, mask = engine->mask; 4057 4058 for_each_engine_masked(e, engine->gt, mask, tmp) 4059 e->serial++; 4060 } 4061 4062 static void guc_default_vfuncs(struct intel_engine_cs *engine) 4063 { 4064 /* Default vfuncs which can be overridden by each engine. */ 4065 4066 engine->resume = guc_resume; 4067 4068 engine->cops = &guc_context_ops; 4069 engine->request_alloc = guc_request_alloc; 4070 engine->add_active_request = add_to_context; 4071 engine->remove_active_request = remove_from_context; 4072 4073 engine->sched_engine->schedule = i915_schedule; 4074 4075 engine->reset.prepare = guc_engine_reset_prepare; 4076 engine->reset.rewind = guc_rewind_nop; 4077 engine->reset.cancel = guc_reset_nop; 4078 engine->reset.finish = guc_reset_nop; 4079 4080 engine->emit_flush = gen8_emit_flush_xcs; 4081 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb; 4082 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs; 4083 if (GRAPHICS_VER(engine->i915) >= 12) { 4084 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs; 4085 engine->emit_flush = gen12_emit_flush_xcs; 4086 } 4087 engine->set_default_submission = guc_set_default_submission; 4088 engine->busyness = guc_engine_busyness; 4089 4090 engine->flags |= I915_ENGINE_SUPPORTS_STATS; 4091 engine->flags |= I915_ENGINE_HAS_PREEMPTION; 4092 engine->flags |= I915_ENGINE_HAS_TIMESLICES; 4093 4094 /* Wa_14014475959:dg2 */ 4095 if (IS_DG2(engine->i915) && engine->class == COMPUTE_CLASS) 4096 engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT; 4097 4098 /* 4099 * TODO: GuC supports timeslicing and semaphores as well, but they're 4100 * handled by the firmware so some minor tweaks are required before 4101 * enabling. 4102 * 4103 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES; 4104 */ 4105 4106 engine->emit_bb_start = gen8_emit_bb_start; 4107 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) 4108 engine->emit_bb_start = gen125_emit_bb_start; 4109 } 4110 4111 static void rcs_submission_override(struct intel_engine_cs *engine) 4112 { 4113 switch (GRAPHICS_VER(engine->i915)) { 4114 case 12: 4115 engine->emit_flush = gen12_emit_flush_rcs; 4116 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs; 4117 break; 4118 case 11: 4119 engine->emit_flush = gen11_emit_flush_rcs; 4120 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs; 4121 break; 4122 default: 4123 engine->emit_flush = gen8_emit_flush_rcs; 4124 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs; 4125 break; 4126 } 4127 } 4128 4129 static inline void guc_default_irqs(struct intel_engine_cs *engine) 4130 { 4131 engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT; 4132 intel_engine_set_irq_handler(engine, cs_irq_handler); 4133 } 4134 4135 static void guc_sched_engine_destroy(struct kref *kref) 4136 { 4137 struct i915_sched_engine *sched_engine = 4138 container_of(kref, typeof(*sched_engine), ref); 4139 struct intel_guc *guc = sched_engine->private_data; 4140 4141 guc->sched_engine = NULL; 4142 tasklet_kill(&sched_engine->tasklet); /* flush the callback */ 4143 kfree(sched_engine); 4144 } 4145 4146 int intel_guc_submission_setup(struct intel_engine_cs *engine) 4147 { 4148 struct drm_i915_private *i915 = engine->i915; 4149 struct intel_guc *guc = &engine->gt->uc.guc; 4150 4151 /* 4152 * The setup relies on several assumptions (e.g. irqs always enabled) 4153 * that are only valid on gen11+ 4154 */ 4155 GEM_BUG_ON(GRAPHICS_VER(i915) < 11); 4156 4157 if (!guc->sched_engine) { 4158 guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL); 4159 if (!guc->sched_engine) 4160 return -ENOMEM; 4161 4162 guc->sched_engine->schedule = i915_schedule; 4163 guc->sched_engine->disabled = guc_sched_engine_disabled; 4164 guc->sched_engine->private_data = guc; 4165 guc->sched_engine->destroy = guc_sched_engine_destroy; 4166 guc->sched_engine->bump_inflight_request_prio = 4167 guc_bump_inflight_request_prio; 4168 guc->sched_engine->retire_inflight_request_prio = 4169 guc_retire_inflight_request_prio; 4170 tasklet_setup(&guc->sched_engine->tasklet, 4171 guc_submission_tasklet); 4172 } 4173 i915_sched_engine_put(engine->sched_engine); 4174 engine->sched_engine = i915_sched_engine_get(guc->sched_engine); 4175 4176 guc_default_vfuncs(engine); 4177 guc_default_irqs(engine); 4178 guc_init_breadcrumbs(engine); 4179 4180 if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) 4181 rcs_submission_override(engine); 4182 4183 lrc_init_wa_ctx(engine); 4184 4185 /* Finally, take ownership and responsibility for cleanup! */ 4186 engine->sanitize = guc_sanitize; 4187 engine->release = guc_release; 4188 4189 return 0; 4190 } 4191 4192 void intel_guc_submission_enable(struct intel_guc *guc) 4193 { 4194 guc_init_lrc_mapping(guc); 4195 guc_init_engine_stats(guc); 4196 } 4197 4198 void intel_guc_submission_disable(struct intel_guc *guc) 4199 { 4200 /* Note: By the time we're here, GuC may have already been reset */ 4201 } 4202 4203 static bool __guc_submission_supported(struct intel_guc *guc) 4204 { 4205 /* GuC submission is unavailable for pre-Gen11 */ 4206 return intel_guc_is_supported(guc) && 4207 GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11; 4208 } 4209 4210 static bool __guc_submission_selected(struct intel_guc *guc) 4211 { 4212 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 4213 4214 if (!intel_guc_submission_is_supported(guc)) 4215 return false; 4216 4217 return i915->params.enable_guc & ENABLE_GUC_SUBMISSION; 4218 } 4219 4220 void intel_guc_submission_init_early(struct intel_guc *guc) 4221 { 4222 xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ); 4223 4224 spin_lock_init(&guc->submission_state.lock); 4225 INIT_LIST_HEAD(&guc->submission_state.guc_id_list); 4226 ida_init(&guc->submission_state.guc_ids); 4227 INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts); 4228 INIT_WORK(&guc->submission_state.destroyed_worker, 4229 destroyed_worker_func); 4230 INIT_WORK(&guc->submission_state.reset_fail_worker, 4231 reset_fail_worker_func); 4232 4233 spin_lock_init(&guc->timestamp.lock); 4234 INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping); 4235 4236 guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID; 4237 guc->submission_supported = __guc_submission_supported(guc); 4238 guc->submission_selected = __guc_submission_selected(guc); 4239 } 4240 4241 static inline struct intel_context * 4242 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id) 4243 { 4244 struct intel_context *ce; 4245 4246 if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) { 4247 drm_err(&guc_to_gt(guc)->i915->drm, 4248 "Invalid ctx_id %u\n", ctx_id); 4249 return NULL; 4250 } 4251 4252 ce = __get_context(guc, ctx_id); 4253 if (unlikely(!ce)) { 4254 drm_err(&guc_to_gt(guc)->i915->drm, 4255 "Context is NULL, ctx_id %u\n", ctx_id); 4256 return NULL; 4257 } 4258 4259 if (unlikely(intel_context_is_child(ce))) { 4260 drm_err(&guc_to_gt(guc)->i915->drm, 4261 "Context is child, ctx_id %u\n", ctx_id); 4262 return NULL; 4263 } 4264 4265 return ce; 4266 } 4267 4268 int intel_guc_deregister_done_process_msg(struct intel_guc *guc, 4269 const u32 *msg, 4270 u32 len) 4271 { 4272 struct intel_context *ce; 4273 u32 ctx_id; 4274 4275 if (unlikely(len < 1)) { 4276 drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len); 4277 return -EPROTO; 4278 } 4279 ctx_id = msg[0]; 4280 4281 ce = g2h_context_lookup(guc, ctx_id); 4282 if (unlikely(!ce)) 4283 return -EPROTO; 4284 4285 trace_intel_context_deregister_done(ce); 4286 4287 #ifdef CONFIG_DRM_I915_SELFTEST 4288 if (unlikely(ce->drop_deregister)) { 4289 ce->drop_deregister = false; 4290 return 0; 4291 } 4292 #endif 4293 4294 if (context_wait_for_deregister_to_register(ce)) { 4295 struct intel_runtime_pm *runtime_pm = 4296 &ce->engine->gt->i915->runtime_pm; 4297 intel_wakeref_t wakeref; 4298 4299 /* 4300 * Previous owner of this guc_id has been deregistered, now safe 4301 * register this context. 4302 */ 4303 with_intel_runtime_pm(runtime_pm, wakeref) 4304 register_context(ce, true); 4305 guc_signal_context_fence(ce); 4306 intel_context_put(ce); 4307 } else if (context_destroyed(ce)) { 4308 /* Context has been destroyed */ 4309 intel_gt_pm_put_async(guc_to_gt(guc)); 4310 release_guc_id(guc, ce); 4311 __guc_context_destroy(ce); 4312 } 4313 4314 decr_outstanding_submission_g2h(guc); 4315 4316 return 0; 4317 } 4318 4319 int intel_guc_sched_done_process_msg(struct intel_guc *guc, 4320 const u32 *msg, 4321 u32 len) 4322 { 4323 struct intel_context *ce; 4324 unsigned long flags; 4325 u32 ctx_id; 4326 4327 if (unlikely(len < 2)) { 4328 drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len); 4329 return -EPROTO; 4330 } 4331 ctx_id = msg[0]; 4332 4333 ce = g2h_context_lookup(guc, ctx_id); 4334 if (unlikely(!ce)) 4335 return -EPROTO; 4336 4337 if (unlikely(context_destroyed(ce) || 4338 (!context_pending_enable(ce) && 4339 !context_pending_disable(ce)))) { 4340 drm_err(&guc_to_gt(guc)->i915->drm, 4341 "Bad context sched_state 0x%x, ctx_id %u\n", 4342 ce->guc_state.sched_state, ctx_id); 4343 return -EPROTO; 4344 } 4345 4346 trace_intel_context_sched_done(ce); 4347 4348 if (context_pending_enable(ce)) { 4349 #ifdef CONFIG_DRM_I915_SELFTEST 4350 if (unlikely(ce->drop_schedule_enable)) { 4351 ce->drop_schedule_enable = false; 4352 return 0; 4353 } 4354 #endif 4355 4356 spin_lock_irqsave(&ce->guc_state.lock, flags); 4357 clr_context_pending_enable(ce); 4358 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 4359 } else if (context_pending_disable(ce)) { 4360 bool banned; 4361 4362 #ifdef CONFIG_DRM_I915_SELFTEST 4363 if (unlikely(ce->drop_schedule_disable)) { 4364 ce->drop_schedule_disable = false; 4365 return 0; 4366 } 4367 #endif 4368 4369 /* 4370 * Unpin must be done before __guc_signal_context_fence, 4371 * otherwise a race exists between the requests getting 4372 * submitted + retired before this unpin completes resulting in 4373 * the pin_count going to zero and the context still being 4374 * enabled. 4375 */ 4376 intel_context_sched_disable_unpin(ce); 4377 4378 spin_lock_irqsave(&ce->guc_state.lock, flags); 4379 banned = context_banned(ce); 4380 clr_context_banned(ce); 4381 clr_context_pending_disable(ce); 4382 __guc_signal_context_fence(ce); 4383 guc_blocked_fence_complete(ce); 4384 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 4385 4386 if (banned) { 4387 guc_cancel_context_requests(ce); 4388 intel_engine_signal_breadcrumbs(ce->engine); 4389 } 4390 } 4391 4392 decr_outstanding_submission_g2h(guc); 4393 intel_context_put(ce); 4394 4395 return 0; 4396 } 4397 4398 static void capture_error_state(struct intel_guc *guc, 4399 struct intel_context *ce) 4400 { 4401 struct intel_gt *gt = guc_to_gt(guc); 4402 struct drm_i915_private *i915 = gt->i915; 4403 struct intel_engine_cs *engine = __context_to_physical_engine(ce); 4404 intel_wakeref_t wakeref; 4405 4406 intel_engine_set_hung_context(engine, ce); 4407 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 4408 i915_capture_error_state(gt, engine->mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE); 4409 atomic_inc(&i915->gpu_error.reset_engine_count[engine->uabi_class]); 4410 } 4411 4412 static void guc_context_replay(struct intel_context *ce) 4413 { 4414 struct i915_sched_engine *sched_engine = ce->engine->sched_engine; 4415 4416 __guc_reset_context(ce, ce->engine->mask); 4417 tasklet_hi_schedule(&sched_engine->tasklet); 4418 } 4419 4420 static void guc_handle_context_reset(struct intel_guc *guc, 4421 struct intel_context *ce) 4422 { 4423 trace_intel_context_reset(ce); 4424 4425 if (likely(!intel_context_is_banned(ce))) { 4426 capture_error_state(guc, ce); 4427 guc_context_replay(ce); 4428 } else { 4429 drm_info(&guc_to_gt(guc)->i915->drm, 4430 "Ignoring context reset notification of banned context 0x%04X on %s", 4431 ce->guc_id.id, ce->engine->name); 4432 } 4433 } 4434 4435 int intel_guc_context_reset_process_msg(struct intel_guc *guc, 4436 const u32 *msg, u32 len) 4437 { 4438 struct intel_context *ce; 4439 unsigned long flags; 4440 int ctx_id; 4441 4442 if (unlikely(len != 1)) { 4443 drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len); 4444 return -EPROTO; 4445 } 4446 4447 ctx_id = msg[0]; 4448 4449 /* 4450 * The context lookup uses the xarray but lookups only require an RCU lock 4451 * not the full spinlock. So take the lock explicitly and keep it until the 4452 * context has been reference count locked to ensure it can't be destroyed 4453 * asynchronously until the reset is done. 4454 */ 4455 xa_lock_irqsave(&guc->context_lookup, flags); 4456 ce = g2h_context_lookup(guc, ctx_id); 4457 if (ce) 4458 intel_context_get(ce); 4459 xa_unlock_irqrestore(&guc->context_lookup, flags); 4460 4461 if (unlikely(!ce)) 4462 return -EPROTO; 4463 4464 guc_handle_context_reset(guc, ce); 4465 intel_context_put(ce); 4466 4467 return 0; 4468 } 4469 4470 int intel_guc_error_capture_process_msg(struct intel_guc *guc, 4471 const u32 *msg, u32 len) 4472 { 4473 u32 status; 4474 4475 if (unlikely(len != 1)) { 4476 drm_dbg(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len); 4477 return -EPROTO; 4478 } 4479 4480 status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK; 4481 if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE) 4482 drm_warn(&guc_to_gt(guc)->i915->drm, "G2H-Error capture no space"); 4483 4484 intel_guc_capture_process(guc); 4485 4486 return 0; 4487 } 4488 4489 struct intel_engine_cs * 4490 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance) 4491 { 4492 struct intel_gt *gt = guc_to_gt(guc); 4493 u8 engine_class = guc_class_to_engine_class(guc_class); 4494 4495 /* Class index is checked in class converter */ 4496 GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE); 4497 4498 return gt->engine_class[engine_class][instance]; 4499 } 4500 4501 static void reset_fail_worker_func(struct work_struct *w) 4502 { 4503 struct intel_guc *guc = container_of(w, struct intel_guc, 4504 submission_state.reset_fail_worker); 4505 struct intel_gt *gt = guc_to_gt(guc); 4506 intel_engine_mask_t reset_fail_mask; 4507 unsigned long flags; 4508 4509 spin_lock_irqsave(&guc->submission_state.lock, flags); 4510 reset_fail_mask = guc->submission_state.reset_fail_mask; 4511 guc->submission_state.reset_fail_mask = 0; 4512 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 4513 4514 if (likely(reset_fail_mask)) 4515 intel_gt_handle_error(gt, reset_fail_mask, 4516 I915_ERROR_CAPTURE, 4517 "GuC failed to reset engine mask=0x%x\n", 4518 reset_fail_mask); 4519 } 4520 4521 int intel_guc_engine_failure_process_msg(struct intel_guc *guc, 4522 const u32 *msg, u32 len) 4523 { 4524 struct intel_engine_cs *engine; 4525 struct intel_gt *gt = guc_to_gt(guc); 4526 u8 guc_class, instance; 4527 u32 reason; 4528 unsigned long flags; 4529 4530 if (unlikely(len != 3)) { 4531 drm_err(>->i915->drm, "Invalid length %u", len); 4532 return -EPROTO; 4533 } 4534 4535 guc_class = msg[0]; 4536 instance = msg[1]; 4537 reason = msg[2]; 4538 4539 engine = intel_guc_lookup_engine(guc, guc_class, instance); 4540 if (unlikely(!engine)) { 4541 drm_err(>->i915->drm, 4542 "Invalid engine %d:%d", guc_class, instance); 4543 return -EPROTO; 4544 } 4545 4546 /* 4547 * This is an unexpected failure of a hardware feature. So, log a real 4548 * error message not just the informational that comes with the reset. 4549 */ 4550 drm_err(>->i915->drm, "GuC engine reset request failed on %d:%d (%s) because 0x%08X", 4551 guc_class, instance, engine->name, reason); 4552 4553 spin_lock_irqsave(&guc->submission_state.lock, flags); 4554 guc->submission_state.reset_fail_mask |= engine->mask; 4555 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 4556 4557 /* 4558 * A GT reset flushes this worker queue (G2H handler) so we must use 4559 * another worker to trigger a GT reset. 4560 */ 4561 queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker); 4562 4563 return 0; 4564 } 4565 4566 void intel_guc_find_hung_context(struct intel_engine_cs *engine) 4567 { 4568 struct intel_guc *guc = &engine->gt->uc.guc; 4569 struct intel_context *ce; 4570 struct i915_request *rq; 4571 unsigned long index; 4572 unsigned long flags; 4573 4574 /* Reset called during driver load? GuC not yet initialised! */ 4575 if (unlikely(!guc_submission_initialized(guc))) 4576 return; 4577 4578 xa_lock_irqsave(&guc->context_lookup, flags); 4579 xa_for_each(&guc->context_lookup, index, ce) { 4580 if (!kref_get_unless_zero(&ce->ref)) 4581 continue; 4582 4583 xa_unlock(&guc->context_lookup); 4584 4585 if (!intel_context_is_pinned(ce)) 4586 goto next; 4587 4588 if (intel_engine_is_virtual(ce->engine)) { 4589 if (!(ce->engine->mask & engine->mask)) 4590 goto next; 4591 } else { 4592 if (ce->engine != engine) 4593 goto next; 4594 } 4595 4596 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) { 4597 if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE) 4598 continue; 4599 4600 intel_engine_set_hung_context(engine, ce); 4601 4602 /* Can only cope with one hang at a time... */ 4603 intel_context_put(ce); 4604 xa_lock(&guc->context_lookup); 4605 goto done; 4606 } 4607 next: 4608 intel_context_put(ce); 4609 xa_lock(&guc->context_lookup); 4610 } 4611 done: 4612 xa_unlock_irqrestore(&guc->context_lookup, flags); 4613 } 4614 4615 void intel_guc_dump_active_requests(struct intel_engine_cs *engine, 4616 struct i915_request *hung_rq, 4617 struct drm_printer *m) 4618 { 4619 struct intel_guc *guc = &engine->gt->uc.guc; 4620 struct intel_context *ce; 4621 unsigned long index; 4622 unsigned long flags; 4623 4624 /* Reset called during driver load? GuC not yet initialised! */ 4625 if (unlikely(!guc_submission_initialized(guc))) 4626 return; 4627 4628 xa_lock_irqsave(&guc->context_lookup, flags); 4629 xa_for_each(&guc->context_lookup, index, ce) { 4630 if (!kref_get_unless_zero(&ce->ref)) 4631 continue; 4632 4633 xa_unlock(&guc->context_lookup); 4634 4635 if (!intel_context_is_pinned(ce)) 4636 goto next; 4637 4638 if (intel_engine_is_virtual(ce->engine)) { 4639 if (!(ce->engine->mask & engine->mask)) 4640 goto next; 4641 } else { 4642 if (ce->engine != engine) 4643 goto next; 4644 } 4645 4646 spin_lock(&ce->guc_state.lock); 4647 intel_engine_dump_active_requests(&ce->guc_state.requests, 4648 hung_rq, m); 4649 spin_unlock(&ce->guc_state.lock); 4650 4651 next: 4652 intel_context_put(ce); 4653 xa_lock(&guc->context_lookup); 4654 } 4655 xa_unlock_irqrestore(&guc->context_lookup, flags); 4656 } 4657 4658 void intel_guc_submission_print_info(struct intel_guc *guc, 4659 struct drm_printer *p) 4660 { 4661 struct i915_sched_engine *sched_engine = guc->sched_engine; 4662 struct rb_node *rb; 4663 unsigned long flags; 4664 4665 if (!sched_engine) 4666 return; 4667 4668 drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n", 4669 atomic_read(&guc->outstanding_submission_g2h)); 4670 drm_printf(p, "GuC tasklet count: %u\n\n", 4671 atomic_read(&sched_engine->tasklet.count)); 4672 4673 spin_lock_irqsave(&sched_engine->lock, flags); 4674 drm_printf(p, "Requests in GuC submit tasklet:\n"); 4675 for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) { 4676 struct i915_priolist *pl = to_priolist(rb); 4677 struct i915_request *rq; 4678 4679 priolist_for_each_request(rq, pl) 4680 drm_printf(p, "guc_id=%u, seqno=%llu\n", 4681 rq->context->guc_id.id, 4682 rq->fence.seqno); 4683 } 4684 spin_unlock_irqrestore(&sched_engine->lock, flags); 4685 drm_printf(p, "\n"); 4686 } 4687 4688 static inline void guc_log_context_priority(struct drm_printer *p, 4689 struct intel_context *ce) 4690 { 4691 int i; 4692 4693 drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio); 4694 drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n"); 4695 for (i = GUC_CLIENT_PRIORITY_KMD_HIGH; 4696 i < GUC_CLIENT_PRIORITY_NUM; ++i) { 4697 drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n", 4698 i, ce->guc_state.prio_count[i]); 4699 } 4700 drm_printf(p, "\n"); 4701 } 4702 4703 static inline void guc_log_context(struct drm_printer *p, 4704 struct intel_context *ce) 4705 { 4706 drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id); 4707 drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca); 4708 drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n", 4709 ce->ring->head, 4710 ce->lrc_reg_state[CTX_RING_HEAD]); 4711 drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n", 4712 ce->ring->tail, 4713 ce->lrc_reg_state[CTX_RING_TAIL]); 4714 drm_printf(p, "\t\tContext Pin Count: %u\n", 4715 atomic_read(&ce->pin_count)); 4716 drm_printf(p, "\t\tGuC ID Ref Count: %u\n", 4717 atomic_read(&ce->guc_id.ref)); 4718 drm_printf(p, "\t\tSchedule State: 0x%x\n\n", 4719 ce->guc_state.sched_state); 4720 } 4721 4722 void intel_guc_submission_print_context_info(struct intel_guc *guc, 4723 struct drm_printer *p) 4724 { 4725 struct intel_context *ce; 4726 unsigned long index; 4727 unsigned long flags; 4728 4729 xa_lock_irqsave(&guc->context_lookup, flags); 4730 xa_for_each(&guc->context_lookup, index, ce) { 4731 GEM_BUG_ON(intel_context_is_child(ce)); 4732 4733 guc_log_context(p, ce); 4734 guc_log_context_priority(p, ce); 4735 4736 if (intel_context_is_parent(ce)) { 4737 struct intel_context *child; 4738 4739 drm_printf(p, "\t\tNumber children: %u\n", 4740 ce->parallel.number_children); 4741 4742 if (ce->parallel.guc.wq_status) { 4743 drm_printf(p, "\t\tWQI Head: %u\n", 4744 READ_ONCE(*ce->parallel.guc.wq_head)); 4745 drm_printf(p, "\t\tWQI Tail: %u\n", 4746 READ_ONCE(*ce->parallel.guc.wq_tail)); 4747 drm_printf(p, "\t\tWQI Status: %u\n\n", 4748 READ_ONCE(*ce->parallel.guc.wq_status)); 4749 } 4750 4751 if (ce->engine->emit_bb_start == 4752 emit_bb_start_parent_no_preempt_mid_batch) { 4753 u8 i; 4754 4755 drm_printf(p, "\t\tChildren Go: %u\n\n", 4756 get_children_go_value(ce)); 4757 for (i = 0; i < ce->parallel.number_children; ++i) 4758 drm_printf(p, "\t\tChildren Join: %u\n", 4759 get_children_join_value(ce, i)); 4760 } 4761 4762 for_each_child(ce, child) 4763 guc_log_context(p, child); 4764 } 4765 } 4766 xa_unlock_irqrestore(&guc->context_lookup, flags); 4767 } 4768 4769 static inline u32 get_children_go_addr(struct intel_context *ce) 4770 { 4771 GEM_BUG_ON(!intel_context_is_parent(ce)); 4772 4773 return i915_ggtt_offset(ce->state) + 4774 __get_parent_scratch_offset(ce) + 4775 offsetof(struct parent_scratch, go.semaphore); 4776 } 4777 4778 static inline u32 get_children_join_addr(struct intel_context *ce, 4779 u8 child_index) 4780 { 4781 GEM_BUG_ON(!intel_context_is_parent(ce)); 4782 4783 return i915_ggtt_offset(ce->state) + 4784 __get_parent_scratch_offset(ce) + 4785 offsetof(struct parent_scratch, join[child_index].semaphore); 4786 } 4787 4788 #define PARENT_GO_BB 1 4789 #define PARENT_GO_FINI_BREADCRUMB 0 4790 #define CHILD_GO_BB 1 4791 #define CHILD_GO_FINI_BREADCRUMB 0 4792 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, 4793 u64 offset, u32 len, 4794 const unsigned int flags) 4795 { 4796 struct intel_context *ce = rq->context; 4797 u32 *cs; 4798 u8 i; 4799 4800 GEM_BUG_ON(!intel_context_is_parent(ce)); 4801 4802 cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children); 4803 if (IS_ERR(cs)) 4804 return PTR_ERR(cs); 4805 4806 /* Wait on children */ 4807 for (i = 0; i < ce->parallel.number_children; ++i) { 4808 *cs++ = (MI_SEMAPHORE_WAIT | 4809 MI_SEMAPHORE_GLOBAL_GTT | 4810 MI_SEMAPHORE_POLL | 4811 MI_SEMAPHORE_SAD_EQ_SDD); 4812 *cs++ = PARENT_GO_BB; 4813 *cs++ = get_children_join_addr(ce, i); 4814 *cs++ = 0; 4815 } 4816 4817 /* Turn off preemption */ 4818 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 4819 *cs++ = MI_NOOP; 4820 4821 /* Tell children go */ 4822 cs = gen8_emit_ggtt_write(cs, 4823 CHILD_GO_BB, 4824 get_children_go_addr(ce), 4825 0); 4826 4827 /* Jump to batch */ 4828 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 4829 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 4830 *cs++ = lower_32_bits(offset); 4831 *cs++ = upper_32_bits(offset); 4832 *cs++ = MI_NOOP; 4833 4834 intel_ring_advance(rq, cs); 4835 4836 return 0; 4837 } 4838 4839 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, 4840 u64 offset, u32 len, 4841 const unsigned int flags) 4842 { 4843 struct intel_context *ce = rq->context; 4844 struct intel_context *parent = intel_context_to_parent(ce); 4845 u32 *cs; 4846 4847 GEM_BUG_ON(!intel_context_is_child(ce)); 4848 4849 cs = intel_ring_begin(rq, 12); 4850 if (IS_ERR(cs)) 4851 return PTR_ERR(cs); 4852 4853 /* Signal parent */ 4854 cs = gen8_emit_ggtt_write(cs, 4855 PARENT_GO_BB, 4856 get_children_join_addr(parent, 4857 ce->parallel.child_index), 4858 0); 4859 4860 /* Wait on parent for go */ 4861 *cs++ = (MI_SEMAPHORE_WAIT | 4862 MI_SEMAPHORE_GLOBAL_GTT | 4863 MI_SEMAPHORE_POLL | 4864 MI_SEMAPHORE_SAD_EQ_SDD); 4865 *cs++ = CHILD_GO_BB; 4866 *cs++ = get_children_go_addr(parent); 4867 *cs++ = 0; 4868 4869 /* Turn off preemption */ 4870 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 4871 4872 /* Jump to batch */ 4873 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 4874 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 4875 *cs++ = lower_32_bits(offset); 4876 *cs++ = upper_32_bits(offset); 4877 4878 intel_ring_advance(rq, cs); 4879 4880 return 0; 4881 } 4882 4883 static u32 * 4884 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 4885 u32 *cs) 4886 { 4887 struct intel_context *ce = rq->context; 4888 u8 i; 4889 4890 GEM_BUG_ON(!intel_context_is_parent(ce)); 4891 4892 /* Wait on children */ 4893 for (i = 0; i < ce->parallel.number_children; ++i) { 4894 *cs++ = (MI_SEMAPHORE_WAIT | 4895 MI_SEMAPHORE_GLOBAL_GTT | 4896 MI_SEMAPHORE_POLL | 4897 MI_SEMAPHORE_SAD_EQ_SDD); 4898 *cs++ = PARENT_GO_FINI_BREADCRUMB; 4899 *cs++ = get_children_join_addr(ce, i); 4900 *cs++ = 0; 4901 } 4902 4903 /* Turn on preemption */ 4904 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 4905 *cs++ = MI_NOOP; 4906 4907 /* Tell children go */ 4908 cs = gen8_emit_ggtt_write(cs, 4909 CHILD_GO_FINI_BREADCRUMB, 4910 get_children_go_addr(ce), 4911 0); 4912 4913 return cs; 4914 } 4915 4916 /* 4917 * If this true, a submission of multi-lrc requests had an error and the 4918 * requests need to be skipped. The front end (execuf IOCTL) should've called 4919 * i915_request_skip which squashes the BB but we still need to emit the fini 4920 * breadrcrumbs seqno write. At this point we don't know how many of the 4921 * requests in the multi-lrc submission were generated so we can't do the 4922 * handshake between the parent and children (e.g. if 4 requests should be 4923 * generated but 2nd hit an error only 1 would be seen by the GuC backend). 4924 * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error 4925 * has occurred on any of the requests in submission / relationship. 4926 */ 4927 static inline bool skip_handshake(struct i915_request *rq) 4928 { 4929 return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags); 4930 } 4931 4932 #define NON_SKIP_LEN 6 4933 static u32 * 4934 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 4935 u32 *cs) 4936 { 4937 struct intel_context *ce = rq->context; 4938 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; 4939 __maybe_unused u32 *start_fini_breadcrumb_cs = cs; 4940 4941 GEM_BUG_ON(!intel_context_is_parent(ce)); 4942 4943 if (unlikely(skip_handshake(rq))) { 4944 /* 4945 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch, 4946 * the NON_SKIP_LEN comes from the length of the emits below. 4947 */ 4948 memset(cs, 0, sizeof(u32) * 4949 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); 4950 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; 4951 } else { 4952 cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs); 4953 } 4954 4955 /* Emit fini breadcrumb */ 4956 before_fini_breadcrumb_user_interrupt_cs = cs; 4957 cs = gen8_emit_ggtt_write(cs, 4958 rq->fence.seqno, 4959 i915_request_active_timeline(rq)->hwsp_offset, 4960 0); 4961 4962 /* User interrupt */ 4963 *cs++ = MI_USER_INTERRUPT; 4964 *cs++ = MI_NOOP; 4965 4966 /* Ensure our math for skip + emit is correct */ 4967 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != 4968 cs); 4969 GEM_BUG_ON(start_fini_breadcrumb_cs + 4970 ce->engine->emit_fini_breadcrumb_dw != cs); 4971 4972 rq->tail = intel_ring_offset(rq, cs); 4973 4974 return cs; 4975 } 4976 4977 static u32 * 4978 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 4979 u32 *cs) 4980 { 4981 struct intel_context *ce = rq->context; 4982 struct intel_context *parent = intel_context_to_parent(ce); 4983 4984 GEM_BUG_ON(!intel_context_is_child(ce)); 4985 4986 /* Turn on preemption */ 4987 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 4988 *cs++ = MI_NOOP; 4989 4990 /* Signal parent */ 4991 cs = gen8_emit_ggtt_write(cs, 4992 PARENT_GO_FINI_BREADCRUMB, 4993 get_children_join_addr(parent, 4994 ce->parallel.child_index), 4995 0); 4996 4997 /* Wait parent on for go */ 4998 *cs++ = (MI_SEMAPHORE_WAIT | 4999 MI_SEMAPHORE_GLOBAL_GTT | 5000 MI_SEMAPHORE_POLL | 5001 MI_SEMAPHORE_SAD_EQ_SDD); 5002 *cs++ = CHILD_GO_FINI_BREADCRUMB; 5003 *cs++ = get_children_go_addr(parent); 5004 *cs++ = 0; 5005 5006 return cs; 5007 } 5008 5009 static u32 * 5010 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 5011 u32 *cs) 5012 { 5013 struct intel_context *ce = rq->context; 5014 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; 5015 __maybe_unused u32 *start_fini_breadcrumb_cs = cs; 5016 5017 GEM_BUG_ON(!intel_context_is_child(ce)); 5018 5019 if (unlikely(skip_handshake(rq))) { 5020 /* 5021 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch, 5022 * the NON_SKIP_LEN comes from the length of the emits below. 5023 */ 5024 memset(cs, 0, sizeof(u32) * 5025 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); 5026 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; 5027 } else { 5028 cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs); 5029 } 5030 5031 /* Emit fini breadcrumb */ 5032 before_fini_breadcrumb_user_interrupt_cs = cs; 5033 cs = gen8_emit_ggtt_write(cs, 5034 rq->fence.seqno, 5035 i915_request_active_timeline(rq)->hwsp_offset, 5036 0); 5037 5038 /* User interrupt */ 5039 *cs++ = MI_USER_INTERRUPT; 5040 *cs++ = MI_NOOP; 5041 5042 /* Ensure our math for skip + emit is correct */ 5043 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != 5044 cs); 5045 GEM_BUG_ON(start_fini_breadcrumb_cs + 5046 ce->engine->emit_fini_breadcrumb_dw != cs); 5047 5048 rq->tail = intel_ring_offset(rq, cs); 5049 5050 return cs; 5051 } 5052 5053 #undef NON_SKIP_LEN 5054 5055 static struct intel_context * 5056 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, 5057 unsigned long flags) 5058 { 5059 struct guc_virtual_engine *ve; 5060 struct intel_guc *guc; 5061 unsigned int n; 5062 int err; 5063 5064 ve = kzalloc(sizeof(*ve), GFP_KERNEL); 5065 if (!ve) 5066 return ERR_PTR(-ENOMEM); 5067 5068 guc = &siblings[0]->gt->uc.guc; 5069 5070 ve->base.i915 = siblings[0]->i915; 5071 ve->base.gt = siblings[0]->gt; 5072 ve->base.uncore = siblings[0]->uncore; 5073 ve->base.id = -1; 5074 5075 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID; 5076 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 5077 ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 5078 ve->base.saturated = ALL_ENGINES; 5079 5080 snprintf(ve->base.name, sizeof(ve->base.name), "virtual"); 5081 5082 ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine); 5083 5084 ve->base.cops = &virtual_guc_context_ops; 5085 ve->base.request_alloc = guc_request_alloc; 5086 ve->base.bump_serial = virtual_guc_bump_serial; 5087 5088 ve->base.submit_request = guc_submit_request; 5089 5090 ve->base.flags = I915_ENGINE_IS_VIRTUAL; 5091 5092 intel_context_init(&ve->context, &ve->base); 5093 5094 for (n = 0; n < count; n++) { 5095 struct intel_engine_cs *sibling = siblings[n]; 5096 5097 GEM_BUG_ON(!is_power_of_2(sibling->mask)); 5098 if (sibling->mask & ve->base.mask) { 5099 DRM_DEBUG("duplicate %s entry in load balancer\n", 5100 sibling->name); 5101 err = -EINVAL; 5102 goto err_put; 5103 } 5104 5105 ve->base.mask |= sibling->mask; 5106 ve->base.logical_mask |= sibling->logical_mask; 5107 5108 if (n != 0 && ve->base.class != sibling->class) { 5109 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n", 5110 sibling->class, ve->base.class); 5111 err = -EINVAL; 5112 goto err_put; 5113 } else if (n == 0) { 5114 ve->base.class = sibling->class; 5115 ve->base.uabi_class = sibling->uabi_class; 5116 snprintf(ve->base.name, sizeof(ve->base.name), 5117 "v%dx%d", ve->base.class, count); 5118 ve->base.context_size = sibling->context_size; 5119 5120 ve->base.add_active_request = 5121 sibling->add_active_request; 5122 ve->base.remove_active_request = 5123 sibling->remove_active_request; 5124 ve->base.emit_bb_start = sibling->emit_bb_start; 5125 ve->base.emit_flush = sibling->emit_flush; 5126 ve->base.emit_init_breadcrumb = 5127 sibling->emit_init_breadcrumb; 5128 ve->base.emit_fini_breadcrumb = 5129 sibling->emit_fini_breadcrumb; 5130 ve->base.emit_fini_breadcrumb_dw = 5131 sibling->emit_fini_breadcrumb_dw; 5132 ve->base.breadcrumbs = 5133 intel_breadcrumbs_get(sibling->breadcrumbs); 5134 5135 ve->base.flags |= sibling->flags; 5136 5137 ve->base.props.timeslice_duration_ms = 5138 sibling->props.timeslice_duration_ms; 5139 ve->base.props.preempt_timeout_ms = 5140 sibling->props.preempt_timeout_ms; 5141 } 5142 } 5143 5144 return &ve->context; 5145 5146 err_put: 5147 intel_context_put(&ve->context); 5148 return ERR_PTR(err); 5149 } 5150 5151 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve) 5152 { 5153 struct intel_engine_cs *engine; 5154 intel_engine_mask_t tmp, mask = ve->mask; 5155 5156 for_each_engine_masked(engine, ve->gt, mask, tmp) 5157 if (READ_ONCE(engine->props.heartbeat_interval_ms)) 5158 return true; 5159 5160 return false; 5161 } 5162 5163 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5164 #include "selftest_guc.c" 5165 #include "selftest_guc_multi_lrc.c" 5166 #endif 5167