1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014 Intel Corporation 4 */ 5 6 #include <linux/circ_buf.h> 7 8 #include "gem/i915_gem_context.h" 9 10 #include "gt/intel_context.h" 11 #include "gt/intel_engine_pm.h" 12 #include "gt/intel_gt.h" 13 #include "gt/intel_gt_pm.h" 14 #include "gt/intel_lrc_reg.h" 15 #include "intel_guc_submission.h" 16 17 #include "i915_drv.h" 18 #include "i915_trace.h" 19 20 enum { 21 GUC_PREEMPT_NONE = 0, 22 GUC_PREEMPT_INPROGRESS, 23 GUC_PREEMPT_FINISHED, 24 }; 25 #define GUC_PREEMPT_BREADCRUMB_DWORDS 0x8 26 #define GUC_PREEMPT_BREADCRUMB_BYTES \ 27 (sizeof(u32) * GUC_PREEMPT_BREADCRUMB_DWORDS) 28 29 /** 30 * DOC: GuC-based command submission 31 * 32 * GuC client: 33 * A intel_guc_client refers to a submission path through GuC. Currently, there 34 * is only one client, which is charged with all submissions to the GuC. This 35 * struct is the owner of a doorbell, a process descriptor and a workqueue (all 36 * of them inside a single gem object that contains all required pages for these 37 * elements). 38 * 39 * GuC stage descriptor: 40 * During initialization, the driver allocates a static pool of 1024 such 41 * descriptors, and shares them with the GuC. 42 * Currently, there exists a 1:1 mapping between a intel_guc_client and a 43 * guc_stage_desc (via the client's stage_id), so effectively only one 44 * gets used. This stage descriptor lets the GuC know about the doorbell, 45 * workqueue and process descriptor. Theoretically, it also lets the GuC 46 * know about our HW contexts (context ID, etc...), but we actually 47 * employ a kind of submission where the GuC uses the LRCA sent via the work 48 * item instead (the single guc_stage_desc associated to execbuf client 49 * contains information about the default kernel context only, but this is 50 * essentially unused). This is called a "proxy" submission. 51 * 52 * The Scratch registers: 53 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes 54 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then 55 * triggers an interrupt on the GuC via another register write (0xC4C8). 56 * Firmware writes a success/fail code back to the action register after 57 * processes the request. The kernel driver polls waiting for this update and 58 * then proceeds. 59 * See intel_guc_send() 60 * 61 * Doorbells: 62 * Doorbells are interrupts to uKernel. A doorbell is a single cache line (QW) 63 * mapped into process space. 64 * 65 * Work Items: 66 * There are several types of work items that the host may place into a 67 * workqueue, each with its own requirements and limitations. Currently only 68 * WQ_TYPE_INORDER is needed to support legacy submission via GuC, which 69 * represents in-order queue. The kernel driver packs ring tail pointer and an 70 * ELSP context descriptor dword into Work Item. 71 * See guc_add_request() 72 * 73 */ 74 75 static inline struct i915_priolist *to_priolist(struct rb_node *rb) 76 { 77 return rb_entry(rb, struct i915_priolist, node); 78 } 79 80 static inline bool is_high_priority(struct intel_guc_client *client) 81 { 82 return (client->priority == GUC_CLIENT_PRIORITY_KMD_HIGH || 83 client->priority == GUC_CLIENT_PRIORITY_HIGH); 84 } 85 86 static int reserve_doorbell(struct intel_guc_client *client) 87 { 88 unsigned long offset; 89 unsigned long end; 90 u16 id; 91 92 GEM_BUG_ON(client->doorbell_id != GUC_DOORBELL_INVALID); 93 94 /* 95 * The bitmap tracks which doorbell registers are currently in use. 96 * It is split into two halves; the first half is used for normal 97 * priority contexts, the second half for high-priority ones. 98 */ 99 offset = 0; 100 end = GUC_NUM_DOORBELLS / 2; 101 if (is_high_priority(client)) { 102 offset = end; 103 end += offset; 104 } 105 106 id = find_next_zero_bit(client->guc->doorbell_bitmap, end, offset); 107 if (id == end) 108 return -ENOSPC; 109 110 __set_bit(id, client->guc->doorbell_bitmap); 111 client->doorbell_id = id; 112 DRM_DEBUG_DRIVER("client %u (high prio=%s) reserved doorbell: %d\n", 113 client->stage_id, yesno(is_high_priority(client)), 114 id); 115 return 0; 116 } 117 118 static bool has_doorbell(struct intel_guc_client *client) 119 { 120 if (client->doorbell_id == GUC_DOORBELL_INVALID) 121 return false; 122 123 return test_bit(client->doorbell_id, client->guc->doorbell_bitmap); 124 } 125 126 static void unreserve_doorbell(struct intel_guc_client *client) 127 { 128 GEM_BUG_ON(!has_doorbell(client)); 129 130 __clear_bit(client->doorbell_id, client->guc->doorbell_bitmap); 131 client->doorbell_id = GUC_DOORBELL_INVALID; 132 } 133 134 /* 135 * Tell the GuC to allocate or deallocate a specific doorbell 136 */ 137 138 static int __guc_allocate_doorbell(struct intel_guc *guc, u32 stage_id) 139 { 140 u32 action[] = { 141 INTEL_GUC_ACTION_ALLOCATE_DOORBELL, 142 stage_id 143 }; 144 145 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 146 } 147 148 static int __guc_deallocate_doorbell(struct intel_guc *guc, u32 stage_id) 149 { 150 u32 action[] = { 151 INTEL_GUC_ACTION_DEALLOCATE_DOORBELL, 152 stage_id 153 }; 154 155 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 156 } 157 158 static struct guc_stage_desc *__get_stage_desc(struct intel_guc_client *client) 159 { 160 struct guc_stage_desc *base = client->guc->stage_desc_pool_vaddr; 161 162 return &base[client->stage_id]; 163 } 164 165 /* 166 * Initialise, update, or clear doorbell data shared with the GuC 167 * 168 * These functions modify shared data and so need access to the mapped 169 * client object which contains the page being used for the doorbell 170 */ 171 172 static void __update_doorbell_desc(struct intel_guc_client *client, u16 new_id) 173 { 174 struct guc_stage_desc *desc; 175 176 /* Update the GuC's idea of the doorbell ID */ 177 desc = __get_stage_desc(client); 178 desc->db_id = new_id; 179 } 180 181 static struct guc_doorbell_info *__get_doorbell(struct intel_guc_client *client) 182 { 183 return client->vaddr + client->doorbell_offset; 184 } 185 186 static bool __doorbell_valid(struct intel_guc *guc, u16 db_id) 187 { 188 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 189 190 GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS); 191 return intel_uncore_read(uncore, GEN8_DRBREGL(db_id)) & GEN8_DRB_VALID; 192 } 193 194 static void __init_doorbell(struct intel_guc_client *client) 195 { 196 struct guc_doorbell_info *doorbell; 197 198 doorbell = __get_doorbell(client); 199 doorbell->db_status = GUC_DOORBELL_ENABLED; 200 doorbell->cookie = 0; 201 } 202 203 static void __fini_doorbell(struct intel_guc_client *client) 204 { 205 struct guc_doorbell_info *doorbell; 206 u16 db_id = client->doorbell_id; 207 208 doorbell = __get_doorbell(client); 209 doorbell->db_status = GUC_DOORBELL_DISABLED; 210 211 /* Doorbell release flow requires that we wait for GEN8_DRB_VALID bit 212 * to go to zero after updating db_status before we call the GuC to 213 * release the doorbell 214 */ 215 if (wait_for_us(!__doorbell_valid(client->guc, db_id), 10)) 216 WARN_ONCE(true, "Doorbell never became invalid after disable\n"); 217 } 218 219 static int create_doorbell(struct intel_guc_client *client) 220 { 221 int ret; 222 223 if (WARN_ON(!has_doorbell(client))) 224 return -ENODEV; /* internal setup error, should never happen */ 225 226 __update_doorbell_desc(client, client->doorbell_id); 227 __init_doorbell(client); 228 229 ret = __guc_allocate_doorbell(client->guc, client->stage_id); 230 if (ret) { 231 __fini_doorbell(client); 232 __update_doorbell_desc(client, GUC_DOORBELL_INVALID); 233 DRM_DEBUG_DRIVER("Couldn't create client %u doorbell: %d\n", 234 client->stage_id, ret); 235 return ret; 236 } 237 238 return 0; 239 } 240 241 static int destroy_doorbell(struct intel_guc_client *client) 242 { 243 int ret; 244 245 GEM_BUG_ON(!has_doorbell(client)); 246 247 __fini_doorbell(client); 248 ret = __guc_deallocate_doorbell(client->guc, client->stage_id); 249 if (ret) 250 DRM_ERROR("Couldn't destroy client %u doorbell: %d\n", 251 client->stage_id, ret); 252 253 __update_doorbell_desc(client, GUC_DOORBELL_INVALID); 254 255 return ret; 256 } 257 258 static unsigned long __select_cacheline(struct intel_guc *guc) 259 { 260 unsigned long offset; 261 262 /* Doorbell uses a single cache line within a page */ 263 offset = offset_in_page(guc->db_cacheline); 264 265 /* Moving to next cache line to reduce contention */ 266 guc->db_cacheline += cache_line_size(); 267 268 DRM_DEBUG_DRIVER("reserved cacheline 0x%lx, next 0x%x, linesize %u\n", 269 offset, guc->db_cacheline, cache_line_size()); 270 return offset; 271 } 272 273 static inline struct guc_process_desc * 274 __get_process_desc(struct intel_guc_client *client) 275 { 276 return client->vaddr + client->proc_desc_offset; 277 } 278 279 /* 280 * Initialise the process descriptor shared with the GuC firmware. 281 */ 282 static void guc_proc_desc_init(struct intel_guc_client *client) 283 { 284 struct guc_process_desc *desc; 285 286 desc = memset(__get_process_desc(client), 0, sizeof(*desc)); 287 288 /* 289 * XXX: pDoorbell and WQVBaseAddress are pointers in process address 290 * space for ring3 clients (set them as in mmap_ioctl) or kernel 291 * space for kernel clients (map on demand instead? May make debug 292 * easier to have it mapped). 293 */ 294 desc->wq_base_addr = 0; 295 desc->db_base_addr = 0; 296 297 desc->stage_id = client->stage_id; 298 desc->wq_size_bytes = GUC_WQ_SIZE; 299 desc->wq_status = WQ_STATUS_ACTIVE; 300 desc->priority = client->priority; 301 } 302 303 static void guc_proc_desc_fini(struct intel_guc_client *client) 304 { 305 struct guc_process_desc *desc; 306 307 desc = __get_process_desc(client); 308 memset(desc, 0, sizeof(*desc)); 309 } 310 311 static int guc_stage_desc_pool_create(struct intel_guc *guc) 312 { 313 struct i915_vma *vma; 314 void *vaddr; 315 316 vma = intel_guc_allocate_vma(guc, 317 PAGE_ALIGN(sizeof(struct guc_stage_desc) * 318 GUC_MAX_STAGE_DESCRIPTORS)); 319 if (IS_ERR(vma)) 320 return PTR_ERR(vma); 321 322 vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); 323 if (IS_ERR(vaddr)) { 324 i915_vma_unpin_and_release(&vma, 0); 325 return PTR_ERR(vaddr); 326 } 327 328 guc->stage_desc_pool = vma; 329 guc->stage_desc_pool_vaddr = vaddr; 330 ida_init(&guc->stage_ids); 331 332 return 0; 333 } 334 335 static void guc_stage_desc_pool_destroy(struct intel_guc *guc) 336 { 337 ida_destroy(&guc->stage_ids); 338 i915_vma_unpin_and_release(&guc->stage_desc_pool, I915_VMA_RELEASE_MAP); 339 } 340 341 /* 342 * Initialise/clear the stage descriptor shared with the GuC firmware. 343 * 344 * This descriptor tells the GuC where (in GGTT space) to find the important 345 * data structures relating to this client (doorbell, process descriptor, 346 * write queue, etc). 347 */ 348 static void guc_stage_desc_init(struct intel_guc_client *client) 349 { 350 struct intel_guc *guc = client->guc; 351 struct guc_stage_desc *desc; 352 u32 gfx_addr; 353 354 desc = __get_stage_desc(client); 355 memset(desc, 0, sizeof(*desc)); 356 357 desc->attribute = GUC_STAGE_DESC_ATTR_ACTIVE | 358 GUC_STAGE_DESC_ATTR_KERNEL; 359 if (is_high_priority(client)) 360 desc->attribute |= GUC_STAGE_DESC_ATTR_PREEMPT; 361 desc->stage_id = client->stage_id; 362 desc->priority = client->priority; 363 desc->db_id = client->doorbell_id; 364 365 /* 366 * The doorbell, process descriptor, and workqueue are all parts 367 * of the client object, which the GuC will reference via the GGTT 368 */ 369 gfx_addr = intel_guc_ggtt_offset(guc, client->vma); 370 desc->db_trigger_phy = sg_dma_address(client->vma->pages->sgl) + 371 client->doorbell_offset; 372 desc->db_trigger_cpu = ptr_to_u64(__get_doorbell(client)); 373 desc->db_trigger_uk = gfx_addr + client->doorbell_offset; 374 desc->process_desc = gfx_addr + client->proc_desc_offset; 375 desc->wq_addr = gfx_addr + GUC_DB_SIZE; 376 desc->wq_size = GUC_WQ_SIZE; 377 378 desc->desc_private = ptr_to_u64(client); 379 } 380 381 static void guc_stage_desc_fini(struct intel_guc_client *client) 382 { 383 struct guc_stage_desc *desc; 384 385 desc = __get_stage_desc(client); 386 memset(desc, 0, sizeof(*desc)); 387 } 388 389 /* Construct a Work Item and append it to the GuC's Work Queue */ 390 static void guc_wq_item_append(struct intel_guc_client *client, 391 u32 target_engine, u32 context_desc, 392 u32 ring_tail, u32 fence_id) 393 { 394 /* wqi_len is in DWords, and does not include the one-word header */ 395 const size_t wqi_size = sizeof(struct guc_wq_item); 396 const u32 wqi_len = wqi_size / sizeof(u32) - 1; 397 struct guc_process_desc *desc = __get_process_desc(client); 398 struct guc_wq_item *wqi; 399 u32 wq_off; 400 401 lockdep_assert_held(&client->wq_lock); 402 403 /* For now workqueue item is 4 DWs; workqueue buffer is 2 pages. So we 404 * should not have the case where structure wqi is across page, neither 405 * wrapped to the beginning. This simplifies the implementation below. 406 * 407 * XXX: if not the case, we need save data to a temp wqi and copy it to 408 * workqueue buffer dw by dw. 409 */ 410 BUILD_BUG_ON(wqi_size != 16); 411 412 /* We expect the WQ to be active if we're appending items to it */ 413 GEM_BUG_ON(desc->wq_status != WQ_STATUS_ACTIVE); 414 415 /* Free space is guaranteed. */ 416 wq_off = READ_ONCE(desc->tail); 417 GEM_BUG_ON(CIRC_SPACE(wq_off, READ_ONCE(desc->head), 418 GUC_WQ_SIZE) < wqi_size); 419 GEM_BUG_ON(wq_off & (wqi_size - 1)); 420 421 /* WQ starts from the page after doorbell / process_desc */ 422 wqi = client->vaddr + wq_off + GUC_DB_SIZE; 423 424 if (I915_SELFTEST_ONLY(client->use_nop_wqi)) { 425 wqi->header = WQ_TYPE_NOOP | (wqi_len << WQ_LEN_SHIFT); 426 } else { 427 /* Now fill in the 4-word work queue item */ 428 wqi->header = WQ_TYPE_INORDER | 429 (wqi_len << WQ_LEN_SHIFT) | 430 (target_engine << WQ_TARGET_SHIFT) | 431 WQ_NO_WCFLUSH_WAIT; 432 wqi->context_desc = context_desc; 433 wqi->submit_element_info = ring_tail << WQ_RING_TAIL_SHIFT; 434 GEM_BUG_ON(ring_tail > WQ_RING_TAIL_MAX); 435 wqi->fence_id = fence_id; 436 } 437 438 /* Make the update visible to GuC */ 439 WRITE_ONCE(desc->tail, (wq_off + wqi_size) & (GUC_WQ_SIZE - 1)); 440 } 441 442 static void guc_ring_doorbell(struct intel_guc_client *client) 443 { 444 struct guc_doorbell_info *db; 445 u32 cookie; 446 447 lockdep_assert_held(&client->wq_lock); 448 449 /* pointer of current doorbell cacheline */ 450 db = __get_doorbell(client); 451 452 /* 453 * We're not expecting the doorbell cookie to change behind our back, 454 * we also need to treat 0 as a reserved value. 455 */ 456 cookie = READ_ONCE(db->cookie); 457 WARN_ON_ONCE(xchg(&db->cookie, cookie + 1 ?: cookie + 2) != cookie); 458 459 /* XXX: doorbell was lost and need to acquire it again */ 460 GEM_BUG_ON(db->db_status != GUC_DOORBELL_ENABLED); 461 } 462 463 static void guc_add_request(struct intel_guc *guc, struct i915_request *rq) 464 { 465 struct intel_guc_client *client = guc->execbuf_client; 466 struct intel_engine_cs *engine = rq->engine; 467 u32 ctx_desc = lower_32_bits(rq->hw_context->lrc_desc); 468 u32 ring_tail = intel_ring_set_tail(rq->ring, rq->tail) / sizeof(u64); 469 470 guc_wq_item_append(client, engine->guc_id, ctx_desc, 471 ring_tail, rq->fence.seqno); 472 guc_ring_doorbell(client); 473 } 474 475 /* 476 * When we're doing submissions using regular execlists backend, writing to 477 * ELSP from CPU side is enough to make sure that writes to ringbuffer pages 478 * pinned in mappable aperture portion of GGTT are visible to command streamer. 479 * Writes done by GuC on our behalf are not guaranteeing such ordering, 480 * therefore, to ensure the flush, we're issuing a POSTING READ. 481 */ 482 static void flush_ggtt_writes(struct i915_vma *vma) 483 { 484 struct drm_i915_private *i915 = vma->vm->i915; 485 486 if (i915_vma_is_map_and_fenceable(vma)) 487 intel_uncore_posting_read_fw(&i915->uncore, GUC_STATUS); 488 } 489 490 static void guc_submit(struct intel_engine_cs *engine, 491 struct i915_request **out, 492 struct i915_request **end) 493 { 494 struct intel_guc *guc = &engine->gt->uc.guc; 495 struct intel_guc_client *client = guc->execbuf_client; 496 497 spin_lock(&client->wq_lock); 498 499 do { 500 struct i915_request *rq = *out++; 501 502 flush_ggtt_writes(rq->ring->vma); 503 guc_add_request(guc, rq); 504 } while (out != end); 505 506 spin_unlock(&client->wq_lock); 507 } 508 509 static inline int rq_prio(const struct i915_request *rq) 510 { 511 return rq->sched.attr.priority | __NO_PREEMPTION; 512 } 513 514 static struct i915_request *schedule_in(struct i915_request *rq, int idx) 515 { 516 trace_i915_request_in(rq, idx); 517 518 /* 519 * Currently we are not tracking the rq->context being inflight 520 * (ce->inflight = rq->engine). It is only used by the execlists 521 * backend at the moment, a similar counting strategy would be 522 * required if we generalise the inflight tracking. 523 */ 524 525 intel_gt_pm_get(rq->engine->gt); 526 return i915_request_get(rq); 527 } 528 529 static void schedule_out(struct i915_request *rq) 530 { 531 trace_i915_request_out(rq); 532 533 intel_gt_pm_put(rq->engine->gt); 534 i915_request_put(rq); 535 } 536 537 static void __guc_dequeue(struct intel_engine_cs *engine) 538 { 539 struct intel_engine_execlists * const execlists = &engine->execlists; 540 struct i915_request **first = execlists->inflight; 541 struct i915_request ** const last_port = first + execlists->port_mask; 542 struct i915_request *last = first[0]; 543 struct i915_request **port; 544 bool submit = false; 545 struct rb_node *rb; 546 547 lockdep_assert_held(&engine->active.lock); 548 549 if (last) { 550 if (*++first) 551 return; 552 553 last = NULL; 554 } 555 556 /* 557 * We write directly into the execlists->inflight queue and don't use 558 * the execlists->pending queue, as we don't have a distinct switch 559 * event. 560 */ 561 port = first; 562 while ((rb = rb_first_cached(&execlists->queue))) { 563 struct i915_priolist *p = to_priolist(rb); 564 struct i915_request *rq, *rn; 565 int i; 566 567 priolist_for_each_request_consume(rq, rn, p, i) { 568 if (last && rq->hw_context != last->hw_context) { 569 if (port == last_port) 570 goto done; 571 572 *port = schedule_in(last, 573 port - execlists->inflight); 574 port++; 575 } 576 577 list_del_init(&rq->sched.link); 578 __i915_request_submit(rq); 579 submit = true; 580 last = rq; 581 } 582 583 rb_erase_cached(&p->node, &execlists->queue); 584 i915_priolist_free(p); 585 } 586 done: 587 execlists->queue_priority_hint = 588 rb ? to_priolist(rb)->priority : INT_MIN; 589 if (submit) { 590 *port = schedule_in(last, port - execlists->inflight); 591 *++port = NULL; 592 guc_submit(engine, first, port); 593 } 594 execlists->active = execlists->inflight; 595 } 596 597 static void guc_submission_tasklet(unsigned long data) 598 { 599 struct intel_engine_cs * const engine = (struct intel_engine_cs *)data; 600 struct intel_engine_execlists * const execlists = &engine->execlists; 601 struct i915_request **port, *rq; 602 unsigned long flags; 603 604 spin_lock_irqsave(&engine->active.lock, flags); 605 606 for (port = execlists->inflight; (rq = *port); port++) { 607 if (!i915_request_completed(rq)) 608 break; 609 610 schedule_out(rq); 611 } 612 if (port != execlists->inflight) { 613 int idx = port - execlists->inflight; 614 int rem = ARRAY_SIZE(execlists->inflight) - idx; 615 memmove(execlists->inflight, port, rem * sizeof(*port)); 616 } 617 618 __guc_dequeue(engine); 619 620 spin_unlock_irqrestore(&engine->active.lock, flags); 621 } 622 623 static void guc_reset_prepare(struct intel_engine_cs *engine) 624 { 625 struct intel_engine_execlists * const execlists = &engine->execlists; 626 627 GEM_TRACE("%s\n", engine->name); 628 629 /* 630 * Prevent request submission to the hardware until we have 631 * completed the reset in i915_gem_reset_finish(). If a request 632 * is completed by one engine, it may then queue a request 633 * to a second via its execlists->tasklet *just* as we are 634 * calling engine->init_hw() and also writing the ELSP. 635 * Turning off the execlists->tasklet until the reset is over 636 * prevents the race. 637 */ 638 __tasklet_disable_sync_once(&execlists->tasklet); 639 } 640 641 static void 642 cancel_port_requests(struct intel_engine_execlists * const execlists) 643 { 644 struct i915_request * const *port, *rq; 645 646 /* Note we are only using the inflight and not the pending queue */ 647 648 for (port = execlists->active; (rq = *port); port++) 649 schedule_out(rq); 650 execlists->active = 651 memset(execlists->inflight, 0, sizeof(execlists->inflight)); 652 } 653 654 static void guc_reset(struct intel_engine_cs *engine, bool stalled) 655 { 656 struct intel_engine_execlists * const execlists = &engine->execlists; 657 struct i915_request *rq; 658 unsigned long flags; 659 660 spin_lock_irqsave(&engine->active.lock, flags); 661 662 cancel_port_requests(execlists); 663 664 /* Push back any incomplete requests for replay after the reset. */ 665 rq = execlists_unwind_incomplete_requests(execlists); 666 if (!rq) 667 goto out_unlock; 668 669 if (!i915_request_started(rq)) 670 stalled = false; 671 672 __i915_request_reset(rq, stalled); 673 intel_lr_context_reset(engine, rq->hw_context, rq->head, stalled); 674 675 out_unlock: 676 spin_unlock_irqrestore(&engine->active.lock, flags); 677 } 678 679 static void guc_cancel_requests(struct intel_engine_cs *engine) 680 { 681 struct intel_engine_execlists * const execlists = &engine->execlists; 682 struct i915_request *rq, *rn; 683 struct rb_node *rb; 684 unsigned long flags; 685 686 GEM_TRACE("%s\n", engine->name); 687 688 /* 689 * Before we call engine->cancel_requests(), we should have exclusive 690 * access to the submission state. This is arranged for us by the 691 * caller disabling the interrupt generation, the tasklet and other 692 * threads that may then access the same state, giving us a free hand 693 * to reset state. However, we still need to let lockdep be aware that 694 * we know this state may be accessed in hardirq context, so we 695 * disable the irq around this manipulation and we want to keep 696 * the spinlock focused on its duties and not accidentally conflate 697 * coverage to the submission's irq state. (Similarly, although we 698 * shouldn't need to disable irq around the manipulation of the 699 * submission's irq state, we also wish to remind ourselves that 700 * it is irq state.) 701 */ 702 spin_lock_irqsave(&engine->active.lock, flags); 703 704 /* Cancel the requests on the HW and clear the ELSP tracker. */ 705 cancel_port_requests(execlists); 706 707 /* Mark all executing requests as skipped. */ 708 list_for_each_entry(rq, &engine->active.requests, sched.link) { 709 if (!i915_request_signaled(rq)) 710 dma_fence_set_error(&rq->fence, -EIO); 711 712 i915_request_mark_complete(rq); 713 } 714 715 /* Flush the queued requests to the timeline list (for retiring). */ 716 while ((rb = rb_first_cached(&execlists->queue))) { 717 struct i915_priolist *p = to_priolist(rb); 718 int i; 719 720 priolist_for_each_request_consume(rq, rn, p, i) { 721 list_del_init(&rq->sched.link); 722 __i915_request_submit(rq); 723 dma_fence_set_error(&rq->fence, -EIO); 724 i915_request_mark_complete(rq); 725 } 726 727 rb_erase_cached(&p->node, &execlists->queue); 728 i915_priolist_free(p); 729 } 730 731 /* Remaining _unready_ requests will be nop'ed when submitted */ 732 733 execlists->queue_priority_hint = INT_MIN; 734 execlists->queue = RB_ROOT_CACHED; 735 736 spin_unlock_irqrestore(&engine->active.lock, flags); 737 } 738 739 static void guc_reset_finish(struct intel_engine_cs *engine) 740 { 741 struct intel_engine_execlists * const execlists = &engine->execlists; 742 743 if (__tasklet_enable(&execlists->tasklet)) 744 /* And kick in case we missed a new request submission. */ 745 tasklet_hi_schedule(&execlists->tasklet); 746 747 GEM_TRACE("%s: depth->%d\n", engine->name, 748 atomic_read(&execlists->tasklet.count)); 749 } 750 751 /* 752 * Everything below here is concerned with setup & teardown, and is 753 * therefore not part of the somewhat time-critical batch-submission 754 * path of guc_submit() above. 755 */ 756 757 /* Check that a doorbell register is in the expected state */ 758 static bool doorbell_ok(struct intel_guc *guc, u16 db_id) 759 { 760 bool valid; 761 762 GEM_BUG_ON(db_id >= GUC_NUM_DOORBELLS); 763 764 valid = __doorbell_valid(guc, db_id); 765 766 if (test_bit(db_id, guc->doorbell_bitmap) == valid) 767 return true; 768 769 DRM_DEBUG_DRIVER("Doorbell %u has unexpected state: valid=%s\n", 770 db_id, yesno(valid)); 771 772 return false; 773 } 774 775 static bool guc_verify_doorbells(struct intel_guc *guc) 776 { 777 bool doorbells_ok = true; 778 u16 db_id; 779 780 for (db_id = 0; db_id < GUC_NUM_DOORBELLS; ++db_id) 781 if (!doorbell_ok(guc, db_id)) 782 doorbells_ok = false; 783 784 return doorbells_ok; 785 } 786 787 /** 788 * guc_client_alloc() - Allocate an intel_guc_client 789 * @guc: the intel_guc structure 790 * @priority: four levels priority _CRITICAL, _HIGH, _NORMAL and _LOW 791 * The kernel client to replace ExecList submission is created with 792 * NORMAL priority. Priority of a client for scheduler can be HIGH, 793 * while a preemption context can use CRITICAL. 794 * 795 * Return: An intel_guc_client object if success, else NULL. 796 */ 797 static struct intel_guc_client * 798 guc_client_alloc(struct intel_guc *guc, u32 priority) 799 { 800 struct intel_guc_client *client; 801 struct i915_vma *vma; 802 void *vaddr; 803 int ret; 804 805 client = kzalloc(sizeof(*client), GFP_KERNEL); 806 if (!client) 807 return ERR_PTR(-ENOMEM); 808 809 client->guc = guc; 810 client->priority = priority; 811 client->doorbell_id = GUC_DOORBELL_INVALID; 812 spin_lock_init(&client->wq_lock); 813 814 ret = ida_simple_get(&guc->stage_ids, 0, GUC_MAX_STAGE_DESCRIPTORS, 815 GFP_KERNEL); 816 if (ret < 0) 817 goto err_client; 818 819 client->stage_id = ret; 820 821 /* The first page is doorbell/proc_desc. Two followed pages are wq. */ 822 vma = intel_guc_allocate_vma(guc, GUC_DB_SIZE + GUC_WQ_SIZE); 823 if (IS_ERR(vma)) { 824 ret = PTR_ERR(vma); 825 goto err_id; 826 } 827 828 /* We'll keep just the first (doorbell/proc) page permanently kmap'd. */ 829 client->vma = vma; 830 831 vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); 832 if (IS_ERR(vaddr)) { 833 ret = PTR_ERR(vaddr); 834 goto err_vma; 835 } 836 client->vaddr = vaddr; 837 838 ret = reserve_doorbell(client); 839 if (ret) 840 goto err_vaddr; 841 842 client->doorbell_offset = __select_cacheline(guc); 843 844 /* 845 * Since the doorbell only requires a single cacheline, we can save 846 * space by putting the application process descriptor in the same 847 * page. Use the half of the page that doesn't include the doorbell. 848 */ 849 if (client->doorbell_offset >= (GUC_DB_SIZE / 2)) 850 client->proc_desc_offset = 0; 851 else 852 client->proc_desc_offset = (GUC_DB_SIZE / 2); 853 854 DRM_DEBUG_DRIVER("new priority %u client %p: stage_id %u\n", 855 priority, client, client->stage_id); 856 DRM_DEBUG_DRIVER("doorbell id %u, cacheline offset 0x%lx\n", 857 client->doorbell_id, client->doorbell_offset); 858 859 return client; 860 861 err_vaddr: 862 i915_gem_object_unpin_map(client->vma->obj); 863 err_vma: 864 i915_vma_unpin_and_release(&client->vma, 0); 865 err_id: 866 ida_simple_remove(&guc->stage_ids, client->stage_id); 867 err_client: 868 kfree(client); 869 return ERR_PTR(ret); 870 } 871 872 static void guc_client_free(struct intel_guc_client *client) 873 { 874 unreserve_doorbell(client); 875 i915_vma_unpin_and_release(&client->vma, I915_VMA_RELEASE_MAP); 876 ida_simple_remove(&client->guc->stage_ids, client->stage_id); 877 kfree(client); 878 } 879 880 static inline bool ctx_save_restore_disabled(struct intel_context *ce) 881 { 882 u32 sr = ce->lrc_reg_state[CTX_CONTEXT_CONTROL + 1]; 883 884 #define SR_DISABLED \ 885 _MASKED_BIT_ENABLE(CTX_CTRL_ENGINE_CTX_RESTORE_INHIBIT | \ 886 CTX_CTRL_ENGINE_CTX_SAVE_INHIBIT) 887 888 return (sr & SR_DISABLED) == SR_DISABLED; 889 890 #undef SR_DISABLED 891 } 892 893 static int guc_clients_create(struct intel_guc *guc) 894 { 895 struct intel_guc_client *client; 896 897 GEM_BUG_ON(guc->execbuf_client); 898 899 client = guc_client_alloc(guc, GUC_CLIENT_PRIORITY_KMD_NORMAL); 900 if (IS_ERR(client)) { 901 DRM_ERROR("Failed to create GuC client for submission!\n"); 902 return PTR_ERR(client); 903 } 904 guc->execbuf_client = client; 905 906 return 0; 907 } 908 909 static void guc_clients_destroy(struct intel_guc *guc) 910 { 911 struct intel_guc_client *client; 912 913 client = fetch_and_zero(&guc->execbuf_client); 914 if (client) 915 guc_client_free(client); 916 } 917 918 static int __guc_client_enable(struct intel_guc_client *client) 919 { 920 int ret; 921 922 guc_proc_desc_init(client); 923 guc_stage_desc_init(client); 924 925 ret = create_doorbell(client); 926 if (ret) 927 goto fail; 928 929 return 0; 930 931 fail: 932 guc_stage_desc_fini(client); 933 guc_proc_desc_fini(client); 934 return ret; 935 } 936 937 static void __guc_client_disable(struct intel_guc_client *client) 938 { 939 /* 940 * By the time we're here, GuC may have already been reset. if that is 941 * the case, instead of trying (in vain) to communicate with it, let's 942 * just cleanup the doorbell HW and our internal state. 943 */ 944 if (intel_guc_is_running(client->guc)) 945 destroy_doorbell(client); 946 else 947 __fini_doorbell(client); 948 949 guc_stage_desc_fini(client); 950 guc_proc_desc_fini(client); 951 } 952 953 static int guc_clients_enable(struct intel_guc *guc) 954 { 955 return __guc_client_enable(guc->execbuf_client); 956 } 957 958 static void guc_clients_disable(struct intel_guc *guc) 959 { 960 if (guc->execbuf_client) 961 __guc_client_disable(guc->execbuf_client); 962 } 963 964 /* 965 * Set up the memory resources to be shared with the GuC (via the GGTT) 966 * at firmware loading time. 967 */ 968 int intel_guc_submission_init(struct intel_guc *guc) 969 { 970 int ret; 971 972 if (guc->stage_desc_pool) 973 return 0; 974 975 ret = guc_stage_desc_pool_create(guc); 976 if (ret) 977 return ret; 978 /* 979 * Keep static analysers happy, let them know that we allocated the 980 * vma after testing that it didn't exist earlier. 981 */ 982 GEM_BUG_ON(!guc->stage_desc_pool); 983 984 WARN_ON(!guc_verify_doorbells(guc)); 985 ret = guc_clients_create(guc); 986 if (ret) 987 goto err_pool; 988 989 return 0; 990 991 err_pool: 992 guc_stage_desc_pool_destroy(guc); 993 return ret; 994 } 995 996 void intel_guc_submission_fini(struct intel_guc *guc) 997 { 998 guc_clients_destroy(guc); 999 WARN_ON(!guc_verify_doorbells(guc)); 1000 1001 if (guc->stage_desc_pool) 1002 guc_stage_desc_pool_destroy(guc); 1003 } 1004 1005 static void guc_interrupts_capture(struct intel_gt *gt) 1006 { 1007 struct intel_rps *rps = >->i915->gt_pm.rps; 1008 struct intel_uncore *uncore = gt->uncore; 1009 struct intel_engine_cs *engine; 1010 enum intel_engine_id id; 1011 int irqs; 1012 1013 /* tell all command streamers to forward interrupts (but not vblank) 1014 * to GuC 1015 */ 1016 irqs = _MASKED_BIT_ENABLE(GFX_INTERRUPT_STEERING); 1017 for_each_engine(engine, gt->i915, id) 1018 ENGINE_WRITE(engine, RING_MODE_GEN7, irqs); 1019 1020 /* route USER_INTERRUPT to Host, all others are sent to GuC. */ 1021 irqs = GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT | 1022 GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT; 1023 /* These three registers have the same bit definitions */ 1024 intel_uncore_write(uncore, GUC_BCS_RCS_IER, ~irqs); 1025 intel_uncore_write(uncore, GUC_VCS2_VCS1_IER, ~irqs); 1026 intel_uncore_write(uncore, GUC_WD_VECS_IER, ~irqs); 1027 1028 /* 1029 * The REDIRECT_TO_GUC bit of the PMINTRMSK register directs all 1030 * (unmasked) PM interrupts to the GuC. All other bits of this 1031 * register *disable* generation of a specific interrupt. 1032 * 1033 * 'pm_intrmsk_mbz' indicates bits that are NOT to be set when 1034 * writing to the PM interrupt mask register, i.e. interrupts 1035 * that must not be disabled. 1036 * 1037 * If the GuC is handling these interrupts, then we must not let 1038 * the PM code disable ANY interrupt that the GuC is expecting. 1039 * So for each ENABLED (0) bit in this register, we must SET the 1040 * bit in pm_intrmsk_mbz so that it's left enabled for the GuC. 1041 * GuC needs ARAT expired interrupt unmasked hence it is set in 1042 * pm_intrmsk_mbz. 1043 * 1044 * Here we CLEAR REDIRECT_TO_GUC bit in pm_intrmsk_mbz, which will 1045 * result in the register bit being left SET! 1046 */ 1047 rps->pm_intrmsk_mbz |= ARAT_EXPIRED_INTRMSK; 1048 rps->pm_intrmsk_mbz &= ~GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC; 1049 } 1050 1051 static void guc_interrupts_release(struct intel_gt *gt) 1052 { 1053 struct intel_rps *rps = >->i915->gt_pm.rps; 1054 struct intel_uncore *uncore = gt->uncore; 1055 struct intel_engine_cs *engine; 1056 enum intel_engine_id id; 1057 int irqs; 1058 1059 /* 1060 * tell all command streamers NOT to forward interrupts or vblank 1061 * to GuC. 1062 */ 1063 irqs = _MASKED_FIELD(GFX_FORWARD_VBLANK_MASK, GFX_FORWARD_VBLANK_NEVER); 1064 irqs |= _MASKED_BIT_DISABLE(GFX_INTERRUPT_STEERING); 1065 for_each_engine(engine, gt->i915, id) 1066 ENGINE_WRITE(engine, RING_MODE_GEN7, irqs); 1067 1068 /* route all GT interrupts to the host */ 1069 intel_uncore_write(uncore, GUC_BCS_RCS_IER, 0); 1070 intel_uncore_write(uncore, GUC_VCS2_VCS1_IER, 0); 1071 intel_uncore_write(uncore, GUC_WD_VECS_IER, 0); 1072 1073 rps->pm_intrmsk_mbz |= GEN8_PMINTR_DISABLE_REDIRECT_TO_GUC; 1074 rps->pm_intrmsk_mbz &= ~ARAT_EXPIRED_INTRMSK; 1075 } 1076 1077 static void guc_set_default_submission(struct intel_engine_cs *engine) 1078 { 1079 /* 1080 * We inherit a bunch of functions from execlists that we'd like 1081 * to keep using: 1082 * 1083 * engine->submit_request = execlists_submit_request; 1084 * engine->cancel_requests = execlists_cancel_requests; 1085 * engine->schedule = execlists_schedule; 1086 * 1087 * But we need to override the actual submission backend in order 1088 * to talk to the GuC. 1089 */ 1090 intel_execlists_set_default_submission(engine); 1091 1092 engine->execlists.tasklet.func = guc_submission_tasklet; 1093 1094 /* do not use execlists park/unpark */ 1095 engine->park = engine->unpark = NULL; 1096 1097 engine->reset.prepare = guc_reset_prepare; 1098 engine->reset.reset = guc_reset; 1099 engine->reset.finish = guc_reset_finish; 1100 1101 engine->cancel_requests = guc_cancel_requests; 1102 1103 engine->flags &= ~I915_ENGINE_SUPPORTS_STATS; 1104 engine->flags |= I915_ENGINE_NEEDS_BREADCRUMB_TASKLET; 1105 1106 /* 1107 * For the breadcrumb irq to work we need the interrupts to stay 1108 * enabled. However, on all platforms on which we'll have support for 1109 * GuC submission we don't allow disabling the interrupts at runtime, so 1110 * we're always safe with the current flow. 1111 */ 1112 GEM_BUG_ON(engine->irq_enable || engine->irq_disable); 1113 } 1114 1115 int intel_guc_submission_enable(struct intel_guc *guc) 1116 { 1117 struct intel_gt *gt = guc_to_gt(guc); 1118 struct intel_engine_cs *engine; 1119 enum intel_engine_id id; 1120 int err; 1121 1122 err = i915_inject_load_error(gt->i915, -ENXIO); 1123 if (err) 1124 return err; 1125 1126 /* 1127 * We're using GuC work items for submitting work through GuC. Since 1128 * we're coalescing multiple requests from a single context into a 1129 * single work item prior to assigning it to execlist_port, we can 1130 * never have more work items than the total number of ports (for all 1131 * engines). The GuC firmware is controlling the HEAD of work queue, 1132 * and it is guaranteed that it will remove the work item from the 1133 * queue before our request is completed. 1134 */ 1135 BUILD_BUG_ON(ARRAY_SIZE(engine->execlists.inflight) * 1136 sizeof(struct guc_wq_item) * 1137 I915_NUM_ENGINES > GUC_WQ_SIZE); 1138 1139 GEM_BUG_ON(!guc->execbuf_client); 1140 1141 err = guc_clients_enable(guc); 1142 if (err) 1143 return err; 1144 1145 /* Take over from manual control of ELSP (execlists) */ 1146 guc_interrupts_capture(gt); 1147 1148 for_each_engine(engine, gt->i915, id) { 1149 engine->set_default_submission = guc_set_default_submission; 1150 engine->set_default_submission(engine); 1151 } 1152 1153 return 0; 1154 } 1155 1156 void intel_guc_submission_disable(struct intel_guc *guc) 1157 { 1158 struct intel_gt *gt = guc_to_gt(guc); 1159 1160 GEM_BUG_ON(gt->awake); /* GT should be parked first */ 1161 1162 guc_interrupts_release(gt); 1163 guc_clients_disable(guc); 1164 } 1165 1166 static bool __guc_submission_support(struct intel_guc *guc) 1167 { 1168 /* XXX: GuC submission is unavailable for now */ 1169 return false; 1170 1171 if (!intel_guc_is_supported(guc)) 1172 return false; 1173 1174 return i915_modparams.enable_guc & ENABLE_GUC_SUBMISSION; 1175 } 1176 1177 void intel_guc_submission_init_early(struct intel_guc *guc) 1178 { 1179 guc->submission_supported = __guc_submission_support(guc); 1180 } 1181 1182 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 1183 #include "selftest_guc.c" 1184 #endif 1185