1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014 Intel Corporation 4 */ 5 6 #include <linux/circ_buf.h> 7 8 #include "gem/i915_gem_context.h" 9 #include "gt/gen8_engine_cs.h" 10 #include "gt/intel_breadcrumbs.h" 11 #include "gt/intel_context.h" 12 #include "gt/intel_engine_heartbeat.h" 13 #include "gt/intel_engine_pm.h" 14 #include "gt/intel_engine_regs.h" 15 #include "gt/intel_gpu_commands.h" 16 #include "gt/intel_gt.h" 17 #include "gt/intel_gt_clock_utils.h" 18 #include "gt/intel_gt_irq.h" 19 #include "gt/intel_gt_pm.h" 20 #include "gt/intel_gt_regs.h" 21 #include "gt/intel_gt_requests.h" 22 #include "gt/intel_lrc.h" 23 #include "gt/intel_lrc_reg.h" 24 #include "gt/intel_mocs.h" 25 #include "gt/intel_ring.h" 26 27 #include "intel_guc_ads.h" 28 #include "intel_guc_capture.h" 29 #include "intel_guc_submission.h" 30 31 #include "i915_drv.h" 32 #include "i915_trace.h" 33 34 /** 35 * DOC: GuC-based command submission 36 * 37 * The Scratch registers: 38 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes 39 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then 40 * triggers an interrupt on the GuC via another register write (0xC4C8). 41 * Firmware writes a success/fail code back to the action register after 42 * processes the request. The kernel driver polls waiting for this update and 43 * then proceeds. 44 * 45 * Command Transport buffers (CTBs): 46 * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host 47 * - G2H) are a message interface between the i915 and GuC. 48 * 49 * Context registration: 50 * Before a context can be submitted it must be registered with the GuC via a 51 * H2G. A unique guc_id is associated with each context. The context is either 52 * registered at request creation time (normal operation) or at submission time 53 * (abnormal operation, e.g. after a reset). 54 * 55 * Context submission: 56 * The i915 updates the LRC tail value in memory. The i915 must enable the 57 * scheduling of the context within the GuC for the GuC to actually consider it. 58 * Therefore, the first time a disabled context is submitted we use a schedule 59 * enable H2G, while follow up submissions are done via the context submit H2G, 60 * which informs the GuC that a previously enabled context has new work 61 * available. 62 * 63 * Context unpin: 64 * To unpin a context a H2G is used to disable scheduling. When the 65 * corresponding G2H returns indicating the scheduling disable operation has 66 * completed it is safe to unpin the context. While a disable is in flight it 67 * isn't safe to resubmit the context so a fence is used to stall all future 68 * requests of that context until the G2H is returned. 69 * 70 * Context deregistration: 71 * Before a context can be destroyed or if we steal its guc_id we must 72 * deregister the context with the GuC via H2G. If stealing the guc_id it isn't 73 * safe to submit anything to this guc_id until the deregister completes so a 74 * fence is used to stall all requests associated with this guc_id until the 75 * corresponding G2H returns indicating the guc_id has been deregistered. 76 * 77 * submission_state.guc_ids: 78 * Unique number associated with private GuC context data passed in during 79 * context registration / submission / deregistration. 64k available. Simple ida 80 * is used for allocation. 81 * 82 * Stealing guc_ids: 83 * If no guc_ids are available they can be stolen from another context at 84 * request creation time if that context is unpinned. If a guc_id can't be found 85 * we punt this problem to the user as we believe this is near impossible to hit 86 * during normal use cases. 87 * 88 * Locking: 89 * In the GuC submission code we have 3 basic spin locks which protect 90 * everything. Details about each below. 91 * 92 * sched_engine->lock 93 * This is the submission lock for all contexts that share an i915 schedule 94 * engine (sched_engine), thus only one of the contexts which share a 95 * sched_engine can be submitting at a time. Currently only one sched_engine is 96 * used for all of GuC submission but that could change in the future. 97 * 98 * guc->submission_state.lock 99 * Global lock for GuC submission state. Protects guc_ids and destroyed contexts 100 * list. 101 * 102 * ce->guc_state.lock 103 * Protects everything under ce->guc_state. Ensures that a context is in the 104 * correct state before issuing a H2G. e.g. We don't issue a schedule disable 105 * on a disabled context (bad idea), we don't issue a schedule enable when a 106 * schedule disable is in flight, etc... Also protects list of inflight requests 107 * on the context and the priority management state. Lock is individual to each 108 * context. 109 * 110 * Lock ordering rules: 111 * sched_engine->lock -> ce->guc_state.lock 112 * guc->submission_state.lock -> ce->guc_state.lock 113 * 114 * Reset races: 115 * When a full GT reset is triggered it is assumed that some G2H responses to 116 * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be 117 * fatal as we do certain operations upon receiving a G2H (e.g. destroy 118 * contexts, release guc_ids, etc...). When this occurs we can scrub the 119 * context state and cleanup appropriately, however this is quite racey. 120 * To avoid races, the reset code must disable submission before scrubbing for 121 * the missing G2H, while the submission code must check for submission being 122 * disabled and skip sending H2Gs and updating context states when it is. Both 123 * sides must also make sure to hold the relevant locks. 124 */ 125 126 /* GuC Virtual Engine */ 127 struct guc_virtual_engine { 128 struct intel_engine_cs base; 129 struct intel_context context; 130 }; 131 132 static struct intel_context * 133 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, 134 unsigned long flags); 135 136 static struct intel_context * 137 guc_create_parallel(struct intel_engine_cs **engines, 138 unsigned int num_siblings, 139 unsigned int width); 140 141 #define GUC_REQUEST_SIZE 64 /* bytes */ 142 143 /* 144 * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous 145 * per the GuC submission interface. A different allocation algorithm is used 146 * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to 147 * partition the guc_id space. We believe the number of multi-lrc contexts in 148 * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for 149 * multi-lrc. 150 */ 151 #define NUMBER_MULTI_LRC_GUC_ID(guc) \ 152 ((guc)->submission_state.num_guc_ids / 16) 153 154 /* 155 * Below is a set of functions which control the GuC scheduling state which 156 * require a lock. 157 */ 158 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER BIT(0) 159 #define SCHED_STATE_DESTROYED BIT(1) 160 #define SCHED_STATE_PENDING_DISABLE BIT(2) 161 #define SCHED_STATE_BANNED BIT(3) 162 #define SCHED_STATE_ENABLED BIT(4) 163 #define SCHED_STATE_PENDING_ENABLE BIT(5) 164 #define SCHED_STATE_REGISTERED BIT(6) 165 #define SCHED_STATE_POLICY_REQUIRED BIT(7) 166 #define SCHED_STATE_BLOCKED_SHIFT 8 167 #define SCHED_STATE_BLOCKED BIT(SCHED_STATE_BLOCKED_SHIFT) 168 #define SCHED_STATE_BLOCKED_MASK (0xfff << SCHED_STATE_BLOCKED_SHIFT) 169 170 static inline void init_sched_state(struct intel_context *ce) 171 { 172 lockdep_assert_held(&ce->guc_state.lock); 173 ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK; 174 } 175 176 __maybe_unused 177 static bool sched_state_is_init(struct intel_context *ce) 178 { 179 /* Kernel contexts can have SCHED_STATE_REGISTERED after suspend. */ 180 return !(ce->guc_state.sched_state & 181 ~(SCHED_STATE_BLOCKED_MASK | SCHED_STATE_REGISTERED)); 182 } 183 184 static inline bool 185 context_wait_for_deregister_to_register(struct intel_context *ce) 186 { 187 return ce->guc_state.sched_state & 188 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 189 } 190 191 static inline void 192 set_context_wait_for_deregister_to_register(struct intel_context *ce) 193 { 194 lockdep_assert_held(&ce->guc_state.lock); 195 ce->guc_state.sched_state |= 196 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 197 } 198 199 static inline void 200 clr_context_wait_for_deregister_to_register(struct intel_context *ce) 201 { 202 lockdep_assert_held(&ce->guc_state.lock); 203 ce->guc_state.sched_state &= 204 ~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 205 } 206 207 static inline bool 208 context_destroyed(struct intel_context *ce) 209 { 210 return ce->guc_state.sched_state & SCHED_STATE_DESTROYED; 211 } 212 213 static inline void 214 set_context_destroyed(struct intel_context *ce) 215 { 216 lockdep_assert_held(&ce->guc_state.lock); 217 ce->guc_state.sched_state |= SCHED_STATE_DESTROYED; 218 } 219 220 static inline bool context_pending_disable(struct intel_context *ce) 221 { 222 return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE; 223 } 224 225 static inline void set_context_pending_disable(struct intel_context *ce) 226 { 227 lockdep_assert_held(&ce->guc_state.lock); 228 ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE; 229 } 230 231 static inline void clr_context_pending_disable(struct intel_context *ce) 232 { 233 lockdep_assert_held(&ce->guc_state.lock); 234 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE; 235 } 236 237 static inline bool context_banned(struct intel_context *ce) 238 { 239 return ce->guc_state.sched_state & SCHED_STATE_BANNED; 240 } 241 242 static inline void set_context_banned(struct intel_context *ce) 243 { 244 lockdep_assert_held(&ce->guc_state.lock); 245 ce->guc_state.sched_state |= SCHED_STATE_BANNED; 246 } 247 248 static inline void clr_context_banned(struct intel_context *ce) 249 { 250 lockdep_assert_held(&ce->guc_state.lock); 251 ce->guc_state.sched_state &= ~SCHED_STATE_BANNED; 252 } 253 254 static inline bool context_enabled(struct intel_context *ce) 255 { 256 return ce->guc_state.sched_state & SCHED_STATE_ENABLED; 257 } 258 259 static inline void set_context_enabled(struct intel_context *ce) 260 { 261 lockdep_assert_held(&ce->guc_state.lock); 262 ce->guc_state.sched_state |= SCHED_STATE_ENABLED; 263 } 264 265 static inline void clr_context_enabled(struct intel_context *ce) 266 { 267 lockdep_assert_held(&ce->guc_state.lock); 268 ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED; 269 } 270 271 static inline bool context_pending_enable(struct intel_context *ce) 272 { 273 return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE; 274 } 275 276 static inline void set_context_pending_enable(struct intel_context *ce) 277 { 278 lockdep_assert_held(&ce->guc_state.lock); 279 ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE; 280 } 281 282 static inline void clr_context_pending_enable(struct intel_context *ce) 283 { 284 lockdep_assert_held(&ce->guc_state.lock); 285 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE; 286 } 287 288 static inline bool context_registered(struct intel_context *ce) 289 { 290 return ce->guc_state.sched_state & SCHED_STATE_REGISTERED; 291 } 292 293 static inline void set_context_registered(struct intel_context *ce) 294 { 295 lockdep_assert_held(&ce->guc_state.lock); 296 ce->guc_state.sched_state |= SCHED_STATE_REGISTERED; 297 } 298 299 static inline void clr_context_registered(struct intel_context *ce) 300 { 301 lockdep_assert_held(&ce->guc_state.lock); 302 ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED; 303 } 304 305 static inline bool context_policy_required(struct intel_context *ce) 306 { 307 return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED; 308 } 309 310 static inline void set_context_policy_required(struct intel_context *ce) 311 { 312 lockdep_assert_held(&ce->guc_state.lock); 313 ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED; 314 } 315 316 static inline void clr_context_policy_required(struct intel_context *ce) 317 { 318 lockdep_assert_held(&ce->guc_state.lock); 319 ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED; 320 } 321 322 static inline u32 context_blocked(struct intel_context *ce) 323 { 324 return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >> 325 SCHED_STATE_BLOCKED_SHIFT; 326 } 327 328 static inline void incr_context_blocked(struct intel_context *ce) 329 { 330 lockdep_assert_held(&ce->guc_state.lock); 331 332 ce->guc_state.sched_state += SCHED_STATE_BLOCKED; 333 334 GEM_BUG_ON(!context_blocked(ce)); /* Overflow check */ 335 } 336 337 static inline void decr_context_blocked(struct intel_context *ce) 338 { 339 lockdep_assert_held(&ce->guc_state.lock); 340 341 GEM_BUG_ON(!context_blocked(ce)); /* Underflow check */ 342 343 ce->guc_state.sched_state -= SCHED_STATE_BLOCKED; 344 } 345 346 static inline bool context_has_committed_requests(struct intel_context *ce) 347 { 348 return !!ce->guc_state.number_committed_requests; 349 } 350 351 static inline void incr_context_committed_requests(struct intel_context *ce) 352 { 353 lockdep_assert_held(&ce->guc_state.lock); 354 ++ce->guc_state.number_committed_requests; 355 GEM_BUG_ON(ce->guc_state.number_committed_requests < 0); 356 } 357 358 static inline void decr_context_committed_requests(struct intel_context *ce) 359 { 360 lockdep_assert_held(&ce->guc_state.lock); 361 --ce->guc_state.number_committed_requests; 362 GEM_BUG_ON(ce->guc_state.number_committed_requests < 0); 363 } 364 365 static struct intel_context * 366 request_to_scheduling_context(struct i915_request *rq) 367 { 368 return intel_context_to_parent(rq->context); 369 } 370 371 static inline bool context_guc_id_invalid(struct intel_context *ce) 372 { 373 return ce->guc_id.id == GUC_INVALID_CONTEXT_ID; 374 } 375 376 static inline void set_context_guc_id_invalid(struct intel_context *ce) 377 { 378 ce->guc_id.id = GUC_INVALID_CONTEXT_ID; 379 } 380 381 static inline struct intel_guc *ce_to_guc(struct intel_context *ce) 382 { 383 return &ce->engine->gt->uc.guc; 384 } 385 386 static inline struct i915_priolist *to_priolist(struct rb_node *rb) 387 { 388 return rb_entry(rb, struct i915_priolist, node); 389 } 390 391 /* 392 * When using multi-lrc submission a scratch memory area is reserved in the 393 * parent's context state for the process descriptor, work queue, and handshake 394 * between the parent + children contexts to insert safe preemption points 395 * between each of the BBs. Currently the scratch area is sized to a page. 396 * 397 * The layout of this scratch area is below: 398 * 0 guc_process_desc 399 * + sizeof(struct guc_process_desc) child go 400 * + CACHELINE_BYTES child join[0] 401 * ... 402 * + CACHELINE_BYTES child join[n - 1] 403 * ... unused 404 * PARENT_SCRATCH_SIZE / 2 work queue start 405 * ... work queue 406 * PARENT_SCRATCH_SIZE - 1 work queue end 407 */ 408 #define WQ_SIZE (PARENT_SCRATCH_SIZE / 2) 409 #define WQ_OFFSET (PARENT_SCRATCH_SIZE - WQ_SIZE) 410 411 struct sync_semaphore { 412 u32 semaphore; 413 u8 unused[CACHELINE_BYTES - sizeof(u32)]; 414 }; 415 416 struct parent_scratch { 417 union guc_descs { 418 struct guc_sched_wq_desc wq_desc; 419 struct guc_process_desc_v69 pdesc; 420 } descs; 421 422 struct sync_semaphore go; 423 struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1]; 424 425 u8 unused[WQ_OFFSET - sizeof(union guc_descs) - 426 sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)]; 427 428 u32 wq[WQ_SIZE / sizeof(u32)]; 429 }; 430 431 static u32 __get_parent_scratch_offset(struct intel_context *ce) 432 { 433 GEM_BUG_ON(!ce->parallel.guc.parent_page); 434 435 return ce->parallel.guc.parent_page * PAGE_SIZE; 436 } 437 438 static u32 __get_wq_offset(struct intel_context *ce) 439 { 440 BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET); 441 442 return __get_parent_scratch_offset(ce) + WQ_OFFSET; 443 } 444 445 static struct parent_scratch * 446 __get_parent_scratch(struct intel_context *ce) 447 { 448 BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE); 449 BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES); 450 451 /* 452 * Need to subtract LRC_STATE_OFFSET here as the 453 * parallel.guc.parent_page is the offset into ce->state while 454 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET. 455 */ 456 return (struct parent_scratch *) 457 (ce->lrc_reg_state + 458 ((__get_parent_scratch_offset(ce) - 459 LRC_STATE_OFFSET) / sizeof(u32))); 460 } 461 462 static struct guc_process_desc_v69 * 463 __get_process_desc_v69(struct intel_context *ce) 464 { 465 struct parent_scratch *ps = __get_parent_scratch(ce); 466 467 return &ps->descs.pdesc; 468 } 469 470 static struct guc_sched_wq_desc * 471 __get_wq_desc_v70(struct intel_context *ce) 472 { 473 struct parent_scratch *ps = __get_parent_scratch(ce); 474 475 return &ps->descs.wq_desc; 476 } 477 478 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size) 479 { 480 /* 481 * Check for space in work queue. Caching a value of head pointer in 482 * intel_context structure in order reduce the number accesses to shared 483 * GPU memory which may be across a PCIe bus. 484 */ 485 #define AVAILABLE_SPACE \ 486 CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE) 487 if (wqi_size > AVAILABLE_SPACE) { 488 ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head); 489 490 if (wqi_size > AVAILABLE_SPACE) 491 return NULL; 492 } 493 #undef AVAILABLE_SPACE 494 495 return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)]; 496 } 497 498 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id) 499 { 500 struct intel_context *ce = xa_load(&guc->context_lookup, id); 501 502 GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID); 503 504 return ce; 505 } 506 507 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index) 508 { 509 struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69; 510 511 if (!base) 512 return NULL; 513 514 GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID); 515 516 return &base[index]; 517 } 518 519 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc) 520 { 521 u32 size; 522 int ret; 523 524 size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) * 525 GUC_MAX_CONTEXT_ID); 526 ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69, 527 (void **)&guc->lrc_desc_pool_vaddr_v69); 528 if (ret) 529 return ret; 530 531 return 0; 532 } 533 534 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc) 535 { 536 if (!guc->lrc_desc_pool_vaddr_v69) 537 return; 538 539 guc->lrc_desc_pool_vaddr_v69 = NULL; 540 i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP); 541 } 542 543 static inline bool guc_submission_initialized(struct intel_guc *guc) 544 { 545 return guc->submission_initialized; 546 } 547 548 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id) 549 { 550 struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id); 551 552 if (desc) 553 memset(desc, 0, sizeof(*desc)); 554 } 555 556 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id) 557 { 558 return __get_context(guc, id); 559 } 560 561 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id, 562 struct intel_context *ce) 563 { 564 unsigned long flags; 565 566 /* 567 * xarray API doesn't have xa_save_irqsave wrapper, so calling the 568 * lower level functions directly. 569 */ 570 xa_lock_irqsave(&guc->context_lookup, flags); 571 __xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC); 572 xa_unlock_irqrestore(&guc->context_lookup, flags); 573 } 574 575 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id) 576 { 577 unsigned long flags; 578 579 if (unlikely(!guc_submission_initialized(guc))) 580 return; 581 582 _reset_lrc_desc_v69(guc, id); 583 584 /* 585 * xarray API doesn't have xa_erase_irqsave wrapper, so calling 586 * the lower level functions directly. 587 */ 588 xa_lock_irqsave(&guc->context_lookup, flags); 589 __xa_erase(&guc->context_lookup, id); 590 xa_unlock_irqrestore(&guc->context_lookup, flags); 591 } 592 593 static void decr_outstanding_submission_g2h(struct intel_guc *guc) 594 { 595 if (atomic_dec_and_test(&guc->outstanding_submission_g2h)) 596 wake_up_all(&guc->ct.wq); 597 } 598 599 static int guc_submission_send_busy_loop(struct intel_guc *guc, 600 const u32 *action, 601 u32 len, 602 u32 g2h_len_dw, 603 bool loop) 604 { 605 /* 606 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0), 607 * so we don't handle the case where we don't get a reply because we 608 * aborted the send due to the channel being busy. 609 */ 610 GEM_BUG_ON(g2h_len_dw && !loop); 611 612 if (g2h_len_dw) 613 atomic_inc(&guc->outstanding_submission_g2h); 614 615 return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop); 616 } 617 618 int intel_guc_wait_for_pending_msg(struct intel_guc *guc, 619 atomic_t *wait_var, 620 bool interruptible, 621 long timeout) 622 { 623 const int state = interruptible ? 624 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 625 DEFINE_WAIT(wait); 626 627 might_sleep(); 628 GEM_BUG_ON(timeout < 0); 629 630 if (!atomic_read(wait_var)) 631 return 0; 632 633 if (!timeout) 634 return -ETIME; 635 636 for (;;) { 637 prepare_to_wait(&guc->ct.wq, &wait, state); 638 639 if (!atomic_read(wait_var)) 640 break; 641 642 if (signal_pending_state(state, current)) { 643 timeout = -EINTR; 644 break; 645 } 646 647 if (!timeout) { 648 timeout = -ETIME; 649 break; 650 } 651 652 timeout = io_schedule_timeout(timeout); 653 } 654 finish_wait(&guc->ct.wq, &wait); 655 656 return (timeout < 0) ? timeout : 0; 657 } 658 659 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout) 660 { 661 if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc)) 662 return 0; 663 664 return intel_guc_wait_for_pending_msg(guc, 665 &guc->outstanding_submission_g2h, 666 true, timeout); 667 } 668 669 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop); 670 static int try_context_registration(struct intel_context *ce, bool loop); 671 672 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq) 673 { 674 int err = 0; 675 struct intel_context *ce = request_to_scheduling_context(rq); 676 u32 action[3]; 677 int len = 0; 678 u32 g2h_len_dw = 0; 679 bool enabled; 680 681 lockdep_assert_held(&rq->engine->sched_engine->lock); 682 683 /* 684 * Corner case where requests were sitting in the priority list or a 685 * request resubmitted after the context was banned. 686 */ 687 if (unlikely(!intel_context_is_schedulable(ce))) { 688 i915_request_put(i915_request_mark_eio(rq)); 689 intel_engine_signal_breadcrumbs(ce->engine); 690 return 0; 691 } 692 693 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); 694 GEM_BUG_ON(context_guc_id_invalid(ce)); 695 696 if (context_policy_required(ce)) { 697 err = guc_context_policy_init_v70(ce, false); 698 if (err) 699 return err; 700 } 701 702 spin_lock(&ce->guc_state.lock); 703 704 /* 705 * The request / context will be run on the hardware when scheduling 706 * gets enabled in the unblock. For multi-lrc we still submit the 707 * context to move the LRC tails. 708 */ 709 if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce))) 710 goto out; 711 712 enabled = context_enabled(ce) || context_blocked(ce); 713 714 if (!enabled) { 715 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET; 716 action[len++] = ce->guc_id.id; 717 action[len++] = GUC_CONTEXT_ENABLE; 718 set_context_pending_enable(ce); 719 intel_context_get(ce); 720 g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET; 721 } else { 722 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT; 723 action[len++] = ce->guc_id.id; 724 } 725 726 err = intel_guc_send_nb(guc, action, len, g2h_len_dw); 727 if (!enabled && !err) { 728 trace_intel_context_sched_enable(ce); 729 atomic_inc(&guc->outstanding_submission_g2h); 730 set_context_enabled(ce); 731 732 /* 733 * Without multi-lrc KMD does the submission step (moving the 734 * lrc tail) so enabling scheduling is sufficient to submit the 735 * context. This isn't the case in multi-lrc submission as the 736 * GuC needs to move the tails, hence the need for another H2G 737 * to submit a multi-lrc context after enabling scheduling. 738 */ 739 if (intel_context_is_parent(ce)) { 740 action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT; 741 err = intel_guc_send_nb(guc, action, len - 1, 0); 742 } 743 } else if (!enabled) { 744 clr_context_pending_enable(ce); 745 intel_context_put(ce); 746 } 747 if (likely(!err)) 748 trace_i915_request_guc_submit(rq); 749 750 out: 751 spin_unlock(&ce->guc_state.lock); 752 return err; 753 } 754 755 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq) 756 { 757 int ret = __guc_add_request(guc, rq); 758 759 if (unlikely(ret == -EBUSY)) { 760 guc->stalled_request = rq; 761 guc->submission_stall_reason = STALL_ADD_REQUEST; 762 } 763 764 return ret; 765 } 766 767 static inline void guc_set_lrc_tail(struct i915_request *rq) 768 { 769 rq->context->lrc_reg_state[CTX_RING_TAIL] = 770 intel_ring_set_tail(rq->ring, rq->tail); 771 } 772 773 static inline int rq_prio(const struct i915_request *rq) 774 { 775 return rq->sched.attr.priority; 776 } 777 778 static bool is_multi_lrc_rq(struct i915_request *rq) 779 { 780 return intel_context_is_parallel(rq->context); 781 } 782 783 static bool can_merge_rq(struct i915_request *rq, 784 struct i915_request *last) 785 { 786 return request_to_scheduling_context(rq) == 787 request_to_scheduling_context(last); 788 } 789 790 static u32 wq_space_until_wrap(struct intel_context *ce) 791 { 792 return (WQ_SIZE - ce->parallel.guc.wqi_tail); 793 } 794 795 static void write_wqi(struct intel_context *ce, u32 wqi_size) 796 { 797 BUILD_BUG_ON(!is_power_of_2(WQ_SIZE)); 798 799 /* 800 * Ensure WQI are visible before updating tail 801 */ 802 intel_guc_write_barrier(ce_to_guc(ce)); 803 804 ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) & 805 (WQ_SIZE - 1); 806 WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail); 807 } 808 809 static int guc_wq_noop_append(struct intel_context *ce) 810 { 811 u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce)); 812 u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1; 813 814 if (!wqi) 815 return -EBUSY; 816 817 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); 818 819 *wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) | 820 FIELD_PREP(WQ_LEN_MASK, len_dw); 821 ce->parallel.guc.wqi_tail = 0; 822 823 return 0; 824 } 825 826 static int __guc_wq_item_append(struct i915_request *rq) 827 { 828 struct intel_context *ce = request_to_scheduling_context(rq); 829 struct intel_context *child; 830 unsigned int wqi_size = (ce->parallel.number_children + 4) * 831 sizeof(u32); 832 u32 *wqi; 833 u32 len_dw = (wqi_size / sizeof(u32)) - 1; 834 int ret; 835 836 /* Ensure context is in correct state updating work queue */ 837 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); 838 GEM_BUG_ON(context_guc_id_invalid(ce)); 839 GEM_BUG_ON(context_wait_for_deregister_to_register(ce)); 840 GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)); 841 842 /* Insert NOOP if this work queue item will wrap the tail pointer. */ 843 if (wqi_size > wq_space_until_wrap(ce)) { 844 ret = guc_wq_noop_append(ce); 845 if (ret) 846 return ret; 847 } 848 849 wqi = get_wq_pointer(ce, wqi_size); 850 if (!wqi) 851 return -EBUSY; 852 853 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); 854 855 *wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) | 856 FIELD_PREP(WQ_LEN_MASK, len_dw); 857 *wqi++ = ce->lrc.lrca; 858 *wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) | 859 FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64)); 860 *wqi++ = 0; /* fence_id */ 861 for_each_child(ce, child) 862 *wqi++ = child->ring->tail / sizeof(u64); 863 864 write_wqi(ce, wqi_size); 865 866 return 0; 867 } 868 869 static int guc_wq_item_append(struct intel_guc *guc, 870 struct i915_request *rq) 871 { 872 struct intel_context *ce = request_to_scheduling_context(rq); 873 int ret; 874 875 if (unlikely(!intel_context_is_schedulable(ce))) 876 return 0; 877 878 ret = __guc_wq_item_append(rq); 879 if (unlikely(ret == -EBUSY)) { 880 guc->stalled_request = rq; 881 guc->submission_stall_reason = STALL_MOVE_LRC_TAIL; 882 } 883 884 return ret; 885 } 886 887 static bool multi_lrc_submit(struct i915_request *rq) 888 { 889 struct intel_context *ce = request_to_scheduling_context(rq); 890 891 intel_ring_set_tail(rq->ring, rq->tail); 892 893 /* 894 * We expect the front end (execbuf IOCTL) to set this flag on the last 895 * request generated from a multi-BB submission. This indicates to the 896 * backend (GuC interface) that we should submit this context thus 897 * submitting all the requests generated in parallel. 898 */ 899 return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) || 900 !intel_context_is_schedulable(ce); 901 } 902 903 static int guc_dequeue_one_context(struct intel_guc *guc) 904 { 905 struct i915_sched_engine * const sched_engine = guc->sched_engine; 906 struct i915_request *last = NULL; 907 bool submit = false; 908 struct rb_node *rb; 909 int ret; 910 911 lockdep_assert_held(&sched_engine->lock); 912 913 if (guc->stalled_request) { 914 submit = true; 915 last = guc->stalled_request; 916 917 switch (guc->submission_stall_reason) { 918 case STALL_REGISTER_CONTEXT: 919 goto register_context; 920 case STALL_MOVE_LRC_TAIL: 921 goto move_lrc_tail; 922 case STALL_ADD_REQUEST: 923 goto add_request; 924 default: 925 MISSING_CASE(guc->submission_stall_reason); 926 } 927 } 928 929 while ((rb = rb_first_cached(&sched_engine->queue))) { 930 struct i915_priolist *p = to_priolist(rb); 931 struct i915_request *rq, *rn; 932 933 priolist_for_each_request_consume(rq, rn, p) { 934 if (last && !can_merge_rq(rq, last)) 935 goto register_context; 936 937 list_del_init(&rq->sched.link); 938 939 __i915_request_submit(rq); 940 941 trace_i915_request_in(rq, 0); 942 last = rq; 943 944 if (is_multi_lrc_rq(rq)) { 945 /* 946 * We need to coalesce all multi-lrc requests in 947 * a relationship into a single H2G. We are 948 * guaranteed that all of these requests will be 949 * submitted sequentially. 950 */ 951 if (multi_lrc_submit(rq)) { 952 submit = true; 953 goto register_context; 954 } 955 } else { 956 submit = true; 957 } 958 } 959 960 rb_erase_cached(&p->node, &sched_engine->queue); 961 i915_priolist_free(p); 962 } 963 964 register_context: 965 if (submit) { 966 struct intel_context *ce = request_to_scheduling_context(last); 967 968 if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) && 969 intel_context_is_schedulable(ce))) { 970 ret = try_context_registration(ce, false); 971 if (unlikely(ret == -EPIPE)) { 972 goto deadlk; 973 } else if (ret == -EBUSY) { 974 guc->stalled_request = last; 975 guc->submission_stall_reason = 976 STALL_REGISTER_CONTEXT; 977 goto schedule_tasklet; 978 } else if (ret != 0) { 979 GEM_WARN_ON(ret); /* Unexpected */ 980 goto deadlk; 981 } 982 } 983 984 move_lrc_tail: 985 if (is_multi_lrc_rq(last)) { 986 ret = guc_wq_item_append(guc, last); 987 if (ret == -EBUSY) { 988 goto schedule_tasklet; 989 } else if (ret != 0) { 990 GEM_WARN_ON(ret); /* Unexpected */ 991 goto deadlk; 992 } 993 } else { 994 guc_set_lrc_tail(last); 995 } 996 997 add_request: 998 ret = guc_add_request(guc, last); 999 if (unlikely(ret == -EPIPE)) { 1000 goto deadlk; 1001 } else if (ret == -EBUSY) { 1002 goto schedule_tasklet; 1003 } else if (ret != 0) { 1004 GEM_WARN_ON(ret); /* Unexpected */ 1005 goto deadlk; 1006 } 1007 } 1008 1009 guc->stalled_request = NULL; 1010 guc->submission_stall_reason = STALL_NONE; 1011 return submit; 1012 1013 deadlk: 1014 sched_engine->tasklet.callback = NULL; 1015 tasklet_disable_nosync(&sched_engine->tasklet); 1016 return false; 1017 1018 schedule_tasklet: 1019 tasklet_schedule(&sched_engine->tasklet); 1020 return false; 1021 } 1022 1023 static void guc_submission_tasklet(struct tasklet_struct *t) 1024 { 1025 struct i915_sched_engine *sched_engine = 1026 from_tasklet(sched_engine, t, tasklet); 1027 unsigned long flags; 1028 bool loop; 1029 1030 spin_lock_irqsave(&sched_engine->lock, flags); 1031 1032 do { 1033 loop = guc_dequeue_one_context(sched_engine->private_data); 1034 } while (loop); 1035 1036 i915_sched_engine_reset_on_empty(sched_engine); 1037 1038 spin_unlock_irqrestore(&sched_engine->lock, flags); 1039 } 1040 1041 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir) 1042 { 1043 if (iir & GT_RENDER_USER_INTERRUPT) 1044 intel_engine_signal_breadcrumbs(engine); 1045 } 1046 1047 static void __guc_context_destroy(struct intel_context *ce); 1048 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce); 1049 static void guc_signal_context_fence(struct intel_context *ce); 1050 static void guc_cancel_context_requests(struct intel_context *ce); 1051 static void guc_blocked_fence_complete(struct intel_context *ce); 1052 1053 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc) 1054 { 1055 struct intel_context *ce; 1056 unsigned long index, flags; 1057 bool pending_disable, pending_enable, deregister, destroyed, banned; 1058 1059 xa_lock_irqsave(&guc->context_lookup, flags); 1060 xa_for_each(&guc->context_lookup, index, ce) { 1061 /* 1062 * Corner case where the ref count on the object is zero but and 1063 * deregister G2H was lost. In this case we don't touch the ref 1064 * count and finish the destroy of the context. 1065 */ 1066 bool do_put = kref_get_unless_zero(&ce->ref); 1067 1068 xa_unlock(&guc->context_lookup); 1069 1070 spin_lock(&ce->guc_state.lock); 1071 1072 /* 1073 * Once we are at this point submission_disabled() is guaranteed 1074 * to be visible to all callers who set the below flags (see above 1075 * flush and flushes in reset_prepare). If submission_disabled() 1076 * is set, the caller shouldn't set these flags. 1077 */ 1078 1079 destroyed = context_destroyed(ce); 1080 pending_enable = context_pending_enable(ce); 1081 pending_disable = context_pending_disable(ce); 1082 deregister = context_wait_for_deregister_to_register(ce); 1083 banned = context_banned(ce); 1084 init_sched_state(ce); 1085 1086 spin_unlock(&ce->guc_state.lock); 1087 1088 if (pending_enable || destroyed || deregister) { 1089 decr_outstanding_submission_g2h(guc); 1090 if (deregister) 1091 guc_signal_context_fence(ce); 1092 if (destroyed) { 1093 intel_gt_pm_put_async(guc_to_gt(guc)); 1094 release_guc_id(guc, ce); 1095 __guc_context_destroy(ce); 1096 } 1097 if (pending_enable || deregister) 1098 intel_context_put(ce); 1099 } 1100 1101 /* Not mutualy exclusive with above if statement. */ 1102 if (pending_disable) { 1103 guc_signal_context_fence(ce); 1104 if (banned) { 1105 guc_cancel_context_requests(ce); 1106 intel_engine_signal_breadcrumbs(ce->engine); 1107 } 1108 intel_context_sched_disable_unpin(ce); 1109 decr_outstanding_submission_g2h(guc); 1110 1111 spin_lock(&ce->guc_state.lock); 1112 guc_blocked_fence_complete(ce); 1113 spin_unlock(&ce->guc_state.lock); 1114 1115 intel_context_put(ce); 1116 } 1117 1118 if (do_put) 1119 intel_context_put(ce); 1120 xa_lock(&guc->context_lookup); 1121 } 1122 xa_unlock_irqrestore(&guc->context_lookup, flags); 1123 } 1124 1125 /* 1126 * GuC stores busyness stats for each engine at context in/out boundaries. A 1127 * context 'in' logs execution start time, 'out' adds in -> out delta to total. 1128 * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with 1129 * GuC. 1130 * 1131 * __i915_pmu_event_read samples engine busyness. When sampling, if context id 1132 * is valid (!= ~0) and start is non-zero, the engine is considered to be 1133 * active. For an active engine total busyness = total + (now - start), where 1134 * 'now' is the time at which the busyness is sampled. For inactive engine, 1135 * total busyness = total. 1136 * 1137 * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain. 1138 * 1139 * The start and total values provided by GuC are 32 bits and wrap around in a 1140 * few minutes. Since perf pmu provides busyness as 64 bit monotonically 1141 * increasing ns values, there is a need for this implementation to account for 1142 * overflows and extend the GuC provided values to 64 bits before returning 1143 * busyness to the user. In order to do that, a worker runs periodically at 1144 * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in 1145 * 27 seconds for a gt clock frequency of 19.2 MHz). 1146 */ 1147 1148 #define WRAP_TIME_CLKS U32_MAX 1149 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3) 1150 1151 static void 1152 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start) 1153 { 1154 u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); 1155 u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp); 1156 1157 if (new_start == lower_32_bits(*prev_start)) 1158 return; 1159 1160 /* 1161 * When gt is unparked, we update the gt timestamp and start the ping 1162 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt 1163 * is unparked, all switched in contexts will have a start time that is 1164 * within +/- POLL_TIME_CLKS of the most recent gt_stamp. 1165 * 1166 * If neither gt_stamp nor new_start has rolled over, then the 1167 * gt_stamp_hi does not need to be adjusted, however if one of them has 1168 * rolled over, we need to adjust gt_stamp_hi accordingly. 1169 * 1170 * The below conditions address the cases of new_start rollover and 1171 * gt_stamp_last rollover respectively. 1172 */ 1173 if (new_start < gt_stamp_last && 1174 (new_start - gt_stamp_last) <= POLL_TIME_CLKS) 1175 gt_stamp_hi++; 1176 1177 if (new_start > gt_stamp_last && 1178 (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi) 1179 gt_stamp_hi--; 1180 1181 *prev_start = ((u64)gt_stamp_hi << 32) | new_start; 1182 } 1183 1184 #define record_read(map_, field_) \ 1185 iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_) 1186 1187 /* 1188 * GuC updates shared memory and KMD reads it. Since this is not synchronized, 1189 * we run into a race where the value read is inconsistent. Sometimes the 1190 * inconsistency is in reading the upper MSB bytes of the last_in value when 1191 * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper 1192 * 24 bits are zero. Since these are non-zero values, it is non-trivial to 1193 * determine validity of these values. Instead we read the values multiple times 1194 * until they are consistent. In test runs, 3 attempts results in consistent 1195 * values. The upper bound is set to 6 attempts and may need to be tuned as per 1196 * any new occurences. 1197 */ 1198 static void __get_engine_usage_record(struct intel_engine_cs *engine, 1199 u32 *last_in, u32 *id, u32 *total) 1200 { 1201 struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine); 1202 int i = 0; 1203 1204 do { 1205 *last_in = record_read(&rec_map, last_switch_in_stamp); 1206 *id = record_read(&rec_map, current_context_index); 1207 *total = record_read(&rec_map, total_runtime); 1208 1209 if (record_read(&rec_map, last_switch_in_stamp) == *last_in && 1210 record_read(&rec_map, current_context_index) == *id && 1211 record_read(&rec_map, total_runtime) == *total) 1212 break; 1213 } while (++i < 6); 1214 } 1215 1216 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine) 1217 { 1218 struct intel_engine_guc_stats *stats = &engine->stats.guc; 1219 struct intel_guc *guc = &engine->gt->uc.guc; 1220 u32 last_switch, ctx_id, total; 1221 1222 lockdep_assert_held(&guc->timestamp.lock); 1223 1224 __get_engine_usage_record(engine, &last_switch, &ctx_id, &total); 1225 1226 stats->running = ctx_id != ~0U && last_switch; 1227 if (stats->running) 1228 __extend_last_switch(guc, &stats->start_gt_clk, last_switch); 1229 1230 /* 1231 * Instead of adjusting the total for overflow, just add the 1232 * difference from previous sample stats->total_gt_clks 1233 */ 1234 if (total && total != ~0U) { 1235 stats->total_gt_clks += (u32)(total - stats->prev_total); 1236 stats->prev_total = total; 1237 } 1238 } 1239 1240 static u32 gpm_timestamp_shift(struct intel_gt *gt) 1241 { 1242 intel_wakeref_t wakeref; 1243 u32 reg, shift; 1244 1245 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 1246 reg = intel_uncore_read(gt->uncore, RPM_CONFIG0); 1247 1248 shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >> 1249 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT; 1250 1251 return 3 - shift; 1252 } 1253 1254 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now) 1255 { 1256 struct intel_gt *gt = guc_to_gt(guc); 1257 u32 gt_stamp_lo, gt_stamp_hi; 1258 u64 gpm_ts; 1259 1260 lockdep_assert_held(&guc->timestamp.lock); 1261 1262 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); 1263 gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0, 1264 MISC_STATUS1) >> guc->timestamp.shift; 1265 gt_stamp_lo = lower_32_bits(gpm_ts); 1266 *now = ktime_get(); 1267 1268 if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp)) 1269 gt_stamp_hi++; 1270 1271 guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo; 1272 } 1273 1274 /* 1275 * Unlike the execlist mode of submission total and active times are in terms of 1276 * gt clocks. The *now parameter is retained to return the cpu time at which the 1277 * busyness was sampled. 1278 */ 1279 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now) 1280 { 1281 struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc; 1282 struct i915_gpu_error *gpu_error = &engine->i915->gpu_error; 1283 struct intel_gt *gt = engine->gt; 1284 struct intel_guc *guc = >->uc.guc; 1285 u64 total, gt_stamp_saved; 1286 unsigned long flags; 1287 u32 reset_count; 1288 bool in_reset; 1289 1290 spin_lock_irqsave(&guc->timestamp.lock, flags); 1291 1292 /* 1293 * If a reset happened, we risk reading partially updated engine 1294 * busyness from GuC, so we just use the driver stored copy of busyness. 1295 * Synchronize with gt reset using reset_count and the 1296 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count 1297 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is 1298 * usable by checking the flag afterwards. 1299 */ 1300 reset_count = i915_reset_count(gpu_error); 1301 in_reset = test_bit(I915_RESET_BACKOFF, >->reset.flags); 1302 1303 *now = ktime_get(); 1304 1305 /* 1306 * The active busyness depends on start_gt_clk and gt_stamp. 1307 * gt_stamp is updated by i915 only when gt is awake and the 1308 * start_gt_clk is derived from GuC state. To get a consistent 1309 * view of activity, we query the GuC state only if gt is awake. 1310 */ 1311 if (!in_reset && intel_gt_pm_get_if_awake(gt)) { 1312 stats_saved = *stats; 1313 gt_stamp_saved = guc->timestamp.gt_stamp; 1314 /* 1315 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp - 1316 * start_gt_clk' calculation below for active engines. 1317 */ 1318 guc_update_engine_gt_clks(engine); 1319 guc_update_pm_timestamp(guc, now); 1320 intel_gt_pm_put_async(gt); 1321 if (i915_reset_count(gpu_error) != reset_count) { 1322 *stats = stats_saved; 1323 guc->timestamp.gt_stamp = gt_stamp_saved; 1324 } 1325 } 1326 1327 total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks); 1328 if (stats->running) { 1329 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk; 1330 1331 total += intel_gt_clock_interval_to_ns(gt, clk); 1332 } 1333 1334 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1335 1336 return ns_to_ktime(total); 1337 } 1338 1339 static void __reset_guc_busyness_stats(struct intel_guc *guc) 1340 { 1341 struct intel_gt *gt = guc_to_gt(guc); 1342 struct intel_engine_cs *engine; 1343 enum intel_engine_id id; 1344 unsigned long flags; 1345 ktime_t unused; 1346 1347 cancel_delayed_work_sync(&guc->timestamp.work); 1348 1349 spin_lock_irqsave(&guc->timestamp.lock, flags); 1350 1351 guc_update_pm_timestamp(guc, &unused); 1352 for_each_engine(engine, gt, id) { 1353 guc_update_engine_gt_clks(engine); 1354 engine->stats.guc.prev_total = 0; 1355 } 1356 1357 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1358 } 1359 1360 static void __update_guc_busyness_stats(struct intel_guc *guc) 1361 { 1362 struct intel_gt *gt = guc_to_gt(guc); 1363 struct intel_engine_cs *engine; 1364 enum intel_engine_id id; 1365 unsigned long flags; 1366 ktime_t unused; 1367 1368 guc->timestamp.last_stat_jiffies = jiffies; 1369 1370 spin_lock_irqsave(&guc->timestamp.lock, flags); 1371 1372 guc_update_pm_timestamp(guc, &unused); 1373 for_each_engine(engine, gt, id) 1374 guc_update_engine_gt_clks(engine); 1375 1376 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1377 } 1378 1379 static void guc_timestamp_ping(struct work_struct *wrk) 1380 { 1381 struct intel_guc *guc = container_of(wrk, typeof(*guc), 1382 timestamp.work.work); 1383 struct intel_uc *uc = container_of(guc, typeof(*uc), guc); 1384 struct intel_gt *gt = guc_to_gt(guc); 1385 intel_wakeref_t wakeref; 1386 int srcu, ret; 1387 1388 /* 1389 * Synchronize with gt reset to make sure the worker does not 1390 * corrupt the engine/guc stats. 1391 */ 1392 ret = intel_gt_reset_trylock(gt, &srcu); 1393 if (ret) 1394 return; 1395 1396 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) 1397 __update_guc_busyness_stats(guc); 1398 1399 intel_gt_reset_unlock(gt, srcu); 1400 1401 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, 1402 guc->timestamp.ping_delay); 1403 } 1404 1405 static int guc_action_enable_usage_stats(struct intel_guc *guc) 1406 { 1407 u32 offset = intel_guc_engine_usage_offset(guc); 1408 u32 action[] = { 1409 INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF, 1410 offset, 1411 0, 1412 }; 1413 1414 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 1415 } 1416 1417 static void guc_init_engine_stats(struct intel_guc *guc) 1418 { 1419 struct intel_gt *gt = guc_to_gt(guc); 1420 intel_wakeref_t wakeref; 1421 1422 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, 1423 guc->timestamp.ping_delay); 1424 1425 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) { 1426 int ret = guc_action_enable_usage_stats(guc); 1427 1428 if (ret) 1429 drm_err(>->i915->drm, 1430 "Failed to enable usage stats: %d!\n", ret); 1431 } 1432 } 1433 1434 void intel_guc_busyness_park(struct intel_gt *gt) 1435 { 1436 struct intel_guc *guc = >->uc.guc; 1437 1438 if (!guc_submission_initialized(guc)) 1439 return; 1440 1441 /* 1442 * There is a race with suspend flow where the worker runs after suspend 1443 * and causes an unclaimed register access warning. Cancel the worker 1444 * synchronously here. 1445 */ 1446 cancel_delayed_work_sync(&guc->timestamp.work); 1447 1448 /* 1449 * Before parking, we should sample engine busyness stats if we need to. 1450 * We can skip it if we are less than half a ping from the last time we 1451 * sampled the busyness stats. 1452 */ 1453 if (guc->timestamp.last_stat_jiffies && 1454 !time_after(jiffies, guc->timestamp.last_stat_jiffies + 1455 (guc->timestamp.ping_delay / 2))) 1456 return; 1457 1458 __update_guc_busyness_stats(guc); 1459 } 1460 1461 void intel_guc_busyness_unpark(struct intel_gt *gt) 1462 { 1463 struct intel_guc *guc = >->uc.guc; 1464 unsigned long flags; 1465 ktime_t unused; 1466 1467 if (!guc_submission_initialized(guc)) 1468 return; 1469 1470 spin_lock_irqsave(&guc->timestamp.lock, flags); 1471 guc_update_pm_timestamp(guc, &unused); 1472 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1473 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, 1474 guc->timestamp.ping_delay); 1475 } 1476 1477 static inline bool 1478 submission_disabled(struct intel_guc *guc) 1479 { 1480 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1481 1482 return unlikely(!sched_engine || 1483 !__tasklet_is_enabled(&sched_engine->tasklet) || 1484 intel_gt_is_wedged(guc_to_gt(guc))); 1485 } 1486 1487 static void disable_submission(struct intel_guc *guc) 1488 { 1489 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1490 1491 if (__tasklet_is_enabled(&sched_engine->tasklet)) { 1492 GEM_BUG_ON(!guc->ct.enabled); 1493 __tasklet_disable_sync_once(&sched_engine->tasklet); 1494 sched_engine->tasklet.callback = NULL; 1495 } 1496 } 1497 1498 static void enable_submission(struct intel_guc *guc) 1499 { 1500 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1501 unsigned long flags; 1502 1503 spin_lock_irqsave(&guc->sched_engine->lock, flags); 1504 sched_engine->tasklet.callback = guc_submission_tasklet; 1505 wmb(); /* Make sure callback visible */ 1506 if (!__tasklet_is_enabled(&sched_engine->tasklet) && 1507 __tasklet_enable(&sched_engine->tasklet)) { 1508 GEM_BUG_ON(!guc->ct.enabled); 1509 1510 /* And kick in case we missed a new request submission. */ 1511 tasklet_hi_schedule(&sched_engine->tasklet); 1512 } 1513 spin_unlock_irqrestore(&guc->sched_engine->lock, flags); 1514 } 1515 1516 static void guc_flush_submissions(struct intel_guc *guc) 1517 { 1518 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1519 unsigned long flags; 1520 1521 spin_lock_irqsave(&sched_engine->lock, flags); 1522 spin_unlock_irqrestore(&sched_engine->lock, flags); 1523 } 1524 1525 static void guc_flush_destroyed_contexts(struct intel_guc *guc); 1526 1527 void intel_guc_submission_reset_prepare(struct intel_guc *guc) 1528 { 1529 if (unlikely(!guc_submission_initialized(guc))) { 1530 /* Reset called during driver load? GuC not yet initialised! */ 1531 return; 1532 } 1533 1534 intel_gt_park_heartbeats(guc_to_gt(guc)); 1535 disable_submission(guc); 1536 guc->interrupts.disable(guc); 1537 __reset_guc_busyness_stats(guc); 1538 1539 /* Flush IRQ handler */ 1540 spin_lock_irq(guc_to_gt(guc)->irq_lock); 1541 spin_unlock_irq(guc_to_gt(guc)->irq_lock); 1542 1543 guc_flush_submissions(guc); 1544 guc_flush_destroyed_contexts(guc); 1545 flush_work(&guc->ct.requests.worker); 1546 1547 scrub_guc_desc_for_outstanding_g2h(guc); 1548 } 1549 1550 static struct intel_engine_cs * 1551 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling) 1552 { 1553 struct intel_engine_cs *engine; 1554 intel_engine_mask_t tmp, mask = ve->mask; 1555 unsigned int num_siblings = 0; 1556 1557 for_each_engine_masked(engine, ve->gt, mask, tmp) 1558 if (num_siblings++ == sibling) 1559 return engine; 1560 1561 return NULL; 1562 } 1563 1564 static inline struct intel_engine_cs * 1565 __context_to_physical_engine(struct intel_context *ce) 1566 { 1567 struct intel_engine_cs *engine = ce->engine; 1568 1569 if (intel_engine_is_virtual(engine)) 1570 engine = guc_virtual_get_sibling(engine, 0); 1571 1572 return engine; 1573 } 1574 1575 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub) 1576 { 1577 struct intel_engine_cs *engine = __context_to_physical_engine(ce); 1578 1579 if (!intel_context_is_schedulable(ce)) 1580 return; 1581 1582 GEM_BUG_ON(!intel_context_is_pinned(ce)); 1583 1584 /* 1585 * We want a simple context + ring to execute the breadcrumb update. 1586 * We cannot rely on the context being intact across the GPU hang, 1587 * so clear it and rebuild just what we need for the breadcrumb. 1588 * All pending requests for this context will be zapped, and any 1589 * future request will be after userspace has had the opportunity 1590 * to recreate its own state. 1591 */ 1592 if (scrub) 1593 lrc_init_regs(ce, engine, true); 1594 1595 /* Rerun the request; its payload has been neutered (if guilty). */ 1596 lrc_update_regs(ce, engine, head); 1597 } 1598 1599 static void guc_engine_reset_prepare(struct intel_engine_cs *engine) 1600 { 1601 if (!IS_GRAPHICS_VER(engine->i915, 11, 12)) 1602 return; 1603 1604 intel_engine_stop_cs(engine); 1605 1606 /* 1607 * Wa_22011802037:gen11/gen12: In addition to stopping the cs, we need 1608 * to wait for any pending mi force wakeups 1609 */ 1610 intel_engine_wait_for_pending_mi_fw(engine); 1611 } 1612 1613 static void guc_reset_nop(struct intel_engine_cs *engine) 1614 { 1615 } 1616 1617 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled) 1618 { 1619 } 1620 1621 static void 1622 __unwind_incomplete_requests(struct intel_context *ce) 1623 { 1624 struct i915_request *rq, *rn; 1625 struct list_head *pl; 1626 int prio = I915_PRIORITY_INVALID; 1627 struct i915_sched_engine * const sched_engine = 1628 ce->engine->sched_engine; 1629 unsigned long flags; 1630 1631 spin_lock_irqsave(&sched_engine->lock, flags); 1632 spin_lock(&ce->guc_state.lock); 1633 list_for_each_entry_safe_reverse(rq, rn, 1634 &ce->guc_state.requests, 1635 sched.link) { 1636 if (i915_request_completed(rq)) 1637 continue; 1638 1639 list_del_init(&rq->sched.link); 1640 __i915_request_unsubmit(rq); 1641 1642 /* Push the request back into the queue for later resubmission. */ 1643 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID); 1644 if (rq_prio(rq) != prio) { 1645 prio = rq_prio(rq); 1646 pl = i915_sched_lookup_priolist(sched_engine, prio); 1647 } 1648 GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine)); 1649 1650 list_add(&rq->sched.link, pl); 1651 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 1652 } 1653 spin_unlock(&ce->guc_state.lock); 1654 spin_unlock_irqrestore(&sched_engine->lock, flags); 1655 } 1656 1657 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled) 1658 { 1659 bool guilty; 1660 struct i915_request *rq; 1661 unsigned long flags; 1662 u32 head; 1663 int i, number_children = ce->parallel.number_children; 1664 struct intel_context *parent = ce; 1665 1666 GEM_BUG_ON(intel_context_is_child(ce)); 1667 1668 intel_context_get(ce); 1669 1670 /* 1671 * GuC will implicitly mark the context as non-schedulable when it sends 1672 * the reset notification. Make sure our state reflects this change. The 1673 * context will be marked enabled on resubmission. 1674 */ 1675 spin_lock_irqsave(&ce->guc_state.lock, flags); 1676 clr_context_enabled(ce); 1677 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 1678 1679 /* 1680 * For each context in the relationship find the hanging request 1681 * resetting each context / request as needed 1682 */ 1683 for (i = 0; i < number_children + 1; ++i) { 1684 if (!intel_context_is_pinned(ce)) 1685 goto next_context; 1686 1687 guilty = false; 1688 rq = intel_context_find_active_request(ce); 1689 if (!rq) { 1690 head = ce->ring->tail; 1691 goto out_replay; 1692 } 1693 1694 if (i915_request_started(rq)) 1695 guilty = stalled & ce->engine->mask; 1696 1697 GEM_BUG_ON(i915_active_is_idle(&ce->active)); 1698 head = intel_ring_wrap(ce->ring, rq->head); 1699 1700 __i915_request_reset(rq, guilty); 1701 out_replay: 1702 guc_reset_state(ce, head, guilty); 1703 next_context: 1704 if (i != number_children) 1705 ce = list_next_entry(ce, parallel.child_link); 1706 } 1707 1708 __unwind_incomplete_requests(parent); 1709 intel_context_put(parent); 1710 } 1711 1712 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled) 1713 { 1714 struct intel_context *ce; 1715 unsigned long index; 1716 unsigned long flags; 1717 1718 if (unlikely(!guc_submission_initialized(guc))) { 1719 /* Reset called during driver load? GuC not yet initialised! */ 1720 return; 1721 } 1722 1723 xa_lock_irqsave(&guc->context_lookup, flags); 1724 xa_for_each(&guc->context_lookup, index, ce) { 1725 if (!kref_get_unless_zero(&ce->ref)) 1726 continue; 1727 1728 xa_unlock(&guc->context_lookup); 1729 1730 if (intel_context_is_pinned(ce) && 1731 !intel_context_is_child(ce)) 1732 __guc_reset_context(ce, stalled); 1733 1734 intel_context_put(ce); 1735 1736 xa_lock(&guc->context_lookup); 1737 } 1738 xa_unlock_irqrestore(&guc->context_lookup, flags); 1739 1740 /* GuC is blown away, drop all references to contexts */ 1741 xa_destroy(&guc->context_lookup); 1742 } 1743 1744 static void guc_cancel_context_requests(struct intel_context *ce) 1745 { 1746 struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine; 1747 struct i915_request *rq; 1748 unsigned long flags; 1749 1750 /* Mark all executing requests as skipped. */ 1751 spin_lock_irqsave(&sched_engine->lock, flags); 1752 spin_lock(&ce->guc_state.lock); 1753 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) 1754 i915_request_put(i915_request_mark_eio(rq)); 1755 spin_unlock(&ce->guc_state.lock); 1756 spin_unlock_irqrestore(&sched_engine->lock, flags); 1757 } 1758 1759 static void 1760 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine) 1761 { 1762 struct i915_request *rq, *rn; 1763 struct rb_node *rb; 1764 unsigned long flags; 1765 1766 /* Can be called during boot if GuC fails to load */ 1767 if (!sched_engine) 1768 return; 1769 1770 /* 1771 * Before we call engine->cancel_requests(), we should have exclusive 1772 * access to the submission state. This is arranged for us by the 1773 * caller disabling the interrupt generation, the tasklet and other 1774 * threads that may then access the same state, giving us a free hand 1775 * to reset state. However, we still need to let lockdep be aware that 1776 * we know this state may be accessed in hardirq context, so we 1777 * disable the irq around this manipulation and we want to keep 1778 * the spinlock focused on its duties and not accidentally conflate 1779 * coverage to the submission's irq state. (Similarly, although we 1780 * shouldn't need to disable irq around the manipulation of the 1781 * submission's irq state, we also wish to remind ourselves that 1782 * it is irq state.) 1783 */ 1784 spin_lock_irqsave(&sched_engine->lock, flags); 1785 1786 /* Flush the queued requests to the timeline list (for retiring). */ 1787 while ((rb = rb_first_cached(&sched_engine->queue))) { 1788 struct i915_priolist *p = to_priolist(rb); 1789 1790 priolist_for_each_request_consume(rq, rn, p) { 1791 list_del_init(&rq->sched.link); 1792 1793 __i915_request_submit(rq); 1794 1795 i915_request_put(i915_request_mark_eio(rq)); 1796 } 1797 1798 rb_erase_cached(&p->node, &sched_engine->queue); 1799 i915_priolist_free(p); 1800 } 1801 1802 /* Remaining _unready_ requests will be nop'ed when submitted */ 1803 1804 sched_engine->queue_priority_hint = INT_MIN; 1805 sched_engine->queue = RB_ROOT_CACHED; 1806 1807 spin_unlock_irqrestore(&sched_engine->lock, flags); 1808 } 1809 1810 void intel_guc_submission_cancel_requests(struct intel_guc *guc) 1811 { 1812 struct intel_context *ce; 1813 unsigned long index; 1814 unsigned long flags; 1815 1816 xa_lock_irqsave(&guc->context_lookup, flags); 1817 xa_for_each(&guc->context_lookup, index, ce) { 1818 if (!kref_get_unless_zero(&ce->ref)) 1819 continue; 1820 1821 xa_unlock(&guc->context_lookup); 1822 1823 if (intel_context_is_pinned(ce) && 1824 !intel_context_is_child(ce)) 1825 guc_cancel_context_requests(ce); 1826 1827 intel_context_put(ce); 1828 1829 xa_lock(&guc->context_lookup); 1830 } 1831 xa_unlock_irqrestore(&guc->context_lookup, flags); 1832 1833 guc_cancel_sched_engine_requests(guc->sched_engine); 1834 1835 /* GuC is blown away, drop all references to contexts */ 1836 xa_destroy(&guc->context_lookup); 1837 } 1838 1839 void intel_guc_submission_reset_finish(struct intel_guc *guc) 1840 { 1841 /* Reset called during driver load or during wedge? */ 1842 if (unlikely(!guc_submission_initialized(guc) || 1843 intel_gt_is_wedged(guc_to_gt(guc)))) { 1844 return; 1845 } 1846 1847 /* 1848 * Technically possible for either of these values to be non-zero here, 1849 * but very unlikely + harmless. Regardless let's add a warn so we can 1850 * see in CI if this happens frequently / a precursor to taking down the 1851 * machine. 1852 */ 1853 GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h)); 1854 atomic_set(&guc->outstanding_submission_g2h, 0); 1855 1856 intel_guc_global_policies_update(guc); 1857 enable_submission(guc); 1858 intel_gt_unpark_heartbeats(guc_to_gt(guc)); 1859 } 1860 1861 static void destroyed_worker_func(struct work_struct *w); 1862 static void reset_fail_worker_func(struct work_struct *w); 1863 1864 /* 1865 * Set up the memory resources to be shared with the GuC (via the GGTT) 1866 * at firmware loading time. 1867 */ 1868 int intel_guc_submission_init(struct intel_guc *guc) 1869 { 1870 struct intel_gt *gt = guc_to_gt(guc); 1871 int ret; 1872 1873 if (guc->submission_initialized) 1874 return 0; 1875 1876 if (GET_UC_VER(guc) < MAKE_UC_VER(70, 0, 0)) { 1877 ret = guc_lrc_desc_pool_create_v69(guc); 1878 if (ret) 1879 return ret; 1880 } 1881 1882 guc->submission_state.guc_ids_bitmap = 1883 bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL); 1884 if (!guc->submission_state.guc_ids_bitmap) { 1885 ret = -ENOMEM; 1886 goto destroy_pool; 1887 } 1888 1889 guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ; 1890 guc->timestamp.shift = gpm_timestamp_shift(gt); 1891 guc->submission_initialized = true; 1892 1893 return 0; 1894 1895 destroy_pool: 1896 guc_lrc_desc_pool_destroy_v69(guc); 1897 1898 return ret; 1899 } 1900 1901 void intel_guc_submission_fini(struct intel_guc *guc) 1902 { 1903 if (!guc->submission_initialized) 1904 return; 1905 1906 guc_flush_destroyed_contexts(guc); 1907 guc_lrc_desc_pool_destroy_v69(guc); 1908 i915_sched_engine_put(guc->sched_engine); 1909 bitmap_free(guc->submission_state.guc_ids_bitmap); 1910 guc->submission_initialized = false; 1911 } 1912 1913 static inline void queue_request(struct i915_sched_engine *sched_engine, 1914 struct i915_request *rq, 1915 int prio) 1916 { 1917 GEM_BUG_ON(!list_empty(&rq->sched.link)); 1918 list_add_tail(&rq->sched.link, 1919 i915_sched_lookup_priolist(sched_engine, prio)); 1920 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 1921 tasklet_hi_schedule(&sched_engine->tasklet); 1922 } 1923 1924 static int guc_bypass_tasklet_submit(struct intel_guc *guc, 1925 struct i915_request *rq) 1926 { 1927 int ret = 0; 1928 1929 __i915_request_submit(rq); 1930 1931 trace_i915_request_in(rq, 0); 1932 1933 if (is_multi_lrc_rq(rq)) { 1934 if (multi_lrc_submit(rq)) { 1935 ret = guc_wq_item_append(guc, rq); 1936 if (!ret) 1937 ret = guc_add_request(guc, rq); 1938 } 1939 } else { 1940 guc_set_lrc_tail(rq); 1941 ret = guc_add_request(guc, rq); 1942 } 1943 1944 if (unlikely(ret == -EPIPE)) 1945 disable_submission(guc); 1946 1947 return ret; 1948 } 1949 1950 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq) 1951 { 1952 struct i915_sched_engine *sched_engine = rq->engine->sched_engine; 1953 struct intel_context *ce = request_to_scheduling_context(rq); 1954 1955 return submission_disabled(guc) || guc->stalled_request || 1956 !i915_sched_engine_is_empty(sched_engine) || 1957 !ctx_id_mapped(guc, ce->guc_id.id); 1958 } 1959 1960 static void guc_submit_request(struct i915_request *rq) 1961 { 1962 struct i915_sched_engine *sched_engine = rq->engine->sched_engine; 1963 struct intel_guc *guc = &rq->engine->gt->uc.guc; 1964 unsigned long flags; 1965 1966 /* Will be called from irq-context when using foreign fences. */ 1967 spin_lock_irqsave(&sched_engine->lock, flags); 1968 1969 if (need_tasklet(guc, rq)) 1970 queue_request(sched_engine, rq, rq_prio(rq)); 1971 else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY) 1972 tasklet_hi_schedule(&sched_engine->tasklet); 1973 1974 spin_unlock_irqrestore(&sched_engine->lock, flags); 1975 } 1976 1977 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce) 1978 { 1979 int ret; 1980 1981 GEM_BUG_ON(intel_context_is_child(ce)); 1982 1983 if (intel_context_is_parent(ce)) 1984 ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap, 1985 NUMBER_MULTI_LRC_GUC_ID(guc), 1986 order_base_2(ce->parallel.number_children 1987 + 1)); 1988 else 1989 ret = ida_simple_get(&guc->submission_state.guc_ids, 1990 NUMBER_MULTI_LRC_GUC_ID(guc), 1991 guc->submission_state.num_guc_ids, 1992 GFP_KERNEL | __GFP_RETRY_MAYFAIL | 1993 __GFP_NOWARN); 1994 if (unlikely(ret < 0)) 1995 return ret; 1996 1997 ce->guc_id.id = ret; 1998 return 0; 1999 } 2000 2001 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce) 2002 { 2003 GEM_BUG_ON(intel_context_is_child(ce)); 2004 2005 if (!context_guc_id_invalid(ce)) { 2006 if (intel_context_is_parent(ce)) 2007 bitmap_release_region(guc->submission_state.guc_ids_bitmap, 2008 ce->guc_id.id, 2009 order_base_2(ce->parallel.number_children 2010 + 1)); 2011 else 2012 ida_simple_remove(&guc->submission_state.guc_ids, 2013 ce->guc_id.id); 2014 clr_ctx_id_mapping(guc, ce->guc_id.id); 2015 set_context_guc_id_invalid(ce); 2016 } 2017 if (!list_empty(&ce->guc_id.link)) 2018 list_del_init(&ce->guc_id.link); 2019 } 2020 2021 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce) 2022 { 2023 unsigned long flags; 2024 2025 spin_lock_irqsave(&guc->submission_state.lock, flags); 2026 __release_guc_id(guc, ce); 2027 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2028 } 2029 2030 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce) 2031 { 2032 struct intel_context *cn; 2033 2034 lockdep_assert_held(&guc->submission_state.lock); 2035 GEM_BUG_ON(intel_context_is_child(ce)); 2036 GEM_BUG_ON(intel_context_is_parent(ce)); 2037 2038 if (!list_empty(&guc->submission_state.guc_id_list)) { 2039 cn = list_first_entry(&guc->submission_state.guc_id_list, 2040 struct intel_context, 2041 guc_id.link); 2042 2043 GEM_BUG_ON(atomic_read(&cn->guc_id.ref)); 2044 GEM_BUG_ON(context_guc_id_invalid(cn)); 2045 GEM_BUG_ON(intel_context_is_child(cn)); 2046 GEM_BUG_ON(intel_context_is_parent(cn)); 2047 2048 list_del_init(&cn->guc_id.link); 2049 ce->guc_id.id = cn->guc_id.id; 2050 2051 spin_lock(&cn->guc_state.lock); 2052 clr_context_registered(cn); 2053 spin_unlock(&cn->guc_state.lock); 2054 2055 set_context_guc_id_invalid(cn); 2056 2057 #ifdef CONFIG_DRM_I915_SELFTEST 2058 guc->number_guc_id_stolen++; 2059 #endif 2060 2061 return 0; 2062 } else { 2063 return -EAGAIN; 2064 } 2065 } 2066 2067 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce) 2068 { 2069 int ret; 2070 2071 lockdep_assert_held(&guc->submission_state.lock); 2072 GEM_BUG_ON(intel_context_is_child(ce)); 2073 2074 ret = new_guc_id(guc, ce); 2075 if (unlikely(ret < 0)) { 2076 if (intel_context_is_parent(ce)) 2077 return -ENOSPC; 2078 2079 ret = steal_guc_id(guc, ce); 2080 if (ret < 0) 2081 return ret; 2082 } 2083 2084 if (intel_context_is_parent(ce)) { 2085 struct intel_context *child; 2086 int i = 1; 2087 2088 for_each_child(ce, child) 2089 child->guc_id.id = ce->guc_id.id + i++; 2090 } 2091 2092 return 0; 2093 } 2094 2095 #define PIN_GUC_ID_TRIES 4 2096 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce) 2097 { 2098 int ret = 0; 2099 unsigned long flags, tries = PIN_GUC_ID_TRIES; 2100 2101 GEM_BUG_ON(atomic_read(&ce->guc_id.ref)); 2102 2103 try_again: 2104 spin_lock_irqsave(&guc->submission_state.lock, flags); 2105 2106 might_lock(&ce->guc_state.lock); 2107 2108 if (context_guc_id_invalid(ce)) { 2109 ret = assign_guc_id(guc, ce); 2110 if (ret) 2111 goto out_unlock; 2112 ret = 1; /* Indidcates newly assigned guc_id */ 2113 } 2114 if (!list_empty(&ce->guc_id.link)) 2115 list_del_init(&ce->guc_id.link); 2116 atomic_inc(&ce->guc_id.ref); 2117 2118 out_unlock: 2119 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2120 2121 /* 2122 * -EAGAIN indicates no guc_id are available, let's retire any 2123 * outstanding requests to see if that frees up a guc_id. If the first 2124 * retire didn't help, insert a sleep with the timeslice duration before 2125 * attempting to retire more requests. Double the sleep period each 2126 * subsequent pass before finally giving up. The sleep period has max of 2127 * 100ms and minimum of 1ms. 2128 */ 2129 if (ret == -EAGAIN && --tries) { 2130 if (PIN_GUC_ID_TRIES - tries > 1) { 2131 unsigned int timeslice_shifted = 2132 ce->engine->props.timeslice_duration_ms << 2133 (PIN_GUC_ID_TRIES - tries - 2); 2134 unsigned int max = min_t(unsigned int, 100, 2135 timeslice_shifted); 2136 2137 msleep(max_t(unsigned int, max, 1)); 2138 } 2139 intel_gt_retire_requests(guc_to_gt(guc)); 2140 goto try_again; 2141 } 2142 2143 return ret; 2144 } 2145 2146 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce) 2147 { 2148 unsigned long flags; 2149 2150 GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0); 2151 GEM_BUG_ON(intel_context_is_child(ce)); 2152 2153 if (unlikely(context_guc_id_invalid(ce) || 2154 intel_context_is_parent(ce))) 2155 return; 2156 2157 spin_lock_irqsave(&guc->submission_state.lock, flags); 2158 if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) && 2159 !atomic_read(&ce->guc_id.ref)) 2160 list_add_tail(&ce->guc_id.link, 2161 &guc->submission_state.guc_id_list); 2162 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2163 } 2164 2165 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc, 2166 struct intel_context *ce, 2167 u32 guc_id, 2168 u32 offset, 2169 bool loop) 2170 { 2171 struct intel_context *child; 2172 u32 action[4 + MAX_ENGINE_INSTANCE]; 2173 int len = 0; 2174 2175 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); 2176 2177 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 2178 action[len++] = guc_id; 2179 action[len++] = ce->parallel.number_children + 1; 2180 action[len++] = offset; 2181 for_each_child(ce, child) { 2182 offset += sizeof(struct guc_lrc_desc_v69); 2183 action[len++] = offset; 2184 } 2185 2186 return guc_submission_send_busy_loop(guc, action, len, 0, loop); 2187 } 2188 2189 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc, 2190 struct intel_context *ce, 2191 struct guc_ctxt_registration_info *info, 2192 bool loop) 2193 { 2194 struct intel_context *child; 2195 u32 action[13 + (MAX_ENGINE_INSTANCE * 2)]; 2196 int len = 0; 2197 u32 next_id; 2198 2199 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); 2200 2201 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 2202 action[len++] = info->flags; 2203 action[len++] = info->context_idx; 2204 action[len++] = info->engine_class; 2205 action[len++] = info->engine_submit_mask; 2206 action[len++] = info->wq_desc_lo; 2207 action[len++] = info->wq_desc_hi; 2208 action[len++] = info->wq_base_lo; 2209 action[len++] = info->wq_base_hi; 2210 action[len++] = info->wq_size; 2211 action[len++] = ce->parallel.number_children + 1; 2212 action[len++] = info->hwlrca_lo; 2213 action[len++] = info->hwlrca_hi; 2214 2215 next_id = info->context_idx + 1; 2216 for_each_child(ce, child) { 2217 GEM_BUG_ON(next_id++ != child->guc_id.id); 2218 2219 /* 2220 * NB: GuC interface supports 64 bit LRCA even though i915/HW 2221 * only supports 32 bit currently. 2222 */ 2223 action[len++] = lower_32_bits(child->lrc.lrca); 2224 action[len++] = upper_32_bits(child->lrc.lrca); 2225 } 2226 2227 GEM_BUG_ON(len > ARRAY_SIZE(action)); 2228 2229 return guc_submission_send_busy_loop(guc, action, len, 0, loop); 2230 } 2231 2232 static int __guc_action_register_context_v69(struct intel_guc *guc, 2233 u32 guc_id, 2234 u32 offset, 2235 bool loop) 2236 { 2237 u32 action[] = { 2238 INTEL_GUC_ACTION_REGISTER_CONTEXT, 2239 guc_id, 2240 offset, 2241 }; 2242 2243 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2244 0, loop); 2245 } 2246 2247 static int __guc_action_register_context_v70(struct intel_guc *guc, 2248 struct guc_ctxt_registration_info *info, 2249 bool loop) 2250 { 2251 u32 action[] = { 2252 INTEL_GUC_ACTION_REGISTER_CONTEXT, 2253 info->flags, 2254 info->context_idx, 2255 info->engine_class, 2256 info->engine_submit_mask, 2257 info->wq_desc_lo, 2258 info->wq_desc_hi, 2259 info->wq_base_lo, 2260 info->wq_base_hi, 2261 info->wq_size, 2262 info->hwlrca_lo, 2263 info->hwlrca_hi, 2264 }; 2265 2266 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2267 0, loop); 2268 } 2269 2270 static void prepare_context_registration_info_v69(struct intel_context *ce); 2271 static void prepare_context_registration_info_v70(struct intel_context *ce, 2272 struct guc_ctxt_registration_info *info); 2273 2274 static int 2275 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop) 2276 { 2277 u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) + 2278 ce->guc_id.id * sizeof(struct guc_lrc_desc_v69); 2279 2280 prepare_context_registration_info_v69(ce); 2281 2282 if (intel_context_is_parent(ce)) 2283 return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id, 2284 offset, loop); 2285 else 2286 return __guc_action_register_context_v69(guc, ce->guc_id.id, 2287 offset, loop); 2288 } 2289 2290 static int 2291 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop) 2292 { 2293 struct guc_ctxt_registration_info info; 2294 2295 prepare_context_registration_info_v70(ce, &info); 2296 2297 if (intel_context_is_parent(ce)) 2298 return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop); 2299 else 2300 return __guc_action_register_context_v70(guc, &info, loop); 2301 } 2302 2303 static int register_context(struct intel_context *ce, bool loop) 2304 { 2305 struct intel_guc *guc = ce_to_guc(ce); 2306 int ret; 2307 2308 GEM_BUG_ON(intel_context_is_child(ce)); 2309 trace_intel_context_register(ce); 2310 2311 if (GET_UC_VER(guc) >= MAKE_UC_VER(70, 0, 0)) 2312 ret = register_context_v70(guc, ce, loop); 2313 else 2314 ret = register_context_v69(guc, ce, loop); 2315 2316 if (likely(!ret)) { 2317 unsigned long flags; 2318 2319 spin_lock_irqsave(&ce->guc_state.lock, flags); 2320 set_context_registered(ce); 2321 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2322 2323 if (GET_UC_VER(guc) >= MAKE_UC_VER(70, 0, 0)) 2324 guc_context_policy_init_v70(ce, loop); 2325 } 2326 2327 return ret; 2328 } 2329 2330 static int __guc_action_deregister_context(struct intel_guc *guc, 2331 u32 guc_id) 2332 { 2333 u32 action[] = { 2334 INTEL_GUC_ACTION_DEREGISTER_CONTEXT, 2335 guc_id, 2336 }; 2337 2338 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2339 G2H_LEN_DW_DEREGISTER_CONTEXT, 2340 true); 2341 } 2342 2343 static int deregister_context(struct intel_context *ce, u32 guc_id) 2344 { 2345 struct intel_guc *guc = ce_to_guc(ce); 2346 2347 GEM_BUG_ON(intel_context_is_child(ce)); 2348 trace_intel_context_deregister(ce); 2349 2350 return __guc_action_deregister_context(guc, guc_id); 2351 } 2352 2353 static inline void clear_children_join_go_memory(struct intel_context *ce) 2354 { 2355 struct parent_scratch *ps = __get_parent_scratch(ce); 2356 int i; 2357 2358 ps->go.semaphore = 0; 2359 for (i = 0; i < ce->parallel.number_children + 1; ++i) 2360 ps->join[i].semaphore = 0; 2361 } 2362 2363 static inline u32 get_children_go_value(struct intel_context *ce) 2364 { 2365 return __get_parent_scratch(ce)->go.semaphore; 2366 } 2367 2368 static inline u32 get_children_join_value(struct intel_context *ce, 2369 u8 child_index) 2370 { 2371 return __get_parent_scratch(ce)->join[child_index].semaphore; 2372 } 2373 2374 struct context_policy { 2375 u32 count; 2376 struct guc_update_context_policy h2g; 2377 }; 2378 2379 static u32 __guc_context_policy_action_size(struct context_policy *policy) 2380 { 2381 size_t bytes = sizeof(policy->h2g.header) + 2382 (sizeof(policy->h2g.klv[0]) * policy->count); 2383 2384 return bytes / sizeof(u32); 2385 } 2386 2387 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id) 2388 { 2389 policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES; 2390 policy->h2g.header.ctx_id = guc_id; 2391 policy->count = 0; 2392 } 2393 2394 #define MAKE_CONTEXT_POLICY_ADD(func, id) \ 2395 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \ 2396 { \ 2397 GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \ 2398 policy->h2g.klv[policy->count].kl = \ 2399 FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \ 2400 FIELD_PREP(GUC_KLV_0_LEN, 1); \ 2401 policy->h2g.klv[policy->count].value = data; \ 2402 policy->count++; \ 2403 } 2404 2405 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM) 2406 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT) 2407 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY) 2408 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY) 2409 2410 #undef MAKE_CONTEXT_POLICY_ADD 2411 2412 static int __guc_context_set_context_policies(struct intel_guc *guc, 2413 struct context_policy *policy, 2414 bool loop) 2415 { 2416 return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g, 2417 __guc_context_policy_action_size(policy), 2418 0, loop); 2419 } 2420 2421 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop) 2422 { 2423 struct intel_engine_cs *engine = ce->engine; 2424 struct intel_guc *guc = &engine->gt->uc.guc; 2425 struct context_policy policy; 2426 u32 execution_quantum; 2427 u32 preemption_timeout; 2428 unsigned long flags; 2429 int ret; 2430 2431 /* NB: For both of these, zero means disabled. */ 2432 execution_quantum = engine->props.timeslice_duration_ms * 1000; 2433 preemption_timeout = engine->props.preempt_timeout_ms * 1000; 2434 2435 __guc_context_policy_start_klv(&policy, ce->guc_id.id); 2436 2437 __guc_context_policy_add_priority(&policy, ce->guc_state.prio); 2438 __guc_context_policy_add_execution_quantum(&policy, execution_quantum); 2439 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); 2440 2441 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) 2442 __guc_context_policy_add_preempt_to_idle(&policy, 1); 2443 2444 ret = __guc_context_set_context_policies(guc, &policy, loop); 2445 2446 spin_lock_irqsave(&ce->guc_state.lock, flags); 2447 if (ret != 0) 2448 set_context_policy_required(ce); 2449 else 2450 clr_context_policy_required(ce); 2451 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2452 2453 return ret; 2454 } 2455 2456 static void guc_context_policy_init_v69(struct intel_engine_cs *engine, 2457 struct guc_lrc_desc_v69 *desc) 2458 { 2459 desc->policy_flags = 0; 2460 2461 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) 2462 desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69; 2463 2464 /* NB: For both of these, zero means disabled. */ 2465 desc->execution_quantum = engine->props.timeslice_duration_ms * 1000; 2466 desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000; 2467 } 2468 2469 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio) 2470 { 2471 /* 2472 * this matches the mapping we do in map_i915_prio_to_guc_prio() 2473 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL) 2474 */ 2475 switch (prio) { 2476 default: 2477 MISSING_CASE(prio); 2478 fallthrough; 2479 case GUC_CLIENT_PRIORITY_KMD_NORMAL: 2480 return GEN12_CTX_PRIORITY_NORMAL; 2481 case GUC_CLIENT_PRIORITY_NORMAL: 2482 return GEN12_CTX_PRIORITY_LOW; 2483 case GUC_CLIENT_PRIORITY_HIGH: 2484 case GUC_CLIENT_PRIORITY_KMD_HIGH: 2485 return GEN12_CTX_PRIORITY_HIGH; 2486 } 2487 } 2488 2489 static void prepare_context_registration_info_v69(struct intel_context *ce) 2490 { 2491 struct intel_engine_cs *engine = ce->engine; 2492 struct intel_guc *guc = &engine->gt->uc.guc; 2493 u32 ctx_id = ce->guc_id.id; 2494 struct guc_lrc_desc_v69 *desc; 2495 struct intel_context *child; 2496 2497 GEM_BUG_ON(!engine->mask); 2498 2499 /* 2500 * Ensure LRC + CT vmas are is same region as write barrier is done 2501 * based on CT vma region. 2502 */ 2503 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != 2504 i915_gem_object_is_lmem(ce->ring->vma->obj)); 2505 2506 desc = __get_lrc_desc_v69(guc, ctx_id); 2507 desc->engine_class = engine_class_to_guc_class(engine->class); 2508 desc->engine_submit_mask = engine->logical_mask; 2509 desc->hw_context_desc = ce->lrc.lrca; 2510 desc->priority = ce->guc_state.prio; 2511 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; 2512 guc_context_policy_init_v69(engine, desc); 2513 2514 /* 2515 * If context is a parent, we need to register a process descriptor 2516 * describing a work queue and register all child contexts. 2517 */ 2518 if (intel_context_is_parent(ce)) { 2519 struct guc_process_desc_v69 *pdesc; 2520 2521 ce->parallel.guc.wqi_tail = 0; 2522 ce->parallel.guc.wqi_head = 0; 2523 2524 desc->process_desc = i915_ggtt_offset(ce->state) + 2525 __get_parent_scratch_offset(ce); 2526 desc->wq_addr = i915_ggtt_offset(ce->state) + 2527 __get_wq_offset(ce); 2528 desc->wq_size = WQ_SIZE; 2529 2530 pdesc = __get_process_desc_v69(ce); 2531 memset(pdesc, 0, sizeof(*(pdesc))); 2532 pdesc->stage_id = ce->guc_id.id; 2533 pdesc->wq_base_addr = desc->wq_addr; 2534 pdesc->wq_size_bytes = desc->wq_size; 2535 pdesc->wq_status = WQ_STATUS_ACTIVE; 2536 2537 ce->parallel.guc.wq_head = &pdesc->head; 2538 ce->parallel.guc.wq_tail = &pdesc->tail; 2539 ce->parallel.guc.wq_status = &pdesc->wq_status; 2540 2541 for_each_child(ce, child) { 2542 desc = __get_lrc_desc_v69(guc, child->guc_id.id); 2543 2544 desc->engine_class = 2545 engine_class_to_guc_class(engine->class); 2546 desc->hw_context_desc = child->lrc.lrca; 2547 desc->priority = ce->guc_state.prio; 2548 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; 2549 guc_context_policy_init_v69(engine, desc); 2550 } 2551 2552 clear_children_join_go_memory(ce); 2553 } 2554 } 2555 2556 static void prepare_context_registration_info_v70(struct intel_context *ce, 2557 struct guc_ctxt_registration_info *info) 2558 { 2559 struct intel_engine_cs *engine = ce->engine; 2560 struct intel_guc *guc = &engine->gt->uc.guc; 2561 u32 ctx_id = ce->guc_id.id; 2562 2563 GEM_BUG_ON(!engine->mask); 2564 2565 /* 2566 * Ensure LRC + CT vmas are is same region as write barrier is done 2567 * based on CT vma region. 2568 */ 2569 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != 2570 i915_gem_object_is_lmem(ce->ring->vma->obj)); 2571 2572 memset(info, 0, sizeof(*info)); 2573 info->context_idx = ctx_id; 2574 info->engine_class = engine_class_to_guc_class(engine->class); 2575 info->engine_submit_mask = engine->logical_mask; 2576 /* 2577 * NB: GuC interface supports 64 bit LRCA even though i915/HW 2578 * only supports 32 bit currently. 2579 */ 2580 info->hwlrca_lo = lower_32_bits(ce->lrc.lrca); 2581 info->hwlrca_hi = upper_32_bits(ce->lrc.lrca); 2582 if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY) 2583 info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio); 2584 info->flags = CONTEXT_REGISTRATION_FLAG_KMD; 2585 2586 /* 2587 * If context is a parent, we need to register a process descriptor 2588 * describing a work queue and register all child contexts. 2589 */ 2590 if (intel_context_is_parent(ce)) { 2591 struct guc_sched_wq_desc *wq_desc; 2592 u64 wq_desc_offset, wq_base_offset; 2593 2594 ce->parallel.guc.wqi_tail = 0; 2595 ce->parallel.guc.wqi_head = 0; 2596 2597 wq_desc_offset = i915_ggtt_offset(ce->state) + 2598 __get_parent_scratch_offset(ce); 2599 wq_base_offset = i915_ggtt_offset(ce->state) + 2600 __get_wq_offset(ce); 2601 info->wq_desc_lo = lower_32_bits(wq_desc_offset); 2602 info->wq_desc_hi = upper_32_bits(wq_desc_offset); 2603 info->wq_base_lo = lower_32_bits(wq_base_offset); 2604 info->wq_base_hi = upper_32_bits(wq_base_offset); 2605 info->wq_size = WQ_SIZE; 2606 2607 wq_desc = __get_wq_desc_v70(ce); 2608 memset(wq_desc, 0, sizeof(*wq_desc)); 2609 wq_desc->wq_status = WQ_STATUS_ACTIVE; 2610 2611 ce->parallel.guc.wq_head = &wq_desc->head; 2612 ce->parallel.guc.wq_tail = &wq_desc->tail; 2613 ce->parallel.guc.wq_status = &wq_desc->wq_status; 2614 2615 clear_children_join_go_memory(ce); 2616 } 2617 } 2618 2619 static int try_context_registration(struct intel_context *ce, bool loop) 2620 { 2621 struct intel_engine_cs *engine = ce->engine; 2622 struct intel_runtime_pm *runtime_pm = engine->uncore->rpm; 2623 struct intel_guc *guc = &engine->gt->uc.guc; 2624 intel_wakeref_t wakeref; 2625 u32 ctx_id = ce->guc_id.id; 2626 bool context_registered; 2627 int ret = 0; 2628 2629 GEM_BUG_ON(!sched_state_is_init(ce)); 2630 2631 context_registered = ctx_id_mapped(guc, ctx_id); 2632 2633 clr_ctx_id_mapping(guc, ctx_id); 2634 set_ctx_id_mapping(guc, ctx_id, ce); 2635 2636 /* 2637 * The context_lookup xarray is used to determine if the hardware 2638 * context is currently registered. There are two cases in which it 2639 * could be registered either the guc_id has been stolen from another 2640 * context or the lrc descriptor address of this context has changed. In 2641 * either case the context needs to be deregistered with the GuC before 2642 * registering this context. 2643 */ 2644 if (context_registered) { 2645 bool disabled; 2646 unsigned long flags; 2647 2648 trace_intel_context_steal_guc_id(ce); 2649 GEM_BUG_ON(!loop); 2650 2651 /* Seal race with Reset */ 2652 spin_lock_irqsave(&ce->guc_state.lock, flags); 2653 disabled = submission_disabled(guc); 2654 if (likely(!disabled)) { 2655 set_context_wait_for_deregister_to_register(ce); 2656 intel_context_get(ce); 2657 } 2658 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2659 if (unlikely(disabled)) { 2660 clr_ctx_id_mapping(guc, ctx_id); 2661 return 0; /* Will get registered later */ 2662 } 2663 2664 /* 2665 * If stealing the guc_id, this ce has the same guc_id as the 2666 * context whose guc_id was stolen. 2667 */ 2668 with_intel_runtime_pm(runtime_pm, wakeref) 2669 ret = deregister_context(ce, ce->guc_id.id); 2670 if (unlikely(ret == -ENODEV)) 2671 ret = 0; /* Will get registered later */ 2672 } else { 2673 with_intel_runtime_pm(runtime_pm, wakeref) 2674 ret = register_context(ce, loop); 2675 if (unlikely(ret == -EBUSY)) { 2676 clr_ctx_id_mapping(guc, ctx_id); 2677 } else if (unlikely(ret == -ENODEV)) { 2678 clr_ctx_id_mapping(guc, ctx_id); 2679 ret = 0; /* Will get registered later */ 2680 } 2681 } 2682 2683 return ret; 2684 } 2685 2686 static int __guc_context_pre_pin(struct intel_context *ce, 2687 struct intel_engine_cs *engine, 2688 struct i915_gem_ww_ctx *ww, 2689 void **vaddr) 2690 { 2691 return lrc_pre_pin(ce, engine, ww, vaddr); 2692 } 2693 2694 static int __guc_context_pin(struct intel_context *ce, 2695 struct intel_engine_cs *engine, 2696 void *vaddr) 2697 { 2698 if (i915_ggtt_offset(ce->state) != 2699 (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK)) 2700 set_bit(CONTEXT_LRCA_DIRTY, &ce->flags); 2701 2702 /* 2703 * GuC context gets pinned in guc_request_alloc. See that function for 2704 * explaination of why. 2705 */ 2706 2707 return lrc_pin(ce, engine, vaddr); 2708 } 2709 2710 static int guc_context_pre_pin(struct intel_context *ce, 2711 struct i915_gem_ww_ctx *ww, 2712 void **vaddr) 2713 { 2714 return __guc_context_pre_pin(ce, ce->engine, ww, vaddr); 2715 } 2716 2717 static int guc_context_pin(struct intel_context *ce, void *vaddr) 2718 { 2719 int ret = __guc_context_pin(ce, ce->engine, vaddr); 2720 2721 if (likely(!ret && !intel_context_is_barrier(ce))) 2722 intel_engine_pm_get(ce->engine); 2723 2724 return ret; 2725 } 2726 2727 static void guc_context_unpin(struct intel_context *ce) 2728 { 2729 struct intel_guc *guc = ce_to_guc(ce); 2730 2731 unpin_guc_id(guc, ce); 2732 lrc_unpin(ce); 2733 2734 if (likely(!intel_context_is_barrier(ce))) 2735 intel_engine_pm_put_async(ce->engine); 2736 } 2737 2738 static void guc_context_post_unpin(struct intel_context *ce) 2739 { 2740 lrc_post_unpin(ce); 2741 } 2742 2743 static void __guc_context_sched_enable(struct intel_guc *guc, 2744 struct intel_context *ce) 2745 { 2746 u32 action[] = { 2747 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, 2748 ce->guc_id.id, 2749 GUC_CONTEXT_ENABLE 2750 }; 2751 2752 trace_intel_context_sched_enable(ce); 2753 2754 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2755 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); 2756 } 2757 2758 static void __guc_context_sched_disable(struct intel_guc *guc, 2759 struct intel_context *ce, 2760 u16 guc_id) 2761 { 2762 u32 action[] = { 2763 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, 2764 guc_id, /* ce->guc_id.id not stable */ 2765 GUC_CONTEXT_DISABLE 2766 }; 2767 2768 GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID); 2769 2770 GEM_BUG_ON(intel_context_is_child(ce)); 2771 trace_intel_context_sched_disable(ce); 2772 2773 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2774 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); 2775 } 2776 2777 static void guc_blocked_fence_complete(struct intel_context *ce) 2778 { 2779 lockdep_assert_held(&ce->guc_state.lock); 2780 2781 if (!i915_sw_fence_done(&ce->guc_state.blocked)) 2782 i915_sw_fence_complete(&ce->guc_state.blocked); 2783 } 2784 2785 static void guc_blocked_fence_reinit(struct intel_context *ce) 2786 { 2787 lockdep_assert_held(&ce->guc_state.lock); 2788 GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked)); 2789 2790 /* 2791 * This fence is always complete unless a pending schedule disable is 2792 * outstanding. We arm the fence here and complete it when we receive 2793 * the pending schedule disable complete message. 2794 */ 2795 i915_sw_fence_fini(&ce->guc_state.blocked); 2796 i915_sw_fence_reinit(&ce->guc_state.blocked); 2797 i915_sw_fence_await(&ce->guc_state.blocked); 2798 i915_sw_fence_commit(&ce->guc_state.blocked); 2799 } 2800 2801 static u16 prep_context_pending_disable(struct intel_context *ce) 2802 { 2803 lockdep_assert_held(&ce->guc_state.lock); 2804 2805 set_context_pending_disable(ce); 2806 clr_context_enabled(ce); 2807 guc_blocked_fence_reinit(ce); 2808 intel_context_get(ce); 2809 2810 return ce->guc_id.id; 2811 } 2812 2813 static struct i915_sw_fence *guc_context_block(struct intel_context *ce) 2814 { 2815 struct intel_guc *guc = ce_to_guc(ce); 2816 unsigned long flags; 2817 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; 2818 intel_wakeref_t wakeref; 2819 u16 guc_id; 2820 bool enabled; 2821 2822 GEM_BUG_ON(intel_context_is_child(ce)); 2823 2824 spin_lock_irqsave(&ce->guc_state.lock, flags); 2825 2826 incr_context_blocked(ce); 2827 2828 enabled = context_enabled(ce); 2829 if (unlikely(!enabled || submission_disabled(guc))) { 2830 if (enabled) 2831 clr_context_enabled(ce); 2832 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2833 return &ce->guc_state.blocked; 2834 } 2835 2836 /* 2837 * We add +2 here as the schedule disable complete CTB handler calls 2838 * intel_context_sched_disable_unpin (-2 to pin_count). 2839 */ 2840 atomic_add(2, &ce->pin_count); 2841 2842 guc_id = prep_context_pending_disable(ce); 2843 2844 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2845 2846 with_intel_runtime_pm(runtime_pm, wakeref) 2847 __guc_context_sched_disable(guc, ce, guc_id); 2848 2849 return &ce->guc_state.blocked; 2850 } 2851 2852 #define SCHED_STATE_MULTI_BLOCKED_MASK \ 2853 (SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED) 2854 #define SCHED_STATE_NO_UNBLOCK \ 2855 (SCHED_STATE_MULTI_BLOCKED_MASK | \ 2856 SCHED_STATE_PENDING_DISABLE | \ 2857 SCHED_STATE_BANNED) 2858 2859 static bool context_cant_unblock(struct intel_context *ce) 2860 { 2861 lockdep_assert_held(&ce->guc_state.lock); 2862 2863 return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) || 2864 context_guc_id_invalid(ce) || 2865 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) || 2866 !intel_context_is_pinned(ce); 2867 } 2868 2869 static void guc_context_unblock(struct intel_context *ce) 2870 { 2871 struct intel_guc *guc = ce_to_guc(ce); 2872 unsigned long flags; 2873 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; 2874 intel_wakeref_t wakeref; 2875 bool enable; 2876 2877 GEM_BUG_ON(context_enabled(ce)); 2878 GEM_BUG_ON(intel_context_is_child(ce)); 2879 2880 spin_lock_irqsave(&ce->guc_state.lock, flags); 2881 2882 if (unlikely(submission_disabled(guc) || 2883 context_cant_unblock(ce))) { 2884 enable = false; 2885 } else { 2886 enable = true; 2887 set_context_pending_enable(ce); 2888 set_context_enabled(ce); 2889 intel_context_get(ce); 2890 } 2891 2892 decr_context_blocked(ce); 2893 2894 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2895 2896 if (enable) { 2897 with_intel_runtime_pm(runtime_pm, wakeref) 2898 __guc_context_sched_enable(guc, ce); 2899 } 2900 } 2901 2902 static void guc_context_cancel_request(struct intel_context *ce, 2903 struct i915_request *rq) 2904 { 2905 struct intel_context *block_context = 2906 request_to_scheduling_context(rq); 2907 2908 if (i915_sw_fence_signaled(&rq->submit)) { 2909 struct i915_sw_fence *fence; 2910 2911 intel_context_get(ce); 2912 fence = guc_context_block(block_context); 2913 i915_sw_fence_wait(fence); 2914 if (!i915_request_completed(rq)) { 2915 __i915_request_skip(rq); 2916 guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head), 2917 true); 2918 } 2919 2920 guc_context_unblock(block_context); 2921 intel_context_put(ce); 2922 } 2923 } 2924 2925 static void __guc_context_set_preemption_timeout(struct intel_guc *guc, 2926 u16 guc_id, 2927 u32 preemption_timeout) 2928 { 2929 if (GET_UC_VER(guc) >= MAKE_UC_VER(70, 0, 0)) { 2930 struct context_policy policy; 2931 2932 __guc_context_policy_start_klv(&policy, guc_id); 2933 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); 2934 __guc_context_set_context_policies(guc, &policy, true); 2935 } else { 2936 u32 action[] = { 2937 INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT, 2938 guc_id, 2939 preemption_timeout 2940 }; 2941 2942 intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); 2943 } 2944 } 2945 2946 static void 2947 guc_context_revoke(struct intel_context *ce, struct i915_request *rq, 2948 unsigned int preempt_timeout_ms) 2949 { 2950 struct intel_guc *guc = ce_to_guc(ce); 2951 struct intel_runtime_pm *runtime_pm = 2952 &ce->engine->gt->i915->runtime_pm; 2953 intel_wakeref_t wakeref; 2954 unsigned long flags; 2955 2956 GEM_BUG_ON(intel_context_is_child(ce)); 2957 2958 guc_flush_submissions(guc); 2959 2960 spin_lock_irqsave(&ce->guc_state.lock, flags); 2961 set_context_banned(ce); 2962 2963 if (submission_disabled(guc) || 2964 (!context_enabled(ce) && !context_pending_disable(ce))) { 2965 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2966 2967 guc_cancel_context_requests(ce); 2968 intel_engine_signal_breadcrumbs(ce->engine); 2969 } else if (!context_pending_disable(ce)) { 2970 u16 guc_id; 2971 2972 /* 2973 * We add +2 here as the schedule disable complete CTB handler 2974 * calls intel_context_sched_disable_unpin (-2 to pin_count). 2975 */ 2976 atomic_add(2, &ce->pin_count); 2977 2978 guc_id = prep_context_pending_disable(ce); 2979 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2980 2981 /* 2982 * In addition to disabling scheduling, set the preemption 2983 * timeout to the minimum value (1 us) so the banned context 2984 * gets kicked off the HW ASAP. 2985 */ 2986 with_intel_runtime_pm(runtime_pm, wakeref) { 2987 __guc_context_set_preemption_timeout(guc, guc_id, 2988 preempt_timeout_ms); 2989 __guc_context_sched_disable(guc, ce, guc_id); 2990 } 2991 } else { 2992 if (!context_guc_id_invalid(ce)) 2993 with_intel_runtime_pm(runtime_pm, wakeref) 2994 __guc_context_set_preemption_timeout(guc, 2995 ce->guc_id.id, 2996 preempt_timeout_ms); 2997 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2998 } 2999 } 3000 3001 static void guc_context_sched_disable(struct intel_context *ce) 3002 { 3003 struct intel_guc *guc = ce_to_guc(ce); 3004 unsigned long flags; 3005 struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm; 3006 intel_wakeref_t wakeref; 3007 u16 guc_id; 3008 3009 GEM_BUG_ON(intel_context_is_child(ce)); 3010 3011 spin_lock_irqsave(&ce->guc_state.lock, flags); 3012 3013 /* 3014 * We have to check if the context has been disabled by another thread, 3015 * check if submssion has been disabled to seal a race with reset and 3016 * finally check if any more requests have been committed to the 3017 * context ensursing that a request doesn't slip through the 3018 * 'context_pending_disable' fence. 3019 */ 3020 if (unlikely(!context_enabled(ce) || submission_disabled(guc) || 3021 context_has_committed_requests(ce))) { 3022 clr_context_enabled(ce); 3023 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3024 goto unpin; 3025 } 3026 guc_id = prep_context_pending_disable(ce); 3027 3028 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3029 3030 with_intel_runtime_pm(runtime_pm, wakeref) 3031 __guc_context_sched_disable(guc, ce, guc_id); 3032 3033 return; 3034 unpin: 3035 intel_context_sched_disable_unpin(ce); 3036 } 3037 3038 static inline void guc_lrc_desc_unpin(struct intel_context *ce) 3039 { 3040 struct intel_guc *guc = ce_to_guc(ce); 3041 struct intel_gt *gt = guc_to_gt(guc); 3042 unsigned long flags; 3043 bool disabled; 3044 3045 GEM_BUG_ON(!intel_gt_pm_is_awake(gt)); 3046 GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id)); 3047 GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id)); 3048 GEM_BUG_ON(context_enabled(ce)); 3049 3050 /* Seal race with Reset */ 3051 spin_lock_irqsave(&ce->guc_state.lock, flags); 3052 disabled = submission_disabled(guc); 3053 if (likely(!disabled)) { 3054 __intel_gt_pm_get(gt); 3055 set_context_destroyed(ce); 3056 clr_context_registered(ce); 3057 } 3058 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3059 if (unlikely(disabled)) { 3060 release_guc_id(guc, ce); 3061 __guc_context_destroy(ce); 3062 return; 3063 } 3064 3065 deregister_context(ce, ce->guc_id.id); 3066 } 3067 3068 static void __guc_context_destroy(struct intel_context *ce) 3069 { 3070 GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] || 3071 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] || 3072 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] || 3073 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]); 3074 GEM_BUG_ON(ce->guc_state.number_committed_requests); 3075 3076 lrc_fini(ce); 3077 intel_context_fini(ce); 3078 3079 if (intel_engine_is_virtual(ce->engine)) { 3080 struct guc_virtual_engine *ve = 3081 container_of(ce, typeof(*ve), context); 3082 3083 if (ve->base.breadcrumbs) 3084 intel_breadcrumbs_put(ve->base.breadcrumbs); 3085 3086 kfree(ve); 3087 } else { 3088 intel_context_free(ce); 3089 } 3090 } 3091 3092 static void guc_flush_destroyed_contexts(struct intel_guc *guc) 3093 { 3094 struct intel_context *ce; 3095 unsigned long flags; 3096 3097 GEM_BUG_ON(!submission_disabled(guc) && 3098 guc_submission_initialized(guc)); 3099 3100 while (!list_empty(&guc->submission_state.destroyed_contexts)) { 3101 spin_lock_irqsave(&guc->submission_state.lock, flags); 3102 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, 3103 struct intel_context, 3104 destroyed_link); 3105 if (ce) 3106 list_del_init(&ce->destroyed_link); 3107 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3108 3109 if (!ce) 3110 break; 3111 3112 release_guc_id(guc, ce); 3113 __guc_context_destroy(ce); 3114 } 3115 } 3116 3117 static void deregister_destroyed_contexts(struct intel_guc *guc) 3118 { 3119 struct intel_context *ce; 3120 unsigned long flags; 3121 3122 while (!list_empty(&guc->submission_state.destroyed_contexts)) { 3123 spin_lock_irqsave(&guc->submission_state.lock, flags); 3124 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, 3125 struct intel_context, 3126 destroyed_link); 3127 if (ce) 3128 list_del_init(&ce->destroyed_link); 3129 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3130 3131 if (!ce) 3132 break; 3133 3134 guc_lrc_desc_unpin(ce); 3135 } 3136 } 3137 3138 static void destroyed_worker_func(struct work_struct *w) 3139 { 3140 struct intel_guc *guc = container_of(w, struct intel_guc, 3141 submission_state.destroyed_worker); 3142 struct intel_gt *gt = guc_to_gt(guc); 3143 int tmp; 3144 3145 with_intel_gt_pm(gt, tmp) 3146 deregister_destroyed_contexts(guc); 3147 } 3148 3149 static void guc_context_destroy(struct kref *kref) 3150 { 3151 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 3152 struct intel_guc *guc = ce_to_guc(ce); 3153 unsigned long flags; 3154 bool destroy; 3155 3156 /* 3157 * If the guc_id is invalid this context has been stolen and we can free 3158 * it immediately. Also can be freed immediately if the context is not 3159 * registered with the GuC or the GuC is in the middle of a reset. 3160 */ 3161 spin_lock_irqsave(&guc->submission_state.lock, flags); 3162 destroy = submission_disabled(guc) || context_guc_id_invalid(ce) || 3163 !ctx_id_mapped(guc, ce->guc_id.id); 3164 if (likely(!destroy)) { 3165 if (!list_empty(&ce->guc_id.link)) 3166 list_del_init(&ce->guc_id.link); 3167 list_add_tail(&ce->destroyed_link, 3168 &guc->submission_state.destroyed_contexts); 3169 } else { 3170 __release_guc_id(guc, ce); 3171 } 3172 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3173 if (unlikely(destroy)) { 3174 __guc_context_destroy(ce); 3175 return; 3176 } 3177 3178 /* 3179 * We use a worker to issue the H2G to deregister the context as we can 3180 * take the GT PM for the first time which isn't allowed from an atomic 3181 * context. 3182 */ 3183 queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker); 3184 } 3185 3186 static int guc_context_alloc(struct intel_context *ce) 3187 { 3188 return lrc_alloc(ce, ce->engine); 3189 } 3190 3191 static void __guc_context_set_prio(struct intel_guc *guc, 3192 struct intel_context *ce) 3193 { 3194 if (GET_UC_VER(guc) >= MAKE_UC_VER(70, 0, 0)) { 3195 struct context_policy policy; 3196 3197 __guc_context_policy_start_klv(&policy, ce->guc_id.id); 3198 __guc_context_policy_add_priority(&policy, ce->guc_state.prio); 3199 __guc_context_set_context_policies(guc, &policy, true); 3200 } else { 3201 u32 action[] = { 3202 INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY, 3203 ce->guc_id.id, 3204 ce->guc_state.prio, 3205 }; 3206 3207 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); 3208 } 3209 } 3210 3211 static void guc_context_set_prio(struct intel_guc *guc, 3212 struct intel_context *ce, 3213 u8 prio) 3214 { 3215 GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH || 3216 prio > GUC_CLIENT_PRIORITY_NORMAL); 3217 lockdep_assert_held(&ce->guc_state.lock); 3218 3219 if (ce->guc_state.prio == prio || submission_disabled(guc) || 3220 !context_registered(ce)) { 3221 ce->guc_state.prio = prio; 3222 return; 3223 } 3224 3225 ce->guc_state.prio = prio; 3226 __guc_context_set_prio(guc, ce); 3227 3228 trace_intel_context_set_prio(ce); 3229 } 3230 3231 static inline u8 map_i915_prio_to_guc_prio(int prio) 3232 { 3233 if (prio == I915_PRIORITY_NORMAL) 3234 return GUC_CLIENT_PRIORITY_KMD_NORMAL; 3235 else if (prio < I915_PRIORITY_NORMAL) 3236 return GUC_CLIENT_PRIORITY_NORMAL; 3237 else if (prio < I915_PRIORITY_DISPLAY) 3238 return GUC_CLIENT_PRIORITY_HIGH; 3239 else 3240 return GUC_CLIENT_PRIORITY_KMD_HIGH; 3241 } 3242 3243 static inline void add_context_inflight_prio(struct intel_context *ce, 3244 u8 guc_prio) 3245 { 3246 lockdep_assert_held(&ce->guc_state.lock); 3247 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); 3248 3249 ++ce->guc_state.prio_count[guc_prio]; 3250 3251 /* Overflow protection */ 3252 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); 3253 } 3254 3255 static inline void sub_context_inflight_prio(struct intel_context *ce, 3256 u8 guc_prio) 3257 { 3258 lockdep_assert_held(&ce->guc_state.lock); 3259 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); 3260 3261 /* Underflow protection */ 3262 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); 3263 3264 --ce->guc_state.prio_count[guc_prio]; 3265 } 3266 3267 static inline void update_context_prio(struct intel_context *ce) 3268 { 3269 struct intel_guc *guc = &ce->engine->gt->uc.guc; 3270 int i; 3271 3272 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0); 3273 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL); 3274 3275 lockdep_assert_held(&ce->guc_state.lock); 3276 3277 for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) { 3278 if (ce->guc_state.prio_count[i]) { 3279 guc_context_set_prio(guc, ce, i); 3280 break; 3281 } 3282 } 3283 } 3284 3285 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio) 3286 { 3287 /* Lower value is higher priority */ 3288 return new_guc_prio < old_guc_prio; 3289 } 3290 3291 static void add_to_context(struct i915_request *rq) 3292 { 3293 struct intel_context *ce = request_to_scheduling_context(rq); 3294 u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq)); 3295 3296 GEM_BUG_ON(intel_context_is_child(ce)); 3297 GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI); 3298 3299 spin_lock(&ce->guc_state.lock); 3300 list_move_tail(&rq->sched.link, &ce->guc_state.requests); 3301 3302 if (rq->guc_prio == GUC_PRIO_INIT) { 3303 rq->guc_prio = new_guc_prio; 3304 add_context_inflight_prio(ce, rq->guc_prio); 3305 } else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) { 3306 sub_context_inflight_prio(ce, rq->guc_prio); 3307 rq->guc_prio = new_guc_prio; 3308 add_context_inflight_prio(ce, rq->guc_prio); 3309 } 3310 update_context_prio(ce); 3311 3312 spin_unlock(&ce->guc_state.lock); 3313 } 3314 3315 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce) 3316 { 3317 lockdep_assert_held(&ce->guc_state.lock); 3318 3319 if (rq->guc_prio != GUC_PRIO_INIT && 3320 rq->guc_prio != GUC_PRIO_FINI) { 3321 sub_context_inflight_prio(ce, rq->guc_prio); 3322 update_context_prio(ce); 3323 } 3324 rq->guc_prio = GUC_PRIO_FINI; 3325 } 3326 3327 static void remove_from_context(struct i915_request *rq) 3328 { 3329 struct intel_context *ce = request_to_scheduling_context(rq); 3330 3331 GEM_BUG_ON(intel_context_is_child(ce)); 3332 3333 spin_lock_irq(&ce->guc_state.lock); 3334 3335 list_del_init(&rq->sched.link); 3336 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 3337 3338 /* Prevent further __await_execution() registering a cb, then flush */ 3339 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 3340 3341 guc_prio_fini(rq, ce); 3342 3343 decr_context_committed_requests(ce); 3344 3345 spin_unlock_irq(&ce->guc_state.lock); 3346 3347 atomic_dec(&ce->guc_id.ref); 3348 i915_request_notify_execute_cb_imm(rq); 3349 } 3350 3351 static const struct intel_context_ops guc_context_ops = { 3352 .alloc = guc_context_alloc, 3353 3354 .pre_pin = guc_context_pre_pin, 3355 .pin = guc_context_pin, 3356 .unpin = guc_context_unpin, 3357 .post_unpin = guc_context_post_unpin, 3358 3359 .revoke = guc_context_revoke, 3360 3361 .cancel_request = guc_context_cancel_request, 3362 3363 .enter = intel_context_enter_engine, 3364 .exit = intel_context_exit_engine, 3365 3366 .sched_disable = guc_context_sched_disable, 3367 3368 .reset = lrc_reset, 3369 .destroy = guc_context_destroy, 3370 3371 .create_virtual = guc_create_virtual, 3372 .create_parallel = guc_create_parallel, 3373 }; 3374 3375 static void submit_work_cb(struct irq_work *wrk) 3376 { 3377 struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work); 3378 3379 might_lock(&rq->engine->sched_engine->lock); 3380 i915_sw_fence_complete(&rq->submit); 3381 } 3382 3383 static void __guc_signal_context_fence(struct intel_context *ce) 3384 { 3385 struct i915_request *rq, *rn; 3386 3387 lockdep_assert_held(&ce->guc_state.lock); 3388 3389 if (!list_empty(&ce->guc_state.fences)) 3390 trace_intel_context_fence_release(ce); 3391 3392 /* 3393 * Use an IRQ to ensure locking order of sched_engine->lock -> 3394 * ce->guc_state.lock is preserved. 3395 */ 3396 list_for_each_entry_safe(rq, rn, &ce->guc_state.fences, 3397 guc_fence_link) { 3398 list_del(&rq->guc_fence_link); 3399 irq_work_queue(&rq->submit_work); 3400 } 3401 3402 INIT_LIST_HEAD(&ce->guc_state.fences); 3403 } 3404 3405 static void guc_signal_context_fence(struct intel_context *ce) 3406 { 3407 unsigned long flags; 3408 3409 GEM_BUG_ON(intel_context_is_child(ce)); 3410 3411 spin_lock_irqsave(&ce->guc_state.lock, flags); 3412 clr_context_wait_for_deregister_to_register(ce); 3413 __guc_signal_context_fence(ce); 3414 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3415 } 3416 3417 static bool context_needs_register(struct intel_context *ce, bool new_guc_id) 3418 { 3419 return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) || 3420 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) && 3421 !submission_disabled(ce_to_guc(ce)); 3422 } 3423 3424 static void guc_context_init(struct intel_context *ce) 3425 { 3426 const struct i915_gem_context *ctx; 3427 int prio = I915_CONTEXT_DEFAULT_PRIORITY; 3428 3429 rcu_read_lock(); 3430 ctx = rcu_dereference(ce->gem_context); 3431 if (ctx) 3432 prio = ctx->sched.priority; 3433 rcu_read_unlock(); 3434 3435 ce->guc_state.prio = map_i915_prio_to_guc_prio(prio); 3436 set_bit(CONTEXT_GUC_INIT, &ce->flags); 3437 } 3438 3439 static int guc_request_alloc(struct i915_request *rq) 3440 { 3441 struct intel_context *ce = request_to_scheduling_context(rq); 3442 struct intel_guc *guc = ce_to_guc(ce); 3443 unsigned long flags; 3444 int ret; 3445 3446 GEM_BUG_ON(!intel_context_is_pinned(rq->context)); 3447 3448 /* 3449 * Flush enough space to reduce the likelihood of waiting after 3450 * we start building the request - in which case we will just 3451 * have to repeat work. 3452 */ 3453 rq->reserved_space += GUC_REQUEST_SIZE; 3454 3455 /* 3456 * Note that after this point, we have committed to using 3457 * this request as it is being used to both track the 3458 * state of engine initialisation and liveness of the 3459 * golden renderstate above. Think twice before you try 3460 * to cancel/unwind this request now. 3461 */ 3462 3463 /* Unconditionally invalidate GPU caches and TLBs. */ 3464 ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 3465 if (ret) 3466 return ret; 3467 3468 rq->reserved_space -= GUC_REQUEST_SIZE; 3469 3470 if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags))) 3471 guc_context_init(ce); 3472 3473 /* 3474 * Call pin_guc_id here rather than in the pinning step as with 3475 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the 3476 * guc_id and creating horrible race conditions. This is especially bad 3477 * when guc_id are being stolen due to over subscription. By the time 3478 * this function is reached, it is guaranteed that the guc_id will be 3479 * persistent until the generated request is retired. Thus, sealing these 3480 * race conditions. It is still safe to fail here if guc_id are 3481 * exhausted and return -EAGAIN to the user indicating that they can try 3482 * again in the future. 3483 * 3484 * There is no need for a lock here as the timeline mutex ensures at 3485 * most one context can be executing this code path at once. The 3486 * guc_id_ref is incremented once for every request in flight and 3487 * decremented on each retire. When it is zero, a lock around the 3488 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id. 3489 */ 3490 if (atomic_add_unless(&ce->guc_id.ref, 1, 0)) 3491 goto out; 3492 3493 ret = pin_guc_id(guc, ce); /* returns 1 if new guc_id assigned */ 3494 if (unlikely(ret < 0)) 3495 return ret; 3496 if (context_needs_register(ce, !!ret)) { 3497 ret = try_context_registration(ce, true); 3498 if (unlikely(ret)) { /* unwind */ 3499 if (ret == -EPIPE) { 3500 disable_submission(guc); 3501 goto out; /* GPU will be reset */ 3502 } 3503 atomic_dec(&ce->guc_id.ref); 3504 unpin_guc_id(guc, ce); 3505 return ret; 3506 } 3507 } 3508 3509 clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags); 3510 3511 out: 3512 /* 3513 * We block all requests on this context if a G2H is pending for a 3514 * schedule disable or context deregistration as the GuC will fail a 3515 * schedule enable or context registration if either G2H is pending 3516 * respectfully. Once a G2H returns, the fence is released that is 3517 * blocking these requests (see guc_signal_context_fence). 3518 */ 3519 spin_lock_irqsave(&ce->guc_state.lock, flags); 3520 if (context_wait_for_deregister_to_register(ce) || 3521 context_pending_disable(ce)) { 3522 init_irq_work(&rq->submit_work, submit_work_cb); 3523 i915_sw_fence_await(&rq->submit); 3524 3525 list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences); 3526 } 3527 incr_context_committed_requests(ce); 3528 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3529 3530 return 0; 3531 } 3532 3533 static int guc_virtual_context_pre_pin(struct intel_context *ce, 3534 struct i915_gem_ww_ctx *ww, 3535 void **vaddr) 3536 { 3537 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3538 3539 return __guc_context_pre_pin(ce, engine, ww, vaddr); 3540 } 3541 3542 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr) 3543 { 3544 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3545 int ret = __guc_context_pin(ce, engine, vaddr); 3546 intel_engine_mask_t tmp, mask = ce->engine->mask; 3547 3548 if (likely(!ret)) 3549 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3550 intel_engine_pm_get(engine); 3551 3552 return ret; 3553 } 3554 3555 static void guc_virtual_context_unpin(struct intel_context *ce) 3556 { 3557 intel_engine_mask_t tmp, mask = ce->engine->mask; 3558 struct intel_engine_cs *engine; 3559 struct intel_guc *guc = ce_to_guc(ce); 3560 3561 GEM_BUG_ON(context_enabled(ce)); 3562 GEM_BUG_ON(intel_context_is_barrier(ce)); 3563 3564 unpin_guc_id(guc, ce); 3565 lrc_unpin(ce); 3566 3567 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3568 intel_engine_pm_put_async(engine); 3569 } 3570 3571 static void guc_virtual_context_enter(struct intel_context *ce) 3572 { 3573 intel_engine_mask_t tmp, mask = ce->engine->mask; 3574 struct intel_engine_cs *engine; 3575 3576 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3577 intel_engine_pm_get(engine); 3578 3579 intel_timeline_enter(ce->timeline); 3580 } 3581 3582 static void guc_virtual_context_exit(struct intel_context *ce) 3583 { 3584 intel_engine_mask_t tmp, mask = ce->engine->mask; 3585 struct intel_engine_cs *engine; 3586 3587 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3588 intel_engine_pm_put(engine); 3589 3590 intel_timeline_exit(ce->timeline); 3591 } 3592 3593 static int guc_virtual_context_alloc(struct intel_context *ce) 3594 { 3595 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3596 3597 return lrc_alloc(ce, engine); 3598 } 3599 3600 static const struct intel_context_ops virtual_guc_context_ops = { 3601 .alloc = guc_virtual_context_alloc, 3602 3603 .pre_pin = guc_virtual_context_pre_pin, 3604 .pin = guc_virtual_context_pin, 3605 .unpin = guc_virtual_context_unpin, 3606 .post_unpin = guc_context_post_unpin, 3607 3608 .revoke = guc_context_revoke, 3609 3610 .cancel_request = guc_context_cancel_request, 3611 3612 .enter = guc_virtual_context_enter, 3613 .exit = guc_virtual_context_exit, 3614 3615 .sched_disable = guc_context_sched_disable, 3616 3617 .destroy = guc_context_destroy, 3618 3619 .get_sibling = guc_virtual_get_sibling, 3620 }; 3621 3622 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr) 3623 { 3624 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3625 struct intel_guc *guc = ce_to_guc(ce); 3626 int ret; 3627 3628 GEM_BUG_ON(!intel_context_is_parent(ce)); 3629 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3630 3631 ret = pin_guc_id(guc, ce); 3632 if (unlikely(ret < 0)) 3633 return ret; 3634 3635 return __guc_context_pin(ce, engine, vaddr); 3636 } 3637 3638 static int guc_child_context_pin(struct intel_context *ce, void *vaddr) 3639 { 3640 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3641 3642 GEM_BUG_ON(!intel_context_is_child(ce)); 3643 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3644 3645 __intel_context_pin(ce->parallel.parent); 3646 return __guc_context_pin(ce, engine, vaddr); 3647 } 3648 3649 static void guc_parent_context_unpin(struct intel_context *ce) 3650 { 3651 struct intel_guc *guc = ce_to_guc(ce); 3652 3653 GEM_BUG_ON(context_enabled(ce)); 3654 GEM_BUG_ON(intel_context_is_barrier(ce)); 3655 GEM_BUG_ON(!intel_context_is_parent(ce)); 3656 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3657 3658 unpin_guc_id(guc, ce); 3659 lrc_unpin(ce); 3660 } 3661 3662 static void guc_child_context_unpin(struct intel_context *ce) 3663 { 3664 GEM_BUG_ON(context_enabled(ce)); 3665 GEM_BUG_ON(intel_context_is_barrier(ce)); 3666 GEM_BUG_ON(!intel_context_is_child(ce)); 3667 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3668 3669 lrc_unpin(ce); 3670 } 3671 3672 static void guc_child_context_post_unpin(struct intel_context *ce) 3673 { 3674 GEM_BUG_ON(!intel_context_is_child(ce)); 3675 GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent)); 3676 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3677 3678 lrc_post_unpin(ce); 3679 intel_context_unpin(ce->parallel.parent); 3680 } 3681 3682 static void guc_child_context_destroy(struct kref *kref) 3683 { 3684 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 3685 3686 __guc_context_destroy(ce); 3687 } 3688 3689 static const struct intel_context_ops virtual_parent_context_ops = { 3690 .alloc = guc_virtual_context_alloc, 3691 3692 .pre_pin = guc_context_pre_pin, 3693 .pin = guc_parent_context_pin, 3694 .unpin = guc_parent_context_unpin, 3695 .post_unpin = guc_context_post_unpin, 3696 3697 .revoke = guc_context_revoke, 3698 3699 .cancel_request = guc_context_cancel_request, 3700 3701 .enter = guc_virtual_context_enter, 3702 .exit = guc_virtual_context_exit, 3703 3704 .sched_disable = guc_context_sched_disable, 3705 3706 .destroy = guc_context_destroy, 3707 3708 .get_sibling = guc_virtual_get_sibling, 3709 }; 3710 3711 static const struct intel_context_ops virtual_child_context_ops = { 3712 .alloc = guc_virtual_context_alloc, 3713 3714 .pre_pin = guc_context_pre_pin, 3715 .pin = guc_child_context_pin, 3716 .unpin = guc_child_context_unpin, 3717 .post_unpin = guc_child_context_post_unpin, 3718 3719 .cancel_request = guc_context_cancel_request, 3720 3721 .enter = guc_virtual_context_enter, 3722 .exit = guc_virtual_context_exit, 3723 3724 .destroy = guc_child_context_destroy, 3725 3726 .get_sibling = guc_virtual_get_sibling, 3727 }; 3728 3729 /* 3730 * The below override of the breadcrumbs is enabled when the user configures a 3731 * context for parallel submission (multi-lrc, parent-child). 3732 * 3733 * The overridden breadcrumbs implements an algorithm which allows the GuC to 3734 * safely preempt all the hw contexts configured for parallel submission 3735 * between each BB. The contract between the i915 and GuC is if the parent 3736 * context can be preempted, all the children can be preempted, and the GuC will 3737 * always try to preempt the parent before the children. A handshake between the 3738 * parent / children breadcrumbs ensures the i915 holds up its end of the deal 3739 * creating a window to preempt between each set of BBs. 3740 */ 3741 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, 3742 u64 offset, u32 len, 3743 const unsigned int flags); 3744 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, 3745 u64 offset, u32 len, 3746 const unsigned int flags); 3747 static u32 * 3748 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 3749 u32 *cs); 3750 static u32 * 3751 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 3752 u32 *cs); 3753 3754 static struct intel_context * 3755 guc_create_parallel(struct intel_engine_cs **engines, 3756 unsigned int num_siblings, 3757 unsigned int width) 3758 { 3759 struct intel_engine_cs **siblings = NULL; 3760 struct intel_context *parent = NULL, *ce, *err; 3761 int i, j; 3762 3763 siblings = kmalloc_array(num_siblings, 3764 sizeof(*siblings), 3765 GFP_KERNEL); 3766 if (!siblings) 3767 return ERR_PTR(-ENOMEM); 3768 3769 for (i = 0; i < width; ++i) { 3770 for (j = 0; j < num_siblings; ++j) 3771 siblings[j] = engines[i * num_siblings + j]; 3772 3773 ce = intel_engine_create_virtual(siblings, num_siblings, 3774 FORCE_VIRTUAL); 3775 if (IS_ERR(ce)) { 3776 err = ERR_CAST(ce); 3777 goto unwind; 3778 } 3779 3780 if (i == 0) { 3781 parent = ce; 3782 parent->ops = &virtual_parent_context_ops; 3783 } else { 3784 ce->ops = &virtual_child_context_ops; 3785 intel_context_bind_parent_child(parent, ce); 3786 } 3787 } 3788 3789 parent->parallel.fence_context = dma_fence_context_alloc(1); 3790 3791 parent->engine->emit_bb_start = 3792 emit_bb_start_parent_no_preempt_mid_batch; 3793 parent->engine->emit_fini_breadcrumb = 3794 emit_fini_breadcrumb_parent_no_preempt_mid_batch; 3795 parent->engine->emit_fini_breadcrumb_dw = 3796 12 + 4 * parent->parallel.number_children; 3797 for_each_child(parent, ce) { 3798 ce->engine->emit_bb_start = 3799 emit_bb_start_child_no_preempt_mid_batch; 3800 ce->engine->emit_fini_breadcrumb = 3801 emit_fini_breadcrumb_child_no_preempt_mid_batch; 3802 ce->engine->emit_fini_breadcrumb_dw = 16; 3803 } 3804 3805 kfree(siblings); 3806 return parent; 3807 3808 unwind: 3809 if (parent) 3810 intel_context_put(parent); 3811 kfree(siblings); 3812 return err; 3813 } 3814 3815 static bool 3816 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b) 3817 { 3818 struct intel_engine_cs *sibling; 3819 intel_engine_mask_t tmp, mask = b->engine_mask; 3820 bool result = false; 3821 3822 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) 3823 result |= intel_engine_irq_enable(sibling); 3824 3825 return result; 3826 } 3827 3828 static void 3829 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b) 3830 { 3831 struct intel_engine_cs *sibling; 3832 intel_engine_mask_t tmp, mask = b->engine_mask; 3833 3834 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) 3835 intel_engine_irq_disable(sibling); 3836 } 3837 3838 static void guc_init_breadcrumbs(struct intel_engine_cs *engine) 3839 { 3840 int i; 3841 3842 /* 3843 * In GuC submission mode we do not know which physical engine a request 3844 * will be scheduled on, this creates a problem because the breadcrumb 3845 * interrupt is per physical engine. To work around this we attach 3846 * requests and direct all breadcrumb interrupts to the first instance 3847 * of an engine per class. In addition all breadcrumb interrupts are 3848 * enabled / disabled across an engine class in unison. 3849 */ 3850 for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) { 3851 struct intel_engine_cs *sibling = 3852 engine->gt->engine_class[engine->class][i]; 3853 3854 if (sibling) { 3855 if (engine->breadcrumbs != sibling->breadcrumbs) { 3856 intel_breadcrumbs_put(engine->breadcrumbs); 3857 engine->breadcrumbs = 3858 intel_breadcrumbs_get(sibling->breadcrumbs); 3859 } 3860 break; 3861 } 3862 } 3863 3864 if (engine->breadcrumbs) { 3865 engine->breadcrumbs->engine_mask |= engine->mask; 3866 engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs; 3867 engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs; 3868 } 3869 } 3870 3871 static void guc_bump_inflight_request_prio(struct i915_request *rq, 3872 int prio) 3873 { 3874 struct intel_context *ce = request_to_scheduling_context(rq); 3875 u8 new_guc_prio = map_i915_prio_to_guc_prio(prio); 3876 3877 /* Short circuit function */ 3878 if (prio < I915_PRIORITY_NORMAL || 3879 rq->guc_prio == GUC_PRIO_FINI || 3880 (rq->guc_prio != GUC_PRIO_INIT && 3881 !new_guc_prio_higher(rq->guc_prio, new_guc_prio))) 3882 return; 3883 3884 spin_lock(&ce->guc_state.lock); 3885 if (rq->guc_prio != GUC_PRIO_FINI) { 3886 if (rq->guc_prio != GUC_PRIO_INIT) 3887 sub_context_inflight_prio(ce, rq->guc_prio); 3888 rq->guc_prio = new_guc_prio; 3889 add_context_inflight_prio(ce, rq->guc_prio); 3890 update_context_prio(ce); 3891 } 3892 spin_unlock(&ce->guc_state.lock); 3893 } 3894 3895 static void guc_retire_inflight_request_prio(struct i915_request *rq) 3896 { 3897 struct intel_context *ce = request_to_scheduling_context(rq); 3898 3899 spin_lock(&ce->guc_state.lock); 3900 guc_prio_fini(rq, ce); 3901 spin_unlock(&ce->guc_state.lock); 3902 } 3903 3904 static void sanitize_hwsp(struct intel_engine_cs *engine) 3905 { 3906 struct intel_timeline *tl; 3907 3908 list_for_each_entry(tl, &engine->status_page.timelines, engine_link) 3909 intel_timeline_reset_seqno(tl); 3910 } 3911 3912 static void guc_sanitize(struct intel_engine_cs *engine) 3913 { 3914 /* 3915 * Poison residual state on resume, in case the suspend didn't! 3916 * 3917 * We have to assume that across suspend/resume (or other loss 3918 * of control) that the contents of our pinned buffers has been 3919 * lost, replaced by garbage. Since this doesn't always happen, 3920 * let's poison such state so that we more quickly spot when 3921 * we falsely assume it has been preserved. 3922 */ 3923 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 3924 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE); 3925 3926 /* 3927 * The kernel_context HWSP is stored in the status_page. As above, 3928 * that may be lost on resume/initialisation, and so we need to 3929 * reset the value in the HWSP. 3930 */ 3931 sanitize_hwsp(engine); 3932 3933 /* And scrub the dirty cachelines for the HWSP */ 3934 drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE); 3935 3936 intel_engine_reset_pinned_contexts(engine); 3937 } 3938 3939 static void setup_hwsp(struct intel_engine_cs *engine) 3940 { 3941 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */ 3942 3943 ENGINE_WRITE_FW(engine, 3944 RING_HWS_PGA, 3945 i915_ggtt_offset(engine->status_page.vma)); 3946 } 3947 3948 static void start_engine(struct intel_engine_cs *engine) 3949 { 3950 ENGINE_WRITE_FW(engine, 3951 RING_MODE_GEN7, 3952 _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE)); 3953 3954 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 3955 ENGINE_POSTING_READ(engine, RING_MI_MODE); 3956 } 3957 3958 static int guc_resume(struct intel_engine_cs *engine) 3959 { 3960 assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL); 3961 3962 intel_mocs_init_engine(engine); 3963 3964 intel_breadcrumbs_reset(engine->breadcrumbs); 3965 3966 setup_hwsp(engine); 3967 start_engine(engine); 3968 3969 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) 3970 xehp_enable_ccs_engines(engine); 3971 3972 return 0; 3973 } 3974 3975 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine) 3976 { 3977 return !sched_engine->tasklet.callback; 3978 } 3979 3980 static void guc_set_default_submission(struct intel_engine_cs *engine) 3981 { 3982 engine->submit_request = guc_submit_request; 3983 } 3984 3985 static inline void guc_kernel_context_pin(struct intel_guc *guc, 3986 struct intel_context *ce) 3987 { 3988 /* 3989 * Note: we purposefully do not check the returns below because 3990 * the registration can only fail if a reset is just starting. 3991 * This is called at the end of reset so presumably another reset 3992 * isn't happening and even it did this code would be run again. 3993 */ 3994 3995 if (context_guc_id_invalid(ce)) 3996 pin_guc_id(guc, ce); 3997 3998 try_context_registration(ce, true); 3999 } 4000 4001 static inline void guc_init_lrc_mapping(struct intel_guc *guc) 4002 { 4003 struct intel_gt *gt = guc_to_gt(guc); 4004 struct intel_engine_cs *engine; 4005 enum intel_engine_id id; 4006 4007 /* make sure all descriptors are clean... */ 4008 xa_destroy(&guc->context_lookup); 4009 4010 /* 4011 * A reset might have occurred while we had a pending stalled request, 4012 * so make sure we clean that up. 4013 */ 4014 guc->stalled_request = NULL; 4015 guc->submission_stall_reason = STALL_NONE; 4016 4017 /* 4018 * Some contexts might have been pinned before we enabled GuC 4019 * submission, so we need to add them to the GuC bookeeping. 4020 * Also, after a reset the of the GuC we want to make sure that the 4021 * information shared with GuC is properly reset. The kernel LRCs are 4022 * not attached to the gem_context, so they need to be added separately. 4023 */ 4024 for_each_engine(engine, gt, id) { 4025 struct intel_context *ce; 4026 4027 list_for_each_entry(ce, &engine->pinned_contexts_list, 4028 pinned_contexts_link) 4029 guc_kernel_context_pin(guc, ce); 4030 } 4031 } 4032 4033 static void guc_release(struct intel_engine_cs *engine) 4034 { 4035 engine->sanitize = NULL; /* no longer in control, nothing to sanitize */ 4036 4037 intel_engine_cleanup_common(engine); 4038 lrc_fini_wa_ctx(engine); 4039 } 4040 4041 static void virtual_guc_bump_serial(struct intel_engine_cs *engine) 4042 { 4043 struct intel_engine_cs *e; 4044 intel_engine_mask_t tmp, mask = engine->mask; 4045 4046 for_each_engine_masked(e, engine->gt, mask, tmp) 4047 e->serial++; 4048 } 4049 4050 static void guc_default_vfuncs(struct intel_engine_cs *engine) 4051 { 4052 /* Default vfuncs which can be overridden by each engine. */ 4053 4054 engine->resume = guc_resume; 4055 4056 engine->cops = &guc_context_ops; 4057 engine->request_alloc = guc_request_alloc; 4058 engine->add_active_request = add_to_context; 4059 engine->remove_active_request = remove_from_context; 4060 4061 engine->sched_engine->schedule = i915_schedule; 4062 4063 engine->reset.prepare = guc_engine_reset_prepare; 4064 engine->reset.rewind = guc_rewind_nop; 4065 engine->reset.cancel = guc_reset_nop; 4066 engine->reset.finish = guc_reset_nop; 4067 4068 engine->emit_flush = gen8_emit_flush_xcs; 4069 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb; 4070 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs; 4071 if (GRAPHICS_VER(engine->i915) >= 12) { 4072 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs; 4073 engine->emit_flush = gen12_emit_flush_xcs; 4074 } 4075 engine->set_default_submission = guc_set_default_submission; 4076 engine->busyness = guc_engine_busyness; 4077 4078 engine->flags |= I915_ENGINE_SUPPORTS_STATS; 4079 engine->flags |= I915_ENGINE_HAS_PREEMPTION; 4080 engine->flags |= I915_ENGINE_HAS_TIMESLICES; 4081 4082 /* Wa_14014475959:dg2 */ 4083 if (IS_DG2(engine->i915) && engine->class == COMPUTE_CLASS) 4084 engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT; 4085 4086 /* 4087 * TODO: GuC supports timeslicing and semaphores as well, but they're 4088 * handled by the firmware so some minor tweaks are required before 4089 * enabling. 4090 * 4091 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES; 4092 */ 4093 4094 engine->emit_bb_start = gen8_emit_bb_start; 4095 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) 4096 engine->emit_bb_start = gen125_emit_bb_start; 4097 } 4098 4099 static void rcs_submission_override(struct intel_engine_cs *engine) 4100 { 4101 switch (GRAPHICS_VER(engine->i915)) { 4102 case 12: 4103 engine->emit_flush = gen12_emit_flush_rcs; 4104 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs; 4105 break; 4106 case 11: 4107 engine->emit_flush = gen11_emit_flush_rcs; 4108 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs; 4109 break; 4110 default: 4111 engine->emit_flush = gen8_emit_flush_rcs; 4112 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs; 4113 break; 4114 } 4115 } 4116 4117 static inline void guc_default_irqs(struct intel_engine_cs *engine) 4118 { 4119 engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT; 4120 intel_engine_set_irq_handler(engine, cs_irq_handler); 4121 } 4122 4123 static void guc_sched_engine_destroy(struct kref *kref) 4124 { 4125 struct i915_sched_engine *sched_engine = 4126 container_of(kref, typeof(*sched_engine), ref); 4127 struct intel_guc *guc = sched_engine->private_data; 4128 4129 guc->sched_engine = NULL; 4130 tasklet_kill(&sched_engine->tasklet); /* flush the callback */ 4131 kfree(sched_engine); 4132 } 4133 4134 int intel_guc_submission_setup(struct intel_engine_cs *engine) 4135 { 4136 struct drm_i915_private *i915 = engine->i915; 4137 struct intel_guc *guc = &engine->gt->uc.guc; 4138 4139 /* 4140 * The setup relies on several assumptions (e.g. irqs always enabled) 4141 * that are only valid on gen11+ 4142 */ 4143 GEM_BUG_ON(GRAPHICS_VER(i915) < 11); 4144 4145 if (!guc->sched_engine) { 4146 guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL); 4147 if (!guc->sched_engine) 4148 return -ENOMEM; 4149 4150 guc->sched_engine->schedule = i915_schedule; 4151 guc->sched_engine->disabled = guc_sched_engine_disabled; 4152 guc->sched_engine->private_data = guc; 4153 guc->sched_engine->destroy = guc_sched_engine_destroy; 4154 guc->sched_engine->bump_inflight_request_prio = 4155 guc_bump_inflight_request_prio; 4156 guc->sched_engine->retire_inflight_request_prio = 4157 guc_retire_inflight_request_prio; 4158 tasklet_setup(&guc->sched_engine->tasklet, 4159 guc_submission_tasklet); 4160 } 4161 i915_sched_engine_put(engine->sched_engine); 4162 engine->sched_engine = i915_sched_engine_get(guc->sched_engine); 4163 4164 guc_default_vfuncs(engine); 4165 guc_default_irqs(engine); 4166 guc_init_breadcrumbs(engine); 4167 4168 if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) 4169 rcs_submission_override(engine); 4170 4171 lrc_init_wa_ctx(engine); 4172 4173 /* Finally, take ownership and responsibility for cleanup! */ 4174 engine->sanitize = guc_sanitize; 4175 engine->release = guc_release; 4176 4177 return 0; 4178 } 4179 4180 void intel_guc_submission_enable(struct intel_guc *guc) 4181 { 4182 struct intel_gt *gt = guc_to_gt(guc); 4183 4184 /* Enable and route to GuC */ 4185 if (GRAPHICS_VER(gt->i915) >= 12) 4186 intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, 4187 GUC_SEM_INTR_ROUTE_TO_GUC | 4188 GUC_SEM_INTR_ENABLE_ALL); 4189 4190 guc_init_lrc_mapping(guc); 4191 guc_init_engine_stats(guc); 4192 } 4193 4194 void intel_guc_submission_disable(struct intel_guc *guc) 4195 { 4196 struct intel_gt *gt = guc_to_gt(guc); 4197 4198 /* Note: By the time we're here, GuC may have already been reset */ 4199 4200 /* Disable and route to host */ 4201 if (GRAPHICS_VER(gt->i915) >= 12) 4202 intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, 0x0); 4203 } 4204 4205 static bool __guc_submission_supported(struct intel_guc *guc) 4206 { 4207 /* GuC submission is unavailable for pre-Gen11 */ 4208 return intel_guc_is_supported(guc) && 4209 GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11; 4210 } 4211 4212 static bool __guc_submission_selected(struct intel_guc *guc) 4213 { 4214 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 4215 4216 if (!intel_guc_submission_is_supported(guc)) 4217 return false; 4218 4219 return i915->params.enable_guc & ENABLE_GUC_SUBMISSION; 4220 } 4221 4222 void intel_guc_submission_init_early(struct intel_guc *guc) 4223 { 4224 xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ); 4225 4226 spin_lock_init(&guc->submission_state.lock); 4227 INIT_LIST_HEAD(&guc->submission_state.guc_id_list); 4228 ida_init(&guc->submission_state.guc_ids); 4229 INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts); 4230 INIT_WORK(&guc->submission_state.destroyed_worker, 4231 destroyed_worker_func); 4232 INIT_WORK(&guc->submission_state.reset_fail_worker, 4233 reset_fail_worker_func); 4234 4235 spin_lock_init(&guc->timestamp.lock); 4236 INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping); 4237 4238 guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID; 4239 guc->submission_supported = __guc_submission_supported(guc); 4240 guc->submission_selected = __guc_submission_selected(guc); 4241 } 4242 4243 static inline struct intel_context * 4244 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id) 4245 { 4246 struct intel_context *ce; 4247 4248 if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) { 4249 drm_err(&guc_to_gt(guc)->i915->drm, 4250 "Invalid ctx_id %u\n", ctx_id); 4251 return NULL; 4252 } 4253 4254 ce = __get_context(guc, ctx_id); 4255 if (unlikely(!ce)) { 4256 drm_err(&guc_to_gt(guc)->i915->drm, 4257 "Context is NULL, ctx_id %u\n", ctx_id); 4258 return NULL; 4259 } 4260 4261 if (unlikely(intel_context_is_child(ce))) { 4262 drm_err(&guc_to_gt(guc)->i915->drm, 4263 "Context is child, ctx_id %u\n", ctx_id); 4264 return NULL; 4265 } 4266 4267 return ce; 4268 } 4269 4270 int intel_guc_deregister_done_process_msg(struct intel_guc *guc, 4271 const u32 *msg, 4272 u32 len) 4273 { 4274 struct intel_context *ce; 4275 u32 ctx_id; 4276 4277 if (unlikely(len < 1)) { 4278 drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len); 4279 return -EPROTO; 4280 } 4281 ctx_id = msg[0]; 4282 4283 ce = g2h_context_lookup(guc, ctx_id); 4284 if (unlikely(!ce)) 4285 return -EPROTO; 4286 4287 trace_intel_context_deregister_done(ce); 4288 4289 #ifdef CONFIG_DRM_I915_SELFTEST 4290 if (unlikely(ce->drop_deregister)) { 4291 ce->drop_deregister = false; 4292 return 0; 4293 } 4294 #endif 4295 4296 if (context_wait_for_deregister_to_register(ce)) { 4297 struct intel_runtime_pm *runtime_pm = 4298 &ce->engine->gt->i915->runtime_pm; 4299 intel_wakeref_t wakeref; 4300 4301 /* 4302 * Previous owner of this guc_id has been deregistered, now safe 4303 * register this context. 4304 */ 4305 with_intel_runtime_pm(runtime_pm, wakeref) 4306 register_context(ce, true); 4307 guc_signal_context_fence(ce); 4308 intel_context_put(ce); 4309 } else if (context_destroyed(ce)) { 4310 /* Context has been destroyed */ 4311 intel_gt_pm_put_async(guc_to_gt(guc)); 4312 release_guc_id(guc, ce); 4313 __guc_context_destroy(ce); 4314 } 4315 4316 decr_outstanding_submission_g2h(guc); 4317 4318 return 0; 4319 } 4320 4321 int intel_guc_sched_done_process_msg(struct intel_guc *guc, 4322 const u32 *msg, 4323 u32 len) 4324 { 4325 struct intel_context *ce; 4326 unsigned long flags; 4327 u32 ctx_id; 4328 4329 if (unlikely(len < 2)) { 4330 drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len); 4331 return -EPROTO; 4332 } 4333 ctx_id = msg[0]; 4334 4335 ce = g2h_context_lookup(guc, ctx_id); 4336 if (unlikely(!ce)) 4337 return -EPROTO; 4338 4339 if (unlikely(context_destroyed(ce) || 4340 (!context_pending_enable(ce) && 4341 !context_pending_disable(ce)))) { 4342 drm_err(&guc_to_gt(guc)->i915->drm, 4343 "Bad context sched_state 0x%x, ctx_id %u\n", 4344 ce->guc_state.sched_state, ctx_id); 4345 return -EPROTO; 4346 } 4347 4348 trace_intel_context_sched_done(ce); 4349 4350 if (context_pending_enable(ce)) { 4351 #ifdef CONFIG_DRM_I915_SELFTEST 4352 if (unlikely(ce->drop_schedule_enable)) { 4353 ce->drop_schedule_enable = false; 4354 return 0; 4355 } 4356 #endif 4357 4358 spin_lock_irqsave(&ce->guc_state.lock, flags); 4359 clr_context_pending_enable(ce); 4360 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 4361 } else if (context_pending_disable(ce)) { 4362 bool banned; 4363 4364 #ifdef CONFIG_DRM_I915_SELFTEST 4365 if (unlikely(ce->drop_schedule_disable)) { 4366 ce->drop_schedule_disable = false; 4367 return 0; 4368 } 4369 #endif 4370 4371 /* 4372 * Unpin must be done before __guc_signal_context_fence, 4373 * otherwise a race exists between the requests getting 4374 * submitted + retired before this unpin completes resulting in 4375 * the pin_count going to zero and the context still being 4376 * enabled. 4377 */ 4378 intel_context_sched_disable_unpin(ce); 4379 4380 spin_lock_irqsave(&ce->guc_state.lock, flags); 4381 banned = context_banned(ce); 4382 clr_context_banned(ce); 4383 clr_context_pending_disable(ce); 4384 __guc_signal_context_fence(ce); 4385 guc_blocked_fence_complete(ce); 4386 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 4387 4388 if (banned) { 4389 guc_cancel_context_requests(ce); 4390 intel_engine_signal_breadcrumbs(ce->engine); 4391 } 4392 } 4393 4394 decr_outstanding_submission_g2h(guc); 4395 intel_context_put(ce); 4396 4397 return 0; 4398 } 4399 4400 static void capture_error_state(struct intel_guc *guc, 4401 struct intel_context *ce) 4402 { 4403 struct intel_gt *gt = guc_to_gt(guc); 4404 struct drm_i915_private *i915 = gt->i915; 4405 struct intel_engine_cs *engine = __context_to_physical_engine(ce); 4406 intel_wakeref_t wakeref; 4407 4408 intel_engine_set_hung_context(engine, ce); 4409 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 4410 i915_capture_error_state(gt, engine->mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE); 4411 atomic_inc(&i915->gpu_error.reset_engine_count[engine->uabi_class]); 4412 } 4413 4414 static void guc_context_replay(struct intel_context *ce) 4415 { 4416 struct i915_sched_engine *sched_engine = ce->engine->sched_engine; 4417 4418 __guc_reset_context(ce, ce->engine->mask); 4419 tasklet_hi_schedule(&sched_engine->tasklet); 4420 } 4421 4422 static void guc_handle_context_reset(struct intel_guc *guc, 4423 struct intel_context *ce) 4424 { 4425 trace_intel_context_reset(ce); 4426 4427 if (likely(intel_context_is_schedulable(ce))) { 4428 capture_error_state(guc, ce); 4429 guc_context_replay(ce); 4430 } else { 4431 drm_info(&guc_to_gt(guc)->i915->drm, 4432 "Ignoring context reset notification of exiting context 0x%04X on %s", 4433 ce->guc_id.id, ce->engine->name); 4434 } 4435 } 4436 4437 int intel_guc_context_reset_process_msg(struct intel_guc *guc, 4438 const u32 *msg, u32 len) 4439 { 4440 struct intel_context *ce; 4441 unsigned long flags; 4442 int ctx_id; 4443 4444 if (unlikely(len != 1)) { 4445 drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len); 4446 return -EPROTO; 4447 } 4448 4449 ctx_id = msg[0]; 4450 4451 /* 4452 * The context lookup uses the xarray but lookups only require an RCU lock 4453 * not the full spinlock. So take the lock explicitly and keep it until the 4454 * context has been reference count locked to ensure it can't be destroyed 4455 * asynchronously until the reset is done. 4456 */ 4457 xa_lock_irqsave(&guc->context_lookup, flags); 4458 ce = g2h_context_lookup(guc, ctx_id); 4459 if (ce) 4460 intel_context_get(ce); 4461 xa_unlock_irqrestore(&guc->context_lookup, flags); 4462 4463 if (unlikely(!ce)) 4464 return -EPROTO; 4465 4466 guc_handle_context_reset(guc, ce); 4467 intel_context_put(ce); 4468 4469 return 0; 4470 } 4471 4472 int intel_guc_error_capture_process_msg(struct intel_guc *guc, 4473 const u32 *msg, u32 len) 4474 { 4475 u32 status; 4476 4477 if (unlikely(len != 1)) { 4478 drm_dbg(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len); 4479 return -EPROTO; 4480 } 4481 4482 status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK; 4483 if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE) 4484 drm_warn(&guc_to_gt(guc)->i915->drm, "G2H-Error capture no space"); 4485 4486 intel_guc_capture_process(guc); 4487 4488 return 0; 4489 } 4490 4491 struct intel_engine_cs * 4492 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance) 4493 { 4494 struct intel_gt *gt = guc_to_gt(guc); 4495 u8 engine_class = guc_class_to_engine_class(guc_class); 4496 4497 /* Class index is checked in class converter */ 4498 GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE); 4499 4500 return gt->engine_class[engine_class][instance]; 4501 } 4502 4503 static void reset_fail_worker_func(struct work_struct *w) 4504 { 4505 struct intel_guc *guc = container_of(w, struct intel_guc, 4506 submission_state.reset_fail_worker); 4507 struct intel_gt *gt = guc_to_gt(guc); 4508 intel_engine_mask_t reset_fail_mask; 4509 unsigned long flags; 4510 4511 spin_lock_irqsave(&guc->submission_state.lock, flags); 4512 reset_fail_mask = guc->submission_state.reset_fail_mask; 4513 guc->submission_state.reset_fail_mask = 0; 4514 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 4515 4516 if (likely(reset_fail_mask)) 4517 intel_gt_handle_error(gt, reset_fail_mask, 4518 I915_ERROR_CAPTURE, 4519 "GuC failed to reset engine mask=0x%x\n", 4520 reset_fail_mask); 4521 } 4522 4523 int intel_guc_engine_failure_process_msg(struct intel_guc *guc, 4524 const u32 *msg, u32 len) 4525 { 4526 struct intel_engine_cs *engine; 4527 struct intel_gt *gt = guc_to_gt(guc); 4528 u8 guc_class, instance; 4529 u32 reason; 4530 unsigned long flags; 4531 4532 if (unlikely(len != 3)) { 4533 drm_err(>->i915->drm, "Invalid length %u", len); 4534 return -EPROTO; 4535 } 4536 4537 guc_class = msg[0]; 4538 instance = msg[1]; 4539 reason = msg[2]; 4540 4541 engine = intel_guc_lookup_engine(guc, guc_class, instance); 4542 if (unlikely(!engine)) { 4543 drm_err(>->i915->drm, 4544 "Invalid engine %d:%d", guc_class, instance); 4545 return -EPROTO; 4546 } 4547 4548 /* 4549 * This is an unexpected failure of a hardware feature. So, log a real 4550 * error message not just the informational that comes with the reset. 4551 */ 4552 drm_err(>->i915->drm, "GuC engine reset request failed on %d:%d (%s) because 0x%08X", 4553 guc_class, instance, engine->name, reason); 4554 4555 spin_lock_irqsave(&guc->submission_state.lock, flags); 4556 guc->submission_state.reset_fail_mask |= engine->mask; 4557 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 4558 4559 /* 4560 * A GT reset flushes this worker queue (G2H handler) so we must use 4561 * another worker to trigger a GT reset. 4562 */ 4563 queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker); 4564 4565 return 0; 4566 } 4567 4568 void intel_guc_find_hung_context(struct intel_engine_cs *engine) 4569 { 4570 struct intel_guc *guc = &engine->gt->uc.guc; 4571 struct intel_context *ce; 4572 struct i915_request *rq; 4573 unsigned long index; 4574 unsigned long flags; 4575 4576 /* Reset called during driver load? GuC not yet initialised! */ 4577 if (unlikely(!guc_submission_initialized(guc))) 4578 return; 4579 4580 xa_lock_irqsave(&guc->context_lookup, flags); 4581 xa_for_each(&guc->context_lookup, index, ce) { 4582 if (!kref_get_unless_zero(&ce->ref)) 4583 continue; 4584 4585 xa_unlock(&guc->context_lookup); 4586 4587 if (!intel_context_is_pinned(ce)) 4588 goto next; 4589 4590 if (intel_engine_is_virtual(ce->engine)) { 4591 if (!(ce->engine->mask & engine->mask)) 4592 goto next; 4593 } else { 4594 if (ce->engine != engine) 4595 goto next; 4596 } 4597 4598 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) { 4599 if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE) 4600 continue; 4601 4602 intel_engine_set_hung_context(engine, ce); 4603 4604 /* Can only cope with one hang at a time... */ 4605 intel_context_put(ce); 4606 xa_lock(&guc->context_lookup); 4607 goto done; 4608 } 4609 next: 4610 intel_context_put(ce); 4611 xa_lock(&guc->context_lookup); 4612 } 4613 done: 4614 xa_unlock_irqrestore(&guc->context_lookup, flags); 4615 } 4616 4617 void intel_guc_dump_active_requests(struct intel_engine_cs *engine, 4618 struct i915_request *hung_rq, 4619 struct drm_printer *m) 4620 { 4621 struct intel_guc *guc = &engine->gt->uc.guc; 4622 struct intel_context *ce; 4623 unsigned long index; 4624 unsigned long flags; 4625 4626 /* Reset called during driver load? GuC not yet initialised! */ 4627 if (unlikely(!guc_submission_initialized(guc))) 4628 return; 4629 4630 xa_lock_irqsave(&guc->context_lookup, flags); 4631 xa_for_each(&guc->context_lookup, index, ce) { 4632 if (!kref_get_unless_zero(&ce->ref)) 4633 continue; 4634 4635 xa_unlock(&guc->context_lookup); 4636 4637 if (!intel_context_is_pinned(ce)) 4638 goto next; 4639 4640 if (intel_engine_is_virtual(ce->engine)) { 4641 if (!(ce->engine->mask & engine->mask)) 4642 goto next; 4643 } else { 4644 if (ce->engine != engine) 4645 goto next; 4646 } 4647 4648 spin_lock(&ce->guc_state.lock); 4649 intel_engine_dump_active_requests(&ce->guc_state.requests, 4650 hung_rq, m); 4651 spin_unlock(&ce->guc_state.lock); 4652 4653 next: 4654 intel_context_put(ce); 4655 xa_lock(&guc->context_lookup); 4656 } 4657 xa_unlock_irqrestore(&guc->context_lookup, flags); 4658 } 4659 4660 void intel_guc_submission_print_info(struct intel_guc *guc, 4661 struct drm_printer *p) 4662 { 4663 struct i915_sched_engine *sched_engine = guc->sched_engine; 4664 struct rb_node *rb; 4665 unsigned long flags; 4666 4667 if (!sched_engine) 4668 return; 4669 4670 drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n", 4671 atomic_read(&guc->outstanding_submission_g2h)); 4672 drm_printf(p, "GuC tasklet count: %u\n\n", 4673 atomic_read(&sched_engine->tasklet.count)); 4674 4675 spin_lock_irqsave(&sched_engine->lock, flags); 4676 drm_printf(p, "Requests in GuC submit tasklet:\n"); 4677 for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) { 4678 struct i915_priolist *pl = to_priolist(rb); 4679 struct i915_request *rq; 4680 4681 priolist_for_each_request(rq, pl) 4682 drm_printf(p, "guc_id=%u, seqno=%llu\n", 4683 rq->context->guc_id.id, 4684 rq->fence.seqno); 4685 } 4686 spin_unlock_irqrestore(&sched_engine->lock, flags); 4687 drm_printf(p, "\n"); 4688 } 4689 4690 static inline void guc_log_context_priority(struct drm_printer *p, 4691 struct intel_context *ce) 4692 { 4693 int i; 4694 4695 drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio); 4696 drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n"); 4697 for (i = GUC_CLIENT_PRIORITY_KMD_HIGH; 4698 i < GUC_CLIENT_PRIORITY_NUM; ++i) { 4699 drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n", 4700 i, ce->guc_state.prio_count[i]); 4701 } 4702 drm_printf(p, "\n"); 4703 } 4704 4705 static inline void guc_log_context(struct drm_printer *p, 4706 struct intel_context *ce) 4707 { 4708 drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id); 4709 drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca); 4710 drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n", 4711 ce->ring->head, 4712 ce->lrc_reg_state[CTX_RING_HEAD]); 4713 drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n", 4714 ce->ring->tail, 4715 ce->lrc_reg_state[CTX_RING_TAIL]); 4716 drm_printf(p, "\t\tContext Pin Count: %u\n", 4717 atomic_read(&ce->pin_count)); 4718 drm_printf(p, "\t\tGuC ID Ref Count: %u\n", 4719 atomic_read(&ce->guc_id.ref)); 4720 drm_printf(p, "\t\tSchedule State: 0x%x\n\n", 4721 ce->guc_state.sched_state); 4722 } 4723 4724 void intel_guc_submission_print_context_info(struct intel_guc *guc, 4725 struct drm_printer *p) 4726 { 4727 struct intel_context *ce; 4728 unsigned long index; 4729 unsigned long flags; 4730 4731 xa_lock_irqsave(&guc->context_lookup, flags); 4732 xa_for_each(&guc->context_lookup, index, ce) { 4733 GEM_BUG_ON(intel_context_is_child(ce)); 4734 4735 guc_log_context(p, ce); 4736 guc_log_context_priority(p, ce); 4737 4738 if (intel_context_is_parent(ce)) { 4739 struct intel_context *child; 4740 4741 drm_printf(p, "\t\tNumber children: %u\n", 4742 ce->parallel.number_children); 4743 4744 if (ce->parallel.guc.wq_status) { 4745 drm_printf(p, "\t\tWQI Head: %u\n", 4746 READ_ONCE(*ce->parallel.guc.wq_head)); 4747 drm_printf(p, "\t\tWQI Tail: %u\n", 4748 READ_ONCE(*ce->parallel.guc.wq_tail)); 4749 drm_printf(p, "\t\tWQI Status: %u\n\n", 4750 READ_ONCE(*ce->parallel.guc.wq_status)); 4751 } 4752 4753 if (ce->engine->emit_bb_start == 4754 emit_bb_start_parent_no_preempt_mid_batch) { 4755 u8 i; 4756 4757 drm_printf(p, "\t\tChildren Go: %u\n\n", 4758 get_children_go_value(ce)); 4759 for (i = 0; i < ce->parallel.number_children; ++i) 4760 drm_printf(p, "\t\tChildren Join: %u\n", 4761 get_children_join_value(ce, i)); 4762 } 4763 4764 for_each_child(ce, child) 4765 guc_log_context(p, child); 4766 } 4767 } 4768 xa_unlock_irqrestore(&guc->context_lookup, flags); 4769 } 4770 4771 static inline u32 get_children_go_addr(struct intel_context *ce) 4772 { 4773 GEM_BUG_ON(!intel_context_is_parent(ce)); 4774 4775 return i915_ggtt_offset(ce->state) + 4776 __get_parent_scratch_offset(ce) + 4777 offsetof(struct parent_scratch, go.semaphore); 4778 } 4779 4780 static inline u32 get_children_join_addr(struct intel_context *ce, 4781 u8 child_index) 4782 { 4783 GEM_BUG_ON(!intel_context_is_parent(ce)); 4784 4785 return i915_ggtt_offset(ce->state) + 4786 __get_parent_scratch_offset(ce) + 4787 offsetof(struct parent_scratch, join[child_index].semaphore); 4788 } 4789 4790 #define PARENT_GO_BB 1 4791 #define PARENT_GO_FINI_BREADCRUMB 0 4792 #define CHILD_GO_BB 1 4793 #define CHILD_GO_FINI_BREADCRUMB 0 4794 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, 4795 u64 offset, u32 len, 4796 const unsigned int flags) 4797 { 4798 struct intel_context *ce = rq->context; 4799 u32 *cs; 4800 u8 i; 4801 4802 GEM_BUG_ON(!intel_context_is_parent(ce)); 4803 4804 cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children); 4805 if (IS_ERR(cs)) 4806 return PTR_ERR(cs); 4807 4808 /* Wait on children */ 4809 for (i = 0; i < ce->parallel.number_children; ++i) { 4810 *cs++ = (MI_SEMAPHORE_WAIT | 4811 MI_SEMAPHORE_GLOBAL_GTT | 4812 MI_SEMAPHORE_POLL | 4813 MI_SEMAPHORE_SAD_EQ_SDD); 4814 *cs++ = PARENT_GO_BB; 4815 *cs++ = get_children_join_addr(ce, i); 4816 *cs++ = 0; 4817 } 4818 4819 /* Turn off preemption */ 4820 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 4821 *cs++ = MI_NOOP; 4822 4823 /* Tell children go */ 4824 cs = gen8_emit_ggtt_write(cs, 4825 CHILD_GO_BB, 4826 get_children_go_addr(ce), 4827 0); 4828 4829 /* Jump to batch */ 4830 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 4831 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 4832 *cs++ = lower_32_bits(offset); 4833 *cs++ = upper_32_bits(offset); 4834 *cs++ = MI_NOOP; 4835 4836 intel_ring_advance(rq, cs); 4837 4838 return 0; 4839 } 4840 4841 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, 4842 u64 offset, u32 len, 4843 const unsigned int flags) 4844 { 4845 struct intel_context *ce = rq->context; 4846 struct intel_context *parent = intel_context_to_parent(ce); 4847 u32 *cs; 4848 4849 GEM_BUG_ON(!intel_context_is_child(ce)); 4850 4851 cs = intel_ring_begin(rq, 12); 4852 if (IS_ERR(cs)) 4853 return PTR_ERR(cs); 4854 4855 /* Signal parent */ 4856 cs = gen8_emit_ggtt_write(cs, 4857 PARENT_GO_BB, 4858 get_children_join_addr(parent, 4859 ce->parallel.child_index), 4860 0); 4861 4862 /* Wait on parent for go */ 4863 *cs++ = (MI_SEMAPHORE_WAIT | 4864 MI_SEMAPHORE_GLOBAL_GTT | 4865 MI_SEMAPHORE_POLL | 4866 MI_SEMAPHORE_SAD_EQ_SDD); 4867 *cs++ = CHILD_GO_BB; 4868 *cs++ = get_children_go_addr(parent); 4869 *cs++ = 0; 4870 4871 /* Turn off preemption */ 4872 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 4873 4874 /* Jump to batch */ 4875 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 4876 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 4877 *cs++ = lower_32_bits(offset); 4878 *cs++ = upper_32_bits(offset); 4879 4880 intel_ring_advance(rq, cs); 4881 4882 return 0; 4883 } 4884 4885 static u32 * 4886 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 4887 u32 *cs) 4888 { 4889 struct intel_context *ce = rq->context; 4890 u8 i; 4891 4892 GEM_BUG_ON(!intel_context_is_parent(ce)); 4893 4894 /* Wait on children */ 4895 for (i = 0; i < ce->parallel.number_children; ++i) { 4896 *cs++ = (MI_SEMAPHORE_WAIT | 4897 MI_SEMAPHORE_GLOBAL_GTT | 4898 MI_SEMAPHORE_POLL | 4899 MI_SEMAPHORE_SAD_EQ_SDD); 4900 *cs++ = PARENT_GO_FINI_BREADCRUMB; 4901 *cs++ = get_children_join_addr(ce, i); 4902 *cs++ = 0; 4903 } 4904 4905 /* Turn on preemption */ 4906 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 4907 *cs++ = MI_NOOP; 4908 4909 /* Tell children go */ 4910 cs = gen8_emit_ggtt_write(cs, 4911 CHILD_GO_FINI_BREADCRUMB, 4912 get_children_go_addr(ce), 4913 0); 4914 4915 return cs; 4916 } 4917 4918 /* 4919 * If this true, a submission of multi-lrc requests had an error and the 4920 * requests need to be skipped. The front end (execuf IOCTL) should've called 4921 * i915_request_skip which squashes the BB but we still need to emit the fini 4922 * breadrcrumbs seqno write. At this point we don't know how many of the 4923 * requests in the multi-lrc submission were generated so we can't do the 4924 * handshake between the parent and children (e.g. if 4 requests should be 4925 * generated but 2nd hit an error only 1 would be seen by the GuC backend). 4926 * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error 4927 * has occurred on any of the requests in submission / relationship. 4928 */ 4929 static inline bool skip_handshake(struct i915_request *rq) 4930 { 4931 return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags); 4932 } 4933 4934 #define NON_SKIP_LEN 6 4935 static u32 * 4936 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 4937 u32 *cs) 4938 { 4939 struct intel_context *ce = rq->context; 4940 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; 4941 __maybe_unused u32 *start_fini_breadcrumb_cs = cs; 4942 4943 GEM_BUG_ON(!intel_context_is_parent(ce)); 4944 4945 if (unlikely(skip_handshake(rq))) { 4946 /* 4947 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch, 4948 * the NON_SKIP_LEN comes from the length of the emits below. 4949 */ 4950 memset(cs, 0, sizeof(u32) * 4951 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); 4952 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; 4953 } else { 4954 cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs); 4955 } 4956 4957 /* Emit fini breadcrumb */ 4958 before_fini_breadcrumb_user_interrupt_cs = cs; 4959 cs = gen8_emit_ggtt_write(cs, 4960 rq->fence.seqno, 4961 i915_request_active_timeline(rq)->hwsp_offset, 4962 0); 4963 4964 /* User interrupt */ 4965 *cs++ = MI_USER_INTERRUPT; 4966 *cs++ = MI_NOOP; 4967 4968 /* Ensure our math for skip + emit is correct */ 4969 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != 4970 cs); 4971 GEM_BUG_ON(start_fini_breadcrumb_cs + 4972 ce->engine->emit_fini_breadcrumb_dw != cs); 4973 4974 rq->tail = intel_ring_offset(rq, cs); 4975 4976 return cs; 4977 } 4978 4979 static u32 * 4980 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 4981 u32 *cs) 4982 { 4983 struct intel_context *ce = rq->context; 4984 struct intel_context *parent = intel_context_to_parent(ce); 4985 4986 GEM_BUG_ON(!intel_context_is_child(ce)); 4987 4988 /* Turn on preemption */ 4989 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 4990 *cs++ = MI_NOOP; 4991 4992 /* Signal parent */ 4993 cs = gen8_emit_ggtt_write(cs, 4994 PARENT_GO_FINI_BREADCRUMB, 4995 get_children_join_addr(parent, 4996 ce->parallel.child_index), 4997 0); 4998 4999 /* Wait parent on for go */ 5000 *cs++ = (MI_SEMAPHORE_WAIT | 5001 MI_SEMAPHORE_GLOBAL_GTT | 5002 MI_SEMAPHORE_POLL | 5003 MI_SEMAPHORE_SAD_EQ_SDD); 5004 *cs++ = CHILD_GO_FINI_BREADCRUMB; 5005 *cs++ = get_children_go_addr(parent); 5006 *cs++ = 0; 5007 5008 return cs; 5009 } 5010 5011 static u32 * 5012 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 5013 u32 *cs) 5014 { 5015 struct intel_context *ce = rq->context; 5016 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; 5017 __maybe_unused u32 *start_fini_breadcrumb_cs = cs; 5018 5019 GEM_BUG_ON(!intel_context_is_child(ce)); 5020 5021 if (unlikely(skip_handshake(rq))) { 5022 /* 5023 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch, 5024 * the NON_SKIP_LEN comes from the length of the emits below. 5025 */ 5026 memset(cs, 0, sizeof(u32) * 5027 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); 5028 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; 5029 } else { 5030 cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs); 5031 } 5032 5033 /* Emit fini breadcrumb */ 5034 before_fini_breadcrumb_user_interrupt_cs = cs; 5035 cs = gen8_emit_ggtt_write(cs, 5036 rq->fence.seqno, 5037 i915_request_active_timeline(rq)->hwsp_offset, 5038 0); 5039 5040 /* User interrupt */ 5041 *cs++ = MI_USER_INTERRUPT; 5042 *cs++ = MI_NOOP; 5043 5044 /* Ensure our math for skip + emit is correct */ 5045 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != 5046 cs); 5047 GEM_BUG_ON(start_fini_breadcrumb_cs + 5048 ce->engine->emit_fini_breadcrumb_dw != cs); 5049 5050 rq->tail = intel_ring_offset(rq, cs); 5051 5052 return cs; 5053 } 5054 5055 #undef NON_SKIP_LEN 5056 5057 static struct intel_context * 5058 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, 5059 unsigned long flags) 5060 { 5061 struct guc_virtual_engine *ve; 5062 struct intel_guc *guc; 5063 unsigned int n; 5064 int err; 5065 5066 ve = kzalloc(sizeof(*ve), GFP_KERNEL); 5067 if (!ve) 5068 return ERR_PTR(-ENOMEM); 5069 5070 guc = &siblings[0]->gt->uc.guc; 5071 5072 ve->base.i915 = siblings[0]->i915; 5073 ve->base.gt = siblings[0]->gt; 5074 ve->base.uncore = siblings[0]->uncore; 5075 ve->base.id = -1; 5076 5077 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID; 5078 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 5079 ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 5080 ve->base.saturated = ALL_ENGINES; 5081 5082 snprintf(ve->base.name, sizeof(ve->base.name), "virtual"); 5083 5084 ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine); 5085 5086 ve->base.cops = &virtual_guc_context_ops; 5087 ve->base.request_alloc = guc_request_alloc; 5088 ve->base.bump_serial = virtual_guc_bump_serial; 5089 5090 ve->base.submit_request = guc_submit_request; 5091 5092 ve->base.flags = I915_ENGINE_IS_VIRTUAL; 5093 5094 intel_context_init(&ve->context, &ve->base); 5095 5096 for (n = 0; n < count; n++) { 5097 struct intel_engine_cs *sibling = siblings[n]; 5098 5099 GEM_BUG_ON(!is_power_of_2(sibling->mask)); 5100 if (sibling->mask & ve->base.mask) { 5101 DRM_DEBUG("duplicate %s entry in load balancer\n", 5102 sibling->name); 5103 err = -EINVAL; 5104 goto err_put; 5105 } 5106 5107 ve->base.mask |= sibling->mask; 5108 ve->base.logical_mask |= sibling->logical_mask; 5109 5110 if (n != 0 && ve->base.class != sibling->class) { 5111 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n", 5112 sibling->class, ve->base.class); 5113 err = -EINVAL; 5114 goto err_put; 5115 } else if (n == 0) { 5116 ve->base.class = sibling->class; 5117 ve->base.uabi_class = sibling->uabi_class; 5118 snprintf(ve->base.name, sizeof(ve->base.name), 5119 "v%dx%d", ve->base.class, count); 5120 ve->base.context_size = sibling->context_size; 5121 5122 ve->base.add_active_request = 5123 sibling->add_active_request; 5124 ve->base.remove_active_request = 5125 sibling->remove_active_request; 5126 ve->base.emit_bb_start = sibling->emit_bb_start; 5127 ve->base.emit_flush = sibling->emit_flush; 5128 ve->base.emit_init_breadcrumb = 5129 sibling->emit_init_breadcrumb; 5130 ve->base.emit_fini_breadcrumb = 5131 sibling->emit_fini_breadcrumb; 5132 ve->base.emit_fini_breadcrumb_dw = 5133 sibling->emit_fini_breadcrumb_dw; 5134 ve->base.breadcrumbs = 5135 intel_breadcrumbs_get(sibling->breadcrumbs); 5136 5137 ve->base.flags |= sibling->flags; 5138 5139 ve->base.props.timeslice_duration_ms = 5140 sibling->props.timeslice_duration_ms; 5141 ve->base.props.preempt_timeout_ms = 5142 sibling->props.preempt_timeout_ms; 5143 } 5144 } 5145 5146 return &ve->context; 5147 5148 err_put: 5149 intel_context_put(&ve->context); 5150 return ERR_PTR(err); 5151 } 5152 5153 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve) 5154 { 5155 struct intel_engine_cs *engine; 5156 intel_engine_mask_t tmp, mask = ve->mask; 5157 5158 for_each_engine_masked(engine, ve->gt, mask, tmp) 5159 if (READ_ONCE(engine->props.heartbeat_interval_ms)) 5160 return true; 5161 5162 return false; 5163 } 5164 5165 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5166 #include "selftest_guc.c" 5167 #include "selftest_guc_multi_lrc.c" 5168 #include "selftest_guc_hangcheck.c" 5169 #endif 5170