1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include <linux/circ_buf.h>
7 
8 #include "gem/i915_gem_context.h"
9 #include "gt/gen8_engine_cs.h"
10 #include "gt/intel_breadcrumbs.h"
11 #include "gt/intel_context.h"
12 #include "gt/intel_engine_heartbeat.h"
13 #include "gt/intel_engine_pm.h"
14 #include "gt/intel_engine_regs.h"
15 #include "gt/intel_gpu_commands.h"
16 #include "gt/intel_gt.h"
17 #include "gt/intel_gt_clock_utils.h"
18 #include "gt/intel_gt_irq.h"
19 #include "gt/intel_gt_pm.h"
20 #include "gt/intel_gt_regs.h"
21 #include "gt/intel_gt_requests.h"
22 #include "gt/intel_lrc.h"
23 #include "gt/intel_lrc_reg.h"
24 #include "gt/intel_mocs.h"
25 #include "gt/intel_ring.h"
26 
27 #include "intel_guc_ads.h"
28 #include "intel_guc_capture.h"
29 #include "intel_guc_submission.h"
30 
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 
34 /**
35  * DOC: GuC-based command submission
36  *
37  * The Scratch registers:
38  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
39  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
40  * triggers an interrupt on the GuC via another register write (0xC4C8).
41  * Firmware writes a success/fail code back to the action register after
42  * processes the request. The kernel driver polls waiting for this update and
43  * then proceeds.
44  *
45  * Command Transport buffers (CTBs):
46  * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
47  * - G2H) are a message interface between the i915 and GuC.
48  *
49  * Context registration:
50  * Before a context can be submitted it must be registered with the GuC via a
51  * H2G. A unique guc_id is associated with each context. The context is either
52  * registered at request creation time (normal operation) or at submission time
53  * (abnormal operation, e.g. after a reset).
54  *
55  * Context submission:
56  * The i915 updates the LRC tail value in memory. The i915 must enable the
57  * scheduling of the context within the GuC for the GuC to actually consider it.
58  * Therefore, the first time a disabled context is submitted we use a schedule
59  * enable H2G, while follow up submissions are done via the context submit H2G,
60  * which informs the GuC that a previously enabled context has new work
61  * available.
62  *
63  * Context unpin:
64  * To unpin a context a H2G is used to disable scheduling. When the
65  * corresponding G2H returns indicating the scheduling disable operation has
66  * completed it is safe to unpin the context. While a disable is in flight it
67  * isn't safe to resubmit the context so a fence is used to stall all future
68  * requests of that context until the G2H is returned.
69  *
70  * Context deregistration:
71  * Before a context can be destroyed or if we steal its guc_id we must
72  * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
73  * safe to submit anything to this guc_id until the deregister completes so a
74  * fence is used to stall all requests associated with this guc_id until the
75  * corresponding G2H returns indicating the guc_id has been deregistered.
76  *
77  * submission_state.guc_ids:
78  * Unique number associated with private GuC context data passed in during
79  * context registration / submission / deregistration. 64k available. Simple ida
80  * is used for allocation.
81  *
82  * Stealing guc_ids:
83  * If no guc_ids are available they can be stolen from another context at
84  * request creation time if that context is unpinned. If a guc_id can't be found
85  * we punt this problem to the user as we believe this is near impossible to hit
86  * during normal use cases.
87  *
88  * Locking:
89  * In the GuC submission code we have 3 basic spin locks which protect
90  * everything. Details about each below.
91  *
92  * sched_engine->lock
93  * This is the submission lock for all contexts that share an i915 schedule
94  * engine (sched_engine), thus only one of the contexts which share a
95  * sched_engine can be submitting at a time. Currently only one sched_engine is
96  * used for all of GuC submission but that could change in the future.
97  *
98  * guc->submission_state.lock
99  * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
100  * list.
101  *
102  * ce->guc_state.lock
103  * Protects everything under ce->guc_state. Ensures that a context is in the
104  * correct state before issuing a H2G. e.g. We don't issue a schedule disable
105  * on a disabled context (bad idea), we don't issue a schedule enable when a
106  * schedule disable is in flight, etc... Also protects list of inflight requests
107  * on the context and the priority management state. Lock is individual to each
108  * context.
109  *
110  * Lock ordering rules:
111  * sched_engine->lock -> ce->guc_state.lock
112  * guc->submission_state.lock -> ce->guc_state.lock
113  *
114  * Reset races:
115  * When a full GT reset is triggered it is assumed that some G2H responses to
116  * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
117  * fatal as we do certain operations upon receiving a G2H (e.g. destroy
118  * contexts, release guc_ids, etc...). When this occurs we can scrub the
119  * context state and cleanup appropriately, however this is quite racey.
120  * To avoid races, the reset code must disable submission before scrubbing for
121  * the missing G2H, while the submission code must check for submission being
122  * disabled and skip sending H2Gs and updating context states when it is. Both
123  * sides must also make sure to hold the relevant locks.
124  */
125 
126 /* GuC Virtual Engine */
127 struct guc_virtual_engine {
128 	struct intel_engine_cs base;
129 	struct intel_context context;
130 };
131 
132 static struct intel_context *
133 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
134 		   unsigned long flags);
135 
136 static struct intel_context *
137 guc_create_parallel(struct intel_engine_cs **engines,
138 		    unsigned int num_siblings,
139 		    unsigned int width);
140 
141 #define GUC_REQUEST_SIZE 64 /* bytes */
142 
143 /*
144  * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
145  * per the GuC submission interface. A different allocation algorithm is used
146  * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
147  * partition the guc_id space. We believe the number of multi-lrc contexts in
148  * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
149  * multi-lrc.
150  */
151 #define NUMBER_MULTI_LRC_GUC_ID(guc)	\
152 	((guc)->submission_state.num_guc_ids / 16)
153 
154 /*
155  * Below is a set of functions which control the GuC scheduling state which
156  * require a lock.
157  */
158 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER	BIT(0)
159 #define SCHED_STATE_DESTROYED				BIT(1)
160 #define SCHED_STATE_PENDING_DISABLE			BIT(2)
161 #define SCHED_STATE_BANNED				BIT(3)
162 #define SCHED_STATE_ENABLED				BIT(4)
163 #define SCHED_STATE_PENDING_ENABLE			BIT(5)
164 #define SCHED_STATE_REGISTERED				BIT(6)
165 #define SCHED_STATE_POLICY_REQUIRED			BIT(7)
166 #define SCHED_STATE_BLOCKED_SHIFT			8
167 #define SCHED_STATE_BLOCKED		BIT(SCHED_STATE_BLOCKED_SHIFT)
168 #define SCHED_STATE_BLOCKED_MASK	(0xfff << SCHED_STATE_BLOCKED_SHIFT)
169 
170 static inline void init_sched_state(struct intel_context *ce)
171 {
172 	lockdep_assert_held(&ce->guc_state.lock);
173 	ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
174 }
175 
176 __maybe_unused
177 static bool sched_state_is_init(struct intel_context *ce)
178 {
179 	/* Kernel contexts can have SCHED_STATE_REGISTERED after suspend. */
180 	return !(ce->guc_state.sched_state &
181 		 ~(SCHED_STATE_BLOCKED_MASK | SCHED_STATE_REGISTERED));
182 }
183 
184 static inline bool
185 context_wait_for_deregister_to_register(struct intel_context *ce)
186 {
187 	return ce->guc_state.sched_state &
188 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
189 }
190 
191 static inline void
192 set_context_wait_for_deregister_to_register(struct intel_context *ce)
193 {
194 	lockdep_assert_held(&ce->guc_state.lock);
195 	ce->guc_state.sched_state |=
196 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
197 }
198 
199 static inline void
200 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
201 {
202 	lockdep_assert_held(&ce->guc_state.lock);
203 	ce->guc_state.sched_state &=
204 		~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
205 }
206 
207 static inline bool
208 context_destroyed(struct intel_context *ce)
209 {
210 	return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
211 }
212 
213 static inline void
214 set_context_destroyed(struct intel_context *ce)
215 {
216 	lockdep_assert_held(&ce->guc_state.lock);
217 	ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
218 }
219 
220 static inline bool context_pending_disable(struct intel_context *ce)
221 {
222 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
223 }
224 
225 static inline void set_context_pending_disable(struct intel_context *ce)
226 {
227 	lockdep_assert_held(&ce->guc_state.lock);
228 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
229 }
230 
231 static inline void clr_context_pending_disable(struct intel_context *ce)
232 {
233 	lockdep_assert_held(&ce->guc_state.lock);
234 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
235 }
236 
237 static inline bool context_banned(struct intel_context *ce)
238 {
239 	return ce->guc_state.sched_state & SCHED_STATE_BANNED;
240 }
241 
242 static inline void set_context_banned(struct intel_context *ce)
243 {
244 	lockdep_assert_held(&ce->guc_state.lock);
245 	ce->guc_state.sched_state |= SCHED_STATE_BANNED;
246 }
247 
248 static inline void clr_context_banned(struct intel_context *ce)
249 {
250 	lockdep_assert_held(&ce->guc_state.lock);
251 	ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
252 }
253 
254 static inline bool context_enabled(struct intel_context *ce)
255 {
256 	return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
257 }
258 
259 static inline void set_context_enabled(struct intel_context *ce)
260 {
261 	lockdep_assert_held(&ce->guc_state.lock);
262 	ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
263 }
264 
265 static inline void clr_context_enabled(struct intel_context *ce)
266 {
267 	lockdep_assert_held(&ce->guc_state.lock);
268 	ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
269 }
270 
271 static inline bool context_pending_enable(struct intel_context *ce)
272 {
273 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
274 }
275 
276 static inline void set_context_pending_enable(struct intel_context *ce)
277 {
278 	lockdep_assert_held(&ce->guc_state.lock);
279 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
280 }
281 
282 static inline void clr_context_pending_enable(struct intel_context *ce)
283 {
284 	lockdep_assert_held(&ce->guc_state.lock);
285 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
286 }
287 
288 static inline bool context_registered(struct intel_context *ce)
289 {
290 	return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
291 }
292 
293 static inline void set_context_registered(struct intel_context *ce)
294 {
295 	lockdep_assert_held(&ce->guc_state.lock);
296 	ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
297 }
298 
299 static inline void clr_context_registered(struct intel_context *ce)
300 {
301 	lockdep_assert_held(&ce->guc_state.lock);
302 	ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
303 }
304 
305 static inline bool context_policy_required(struct intel_context *ce)
306 {
307 	return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
308 }
309 
310 static inline void set_context_policy_required(struct intel_context *ce)
311 {
312 	lockdep_assert_held(&ce->guc_state.lock);
313 	ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
314 }
315 
316 static inline void clr_context_policy_required(struct intel_context *ce)
317 {
318 	lockdep_assert_held(&ce->guc_state.lock);
319 	ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
320 }
321 
322 static inline u32 context_blocked(struct intel_context *ce)
323 {
324 	return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
325 		SCHED_STATE_BLOCKED_SHIFT;
326 }
327 
328 static inline void incr_context_blocked(struct intel_context *ce)
329 {
330 	lockdep_assert_held(&ce->guc_state.lock);
331 
332 	ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
333 
334 	GEM_BUG_ON(!context_blocked(ce));	/* Overflow check */
335 }
336 
337 static inline void decr_context_blocked(struct intel_context *ce)
338 {
339 	lockdep_assert_held(&ce->guc_state.lock);
340 
341 	GEM_BUG_ON(!context_blocked(ce));	/* Underflow check */
342 
343 	ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
344 }
345 
346 static inline bool context_has_committed_requests(struct intel_context *ce)
347 {
348 	return !!ce->guc_state.number_committed_requests;
349 }
350 
351 static inline void incr_context_committed_requests(struct intel_context *ce)
352 {
353 	lockdep_assert_held(&ce->guc_state.lock);
354 	++ce->guc_state.number_committed_requests;
355 	GEM_BUG_ON(ce->guc_state.number_committed_requests < 0);
356 }
357 
358 static inline void decr_context_committed_requests(struct intel_context *ce)
359 {
360 	lockdep_assert_held(&ce->guc_state.lock);
361 	--ce->guc_state.number_committed_requests;
362 	GEM_BUG_ON(ce->guc_state.number_committed_requests < 0);
363 }
364 
365 static struct intel_context *
366 request_to_scheduling_context(struct i915_request *rq)
367 {
368 	return intel_context_to_parent(rq->context);
369 }
370 
371 static inline bool context_guc_id_invalid(struct intel_context *ce)
372 {
373 	return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
374 }
375 
376 static inline void set_context_guc_id_invalid(struct intel_context *ce)
377 {
378 	ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
379 }
380 
381 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
382 {
383 	return &ce->engine->gt->uc.guc;
384 }
385 
386 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
387 {
388 	return rb_entry(rb, struct i915_priolist, node);
389 }
390 
391 /*
392  * When using multi-lrc submission a scratch memory area is reserved in the
393  * parent's context state for the process descriptor, work queue, and handshake
394  * between the parent + children contexts to insert safe preemption points
395  * between each of the BBs. Currently the scratch area is sized to a page.
396  *
397  * The layout of this scratch area is below:
398  * 0						guc_process_desc
399  * + sizeof(struct guc_process_desc)		child go
400  * + CACHELINE_BYTES				child join[0]
401  * ...
402  * + CACHELINE_BYTES				child join[n - 1]
403  * ...						unused
404  * PARENT_SCRATCH_SIZE / 2			work queue start
405  * ...						work queue
406  * PARENT_SCRATCH_SIZE - 1			work queue end
407  */
408 #define WQ_SIZE			(PARENT_SCRATCH_SIZE / 2)
409 #define WQ_OFFSET		(PARENT_SCRATCH_SIZE - WQ_SIZE)
410 
411 struct sync_semaphore {
412 	u32 semaphore;
413 	u8 unused[CACHELINE_BYTES - sizeof(u32)];
414 };
415 
416 struct parent_scratch {
417 	union guc_descs {
418 		struct guc_sched_wq_desc wq_desc;
419 		struct guc_process_desc_v69 pdesc;
420 	} descs;
421 
422 	struct sync_semaphore go;
423 	struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
424 
425 	u8 unused[WQ_OFFSET - sizeof(union guc_descs) -
426 		sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
427 
428 	u32 wq[WQ_SIZE / sizeof(u32)];
429 };
430 
431 static u32 __get_parent_scratch_offset(struct intel_context *ce)
432 {
433 	GEM_BUG_ON(!ce->parallel.guc.parent_page);
434 
435 	return ce->parallel.guc.parent_page * PAGE_SIZE;
436 }
437 
438 static u32 __get_wq_offset(struct intel_context *ce)
439 {
440 	BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
441 
442 	return __get_parent_scratch_offset(ce) + WQ_OFFSET;
443 }
444 
445 static struct parent_scratch *
446 __get_parent_scratch(struct intel_context *ce)
447 {
448 	BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
449 	BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
450 
451 	/*
452 	 * Need to subtract LRC_STATE_OFFSET here as the
453 	 * parallel.guc.parent_page is the offset into ce->state while
454 	 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
455 	 */
456 	return (struct parent_scratch *)
457 		(ce->lrc_reg_state +
458 		 ((__get_parent_scratch_offset(ce) -
459 		   LRC_STATE_OFFSET) / sizeof(u32)));
460 }
461 
462 static struct guc_process_desc_v69 *
463 __get_process_desc_v69(struct intel_context *ce)
464 {
465 	struct parent_scratch *ps = __get_parent_scratch(ce);
466 
467 	return &ps->descs.pdesc;
468 }
469 
470 static struct guc_sched_wq_desc *
471 __get_wq_desc_v70(struct intel_context *ce)
472 {
473 	struct parent_scratch *ps = __get_parent_scratch(ce);
474 
475 	return &ps->descs.wq_desc;
476 }
477 
478 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size)
479 {
480 	/*
481 	 * Check for space in work queue. Caching a value of head pointer in
482 	 * intel_context structure in order reduce the number accesses to shared
483 	 * GPU memory which may be across a PCIe bus.
484 	 */
485 #define AVAILABLE_SPACE	\
486 	CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
487 	if (wqi_size > AVAILABLE_SPACE) {
488 		ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head);
489 
490 		if (wqi_size > AVAILABLE_SPACE)
491 			return NULL;
492 	}
493 #undef AVAILABLE_SPACE
494 
495 	return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
496 }
497 
498 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
499 {
500 	struct intel_context *ce = xa_load(&guc->context_lookup, id);
501 
502 	GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
503 
504 	return ce;
505 }
506 
507 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index)
508 {
509 	struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69;
510 
511 	if (!base)
512 		return NULL;
513 
514 	GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID);
515 
516 	return &base[index];
517 }
518 
519 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc)
520 {
521 	u32 size;
522 	int ret;
523 
524 	size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) *
525 			  GUC_MAX_CONTEXT_ID);
526 	ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69,
527 					     (void **)&guc->lrc_desc_pool_vaddr_v69);
528 	if (ret)
529 		return ret;
530 
531 	return 0;
532 }
533 
534 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc)
535 {
536 	if (!guc->lrc_desc_pool_vaddr_v69)
537 		return;
538 
539 	guc->lrc_desc_pool_vaddr_v69 = NULL;
540 	i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP);
541 }
542 
543 static inline bool guc_submission_initialized(struct intel_guc *guc)
544 {
545 	return guc->submission_initialized;
546 }
547 
548 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id)
549 {
550 	struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id);
551 
552 	if (desc)
553 		memset(desc, 0, sizeof(*desc));
554 }
555 
556 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
557 {
558 	return __get_context(guc, id);
559 }
560 
561 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
562 				      struct intel_context *ce)
563 {
564 	unsigned long flags;
565 
566 	/*
567 	 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
568 	 * lower level functions directly.
569 	 */
570 	xa_lock_irqsave(&guc->context_lookup, flags);
571 	__xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
572 	xa_unlock_irqrestore(&guc->context_lookup, flags);
573 }
574 
575 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
576 {
577 	unsigned long flags;
578 
579 	if (unlikely(!guc_submission_initialized(guc)))
580 		return;
581 
582 	_reset_lrc_desc_v69(guc, id);
583 
584 	/*
585 	 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
586 	 * the lower level functions directly.
587 	 */
588 	xa_lock_irqsave(&guc->context_lookup, flags);
589 	__xa_erase(&guc->context_lookup, id);
590 	xa_unlock_irqrestore(&guc->context_lookup, flags);
591 }
592 
593 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
594 {
595 	if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
596 		wake_up_all(&guc->ct.wq);
597 }
598 
599 static int guc_submission_send_busy_loop(struct intel_guc *guc,
600 					 const u32 *action,
601 					 u32 len,
602 					 u32 g2h_len_dw,
603 					 bool loop)
604 {
605 	/*
606 	 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
607 	 * so we don't handle the case where we don't get a reply because we
608 	 * aborted the send due to the channel being busy.
609 	 */
610 	GEM_BUG_ON(g2h_len_dw && !loop);
611 
612 	if (g2h_len_dw)
613 		atomic_inc(&guc->outstanding_submission_g2h);
614 
615 	return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
616 }
617 
618 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
619 				   atomic_t *wait_var,
620 				   bool interruptible,
621 				   long timeout)
622 {
623 	const int state = interruptible ?
624 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
625 	DEFINE_WAIT(wait);
626 
627 	might_sleep();
628 	GEM_BUG_ON(timeout < 0);
629 
630 	if (!atomic_read(wait_var))
631 		return 0;
632 
633 	if (!timeout)
634 		return -ETIME;
635 
636 	for (;;) {
637 		prepare_to_wait(&guc->ct.wq, &wait, state);
638 
639 		if (!atomic_read(wait_var))
640 			break;
641 
642 		if (signal_pending_state(state, current)) {
643 			timeout = -EINTR;
644 			break;
645 		}
646 
647 		if (!timeout) {
648 			timeout = -ETIME;
649 			break;
650 		}
651 
652 		timeout = io_schedule_timeout(timeout);
653 	}
654 	finish_wait(&guc->ct.wq, &wait);
655 
656 	return (timeout < 0) ? timeout : 0;
657 }
658 
659 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
660 {
661 	if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
662 		return 0;
663 
664 	return intel_guc_wait_for_pending_msg(guc,
665 					      &guc->outstanding_submission_g2h,
666 					      true, timeout);
667 }
668 
669 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop);
670 static int try_context_registration(struct intel_context *ce, bool loop);
671 
672 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
673 {
674 	int err = 0;
675 	struct intel_context *ce = request_to_scheduling_context(rq);
676 	u32 action[3];
677 	int len = 0;
678 	u32 g2h_len_dw = 0;
679 	bool enabled;
680 
681 	lockdep_assert_held(&rq->engine->sched_engine->lock);
682 
683 	/*
684 	 * Corner case where requests were sitting in the priority list or a
685 	 * request resubmitted after the context was banned.
686 	 */
687 	if (unlikely(!intel_context_is_schedulable(ce))) {
688 		i915_request_put(i915_request_mark_eio(rq));
689 		intel_engine_signal_breadcrumbs(ce->engine);
690 		return 0;
691 	}
692 
693 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
694 	GEM_BUG_ON(context_guc_id_invalid(ce));
695 
696 	if (context_policy_required(ce)) {
697 		err = guc_context_policy_init_v70(ce, false);
698 		if (err)
699 			return err;
700 	}
701 
702 	spin_lock(&ce->guc_state.lock);
703 
704 	/*
705 	 * The request / context will be run on the hardware when scheduling
706 	 * gets enabled in the unblock. For multi-lrc we still submit the
707 	 * context to move the LRC tails.
708 	 */
709 	if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
710 		goto out;
711 
712 	enabled = context_enabled(ce) || context_blocked(ce);
713 
714 	if (!enabled) {
715 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
716 		action[len++] = ce->guc_id.id;
717 		action[len++] = GUC_CONTEXT_ENABLE;
718 		set_context_pending_enable(ce);
719 		intel_context_get(ce);
720 		g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
721 	} else {
722 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
723 		action[len++] = ce->guc_id.id;
724 	}
725 
726 	err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
727 	if (!enabled && !err) {
728 		trace_intel_context_sched_enable(ce);
729 		atomic_inc(&guc->outstanding_submission_g2h);
730 		set_context_enabled(ce);
731 
732 		/*
733 		 * Without multi-lrc KMD does the submission step (moving the
734 		 * lrc tail) so enabling scheduling is sufficient to submit the
735 		 * context. This isn't the case in multi-lrc submission as the
736 		 * GuC needs to move the tails, hence the need for another H2G
737 		 * to submit a multi-lrc context after enabling scheduling.
738 		 */
739 		if (intel_context_is_parent(ce)) {
740 			action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
741 			err = intel_guc_send_nb(guc, action, len - 1, 0);
742 		}
743 	} else if (!enabled) {
744 		clr_context_pending_enable(ce);
745 		intel_context_put(ce);
746 	}
747 	if (likely(!err))
748 		trace_i915_request_guc_submit(rq);
749 
750 out:
751 	spin_unlock(&ce->guc_state.lock);
752 	return err;
753 }
754 
755 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
756 {
757 	int ret = __guc_add_request(guc, rq);
758 
759 	if (unlikely(ret == -EBUSY)) {
760 		guc->stalled_request = rq;
761 		guc->submission_stall_reason = STALL_ADD_REQUEST;
762 	}
763 
764 	return ret;
765 }
766 
767 static inline void guc_set_lrc_tail(struct i915_request *rq)
768 {
769 	rq->context->lrc_reg_state[CTX_RING_TAIL] =
770 		intel_ring_set_tail(rq->ring, rq->tail);
771 }
772 
773 static inline int rq_prio(const struct i915_request *rq)
774 {
775 	return rq->sched.attr.priority;
776 }
777 
778 static bool is_multi_lrc_rq(struct i915_request *rq)
779 {
780 	return intel_context_is_parallel(rq->context);
781 }
782 
783 static bool can_merge_rq(struct i915_request *rq,
784 			 struct i915_request *last)
785 {
786 	return request_to_scheduling_context(rq) ==
787 		request_to_scheduling_context(last);
788 }
789 
790 static u32 wq_space_until_wrap(struct intel_context *ce)
791 {
792 	return (WQ_SIZE - ce->parallel.guc.wqi_tail);
793 }
794 
795 static void write_wqi(struct intel_context *ce, u32 wqi_size)
796 {
797 	BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
798 
799 	/*
800 	 * Ensure WQI are visible before updating tail
801 	 */
802 	intel_guc_write_barrier(ce_to_guc(ce));
803 
804 	ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
805 		(WQ_SIZE - 1);
806 	WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail);
807 }
808 
809 static int guc_wq_noop_append(struct intel_context *ce)
810 {
811 	u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce));
812 	u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
813 
814 	if (!wqi)
815 		return -EBUSY;
816 
817 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
818 
819 	*wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
820 		FIELD_PREP(WQ_LEN_MASK, len_dw);
821 	ce->parallel.guc.wqi_tail = 0;
822 
823 	return 0;
824 }
825 
826 static int __guc_wq_item_append(struct i915_request *rq)
827 {
828 	struct intel_context *ce = request_to_scheduling_context(rq);
829 	struct intel_context *child;
830 	unsigned int wqi_size = (ce->parallel.number_children + 4) *
831 		sizeof(u32);
832 	u32 *wqi;
833 	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
834 	int ret;
835 
836 	/* Ensure context is in correct state updating work queue */
837 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
838 	GEM_BUG_ON(context_guc_id_invalid(ce));
839 	GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
840 	GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
841 
842 	/* Insert NOOP if this work queue item will wrap the tail pointer. */
843 	if (wqi_size > wq_space_until_wrap(ce)) {
844 		ret = guc_wq_noop_append(ce);
845 		if (ret)
846 			return ret;
847 	}
848 
849 	wqi = get_wq_pointer(ce, wqi_size);
850 	if (!wqi)
851 		return -EBUSY;
852 
853 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
854 
855 	*wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
856 		FIELD_PREP(WQ_LEN_MASK, len_dw);
857 	*wqi++ = ce->lrc.lrca;
858 	*wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
859 	       FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
860 	*wqi++ = 0;	/* fence_id */
861 	for_each_child(ce, child)
862 		*wqi++ = child->ring->tail / sizeof(u64);
863 
864 	write_wqi(ce, wqi_size);
865 
866 	return 0;
867 }
868 
869 static int guc_wq_item_append(struct intel_guc *guc,
870 			      struct i915_request *rq)
871 {
872 	struct intel_context *ce = request_to_scheduling_context(rq);
873 	int ret;
874 
875 	if (unlikely(!intel_context_is_schedulable(ce)))
876 		return 0;
877 
878 	ret = __guc_wq_item_append(rq);
879 	if (unlikely(ret == -EBUSY)) {
880 		guc->stalled_request = rq;
881 		guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
882 	}
883 
884 	return ret;
885 }
886 
887 static bool multi_lrc_submit(struct i915_request *rq)
888 {
889 	struct intel_context *ce = request_to_scheduling_context(rq);
890 
891 	intel_ring_set_tail(rq->ring, rq->tail);
892 
893 	/*
894 	 * We expect the front end (execbuf IOCTL) to set this flag on the last
895 	 * request generated from a multi-BB submission. This indicates to the
896 	 * backend (GuC interface) that we should submit this context thus
897 	 * submitting all the requests generated in parallel.
898 	 */
899 	return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
900 	       !intel_context_is_schedulable(ce);
901 }
902 
903 static int guc_dequeue_one_context(struct intel_guc *guc)
904 {
905 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
906 	struct i915_request *last = NULL;
907 	bool submit = false;
908 	struct rb_node *rb;
909 	int ret;
910 
911 	lockdep_assert_held(&sched_engine->lock);
912 
913 	if (guc->stalled_request) {
914 		submit = true;
915 		last = guc->stalled_request;
916 
917 		switch (guc->submission_stall_reason) {
918 		case STALL_REGISTER_CONTEXT:
919 			goto register_context;
920 		case STALL_MOVE_LRC_TAIL:
921 			goto move_lrc_tail;
922 		case STALL_ADD_REQUEST:
923 			goto add_request;
924 		default:
925 			MISSING_CASE(guc->submission_stall_reason);
926 		}
927 	}
928 
929 	while ((rb = rb_first_cached(&sched_engine->queue))) {
930 		struct i915_priolist *p = to_priolist(rb);
931 		struct i915_request *rq, *rn;
932 
933 		priolist_for_each_request_consume(rq, rn, p) {
934 			if (last && !can_merge_rq(rq, last))
935 				goto register_context;
936 
937 			list_del_init(&rq->sched.link);
938 
939 			__i915_request_submit(rq);
940 
941 			trace_i915_request_in(rq, 0);
942 			last = rq;
943 
944 			if (is_multi_lrc_rq(rq)) {
945 				/*
946 				 * We need to coalesce all multi-lrc requests in
947 				 * a relationship into a single H2G. We are
948 				 * guaranteed that all of these requests will be
949 				 * submitted sequentially.
950 				 */
951 				if (multi_lrc_submit(rq)) {
952 					submit = true;
953 					goto register_context;
954 				}
955 			} else {
956 				submit = true;
957 			}
958 		}
959 
960 		rb_erase_cached(&p->node, &sched_engine->queue);
961 		i915_priolist_free(p);
962 	}
963 
964 register_context:
965 	if (submit) {
966 		struct intel_context *ce = request_to_scheduling_context(last);
967 
968 		if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
969 			     intel_context_is_schedulable(ce))) {
970 			ret = try_context_registration(ce, false);
971 			if (unlikely(ret == -EPIPE)) {
972 				goto deadlk;
973 			} else if (ret == -EBUSY) {
974 				guc->stalled_request = last;
975 				guc->submission_stall_reason =
976 					STALL_REGISTER_CONTEXT;
977 				goto schedule_tasklet;
978 			} else if (ret != 0) {
979 				GEM_WARN_ON(ret);	/* Unexpected */
980 				goto deadlk;
981 			}
982 		}
983 
984 move_lrc_tail:
985 		if (is_multi_lrc_rq(last)) {
986 			ret = guc_wq_item_append(guc, last);
987 			if (ret == -EBUSY) {
988 				goto schedule_tasklet;
989 			} else if (ret != 0) {
990 				GEM_WARN_ON(ret);	/* Unexpected */
991 				goto deadlk;
992 			}
993 		} else {
994 			guc_set_lrc_tail(last);
995 		}
996 
997 add_request:
998 		ret = guc_add_request(guc, last);
999 		if (unlikely(ret == -EPIPE)) {
1000 			goto deadlk;
1001 		} else if (ret == -EBUSY) {
1002 			goto schedule_tasklet;
1003 		} else if (ret != 0) {
1004 			GEM_WARN_ON(ret);	/* Unexpected */
1005 			goto deadlk;
1006 		}
1007 	}
1008 
1009 	guc->stalled_request = NULL;
1010 	guc->submission_stall_reason = STALL_NONE;
1011 	return submit;
1012 
1013 deadlk:
1014 	sched_engine->tasklet.callback = NULL;
1015 	tasklet_disable_nosync(&sched_engine->tasklet);
1016 	return false;
1017 
1018 schedule_tasklet:
1019 	tasklet_schedule(&sched_engine->tasklet);
1020 	return false;
1021 }
1022 
1023 static void guc_submission_tasklet(struct tasklet_struct *t)
1024 {
1025 	struct i915_sched_engine *sched_engine =
1026 		from_tasklet(sched_engine, t, tasklet);
1027 	unsigned long flags;
1028 	bool loop;
1029 
1030 	spin_lock_irqsave(&sched_engine->lock, flags);
1031 
1032 	do {
1033 		loop = guc_dequeue_one_context(sched_engine->private_data);
1034 	} while (loop);
1035 
1036 	i915_sched_engine_reset_on_empty(sched_engine);
1037 
1038 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1039 }
1040 
1041 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
1042 {
1043 	if (iir & GT_RENDER_USER_INTERRUPT)
1044 		intel_engine_signal_breadcrumbs(engine);
1045 }
1046 
1047 static void __guc_context_destroy(struct intel_context *ce);
1048 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
1049 static void guc_signal_context_fence(struct intel_context *ce);
1050 static void guc_cancel_context_requests(struct intel_context *ce);
1051 static void guc_blocked_fence_complete(struct intel_context *ce);
1052 
1053 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1054 {
1055 	struct intel_context *ce;
1056 	unsigned long index, flags;
1057 	bool pending_disable, pending_enable, deregister, destroyed, banned;
1058 
1059 	xa_lock_irqsave(&guc->context_lookup, flags);
1060 	xa_for_each(&guc->context_lookup, index, ce) {
1061 		/*
1062 		 * Corner case where the ref count on the object is zero but and
1063 		 * deregister G2H was lost. In this case we don't touch the ref
1064 		 * count and finish the destroy of the context.
1065 		 */
1066 		bool do_put = kref_get_unless_zero(&ce->ref);
1067 
1068 		xa_unlock(&guc->context_lookup);
1069 
1070 		spin_lock(&ce->guc_state.lock);
1071 
1072 		/*
1073 		 * Once we are at this point submission_disabled() is guaranteed
1074 		 * to be visible to all callers who set the below flags (see above
1075 		 * flush and flushes in reset_prepare). If submission_disabled()
1076 		 * is set, the caller shouldn't set these flags.
1077 		 */
1078 
1079 		destroyed = context_destroyed(ce);
1080 		pending_enable = context_pending_enable(ce);
1081 		pending_disable = context_pending_disable(ce);
1082 		deregister = context_wait_for_deregister_to_register(ce);
1083 		banned = context_banned(ce);
1084 		init_sched_state(ce);
1085 
1086 		spin_unlock(&ce->guc_state.lock);
1087 
1088 		if (pending_enable || destroyed || deregister) {
1089 			decr_outstanding_submission_g2h(guc);
1090 			if (deregister)
1091 				guc_signal_context_fence(ce);
1092 			if (destroyed) {
1093 				intel_gt_pm_put_async(guc_to_gt(guc));
1094 				release_guc_id(guc, ce);
1095 				__guc_context_destroy(ce);
1096 			}
1097 			if (pending_enable || deregister)
1098 				intel_context_put(ce);
1099 		}
1100 
1101 		/* Not mutualy exclusive with above if statement. */
1102 		if (pending_disable) {
1103 			guc_signal_context_fence(ce);
1104 			if (banned) {
1105 				guc_cancel_context_requests(ce);
1106 				intel_engine_signal_breadcrumbs(ce->engine);
1107 			}
1108 			intel_context_sched_disable_unpin(ce);
1109 			decr_outstanding_submission_g2h(guc);
1110 
1111 			spin_lock(&ce->guc_state.lock);
1112 			guc_blocked_fence_complete(ce);
1113 			spin_unlock(&ce->guc_state.lock);
1114 
1115 			intel_context_put(ce);
1116 		}
1117 
1118 		if (do_put)
1119 			intel_context_put(ce);
1120 		xa_lock(&guc->context_lookup);
1121 	}
1122 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1123 }
1124 
1125 /*
1126  * GuC stores busyness stats for each engine at context in/out boundaries. A
1127  * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1128  * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1129  * GuC.
1130  *
1131  * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1132  * is valid (!= ~0) and start is non-zero, the engine is considered to be
1133  * active. For an active engine total busyness = total + (now - start), where
1134  * 'now' is the time at which the busyness is sampled. For inactive engine,
1135  * total busyness = total.
1136  *
1137  * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1138  *
1139  * The start and total values provided by GuC are 32 bits and wrap around in a
1140  * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1141  * increasing ns values, there is a need for this implementation to account for
1142  * overflows and extend the GuC provided values to 64 bits before returning
1143  * busyness to the user. In order to do that, a worker runs periodically at
1144  * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1145  * 27 seconds for a gt clock frequency of 19.2 MHz).
1146  */
1147 
1148 #define WRAP_TIME_CLKS U32_MAX
1149 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1150 
1151 static void
1152 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1153 {
1154 	u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1155 	u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1156 
1157 	if (new_start == lower_32_bits(*prev_start))
1158 		return;
1159 
1160 	/*
1161 	 * When gt is unparked, we update the gt timestamp and start the ping
1162 	 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1163 	 * is unparked, all switched in contexts will have a start time that is
1164 	 * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1165 	 *
1166 	 * If neither gt_stamp nor new_start has rolled over, then the
1167 	 * gt_stamp_hi does not need to be adjusted, however if one of them has
1168 	 * rolled over, we need to adjust gt_stamp_hi accordingly.
1169 	 *
1170 	 * The below conditions address the cases of new_start rollover and
1171 	 * gt_stamp_last rollover respectively.
1172 	 */
1173 	if (new_start < gt_stamp_last &&
1174 	    (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1175 		gt_stamp_hi++;
1176 
1177 	if (new_start > gt_stamp_last &&
1178 	    (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1179 		gt_stamp_hi--;
1180 
1181 	*prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1182 }
1183 
1184 #define record_read(map_, field_) \
1185 	iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1186 
1187 /*
1188  * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1189  * we run into a race where the value read is inconsistent. Sometimes the
1190  * inconsistency is in reading the upper MSB bytes of the last_in value when
1191  * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1192  * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1193  * determine validity of these values. Instead we read the values multiple times
1194  * until they are consistent. In test runs, 3 attempts results in consistent
1195  * values. The upper bound is set to 6 attempts and may need to be tuned as per
1196  * any new occurences.
1197  */
1198 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1199 				      u32 *last_in, u32 *id, u32 *total)
1200 {
1201 	struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1202 	int i = 0;
1203 
1204 	do {
1205 		*last_in = record_read(&rec_map, last_switch_in_stamp);
1206 		*id = record_read(&rec_map, current_context_index);
1207 		*total = record_read(&rec_map, total_runtime);
1208 
1209 		if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1210 		    record_read(&rec_map, current_context_index) == *id &&
1211 		    record_read(&rec_map, total_runtime) == *total)
1212 			break;
1213 	} while (++i < 6);
1214 }
1215 
1216 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1217 {
1218 	struct intel_engine_guc_stats *stats = &engine->stats.guc;
1219 	struct intel_guc *guc = &engine->gt->uc.guc;
1220 	u32 last_switch, ctx_id, total;
1221 
1222 	lockdep_assert_held(&guc->timestamp.lock);
1223 
1224 	__get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1225 
1226 	stats->running = ctx_id != ~0U && last_switch;
1227 	if (stats->running)
1228 		__extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1229 
1230 	/*
1231 	 * Instead of adjusting the total for overflow, just add the
1232 	 * difference from previous sample stats->total_gt_clks
1233 	 */
1234 	if (total && total != ~0U) {
1235 		stats->total_gt_clks += (u32)(total - stats->prev_total);
1236 		stats->prev_total = total;
1237 	}
1238 }
1239 
1240 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1241 {
1242 	intel_wakeref_t wakeref;
1243 	u32 reg, shift;
1244 
1245 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1246 		reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1247 
1248 	shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
1249 		GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;
1250 
1251 	return 3 - shift;
1252 }
1253 
1254 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1255 {
1256 	struct intel_gt *gt = guc_to_gt(guc);
1257 	u32 gt_stamp_lo, gt_stamp_hi;
1258 	u64 gpm_ts;
1259 
1260 	lockdep_assert_held(&guc->timestamp.lock);
1261 
1262 	gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1263 	gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1264 					  MISC_STATUS1) >> guc->timestamp.shift;
1265 	gt_stamp_lo = lower_32_bits(gpm_ts);
1266 	*now = ktime_get();
1267 
1268 	if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1269 		gt_stamp_hi++;
1270 
1271 	guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1272 }
1273 
1274 /*
1275  * Unlike the execlist mode of submission total and active times are in terms of
1276  * gt clocks. The *now parameter is retained to return the cpu time at which the
1277  * busyness was sampled.
1278  */
1279 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1280 {
1281 	struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1282 	struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1283 	struct intel_gt *gt = engine->gt;
1284 	struct intel_guc *guc = &gt->uc.guc;
1285 	u64 total, gt_stamp_saved;
1286 	unsigned long flags;
1287 	u32 reset_count;
1288 	bool in_reset;
1289 
1290 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1291 
1292 	/*
1293 	 * If a reset happened, we risk reading partially updated engine
1294 	 * busyness from GuC, so we just use the driver stored copy of busyness.
1295 	 * Synchronize with gt reset using reset_count and the
1296 	 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1297 	 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1298 	 * usable by checking the flag afterwards.
1299 	 */
1300 	reset_count = i915_reset_count(gpu_error);
1301 	in_reset = test_bit(I915_RESET_BACKOFF, &gt->reset.flags);
1302 
1303 	*now = ktime_get();
1304 
1305 	/*
1306 	 * The active busyness depends on start_gt_clk and gt_stamp.
1307 	 * gt_stamp is updated by i915 only when gt is awake and the
1308 	 * start_gt_clk is derived from GuC state. To get a consistent
1309 	 * view of activity, we query the GuC state only if gt is awake.
1310 	 */
1311 	if (!in_reset && intel_gt_pm_get_if_awake(gt)) {
1312 		stats_saved = *stats;
1313 		gt_stamp_saved = guc->timestamp.gt_stamp;
1314 		/*
1315 		 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1316 		 * start_gt_clk' calculation below for active engines.
1317 		 */
1318 		guc_update_engine_gt_clks(engine);
1319 		guc_update_pm_timestamp(guc, now);
1320 		intel_gt_pm_put_async(gt);
1321 		if (i915_reset_count(gpu_error) != reset_count) {
1322 			*stats = stats_saved;
1323 			guc->timestamp.gt_stamp = gt_stamp_saved;
1324 		}
1325 	}
1326 
1327 	total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1328 	if (stats->running) {
1329 		u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1330 
1331 		total += intel_gt_clock_interval_to_ns(gt, clk);
1332 	}
1333 
1334 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1335 
1336 	return ns_to_ktime(total);
1337 }
1338 
1339 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1340 {
1341 	struct intel_gt *gt = guc_to_gt(guc);
1342 	struct intel_engine_cs *engine;
1343 	enum intel_engine_id id;
1344 	unsigned long flags;
1345 	ktime_t unused;
1346 
1347 	cancel_delayed_work_sync(&guc->timestamp.work);
1348 
1349 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1350 
1351 	guc_update_pm_timestamp(guc, &unused);
1352 	for_each_engine(engine, gt, id) {
1353 		guc_update_engine_gt_clks(engine);
1354 		engine->stats.guc.prev_total = 0;
1355 	}
1356 
1357 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1358 }
1359 
1360 static void __update_guc_busyness_stats(struct intel_guc *guc)
1361 {
1362 	struct intel_gt *gt = guc_to_gt(guc);
1363 	struct intel_engine_cs *engine;
1364 	enum intel_engine_id id;
1365 	unsigned long flags;
1366 	ktime_t unused;
1367 
1368 	guc->timestamp.last_stat_jiffies = jiffies;
1369 
1370 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1371 
1372 	guc_update_pm_timestamp(guc, &unused);
1373 	for_each_engine(engine, gt, id)
1374 		guc_update_engine_gt_clks(engine);
1375 
1376 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1377 }
1378 
1379 static void guc_timestamp_ping(struct work_struct *wrk)
1380 {
1381 	struct intel_guc *guc = container_of(wrk, typeof(*guc),
1382 					     timestamp.work.work);
1383 	struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1384 	struct intel_gt *gt = guc_to_gt(guc);
1385 	intel_wakeref_t wakeref;
1386 	int srcu, ret;
1387 
1388 	/*
1389 	 * Synchronize with gt reset to make sure the worker does not
1390 	 * corrupt the engine/guc stats.
1391 	 */
1392 	ret = intel_gt_reset_trylock(gt, &srcu);
1393 	if (ret)
1394 		return;
1395 
1396 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
1397 		__update_guc_busyness_stats(guc);
1398 
1399 	intel_gt_reset_unlock(gt, srcu);
1400 
1401 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
1402 			 guc->timestamp.ping_delay);
1403 }
1404 
1405 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1406 {
1407 	u32 offset = intel_guc_engine_usage_offset(guc);
1408 	u32 action[] = {
1409 		INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1410 		offset,
1411 		0,
1412 	};
1413 
1414 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
1415 }
1416 
1417 static void guc_init_engine_stats(struct intel_guc *guc)
1418 {
1419 	struct intel_gt *gt = guc_to_gt(guc);
1420 	intel_wakeref_t wakeref;
1421 
1422 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
1423 			 guc->timestamp.ping_delay);
1424 
1425 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
1426 		int ret = guc_action_enable_usage_stats(guc);
1427 
1428 		if (ret)
1429 			drm_err(&gt->i915->drm,
1430 				"Failed to enable usage stats: %d!\n", ret);
1431 	}
1432 }
1433 
1434 void intel_guc_busyness_park(struct intel_gt *gt)
1435 {
1436 	struct intel_guc *guc = &gt->uc.guc;
1437 
1438 	if (!guc_submission_initialized(guc))
1439 		return;
1440 
1441 	/*
1442 	 * There is a race with suspend flow where the worker runs after suspend
1443 	 * and causes an unclaimed register access warning. Cancel the worker
1444 	 * synchronously here.
1445 	 */
1446 	cancel_delayed_work_sync(&guc->timestamp.work);
1447 
1448 	/*
1449 	 * Before parking, we should sample engine busyness stats if we need to.
1450 	 * We can skip it if we are less than half a ping from the last time we
1451 	 * sampled the busyness stats.
1452 	 */
1453 	if (guc->timestamp.last_stat_jiffies &&
1454 	    !time_after(jiffies, guc->timestamp.last_stat_jiffies +
1455 			(guc->timestamp.ping_delay / 2)))
1456 		return;
1457 
1458 	__update_guc_busyness_stats(guc);
1459 }
1460 
1461 void intel_guc_busyness_unpark(struct intel_gt *gt)
1462 {
1463 	struct intel_guc *guc = &gt->uc.guc;
1464 	unsigned long flags;
1465 	ktime_t unused;
1466 
1467 	if (!guc_submission_initialized(guc))
1468 		return;
1469 
1470 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1471 	guc_update_pm_timestamp(guc, &unused);
1472 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1473 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
1474 			 guc->timestamp.ping_delay);
1475 }
1476 
1477 static inline bool
1478 submission_disabled(struct intel_guc *guc)
1479 {
1480 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1481 
1482 	return unlikely(!sched_engine ||
1483 			!__tasklet_is_enabled(&sched_engine->tasklet) ||
1484 			intel_gt_is_wedged(guc_to_gt(guc)));
1485 }
1486 
1487 static void disable_submission(struct intel_guc *guc)
1488 {
1489 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1490 
1491 	if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1492 		GEM_BUG_ON(!guc->ct.enabled);
1493 		__tasklet_disable_sync_once(&sched_engine->tasklet);
1494 		sched_engine->tasklet.callback = NULL;
1495 	}
1496 }
1497 
1498 static void enable_submission(struct intel_guc *guc)
1499 {
1500 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1501 	unsigned long flags;
1502 
1503 	spin_lock_irqsave(&guc->sched_engine->lock, flags);
1504 	sched_engine->tasklet.callback = guc_submission_tasklet;
1505 	wmb();	/* Make sure callback visible */
1506 	if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1507 	    __tasklet_enable(&sched_engine->tasklet)) {
1508 		GEM_BUG_ON(!guc->ct.enabled);
1509 
1510 		/* And kick in case we missed a new request submission. */
1511 		tasklet_hi_schedule(&sched_engine->tasklet);
1512 	}
1513 	spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1514 }
1515 
1516 static void guc_flush_submissions(struct intel_guc *guc)
1517 {
1518 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1519 	unsigned long flags;
1520 
1521 	spin_lock_irqsave(&sched_engine->lock, flags);
1522 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1523 }
1524 
1525 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1526 
1527 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1528 {
1529 	if (unlikely(!guc_submission_initialized(guc))) {
1530 		/* Reset called during driver load? GuC not yet initialised! */
1531 		return;
1532 	}
1533 
1534 	intel_gt_park_heartbeats(guc_to_gt(guc));
1535 	disable_submission(guc);
1536 	guc->interrupts.disable(guc);
1537 	__reset_guc_busyness_stats(guc);
1538 
1539 	/* Flush IRQ handler */
1540 	spin_lock_irq(guc_to_gt(guc)->irq_lock);
1541 	spin_unlock_irq(guc_to_gt(guc)->irq_lock);
1542 
1543 	guc_flush_submissions(guc);
1544 	guc_flush_destroyed_contexts(guc);
1545 	flush_work(&guc->ct.requests.worker);
1546 
1547 	scrub_guc_desc_for_outstanding_g2h(guc);
1548 }
1549 
1550 static struct intel_engine_cs *
1551 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1552 {
1553 	struct intel_engine_cs *engine;
1554 	intel_engine_mask_t tmp, mask = ve->mask;
1555 	unsigned int num_siblings = 0;
1556 
1557 	for_each_engine_masked(engine, ve->gt, mask, tmp)
1558 		if (num_siblings++ == sibling)
1559 			return engine;
1560 
1561 	return NULL;
1562 }
1563 
1564 static inline struct intel_engine_cs *
1565 __context_to_physical_engine(struct intel_context *ce)
1566 {
1567 	struct intel_engine_cs *engine = ce->engine;
1568 
1569 	if (intel_engine_is_virtual(engine))
1570 		engine = guc_virtual_get_sibling(engine, 0);
1571 
1572 	return engine;
1573 }
1574 
1575 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1576 {
1577 	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1578 
1579 	if (!intel_context_is_schedulable(ce))
1580 		return;
1581 
1582 	GEM_BUG_ON(!intel_context_is_pinned(ce));
1583 
1584 	/*
1585 	 * We want a simple context + ring to execute the breadcrumb update.
1586 	 * We cannot rely on the context being intact across the GPU hang,
1587 	 * so clear it and rebuild just what we need for the breadcrumb.
1588 	 * All pending requests for this context will be zapped, and any
1589 	 * future request will be after userspace has had the opportunity
1590 	 * to recreate its own state.
1591 	 */
1592 	if (scrub)
1593 		lrc_init_regs(ce, engine, true);
1594 
1595 	/* Rerun the request; its payload has been neutered (if guilty). */
1596 	lrc_update_regs(ce, engine, head);
1597 }
1598 
1599 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1600 {
1601 	if (!IS_GRAPHICS_VER(engine->i915, 11, 12))
1602 		return;
1603 
1604 	intel_engine_stop_cs(engine);
1605 
1606 	/*
1607 	 * Wa_22011802037:gen11/gen12: In addition to stopping the cs, we need
1608 	 * to wait for any pending mi force wakeups
1609 	 */
1610 	intel_engine_wait_for_pending_mi_fw(engine);
1611 }
1612 
1613 static void guc_reset_nop(struct intel_engine_cs *engine)
1614 {
1615 }
1616 
1617 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1618 {
1619 }
1620 
1621 static void
1622 __unwind_incomplete_requests(struct intel_context *ce)
1623 {
1624 	struct i915_request *rq, *rn;
1625 	struct list_head *pl;
1626 	int prio = I915_PRIORITY_INVALID;
1627 	struct i915_sched_engine * const sched_engine =
1628 		ce->engine->sched_engine;
1629 	unsigned long flags;
1630 
1631 	spin_lock_irqsave(&sched_engine->lock, flags);
1632 	spin_lock(&ce->guc_state.lock);
1633 	list_for_each_entry_safe_reverse(rq, rn,
1634 					 &ce->guc_state.requests,
1635 					 sched.link) {
1636 		if (i915_request_completed(rq))
1637 			continue;
1638 
1639 		list_del_init(&rq->sched.link);
1640 		__i915_request_unsubmit(rq);
1641 
1642 		/* Push the request back into the queue for later resubmission. */
1643 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1644 		if (rq_prio(rq) != prio) {
1645 			prio = rq_prio(rq);
1646 			pl = i915_sched_lookup_priolist(sched_engine, prio);
1647 		}
1648 		GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1649 
1650 		list_add(&rq->sched.link, pl);
1651 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1652 	}
1653 	spin_unlock(&ce->guc_state.lock);
1654 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1655 }
1656 
1657 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1658 {
1659 	bool guilty;
1660 	struct i915_request *rq;
1661 	unsigned long flags;
1662 	u32 head;
1663 	int i, number_children = ce->parallel.number_children;
1664 	struct intel_context *parent = ce;
1665 
1666 	GEM_BUG_ON(intel_context_is_child(ce));
1667 
1668 	intel_context_get(ce);
1669 
1670 	/*
1671 	 * GuC will implicitly mark the context as non-schedulable when it sends
1672 	 * the reset notification. Make sure our state reflects this change. The
1673 	 * context will be marked enabled on resubmission.
1674 	 */
1675 	spin_lock_irqsave(&ce->guc_state.lock, flags);
1676 	clr_context_enabled(ce);
1677 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1678 
1679 	/*
1680 	 * For each context in the relationship find the hanging request
1681 	 * resetting each context / request as needed
1682 	 */
1683 	for (i = 0; i < number_children + 1; ++i) {
1684 		if (!intel_context_is_pinned(ce))
1685 			goto next_context;
1686 
1687 		guilty = false;
1688 		rq = intel_context_find_active_request(ce);
1689 		if (!rq) {
1690 			head = ce->ring->tail;
1691 			goto out_replay;
1692 		}
1693 
1694 		if (i915_request_started(rq))
1695 			guilty = stalled & ce->engine->mask;
1696 
1697 		GEM_BUG_ON(i915_active_is_idle(&ce->active));
1698 		head = intel_ring_wrap(ce->ring, rq->head);
1699 
1700 		__i915_request_reset(rq, guilty);
1701 out_replay:
1702 		guc_reset_state(ce, head, guilty);
1703 next_context:
1704 		if (i != number_children)
1705 			ce = list_next_entry(ce, parallel.child_link);
1706 	}
1707 
1708 	__unwind_incomplete_requests(parent);
1709 	intel_context_put(parent);
1710 }
1711 
1712 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1713 {
1714 	struct intel_context *ce;
1715 	unsigned long index;
1716 	unsigned long flags;
1717 
1718 	if (unlikely(!guc_submission_initialized(guc))) {
1719 		/* Reset called during driver load? GuC not yet initialised! */
1720 		return;
1721 	}
1722 
1723 	xa_lock_irqsave(&guc->context_lookup, flags);
1724 	xa_for_each(&guc->context_lookup, index, ce) {
1725 		if (!kref_get_unless_zero(&ce->ref))
1726 			continue;
1727 
1728 		xa_unlock(&guc->context_lookup);
1729 
1730 		if (intel_context_is_pinned(ce) &&
1731 		    !intel_context_is_child(ce))
1732 			__guc_reset_context(ce, stalled);
1733 
1734 		intel_context_put(ce);
1735 
1736 		xa_lock(&guc->context_lookup);
1737 	}
1738 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1739 
1740 	/* GuC is blown away, drop all references to contexts */
1741 	xa_destroy(&guc->context_lookup);
1742 }
1743 
1744 static void guc_cancel_context_requests(struct intel_context *ce)
1745 {
1746 	struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1747 	struct i915_request *rq;
1748 	unsigned long flags;
1749 
1750 	/* Mark all executing requests as skipped. */
1751 	spin_lock_irqsave(&sched_engine->lock, flags);
1752 	spin_lock(&ce->guc_state.lock);
1753 	list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1754 		i915_request_put(i915_request_mark_eio(rq));
1755 	spin_unlock(&ce->guc_state.lock);
1756 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1757 }
1758 
1759 static void
1760 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1761 {
1762 	struct i915_request *rq, *rn;
1763 	struct rb_node *rb;
1764 	unsigned long flags;
1765 
1766 	/* Can be called during boot if GuC fails to load */
1767 	if (!sched_engine)
1768 		return;
1769 
1770 	/*
1771 	 * Before we call engine->cancel_requests(), we should have exclusive
1772 	 * access to the submission state. This is arranged for us by the
1773 	 * caller disabling the interrupt generation, the tasklet and other
1774 	 * threads that may then access the same state, giving us a free hand
1775 	 * to reset state. However, we still need to let lockdep be aware that
1776 	 * we know this state may be accessed in hardirq context, so we
1777 	 * disable the irq around this manipulation and we want to keep
1778 	 * the spinlock focused on its duties and not accidentally conflate
1779 	 * coverage to the submission's irq state. (Similarly, although we
1780 	 * shouldn't need to disable irq around the manipulation of the
1781 	 * submission's irq state, we also wish to remind ourselves that
1782 	 * it is irq state.)
1783 	 */
1784 	spin_lock_irqsave(&sched_engine->lock, flags);
1785 
1786 	/* Flush the queued requests to the timeline list (for retiring). */
1787 	while ((rb = rb_first_cached(&sched_engine->queue))) {
1788 		struct i915_priolist *p = to_priolist(rb);
1789 
1790 		priolist_for_each_request_consume(rq, rn, p) {
1791 			list_del_init(&rq->sched.link);
1792 
1793 			__i915_request_submit(rq);
1794 
1795 			i915_request_put(i915_request_mark_eio(rq));
1796 		}
1797 
1798 		rb_erase_cached(&p->node, &sched_engine->queue);
1799 		i915_priolist_free(p);
1800 	}
1801 
1802 	/* Remaining _unready_ requests will be nop'ed when submitted */
1803 
1804 	sched_engine->queue_priority_hint = INT_MIN;
1805 	sched_engine->queue = RB_ROOT_CACHED;
1806 
1807 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1808 }
1809 
1810 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
1811 {
1812 	struct intel_context *ce;
1813 	unsigned long index;
1814 	unsigned long flags;
1815 
1816 	xa_lock_irqsave(&guc->context_lookup, flags);
1817 	xa_for_each(&guc->context_lookup, index, ce) {
1818 		if (!kref_get_unless_zero(&ce->ref))
1819 			continue;
1820 
1821 		xa_unlock(&guc->context_lookup);
1822 
1823 		if (intel_context_is_pinned(ce) &&
1824 		    !intel_context_is_child(ce))
1825 			guc_cancel_context_requests(ce);
1826 
1827 		intel_context_put(ce);
1828 
1829 		xa_lock(&guc->context_lookup);
1830 	}
1831 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1832 
1833 	guc_cancel_sched_engine_requests(guc->sched_engine);
1834 
1835 	/* GuC is blown away, drop all references to contexts */
1836 	xa_destroy(&guc->context_lookup);
1837 }
1838 
1839 void intel_guc_submission_reset_finish(struct intel_guc *guc)
1840 {
1841 	/* Reset called during driver load or during wedge? */
1842 	if (unlikely(!guc_submission_initialized(guc) ||
1843 		     intel_gt_is_wedged(guc_to_gt(guc)))) {
1844 		return;
1845 	}
1846 
1847 	/*
1848 	 * Technically possible for either of these values to be non-zero here,
1849 	 * but very unlikely + harmless. Regardless let's add a warn so we can
1850 	 * see in CI if this happens frequently / a precursor to taking down the
1851 	 * machine.
1852 	 */
1853 	GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h));
1854 	atomic_set(&guc->outstanding_submission_g2h, 0);
1855 
1856 	intel_guc_global_policies_update(guc);
1857 	enable_submission(guc);
1858 	intel_gt_unpark_heartbeats(guc_to_gt(guc));
1859 }
1860 
1861 static void destroyed_worker_func(struct work_struct *w);
1862 static void reset_fail_worker_func(struct work_struct *w);
1863 
1864 /*
1865  * Set up the memory resources to be shared with the GuC (via the GGTT)
1866  * at firmware loading time.
1867  */
1868 int intel_guc_submission_init(struct intel_guc *guc)
1869 {
1870 	struct intel_gt *gt = guc_to_gt(guc);
1871 	int ret;
1872 
1873 	if (guc->submission_initialized)
1874 		return 0;
1875 
1876 	if (GET_UC_VER(guc) < MAKE_UC_VER(70, 0, 0)) {
1877 		ret = guc_lrc_desc_pool_create_v69(guc);
1878 		if (ret)
1879 			return ret;
1880 	}
1881 
1882 	guc->submission_state.guc_ids_bitmap =
1883 		bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
1884 	if (!guc->submission_state.guc_ids_bitmap) {
1885 		ret = -ENOMEM;
1886 		goto destroy_pool;
1887 	}
1888 
1889 	guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
1890 	guc->timestamp.shift = gpm_timestamp_shift(gt);
1891 	guc->submission_initialized = true;
1892 
1893 	return 0;
1894 
1895 destroy_pool:
1896 	guc_lrc_desc_pool_destroy_v69(guc);
1897 
1898 	return ret;
1899 }
1900 
1901 void intel_guc_submission_fini(struct intel_guc *guc)
1902 {
1903 	if (!guc->submission_initialized)
1904 		return;
1905 
1906 	guc_flush_destroyed_contexts(guc);
1907 	guc_lrc_desc_pool_destroy_v69(guc);
1908 	i915_sched_engine_put(guc->sched_engine);
1909 	bitmap_free(guc->submission_state.guc_ids_bitmap);
1910 	guc->submission_initialized = false;
1911 }
1912 
1913 static inline void queue_request(struct i915_sched_engine *sched_engine,
1914 				 struct i915_request *rq,
1915 				 int prio)
1916 {
1917 	GEM_BUG_ON(!list_empty(&rq->sched.link));
1918 	list_add_tail(&rq->sched.link,
1919 		      i915_sched_lookup_priolist(sched_engine, prio));
1920 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1921 	tasklet_hi_schedule(&sched_engine->tasklet);
1922 }
1923 
1924 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
1925 				     struct i915_request *rq)
1926 {
1927 	int ret = 0;
1928 
1929 	__i915_request_submit(rq);
1930 
1931 	trace_i915_request_in(rq, 0);
1932 
1933 	if (is_multi_lrc_rq(rq)) {
1934 		if (multi_lrc_submit(rq)) {
1935 			ret = guc_wq_item_append(guc, rq);
1936 			if (!ret)
1937 				ret = guc_add_request(guc, rq);
1938 		}
1939 	} else {
1940 		guc_set_lrc_tail(rq);
1941 		ret = guc_add_request(guc, rq);
1942 	}
1943 
1944 	if (unlikely(ret == -EPIPE))
1945 		disable_submission(guc);
1946 
1947 	return ret;
1948 }
1949 
1950 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
1951 {
1952 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
1953 	struct intel_context *ce = request_to_scheduling_context(rq);
1954 
1955 	return submission_disabled(guc) || guc->stalled_request ||
1956 		!i915_sched_engine_is_empty(sched_engine) ||
1957 		!ctx_id_mapped(guc, ce->guc_id.id);
1958 }
1959 
1960 static void guc_submit_request(struct i915_request *rq)
1961 {
1962 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
1963 	struct intel_guc *guc = &rq->engine->gt->uc.guc;
1964 	unsigned long flags;
1965 
1966 	/* Will be called from irq-context when using foreign fences. */
1967 	spin_lock_irqsave(&sched_engine->lock, flags);
1968 
1969 	if (need_tasklet(guc, rq))
1970 		queue_request(sched_engine, rq, rq_prio(rq));
1971 	else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
1972 		tasklet_hi_schedule(&sched_engine->tasklet);
1973 
1974 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1975 }
1976 
1977 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
1978 {
1979 	int ret;
1980 
1981 	GEM_BUG_ON(intel_context_is_child(ce));
1982 
1983 	if (intel_context_is_parent(ce))
1984 		ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
1985 					      NUMBER_MULTI_LRC_GUC_ID(guc),
1986 					      order_base_2(ce->parallel.number_children
1987 							   + 1));
1988 	else
1989 		ret = ida_simple_get(&guc->submission_state.guc_ids,
1990 				     NUMBER_MULTI_LRC_GUC_ID(guc),
1991 				     guc->submission_state.num_guc_ids,
1992 				     GFP_KERNEL | __GFP_RETRY_MAYFAIL |
1993 				     __GFP_NOWARN);
1994 	if (unlikely(ret < 0))
1995 		return ret;
1996 
1997 	ce->guc_id.id = ret;
1998 	return 0;
1999 }
2000 
2001 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2002 {
2003 	GEM_BUG_ON(intel_context_is_child(ce));
2004 
2005 	if (!context_guc_id_invalid(ce)) {
2006 		if (intel_context_is_parent(ce))
2007 			bitmap_release_region(guc->submission_state.guc_ids_bitmap,
2008 					      ce->guc_id.id,
2009 					      order_base_2(ce->parallel.number_children
2010 							   + 1));
2011 		else
2012 			ida_simple_remove(&guc->submission_state.guc_ids,
2013 					  ce->guc_id.id);
2014 		clr_ctx_id_mapping(guc, ce->guc_id.id);
2015 		set_context_guc_id_invalid(ce);
2016 	}
2017 	if (!list_empty(&ce->guc_id.link))
2018 		list_del_init(&ce->guc_id.link);
2019 }
2020 
2021 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2022 {
2023 	unsigned long flags;
2024 
2025 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2026 	__release_guc_id(guc, ce);
2027 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2028 }
2029 
2030 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
2031 {
2032 	struct intel_context *cn;
2033 
2034 	lockdep_assert_held(&guc->submission_state.lock);
2035 	GEM_BUG_ON(intel_context_is_child(ce));
2036 	GEM_BUG_ON(intel_context_is_parent(ce));
2037 
2038 	if (!list_empty(&guc->submission_state.guc_id_list)) {
2039 		cn = list_first_entry(&guc->submission_state.guc_id_list,
2040 				      struct intel_context,
2041 				      guc_id.link);
2042 
2043 		GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
2044 		GEM_BUG_ON(context_guc_id_invalid(cn));
2045 		GEM_BUG_ON(intel_context_is_child(cn));
2046 		GEM_BUG_ON(intel_context_is_parent(cn));
2047 
2048 		list_del_init(&cn->guc_id.link);
2049 		ce->guc_id.id = cn->guc_id.id;
2050 
2051 		spin_lock(&cn->guc_state.lock);
2052 		clr_context_registered(cn);
2053 		spin_unlock(&cn->guc_state.lock);
2054 
2055 		set_context_guc_id_invalid(cn);
2056 
2057 #ifdef CONFIG_DRM_I915_SELFTEST
2058 		guc->number_guc_id_stolen++;
2059 #endif
2060 
2061 		return 0;
2062 	} else {
2063 		return -EAGAIN;
2064 	}
2065 }
2066 
2067 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2068 {
2069 	int ret;
2070 
2071 	lockdep_assert_held(&guc->submission_state.lock);
2072 	GEM_BUG_ON(intel_context_is_child(ce));
2073 
2074 	ret = new_guc_id(guc, ce);
2075 	if (unlikely(ret < 0)) {
2076 		if (intel_context_is_parent(ce))
2077 			return -ENOSPC;
2078 
2079 		ret = steal_guc_id(guc, ce);
2080 		if (ret < 0)
2081 			return ret;
2082 	}
2083 
2084 	if (intel_context_is_parent(ce)) {
2085 		struct intel_context *child;
2086 		int i = 1;
2087 
2088 		for_each_child(ce, child)
2089 			child->guc_id.id = ce->guc_id.id + i++;
2090 	}
2091 
2092 	return 0;
2093 }
2094 
2095 #define PIN_GUC_ID_TRIES	4
2096 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2097 {
2098 	int ret = 0;
2099 	unsigned long flags, tries = PIN_GUC_ID_TRIES;
2100 
2101 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2102 
2103 try_again:
2104 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2105 
2106 	might_lock(&ce->guc_state.lock);
2107 
2108 	if (context_guc_id_invalid(ce)) {
2109 		ret = assign_guc_id(guc, ce);
2110 		if (ret)
2111 			goto out_unlock;
2112 		ret = 1;	/* Indidcates newly assigned guc_id */
2113 	}
2114 	if (!list_empty(&ce->guc_id.link))
2115 		list_del_init(&ce->guc_id.link);
2116 	atomic_inc(&ce->guc_id.ref);
2117 
2118 out_unlock:
2119 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2120 
2121 	/*
2122 	 * -EAGAIN indicates no guc_id are available, let's retire any
2123 	 * outstanding requests to see if that frees up a guc_id. If the first
2124 	 * retire didn't help, insert a sleep with the timeslice duration before
2125 	 * attempting to retire more requests. Double the sleep period each
2126 	 * subsequent pass before finally giving up. The sleep period has max of
2127 	 * 100ms and minimum of 1ms.
2128 	 */
2129 	if (ret == -EAGAIN && --tries) {
2130 		if (PIN_GUC_ID_TRIES - tries > 1) {
2131 			unsigned int timeslice_shifted =
2132 				ce->engine->props.timeslice_duration_ms <<
2133 				(PIN_GUC_ID_TRIES - tries - 2);
2134 			unsigned int max = min_t(unsigned int, 100,
2135 						 timeslice_shifted);
2136 
2137 			msleep(max_t(unsigned int, max, 1));
2138 		}
2139 		intel_gt_retire_requests(guc_to_gt(guc));
2140 		goto try_again;
2141 	}
2142 
2143 	return ret;
2144 }
2145 
2146 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2147 {
2148 	unsigned long flags;
2149 
2150 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2151 	GEM_BUG_ON(intel_context_is_child(ce));
2152 
2153 	if (unlikely(context_guc_id_invalid(ce) ||
2154 		     intel_context_is_parent(ce)))
2155 		return;
2156 
2157 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2158 	if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2159 	    !atomic_read(&ce->guc_id.ref))
2160 		list_add_tail(&ce->guc_id.link,
2161 			      &guc->submission_state.guc_id_list);
2162 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2163 }
2164 
2165 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc,
2166 					       struct intel_context *ce,
2167 					       u32 guc_id,
2168 					       u32 offset,
2169 					       bool loop)
2170 {
2171 	struct intel_context *child;
2172 	u32 action[4 + MAX_ENGINE_INSTANCE];
2173 	int len = 0;
2174 
2175 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2176 
2177 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2178 	action[len++] = guc_id;
2179 	action[len++] = ce->parallel.number_children + 1;
2180 	action[len++] = offset;
2181 	for_each_child(ce, child) {
2182 		offset += sizeof(struct guc_lrc_desc_v69);
2183 		action[len++] = offset;
2184 	}
2185 
2186 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2187 }
2188 
2189 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc,
2190 					       struct intel_context *ce,
2191 					       struct guc_ctxt_registration_info *info,
2192 					       bool loop)
2193 {
2194 	struct intel_context *child;
2195 	u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2196 	int len = 0;
2197 	u32 next_id;
2198 
2199 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2200 
2201 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2202 	action[len++] = info->flags;
2203 	action[len++] = info->context_idx;
2204 	action[len++] = info->engine_class;
2205 	action[len++] = info->engine_submit_mask;
2206 	action[len++] = info->wq_desc_lo;
2207 	action[len++] = info->wq_desc_hi;
2208 	action[len++] = info->wq_base_lo;
2209 	action[len++] = info->wq_base_hi;
2210 	action[len++] = info->wq_size;
2211 	action[len++] = ce->parallel.number_children + 1;
2212 	action[len++] = info->hwlrca_lo;
2213 	action[len++] = info->hwlrca_hi;
2214 
2215 	next_id = info->context_idx + 1;
2216 	for_each_child(ce, child) {
2217 		GEM_BUG_ON(next_id++ != child->guc_id.id);
2218 
2219 		/*
2220 		 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2221 		 * only supports 32 bit currently.
2222 		 */
2223 		action[len++] = lower_32_bits(child->lrc.lrca);
2224 		action[len++] = upper_32_bits(child->lrc.lrca);
2225 	}
2226 
2227 	GEM_BUG_ON(len > ARRAY_SIZE(action));
2228 
2229 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2230 }
2231 
2232 static int __guc_action_register_context_v69(struct intel_guc *guc,
2233 					     u32 guc_id,
2234 					     u32 offset,
2235 					     bool loop)
2236 {
2237 	u32 action[] = {
2238 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2239 		guc_id,
2240 		offset,
2241 	};
2242 
2243 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2244 					     0, loop);
2245 }
2246 
2247 static int __guc_action_register_context_v70(struct intel_guc *guc,
2248 					     struct guc_ctxt_registration_info *info,
2249 					     bool loop)
2250 {
2251 	u32 action[] = {
2252 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2253 		info->flags,
2254 		info->context_idx,
2255 		info->engine_class,
2256 		info->engine_submit_mask,
2257 		info->wq_desc_lo,
2258 		info->wq_desc_hi,
2259 		info->wq_base_lo,
2260 		info->wq_base_hi,
2261 		info->wq_size,
2262 		info->hwlrca_lo,
2263 		info->hwlrca_hi,
2264 	};
2265 
2266 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2267 					     0, loop);
2268 }
2269 
2270 static void prepare_context_registration_info_v69(struct intel_context *ce);
2271 static void prepare_context_registration_info_v70(struct intel_context *ce,
2272 						  struct guc_ctxt_registration_info *info);
2273 
2274 static int
2275 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop)
2276 {
2277 	u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) +
2278 		ce->guc_id.id * sizeof(struct guc_lrc_desc_v69);
2279 
2280 	prepare_context_registration_info_v69(ce);
2281 
2282 	if (intel_context_is_parent(ce))
2283 		return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id,
2284 							   offset, loop);
2285 	else
2286 		return __guc_action_register_context_v69(guc, ce->guc_id.id,
2287 							 offset, loop);
2288 }
2289 
2290 static int
2291 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop)
2292 {
2293 	struct guc_ctxt_registration_info info;
2294 
2295 	prepare_context_registration_info_v70(ce, &info);
2296 
2297 	if (intel_context_is_parent(ce))
2298 		return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop);
2299 	else
2300 		return __guc_action_register_context_v70(guc, &info, loop);
2301 }
2302 
2303 static int register_context(struct intel_context *ce, bool loop)
2304 {
2305 	struct intel_guc *guc = ce_to_guc(ce);
2306 	int ret;
2307 
2308 	GEM_BUG_ON(intel_context_is_child(ce));
2309 	trace_intel_context_register(ce);
2310 
2311 	if (GET_UC_VER(guc) >= MAKE_UC_VER(70, 0, 0))
2312 		ret = register_context_v70(guc, ce, loop);
2313 	else
2314 		ret = register_context_v69(guc, ce, loop);
2315 
2316 	if (likely(!ret)) {
2317 		unsigned long flags;
2318 
2319 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2320 		set_context_registered(ce);
2321 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2322 
2323 		if (GET_UC_VER(guc) >= MAKE_UC_VER(70, 0, 0))
2324 			guc_context_policy_init_v70(ce, loop);
2325 	}
2326 
2327 	return ret;
2328 }
2329 
2330 static int __guc_action_deregister_context(struct intel_guc *guc,
2331 					   u32 guc_id)
2332 {
2333 	u32 action[] = {
2334 		INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2335 		guc_id,
2336 	};
2337 
2338 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2339 					     G2H_LEN_DW_DEREGISTER_CONTEXT,
2340 					     true);
2341 }
2342 
2343 static int deregister_context(struct intel_context *ce, u32 guc_id)
2344 {
2345 	struct intel_guc *guc = ce_to_guc(ce);
2346 
2347 	GEM_BUG_ON(intel_context_is_child(ce));
2348 	trace_intel_context_deregister(ce);
2349 
2350 	return __guc_action_deregister_context(guc, guc_id);
2351 }
2352 
2353 static inline void clear_children_join_go_memory(struct intel_context *ce)
2354 {
2355 	struct parent_scratch *ps = __get_parent_scratch(ce);
2356 	int i;
2357 
2358 	ps->go.semaphore = 0;
2359 	for (i = 0; i < ce->parallel.number_children + 1; ++i)
2360 		ps->join[i].semaphore = 0;
2361 }
2362 
2363 static inline u32 get_children_go_value(struct intel_context *ce)
2364 {
2365 	return __get_parent_scratch(ce)->go.semaphore;
2366 }
2367 
2368 static inline u32 get_children_join_value(struct intel_context *ce,
2369 					  u8 child_index)
2370 {
2371 	return __get_parent_scratch(ce)->join[child_index].semaphore;
2372 }
2373 
2374 struct context_policy {
2375 	u32 count;
2376 	struct guc_update_context_policy h2g;
2377 };
2378 
2379 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2380 {
2381 	size_t bytes = sizeof(policy->h2g.header) +
2382 		       (sizeof(policy->h2g.klv[0]) * policy->count);
2383 
2384 	return bytes / sizeof(u32);
2385 }
2386 
2387 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2388 {
2389 	policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2390 	policy->h2g.header.ctx_id = guc_id;
2391 	policy->count = 0;
2392 }
2393 
2394 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2395 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2396 { \
2397 	GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2398 	policy->h2g.klv[policy->count].kl = \
2399 		FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2400 		FIELD_PREP(GUC_KLV_0_LEN, 1); \
2401 	policy->h2g.klv[policy->count].value = data; \
2402 	policy->count++; \
2403 }
2404 
2405 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2406 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2407 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2408 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2409 
2410 #undef MAKE_CONTEXT_POLICY_ADD
2411 
2412 static int __guc_context_set_context_policies(struct intel_guc *guc,
2413 					      struct context_policy *policy,
2414 					      bool loop)
2415 {
2416 	return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2417 					__guc_context_policy_action_size(policy),
2418 					0, loop);
2419 }
2420 
2421 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop)
2422 {
2423 	struct intel_engine_cs *engine = ce->engine;
2424 	struct intel_guc *guc = &engine->gt->uc.guc;
2425 	struct context_policy policy;
2426 	u32 execution_quantum;
2427 	u32 preemption_timeout;
2428 	unsigned long flags;
2429 	int ret;
2430 
2431 	/* NB: For both of these, zero means disabled. */
2432 	execution_quantum = engine->props.timeslice_duration_ms * 1000;
2433 	preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2434 
2435 	__guc_context_policy_start_klv(&policy, ce->guc_id.id);
2436 
2437 	__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2438 	__guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2439 	__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2440 
2441 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2442 		__guc_context_policy_add_preempt_to_idle(&policy, 1);
2443 
2444 	ret = __guc_context_set_context_policies(guc, &policy, loop);
2445 
2446 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2447 	if (ret != 0)
2448 		set_context_policy_required(ce);
2449 	else
2450 		clr_context_policy_required(ce);
2451 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2452 
2453 	return ret;
2454 }
2455 
2456 static void guc_context_policy_init_v69(struct intel_engine_cs *engine,
2457 					struct guc_lrc_desc_v69 *desc)
2458 {
2459 	desc->policy_flags = 0;
2460 
2461 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2462 		desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69;
2463 
2464 	/* NB: For both of these, zero means disabled. */
2465 	desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
2466 	desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2467 }
2468 
2469 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio)
2470 {
2471 	/*
2472 	 * this matches the mapping we do in map_i915_prio_to_guc_prio()
2473 	 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL)
2474 	 */
2475 	switch (prio) {
2476 	default:
2477 		MISSING_CASE(prio);
2478 		fallthrough;
2479 	case GUC_CLIENT_PRIORITY_KMD_NORMAL:
2480 		return GEN12_CTX_PRIORITY_NORMAL;
2481 	case GUC_CLIENT_PRIORITY_NORMAL:
2482 		return GEN12_CTX_PRIORITY_LOW;
2483 	case GUC_CLIENT_PRIORITY_HIGH:
2484 	case GUC_CLIENT_PRIORITY_KMD_HIGH:
2485 		return GEN12_CTX_PRIORITY_HIGH;
2486 	}
2487 }
2488 
2489 static void prepare_context_registration_info_v69(struct intel_context *ce)
2490 {
2491 	struct intel_engine_cs *engine = ce->engine;
2492 	struct intel_guc *guc = &engine->gt->uc.guc;
2493 	u32 ctx_id = ce->guc_id.id;
2494 	struct guc_lrc_desc_v69 *desc;
2495 	struct intel_context *child;
2496 
2497 	GEM_BUG_ON(!engine->mask);
2498 
2499 	/*
2500 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2501 	 * based on CT vma region.
2502 	 */
2503 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2504 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2505 
2506 	desc = __get_lrc_desc_v69(guc, ctx_id);
2507 	desc->engine_class = engine_class_to_guc_class(engine->class);
2508 	desc->engine_submit_mask = engine->logical_mask;
2509 	desc->hw_context_desc = ce->lrc.lrca;
2510 	desc->priority = ce->guc_state.prio;
2511 	desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2512 	guc_context_policy_init_v69(engine, desc);
2513 
2514 	/*
2515 	 * If context is a parent, we need to register a process descriptor
2516 	 * describing a work queue and register all child contexts.
2517 	 */
2518 	if (intel_context_is_parent(ce)) {
2519 		struct guc_process_desc_v69 *pdesc;
2520 
2521 		ce->parallel.guc.wqi_tail = 0;
2522 		ce->parallel.guc.wqi_head = 0;
2523 
2524 		desc->process_desc = i915_ggtt_offset(ce->state) +
2525 			__get_parent_scratch_offset(ce);
2526 		desc->wq_addr = i915_ggtt_offset(ce->state) +
2527 			__get_wq_offset(ce);
2528 		desc->wq_size = WQ_SIZE;
2529 
2530 		pdesc = __get_process_desc_v69(ce);
2531 		memset(pdesc, 0, sizeof(*(pdesc)));
2532 		pdesc->stage_id = ce->guc_id.id;
2533 		pdesc->wq_base_addr = desc->wq_addr;
2534 		pdesc->wq_size_bytes = desc->wq_size;
2535 		pdesc->wq_status = WQ_STATUS_ACTIVE;
2536 
2537 		ce->parallel.guc.wq_head = &pdesc->head;
2538 		ce->parallel.guc.wq_tail = &pdesc->tail;
2539 		ce->parallel.guc.wq_status = &pdesc->wq_status;
2540 
2541 		for_each_child(ce, child) {
2542 			desc = __get_lrc_desc_v69(guc, child->guc_id.id);
2543 
2544 			desc->engine_class =
2545 				engine_class_to_guc_class(engine->class);
2546 			desc->hw_context_desc = child->lrc.lrca;
2547 			desc->priority = ce->guc_state.prio;
2548 			desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2549 			guc_context_policy_init_v69(engine, desc);
2550 		}
2551 
2552 		clear_children_join_go_memory(ce);
2553 	}
2554 }
2555 
2556 static void prepare_context_registration_info_v70(struct intel_context *ce,
2557 						  struct guc_ctxt_registration_info *info)
2558 {
2559 	struct intel_engine_cs *engine = ce->engine;
2560 	struct intel_guc *guc = &engine->gt->uc.guc;
2561 	u32 ctx_id = ce->guc_id.id;
2562 
2563 	GEM_BUG_ON(!engine->mask);
2564 
2565 	/*
2566 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2567 	 * based on CT vma region.
2568 	 */
2569 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2570 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2571 
2572 	memset(info, 0, sizeof(*info));
2573 	info->context_idx = ctx_id;
2574 	info->engine_class = engine_class_to_guc_class(engine->class);
2575 	info->engine_submit_mask = engine->logical_mask;
2576 	/*
2577 	 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2578 	 * only supports 32 bit currently.
2579 	 */
2580 	info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2581 	info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2582 	if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
2583 		info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio);
2584 	info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2585 
2586 	/*
2587 	 * If context is a parent, we need to register a process descriptor
2588 	 * describing a work queue and register all child contexts.
2589 	 */
2590 	if (intel_context_is_parent(ce)) {
2591 		struct guc_sched_wq_desc *wq_desc;
2592 		u64 wq_desc_offset, wq_base_offset;
2593 
2594 		ce->parallel.guc.wqi_tail = 0;
2595 		ce->parallel.guc.wqi_head = 0;
2596 
2597 		wq_desc_offset = i915_ggtt_offset(ce->state) +
2598 				 __get_parent_scratch_offset(ce);
2599 		wq_base_offset = i915_ggtt_offset(ce->state) +
2600 				 __get_wq_offset(ce);
2601 		info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2602 		info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2603 		info->wq_base_lo = lower_32_bits(wq_base_offset);
2604 		info->wq_base_hi = upper_32_bits(wq_base_offset);
2605 		info->wq_size = WQ_SIZE;
2606 
2607 		wq_desc = __get_wq_desc_v70(ce);
2608 		memset(wq_desc, 0, sizeof(*wq_desc));
2609 		wq_desc->wq_status = WQ_STATUS_ACTIVE;
2610 
2611 		ce->parallel.guc.wq_head = &wq_desc->head;
2612 		ce->parallel.guc.wq_tail = &wq_desc->tail;
2613 		ce->parallel.guc.wq_status = &wq_desc->wq_status;
2614 
2615 		clear_children_join_go_memory(ce);
2616 	}
2617 }
2618 
2619 static int try_context_registration(struct intel_context *ce, bool loop)
2620 {
2621 	struct intel_engine_cs *engine = ce->engine;
2622 	struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2623 	struct intel_guc *guc = &engine->gt->uc.guc;
2624 	intel_wakeref_t wakeref;
2625 	u32 ctx_id = ce->guc_id.id;
2626 	bool context_registered;
2627 	int ret = 0;
2628 
2629 	GEM_BUG_ON(!sched_state_is_init(ce));
2630 
2631 	context_registered = ctx_id_mapped(guc, ctx_id);
2632 
2633 	clr_ctx_id_mapping(guc, ctx_id);
2634 	set_ctx_id_mapping(guc, ctx_id, ce);
2635 
2636 	/*
2637 	 * The context_lookup xarray is used to determine if the hardware
2638 	 * context is currently registered. There are two cases in which it
2639 	 * could be registered either the guc_id has been stolen from another
2640 	 * context or the lrc descriptor address of this context has changed. In
2641 	 * either case the context needs to be deregistered with the GuC before
2642 	 * registering this context.
2643 	 */
2644 	if (context_registered) {
2645 		bool disabled;
2646 		unsigned long flags;
2647 
2648 		trace_intel_context_steal_guc_id(ce);
2649 		GEM_BUG_ON(!loop);
2650 
2651 		/* Seal race with Reset */
2652 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2653 		disabled = submission_disabled(guc);
2654 		if (likely(!disabled)) {
2655 			set_context_wait_for_deregister_to_register(ce);
2656 			intel_context_get(ce);
2657 		}
2658 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2659 		if (unlikely(disabled)) {
2660 			clr_ctx_id_mapping(guc, ctx_id);
2661 			return 0;	/* Will get registered later */
2662 		}
2663 
2664 		/*
2665 		 * If stealing the guc_id, this ce has the same guc_id as the
2666 		 * context whose guc_id was stolen.
2667 		 */
2668 		with_intel_runtime_pm(runtime_pm, wakeref)
2669 			ret = deregister_context(ce, ce->guc_id.id);
2670 		if (unlikely(ret == -ENODEV))
2671 			ret = 0;	/* Will get registered later */
2672 	} else {
2673 		with_intel_runtime_pm(runtime_pm, wakeref)
2674 			ret = register_context(ce, loop);
2675 		if (unlikely(ret == -EBUSY)) {
2676 			clr_ctx_id_mapping(guc, ctx_id);
2677 		} else if (unlikely(ret == -ENODEV)) {
2678 			clr_ctx_id_mapping(guc, ctx_id);
2679 			ret = 0;	/* Will get registered later */
2680 		}
2681 	}
2682 
2683 	return ret;
2684 }
2685 
2686 static int __guc_context_pre_pin(struct intel_context *ce,
2687 				 struct intel_engine_cs *engine,
2688 				 struct i915_gem_ww_ctx *ww,
2689 				 void **vaddr)
2690 {
2691 	return lrc_pre_pin(ce, engine, ww, vaddr);
2692 }
2693 
2694 static int __guc_context_pin(struct intel_context *ce,
2695 			     struct intel_engine_cs *engine,
2696 			     void *vaddr)
2697 {
2698 	if (i915_ggtt_offset(ce->state) !=
2699 	    (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
2700 		set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
2701 
2702 	/*
2703 	 * GuC context gets pinned in guc_request_alloc. See that function for
2704 	 * explaination of why.
2705 	 */
2706 
2707 	return lrc_pin(ce, engine, vaddr);
2708 }
2709 
2710 static int guc_context_pre_pin(struct intel_context *ce,
2711 			       struct i915_gem_ww_ctx *ww,
2712 			       void **vaddr)
2713 {
2714 	return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
2715 }
2716 
2717 static int guc_context_pin(struct intel_context *ce, void *vaddr)
2718 {
2719 	int ret = __guc_context_pin(ce, ce->engine, vaddr);
2720 
2721 	if (likely(!ret && !intel_context_is_barrier(ce)))
2722 		intel_engine_pm_get(ce->engine);
2723 
2724 	return ret;
2725 }
2726 
2727 static void guc_context_unpin(struct intel_context *ce)
2728 {
2729 	struct intel_guc *guc = ce_to_guc(ce);
2730 
2731 	unpin_guc_id(guc, ce);
2732 	lrc_unpin(ce);
2733 
2734 	if (likely(!intel_context_is_barrier(ce)))
2735 		intel_engine_pm_put_async(ce->engine);
2736 }
2737 
2738 static void guc_context_post_unpin(struct intel_context *ce)
2739 {
2740 	lrc_post_unpin(ce);
2741 }
2742 
2743 static void __guc_context_sched_enable(struct intel_guc *guc,
2744 				       struct intel_context *ce)
2745 {
2746 	u32 action[] = {
2747 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2748 		ce->guc_id.id,
2749 		GUC_CONTEXT_ENABLE
2750 	};
2751 
2752 	trace_intel_context_sched_enable(ce);
2753 
2754 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2755 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2756 }
2757 
2758 static void __guc_context_sched_disable(struct intel_guc *guc,
2759 					struct intel_context *ce,
2760 					u16 guc_id)
2761 {
2762 	u32 action[] = {
2763 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2764 		guc_id,	/* ce->guc_id.id not stable */
2765 		GUC_CONTEXT_DISABLE
2766 	};
2767 
2768 	GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
2769 
2770 	GEM_BUG_ON(intel_context_is_child(ce));
2771 	trace_intel_context_sched_disable(ce);
2772 
2773 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2774 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2775 }
2776 
2777 static void guc_blocked_fence_complete(struct intel_context *ce)
2778 {
2779 	lockdep_assert_held(&ce->guc_state.lock);
2780 
2781 	if (!i915_sw_fence_done(&ce->guc_state.blocked))
2782 		i915_sw_fence_complete(&ce->guc_state.blocked);
2783 }
2784 
2785 static void guc_blocked_fence_reinit(struct intel_context *ce)
2786 {
2787 	lockdep_assert_held(&ce->guc_state.lock);
2788 	GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
2789 
2790 	/*
2791 	 * This fence is always complete unless a pending schedule disable is
2792 	 * outstanding. We arm the fence here and complete it when we receive
2793 	 * the pending schedule disable complete message.
2794 	 */
2795 	i915_sw_fence_fini(&ce->guc_state.blocked);
2796 	i915_sw_fence_reinit(&ce->guc_state.blocked);
2797 	i915_sw_fence_await(&ce->guc_state.blocked);
2798 	i915_sw_fence_commit(&ce->guc_state.blocked);
2799 }
2800 
2801 static u16 prep_context_pending_disable(struct intel_context *ce)
2802 {
2803 	lockdep_assert_held(&ce->guc_state.lock);
2804 
2805 	set_context_pending_disable(ce);
2806 	clr_context_enabled(ce);
2807 	guc_blocked_fence_reinit(ce);
2808 	intel_context_get(ce);
2809 
2810 	return ce->guc_id.id;
2811 }
2812 
2813 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
2814 {
2815 	struct intel_guc *guc = ce_to_guc(ce);
2816 	unsigned long flags;
2817 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
2818 	intel_wakeref_t wakeref;
2819 	u16 guc_id;
2820 	bool enabled;
2821 
2822 	GEM_BUG_ON(intel_context_is_child(ce));
2823 
2824 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2825 
2826 	incr_context_blocked(ce);
2827 
2828 	enabled = context_enabled(ce);
2829 	if (unlikely(!enabled || submission_disabled(guc))) {
2830 		if (enabled)
2831 			clr_context_enabled(ce);
2832 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2833 		return &ce->guc_state.blocked;
2834 	}
2835 
2836 	/*
2837 	 * We add +2 here as the schedule disable complete CTB handler calls
2838 	 * intel_context_sched_disable_unpin (-2 to pin_count).
2839 	 */
2840 	atomic_add(2, &ce->pin_count);
2841 
2842 	guc_id = prep_context_pending_disable(ce);
2843 
2844 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2845 
2846 	with_intel_runtime_pm(runtime_pm, wakeref)
2847 		__guc_context_sched_disable(guc, ce, guc_id);
2848 
2849 	return &ce->guc_state.blocked;
2850 }
2851 
2852 #define SCHED_STATE_MULTI_BLOCKED_MASK \
2853 	(SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
2854 #define SCHED_STATE_NO_UNBLOCK \
2855 	(SCHED_STATE_MULTI_BLOCKED_MASK | \
2856 	 SCHED_STATE_PENDING_DISABLE | \
2857 	 SCHED_STATE_BANNED)
2858 
2859 static bool context_cant_unblock(struct intel_context *ce)
2860 {
2861 	lockdep_assert_held(&ce->guc_state.lock);
2862 
2863 	return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
2864 		context_guc_id_invalid(ce) ||
2865 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
2866 		!intel_context_is_pinned(ce);
2867 }
2868 
2869 static void guc_context_unblock(struct intel_context *ce)
2870 {
2871 	struct intel_guc *guc = ce_to_guc(ce);
2872 	unsigned long flags;
2873 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
2874 	intel_wakeref_t wakeref;
2875 	bool enable;
2876 
2877 	GEM_BUG_ON(context_enabled(ce));
2878 	GEM_BUG_ON(intel_context_is_child(ce));
2879 
2880 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2881 
2882 	if (unlikely(submission_disabled(guc) ||
2883 		     context_cant_unblock(ce))) {
2884 		enable = false;
2885 	} else {
2886 		enable = true;
2887 		set_context_pending_enable(ce);
2888 		set_context_enabled(ce);
2889 		intel_context_get(ce);
2890 	}
2891 
2892 	decr_context_blocked(ce);
2893 
2894 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2895 
2896 	if (enable) {
2897 		with_intel_runtime_pm(runtime_pm, wakeref)
2898 			__guc_context_sched_enable(guc, ce);
2899 	}
2900 }
2901 
2902 static void guc_context_cancel_request(struct intel_context *ce,
2903 				       struct i915_request *rq)
2904 {
2905 	struct intel_context *block_context =
2906 		request_to_scheduling_context(rq);
2907 
2908 	if (i915_sw_fence_signaled(&rq->submit)) {
2909 		struct i915_sw_fence *fence;
2910 
2911 		intel_context_get(ce);
2912 		fence = guc_context_block(block_context);
2913 		i915_sw_fence_wait(fence);
2914 		if (!i915_request_completed(rq)) {
2915 			__i915_request_skip(rq);
2916 			guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
2917 					true);
2918 		}
2919 
2920 		guc_context_unblock(block_context);
2921 		intel_context_put(ce);
2922 	}
2923 }
2924 
2925 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
2926 						 u16 guc_id,
2927 						 u32 preemption_timeout)
2928 {
2929 	if (GET_UC_VER(guc) >= MAKE_UC_VER(70, 0, 0)) {
2930 		struct context_policy policy;
2931 
2932 		__guc_context_policy_start_klv(&policy, guc_id);
2933 		__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2934 		__guc_context_set_context_policies(guc, &policy, true);
2935 	} else {
2936 		u32 action[] = {
2937 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT,
2938 			guc_id,
2939 			preemption_timeout
2940 		};
2941 
2942 		intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
2943 	}
2944 }
2945 
2946 static void
2947 guc_context_revoke(struct intel_context *ce, struct i915_request *rq,
2948 		   unsigned int preempt_timeout_ms)
2949 {
2950 	struct intel_guc *guc = ce_to_guc(ce);
2951 	struct intel_runtime_pm *runtime_pm =
2952 		&ce->engine->gt->i915->runtime_pm;
2953 	intel_wakeref_t wakeref;
2954 	unsigned long flags;
2955 
2956 	GEM_BUG_ON(intel_context_is_child(ce));
2957 
2958 	guc_flush_submissions(guc);
2959 
2960 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2961 	set_context_banned(ce);
2962 
2963 	if (submission_disabled(guc) ||
2964 	    (!context_enabled(ce) && !context_pending_disable(ce))) {
2965 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2966 
2967 		guc_cancel_context_requests(ce);
2968 		intel_engine_signal_breadcrumbs(ce->engine);
2969 	} else if (!context_pending_disable(ce)) {
2970 		u16 guc_id;
2971 
2972 		/*
2973 		 * We add +2 here as the schedule disable complete CTB handler
2974 		 * calls intel_context_sched_disable_unpin (-2 to pin_count).
2975 		 */
2976 		atomic_add(2, &ce->pin_count);
2977 
2978 		guc_id = prep_context_pending_disable(ce);
2979 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2980 
2981 		/*
2982 		 * In addition to disabling scheduling, set the preemption
2983 		 * timeout to the minimum value (1 us) so the banned context
2984 		 * gets kicked off the HW ASAP.
2985 		 */
2986 		with_intel_runtime_pm(runtime_pm, wakeref) {
2987 			__guc_context_set_preemption_timeout(guc, guc_id,
2988 							     preempt_timeout_ms);
2989 			__guc_context_sched_disable(guc, ce, guc_id);
2990 		}
2991 	} else {
2992 		if (!context_guc_id_invalid(ce))
2993 			with_intel_runtime_pm(runtime_pm, wakeref)
2994 				__guc_context_set_preemption_timeout(guc,
2995 								     ce->guc_id.id,
2996 								     preempt_timeout_ms);
2997 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2998 	}
2999 }
3000 
3001 static void guc_context_sched_disable(struct intel_context *ce)
3002 {
3003 	struct intel_guc *guc = ce_to_guc(ce);
3004 	unsigned long flags;
3005 	struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
3006 	intel_wakeref_t wakeref;
3007 	u16 guc_id;
3008 
3009 	GEM_BUG_ON(intel_context_is_child(ce));
3010 
3011 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3012 
3013 	/*
3014 	 * We have to check if the context has been disabled by another thread,
3015 	 * check if submssion has been disabled to seal a race with reset and
3016 	 * finally check if any more requests have been committed to the
3017 	 * context ensursing that a request doesn't slip through the
3018 	 * 'context_pending_disable' fence.
3019 	 */
3020 	if (unlikely(!context_enabled(ce) || submission_disabled(guc) ||
3021 		     context_has_committed_requests(ce))) {
3022 		clr_context_enabled(ce);
3023 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3024 		goto unpin;
3025 	}
3026 	guc_id = prep_context_pending_disable(ce);
3027 
3028 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3029 
3030 	with_intel_runtime_pm(runtime_pm, wakeref)
3031 		__guc_context_sched_disable(guc, ce, guc_id);
3032 
3033 	return;
3034 unpin:
3035 	intel_context_sched_disable_unpin(ce);
3036 }
3037 
3038 static inline void guc_lrc_desc_unpin(struct intel_context *ce)
3039 {
3040 	struct intel_guc *guc = ce_to_guc(ce);
3041 	struct intel_gt *gt = guc_to_gt(guc);
3042 	unsigned long flags;
3043 	bool disabled;
3044 
3045 	GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
3046 	GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
3047 	GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
3048 	GEM_BUG_ON(context_enabled(ce));
3049 
3050 	/* Seal race with Reset */
3051 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3052 	disabled = submission_disabled(guc);
3053 	if (likely(!disabled)) {
3054 		__intel_gt_pm_get(gt);
3055 		set_context_destroyed(ce);
3056 		clr_context_registered(ce);
3057 	}
3058 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3059 	if (unlikely(disabled)) {
3060 		release_guc_id(guc, ce);
3061 		__guc_context_destroy(ce);
3062 		return;
3063 	}
3064 
3065 	deregister_context(ce, ce->guc_id.id);
3066 }
3067 
3068 static void __guc_context_destroy(struct intel_context *ce)
3069 {
3070 	GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
3071 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
3072 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
3073 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
3074 	GEM_BUG_ON(ce->guc_state.number_committed_requests);
3075 
3076 	lrc_fini(ce);
3077 	intel_context_fini(ce);
3078 
3079 	if (intel_engine_is_virtual(ce->engine)) {
3080 		struct guc_virtual_engine *ve =
3081 			container_of(ce, typeof(*ve), context);
3082 
3083 		if (ve->base.breadcrumbs)
3084 			intel_breadcrumbs_put(ve->base.breadcrumbs);
3085 
3086 		kfree(ve);
3087 	} else {
3088 		intel_context_free(ce);
3089 	}
3090 }
3091 
3092 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
3093 {
3094 	struct intel_context *ce;
3095 	unsigned long flags;
3096 
3097 	GEM_BUG_ON(!submission_disabled(guc) &&
3098 		   guc_submission_initialized(guc));
3099 
3100 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3101 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3102 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3103 					      struct intel_context,
3104 					      destroyed_link);
3105 		if (ce)
3106 			list_del_init(&ce->destroyed_link);
3107 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3108 
3109 		if (!ce)
3110 			break;
3111 
3112 		release_guc_id(guc, ce);
3113 		__guc_context_destroy(ce);
3114 	}
3115 }
3116 
3117 static void deregister_destroyed_contexts(struct intel_guc *guc)
3118 {
3119 	struct intel_context *ce;
3120 	unsigned long flags;
3121 
3122 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3123 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3124 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3125 					      struct intel_context,
3126 					      destroyed_link);
3127 		if (ce)
3128 			list_del_init(&ce->destroyed_link);
3129 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3130 
3131 		if (!ce)
3132 			break;
3133 
3134 		guc_lrc_desc_unpin(ce);
3135 	}
3136 }
3137 
3138 static void destroyed_worker_func(struct work_struct *w)
3139 {
3140 	struct intel_guc *guc = container_of(w, struct intel_guc,
3141 					     submission_state.destroyed_worker);
3142 	struct intel_gt *gt = guc_to_gt(guc);
3143 	int tmp;
3144 
3145 	with_intel_gt_pm(gt, tmp)
3146 		deregister_destroyed_contexts(guc);
3147 }
3148 
3149 static void guc_context_destroy(struct kref *kref)
3150 {
3151 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3152 	struct intel_guc *guc = ce_to_guc(ce);
3153 	unsigned long flags;
3154 	bool destroy;
3155 
3156 	/*
3157 	 * If the guc_id is invalid this context has been stolen and we can free
3158 	 * it immediately. Also can be freed immediately if the context is not
3159 	 * registered with the GuC or the GuC is in the middle of a reset.
3160 	 */
3161 	spin_lock_irqsave(&guc->submission_state.lock, flags);
3162 	destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
3163 		!ctx_id_mapped(guc, ce->guc_id.id);
3164 	if (likely(!destroy)) {
3165 		if (!list_empty(&ce->guc_id.link))
3166 			list_del_init(&ce->guc_id.link);
3167 		list_add_tail(&ce->destroyed_link,
3168 			      &guc->submission_state.destroyed_contexts);
3169 	} else {
3170 		__release_guc_id(guc, ce);
3171 	}
3172 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3173 	if (unlikely(destroy)) {
3174 		__guc_context_destroy(ce);
3175 		return;
3176 	}
3177 
3178 	/*
3179 	 * We use a worker to issue the H2G to deregister the context as we can
3180 	 * take the GT PM for the first time which isn't allowed from an atomic
3181 	 * context.
3182 	 */
3183 	queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
3184 }
3185 
3186 static int guc_context_alloc(struct intel_context *ce)
3187 {
3188 	return lrc_alloc(ce, ce->engine);
3189 }
3190 
3191 static void __guc_context_set_prio(struct intel_guc *guc,
3192 				   struct intel_context *ce)
3193 {
3194 	if (GET_UC_VER(guc) >= MAKE_UC_VER(70, 0, 0)) {
3195 		struct context_policy policy;
3196 
3197 		__guc_context_policy_start_klv(&policy, ce->guc_id.id);
3198 		__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
3199 		__guc_context_set_context_policies(guc, &policy, true);
3200 	} else {
3201 		u32 action[] = {
3202 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY,
3203 			ce->guc_id.id,
3204 			ce->guc_state.prio,
3205 		};
3206 
3207 		guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3208 	}
3209 }
3210 
3211 static void guc_context_set_prio(struct intel_guc *guc,
3212 				 struct intel_context *ce,
3213 				 u8 prio)
3214 {
3215 	GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
3216 		   prio > GUC_CLIENT_PRIORITY_NORMAL);
3217 	lockdep_assert_held(&ce->guc_state.lock);
3218 
3219 	if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3220 	    !context_registered(ce)) {
3221 		ce->guc_state.prio = prio;
3222 		return;
3223 	}
3224 
3225 	ce->guc_state.prio = prio;
3226 	__guc_context_set_prio(guc, ce);
3227 
3228 	trace_intel_context_set_prio(ce);
3229 }
3230 
3231 static inline u8 map_i915_prio_to_guc_prio(int prio)
3232 {
3233 	if (prio == I915_PRIORITY_NORMAL)
3234 		return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3235 	else if (prio < I915_PRIORITY_NORMAL)
3236 		return GUC_CLIENT_PRIORITY_NORMAL;
3237 	else if (prio < I915_PRIORITY_DISPLAY)
3238 		return GUC_CLIENT_PRIORITY_HIGH;
3239 	else
3240 		return GUC_CLIENT_PRIORITY_KMD_HIGH;
3241 }
3242 
3243 static inline void add_context_inflight_prio(struct intel_context *ce,
3244 					     u8 guc_prio)
3245 {
3246 	lockdep_assert_held(&ce->guc_state.lock);
3247 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3248 
3249 	++ce->guc_state.prio_count[guc_prio];
3250 
3251 	/* Overflow protection */
3252 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3253 }
3254 
3255 static inline void sub_context_inflight_prio(struct intel_context *ce,
3256 					     u8 guc_prio)
3257 {
3258 	lockdep_assert_held(&ce->guc_state.lock);
3259 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3260 
3261 	/* Underflow protection */
3262 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3263 
3264 	--ce->guc_state.prio_count[guc_prio];
3265 }
3266 
3267 static inline void update_context_prio(struct intel_context *ce)
3268 {
3269 	struct intel_guc *guc = &ce->engine->gt->uc.guc;
3270 	int i;
3271 
3272 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3273 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3274 
3275 	lockdep_assert_held(&ce->guc_state.lock);
3276 
3277 	for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3278 		if (ce->guc_state.prio_count[i]) {
3279 			guc_context_set_prio(guc, ce, i);
3280 			break;
3281 		}
3282 	}
3283 }
3284 
3285 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3286 {
3287 	/* Lower value is higher priority */
3288 	return new_guc_prio < old_guc_prio;
3289 }
3290 
3291 static void add_to_context(struct i915_request *rq)
3292 {
3293 	struct intel_context *ce = request_to_scheduling_context(rq);
3294 	u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3295 
3296 	GEM_BUG_ON(intel_context_is_child(ce));
3297 	GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3298 
3299 	spin_lock(&ce->guc_state.lock);
3300 	list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3301 
3302 	if (rq->guc_prio == GUC_PRIO_INIT) {
3303 		rq->guc_prio = new_guc_prio;
3304 		add_context_inflight_prio(ce, rq->guc_prio);
3305 	} else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3306 		sub_context_inflight_prio(ce, rq->guc_prio);
3307 		rq->guc_prio = new_guc_prio;
3308 		add_context_inflight_prio(ce, rq->guc_prio);
3309 	}
3310 	update_context_prio(ce);
3311 
3312 	spin_unlock(&ce->guc_state.lock);
3313 }
3314 
3315 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3316 {
3317 	lockdep_assert_held(&ce->guc_state.lock);
3318 
3319 	if (rq->guc_prio != GUC_PRIO_INIT &&
3320 	    rq->guc_prio != GUC_PRIO_FINI) {
3321 		sub_context_inflight_prio(ce, rq->guc_prio);
3322 		update_context_prio(ce);
3323 	}
3324 	rq->guc_prio = GUC_PRIO_FINI;
3325 }
3326 
3327 static void remove_from_context(struct i915_request *rq)
3328 {
3329 	struct intel_context *ce = request_to_scheduling_context(rq);
3330 
3331 	GEM_BUG_ON(intel_context_is_child(ce));
3332 
3333 	spin_lock_irq(&ce->guc_state.lock);
3334 
3335 	list_del_init(&rq->sched.link);
3336 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3337 
3338 	/* Prevent further __await_execution() registering a cb, then flush */
3339 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3340 
3341 	guc_prio_fini(rq, ce);
3342 
3343 	decr_context_committed_requests(ce);
3344 
3345 	spin_unlock_irq(&ce->guc_state.lock);
3346 
3347 	atomic_dec(&ce->guc_id.ref);
3348 	i915_request_notify_execute_cb_imm(rq);
3349 }
3350 
3351 static const struct intel_context_ops guc_context_ops = {
3352 	.alloc = guc_context_alloc,
3353 
3354 	.pre_pin = guc_context_pre_pin,
3355 	.pin = guc_context_pin,
3356 	.unpin = guc_context_unpin,
3357 	.post_unpin = guc_context_post_unpin,
3358 
3359 	.revoke = guc_context_revoke,
3360 
3361 	.cancel_request = guc_context_cancel_request,
3362 
3363 	.enter = intel_context_enter_engine,
3364 	.exit = intel_context_exit_engine,
3365 
3366 	.sched_disable = guc_context_sched_disable,
3367 
3368 	.reset = lrc_reset,
3369 	.destroy = guc_context_destroy,
3370 
3371 	.create_virtual = guc_create_virtual,
3372 	.create_parallel = guc_create_parallel,
3373 };
3374 
3375 static void submit_work_cb(struct irq_work *wrk)
3376 {
3377 	struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3378 
3379 	might_lock(&rq->engine->sched_engine->lock);
3380 	i915_sw_fence_complete(&rq->submit);
3381 }
3382 
3383 static void __guc_signal_context_fence(struct intel_context *ce)
3384 {
3385 	struct i915_request *rq, *rn;
3386 
3387 	lockdep_assert_held(&ce->guc_state.lock);
3388 
3389 	if (!list_empty(&ce->guc_state.fences))
3390 		trace_intel_context_fence_release(ce);
3391 
3392 	/*
3393 	 * Use an IRQ to ensure locking order of sched_engine->lock ->
3394 	 * ce->guc_state.lock is preserved.
3395 	 */
3396 	list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3397 				 guc_fence_link) {
3398 		list_del(&rq->guc_fence_link);
3399 		irq_work_queue(&rq->submit_work);
3400 	}
3401 
3402 	INIT_LIST_HEAD(&ce->guc_state.fences);
3403 }
3404 
3405 static void guc_signal_context_fence(struct intel_context *ce)
3406 {
3407 	unsigned long flags;
3408 
3409 	GEM_BUG_ON(intel_context_is_child(ce));
3410 
3411 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3412 	clr_context_wait_for_deregister_to_register(ce);
3413 	__guc_signal_context_fence(ce);
3414 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3415 }
3416 
3417 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3418 {
3419 	return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3420 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3421 		!submission_disabled(ce_to_guc(ce));
3422 }
3423 
3424 static void guc_context_init(struct intel_context *ce)
3425 {
3426 	const struct i915_gem_context *ctx;
3427 	int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3428 
3429 	rcu_read_lock();
3430 	ctx = rcu_dereference(ce->gem_context);
3431 	if (ctx)
3432 		prio = ctx->sched.priority;
3433 	rcu_read_unlock();
3434 
3435 	ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3436 	set_bit(CONTEXT_GUC_INIT, &ce->flags);
3437 }
3438 
3439 static int guc_request_alloc(struct i915_request *rq)
3440 {
3441 	struct intel_context *ce = request_to_scheduling_context(rq);
3442 	struct intel_guc *guc = ce_to_guc(ce);
3443 	unsigned long flags;
3444 	int ret;
3445 
3446 	GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3447 
3448 	/*
3449 	 * Flush enough space to reduce the likelihood of waiting after
3450 	 * we start building the request - in which case we will just
3451 	 * have to repeat work.
3452 	 */
3453 	rq->reserved_space += GUC_REQUEST_SIZE;
3454 
3455 	/*
3456 	 * Note that after this point, we have committed to using
3457 	 * this request as it is being used to both track the
3458 	 * state of engine initialisation and liveness of the
3459 	 * golden renderstate above. Think twice before you try
3460 	 * to cancel/unwind this request now.
3461 	 */
3462 
3463 	/* Unconditionally invalidate GPU caches and TLBs. */
3464 	ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3465 	if (ret)
3466 		return ret;
3467 
3468 	rq->reserved_space -= GUC_REQUEST_SIZE;
3469 
3470 	if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3471 		guc_context_init(ce);
3472 
3473 	/*
3474 	 * Call pin_guc_id here rather than in the pinning step as with
3475 	 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3476 	 * guc_id and creating horrible race conditions. This is especially bad
3477 	 * when guc_id are being stolen due to over subscription. By the time
3478 	 * this function is reached, it is guaranteed that the guc_id will be
3479 	 * persistent until the generated request is retired. Thus, sealing these
3480 	 * race conditions. It is still safe to fail here if guc_id are
3481 	 * exhausted and return -EAGAIN to the user indicating that they can try
3482 	 * again in the future.
3483 	 *
3484 	 * There is no need for a lock here as the timeline mutex ensures at
3485 	 * most one context can be executing this code path at once. The
3486 	 * guc_id_ref is incremented once for every request in flight and
3487 	 * decremented on each retire. When it is zero, a lock around the
3488 	 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3489 	 */
3490 	if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3491 		goto out;
3492 
3493 	ret = pin_guc_id(guc, ce);	/* returns 1 if new guc_id assigned */
3494 	if (unlikely(ret < 0))
3495 		return ret;
3496 	if (context_needs_register(ce, !!ret)) {
3497 		ret = try_context_registration(ce, true);
3498 		if (unlikely(ret)) {	/* unwind */
3499 			if (ret == -EPIPE) {
3500 				disable_submission(guc);
3501 				goto out;	/* GPU will be reset */
3502 			}
3503 			atomic_dec(&ce->guc_id.ref);
3504 			unpin_guc_id(guc, ce);
3505 			return ret;
3506 		}
3507 	}
3508 
3509 	clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3510 
3511 out:
3512 	/*
3513 	 * We block all requests on this context if a G2H is pending for a
3514 	 * schedule disable or context deregistration as the GuC will fail a
3515 	 * schedule enable or context registration if either G2H is pending
3516 	 * respectfully. Once a G2H returns, the fence is released that is
3517 	 * blocking these requests (see guc_signal_context_fence).
3518 	 */
3519 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3520 	if (context_wait_for_deregister_to_register(ce) ||
3521 	    context_pending_disable(ce)) {
3522 		init_irq_work(&rq->submit_work, submit_work_cb);
3523 		i915_sw_fence_await(&rq->submit);
3524 
3525 		list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3526 	}
3527 	incr_context_committed_requests(ce);
3528 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3529 
3530 	return 0;
3531 }
3532 
3533 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3534 				       struct i915_gem_ww_ctx *ww,
3535 				       void **vaddr)
3536 {
3537 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3538 
3539 	return __guc_context_pre_pin(ce, engine, ww, vaddr);
3540 }
3541 
3542 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3543 {
3544 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3545 	int ret = __guc_context_pin(ce, engine, vaddr);
3546 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3547 
3548 	if (likely(!ret))
3549 		for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3550 			intel_engine_pm_get(engine);
3551 
3552 	return ret;
3553 }
3554 
3555 static void guc_virtual_context_unpin(struct intel_context *ce)
3556 {
3557 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3558 	struct intel_engine_cs *engine;
3559 	struct intel_guc *guc = ce_to_guc(ce);
3560 
3561 	GEM_BUG_ON(context_enabled(ce));
3562 	GEM_BUG_ON(intel_context_is_barrier(ce));
3563 
3564 	unpin_guc_id(guc, ce);
3565 	lrc_unpin(ce);
3566 
3567 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3568 		intel_engine_pm_put_async(engine);
3569 }
3570 
3571 static void guc_virtual_context_enter(struct intel_context *ce)
3572 {
3573 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3574 	struct intel_engine_cs *engine;
3575 
3576 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3577 		intel_engine_pm_get(engine);
3578 
3579 	intel_timeline_enter(ce->timeline);
3580 }
3581 
3582 static void guc_virtual_context_exit(struct intel_context *ce)
3583 {
3584 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3585 	struct intel_engine_cs *engine;
3586 
3587 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3588 		intel_engine_pm_put(engine);
3589 
3590 	intel_timeline_exit(ce->timeline);
3591 }
3592 
3593 static int guc_virtual_context_alloc(struct intel_context *ce)
3594 {
3595 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3596 
3597 	return lrc_alloc(ce, engine);
3598 }
3599 
3600 static const struct intel_context_ops virtual_guc_context_ops = {
3601 	.alloc = guc_virtual_context_alloc,
3602 
3603 	.pre_pin = guc_virtual_context_pre_pin,
3604 	.pin = guc_virtual_context_pin,
3605 	.unpin = guc_virtual_context_unpin,
3606 	.post_unpin = guc_context_post_unpin,
3607 
3608 	.revoke = guc_context_revoke,
3609 
3610 	.cancel_request = guc_context_cancel_request,
3611 
3612 	.enter = guc_virtual_context_enter,
3613 	.exit = guc_virtual_context_exit,
3614 
3615 	.sched_disable = guc_context_sched_disable,
3616 
3617 	.destroy = guc_context_destroy,
3618 
3619 	.get_sibling = guc_virtual_get_sibling,
3620 };
3621 
3622 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
3623 {
3624 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3625 	struct intel_guc *guc = ce_to_guc(ce);
3626 	int ret;
3627 
3628 	GEM_BUG_ON(!intel_context_is_parent(ce));
3629 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3630 
3631 	ret = pin_guc_id(guc, ce);
3632 	if (unlikely(ret < 0))
3633 		return ret;
3634 
3635 	return __guc_context_pin(ce, engine, vaddr);
3636 }
3637 
3638 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
3639 {
3640 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3641 
3642 	GEM_BUG_ON(!intel_context_is_child(ce));
3643 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3644 
3645 	__intel_context_pin(ce->parallel.parent);
3646 	return __guc_context_pin(ce, engine, vaddr);
3647 }
3648 
3649 static void guc_parent_context_unpin(struct intel_context *ce)
3650 {
3651 	struct intel_guc *guc = ce_to_guc(ce);
3652 
3653 	GEM_BUG_ON(context_enabled(ce));
3654 	GEM_BUG_ON(intel_context_is_barrier(ce));
3655 	GEM_BUG_ON(!intel_context_is_parent(ce));
3656 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3657 
3658 	unpin_guc_id(guc, ce);
3659 	lrc_unpin(ce);
3660 }
3661 
3662 static void guc_child_context_unpin(struct intel_context *ce)
3663 {
3664 	GEM_BUG_ON(context_enabled(ce));
3665 	GEM_BUG_ON(intel_context_is_barrier(ce));
3666 	GEM_BUG_ON(!intel_context_is_child(ce));
3667 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3668 
3669 	lrc_unpin(ce);
3670 }
3671 
3672 static void guc_child_context_post_unpin(struct intel_context *ce)
3673 {
3674 	GEM_BUG_ON(!intel_context_is_child(ce));
3675 	GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
3676 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3677 
3678 	lrc_post_unpin(ce);
3679 	intel_context_unpin(ce->parallel.parent);
3680 }
3681 
3682 static void guc_child_context_destroy(struct kref *kref)
3683 {
3684 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3685 
3686 	__guc_context_destroy(ce);
3687 }
3688 
3689 static const struct intel_context_ops virtual_parent_context_ops = {
3690 	.alloc = guc_virtual_context_alloc,
3691 
3692 	.pre_pin = guc_context_pre_pin,
3693 	.pin = guc_parent_context_pin,
3694 	.unpin = guc_parent_context_unpin,
3695 	.post_unpin = guc_context_post_unpin,
3696 
3697 	.revoke = guc_context_revoke,
3698 
3699 	.cancel_request = guc_context_cancel_request,
3700 
3701 	.enter = guc_virtual_context_enter,
3702 	.exit = guc_virtual_context_exit,
3703 
3704 	.sched_disable = guc_context_sched_disable,
3705 
3706 	.destroy = guc_context_destroy,
3707 
3708 	.get_sibling = guc_virtual_get_sibling,
3709 };
3710 
3711 static const struct intel_context_ops virtual_child_context_ops = {
3712 	.alloc = guc_virtual_context_alloc,
3713 
3714 	.pre_pin = guc_context_pre_pin,
3715 	.pin = guc_child_context_pin,
3716 	.unpin = guc_child_context_unpin,
3717 	.post_unpin = guc_child_context_post_unpin,
3718 
3719 	.cancel_request = guc_context_cancel_request,
3720 
3721 	.enter = guc_virtual_context_enter,
3722 	.exit = guc_virtual_context_exit,
3723 
3724 	.destroy = guc_child_context_destroy,
3725 
3726 	.get_sibling = guc_virtual_get_sibling,
3727 };
3728 
3729 /*
3730  * The below override of the breadcrumbs is enabled when the user configures a
3731  * context for parallel submission (multi-lrc, parent-child).
3732  *
3733  * The overridden breadcrumbs implements an algorithm which allows the GuC to
3734  * safely preempt all the hw contexts configured for parallel submission
3735  * between each BB. The contract between the i915 and GuC is if the parent
3736  * context can be preempted, all the children can be preempted, and the GuC will
3737  * always try to preempt the parent before the children. A handshake between the
3738  * parent / children breadcrumbs ensures the i915 holds up its end of the deal
3739  * creating a window to preempt between each set of BBs.
3740  */
3741 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
3742 						     u64 offset, u32 len,
3743 						     const unsigned int flags);
3744 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
3745 						    u64 offset, u32 len,
3746 						    const unsigned int flags);
3747 static u32 *
3748 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
3749 						 u32 *cs);
3750 static u32 *
3751 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
3752 						u32 *cs);
3753 
3754 static struct intel_context *
3755 guc_create_parallel(struct intel_engine_cs **engines,
3756 		    unsigned int num_siblings,
3757 		    unsigned int width)
3758 {
3759 	struct intel_engine_cs **siblings = NULL;
3760 	struct intel_context *parent = NULL, *ce, *err;
3761 	int i, j;
3762 
3763 	siblings = kmalloc_array(num_siblings,
3764 				 sizeof(*siblings),
3765 				 GFP_KERNEL);
3766 	if (!siblings)
3767 		return ERR_PTR(-ENOMEM);
3768 
3769 	for (i = 0; i < width; ++i) {
3770 		for (j = 0; j < num_siblings; ++j)
3771 			siblings[j] = engines[i * num_siblings + j];
3772 
3773 		ce = intel_engine_create_virtual(siblings, num_siblings,
3774 						 FORCE_VIRTUAL);
3775 		if (IS_ERR(ce)) {
3776 			err = ERR_CAST(ce);
3777 			goto unwind;
3778 		}
3779 
3780 		if (i == 0) {
3781 			parent = ce;
3782 			parent->ops = &virtual_parent_context_ops;
3783 		} else {
3784 			ce->ops = &virtual_child_context_ops;
3785 			intel_context_bind_parent_child(parent, ce);
3786 		}
3787 	}
3788 
3789 	parent->parallel.fence_context = dma_fence_context_alloc(1);
3790 
3791 	parent->engine->emit_bb_start =
3792 		emit_bb_start_parent_no_preempt_mid_batch;
3793 	parent->engine->emit_fini_breadcrumb =
3794 		emit_fini_breadcrumb_parent_no_preempt_mid_batch;
3795 	parent->engine->emit_fini_breadcrumb_dw =
3796 		12 + 4 * parent->parallel.number_children;
3797 	for_each_child(parent, ce) {
3798 		ce->engine->emit_bb_start =
3799 			emit_bb_start_child_no_preempt_mid_batch;
3800 		ce->engine->emit_fini_breadcrumb =
3801 			emit_fini_breadcrumb_child_no_preempt_mid_batch;
3802 		ce->engine->emit_fini_breadcrumb_dw = 16;
3803 	}
3804 
3805 	kfree(siblings);
3806 	return parent;
3807 
3808 unwind:
3809 	if (parent)
3810 		intel_context_put(parent);
3811 	kfree(siblings);
3812 	return err;
3813 }
3814 
3815 static bool
3816 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
3817 {
3818 	struct intel_engine_cs *sibling;
3819 	intel_engine_mask_t tmp, mask = b->engine_mask;
3820 	bool result = false;
3821 
3822 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
3823 		result |= intel_engine_irq_enable(sibling);
3824 
3825 	return result;
3826 }
3827 
3828 static void
3829 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
3830 {
3831 	struct intel_engine_cs *sibling;
3832 	intel_engine_mask_t tmp, mask = b->engine_mask;
3833 
3834 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
3835 		intel_engine_irq_disable(sibling);
3836 }
3837 
3838 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
3839 {
3840 	int i;
3841 
3842 	/*
3843 	 * In GuC submission mode we do not know which physical engine a request
3844 	 * will be scheduled on, this creates a problem because the breadcrumb
3845 	 * interrupt is per physical engine. To work around this we attach
3846 	 * requests and direct all breadcrumb interrupts to the first instance
3847 	 * of an engine per class. In addition all breadcrumb interrupts are
3848 	 * enabled / disabled across an engine class in unison.
3849 	 */
3850 	for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
3851 		struct intel_engine_cs *sibling =
3852 			engine->gt->engine_class[engine->class][i];
3853 
3854 		if (sibling) {
3855 			if (engine->breadcrumbs != sibling->breadcrumbs) {
3856 				intel_breadcrumbs_put(engine->breadcrumbs);
3857 				engine->breadcrumbs =
3858 					intel_breadcrumbs_get(sibling->breadcrumbs);
3859 			}
3860 			break;
3861 		}
3862 	}
3863 
3864 	if (engine->breadcrumbs) {
3865 		engine->breadcrumbs->engine_mask |= engine->mask;
3866 		engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
3867 		engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
3868 	}
3869 }
3870 
3871 static void guc_bump_inflight_request_prio(struct i915_request *rq,
3872 					   int prio)
3873 {
3874 	struct intel_context *ce = request_to_scheduling_context(rq);
3875 	u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
3876 
3877 	/* Short circuit function */
3878 	if (prio < I915_PRIORITY_NORMAL ||
3879 	    rq->guc_prio == GUC_PRIO_FINI ||
3880 	    (rq->guc_prio != GUC_PRIO_INIT &&
3881 	     !new_guc_prio_higher(rq->guc_prio, new_guc_prio)))
3882 		return;
3883 
3884 	spin_lock(&ce->guc_state.lock);
3885 	if (rq->guc_prio != GUC_PRIO_FINI) {
3886 		if (rq->guc_prio != GUC_PRIO_INIT)
3887 			sub_context_inflight_prio(ce, rq->guc_prio);
3888 		rq->guc_prio = new_guc_prio;
3889 		add_context_inflight_prio(ce, rq->guc_prio);
3890 		update_context_prio(ce);
3891 	}
3892 	spin_unlock(&ce->guc_state.lock);
3893 }
3894 
3895 static void guc_retire_inflight_request_prio(struct i915_request *rq)
3896 {
3897 	struct intel_context *ce = request_to_scheduling_context(rq);
3898 
3899 	spin_lock(&ce->guc_state.lock);
3900 	guc_prio_fini(rq, ce);
3901 	spin_unlock(&ce->guc_state.lock);
3902 }
3903 
3904 static void sanitize_hwsp(struct intel_engine_cs *engine)
3905 {
3906 	struct intel_timeline *tl;
3907 
3908 	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
3909 		intel_timeline_reset_seqno(tl);
3910 }
3911 
3912 static void guc_sanitize(struct intel_engine_cs *engine)
3913 {
3914 	/*
3915 	 * Poison residual state on resume, in case the suspend didn't!
3916 	 *
3917 	 * We have to assume that across suspend/resume (or other loss
3918 	 * of control) that the contents of our pinned buffers has been
3919 	 * lost, replaced by garbage. Since this doesn't always happen,
3920 	 * let's poison such state so that we more quickly spot when
3921 	 * we falsely assume it has been preserved.
3922 	 */
3923 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
3924 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
3925 
3926 	/*
3927 	 * The kernel_context HWSP is stored in the status_page. As above,
3928 	 * that may be lost on resume/initialisation, and so we need to
3929 	 * reset the value in the HWSP.
3930 	 */
3931 	sanitize_hwsp(engine);
3932 
3933 	/* And scrub the dirty cachelines for the HWSP */
3934 	drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
3935 
3936 	intel_engine_reset_pinned_contexts(engine);
3937 }
3938 
3939 static void setup_hwsp(struct intel_engine_cs *engine)
3940 {
3941 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
3942 
3943 	ENGINE_WRITE_FW(engine,
3944 			RING_HWS_PGA,
3945 			i915_ggtt_offset(engine->status_page.vma));
3946 }
3947 
3948 static void start_engine(struct intel_engine_cs *engine)
3949 {
3950 	ENGINE_WRITE_FW(engine,
3951 			RING_MODE_GEN7,
3952 			_MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
3953 
3954 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
3955 	ENGINE_POSTING_READ(engine, RING_MI_MODE);
3956 }
3957 
3958 static int guc_resume(struct intel_engine_cs *engine)
3959 {
3960 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
3961 
3962 	intel_mocs_init_engine(engine);
3963 
3964 	intel_breadcrumbs_reset(engine->breadcrumbs);
3965 
3966 	setup_hwsp(engine);
3967 	start_engine(engine);
3968 
3969 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
3970 		xehp_enable_ccs_engines(engine);
3971 
3972 	return 0;
3973 }
3974 
3975 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
3976 {
3977 	return !sched_engine->tasklet.callback;
3978 }
3979 
3980 static void guc_set_default_submission(struct intel_engine_cs *engine)
3981 {
3982 	engine->submit_request = guc_submit_request;
3983 }
3984 
3985 static inline void guc_kernel_context_pin(struct intel_guc *guc,
3986 					  struct intel_context *ce)
3987 {
3988 	/*
3989 	 * Note: we purposefully do not check the returns below because
3990 	 * the registration can only fail if a reset is just starting.
3991 	 * This is called at the end of reset so presumably another reset
3992 	 * isn't happening and even it did this code would be run again.
3993 	 */
3994 
3995 	if (context_guc_id_invalid(ce))
3996 		pin_guc_id(guc, ce);
3997 
3998 	try_context_registration(ce, true);
3999 }
4000 
4001 static inline void guc_init_lrc_mapping(struct intel_guc *guc)
4002 {
4003 	struct intel_gt *gt = guc_to_gt(guc);
4004 	struct intel_engine_cs *engine;
4005 	enum intel_engine_id id;
4006 
4007 	/* make sure all descriptors are clean... */
4008 	xa_destroy(&guc->context_lookup);
4009 
4010 	/*
4011 	 * A reset might have occurred while we had a pending stalled request,
4012 	 * so make sure we clean that up.
4013 	 */
4014 	guc->stalled_request = NULL;
4015 	guc->submission_stall_reason = STALL_NONE;
4016 
4017 	/*
4018 	 * Some contexts might have been pinned before we enabled GuC
4019 	 * submission, so we need to add them to the GuC bookeeping.
4020 	 * Also, after a reset the of the GuC we want to make sure that the
4021 	 * information shared with GuC is properly reset. The kernel LRCs are
4022 	 * not attached to the gem_context, so they need to be added separately.
4023 	 */
4024 	for_each_engine(engine, gt, id) {
4025 		struct intel_context *ce;
4026 
4027 		list_for_each_entry(ce, &engine->pinned_contexts_list,
4028 				    pinned_contexts_link)
4029 			guc_kernel_context_pin(guc, ce);
4030 	}
4031 }
4032 
4033 static void guc_release(struct intel_engine_cs *engine)
4034 {
4035 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
4036 
4037 	intel_engine_cleanup_common(engine);
4038 	lrc_fini_wa_ctx(engine);
4039 }
4040 
4041 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
4042 {
4043 	struct intel_engine_cs *e;
4044 	intel_engine_mask_t tmp, mask = engine->mask;
4045 
4046 	for_each_engine_masked(e, engine->gt, mask, tmp)
4047 		e->serial++;
4048 }
4049 
4050 static void guc_default_vfuncs(struct intel_engine_cs *engine)
4051 {
4052 	/* Default vfuncs which can be overridden by each engine. */
4053 
4054 	engine->resume = guc_resume;
4055 
4056 	engine->cops = &guc_context_ops;
4057 	engine->request_alloc = guc_request_alloc;
4058 	engine->add_active_request = add_to_context;
4059 	engine->remove_active_request = remove_from_context;
4060 
4061 	engine->sched_engine->schedule = i915_schedule;
4062 
4063 	engine->reset.prepare = guc_engine_reset_prepare;
4064 	engine->reset.rewind = guc_rewind_nop;
4065 	engine->reset.cancel = guc_reset_nop;
4066 	engine->reset.finish = guc_reset_nop;
4067 
4068 	engine->emit_flush = gen8_emit_flush_xcs;
4069 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
4070 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
4071 	if (GRAPHICS_VER(engine->i915) >= 12) {
4072 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
4073 		engine->emit_flush = gen12_emit_flush_xcs;
4074 	}
4075 	engine->set_default_submission = guc_set_default_submission;
4076 	engine->busyness = guc_engine_busyness;
4077 
4078 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4079 	engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4080 	engine->flags |= I915_ENGINE_HAS_TIMESLICES;
4081 
4082 	/* Wa_14014475959:dg2 */
4083 	if (IS_DG2(engine->i915) && engine->class == COMPUTE_CLASS)
4084 		engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT;
4085 
4086 	/*
4087 	 * TODO: GuC supports timeslicing and semaphores as well, but they're
4088 	 * handled by the firmware so some minor tweaks are required before
4089 	 * enabling.
4090 	 *
4091 	 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4092 	 */
4093 
4094 	engine->emit_bb_start = gen8_emit_bb_start;
4095 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
4096 		engine->emit_bb_start = gen125_emit_bb_start;
4097 }
4098 
4099 static void rcs_submission_override(struct intel_engine_cs *engine)
4100 {
4101 	switch (GRAPHICS_VER(engine->i915)) {
4102 	case 12:
4103 		engine->emit_flush = gen12_emit_flush_rcs;
4104 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
4105 		break;
4106 	case 11:
4107 		engine->emit_flush = gen11_emit_flush_rcs;
4108 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
4109 		break;
4110 	default:
4111 		engine->emit_flush = gen8_emit_flush_rcs;
4112 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
4113 		break;
4114 	}
4115 }
4116 
4117 static inline void guc_default_irqs(struct intel_engine_cs *engine)
4118 {
4119 	engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
4120 	intel_engine_set_irq_handler(engine, cs_irq_handler);
4121 }
4122 
4123 static void guc_sched_engine_destroy(struct kref *kref)
4124 {
4125 	struct i915_sched_engine *sched_engine =
4126 		container_of(kref, typeof(*sched_engine), ref);
4127 	struct intel_guc *guc = sched_engine->private_data;
4128 
4129 	guc->sched_engine = NULL;
4130 	tasklet_kill(&sched_engine->tasklet); /* flush the callback */
4131 	kfree(sched_engine);
4132 }
4133 
4134 int intel_guc_submission_setup(struct intel_engine_cs *engine)
4135 {
4136 	struct drm_i915_private *i915 = engine->i915;
4137 	struct intel_guc *guc = &engine->gt->uc.guc;
4138 
4139 	/*
4140 	 * The setup relies on several assumptions (e.g. irqs always enabled)
4141 	 * that are only valid on gen11+
4142 	 */
4143 	GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
4144 
4145 	if (!guc->sched_engine) {
4146 		guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
4147 		if (!guc->sched_engine)
4148 			return -ENOMEM;
4149 
4150 		guc->sched_engine->schedule = i915_schedule;
4151 		guc->sched_engine->disabled = guc_sched_engine_disabled;
4152 		guc->sched_engine->private_data = guc;
4153 		guc->sched_engine->destroy = guc_sched_engine_destroy;
4154 		guc->sched_engine->bump_inflight_request_prio =
4155 			guc_bump_inflight_request_prio;
4156 		guc->sched_engine->retire_inflight_request_prio =
4157 			guc_retire_inflight_request_prio;
4158 		tasklet_setup(&guc->sched_engine->tasklet,
4159 			      guc_submission_tasklet);
4160 	}
4161 	i915_sched_engine_put(engine->sched_engine);
4162 	engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
4163 
4164 	guc_default_vfuncs(engine);
4165 	guc_default_irqs(engine);
4166 	guc_init_breadcrumbs(engine);
4167 
4168 	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
4169 		rcs_submission_override(engine);
4170 
4171 	lrc_init_wa_ctx(engine);
4172 
4173 	/* Finally, take ownership and responsibility for cleanup! */
4174 	engine->sanitize = guc_sanitize;
4175 	engine->release = guc_release;
4176 
4177 	return 0;
4178 }
4179 
4180 void intel_guc_submission_enable(struct intel_guc *guc)
4181 {
4182 	struct intel_gt *gt = guc_to_gt(guc);
4183 
4184 	/* Enable and route to GuC */
4185 	if (GRAPHICS_VER(gt->i915) >= 12)
4186 		intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES,
4187 				   GUC_SEM_INTR_ROUTE_TO_GUC |
4188 				   GUC_SEM_INTR_ENABLE_ALL);
4189 
4190 	guc_init_lrc_mapping(guc);
4191 	guc_init_engine_stats(guc);
4192 }
4193 
4194 void intel_guc_submission_disable(struct intel_guc *guc)
4195 {
4196 	struct intel_gt *gt = guc_to_gt(guc);
4197 
4198 	/* Note: By the time we're here, GuC may have already been reset */
4199 
4200 	/* Disable and route to host */
4201 	if (GRAPHICS_VER(gt->i915) >= 12)
4202 		intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, 0x0);
4203 }
4204 
4205 static bool __guc_submission_supported(struct intel_guc *guc)
4206 {
4207 	/* GuC submission is unavailable for pre-Gen11 */
4208 	return intel_guc_is_supported(guc) &&
4209 	       GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11;
4210 }
4211 
4212 static bool __guc_submission_selected(struct intel_guc *guc)
4213 {
4214 	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
4215 
4216 	if (!intel_guc_submission_is_supported(guc))
4217 		return false;
4218 
4219 	return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
4220 }
4221 
4222 void intel_guc_submission_init_early(struct intel_guc *guc)
4223 {
4224 	xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
4225 
4226 	spin_lock_init(&guc->submission_state.lock);
4227 	INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
4228 	ida_init(&guc->submission_state.guc_ids);
4229 	INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
4230 	INIT_WORK(&guc->submission_state.destroyed_worker,
4231 		  destroyed_worker_func);
4232 	INIT_WORK(&guc->submission_state.reset_fail_worker,
4233 		  reset_fail_worker_func);
4234 
4235 	spin_lock_init(&guc->timestamp.lock);
4236 	INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
4237 
4238 	guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
4239 	guc->submission_supported = __guc_submission_supported(guc);
4240 	guc->submission_selected = __guc_submission_selected(guc);
4241 }
4242 
4243 static inline struct intel_context *
4244 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4245 {
4246 	struct intel_context *ce;
4247 
4248 	if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4249 		drm_err(&guc_to_gt(guc)->i915->drm,
4250 			"Invalid ctx_id %u\n", ctx_id);
4251 		return NULL;
4252 	}
4253 
4254 	ce = __get_context(guc, ctx_id);
4255 	if (unlikely(!ce)) {
4256 		drm_err(&guc_to_gt(guc)->i915->drm,
4257 			"Context is NULL, ctx_id %u\n", ctx_id);
4258 		return NULL;
4259 	}
4260 
4261 	if (unlikely(intel_context_is_child(ce))) {
4262 		drm_err(&guc_to_gt(guc)->i915->drm,
4263 			"Context is child, ctx_id %u\n", ctx_id);
4264 		return NULL;
4265 	}
4266 
4267 	return ce;
4268 }
4269 
4270 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
4271 					  const u32 *msg,
4272 					  u32 len)
4273 {
4274 	struct intel_context *ce;
4275 	u32 ctx_id;
4276 
4277 	if (unlikely(len < 1)) {
4278 		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len);
4279 		return -EPROTO;
4280 	}
4281 	ctx_id = msg[0];
4282 
4283 	ce = g2h_context_lookup(guc, ctx_id);
4284 	if (unlikely(!ce))
4285 		return -EPROTO;
4286 
4287 	trace_intel_context_deregister_done(ce);
4288 
4289 #ifdef CONFIG_DRM_I915_SELFTEST
4290 	if (unlikely(ce->drop_deregister)) {
4291 		ce->drop_deregister = false;
4292 		return 0;
4293 	}
4294 #endif
4295 
4296 	if (context_wait_for_deregister_to_register(ce)) {
4297 		struct intel_runtime_pm *runtime_pm =
4298 			&ce->engine->gt->i915->runtime_pm;
4299 		intel_wakeref_t wakeref;
4300 
4301 		/*
4302 		 * Previous owner of this guc_id has been deregistered, now safe
4303 		 * register this context.
4304 		 */
4305 		with_intel_runtime_pm(runtime_pm, wakeref)
4306 			register_context(ce, true);
4307 		guc_signal_context_fence(ce);
4308 		intel_context_put(ce);
4309 	} else if (context_destroyed(ce)) {
4310 		/* Context has been destroyed */
4311 		intel_gt_pm_put_async(guc_to_gt(guc));
4312 		release_guc_id(guc, ce);
4313 		__guc_context_destroy(ce);
4314 	}
4315 
4316 	decr_outstanding_submission_g2h(guc);
4317 
4318 	return 0;
4319 }
4320 
4321 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
4322 				     const u32 *msg,
4323 				     u32 len)
4324 {
4325 	struct intel_context *ce;
4326 	unsigned long flags;
4327 	u32 ctx_id;
4328 
4329 	if (unlikely(len < 2)) {
4330 		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len);
4331 		return -EPROTO;
4332 	}
4333 	ctx_id = msg[0];
4334 
4335 	ce = g2h_context_lookup(guc, ctx_id);
4336 	if (unlikely(!ce))
4337 		return -EPROTO;
4338 
4339 	if (unlikely(context_destroyed(ce) ||
4340 		     (!context_pending_enable(ce) &&
4341 		     !context_pending_disable(ce)))) {
4342 		drm_err(&guc_to_gt(guc)->i915->drm,
4343 			"Bad context sched_state 0x%x, ctx_id %u\n",
4344 			ce->guc_state.sched_state, ctx_id);
4345 		return -EPROTO;
4346 	}
4347 
4348 	trace_intel_context_sched_done(ce);
4349 
4350 	if (context_pending_enable(ce)) {
4351 #ifdef CONFIG_DRM_I915_SELFTEST
4352 		if (unlikely(ce->drop_schedule_enable)) {
4353 			ce->drop_schedule_enable = false;
4354 			return 0;
4355 		}
4356 #endif
4357 
4358 		spin_lock_irqsave(&ce->guc_state.lock, flags);
4359 		clr_context_pending_enable(ce);
4360 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4361 	} else if (context_pending_disable(ce)) {
4362 		bool banned;
4363 
4364 #ifdef CONFIG_DRM_I915_SELFTEST
4365 		if (unlikely(ce->drop_schedule_disable)) {
4366 			ce->drop_schedule_disable = false;
4367 			return 0;
4368 		}
4369 #endif
4370 
4371 		/*
4372 		 * Unpin must be done before __guc_signal_context_fence,
4373 		 * otherwise a race exists between the requests getting
4374 		 * submitted + retired before this unpin completes resulting in
4375 		 * the pin_count going to zero and the context still being
4376 		 * enabled.
4377 		 */
4378 		intel_context_sched_disable_unpin(ce);
4379 
4380 		spin_lock_irqsave(&ce->guc_state.lock, flags);
4381 		banned = context_banned(ce);
4382 		clr_context_banned(ce);
4383 		clr_context_pending_disable(ce);
4384 		__guc_signal_context_fence(ce);
4385 		guc_blocked_fence_complete(ce);
4386 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4387 
4388 		if (banned) {
4389 			guc_cancel_context_requests(ce);
4390 			intel_engine_signal_breadcrumbs(ce->engine);
4391 		}
4392 	}
4393 
4394 	decr_outstanding_submission_g2h(guc);
4395 	intel_context_put(ce);
4396 
4397 	return 0;
4398 }
4399 
4400 static void capture_error_state(struct intel_guc *guc,
4401 				struct intel_context *ce)
4402 {
4403 	struct intel_gt *gt = guc_to_gt(guc);
4404 	struct drm_i915_private *i915 = gt->i915;
4405 	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
4406 	intel_wakeref_t wakeref;
4407 
4408 	intel_engine_set_hung_context(engine, ce);
4409 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
4410 		i915_capture_error_state(gt, engine->mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
4411 	atomic_inc(&i915->gpu_error.reset_engine_count[engine->uabi_class]);
4412 }
4413 
4414 static void guc_context_replay(struct intel_context *ce)
4415 {
4416 	struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
4417 
4418 	__guc_reset_context(ce, ce->engine->mask);
4419 	tasklet_hi_schedule(&sched_engine->tasklet);
4420 }
4421 
4422 static void guc_handle_context_reset(struct intel_guc *guc,
4423 				     struct intel_context *ce)
4424 {
4425 	trace_intel_context_reset(ce);
4426 
4427 	if (likely(intel_context_is_schedulable(ce))) {
4428 		capture_error_state(guc, ce);
4429 		guc_context_replay(ce);
4430 	} else {
4431 		drm_info(&guc_to_gt(guc)->i915->drm,
4432 			 "Ignoring context reset notification of exiting context 0x%04X on %s",
4433 			 ce->guc_id.id, ce->engine->name);
4434 	}
4435 }
4436 
4437 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
4438 					const u32 *msg, u32 len)
4439 {
4440 	struct intel_context *ce;
4441 	unsigned long flags;
4442 	int ctx_id;
4443 
4444 	if (unlikely(len != 1)) {
4445 		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
4446 		return -EPROTO;
4447 	}
4448 
4449 	ctx_id = msg[0];
4450 
4451 	/*
4452 	 * The context lookup uses the xarray but lookups only require an RCU lock
4453 	 * not the full spinlock. So take the lock explicitly and keep it until the
4454 	 * context has been reference count locked to ensure it can't be destroyed
4455 	 * asynchronously until the reset is done.
4456 	 */
4457 	xa_lock_irqsave(&guc->context_lookup, flags);
4458 	ce = g2h_context_lookup(guc, ctx_id);
4459 	if (ce)
4460 		intel_context_get(ce);
4461 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4462 
4463 	if (unlikely(!ce))
4464 		return -EPROTO;
4465 
4466 	guc_handle_context_reset(guc, ce);
4467 	intel_context_put(ce);
4468 
4469 	return 0;
4470 }
4471 
4472 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
4473 					const u32 *msg, u32 len)
4474 {
4475 	u32 status;
4476 
4477 	if (unlikely(len != 1)) {
4478 		drm_dbg(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
4479 		return -EPROTO;
4480 	}
4481 
4482 	status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
4483 	if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
4484 		drm_warn(&guc_to_gt(guc)->i915->drm, "G2H-Error capture no space");
4485 
4486 	intel_guc_capture_process(guc);
4487 
4488 	return 0;
4489 }
4490 
4491 struct intel_engine_cs *
4492 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
4493 {
4494 	struct intel_gt *gt = guc_to_gt(guc);
4495 	u8 engine_class = guc_class_to_engine_class(guc_class);
4496 
4497 	/* Class index is checked in class converter */
4498 	GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
4499 
4500 	return gt->engine_class[engine_class][instance];
4501 }
4502 
4503 static void reset_fail_worker_func(struct work_struct *w)
4504 {
4505 	struct intel_guc *guc = container_of(w, struct intel_guc,
4506 					     submission_state.reset_fail_worker);
4507 	struct intel_gt *gt = guc_to_gt(guc);
4508 	intel_engine_mask_t reset_fail_mask;
4509 	unsigned long flags;
4510 
4511 	spin_lock_irqsave(&guc->submission_state.lock, flags);
4512 	reset_fail_mask = guc->submission_state.reset_fail_mask;
4513 	guc->submission_state.reset_fail_mask = 0;
4514 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
4515 
4516 	if (likely(reset_fail_mask))
4517 		intel_gt_handle_error(gt, reset_fail_mask,
4518 				      I915_ERROR_CAPTURE,
4519 				      "GuC failed to reset engine mask=0x%x\n",
4520 				      reset_fail_mask);
4521 }
4522 
4523 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
4524 					 const u32 *msg, u32 len)
4525 {
4526 	struct intel_engine_cs *engine;
4527 	struct intel_gt *gt = guc_to_gt(guc);
4528 	u8 guc_class, instance;
4529 	u32 reason;
4530 	unsigned long flags;
4531 
4532 	if (unlikely(len != 3)) {
4533 		drm_err(&gt->i915->drm, "Invalid length %u", len);
4534 		return -EPROTO;
4535 	}
4536 
4537 	guc_class = msg[0];
4538 	instance = msg[1];
4539 	reason = msg[2];
4540 
4541 	engine = intel_guc_lookup_engine(guc, guc_class, instance);
4542 	if (unlikely(!engine)) {
4543 		drm_err(&gt->i915->drm,
4544 			"Invalid engine %d:%d", guc_class, instance);
4545 		return -EPROTO;
4546 	}
4547 
4548 	/*
4549 	 * This is an unexpected failure of a hardware feature. So, log a real
4550 	 * error message not just the informational that comes with the reset.
4551 	 */
4552 	drm_err(&gt->i915->drm, "GuC engine reset request failed on %d:%d (%s) because 0x%08X",
4553 		guc_class, instance, engine->name, reason);
4554 
4555 	spin_lock_irqsave(&guc->submission_state.lock, flags);
4556 	guc->submission_state.reset_fail_mask |= engine->mask;
4557 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
4558 
4559 	/*
4560 	 * A GT reset flushes this worker queue (G2H handler) so we must use
4561 	 * another worker to trigger a GT reset.
4562 	 */
4563 	queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
4564 
4565 	return 0;
4566 }
4567 
4568 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
4569 {
4570 	struct intel_guc *guc = &engine->gt->uc.guc;
4571 	struct intel_context *ce;
4572 	struct i915_request *rq;
4573 	unsigned long index;
4574 	unsigned long flags;
4575 
4576 	/* Reset called during driver load? GuC not yet initialised! */
4577 	if (unlikely(!guc_submission_initialized(guc)))
4578 		return;
4579 
4580 	xa_lock_irqsave(&guc->context_lookup, flags);
4581 	xa_for_each(&guc->context_lookup, index, ce) {
4582 		if (!kref_get_unless_zero(&ce->ref))
4583 			continue;
4584 
4585 		xa_unlock(&guc->context_lookup);
4586 
4587 		if (!intel_context_is_pinned(ce))
4588 			goto next;
4589 
4590 		if (intel_engine_is_virtual(ce->engine)) {
4591 			if (!(ce->engine->mask & engine->mask))
4592 				goto next;
4593 		} else {
4594 			if (ce->engine != engine)
4595 				goto next;
4596 		}
4597 
4598 		list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
4599 			if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
4600 				continue;
4601 
4602 			intel_engine_set_hung_context(engine, ce);
4603 
4604 			/* Can only cope with one hang at a time... */
4605 			intel_context_put(ce);
4606 			xa_lock(&guc->context_lookup);
4607 			goto done;
4608 		}
4609 next:
4610 		intel_context_put(ce);
4611 		xa_lock(&guc->context_lookup);
4612 	}
4613 done:
4614 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4615 }
4616 
4617 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
4618 				    struct i915_request *hung_rq,
4619 				    struct drm_printer *m)
4620 {
4621 	struct intel_guc *guc = &engine->gt->uc.guc;
4622 	struct intel_context *ce;
4623 	unsigned long index;
4624 	unsigned long flags;
4625 
4626 	/* Reset called during driver load? GuC not yet initialised! */
4627 	if (unlikely(!guc_submission_initialized(guc)))
4628 		return;
4629 
4630 	xa_lock_irqsave(&guc->context_lookup, flags);
4631 	xa_for_each(&guc->context_lookup, index, ce) {
4632 		if (!kref_get_unless_zero(&ce->ref))
4633 			continue;
4634 
4635 		xa_unlock(&guc->context_lookup);
4636 
4637 		if (!intel_context_is_pinned(ce))
4638 			goto next;
4639 
4640 		if (intel_engine_is_virtual(ce->engine)) {
4641 			if (!(ce->engine->mask & engine->mask))
4642 				goto next;
4643 		} else {
4644 			if (ce->engine != engine)
4645 				goto next;
4646 		}
4647 
4648 		spin_lock(&ce->guc_state.lock);
4649 		intel_engine_dump_active_requests(&ce->guc_state.requests,
4650 						  hung_rq, m);
4651 		spin_unlock(&ce->guc_state.lock);
4652 
4653 next:
4654 		intel_context_put(ce);
4655 		xa_lock(&guc->context_lookup);
4656 	}
4657 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4658 }
4659 
4660 void intel_guc_submission_print_info(struct intel_guc *guc,
4661 				     struct drm_printer *p)
4662 {
4663 	struct i915_sched_engine *sched_engine = guc->sched_engine;
4664 	struct rb_node *rb;
4665 	unsigned long flags;
4666 
4667 	if (!sched_engine)
4668 		return;
4669 
4670 	drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
4671 		   atomic_read(&guc->outstanding_submission_g2h));
4672 	drm_printf(p, "GuC tasklet count: %u\n\n",
4673 		   atomic_read(&sched_engine->tasklet.count));
4674 
4675 	spin_lock_irqsave(&sched_engine->lock, flags);
4676 	drm_printf(p, "Requests in GuC submit tasklet:\n");
4677 	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
4678 		struct i915_priolist *pl = to_priolist(rb);
4679 		struct i915_request *rq;
4680 
4681 		priolist_for_each_request(rq, pl)
4682 			drm_printf(p, "guc_id=%u, seqno=%llu\n",
4683 				   rq->context->guc_id.id,
4684 				   rq->fence.seqno);
4685 	}
4686 	spin_unlock_irqrestore(&sched_engine->lock, flags);
4687 	drm_printf(p, "\n");
4688 }
4689 
4690 static inline void guc_log_context_priority(struct drm_printer *p,
4691 					    struct intel_context *ce)
4692 {
4693 	int i;
4694 
4695 	drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
4696 	drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
4697 	for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
4698 	     i < GUC_CLIENT_PRIORITY_NUM; ++i) {
4699 		drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
4700 			   i, ce->guc_state.prio_count[i]);
4701 	}
4702 	drm_printf(p, "\n");
4703 }
4704 
4705 static inline void guc_log_context(struct drm_printer *p,
4706 				   struct intel_context *ce)
4707 {
4708 	drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
4709 	drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
4710 	drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
4711 		   ce->ring->head,
4712 		   ce->lrc_reg_state[CTX_RING_HEAD]);
4713 	drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
4714 		   ce->ring->tail,
4715 		   ce->lrc_reg_state[CTX_RING_TAIL]);
4716 	drm_printf(p, "\t\tContext Pin Count: %u\n",
4717 		   atomic_read(&ce->pin_count));
4718 	drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
4719 		   atomic_read(&ce->guc_id.ref));
4720 	drm_printf(p, "\t\tSchedule State: 0x%x\n\n",
4721 		   ce->guc_state.sched_state);
4722 }
4723 
4724 void intel_guc_submission_print_context_info(struct intel_guc *guc,
4725 					     struct drm_printer *p)
4726 {
4727 	struct intel_context *ce;
4728 	unsigned long index;
4729 	unsigned long flags;
4730 
4731 	xa_lock_irqsave(&guc->context_lookup, flags);
4732 	xa_for_each(&guc->context_lookup, index, ce) {
4733 		GEM_BUG_ON(intel_context_is_child(ce));
4734 
4735 		guc_log_context(p, ce);
4736 		guc_log_context_priority(p, ce);
4737 
4738 		if (intel_context_is_parent(ce)) {
4739 			struct intel_context *child;
4740 
4741 			drm_printf(p, "\t\tNumber children: %u\n",
4742 				   ce->parallel.number_children);
4743 
4744 			if (ce->parallel.guc.wq_status) {
4745 				drm_printf(p, "\t\tWQI Head: %u\n",
4746 					   READ_ONCE(*ce->parallel.guc.wq_head));
4747 				drm_printf(p, "\t\tWQI Tail: %u\n",
4748 					   READ_ONCE(*ce->parallel.guc.wq_tail));
4749 				drm_printf(p, "\t\tWQI Status: %u\n\n",
4750 					   READ_ONCE(*ce->parallel.guc.wq_status));
4751 			}
4752 
4753 			if (ce->engine->emit_bb_start ==
4754 			    emit_bb_start_parent_no_preempt_mid_batch) {
4755 				u8 i;
4756 
4757 				drm_printf(p, "\t\tChildren Go: %u\n\n",
4758 					   get_children_go_value(ce));
4759 				for (i = 0; i < ce->parallel.number_children; ++i)
4760 					drm_printf(p, "\t\tChildren Join: %u\n",
4761 						   get_children_join_value(ce, i));
4762 			}
4763 
4764 			for_each_child(ce, child)
4765 				guc_log_context(p, child);
4766 		}
4767 	}
4768 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4769 }
4770 
4771 static inline u32 get_children_go_addr(struct intel_context *ce)
4772 {
4773 	GEM_BUG_ON(!intel_context_is_parent(ce));
4774 
4775 	return i915_ggtt_offset(ce->state) +
4776 		__get_parent_scratch_offset(ce) +
4777 		offsetof(struct parent_scratch, go.semaphore);
4778 }
4779 
4780 static inline u32 get_children_join_addr(struct intel_context *ce,
4781 					 u8 child_index)
4782 {
4783 	GEM_BUG_ON(!intel_context_is_parent(ce));
4784 
4785 	return i915_ggtt_offset(ce->state) +
4786 		__get_parent_scratch_offset(ce) +
4787 		offsetof(struct parent_scratch, join[child_index].semaphore);
4788 }
4789 
4790 #define PARENT_GO_BB			1
4791 #define PARENT_GO_FINI_BREADCRUMB	0
4792 #define CHILD_GO_BB			1
4793 #define CHILD_GO_FINI_BREADCRUMB	0
4794 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
4795 						     u64 offset, u32 len,
4796 						     const unsigned int flags)
4797 {
4798 	struct intel_context *ce = rq->context;
4799 	u32 *cs;
4800 	u8 i;
4801 
4802 	GEM_BUG_ON(!intel_context_is_parent(ce));
4803 
4804 	cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
4805 	if (IS_ERR(cs))
4806 		return PTR_ERR(cs);
4807 
4808 	/* Wait on children */
4809 	for (i = 0; i < ce->parallel.number_children; ++i) {
4810 		*cs++ = (MI_SEMAPHORE_WAIT |
4811 			 MI_SEMAPHORE_GLOBAL_GTT |
4812 			 MI_SEMAPHORE_POLL |
4813 			 MI_SEMAPHORE_SAD_EQ_SDD);
4814 		*cs++ = PARENT_GO_BB;
4815 		*cs++ = get_children_join_addr(ce, i);
4816 		*cs++ = 0;
4817 	}
4818 
4819 	/* Turn off preemption */
4820 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
4821 	*cs++ = MI_NOOP;
4822 
4823 	/* Tell children go */
4824 	cs = gen8_emit_ggtt_write(cs,
4825 				  CHILD_GO_BB,
4826 				  get_children_go_addr(ce),
4827 				  0);
4828 
4829 	/* Jump to batch */
4830 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
4831 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
4832 	*cs++ = lower_32_bits(offset);
4833 	*cs++ = upper_32_bits(offset);
4834 	*cs++ = MI_NOOP;
4835 
4836 	intel_ring_advance(rq, cs);
4837 
4838 	return 0;
4839 }
4840 
4841 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
4842 						    u64 offset, u32 len,
4843 						    const unsigned int flags)
4844 {
4845 	struct intel_context *ce = rq->context;
4846 	struct intel_context *parent = intel_context_to_parent(ce);
4847 	u32 *cs;
4848 
4849 	GEM_BUG_ON(!intel_context_is_child(ce));
4850 
4851 	cs = intel_ring_begin(rq, 12);
4852 	if (IS_ERR(cs))
4853 		return PTR_ERR(cs);
4854 
4855 	/* Signal parent */
4856 	cs = gen8_emit_ggtt_write(cs,
4857 				  PARENT_GO_BB,
4858 				  get_children_join_addr(parent,
4859 							 ce->parallel.child_index),
4860 				  0);
4861 
4862 	/* Wait on parent for go */
4863 	*cs++ = (MI_SEMAPHORE_WAIT |
4864 		 MI_SEMAPHORE_GLOBAL_GTT |
4865 		 MI_SEMAPHORE_POLL |
4866 		 MI_SEMAPHORE_SAD_EQ_SDD);
4867 	*cs++ = CHILD_GO_BB;
4868 	*cs++ = get_children_go_addr(parent);
4869 	*cs++ = 0;
4870 
4871 	/* Turn off preemption */
4872 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
4873 
4874 	/* Jump to batch */
4875 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
4876 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
4877 	*cs++ = lower_32_bits(offset);
4878 	*cs++ = upper_32_bits(offset);
4879 
4880 	intel_ring_advance(rq, cs);
4881 
4882 	return 0;
4883 }
4884 
4885 static u32 *
4886 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4887 						   u32 *cs)
4888 {
4889 	struct intel_context *ce = rq->context;
4890 	u8 i;
4891 
4892 	GEM_BUG_ON(!intel_context_is_parent(ce));
4893 
4894 	/* Wait on children */
4895 	for (i = 0; i < ce->parallel.number_children; ++i) {
4896 		*cs++ = (MI_SEMAPHORE_WAIT |
4897 			 MI_SEMAPHORE_GLOBAL_GTT |
4898 			 MI_SEMAPHORE_POLL |
4899 			 MI_SEMAPHORE_SAD_EQ_SDD);
4900 		*cs++ = PARENT_GO_FINI_BREADCRUMB;
4901 		*cs++ = get_children_join_addr(ce, i);
4902 		*cs++ = 0;
4903 	}
4904 
4905 	/* Turn on preemption */
4906 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
4907 	*cs++ = MI_NOOP;
4908 
4909 	/* Tell children go */
4910 	cs = gen8_emit_ggtt_write(cs,
4911 				  CHILD_GO_FINI_BREADCRUMB,
4912 				  get_children_go_addr(ce),
4913 				  0);
4914 
4915 	return cs;
4916 }
4917 
4918 /*
4919  * If this true, a submission of multi-lrc requests had an error and the
4920  * requests need to be skipped. The front end (execuf IOCTL) should've called
4921  * i915_request_skip which squashes the BB but we still need to emit the fini
4922  * breadrcrumbs seqno write. At this point we don't know how many of the
4923  * requests in the multi-lrc submission were generated so we can't do the
4924  * handshake between the parent and children (e.g. if 4 requests should be
4925  * generated but 2nd hit an error only 1 would be seen by the GuC backend).
4926  * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
4927  * has occurred on any of the requests in submission / relationship.
4928  */
4929 static inline bool skip_handshake(struct i915_request *rq)
4930 {
4931 	return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
4932 }
4933 
4934 #define NON_SKIP_LEN	6
4935 static u32 *
4936 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4937 						 u32 *cs)
4938 {
4939 	struct intel_context *ce = rq->context;
4940 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
4941 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
4942 
4943 	GEM_BUG_ON(!intel_context_is_parent(ce));
4944 
4945 	if (unlikely(skip_handshake(rq))) {
4946 		/*
4947 		 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
4948 		 * the NON_SKIP_LEN comes from the length of the emits below.
4949 		 */
4950 		memset(cs, 0, sizeof(u32) *
4951 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
4952 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
4953 	} else {
4954 		cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
4955 	}
4956 
4957 	/* Emit fini breadcrumb */
4958 	before_fini_breadcrumb_user_interrupt_cs = cs;
4959 	cs = gen8_emit_ggtt_write(cs,
4960 				  rq->fence.seqno,
4961 				  i915_request_active_timeline(rq)->hwsp_offset,
4962 				  0);
4963 
4964 	/* User interrupt */
4965 	*cs++ = MI_USER_INTERRUPT;
4966 	*cs++ = MI_NOOP;
4967 
4968 	/* Ensure our math for skip + emit is correct */
4969 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
4970 		   cs);
4971 	GEM_BUG_ON(start_fini_breadcrumb_cs +
4972 		   ce->engine->emit_fini_breadcrumb_dw != cs);
4973 
4974 	rq->tail = intel_ring_offset(rq, cs);
4975 
4976 	return cs;
4977 }
4978 
4979 static u32 *
4980 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
4981 						  u32 *cs)
4982 {
4983 	struct intel_context *ce = rq->context;
4984 	struct intel_context *parent = intel_context_to_parent(ce);
4985 
4986 	GEM_BUG_ON(!intel_context_is_child(ce));
4987 
4988 	/* Turn on preemption */
4989 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
4990 	*cs++ = MI_NOOP;
4991 
4992 	/* Signal parent */
4993 	cs = gen8_emit_ggtt_write(cs,
4994 				  PARENT_GO_FINI_BREADCRUMB,
4995 				  get_children_join_addr(parent,
4996 							 ce->parallel.child_index),
4997 				  0);
4998 
4999 	/* Wait parent on for go */
5000 	*cs++ = (MI_SEMAPHORE_WAIT |
5001 		 MI_SEMAPHORE_GLOBAL_GTT |
5002 		 MI_SEMAPHORE_POLL |
5003 		 MI_SEMAPHORE_SAD_EQ_SDD);
5004 	*cs++ = CHILD_GO_FINI_BREADCRUMB;
5005 	*cs++ = get_children_go_addr(parent);
5006 	*cs++ = 0;
5007 
5008 	return cs;
5009 }
5010 
5011 static u32 *
5012 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5013 						u32 *cs)
5014 {
5015 	struct intel_context *ce = rq->context;
5016 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5017 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5018 
5019 	GEM_BUG_ON(!intel_context_is_child(ce));
5020 
5021 	if (unlikely(skip_handshake(rq))) {
5022 		/*
5023 		 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
5024 		 * the NON_SKIP_LEN comes from the length of the emits below.
5025 		 */
5026 		memset(cs, 0, sizeof(u32) *
5027 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5028 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5029 	} else {
5030 		cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
5031 	}
5032 
5033 	/* Emit fini breadcrumb */
5034 	before_fini_breadcrumb_user_interrupt_cs = cs;
5035 	cs = gen8_emit_ggtt_write(cs,
5036 				  rq->fence.seqno,
5037 				  i915_request_active_timeline(rq)->hwsp_offset,
5038 				  0);
5039 
5040 	/* User interrupt */
5041 	*cs++ = MI_USER_INTERRUPT;
5042 	*cs++ = MI_NOOP;
5043 
5044 	/* Ensure our math for skip + emit is correct */
5045 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5046 		   cs);
5047 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5048 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5049 
5050 	rq->tail = intel_ring_offset(rq, cs);
5051 
5052 	return cs;
5053 }
5054 
5055 #undef NON_SKIP_LEN
5056 
5057 static struct intel_context *
5058 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
5059 		   unsigned long flags)
5060 {
5061 	struct guc_virtual_engine *ve;
5062 	struct intel_guc *guc;
5063 	unsigned int n;
5064 	int err;
5065 
5066 	ve = kzalloc(sizeof(*ve), GFP_KERNEL);
5067 	if (!ve)
5068 		return ERR_PTR(-ENOMEM);
5069 
5070 	guc = &siblings[0]->gt->uc.guc;
5071 
5072 	ve->base.i915 = siblings[0]->i915;
5073 	ve->base.gt = siblings[0]->gt;
5074 	ve->base.uncore = siblings[0]->uncore;
5075 	ve->base.id = -1;
5076 
5077 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5078 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5079 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5080 	ve->base.saturated = ALL_ENGINES;
5081 
5082 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5083 
5084 	ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
5085 
5086 	ve->base.cops = &virtual_guc_context_ops;
5087 	ve->base.request_alloc = guc_request_alloc;
5088 	ve->base.bump_serial = virtual_guc_bump_serial;
5089 
5090 	ve->base.submit_request = guc_submit_request;
5091 
5092 	ve->base.flags = I915_ENGINE_IS_VIRTUAL;
5093 
5094 	intel_context_init(&ve->context, &ve->base);
5095 
5096 	for (n = 0; n < count; n++) {
5097 		struct intel_engine_cs *sibling = siblings[n];
5098 
5099 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
5100 		if (sibling->mask & ve->base.mask) {
5101 			DRM_DEBUG("duplicate %s entry in load balancer\n",
5102 				  sibling->name);
5103 			err = -EINVAL;
5104 			goto err_put;
5105 		}
5106 
5107 		ve->base.mask |= sibling->mask;
5108 		ve->base.logical_mask |= sibling->logical_mask;
5109 
5110 		if (n != 0 && ve->base.class != sibling->class) {
5111 			DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
5112 				  sibling->class, ve->base.class);
5113 			err = -EINVAL;
5114 			goto err_put;
5115 		} else if (n == 0) {
5116 			ve->base.class = sibling->class;
5117 			ve->base.uabi_class = sibling->uabi_class;
5118 			snprintf(ve->base.name, sizeof(ve->base.name),
5119 				 "v%dx%d", ve->base.class, count);
5120 			ve->base.context_size = sibling->context_size;
5121 
5122 			ve->base.add_active_request =
5123 				sibling->add_active_request;
5124 			ve->base.remove_active_request =
5125 				sibling->remove_active_request;
5126 			ve->base.emit_bb_start = sibling->emit_bb_start;
5127 			ve->base.emit_flush = sibling->emit_flush;
5128 			ve->base.emit_init_breadcrumb =
5129 				sibling->emit_init_breadcrumb;
5130 			ve->base.emit_fini_breadcrumb =
5131 				sibling->emit_fini_breadcrumb;
5132 			ve->base.emit_fini_breadcrumb_dw =
5133 				sibling->emit_fini_breadcrumb_dw;
5134 			ve->base.breadcrumbs =
5135 				intel_breadcrumbs_get(sibling->breadcrumbs);
5136 
5137 			ve->base.flags |= sibling->flags;
5138 
5139 			ve->base.props.timeslice_duration_ms =
5140 				sibling->props.timeslice_duration_ms;
5141 			ve->base.props.preempt_timeout_ms =
5142 				sibling->props.preempt_timeout_ms;
5143 		}
5144 	}
5145 
5146 	return &ve->context;
5147 
5148 err_put:
5149 	intel_context_put(&ve->context);
5150 	return ERR_PTR(err);
5151 }
5152 
5153 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
5154 {
5155 	struct intel_engine_cs *engine;
5156 	intel_engine_mask_t tmp, mask = ve->mask;
5157 
5158 	for_each_engine_masked(engine, ve->gt, mask, tmp)
5159 		if (READ_ONCE(engine->props.heartbeat_interval_ms))
5160 			return true;
5161 
5162 	return false;
5163 }
5164 
5165 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5166 #include "selftest_guc.c"
5167 #include "selftest_guc_multi_lrc.c"
5168 #include "selftest_guc_hangcheck.c"
5169 #endif
5170