1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014 Intel Corporation 4 */ 5 6 #include <linux/circ_buf.h> 7 8 #include "gem/i915_gem_context.h" 9 #include "gt/gen8_engine_cs.h" 10 #include "gt/intel_breadcrumbs.h" 11 #include "gt/intel_context.h" 12 #include "gt/intel_engine_pm.h" 13 #include "gt/intel_engine_heartbeat.h" 14 #include "gt/intel_gpu_commands.h" 15 #include "gt/intel_gt.h" 16 #include "gt/intel_gt_clock_utils.h" 17 #include "gt/intel_gt_irq.h" 18 #include "gt/intel_gt_pm.h" 19 #include "gt/intel_gt_requests.h" 20 #include "gt/intel_lrc.h" 21 #include "gt/intel_lrc_reg.h" 22 #include "gt/intel_mocs.h" 23 #include "gt/intel_ring.h" 24 25 #include "intel_guc_ads.h" 26 #include "intel_guc_submission.h" 27 28 #include "i915_drv.h" 29 #include "i915_trace.h" 30 31 /** 32 * DOC: GuC-based command submission 33 * 34 * The Scratch registers: 35 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes 36 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then 37 * triggers an interrupt on the GuC via another register write (0xC4C8). 38 * Firmware writes a success/fail code back to the action register after 39 * processes the request. The kernel driver polls waiting for this update and 40 * then proceeds. 41 * 42 * Command Transport buffers (CTBs): 43 * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host 44 * - G2H) are a message interface between the i915 and GuC. 45 * 46 * Context registration: 47 * Before a context can be submitted it must be registered with the GuC via a 48 * H2G. A unique guc_id is associated with each context. The context is either 49 * registered at request creation time (normal operation) or at submission time 50 * (abnormal operation, e.g. after a reset). 51 * 52 * Context submission: 53 * The i915 updates the LRC tail value in memory. The i915 must enable the 54 * scheduling of the context within the GuC for the GuC to actually consider it. 55 * Therefore, the first time a disabled context is submitted we use a schedule 56 * enable H2G, while follow up submissions are done via the context submit H2G, 57 * which informs the GuC that a previously enabled context has new work 58 * available. 59 * 60 * Context unpin: 61 * To unpin a context a H2G is used to disable scheduling. When the 62 * corresponding G2H returns indicating the scheduling disable operation has 63 * completed it is safe to unpin the context. While a disable is in flight it 64 * isn't safe to resubmit the context so a fence is used to stall all future 65 * requests of that context until the G2H is returned. 66 * 67 * Context deregistration: 68 * Before a context can be destroyed or if we steal its guc_id we must 69 * deregister the context with the GuC via H2G. If stealing the guc_id it isn't 70 * safe to submit anything to this guc_id until the deregister completes so a 71 * fence is used to stall all requests associated with this guc_id until the 72 * corresponding G2H returns indicating the guc_id has been deregistered. 73 * 74 * submission_state.guc_ids: 75 * Unique number associated with private GuC context data passed in during 76 * context registration / submission / deregistration. 64k available. Simple ida 77 * is used for allocation. 78 * 79 * Stealing guc_ids: 80 * If no guc_ids are available they can be stolen from another context at 81 * request creation time if that context is unpinned. If a guc_id can't be found 82 * we punt this problem to the user as we believe this is near impossible to hit 83 * during normal use cases. 84 * 85 * Locking: 86 * In the GuC submission code we have 3 basic spin locks which protect 87 * everything. Details about each below. 88 * 89 * sched_engine->lock 90 * This is the submission lock for all contexts that share an i915 schedule 91 * engine (sched_engine), thus only one of the contexts which share a 92 * sched_engine can be submitting at a time. Currently only one sched_engine is 93 * used for all of GuC submission but that could change in the future. 94 * 95 * guc->submission_state.lock 96 * Global lock for GuC submission state. Protects guc_ids and destroyed contexts 97 * list. 98 * 99 * ce->guc_state.lock 100 * Protects everything under ce->guc_state. Ensures that a context is in the 101 * correct state before issuing a H2G. e.g. We don't issue a schedule disable 102 * on a disabled context (bad idea), we don't issue a schedule enable when a 103 * schedule disable is in flight, etc... Also protects list of inflight requests 104 * on the context and the priority management state. Lock is individual to each 105 * context. 106 * 107 * Lock ordering rules: 108 * sched_engine->lock -> ce->guc_state.lock 109 * guc->submission_state.lock -> ce->guc_state.lock 110 * 111 * Reset races: 112 * When a full GT reset is triggered it is assumed that some G2H responses to 113 * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be 114 * fatal as we do certain operations upon receiving a G2H (e.g. destroy 115 * contexts, release guc_ids, etc...). When this occurs we can scrub the 116 * context state and cleanup appropriately, however this is quite racey. 117 * To avoid races, the reset code must disable submission before scrubbing for 118 * the missing G2H, while the submission code must check for submission being 119 * disabled and skip sending H2Gs and updating context states when it is. Both 120 * sides must also make sure to hold the relevant locks. 121 */ 122 123 /* GuC Virtual Engine */ 124 struct guc_virtual_engine { 125 struct intel_engine_cs base; 126 struct intel_context context; 127 }; 128 129 static struct intel_context * 130 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, 131 unsigned long flags); 132 133 static struct intel_context * 134 guc_create_parallel(struct intel_engine_cs **engines, 135 unsigned int num_siblings, 136 unsigned int width); 137 138 #define GUC_REQUEST_SIZE 64 /* bytes */ 139 140 /* 141 * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous 142 * per the GuC submission interface. A different allocation algorithm is used 143 * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to 144 * partition the guc_id space. We believe the number of multi-lrc contexts in 145 * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for 146 * multi-lrc. 147 */ 148 #define NUMBER_MULTI_LRC_GUC_ID(guc) \ 149 ((guc)->submission_state.num_guc_ids / 16) 150 151 /* 152 * Below is a set of functions which control the GuC scheduling state which 153 * require a lock. 154 */ 155 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER BIT(0) 156 #define SCHED_STATE_DESTROYED BIT(1) 157 #define SCHED_STATE_PENDING_DISABLE BIT(2) 158 #define SCHED_STATE_BANNED BIT(3) 159 #define SCHED_STATE_ENABLED BIT(4) 160 #define SCHED_STATE_PENDING_ENABLE BIT(5) 161 #define SCHED_STATE_REGISTERED BIT(6) 162 #define SCHED_STATE_BLOCKED_SHIFT 7 163 #define SCHED_STATE_BLOCKED BIT(SCHED_STATE_BLOCKED_SHIFT) 164 #define SCHED_STATE_BLOCKED_MASK (0xfff << SCHED_STATE_BLOCKED_SHIFT) 165 166 static inline void init_sched_state(struct intel_context *ce) 167 { 168 lockdep_assert_held(&ce->guc_state.lock); 169 ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK; 170 } 171 172 __maybe_unused 173 static bool sched_state_is_init(struct intel_context *ce) 174 { 175 /* 176 * XXX: Kernel contexts can have SCHED_STATE_NO_LOCK_REGISTERED after 177 * suspend. 178 */ 179 return !(ce->guc_state.sched_state &= 180 ~(SCHED_STATE_BLOCKED_MASK | SCHED_STATE_REGISTERED)); 181 } 182 183 static inline bool 184 context_wait_for_deregister_to_register(struct intel_context *ce) 185 { 186 return ce->guc_state.sched_state & 187 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 188 } 189 190 static inline void 191 set_context_wait_for_deregister_to_register(struct intel_context *ce) 192 { 193 lockdep_assert_held(&ce->guc_state.lock); 194 ce->guc_state.sched_state |= 195 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 196 } 197 198 static inline void 199 clr_context_wait_for_deregister_to_register(struct intel_context *ce) 200 { 201 lockdep_assert_held(&ce->guc_state.lock); 202 ce->guc_state.sched_state &= 203 ~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 204 } 205 206 static inline bool 207 context_destroyed(struct intel_context *ce) 208 { 209 return ce->guc_state.sched_state & SCHED_STATE_DESTROYED; 210 } 211 212 static inline void 213 set_context_destroyed(struct intel_context *ce) 214 { 215 lockdep_assert_held(&ce->guc_state.lock); 216 ce->guc_state.sched_state |= SCHED_STATE_DESTROYED; 217 } 218 219 static inline bool context_pending_disable(struct intel_context *ce) 220 { 221 return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE; 222 } 223 224 static inline void set_context_pending_disable(struct intel_context *ce) 225 { 226 lockdep_assert_held(&ce->guc_state.lock); 227 ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE; 228 } 229 230 static inline void clr_context_pending_disable(struct intel_context *ce) 231 { 232 lockdep_assert_held(&ce->guc_state.lock); 233 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE; 234 } 235 236 static inline bool context_banned(struct intel_context *ce) 237 { 238 return ce->guc_state.sched_state & SCHED_STATE_BANNED; 239 } 240 241 static inline void set_context_banned(struct intel_context *ce) 242 { 243 lockdep_assert_held(&ce->guc_state.lock); 244 ce->guc_state.sched_state |= SCHED_STATE_BANNED; 245 } 246 247 static inline void clr_context_banned(struct intel_context *ce) 248 { 249 lockdep_assert_held(&ce->guc_state.lock); 250 ce->guc_state.sched_state &= ~SCHED_STATE_BANNED; 251 } 252 253 static inline bool context_enabled(struct intel_context *ce) 254 { 255 return ce->guc_state.sched_state & SCHED_STATE_ENABLED; 256 } 257 258 static inline void set_context_enabled(struct intel_context *ce) 259 { 260 lockdep_assert_held(&ce->guc_state.lock); 261 ce->guc_state.sched_state |= SCHED_STATE_ENABLED; 262 } 263 264 static inline void clr_context_enabled(struct intel_context *ce) 265 { 266 lockdep_assert_held(&ce->guc_state.lock); 267 ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED; 268 } 269 270 static inline bool context_pending_enable(struct intel_context *ce) 271 { 272 return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE; 273 } 274 275 static inline void set_context_pending_enable(struct intel_context *ce) 276 { 277 lockdep_assert_held(&ce->guc_state.lock); 278 ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE; 279 } 280 281 static inline void clr_context_pending_enable(struct intel_context *ce) 282 { 283 lockdep_assert_held(&ce->guc_state.lock); 284 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE; 285 } 286 287 static inline bool context_registered(struct intel_context *ce) 288 { 289 return ce->guc_state.sched_state & SCHED_STATE_REGISTERED; 290 } 291 292 static inline void set_context_registered(struct intel_context *ce) 293 { 294 lockdep_assert_held(&ce->guc_state.lock); 295 ce->guc_state.sched_state |= SCHED_STATE_REGISTERED; 296 } 297 298 static inline void clr_context_registered(struct intel_context *ce) 299 { 300 lockdep_assert_held(&ce->guc_state.lock); 301 ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED; 302 } 303 304 static inline u32 context_blocked(struct intel_context *ce) 305 { 306 return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >> 307 SCHED_STATE_BLOCKED_SHIFT; 308 } 309 310 static inline void incr_context_blocked(struct intel_context *ce) 311 { 312 lockdep_assert_held(&ce->guc_state.lock); 313 314 ce->guc_state.sched_state += SCHED_STATE_BLOCKED; 315 316 GEM_BUG_ON(!context_blocked(ce)); /* Overflow check */ 317 } 318 319 static inline void decr_context_blocked(struct intel_context *ce) 320 { 321 lockdep_assert_held(&ce->guc_state.lock); 322 323 GEM_BUG_ON(!context_blocked(ce)); /* Underflow check */ 324 325 ce->guc_state.sched_state -= SCHED_STATE_BLOCKED; 326 } 327 328 static inline bool context_has_committed_requests(struct intel_context *ce) 329 { 330 return !!ce->guc_state.number_committed_requests; 331 } 332 333 static inline void incr_context_committed_requests(struct intel_context *ce) 334 { 335 lockdep_assert_held(&ce->guc_state.lock); 336 ++ce->guc_state.number_committed_requests; 337 GEM_BUG_ON(ce->guc_state.number_committed_requests < 0); 338 } 339 340 static inline void decr_context_committed_requests(struct intel_context *ce) 341 { 342 lockdep_assert_held(&ce->guc_state.lock); 343 --ce->guc_state.number_committed_requests; 344 GEM_BUG_ON(ce->guc_state.number_committed_requests < 0); 345 } 346 347 static struct intel_context * 348 request_to_scheduling_context(struct i915_request *rq) 349 { 350 return intel_context_to_parent(rq->context); 351 } 352 353 static inline bool context_guc_id_invalid(struct intel_context *ce) 354 { 355 return ce->guc_id.id == GUC_INVALID_LRC_ID; 356 } 357 358 static inline void set_context_guc_id_invalid(struct intel_context *ce) 359 { 360 ce->guc_id.id = GUC_INVALID_LRC_ID; 361 } 362 363 static inline struct intel_guc *ce_to_guc(struct intel_context *ce) 364 { 365 return &ce->engine->gt->uc.guc; 366 } 367 368 static inline struct i915_priolist *to_priolist(struct rb_node *rb) 369 { 370 return rb_entry(rb, struct i915_priolist, node); 371 } 372 373 /* 374 * When using multi-lrc submission a scratch memory area is reserved in the 375 * parent's context state for the process descriptor, work queue, and handshake 376 * between the parent + children contexts to insert safe preemption points 377 * between each of the BBs. Currently the scratch area is sized to a page. 378 * 379 * The layout of this scratch area is below: 380 * 0 guc_process_desc 381 * + sizeof(struct guc_process_desc) child go 382 * + CACHELINE_BYTES child join[0] 383 * ... 384 * + CACHELINE_BYTES child join[n - 1] 385 * ... unused 386 * PARENT_SCRATCH_SIZE / 2 work queue start 387 * ... work queue 388 * PARENT_SCRATCH_SIZE - 1 work queue end 389 */ 390 #define WQ_SIZE (PARENT_SCRATCH_SIZE / 2) 391 #define WQ_OFFSET (PARENT_SCRATCH_SIZE - WQ_SIZE) 392 393 struct sync_semaphore { 394 u32 semaphore; 395 u8 unused[CACHELINE_BYTES - sizeof(u32)]; 396 }; 397 398 struct parent_scratch { 399 struct guc_process_desc pdesc; 400 401 struct sync_semaphore go; 402 struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1]; 403 404 u8 unused[WQ_OFFSET - sizeof(struct guc_process_desc) - 405 sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)]; 406 407 u32 wq[WQ_SIZE / sizeof(u32)]; 408 }; 409 410 static u32 __get_parent_scratch_offset(struct intel_context *ce) 411 { 412 GEM_BUG_ON(!ce->parallel.guc.parent_page); 413 414 return ce->parallel.guc.parent_page * PAGE_SIZE; 415 } 416 417 static u32 __get_wq_offset(struct intel_context *ce) 418 { 419 BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET); 420 421 return __get_parent_scratch_offset(ce) + WQ_OFFSET; 422 } 423 424 static struct parent_scratch * 425 __get_parent_scratch(struct intel_context *ce) 426 { 427 BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE); 428 BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES); 429 430 /* 431 * Need to subtract LRC_STATE_OFFSET here as the 432 * parallel.guc.parent_page is the offset into ce->state while 433 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET. 434 */ 435 return (struct parent_scratch *) 436 (ce->lrc_reg_state + 437 ((__get_parent_scratch_offset(ce) - 438 LRC_STATE_OFFSET) / sizeof(u32))); 439 } 440 441 static struct guc_process_desc * 442 __get_process_desc(struct intel_context *ce) 443 { 444 struct parent_scratch *ps = __get_parent_scratch(ce); 445 446 return &ps->pdesc; 447 } 448 449 static u32 *get_wq_pointer(struct guc_process_desc *desc, 450 struct intel_context *ce, 451 u32 wqi_size) 452 { 453 /* 454 * Check for space in work queue. Caching a value of head pointer in 455 * intel_context structure in order reduce the number accesses to shared 456 * GPU memory which may be across a PCIe bus. 457 */ 458 #define AVAILABLE_SPACE \ 459 CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE) 460 if (wqi_size > AVAILABLE_SPACE) { 461 ce->parallel.guc.wqi_head = READ_ONCE(desc->head); 462 463 if (wqi_size > AVAILABLE_SPACE) 464 return NULL; 465 } 466 #undef AVAILABLE_SPACE 467 468 return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)]; 469 } 470 471 static struct guc_lrc_desc *__get_lrc_desc(struct intel_guc *guc, u32 index) 472 { 473 struct guc_lrc_desc *base = guc->lrc_desc_pool_vaddr; 474 475 GEM_BUG_ON(index >= GUC_MAX_LRC_DESCRIPTORS); 476 477 return &base[index]; 478 } 479 480 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id) 481 { 482 struct intel_context *ce = xa_load(&guc->context_lookup, id); 483 484 GEM_BUG_ON(id >= GUC_MAX_LRC_DESCRIPTORS); 485 486 return ce; 487 } 488 489 static int guc_lrc_desc_pool_create(struct intel_guc *guc) 490 { 491 u32 size; 492 int ret; 493 494 size = PAGE_ALIGN(sizeof(struct guc_lrc_desc) * 495 GUC_MAX_LRC_DESCRIPTORS); 496 ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool, 497 (void **)&guc->lrc_desc_pool_vaddr); 498 if (ret) 499 return ret; 500 501 return 0; 502 } 503 504 static void guc_lrc_desc_pool_destroy(struct intel_guc *guc) 505 { 506 guc->lrc_desc_pool_vaddr = NULL; 507 i915_vma_unpin_and_release(&guc->lrc_desc_pool, I915_VMA_RELEASE_MAP); 508 } 509 510 static inline bool guc_submission_initialized(struct intel_guc *guc) 511 { 512 return !!guc->lrc_desc_pool_vaddr; 513 } 514 515 static inline void reset_lrc_desc(struct intel_guc *guc, u32 id) 516 { 517 if (likely(guc_submission_initialized(guc))) { 518 struct guc_lrc_desc *desc = __get_lrc_desc(guc, id); 519 unsigned long flags; 520 521 memset(desc, 0, sizeof(*desc)); 522 523 /* 524 * xarray API doesn't have xa_erase_irqsave wrapper, so calling 525 * the lower level functions directly. 526 */ 527 xa_lock_irqsave(&guc->context_lookup, flags); 528 __xa_erase(&guc->context_lookup, id); 529 xa_unlock_irqrestore(&guc->context_lookup, flags); 530 } 531 } 532 533 static inline bool lrc_desc_registered(struct intel_guc *guc, u32 id) 534 { 535 return __get_context(guc, id); 536 } 537 538 static inline void set_lrc_desc_registered(struct intel_guc *guc, u32 id, 539 struct intel_context *ce) 540 { 541 unsigned long flags; 542 543 /* 544 * xarray API doesn't have xa_save_irqsave wrapper, so calling the 545 * lower level functions directly. 546 */ 547 xa_lock_irqsave(&guc->context_lookup, flags); 548 __xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC); 549 xa_unlock_irqrestore(&guc->context_lookup, flags); 550 } 551 552 static void decr_outstanding_submission_g2h(struct intel_guc *guc) 553 { 554 if (atomic_dec_and_test(&guc->outstanding_submission_g2h)) 555 wake_up_all(&guc->ct.wq); 556 } 557 558 static int guc_submission_send_busy_loop(struct intel_guc *guc, 559 const u32 *action, 560 u32 len, 561 u32 g2h_len_dw, 562 bool loop) 563 { 564 /* 565 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0), 566 * so we don't handle the case where we don't get a reply because we 567 * aborted the send due to the channel being busy. 568 */ 569 GEM_BUG_ON(g2h_len_dw && !loop); 570 571 if (g2h_len_dw) 572 atomic_inc(&guc->outstanding_submission_g2h); 573 574 return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop); 575 } 576 577 int intel_guc_wait_for_pending_msg(struct intel_guc *guc, 578 atomic_t *wait_var, 579 bool interruptible, 580 long timeout) 581 { 582 const int state = interruptible ? 583 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 584 DEFINE_WAIT(wait); 585 586 might_sleep(); 587 GEM_BUG_ON(timeout < 0); 588 589 if (!atomic_read(wait_var)) 590 return 0; 591 592 if (!timeout) 593 return -ETIME; 594 595 for (;;) { 596 prepare_to_wait(&guc->ct.wq, &wait, state); 597 598 if (!atomic_read(wait_var)) 599 break; 600 601 if (signal_pending_state(state, current)) { 602 timeout = -EINTR; 603 break; 604 } 605 606 if (!timeout) { 607 timeout = -ETIME; 608 break; 609 } 610 611 timeout = io_schedule_timeout(timeout); 612 } 613 finish_wait(&guc->ct.wq, &wait); 614 615 return (timeout < 0) ? timeout : 0; 616 } 617 618 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout) 619 { 620 if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc)) 621 return 0; 622 623 return intel_guc_wait_for_pending_msg(guc, 624 &guc->outstanding_submission_g2h, 625 true, timeout); 626 } 627 628 static int guc_lrc_desc_pin(struct intel_context *ce, bool loop); 629 630 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq) 631 { 632 int err = 0; 633 struct intel_context *ce = request_to_scheduling_context(rq); 634 u32 action[3]; 635 int len = 0; 636 u32 g2h_len_dw = 0; 637 bool enabled; 638 639 lockdep_assert_held(&rq->engine->sched_engine->lock); 640 641 /* 642 * Corner case where requests were sitting in the priority list or a 643 * request resubmitted after the context was banned. 644 */ 645 if (unlikely(intel_context_is_banned(ce))) { 646 i915_request_put(i915_request_mark_eio(rq)); 647 intel_engine_signal_breadcrumbs(ce->engine); 648 return 0; 649 } 650 651 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); 652 GEM_BUG_ON(context_guc_id_invalid(ce)); 653 654 spin_lock(&ce->guc_state.lock); 655 656 /* 657 * The request / context will be run on the hardware when scheduling 658 * gets enabled in the unblock. For multi-lrc we still submit the 659 * context to move the LRC tails. 660 */ 661 if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce))) 662 goto out; 663 664 enabled = context_enabled(ce) || context_blocked(ce); 665 666 if (!enabled) { 667 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET; 668 action[len++] = ce->guc_id.id; 669 action[len++] = GUC_CONTEXT_ENABLE; 670 set_context_pending_enable(ce); 671 intel_context_get(ce); 672 g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET; 673 } else { 674 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT; 675 action[len++] = ce->guc_id.id; 676 } 677 678 err = intel_guc_send_nb(guc, action, len, g2h_len_dw); 679 if (!enabled && !err) { 680 trace_intel_context_sched_enable(ce); 681 atomic_inc(&guc->outstanding_submission_g2h); 682 set_context_enabled(ce); 683 684 /* 685 * Without multi-lrc KMD does the submission step (moving the 686 * lrc tail) so enabling scheduling is sufficient to submit the 687 * context. This isn't the case in multi-lrc submission as the 688 * GuC needs to move the tails, hence the need for another H2G 689 * to submit a multi-lrc context after enabling scheduling. 690 */ 691 if (intel_context_is_parent(ce)) { 692 action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT; 693 err = intel_guc_send_nb(guc, action, len - 1, 0); 694 } 695 } else if (!enabled) { 696 clr_context_pending_enable(ce); 697 intel_context_put(ce); 698 } 699 if (likely(!err)) 700 trace_i915_request_guc_submit(rq); 701 702 out: 703 spin_unlock(&ce->guc_state.lock); 704 return err; 705 } 706 707 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq) 708 { 709 int ret = __guc_add_request(guc, rq); 710 711 if (unlikely(ret == -EBUSY)) { 712 guc->stalled_request = rq; 713 guc->submission_stall_reason = STALL_ADD_REQUEST; 714 } 715 716 return ret; 717 } 718 719 static inline void guc_set_lrc_tail(struct i915_request *rq) 720 { 721 rq->context->lrc_reg_state[CTX_RING_TAIL] = 722 intel_ring_set_tail(rq->ring, rq->tail); 723 } 724 725 static inline int rq_prio(const struct i915_request *rq) 726 { 727 return rq->sched.attr.priority; 728 } 729 730 static bool is_multi_lrc_rq(struct i915_request *rq) 731 { 732 return intel_context_is_parallel(rq->context); 733 } 734 735 static bool can_merge_rq(struct i915_request *rq, 736 struct i915_request *last) 737 { 738 return request_to_scheduling_context(rq) == 739 request_to_scheduling_context(last); 740 } 741 742 static u32 wq_space_until_wrap(struct intel_context *ce) 743 { 744 return (WQ_SIZE - ce->parallel.guc.wqi_tail); 745 } 746 747 static void write_wqi(struct guc_process_desc *desc, 748 struct intel_context *ce, 749 u32 wqi_size) 750 { 751 BUILD_BUG_ON(!is_power_of_2(WQ_SIZE)); 752 753 /* 754 * Ensure WQI are visible before updating tail 755 */ 756 intel_guc_write_barrier(ce_to_guc(ce)); 757 758 ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) & 759 (WQ_SIZE - 1); 760 WRITE_ONCE(desc->tail, ce->parallel.guc.wqi_tail); 761 } 762 763 static int guc_wq_noop_append(struct intel_context *ce) 764 { 765 struct guc_process_desc *desc = __get_process_desc(ce); 766 u32 *wqi = get_wq_pointer(desc, ce, wq_space_until_wrap(ce)); 767 u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1; 768 769 if (!wqi) 770 return -EBUSY; 771 772 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); 773 774 *wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) | 775 FIELD_PREP(WQ_LEN_MASK, len_dw); 776 ce->parallel.guc.wqi_tail = 0; 777 778 return 0; 779 } 780 781 static int __guc_wq_item_append(struct i915_request *rq) 782 { 783 struct intel_context *ce = request_to_scheduling_context(rq); 784 struct intel_context *child; 785 struct guc_process_desc *desc = __get_process_desc(ce); 786 unsigned int wqi_size = (ce->parallel.number_children + 4) * 787 sizeof(u32); 788 u32 *wqi; 789 u32 len_dw = (wqi_size / sizeof(u32)) - 1; 790 int ret; 791 792 /* Ensure context is in correct state updating work queue */ 793 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); 794 GEM_BUG_ON(context_guc_id_invalid(ce)); 795 GEM_BUG_ON(context_wait_for_deregister_to_register(ce)); 796 GEM_BUG_ON(!lrc_desc_registered(ce_to_guc(ce), ce->guc_id.id)); 797 798 /* Insert NOOP if this work queue item will wrap the tail pointer. */ 799 if (wqi_size > wq_space_until_wrap(ce)) { 800 ret = guc_wq_noop_append(ce); 801 if (ret) 802 return ret; 803 } 804 805 wqi = get_wq_pointer(desc, ce, wqi_size); 806 if (!wqi) 807 return -EBUSY; 808 809 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); 810 811 *wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) | 812 FIELD_PREP(WQ_LEN_MASK, len_dw); 813 *wqi++ = ce->lrc.lrca; 814 *wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) | 815 FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64)); 816 *wqi++ = 0; /* fence_id */ 817 for_each_child(ce, child) 818 *wqi++ = child->ring->tail / sizeof(u64); 819 820 write_wqi(desc, ce, wqi_size); 821 822 return 0; 823 } 824 825 static int guc_wq_item_append(struct intel_guc *guc, 826 struct i915_request *rq) 827 { 828 struct intel_context *ce = request_to_scheduling_context(rq); 829 int ret = 0; 830 831 if (likely(!intel_context_is_banned(ce))) { 832 ret = __guc_wq_item_append(rq); 833 834 if (unlikely(ret == -EBUSY)) { 835 guc->stalled_request = rq; 836 guc->submission_stall_reason = STALL_MOVE_LRC_TAIL; 837 } 838 } 839 840 return ret; 841 } 842 843 static bool multi_lrc_submit(struct i915_request *rq) 844 { 845 struct intel_context *ce = request_to_scheduling_context(rq); 846 847 intel_ring_set_tail(rq->ring, rq->tail); 848 849 /* 850 * We expect the front end (execbuf IOCTL) to set this flag on the last 851 * request generated from a multi-BB submission. This indicates to the 852 * backend (GuC interface) that we should submit this context thus 853 * submitting all the requests generated in parallel. 854 */ 855 return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) || 856 intel_context_is_banned(ce); 857 } 858 859 static int guc_dequeue_one_context(struct intel_guc *guc) 860 { 861 struct i915_sched_engine * const sched_engine = guc->sched_engine; 862 struct i915_request *last = NULL; 863 bool submit = false; 864 struct rb_node *rb; 865 int ret; 866 867 lockdep_assert_held(&sched_engine->lock); 868 869 if (guc->stalled_request) { 870 submit = true; 871 last = guc->stalled_request; 872 873 switch (guc->submission_stall_reason) { 874 case STALL_REGISTER_CONTEXT: 875 goto register_context; 876 case STALL_MOVE_LRC_TAIL: 877 goto move_lrc_tail; 878 case STALL_ADD_REQUEST: 879 goto add_request; 880 default: 881 MISSING_CASE(guc->submission_stall_reason); 882 } 883 } 884 885 while ((rb = rb_first_cached(&sched_engine->queue))) { 886 struct i915_priolist *p = to_priolist(rb); 887 struct i915_request *rq, *rn; 888 889 priolist_for_each_request_consume(rq, rn, p) { 890 if (last && !can_merge_rq(rq, last)) 891 goto register_context; 892 893 list_del_init(&rq->sched.link); 894 895 __i915_request_submit(rq); 896 897 trace_i915_request_in(rq, 0); 898 last = rq; 899 900 if (is_multi_lrc_rq(rq)) { 901 /* 902 * We need to coalesce all multi-lrc requests in 903 * a relationship into a single H2G. We are 904 * guaranteed that all of these requests will be 905 * submitted sequentially. 906 */ 907 if (multi_lrc_submit(rq)) { 908 submit = true; 909 goto register_context; 910 } 911 } else { 912 submit = true; 913 } 914 } 915 916 rb_erase_cached(&p->node, &sched_engine->queue); 917 i915_priolist_free(p); 918 } 919 920 register_context: 921 if (submit) { 922 struct intel_context *ce = request_to_scheduling_context(last); 923 924 if (unlikely(!lrc_desc_registered(guc, ce->guc_id.id) && 925 !intel_context_is_banned(ce))) { 926 ret = guc_lrc_desc_pin(ce, false); 927 if (unlikely(ret == -EPIPE)) { 928 goto deadlk; 929 } else if (ret == -EBUSY) { 930 guc->stalled_request = last; 931 guc->submission_stall_reason = 932 STALL_REGISTER_CONTEXT; 933 goto schedule_tasklet; 934 } else if (ret != 0) { 935 GEM_WARN_ON(ret); /* Unexpected */ 936 goto deadlk; 937 } 938 } 939 940 move_lrc_tail: 941 if (is_multi_lrc_rq(last)) { 942 ret = guc_wq_item_append(guc, last); 943 if (ret == -EBUSY) { 944 goto schedule_tasklet; 945 } else if (ret != 0) { 946 GEM_WARN_ON(ret); /* Unexpected */ 947 goto deadlk; 948 } 949 } else { 950 guc_set_lrc_tail(last); 951 } 952 953 add_request: 954 ret = guc_add_request(guc, last); 955 if (unlikely(ret == -EPIPE)) { 956 goto deadlk; 957 } else if (ret == -EBUSY) { 958 goto schedule_tasklet; 959 } else if (ret != 0) { 960 GEM_WARN_ON(ret); /* Unexpected */ 961 goto deadlk; 962 } 963 } 964 965 guc->stalled_request = NULL; 966 guc->submission_stall_reason = STALL_NONE; 967 return submit; 968 969 deadlk: 970 sched_engine->tasklet.callback = NULL; 971 tasklet_disable_nosync(&sched_engine->tasklet); 972 return false; 973 974 schedule_tasklet: 975 tasklet_schedule(&sched_engine->tasklet); 976 return false; 977 } 978 979 static void guc_submission_tasklet(struct tasklet_struct *t) 980 { 981 struct i915_sched_engine *sched_engine = 982 from_tasklet(sched_engine, t, tasklet); 983 unsigned long flags; 984 bool loop; 985 986 spin_lock_irqsave(&sched_engine->lock, flags); 987 988 do { 989 loop = guc_dequeue_one_context(sched_engine->private_data); 990 } while (loop); 991 992 i915_sched_engine_reset_on_empty(sched_engine); 993 994 spin_unlock_irqrestore(&sched_engine->lock, flags); 995 } 996 997 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir) 998 { 999 if (iir & GT_RENDER_USER_INTERRUPT) 1000 intel_engine_signal_breadcrumbs(engine); 1001 } 1002 1003 static void __guc_context_destroy(struct intel_context *ce); 1004 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce); 1005 static void guc_signal_context_fence(struct intel_context *ce); 1006 static void guc_cancel_context_requests(struct intel_context *ce); 1007 static void guc_blocked_fence_complete(struct intel_context *ce); 1008 1009 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc) 1010 { 1011 struct intel_context *ce; 1012 unsigned long index, flags; 1013 bool pending_disable, pending_enable, deregister, destroyed, banned; 1014 1015 xa_lock_irqsave(&guc->context_lookup, flags); 1016 xa_for_each(&guc->context_lookup, index, ce) { 1017 /* 1018 * Corner case where the ref count on the object is zero but and 1019 * deregister G2H was lost. In this case we don't touch the ref 1020 * count and finish the destroy of the context. 1021 */ 1022 bool do_put = kref_get_unless_zero(&ce->ref); 1023 1024 xa_unlock(&guc->context_lookup); 1025 1026 spin_lock(&ce->guc_state.lock); 1027 1028 /* 1029 * Once we are at this point submission_disabled() is guaranteed 1030 * to be visible to all callers who set the below flags (see above 1031 * flush and flushes in reset_prepare). If submission_disabled() 1032 * is set, the caller shouldn't set these flags. 1033 */ 1034 1035 destroyed = context_destroyed(ce); 1036 pending_enable = context_pending_enable(ce); 1037 pending_disable = context_pending_disable(ce); 1038 deregister = context_wait_for_deregister_to_register(ce); 1039 banned = context_banned(ce); 1040 init_sched_state(ce); 1041 1042 spin_unlock(&ce->guc_state.lock); 1043 1044 if (pending_enable || destroyed || deregister) { 1045 decr_outstanding_submission_g2h(guc); 1046 if (deregister) 1047 guc_signal_context_fence(ce); 1048 if (destroyed) { 1049 intel_gt_pm_put_async(guc_to_gt(guc)); 1050 release_guc_id(guc, ce); 1051 __guc_context_destroy(ce); 1052 } 1053 if (pending_enable || deregister) 1054 intel_context_put(ce); 1055 } 1056 1057 /* Not mutualy exclusive with above if statement. */ 1058 if (pending_disable) { 1059 guc_signal_context_fence(ce); 1060 if (banned) { 1061 guc_cancel_context_requests(ce); 1062 intel_engine_signal_breadcrumbs(ce->engine); 1063 } 1064 intel_context_sched_disable_unpin(ce); 1065 decr_outstanding_submission_g2h(guc); 1066 1067 spin_lock(&ce->guc_state.lock); 1068 guc_blocked_fence_complete(ce); 1069 spin_unlock(&ce->guc_state.lock); 1070 1071 intel_context_put(ce); 1072 } 1073 1074 if (do_put) 1075 intel_context_put(ce); 1076 xa_lock(&guc->context_lookup); 1077 } 1078 xa_unlock_irqrestore(&guc->context_lookup, flags); 1079 } 1080 1081 /* 1082 * GuC stores busyness stats for each engine at context in/out boundaries. A 1083 * context 'in' logs execution start time, 'out' adds in -> out delta to total. 1084 * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with 1085 * GuC. 1086 * 1087 * __i915_pmu_event_read samples engine busyness. When sampling, if context id 1088 * is valid (!= ~0) and start is non-zero, the engine is considered to be 1089 * active. For an active engine total busyness = total + (now - start), where 1090 * 'now' is the time at which the busyness is sampled. For inactive engine, 1091 * total busyness = total. 1092 * 1093 * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain. 1094 * 1095 * The start and total values provided by GuC are 32 bits and wrap around in a 1096 * few minutes. Since perf pmu provides busyness as 64 bit monotonically 1097 * increasing ns values, there is a need for this implementation to account for 1098 * overflows and extend the GuC provided values to 64 bits before returning 1099 * busyness to the user. In order to do that, a worker runs periodically at 1100 * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in 1101 * 27 seconds for a gt clock frequency of 19.2 MHz). 1102 */ 1103 1104 #define WRAP_TIME_CLKS U32_MAX 1105 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3) 1106 1107 static void 1108 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start) 1109 { 1110 u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); 1111 u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp); 1112 1113 if (new_start == lower_32_bits(*prev_start)) 1114 return; 1115 1116 if (new_start < gt_stamp_last && 1117 (new_start - gt_stamp_last) <= POLL_TIME_CLKS) 1118 gt_stamp_hi++; 1119 1120 if (new_start > gt_stamp_last && 1121 (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi) 1122 gt_stamp_hi--; 1123 1124 *prev_start = ((u64)gt_stamp_hi << 32) | new_start; 1125 } 1126 1127 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine) 1128 { 1129 struct guc_engine_usage_record *rec = intel_guc_engine_usage(engine); 1130 struct intel_engine_guc_stats *stats = &engine->stats.guc; 1131 struct intel_guc *guc = &engine->gt->uc.guc; 1132 u32 last_switch = rec->last_switch_in_stamp; 1133 u32 ctx_id = rec->current_context_index; 1134 u32 total = rec->total_runtime; 1135 1136 lockdep_assert_held(&guc->timestamp.lock); 1137 1138 stats->running = ctx_id != ~0U && last_switch; 1139 if (stats->running) 1140 __extend_last_switch(guc, &stats->start_gt_clk, last_switch); 1141 1142 /* 1143 * Instead of adjusting the total for overflow, just add the 1144 * difference from previous sample stats->total_gt_clks 1145 */ 1146 if (total && total != ~0U) { 1147 stats->total_gt_clks += (u32)(total - stats->prev_total); 1148 stats->prev_total = total; 1149 } 1150 } 1151 1152 static void guc_update_pm_timestamp(struct intel_guc *guc, 1153 struct intel_engine_cs *engine, 1154 ktime_t *now) 1155 { 1156 u32 gt_stamp_now, gt_stamp_hi; 1157 1158 lockdep_assert_held(&guc->timestamp.lock); 1159 1160 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); 1161 gt_stamp_now = intel_uncore_read(engine->uncore, 1162 RING_TIMESTAMP(engine->mmio_base)); 1163 *now = ktime_get(); 1164 1165 if (gt_stamp_now < lower_32_bits(guc->timestamp.gt_stamp)) 1166 gt_stamp_hi++; 1167 1168 guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_now; 1169 } 1170 1171 /* 1172 * Unlike the execlist mode of submission total and active times are in terms of 1173 * gt clocks. The *now parameter is retained to return the cpu time at which the 1174 * busyness was sampled. 1175 */ 1176 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now) 1177 { 1178 struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc; 1179 struct i915_gpu_error *gpu_error = &engine->i915->gpu_error; 1180 struct intel_gt *gt = engine->gt; 1181 struct intel_guc *guc = >->uc.guc; 1182 u64 total, gt_stamp_saved; 1183 unsigned long flags; 1184 u32 reset_count; 1185 bool in_reset; 1186 1187 spin_lock_irqsave(&guc->timestamp.lock, flags); 1188 1189 /* 1190 * If a reset happened, we risk reading partially updated engine 1191 * busyness from GuC, so we just use the driver stored copy of busyness. 1192 * Synchronize with gt reset using reset_count and the 1193 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count 1194 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is 1195 * usable by checking the flag afterwards. 1196 */ 1197 reset_count = i915_reset_count(gpu_error); 1198 in_reset = test_bit(I915_RESET_BACKOFF, >->reset.flags); 1199 1200 *now = ktime_get(); 1201 1202 /* 1203 * The active busyness depends on start_gt_clk and gt_stamp. 1204 * gt_stamp is updated by i915 only when gt is awake and the 1205 * start_gt_clk is derived from GuC state. To get a consistent 1206 * view of activity, we query the GuC state only if gt is awake. 1207 */ 1208 if (!in_reset && intel_gt_pm_get_if_awake(gt)) { 1209 stats_saved = *stats; 1210 gt_stamp_saved = guc->timestamp.gt_stamp; 1211 guc_update_engine_gt_clks(engine); 1212 guc_update_pm_timestamp(guc, engine, now); 1213 intel_gt_pm_put_async(gt); 1214 if (i915_reset_count(gpu_error) != reset_count) { 1215 *stats = stats_saved; 1216 guc->timestamp.gt_stamp = gt_stamp_saved; 1217 } 1218 } 1219 1220 total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks); 1221 if (stats->running) { 1222 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk; 1223 1224 total += intel_gt_clock_interval_to_ns(gt, clk); 1225 } 1226 1227 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1228 1229 return ns_to_ktime(total); 1230 } 1231 1232 static void __reset_guc_busyness_stats(struct intel_guc *guc) 1233 { 1234 struct intel_gt *gt = guc_to_gt(guc); 1235 struct intel_engine_cs *engine; 1236 enum intel_engine_id id; 1237 unsigned long flags; 1238 ktime_t unused; 1239 1240 cancel_delayed_work_sync(&guc->timestamp.work); 1241 1242 spin_lock_irqsave(&guc->timestamp.lock, flags); 1243 1244 for_each_engine(engine, gt, id) { 1245 guc_update_pm_timestamp(guc, engine, &unused); 1246 guc_update_engine_gt_clks(engine); 1247 engine->stats.guc.prev_total = 0; 1248 } 1249 1250 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1251 } 1252 1253 static void __update_guc_busyness_stats(struct intel_guc *guc) 1254 { 1255 struct intel_gt *gt = guc_to_gt(guc); 1256 struct intel_engine_cs *engine; 1257 enum intel_engine_id id; 1258 unsigned long flags; 1259 ktime_t unused; 1260 1261 spin_lock_irqsave(&guc->timestamp.lock, flags); 1262 for_each_engine(engine, gt, id) { 1263 guc_update_pm_timestamp(guc, engine, &unused); 1264 guc_update_engine_gt_clks(engine); 1265 } 1266 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1267 } 1268 1269 static void guc_timestamp_ping(struct work_struct *wrk) 1270 { 1271 struct intel_guc *guc = container_of(wrk, typeof(*guc), 1272 timestamp.work.work); 1273 struct intel_uc *uc = container_of(guc, typeof(*uc), guc); 1274 struct intel_gt *gt = guc_to_gt(guc); 1275 intel_wakeref_t wakeref; 1276 int srcu, ret; 1277 1278 /* 1279 * Synchronize with gt reset to make sure the worker does not 1280 * corrupt the engine/guc stats. 1281 */ 1282 ret = intel_gt_reset_trylock(gt, &srcu); 1283 if (ret) 1284 return; 1285 1286 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) 1287 __update_guc_busyness_stats(guc); 1288 1289 intel_gt_reset_unlock(gt, srcu); 1290 1291 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, 1292 guc->timestamp.ping_delay); 1293 } 1294 1295 static int guc_action_enable_usage_stats(struct intel_guc *guc) 1296 { 1297 u32 offset = intel_guc_engine_usage_offset(guc); 1298 u32 action[] = { 1299 INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF, 1300 offset, 1301 0, 1302 }; 1303 1304 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 1305 } 1306 1307 static void guc_init_engine_stats(struct intel_guc *guc) 1308 { 1309 struct intel_gt *gt = guc_to_gt(guc); 1310 intel_wakeref_t wakeref; 1311 1312 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, 1313 guc->timestamp.ping_delay); 1314 1315 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) { 1316 int ret = guc_action_enable_usage_stats(guc); 1317 1318 if (ret) 1319 drm_err(>->i915->drm, 1320 "Failed to enable usage stats: %d!\n", ret); 1321 } 1322 } 1323 1324 void intel_guc_busyness_park(struct intel_gt *gt) 1325 { 1326 struct intel_guc *guc = >->uc.guc; 1327 1328 if (!guc_submission_initialized(guc)) 1329 return; 1330 1331 cancel_delayed_work(&guc->timestamp.work); 1332 __update_guc_busyness_stats(guc); 1333 } 1334 1335 void intel_guc_busyness_unpark(struct intel_gt *gt) 1336 { 1337 struct intel_guc *guc = >->uc.guc; 1338 1339 if (!guc_submission_initialized(guc)) 1340 return; 1341 1342 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, 1343 guc->timestamp.ping_delay); 1344 } 1345 1346 static inline bool 1347 submission_disabled(struct intel_guc *guc) 1348 { 1349 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1350 1351 return unlikely(!sched_engine || 1352 !__tasklet_is_enabled(&sched_engine->tasklet)); 1353 } 1354 1355 static void disable_submission(struct intel_guc *guc) 1356 { 1357 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1358 1359 if (__tasklet_is_enabled(&sched_engine->tasklet)) { 1360 GEM_BUG_ON(!guc->ct.enabled); 1361 __tasklet_disable_sync_once(&sched_engine->tasklet); 1362 sched_engine->tasklet.callback = NULL; 1363 } 1364 } 1365 1366 static void enable_submission(struct intel_guc *guc) 1367 { 1368 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1369 unsigned long flags; 1370 1371 spin_lock_irqsave(&guc->sched_engine->lock, flags); 1372 sched_engine->tasklet.callback = guc_submission_tasklet; 1373 wmb(); /* Make sure callback visible */ 1374 if (!__tasklet_is_enabled(&sched_engine->tasklet) && 1375 __tasklet_enable(&sched_engine->tasklet)) { 1376 GEM_BUG_ON(!guc->ct.enabled); 1377 1378 /* And kick in case we missed a new request submission. */ 1379 tasklet_hi_schedule(&sched_engine->tasklet); 1380 } 1381 spin_unlock_irqrestore(&guc->sched_engine->lock, flags); 1382 } 1383 1384 static void guc_flush_submissions(struct intel_guc *guc) 1385 { 1386 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1387 unsigned long flags; 1388 1389 spin_lock_irqsave(&sched_engine->lock, flags); 1390 spin_unlock_irqrestore(&sched_engine->lock, flags); 1391 } 1392 1393 static void guc_flush_destroyed_contexts(struct intel_guc *guc); 1394 1395 void intel_guc_submission_reset_prepare(struct intel_guc *guc) 1396 { 1397 int i; 1398 1399 if (unlikely(!guc_submission_initialized(guc))) { 1400 /* Reset called during driver load? GuC not yet initialised! */ 1401 return; 1402 } 1403 1404 intel_gt_park_heartbeats(guc_to_gt(guc)); 1405 disable_submission(guc); 1406 guc->interrupts.disable(guc); 1407 __reset_guc_busyness_stats(guc); 1408 1409 /* Flush IRQ handler */ 1410 spin_lock_irq(&guc_to_gt(guc)->irq_lock); 1411 spin_unlock_irq(&guc_to_gt(guc)->irq_lock); 1412 1413 guc_flush_submissions(guc); 1414 guc_flush_destroyed_contexts(guc); 1415 1416 /* 1417 * Handle any outstanding G2Hs before reset. Call IRQ handler directly 1418 * each pass as interrupt have been disabled. We always scrub for 1419 * outstanding G2H as it is possible for outstanding_submission_g2h to 1420 * be incremented after the context state update. 1421 */ 1422 for (i = 0; i < 4 && atomic_read(&guc->outstanding_submission_g2h); ++i) { 1423 intel_guc_to_host_event_handler(guc); 1424 #define wait_for_reset(guc, wait_var) \ 1425 intel_guc_wait_for_pending_msg(guc, wait_var, false, (HZ / 20)) 1426 do { 1427 wait_for_reset(guc, &guc->outstanding_submission_g2h); 1428 } while (!list_empty(&guc->ct.requests.incoming)); 1429 } 1430 1431 scrub_guc_desc_for_outstanding_g2h(guc); 1432 } 1433 1434 static struct intel_engine_cs * 1435 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling) 1436 { 1437 struct intel_engine_cs *engine; 1438 intel_engine_mask_t tmp, mask = ve->mask; 1439 unsigned int num_siblings = 0; 1440 1441 for_each_engine_masked(engine, ve->gt, mask, tmp) 1442 if (num_siblings++ == sibling) 1443 return engine; 1444 1445 return NULL; 1446 } 1447 1448 static inline struct intel_engine_cs * 1449 __context_to_physical_engine(struct intel_context *ce) 1450 { 1451 struct intel_engine_cs *engine = ce->engine; 1452 1453 if (intel_engine_is_virtual(engine)) 1454 engine = guc_virtual_get_sibling(engine, 0); 1455 1456 return engine; 1457 } 1458 1459 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub) 1460 { 1461 struct intel_engine_cs *engine = __context_to_physical_engine(ce); 1462 1463 if (intel_context_is_banned(ce)) 1464 return; 1465 1466 GEM_BUG_ON(!intel_context_is_pinned(ce)); 1467 1468 /* 1469 * We want a simple context + ring to execute the breadcrumb update. 1470 * We cannot rely on the context being intact across the GPU hang, 1471 * so clear it and rebuild just what we need for the breadcrumb. 1472 * All pending requests for this context will be zapped, and any 1473 * future request will be after userspace has had the opportunity 1474 * to recreate its own state. 1475 */ 1476 if (scrub) 1477 lrc_init_regs(ce, engine, true); 1478 1479 /* Rerun the request; its payload has been neutered (if guilty). */ 1480 lrc_update_regs(ce, engine, head); 1481 } 1482 1483 static void guc_reset_nop(struct intel_engine_cs *engine) 1484 { 1485 } 1486 1487 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled) 1488 { 1489 } 1490 1491 static void 1492 __unwind_incomplete_requests(struct intel_context *ce) 1493 { 1494 struct i915_request *rq, *rn; 1495 struct list_head *pl; 1496 int prio = I915_PRIORITY_INVALID; 1497 struct i915_sched_engine * const sched_engine = 1498 ce->engine->sched_engine; 1499 unsigned long flags; 1500 1501 spin_lock_irqsave(&sched_engine->lock, flags); 1502 spin_lock(&ce->guc_state.lock); 1503 list_for_each_entry_safe_reverse(rq, rn, 1504 &ce->guc_state.requests, 1505 sched.link) { 1506 if (i915_request_completed(rq)) 1507 continue; 1508 1509 list_del_init(&rq->sched.link); 1510 __i915_request_unsubmit(rq); 1511 1512 /* Push the request back into the queue for later resubmission. */ 1513 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID); 1514 if (rq_prio(rq) != prio) { 1515 prio = rq_prio(rq); 1516 pl = i915_sched_lookup_priolist(sched_engine, prio); 1517 } 1518 GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine)); 1519 1520 list_add(&rq->sched.link, pl); 1521 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 1522 } 1523 spin_unlock(&ce->guc_state.lock); 1524 spin_unlock_irqrestore(&sched_engine->lock, flags); 1525 } 1526 1527 static void __guc_reset_context(struct intel_context *ce, bool stalled) 1528 { 1529 bool local_stalled; 1530 struct i915_request *rq; 1531 unsigned long flags; 1532 u32 head; 1533 int i, number_children = ce->parallel.number_children; 1534 bool skip = false; 1535 struct intel_context *parent = ce; 1536 1537 GEM_BUG_ON(intel_context_is_child(ce)); 1538 1539 intel_context_get(ce); 1540 1541 /* 1542 * GuC will implicitly mark the context as non-schedulable when it sends 1543 * the reset notification. Make sure our state reflects this change. The 1544 * context will be marked enabled on resubmission. 1545 * 1546 * XXX: If the context is reset as a result of the request cancellation 1547 * this G2H is received after the schedule disable complete G2H which is 1548 * wrong as this creates a race between the request cancellation code 1549 * re-submitting the context and this G2H handler. This is a bug in the 1550 * GuC but can be worked around in the meantime but converting this to a 1551 * NOP if a pending enable is in flight as this indicates that a request 1552 * cancellation has occurred. 1553 */ 1554 spin_lock_irqsave(&ce->guc_state.lock, flags); 1555 if (likely(!context_pending_enable(ce))) 1556 clr_context_enabled(ce); 1557 else 1558 skip = true; 1559 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 1560 if (unlikely(skip)) 1561 goto out_put; 1562 1563 /* 1564 * For each context in the relationship find the hanging request 1565 * resetting each context / request as needed 1566 */ 1567 for (i = 0; i < number_children + 1; ++i) { 1568 if (!intel_context_is_pinned(ce)) 1569 goto next_context; 1570 1571 local_stalled = false; 1572 rq = intel_context_find_active_request(ce); 1573 if (!rq) { 1574 head = ce->ring->tail; 1575 goto out_replay; 1576 } 1577 1578 if (i915_request_started(rq)) 1579 local_stalled = true; 1580 1581 GEM_BUG_ON(i915_active_is_idle(&ce->active)); 1582 head = intel_ring_wrap(ce->ring, rq->head); 1583 1584 __i915_request_reset(rq, local_stalled && stalled); 1585 out_replay: 1586 guc_reset_state(ce, head, local_stalled && stalled); 1587 next_context: 1588 if (i != number_children) 1589 ce = list_next_entry(ce, parallel.child_link); 1590 } 1591 1592 __unwind_incomplete_requests(parent); 1593 out_put: 1594 intel_context_put(parent); 1595 } 1596 1597 void intel_guc_submission_reset(struct intel_guc *guc, bool stalled) 1598 { 1599 struct intel_context *ce; 1600 unsigned long index; 1601 unsigned long flags; 1602 1603 if (unlikely(!guc_submission_initialized(guc))) { 1604 /* Reset called during driver load? GuC not yet initialised! */ 1605 return; 1606 } 1607 1608 xa_lock_irqsave(&guc->context_lookup, flags); 1609 xa_for_each(&guc->context_lookup, index, ce) { 1610 if (!kref_get_unless_zero(&ce->ref)) 1611 continue; 1612 1613 xa_unlock(&guc->context_lookup); 1614 1615 if (intel_context_is_pinned(ce) && 1616 !intel_context_is_child(ce)) 1617 __guc_reset_context(ce, stalled); 1618 1619 intel_context_put(ce); 1620 1621 xa_lock(&guc->context_lookup); 1622 } 1623 xa_unlock_irqrestore(&guc->context_lookup, flags); 1624 1625 /* GuC is blown away, drop all references to contexts */ 1626 xa_destroy(&guc->context_lookup); 1627 } 1628 1629 static void guc_cancel_context_requests(struct intel_context *ce) 1630 { 1631 struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine; 1632 struct i915_request *rq; 1633 unsigned long flags; 1634 1635 /* Mark all executing requests as skipped. */ 1636 spin_lock_irqsave(&sched_engine->lock, flags); 1637 spin_lock(&ce->guc_state.lock); 1638 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) 1639 i915_request_put(i915_request_mark_eio(rq)); 1640 spin_unlock(&ce->guc_state.lock); 1641 spin_unlock_irqrestore(&sched_engine->lock, flags); 1642 } 1643 1644 static void 1645 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine) 1646 { 1647 struct i915_request *rq, *rn; 1648 struct rb_node *rb; 1649 unsigned long flags; 1650 1651 /* Can be called during boot if GuC fails to load */ 1652 if (!sched_engine) 1653 return; 1654 1655 /* 1656 * Before we call engine->cancel_requests(), we should have exclusive 1657 * access to the submission state. This is arranged for us by the 1658 * caller disabling the interrupt generation, the tasklet and other 1659 * threads that may then access the same state, giving us a free hand 1660 * to reset state. However, we still need to let lockdep be aware that 1661 * we know this state may be accessed in hardirq context, so we 1662 * disable the irq around this manipulation and we want to keep 1663 * the spinlock focused on its duties and not accidentally conflate 1664 * coverage to the submission's irq state. (Similarly, although we 1665 * shouldn't need to disable irq around the manipulation of the 1666 * submission's irq state, we also wish to remind ourselves that 1667 * it is irq state.) 1668 */ 1669 spin_lock_irqsave(&sched_engine->lock, flags); 1670 1671 /* Flush the queued requests to the timeline list (for retiring). */ 1672 while ((rb = rb_first_cached(&sched_engine->queue))) { 1673 struct i915_priolist *p = to_priolist(rb); 1674 1675 priolist_for_each_request_consume(rq, rn, p) { 1676 list_del_init(&rq->sched.link); 1677 1678 __i915_request_submit(rq); 1679 1680 i915_request_put(i915_request_mark_eio(rq)); 1681 } 1682 1683 rb_erase_cached(&p->node, &sched_engine->queue); 1684 i915_priolist_free(p); 1685 } 1686 1687 /* Remaining _unready_ requests will be nop'ed when submitted */ 1688 1689 sched_engine->queue_priority_hint = INT_MIN; 1690 sched_engine->queue = RB_ROOT_CACHED; 1691 1692 spin_unlock_irqrestore(&sched_engine->lock, flags); 1693 } 1694 1695 void intel_guc_submission_cancel_requests(struct intel_guc *guc) 1696 { 1697 struct intel_context *ce; 1698 unsigned long index; 1699 unsigned long flags; 1700 1701 xa_lock_irqsave(&guc->context_lookup, flags); 1702 xa_for_each(&guc->context_lookup, index, ce) { 1703 if (!kref_get_unless_zero(&ce->ref)) 1704 continue; 1705 1706 xa_unlock(&guc->context_lookup); 1707 1708 if (intel_context_is_pinned(ce) && 1709 !intel_context_is_child(ce)) 1710 guc_cancel_context_requests(ce); 1711 1712 intel_context_put(ce); 1713 1714 xa_lock(&guc->context_lookup); 1715 } 1716 xa_unlock_irqrestore(&guc->context_lookup, flags); 1717 1718 guc_cancel_sched_engine_requests(guc->sched_engine); 1719 1720 /* GuC is blown away, drop all references to contexts */ 1721 xa_destroy(&guc->context_lookup); 1722 } 1723 1724 void intel_guc_submission_reset_finish(struct intel_guc *guc) 1725 { 1726 /* Reset called during driver load or during wedge? */ 1727 if (unlikely(!guc_submission_initialized(guc) || 1728 test_bit(I915_WEDGED, &guc_to_gt(guc)->reset.flags))) { 1729 return; 1730 } 1731 1732 /* 1733 * Technically possible for either of these values to be non-zero here, 1734 * but very unlikely + harmless. Regardless let's add a warn so we can 1735 * see in CI if this happens frequently / a precursor to taking down the 1736 * machine. 1737 */ 1738 GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h)); 1739 atomic_set(&guc->outstanding_submission_g2h, 0); 1740 1741 intel_guc_global_policies_update(guc); 1742 enable_submission(guc); 1743 intel_gt_unpark_heartbeats(guc_to_gt(guc)); 1744 } 1745 1746 static void destroyed_worker_func(struct work_struct *w); 1747 1748 /* 1749 * Set up the memory resources to be shared with the GuC (via the GGTT) 1750 * at firmware loading time. 1751 */ 1752 int intel_guc_submission_init(struct intel_guc *guc) 1753 { 1754 struct intel_gt *gt = guc_to_gt(guc); 1755 int ret; 1756 1757 if (guc->lrc_desc_pool) 1758 return 0; 1759 1760 ret = guc_lrc_desc_pool_create(guc); 1761 if (ret) 1762 return ret; 1763 /* 1764 * Keep static analysers happy, let them know that we allocated the 1765 * vma after testing that it didn't exist earlier. 1766 */ 1767 GEM_BUG_ON(!guc->lrc_desc_pool); 1768 1769 xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ); 1770 1771 spin_lock_init(&guc->submission_state.lock); 1772 INIT_LIST_HEAD(&guc->submission_state.guc_id_list); 1773 ida_init(&guc->submission_state.guc_ids); 1774 INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts); 1775 INIT_WORK(&guc->submission_state.destroyed_worker, 1776 destroyed_worker_func); 1777 1778 guc->submission_state.guc_ids_bitmap = 1779 bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL); 1780 if (!guc->submission_state.guc_ids_bitmap) 1781 return -ENOMEM; 1782 1783 spin_lock_init(&guc->timestamp.lock); 1784 INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping); 1785 guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ; 1786 1787 return 0; 1788 } 1789 1790 void intel_guc_submission_fini(struct intel_guc *guc) 1791 { 1792 if (!guc->lrc_desc_pool) 1793 return; 1794 1795 guc_flush_destroyed_contexts(guc); 1796 guc_lrc_desc_pool_destroy(guc); 1797 i915_sched_engine_put(guc->sched_engine); 1798 bitmap_free(guc->submission_state.guc_ids_bitmap); 1799 } 1800 1801 static inline void queue_request(struct i915_sched_engine *sched_engine, 1802 struct i915_request *rq, 1803 int prio) 1804 { 1805 GEM_BUG_ON(!list_empty(&rq->sched.link)); 1806 list_add_tail(&rq->sched.link, 1807 i915_sched_lookup_priolist(sched_engine, prio)); 1808 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 1809 tasklet_hi_schedule(&sched_engine->tasklet); 1810 } 1811 1812 static int guc_bypass_tasklet_submit(struct intel_guc *guc, 1813 struct i915_request *rq) 1814 { 1815 int ret = 0; 1816 1817 __i915_request_submit(rq); 1818 1819 trace_i915_request_in(rq, 0); 1820 1821 if (is_multi_lrc_rq(rq)) { 1822 if (multi_lrc_submit(rq)) { 1823 ret = guc_wq_item_append(guc, rq); 1824 if (!ret) 1825 ret = guc_add_request(guc, rq); 1826 } 1827 } else { 1828 guc_set_lrc_tail(rq); 1829 ret = guc_add_request(guc, rq); 1830 } 1831 1832 if (unlikely(ret == -EPIPE)) 1833 disable_submission(guc); 1834 1835 return ret; 1836 } 1837 1838 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq) 1839 { 1840 struct i915_sched_engine *sched_engine = rq->engine->sched_engine; 1841 struct intel_context *ce = request_to_scheduling_context(rq); 1842 1843 return submission_disabled(guc) || guc->stalled_request || 1844 !i915_sched_engine_is_empty(sched_engine) || 1845 !lrc_desc_registered(guc, ce->guc_id.id); 1846 } 1847 1848 static void guc_submit_request(struct i915_request *rq) 1849 { 1850 struct i915_sched_engine *sched_engine = rq->engine->sched_engine; 1851 struct intel_guc *guc = &rq->engine->gt->uc.guc; 1852 unsigned long flags; 1853 1854 /* Will be called from irq-context when using foreign fences. */ 1855 spin_lock_irqsave(&sched_engine->lock, flags); 1856 1857 if (need_tasklet(guc, rq)) 1858 queue_request(sched_engine, rq, rq_prio(rq)); 1859 else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY) 1860 tasklet_hi_schedule(&sched_engine->tasklet); 1861 1862 spin_unlock_irqrestore(&sched_engine->lock, flags); 1863 } 1864 1865 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce) 1866 { 1867 int ret; 1868 1869 GEM_BUG_ON(intel_context_is_child(ce)); 1870 1871 if (intel_context_is_parent(ce)) 1872 ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap, 1873 NUMBER_MULTI_LRC_GUC_ID(guc), 1874 order_base_2(ce->parallel.number_children 1875 + 1)); 1876 else 1877 ret = ida_simple_get(&guc->submission_state.guc_ids, 1878 NUMBER_MULTI_LRC_GUC_ID(guc), 1879 guc->submission_state.num_guc_ids, 1880 GFP_KERNEL | __GFP_RETRY_MAYFAIL | 1881 __GFP_NOWARN); 1882 if (unlikely(ret < 0)) 1883 return ret; 1884 1885 ce->guc_id.id = ret; 1886 return 0; 1887 } 1888 1889 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce) 1890 { 1891 GEM_BUG_ON(intel_context_is_child(ce)); 1892 1893 if (!context_guc_id_invalid(ce)) { 1894 if (intel_context_is_parent(ce)) 1895 bitmap_release_region(guc->submission_state.guc_ids_bitmap, 1896 ce->guc_id.id, 1897 order_base_2(ce->parallel.number_children 1898 + 1)); 1899 else 1900 ida_simple_remove(&guc->submission_state.guc_ids, 1901 ce->guc_id.id); 1902 reset_lrc_desc(guc, ce->guc_id.id); 1903 set_context_guc_id_invalid(ce); 1904 } 1905 if (!list_empty(&ce->guc_id.link)) 1906 list_del_init(&ce->guc_id.link); 1907 } 1908 1909 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce) 1910 { 1911 unsigned long flags; 1912 1913 spin_lock_irqsave(&guc->submission_state.lock, flags); 1914 __release_guc_id(guc, ce); 1915 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 1916 } 1917 1918 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce) 1919 { 1920 struct intel_context *cn; 1921 1922 lockdep_assert_held(&guc->submission_state.lock); 1923 GEM_BUG_ON(intel_context_is_child(ce)); 1924 GEM_BUG_ON(intel_context_is_parent(ce)); 1925 1926 if (!list_empty(&guc->submission_state.guc_id_list)) { 1927 cn = list_first_entry(&guc->submission_state.guc_id_list, 1928 struct intel_context, 1929 guc_id.link); 1930 1931 GEM_BUG_ON(atomic_read(&cn->guc_id.ref)); 1932 GEM_BUG_ON(context_guc_id_invalid(cn)); 1933 GEM_BUG_ON(intel_context_is_child(cn)); 1934 GEM_BUG_ON(intel_context_is_parent(cn)); 1935 1936 list_del_init(&cn->guc_id.link); 1937 ce->guc_id.id = cn->guc_id.id; 1938 1939 spin_lock(&cn->guc_state.lock); 1940 clr_context_registered(cn); 1941 spin_unlock(&cn->guc_state.lock); 1942 1943 set_context_guc_id_invalid(cn); 1944 1945 #ifdef CONFIG_DRM_I915_SELFTEST 1946 guc->number_guc_id_stolen++; 1947 #endif 1948 1949 return 0; 1950 } else { 1951 return -EAGAIN; 1952 } 1953 } 1954 1955 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce) 1956 { 1957 int ret; 1958 1959 lockdep_assert_held(&guc->submission_state.lock); 1960 GEM_BUG_ON(intel_context_is_child(ce)); 1961 1962 ret = new_guc_id(guc, ce); 1963 if (unlikely(ret < 0)) { 1964 if (intel_context_is_parent(ce)) 1965 return -ENOSPC; 1966 1967 ret = steal_guc_id(guc, ce); 1968 if (ret < 0) 1969 return ret; 1970 } 1971 1972 if (intel_context_is_parent(ce)) { 1973 struct intel_context *child; 1974 int i = 1; 1975 1976 for_each_child(ce, child) 1977 child->guc_id.id = ce->guc_id.id + i++; 1978 } 1979 1980 return 0; 1981 } 1982 1983 #define PIN_GUC_ID_TRIES 4 1984 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce) 1985 { 1986 int ret = 0; 1987 unsigned long flags, tries = PIN_GUC_ID_TRIES; 1988 1989 GEM_BUG_ON(atomic_read(&ce->guc_id.ref)); 1990 1991 try_again: 1992 spin_lock_irqsave(&guc->submission_state.lock, flags); 1993 1994 might_lock(&ce->guc_state.lock); 1995 1996 if (context_guc_id_invalid(ce)) { 1997 ret = assign_guc_id(guc, ce); 1998 if (ret) 1999 goto out_unlock; 2000 ret = 1; /* Indidcates newly assigned guc_id */ 2001 } 2002 if (!list_empty(&ce->guc_id.link)) 2003 list_del_init(&ce->guc_id.link); 2004 atomic_inc(&ce->guc_id.ref); 2005 2006 out_unlock: 2007 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2008 2009 /* 2010 * -EAGAIN indicates no guc_id are available, let's retire any 2011 * outstanding requests to see if that frees up a guc_id. If the first 2012 * retire didn't help, insert a sleep with the timeslice duration before 2013 * attempting to retire more requests. Double the sleep period each 2014 * subsequent pass before finally giving up. The sleep period has max of 2015 * 100ms and minimum of 1ms. 2016 */ 2017 if (ret == -EAGAIN && --tries) { 2018 if (PIN_GUC_ID_TRIES - tries > 1) { 2019 unsigned int timeslice_shifted = 2020 ce->engine->props.timeslice_duration_ms << 2021 (PIN_GUC_ID_TRIES - tries - 2); 2022 unsigned int max = min_t(unsigned int, 100, 2023 timeslice_shifted); 2024 2025 msleep(max_t(unsigned int, max, 1)); 2026 } 2027 intel_gt_retire_requests(guc_to_gt(guc)); 2028 goto try_again; 2029 } 2030 2031 return ret; 2032 } 2033 2034 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce) 2035 { 2036 unsigned long flags; 2037 2038 GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0); 2039 GEM_BUG_ON(intel_context_is_child(ce)); 2040 2041 if (unlikely(context_guc_id_invalid(ce) || 2042 intel_context_is_parent(ce))) 2043 return; 2044 2045 spin_lock_irqsave(&guc->submission_state.lock, flags); 2046 if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) && 2047 !atomic_read(&ce->guc_id.ref)) 2048 list_add_tail(&ce->guc_id.link, 2049 &guc->submission_state.guc_id_list); 2050 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2051 } 2052 2053 static int __guc_action_register_multi_lrc(struct intel_guc *guc, 2054 struct intel_context *ce, 2055 u32 guc_id, 2056 u32 offset, 2057 bool loop) 2058 { 2059 struct intel_context *child; 2060 u32 action[4 + MAX_ENGINE_INSTANCE]; 2061 int len = 0; 2062 2063 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); 2064 2065 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 2066 action[len++] = guc_id; 2067 action[len++] = ce->parallel.number_children + 1; 2068 action[len++] = offset; 2069 for_each_child(ce, child) { 2070 offset += sizeof(struct guc_lrc_desc); 2071 action[len++] = offset; 2072 } 2073 2074 return guc_submission_send_busy_loop(guc, action, len, 0, loop); 2075 } 2076 2077 static int __guc_action_register_context(struct intel_guc *guc, 2078 u32 guc_id, 2079 u32 offset, 2080 bool loop) 2081 { 2082 u32 action[] = { 2083 INTEL_GUC_ACTION_REGISTER_CONTEXT, 2084 guc_id, 2085 offset, 2086 }; 2087 2088 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2089 0, loop); 2090 } 2091 2092 static int register_context(struct intel_context *ce, bool loop) 2093 { 2094 struct intel_guc *guc = ce_to_guc(ce); 2095 u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool) + 2096 ce->guc_id.id * sizeof(struct guc_lrc_desc); 2097 int ret; 2098 2099 GEM_BUG_ON(intel_context_is_child(ce)); 2100 trace_intel_context_register(ce); 2101 2102 if (intel_context_is_parent(ce)) 2103 ret = __guc_action_register_multi_lrc(guc, ce, ce->guc_id.id, 2104 offset, loop); 2105 else 2106 ret = __guc_action_register_context(guc, ce->guc_id.id, offset, 2107 loop); 2108 if (likely(!ret)) { 2109 unsigned long flags; 2110 2111 spin_lock_irqsave(&ce->guc_state.lock, flags); 2112 set_context_registered(ce); 2113 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2114 } 2115 2116 return ret; 2117 } 2118 2119 static int __guc_action_deregister_context(struct intel_guc *guc, 2120 u32 guc_id) 2121 { 2122 u32 action[] = { 2123 INTEL_GUC_ACTION_DEREGISTER_CONTEXT, 2124 guc_id, 2125 }; 2126 2127 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2128 G2H_LEN_DW_DEREGISTER_CONTEXT, 2129 true); 2130 } 2131 2132 static int deregister_context(struct intel_context *ce, u32 guc_id) 2133 { 2134 struct intel_guc *guc = ce_to_guc(ce); 2135 2136 GEM_BUG_ON(intel_context_is_child(ce)); 2137 trace_intel_context_deregister(ce); 2138 2139 return __guc_action_deregister_context(guc, guc_id); 2140 } 2141 2142 static inline void clear_children_join_go_memory(struct intel_context *ce) 2143 { 2144 struct parent_scratch *ps = __get_parent_scratch(ce); 2145 int i; 2146 2147 ps->go.semaphore = 0; 2148 for (i = 0; i < ce->parallel.number_children + 1; ++i) 2149 ps->join[i].semaphore = 0; 2150 } 2151 2152 static inline u32 get_children_go_value(struct intel_context *ce) 2153 { 2154 return __get_parent_scratch(ce)->go.semaphore; 2155 } 2156 2157 static inline u32 get_children_join_value(struct intel_context *ce, 2158 u8 child_index) 2159 { 2160 return __get_parent_scratch(ce)->join[child_index].semaphore; 2161 } 2162 2163 static void guc_context_policy_init(struct intel_engine_cs *engine, 2164 struct guc_lrc_desc *desc) 2165 { 2166 desc->policy_flags = 0; 2167 2168 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) 2169 desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE; 2170 2171 /* NB: For both of these, zero means disabled. */ 2172 desc->execution_quantum = engine->props.timeslice_duration_ms * 1000; 2173 desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000; 2174 } 2175 2176 static int guc_lrc_desc_pin(struct intel_context *ce, bool loop) 2177 { 2178 struct intel_engine_cs *engine = ce->engine; 2179 struct intel_runtime_pm *runtime_pm = engine->uncore->rpm; 2180 struct intel_guc *guc = &engine->gt->uc.guc; 2181 u32 desc_idx = ce->guc_id.id; 2182 struct guc_lrc_desc *desc; 2183 bool context_registered; 2184 intel_wakeref_t wakeref; 2185 struct intel_context *child; 2186 int ret = 0; 2187 2188 GEM_BUG_ON(!engine->mask); 2189 GEM_BUG_ON(!sched_state_is_init(ce)); 2190 2191 /* 2192 * Ensure LRC + CT vmas are is same region as write barrier is done 2193 * based on CT vma region. 2194 */ 2195 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != 2196 i915_gem_object_is_lmem(ce->ring->vma->obj)); 2197 2198 context_registered = lrc_desc_registered(guc, desc_idx); 2199 2200 reset_lrc_desc(guc, desc_idx); 2201 set_lrc_desc_registered(guc, desc_idx, ce); 2202 2203 desc = __get_lrc_desc(guc, desc_idx); 2204 desc->engine_class = engine_class_to_guc_class(engine->class); 2205 desc->engine_submit_mask = engine->logical_mask; 2206 desc->hw_context_desc = ce->lrc.lrca; 2207 desc->priority = ce->guc_state.prio; 2208 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; 2209 guc_context_policy_init(engine, desc); 2210 2211 /* 2212 * If context is a parent, we need to register a process descriptor 2213 * describing a work queue and register all child contexts. 2214 */ 2215 if (intel_context_is_parent(ce)) { 2216 struct guc_process_desc *pdesc; 2217 2218 ce->parallel.guc.wqi_tail = 0; 2219 ce->parallel.guc.wqi_head = 0; 2220 2221 desc->process_desc = i915_ggtt_offset(ce->state) + 2222 __get_parent_scratch_offset(ce); 2223 desc->wq_addr = i915_ggtt_offset(ce->state) + 2224 __get_wq_offset(ce); 2225 desc->wq_size = WQ_SIZE; 2226 2227 pdesc = __get_process_desc(ce); 2228 memset(pdesc, 0, sizeof(*(pdesc))); 2229 pdesc->stage_id = ce->guc_id.id; 2230 pdesc->wq_base_addr = desc->wq_addr; 2231 pdesc->wq_size_bytes = desc->wq_size; 2232 pdesc->wq_status = WQ_STATUS_ACTIVE; 2233 2234 for_each_child(ce, child) { 2235 desc = __get_lrc_desc(guc, child->guc_id.id); 2236 2237 desc->engine_class = 2238 engine_class_to_guc_class(engine->class); 2239 desc->hw_context_desc = child->lrc.lrca; 2240 desc->priority = ce->guc_state.prio; 2241 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; 2242 guc_context_policy_init(engine, desc); 2243 } 2244 2245 clear_children_join_go_memory(ce); 2246 } 2247 2248 /* 2249 * The context_lookup xarray is used to determine if the hardware 2250 * context is currently registered. There are two cases in which it 2251 * could be registered either the guc_id has been stolen from another 2252 * context or the lrc descriptor address of this context has changed. In 2253 * either case the context needs to be deregistered with the GuC before 2254 * registering this context. 2255 */ 2256 if (context_registered) { 2257 bool disabled; 2258 unsigned long flags; 2259 2260 trace_intel_context_steal_guc_id(ce); 2261 GEM_BUG_ON(!loop); 2262 2263 /* Seal race with Reset */ 2264 spin_lock_irqsave(&ce->guc_state.lock, flags); 2265 disabled = submission_disabled(guc); 2266 if (likely(!disabled)) { 2267 set_context_wait_for_deregister_to_register(ce); 2268 intel_context_get(ce); 2269 } 2270 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2271 if (unlikely(disabled)) { 2272 reset_lrc_desc(guc, desc_idx); 2273 return 0; /* Will get registered later */ 2274 } 2275 2276 /* 2277 * If stealing the guc_id, this ce has the same guc_id as the 2278 * context whose guc_id was stolen. 2279 */ 2280 with_intel_runtime_pm(runtime_pm, wakeref) 2281 ret = deregister_context(ce, ce->guc_id.id); 2282 if (unlikely(ret == -ENODEV)) 2283 ret = 0; /* Will get registered later */ 2284 } else { 2285 with_intel_runtime_pm(runtime_pm, wakeref) 2286 ret = register_context(ce, loop); 2287 if (unlikely(ret == -EBUSY)) { 2288 reset_lrc_desc(guc, desc_idx); 2289 } else if (unlikely(ret == -ENODEV)) { 2290 reset_lrc_desc(guc, desc_idx); 2291 ret = 0; /* Will get registered later */ 2292 } 2293 } 2294 2295 return ret; 2296 } 2297 2298 static int __guc_context_pre_pin(struct intel_context *ce, 2299 struct intel_engine_cs *engine, 2300 struct i915_gem_ww_ctx *ww, 2301 void **vaddr) 2302 { 2303 return lrc_pre_pin(ce, engine, ww, vaddr); 2304 } 2305 2306 static int __guc_context_pin(struct intel_context *ce, 2307 struct intel_engine_cs *engine, 2308 void *vaddr) 2309 { 2310 if (i915_ggtt_offset(ce->state) != 2311 (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK)) 2312 set_bit(CONTEXT_LRCA_DIRTY, &ce->flags); 2313 2314 /* 2315 * GuC context gets pinned in guc_request_alloc. See that function for 2316 * explaination of why. 2317 */ 2318 2319 return lrc_pin(ce, engine, vaddr); 2320 } 2321 2322 static int guc_context_pre_pin(struct intel_context *ce, 2323 struct i915_gem_ww_ctx *ww, 2324 void **vaddr) 2325 { 2326 return __guc_context_pre_pin(ce, ce->engine, ww, vaddr); 2327 } 2328 2329 static int guc_context_pin(struct intel_context *ce, void *vaddr) 2330 { 2331 int ret = __guc_context_pin(ce, ce->engine, vaddr); 2332 2333 if (likely(!ret && !intel_context_is_barrier(ce))) 2334 intel_engine_pm_get(ce->engine); 2335 2336 return ret; 2337 } 2338 2339 static void guc_context_unpin(struct intel_context *ce) 2340 { 2341 struct intel_guc *guc = ce_to_guc(ce); 2342 2343 unpin_guc_id(guc, ce); 2344 lrc_unpin(ce); 2345 2346 if (likely(!intel_context_is_barrier(ce))) 2347 intel_engine_pm_put_async(ce->engine); 2348 } 2349 2350 static void guc_context_post_unpin(struct intel_context *ce) 2351 { 2352 lrc_post_unpin(ce); 2353 } 2354 2355 static void __guc_context_sched_enable(struct intel_guc *guc, 2356 struct intel_context *ce) 2357 { 2358 u32 action[] = { 2359 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, 2360 ce->guc_id.id, 2361 GUC_CONTEXT_ENABLE 2362 }; 2363 2364 trace_intel_context_sched_enable(ce); 2365 2366 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2367 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); 2368 } 2369 2370 static void __guc_context_sched_disable(struct intel_guc *guc, 2371 struct intel_context *ce, 2372 u16 guc_id) 2373 { 2374 u32 action[] = { 2375 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, 2376 guc_id, /* ce->guc_id.id not stable */ 2377 GUC_CONTEXT_DISABLE 2378 }; 2379 2380 GEM_BUG_ON(guc_id == GUC_INVALID_LRC_ID); 2381 2382 GEM_BUG_ON(intel_context_is_child(ce)); 2383 trace_intel_context_sched_disable(ce); 2384 2385 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2386 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); 2387 } 2388 2389 static void guc_blocked_fence_complete(struct intel_context *ce) 2390 { 2391 lockdep_assert_held(&ce->guc_state.lock); 2392 2393 if (!i915_sw_fence_done(&ce->guc_state.blocked)) 2394 i915_sw_fence_complete(&ce->guc_state.blocked); 2395 } 2396 2397 static void guc_blocked_fence_reinit(struct intel_context *ce) 2398 { 2399 lockdep_assert_held(&ce->guc_state.lock); 2400 GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked)); 2401 2402 /* 2403 * This fence is always complete unless a pending schedule disable is 2404 * outstanding. We arm the fence here and complete it when we receive 2405 * the pending schedule disable complete message. 2406 */ 2407 i915_sw_fence_fini(&ce->guc_state.blocked); 2408 i915_sw_fence_reinit(&ce->guc_state.blocked); 2409 i915_sw_fence_await(&ce->guc_state.blocked); 2410 i915_sw_fence_commit(&ce->guc_state.blocked); 2411 } 2412 2413 static u16 prep_context_pending_disable(struct intel_context *ce) 2414 { 2415 lockdep_assert_held(&ce->guc_state.lock); 2416 2417 set_context_pending_disable(ce); 2418 clr_context_enabled(ce); 2419 guc_blocked_fence_reinit(ce); 2420 intel_context_get(ce); 2421 2422 return ce->guc_id.id; 2423 } 2424 2425 static struct i915_sw_fence *guc_context_block(struct intel_context *ce) 2426 { 2427 struct intel_guc *guc = ce_to_guc(ce); 2428 unsigned long flags; 2429 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; 2430 intel_wakeref_t wakeref; 2431 u16 guc_id; 2432 bool enabled; 2433 2434 GEM_BUG_ON(intel_context_is_child(ce)); 2435 2436 spin_lock_irqsave(&ce->guc_state.lock, flags); 2437 2438 incr_context_blocked(ce); 2439 2440 enabled = context_enabled(ce); 2441 if (unlikely(!enabled || submission_disabled(guc))) { 2442 if (enabled) 2443 clr_context_enabled(ce); 2444 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2445 return &ce->guc_state.blocked; 2446 } 2447 2448 /* 2449 * We add +2 here as the schedule disable complete CTB handler calls 2450 * intel_context_sched_disable_unpin (-2 to pin_count). 2451 */ 2452 atomic_add(2, &ce->pin_count); 2453 2454 guc_id = prep_context_pending_disable(ce); 2455 2456 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2457 2458 with_intel_runtime_pm(runtime_pm, wakeref) 2459 __guc_context_sched_disable(guc, ce, guc_id); 2460 2461 return &ce->guc_state.blocked; 2462 } 2463 2464 #define SCHED_STATE_MULTI_BLOCKED_MASK \ 2465 (SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED) 2466 #define SCHED_STATE_NO_UNBLOCK \ 2467 (SCHED_STATE_MULTI_BLOCKED_MASK | \ 2468 SCHED_STATE_PENDING_DISABLE | \ 2469 SCHED_STATE_BANNED) 2470 2471 static bool context_cant_unblock(struct intel_context *ce) 2472 { 2473 lockdep_assert_held(&ce->guc_state.lock); 2474 2475 return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) || 2476 context_guc_id_invalid(ce) || 2477 !lrc_desc_registered(ce_to_guc(ce), ce->guc_id.id) || 2478 !intel_context_is_pinned(ce); 2479 } 2480 2481 static void guc_context_unblock(struct intel_context *ce) 2482 { 2483 struct intel_guc *guc = ce_to_guc(ce); 2484 unsigned long flags; 2485 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; 2486 intel_wakeref_t wakeref; 2487 bool enable; 2488 2489 GEM_BUG_ON(context_enabled(ce)); 2490 GEM_BUG_ON(intel_context_is_child(ce)); 2491 2492 spin_lock_irqsave(&ce->guc_state.lock, flags); 2493 2494 if (unlikely(submission_disabled(guc) || 2495 context_cant_unblock(ce))) { 2496 enable = false; 2497 } else { 2498 enable = true; 2499 set_context_pending_enable(ce); 2500 set_context_enabled(ce); 2501 intel_context_get(ce); 2502 } 2503 2504 decr_context_blocked(ce); 2505 2506 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2507 2508 if (enable) { 2509 with_intel_runtime_pm(runtime_pm, wakeref) 2510 __guc_context_sched_enable(guc, ce); 2511 } 2512 } 2513 2514 static void guc_context_cancel_request(struct intel_context *ce, 2515 struct i915_request *rq) 2516 { 2517 struct intel_context *block_context = 2518 request_to_scheduling_context(rq); 2519 2520 if (i915_sw_fence_signaled(&rq->submit)) { 2521 struct i915_sw_fence *fence; 2522 2523 intel_context_get(ce); 2524 fence = guc_context_block(block_context); 2525 i915_sw_fence_wait(fence); 2526 if (!i915_request_completed(rq)) { 2527 __i915_request_skip(rq); 2528 guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head), 2529 true); 2530 } 2531 2532 /* 2533 * XXX: Racey if context is reset, see comment in 2534 * __guc_reset_context(). 2535 */ 2536 flush_work(&ce_to_guc(ce)->ct.requests.worker); 2537 2538 guc_context_unblock(block_context); 2539 intel_context_put(ce); 2540 } 2541 } 2542 2543 static void __guc_context_set_preemption_timeout(struct intel_guc *guc, 2544 u16 guc_id, 2545 u32 preemption_timeout) 2546 { 2547 u32 action[] = { 2548 INTEL_GUC_ACTION_SET_CONTEXT_PREEMPTION_TIMEOUT, 2549 guc_id, 2550 preemption_timeout 2551 }; 2552 2553 intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); 2554 } 2555 2556 static void guc_context_ban(struct intel_context *ce, struct i915_request *rq) 2557 { 2558 struct intel_guc *guc = ce_to_guc(ce); 2559 struct intel_runtime_pm *runtime_pm = 2560 &ce->engine->gt->i915->runtime_pm; 2561 intel_wakeref_t wakeref; 2562 unsigned long flags; 2563 2564 GEM_BUG_ON(intel_context_is_child(ce)); 2565 2566 guc_flush_submissions(guc); 2567 2568 spin_lock_irqsave(&ce->guc_state.lock, flags); 2569 set_context_banned(ce); 2570 2571 if (submission_disabled(guc) || 2572 (!context_enabled(ce) && !context_pending_disable(ce))) { 2573 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2574 2575 guc_cancel_context_requests(ce); 2576 intel_engine_signal_breadcrumbs(ce->engine); 2577 } else if (!context_pending_disable(ce)) { 2578 u16 guc_id; 2579 2580 /* 2581 * We add +2 here as the schedule disable complete CTB handler 2582 * calls intel_context_sched_disable_unpin (-2 to pin_count). 2583 */ 2584 atomic_add(2, &ce->pin_count); 2585 2586 guc_id = prep_context_pending_disable(ce); 2587 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2588 2589 /* 2590 * In addition to disabling scheduling, set the preemption 2591 * timeout to the minimum value (1 us) so the banned context 2592 * gets kicked off the HW ASAP. 2593 */ 2594 with_intel_runtime_pm(runtime_pm, wakeref) { 2595 __guc_context_set_preemption_timeout(guc, guc_id, 1); 2596 __guc_context_sched_disable(guc, ce, guc_id); 2597 } 2598 } else { 2599 if (!context_guc_id_invalid(ce)) 2600 with_intel_runtime_pm(runtime_pm, wakeref) 2601 __guc_context_set_preemption_timeout(guc, 2602 ce->guc_id.id, 2603 1); 2604 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2605 } 2606 } 2607 2608 static void guc_context_sched_disable(struct intel_context *ce) 2609 { 2610 struct intel_guc *guc = ce_to_guc(ce); 2611 unsigned long flags; 2612 struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm; 2613 intel_wakeref_t wakeref; 2614 u16 guc_id; 2615 2616 GEM_BUG_ON(intel_context_is_child(ce)); 2617 2618 spin_lock_irqsave(&ce->guc_state.lock, flags); 2619 2620 /* 2621 * We have to check if the context has been disabled by another thread, 2622 * check if submssion has been disabled to seal a race with reset and 2623 * finally check if any more requests have been committed to the 2624 * context ensursing that a request doesn't slip through the 2625 * 'context_pending_disable' fence. 2626 */ 2627 if (unlikely(!context_enabled(ce) || submission_disabled(guc) || 2628 context_has_committed_requests(ce))) { 2629 clr_context_enabled(ce); 2630 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2631 goto unpin; 2632 } 2633 guc_id = prep_context_pending_disable(ce); 2634 2635 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2636 2637 with_intel_runtime_pm(runtime_pm, wakeref) 2638 __guc_context_sched_disable(guc, ce, guc_id); 2639 2640 return; 2641 unpin: 2642 intel_context_sched_disable_unpin(ce); 2643 } 2644 2645 static inline void guc_lrc_desc_unpin(struct intel_context *ce) 2646 { 2647 struct intel_guc *guc = ce_to_guc(ce); 2648 struct intel_gt *gt = guc_to_gt(guc); 2649 unsigned long flags; 2650 bool disabled; 2651 2652 GEM_BUG_ON(!intel_gt_pm_is_awake(gt)); 2653 GEM_BUG_ON(!lrc_desc_registered(guc, ce->guc_id.id)); 2654 GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id)); 2655 GEM_BUG_ON(context_enabled(ce)); 2656 2657 /* Seal race with Reset */ 2658 spin_lock_irqsave(&ce->guc_state.lock, flags); 2659 disabled = submission_disabled(guc); 2660 if (likely(!disabled)) { 2661 __intel_gt_pm_get(gt); 2662 set_context_destroyed(ce); 2663 clr_context_registered(ce); 2664 } 2665 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2666 if (unlikely(disabled)) { 2667 release_guc_id(guc, ce); 2668 __guc_context_destroy(ce); 2669 return; 2670 } 2671 2672 deregister_context(ce, ce->guc_id.id); 2673 } 2674 2675 static void __guc_context_destroy(struct intel_context *ce) 2676 { 2677 GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] || 2678 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] || 2679 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] || 2680 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]); 2681 GEM_BUG_ON(ce->guc_state.number_committed_requests); 2682 2683 lrc_fini(ce); 2684 intel_context_fini(ce); 2685 2686 if (intel_engine_is_virtual(ce->engine)) { 2687 struct guc_virtual_engine *ve = 2688 container_of(ce, typeof(*ve), context); 2689 2690 if (ve->base.breadcrumbs) 2691 intel_breadcrumbs_put(ve->base.breadcrumbs); 2692 2693 kfree(ve); 2694 } else { 2695 intel_context_free(ce); 2696 } 2697 } 2698 2699 static void guc_flush_destroyed_contexts(struct intel_guc *guc) 2700 { 2701 struct intel_context *ce; 2702 unsigned long flags; 2703 2704 GEM_BUG_ON(!submission_disabled(guc) && 2705 guc_submission_initialized(guc)); 2706 2707 while (!list_empty(&guc->submission_state.destroyed_contexts)) { 2708 spin_lock_irqsave(&guc->submission_state.lock, flags); 2709 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, 2710 struct intel_context, 2711 destroyed_link); 2712 if (ce) 2713 list_del_init(&ce->destroyed_link); 2714 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2715 2716 if (!ce) 2717 break; 2718 2719 release_guc_id(guc, ce); 2720 __guc_context_destroy(ce); 2721 } 2722 } 2723 2724 static void deregister_destroyed_contexts(struct intel_guc *guc) 2725 { 2726 struct intel_context *ce; 2727 unsigned long flags; 2728 2729 while (!list_empty(&guc->submission_state.destroyed_contexts)) { 2730 spin_lock_irqsave(&guc->submission_state.lock, flags); 2731 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, 2732 struct intel_context, 2733 destroyed_link); 2734 if (ce) 2735 list_del_init(&ce->destroyed_link); 2736 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2737 2738 if (!ce) 2739 break; 2740 2741 guc_lrc_desc_unpin(ce); 2742 } 2743 } 2744 2745 static void destroyed_worker_func(struct work_struct *w) 2746 { 2747 struct intel_guc *guc = container_of(w, struct intel_guc, 2748 submission_state.destroyed_worker); 2749 struct intel_gt *gt = guc_to_gt(guc); 2750 int tmp; 2751 2752 with_intel_gt_pm(gt, tmp) 2753 deregister_destroyed_contexts(guc); 2754 } 2755 2756 static void guc_context_destroy(struct kref *kref) 2757 { 2758 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 2759 struct intel_guc *guc = ce_to_guc(ce); 2760 unsigned long flags; 2761 bool destroy; 2762 2763 /* 2764 * If the guc_id is invalid this context has been stolen and we can free 2765 * it immediately. Also can be freed immediately if the context is not 2766 * registered with the GuC or the GuC is in the middle of a reset. 2767 */ 2768 spin_lock_irqsave(&guc->submission_state.lock, flags); 2769 destroy = submission_disabled(guc) || context_guc_id_invalid(ce) || 2770 !lrc_desc_registered(guc, ce->guc_id.id); 2771 if (likely(!destroy)) { 2772 if (!list_empty(&ce->guc_id.link)) 2773 list_del_init(&ce->guc_id.link); 2774 list_add_tail(&ce->destroyed_link, 2775 &guc->submission_state.destroyed_contexts); 2776 } else { 2777 __release_guc_id(guc, ce); 2778 } 2779 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2780 if (unlikely(destroy)) { 2781 __guc_context_destroy(ce); 2782 return; 2783 } 2784 2785 /* 2786 * We use a worker to issue the H2G to deregister the context as we can 2787 * take the GT PM for the first time which isn't allowed from an atomic 2788 * context. 2789 */ 2790 queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker); 2791 } 2792 2793 static int guc_context_alloc(struct intel_context *ce) 2794 { 2795 return lrc_alloc(ce, ce->engine); 2796 } 2797 2798 static void guc_context_set_prio(struct intel_guc *guc, 2799 struct intel_context *ce, 2800 u8 prio) 2801 { 2802 u32 action[] = { 2803 INTEL_GUC_ACTION_SET_CONTEXT_PRIORITY, 2804 ce->guc_id.id, 2805 prio, 2806 }; 2807 2808 GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH || 2809 prio > GUC_CLIENT_PRIORITY_NORMAL); 2810 lockdep_assert_held(&ce->guc_state.lock); 2811 2812 if (ce->guc_state.prio == prio || submission_disabled(guc) || 2813 !context_registered(ce)) { 2814 ce->guc_state.prio = prio; 2815 return; 2816 } 2817 2818 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); 2819 2820 ce->guc_state.prio = prio; 2821 trace_intel_context_set_prio(ce); 2822 } 2823 2824 static inline u8 map_i915_prio_to_guc_prio(int prio) 2825 { 2826 if (prio == I915_PRIORITY_NORMAL) 2827 return GUC_CLIENT_PRIORITY_KMD_NORMAL; 2828 else if (prio < I915_PRIORITY_NORMAL) 2829 return GUC_CLIENT_PRIORITY_NORMAL; 2830 else if (prio < I915_PRIORITY_DISPLAY) 2831 return GUC_CLIENT_PRIORITY_HIGH; 2832 else 2833 return GUC_CLIENT_PRIORITY_KMD_HIGH; 2834 } 2835 2836 static inline void add_context_inflight_prio(struct intel_context *ce, 2837 u8 guc_prio) 2838 { 2839 lockdep_assert_held(&ce->guc_state.lock); 2840 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); 2841 2842 ++ce->guc_state.prio_count[guc_prio]; 2843 2844 /* Overflow protection */ 2845 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); 2846 } 2847 2848 static inline void sub_context_inflight_prio(struct intel_context *ce, 2849 u8 guc_prio) 2850 { 2851 lockdep_assert_held(&ce->guc_state.lock); 2852 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); 2853 2854 /* Underflow protection */ 2855 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); 2856 2857 --ce->guc_state.prio_count[guc_prio]; 2858 } 2859 2860 static inline void update_context_prio(struct intel_context *ce) 2861 { 2862 struct intel_guc *guc = &ce->engine->gt->uc.guc; 2863 int i; 2864 2865 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0); 2866 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL); 2867 2868 lockdep_assert_held(&ce->guc_state.lock); 2869 2870 for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) { 2871 if (ce->guc_state.prio_count[i]) { 2872 guc_context_set_prio(guc, ce, i); 2873 break; 2874 } 2875 } 2876 } 2877 2878 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio) 2879 { 2880 /* Lower value is higher priority */ 2881 return new_guc_prio < old_guc_prio; 2882 } 2883 2884 static void add_to_context(struct i915_request *rq) 2885 { 2886 struct intel_context *ce = request_to_scheduling_context(rq); 2887 u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq)); 2888 2889 GEM_BUG_ON(intel_context_is_child(ce)); 2890 GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI); 2891 2892 spin_lock(&ce->guc_state.lock); 2893 list_move_tail(&rq->sched.link, &ce->guc_state.requests); 2894 2895 if (rq->guc_prio == GUC_PRIO_INIT) { 2896 rq->guc_prio = new_guc_prio; 2897 add_context_inflight_prio(ce, rq->guc_prio); 2898 } else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) { 2899 sub_context_inflight_prio(ce, rq->guc_prio); 2900 rq->guc_prio = new_guc_prio; 2901 add_context_inflight_prio(ce, rq->guc_prio); 2902 } 2903 update_context_prio(ce); 2904 2905 spin_unlock(&ce->guc_state.lock); 2906 } 2907 2908 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce) 2909 { 2910 lockdep_assert_held(&ce->guc_state.lock); 2911 2912 if (rq->guc_prio != GUC_PRIO_INIT && 2913 rq->guc_prio != GUC_PRIO_FINI) { 2914 sub_context_inflight_prio(ce, rq->guc_prio); 2915 update_context_prio(ce); 2916 } 2917 rq->guc_prio = GUC_PRIO_FINI; 2918 } 2919 2920 static void remove_from_context(struct i915_request *rq) 2921 { 2922 struct intel_context *ce = request_to_scheduling_context(rq); 2923 2924 GEM_BUG_ON(intel_context_is_child(ce)); 2925 2926 spin_lock_irq(&ce->guc_state.lock); 2927 2928 list_del_init(&rq->sched.link); 2929 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 2930 2931 /* Prevent further __await_execution() registering a cb, then flush */ 2932 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 2933 2934 guc_prio_fini(rq, ce); 2935 2936 decr_context_committed_requests(ce); 2937 2938 spin_unlock_irq(&ce->guc_state.lock); 2939 2940 atomic_dec(&ce->guc_id.ref); 2941 i915_request_notify_execute_cb_imm(rq); 2942 } 2943 2944 static const struct intel_context_ops guc_context_ops = { 2945 .alloc = guc_context_alloc, 2946 2947 .pre_pin = guc_context_pre_pin, 2948 .pin = guc_context_pin, 2949 .unpin = guc_context_unpin, 2950 .post_unpin = guc_context_post_unpin, 2951 2952 .ban = guc_context_ban, 2953 2954 .cancel_request = guc_context_cancel_request, 2955 2956 .enter = intel_context_enter_engine, 2957 .exit = intel_context_exit_engine, 2958 2959 .sched_disable = guc_context_sched_disable, 2960 2961 .reset = lrc_reset, 2962 .destroy = guc_context_destroy, 2963 2964 .create_virtual = guc_create_virtual, 2965 .create_parallel = guc_create_parallel, 2966 }; 2967 2968 static void submit_work_cb(struct irq_work *wrk) 2969 { 2970 struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work); 2971 2972 might_lock(&rq->engine->sched_engine->lock); 2973 i915_sw_fence_complete(&rq->submit); 2974 } 2975 2976 static void __guc_signal_context_fence(struct intel_context *ce) 2977 { 2978 struct i915_request *rq, *rn; 2979 2980 lockdep_assert_held(&ce->guc_state.lock); 2981 2982 if (!list_empty(&ce->guc_state.fences)) 2983 trace_intel_context_fence_release(ce); 2984 2985 /* 2986 * Use an IRQ to ensure locking order of sched_engine->lock -> 2987 * ce->guc_state.lock is preserved. 2988 */ 2989 list_for_each_entry_safe(rq, rn, &ce->guc_state.fences, 2990 guc_fence_link) { 2991 list_del(&rq->guc_fence_link); 2992 irq_work_queue(&rq->submit_work); 2993 } 2994 2995 INIT_LIST_HEAD(&ce->guc_state.fences); 2996 } 2997 2998 static void guc_signal_context_fence(struct intel_context *ce) 2999 { 3000 unsigned long flags; 3001 3002 GEM_BUG_ON(intel_context_is_child(ce)); 3003 3004 spin_lock_irqsave(&ce->guc_state.lock, flags); 3005 clr_context_wait_for_deregister_to_register(ce); 3006 __guc_signal_context_fence(ce); 3007 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3008 } 3009 3010 static bool context_needs_register(struct intel_context *ce, bool new_guc_id) 3011 { 3012 return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) || 3013 !lrc_desc_registered(ce_to_guc(ce), ce->guc_id.id)) && 3014 !submission_disabled(ce_to_guc(ce)); 3015 } 3016 3017 static void guc_context_init(struct intel_context *ce) 3018 { 3019 const struct i915_gem_context *ctx; 3020 int prio = I915_CONTEXT_DEFAULT_PRIORITY; 3021 3022 rcu_read_lock(); 3023 ctx = rcu_dereference(ce->gem_context); 3024 if (ctx) 3025 prio = ctx->sched.priority; 3026 rcu_read_unlock(); 3027 3028 ce->guc_state.prio = map_i915_prio_to_guc_prio(prio); 3029 set_bit(CONTEXT_GUC_INIT, &ce->flags); 3030 } 3031 3032 static int guc_request_alloc(struct i915_request *rq) 3033 { 3034 struct intel_context *ce = request_to_scheduling_context(rq); 3035 struct intel_guc *guc = ce_to_guc(ce); 3036 unsigned long flags; 3037 int ret; 3038 3039 GEM_BUG_ON(!intel_context_is_pinned(rq->context)); 3040 3041 /* 3042 * Flush enough space to reduce the likelihood of waiting after 3043 * we start building the request - in which case we will just 3044 * have to repeat work. 3045 */ 3046 rq->reserved_space += GUC_REQUEST_SIZE; 3047 3048 /* 3049 * Note that after this point, we have committed to using 3050 * this request as it is being used to both track the 3051 * state of engine initialisation and liveness of the 3052 * golden renderstate above. Think twice before you try 3053 * to cancel/unwind this request now. 3054 */ 3055 3056 /* Unconditionally invalidate GPU caches and TLBs. */ 3057 ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 3058 if (ret) 3059 return ret; 3060 3061 rq->reserved_space -= GUC_REQUEST_SIZE; 3062 3063 if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags))) 3064 guc_context_init(ce); 3065 3066 /* 3067 * Call pin_guc_id here rather than in the pinning step as with 3068 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the 3069 * guc_id and creating horrible race conditions. This is especially bad 3070 * when guc_id are being stolen due to over subscription. By the time 3071 * this function is reached, it is guaranteed that the guc_id will be 3072 * persistent until the generated request is retired. Thus, sealing these 3073 * race conditions. It is still safe to fail here if guc_id are 3074 * exhausted and return -EAGAIN to the user indicating that they can try 3075 * again in the future. 3076 * 3077 * There is no need for a lock here as the timeline mutex ensures at 3078 * most one context can be executing this code path at once. The 3079 * guc_id_ref is incremented once for every request in flight and 3080 * decremented on each retire. When it is zero, a lock around the 3081 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id. 3082 */ 3083 if (atomic_add_unless(&ce->guc_id.ref, 1, 0)) 3084 goto out; 3085 3086 ret = pin_guc_id(guc, ce); /* returns 1 if new guc_id assigned */ 3087 if (unlikely(ret < 0)) 3088 return ret; 3089 if (context_needs_register(ce, !!ret)) { 3090 ret = guc_lrc_desc_pin(ce, true); 3091 if (unlikely(ret)) { /* unwind */ 3092 if (ret == -EPIPE) { 3093 disable_submission(guc); 3094 goto out; /* GPU will be reset */ 3095 } 3096 atomic_dec(&ce->guc_id.ref); 3097 unpin_guc_id(guc, ce); 3098 return ret; 3099 } 3100 } 3101 3102 clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags); 3103 3104 out: 3105 /* 3106 * We block all requests on this context if a G2H is pending for a 3107 * schedule disable or context deregistration as the GuC will fail a 3108 * schedule enable or context registration if either G2H is pending 3109 * respectfully. Once a G2H returns, the fence is released that is 3110 * blocking these requests (see guc_signal_context_fence). 3111 */ 3112 spin_lock_irqsave(&ce->guc_state.lock, flags); 3113 if (context_wait_for_deregister_to_register(ce) || 3114 context_pending_disable(ce)) { 3115 init_irq_work(&rq->submit_work, submit_work_cb); 3116 i915_sw_fence_await(&rq->submit); 3117 3118 list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences); 3119 } 3120 incr_context_committed_requests(ce); 3121 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3122 3123 return 0; 3124 } 3125 3126 static int guc_virtual_context_pre_pin(struct intel_context *ce, 3127 struct i915_gem_ww_ctx *ww, 3128 void **vaddr) 3129 { 3130 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3131 3132 return __guc_context_pre_pin(ce, engine, ww, vaddr); 3133 } 3134 3135 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr) 3136 { 3137 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3138 int ret = __guc_context_pin(ce, engine, vaddr); 3139 intel_engine_mask_t tmp, mask = ce->engine->mask; 3140 3141 if (likely(!ret)) 3142 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3143 intel_engine_pm_get(engine); 3144 3145 return ret; 3146 } 3147 3148 static void guc_virtual_context_unpin(struct intel_context *ce) 3149 { 3150 intel_engine_mask_t tmp, mask = ce->engine->mask; 3151 struct intel_engine_cs *engine; 3152 struct intel_guc *guc = ce_to_guc(ce); 3153 3154 GEM_BUG_ON(context_enabled(ce)); 3155 GEM_BUG_ON(intel_context_is_barrier(ce)); 3156 3157 unpin_guc_id(guc, ce); 3158 lrc_unpin(ce); 3159 3160 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3161 intel_engine_pm_put_async(engine); 3162 } 3163 3164 static void guc_virtual_context_enter(struct intel_context *ce) 3165 { 3166 intel_engine_mask_t tmp, mask = ce->engine->mask; 3167 struct intel_engine_cs *engine; 3168 3169 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3170 intel_engine_pm_get(engine); 3171 3172 intel_timeline_enter(ce->timeline); 3173 } 3174 3175 static void guc_virtual_context_exit(struct intel_context *ce) 3176 { 3177 intel_engine_mask_t tmp, mask = ce->engine->mask; 3178 struct intel_engine_cs *engine; 3179 3180 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3181 intel_engine_pm_put(engine); 3182 3183 intel_timeline_exit(ce->timeline); 3184 } 3185 3186 static int guc_virtual_context_alloc(struct intel_context *ce) 3187 { 3188 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3189 3190 return lrc_alloc(ce, engine); 3191 } 3192 3193 static const struct intel_context_ops virtual_guc_context_ops = { 3194 .alloc = guc_virtual_context_alloc, 3195 3196 .pre_pin = guc_virtual_context_pre_pin, 3197 .pin = guc_virtual_context_pin, 3198 .unpin = guc_virtual_context_unpin, 3199 .post_unpin = guc_context_post_unpin, 3200 3201 .ban = guc_context_ban, 3202 3203 .cancel_request = guc_context_cancel_request, 3204 3205 .enter = guc_virtual_context_enter, 3206 .exit = guc_virtual_context_exit, 3207 3208 .sched_disable = guc_context_sched_disable, 3209 3210 .destroy = guc_context_destroy, 3211 3212 .get_sibling = guc_virtual_get_sibling, 3213 }; 3214 3215 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr) 3216 { 3217 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3218 struct intel_guc *guc = ce_to_guc(ce); 3219 int ret; 3220 3221 GEM_BUG_ON(!intel_context_is_parent(ce)); 3222 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3223 3224 ret = pin_guc_id(guc, ce); 3225 if (unlikely(ret < 0)) 3226 return ret; 3227 3228 return __guc_context_pin(ce, engine, vaddr); 3229 } 3230 3231 static int guc_child_context_pin(struct intel_context *ce, void *vaddr) 3232 { 3233 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3234 3235 GEM_BUG_ON(!intel_context_is_child(ce)); 3236 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3237 3238 __intel_context_pin(ce->parallel.parent); 3239 return __guc_context_pin(ce, engine, vaddr); 3240 } 3241 3242 static void guc_parent_context_unpin(struct intel_context *ce) 3243 { 3244 struct intel_guc *guc = ce_to_guc(ce); 3245 3246 GEM_BUG_ON(context_enabled(ce)); 3247 GEM_BUG_ON(intel_context_is_barrier(ce)); 3248 GEM_BUG_ON(!intel_context_is_parent(ce)); 3249 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3250 3251 if (ce->parallel.last_rq) 3252 i915_request_put(ce->parallel.last_rq); 3253 unpin_guc_id(guc, ce); 3254 lrc_unpin(ce); 3255 } 3256 3257 static void guc_child_context_unpin(struct intel_context *ce) 3258 { 3259 GEM_BUG_ON(context_enabled(ce)); 3260 GEM_BUG_ON(intel_context_is_barrier(ce)); 3261 GEM_BUG_ON(!intel_context_is_child(ce)); 3262 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3263 3264 lrc_unpin(ce); 3265 } 3266 3267 static void guc_child_context_post_unpin(struct intel_context *ce) 3268 { 3269 GEM_BUG_ON(!intel_context_is_child(ce)); 3270 GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent)); 3271 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3272 3273 lrc_post_unpin(ce); 3274 intel_context_unpin(ce->parallel.parent); 3275 } 3276 3277 static void guc_child_context_destroy(struct kref *kref) 3278 { 3279 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 3280 3281 __guc_context_destroy(ce); 3282 } 3283 3284 static const struct intel_context_ops virtual_parent_context_ops = { 3285 .alloc = guc_virtual_context_alloc, 3286 3287 .pre_pin = guc_context_pre_pin, 3288 .pin = guc_parent_context_pin, 3289 .unpin = guc_parent_context_unpin, 3290 .post_unpin = guc_context_post_unpin, 3291 3292 .ban = guc_context_ban, 3293 3294 .cancel_request = guc_context_cancel_request, 3295 3296 .enter = guc_virtual_context_enter, 3297 .exit = guc_virtual_context_exit, 3298 3299 .sched_disable = guc_context_sched_disable, 3300 3301 .destroy = guc_context_destroy, 3302 3303 .get_sibling = guc_virtual_get_sibling, 3304 }; 3305 3306 static const struct intel_context_ops virtual_child_context_ops = { 3307 .alloc = guc_virtual_context_alloc, 3308 3309 .pre_pin = guc_context_pre_pin, 3310 .pin = guc_child_context_pin, 3311 .unpin = guc_child_context_unpin, 3312 .post_unpin = guc_child_context_post_unpin, 3313 3314 .cancel_request = guc_context_cancel_request, 3315 3316 .enter = guc_virtual_context_enter, 3317 .exit = guc_virtual_context_exit, 3318 3319 .destroy = guc_child_context_destroy, 3320 3321 .get_sibling = guc_virtual_get_sibling, 3322 }; 3323 3324 /* 3325 * The below override of the breadcrumbs is enabled when the user configures a 3326 * context for parallel submission (multi-lrc, parent-child). 3327 * 3328 * The overridden breadcrumbs implements an algorithm which allows the GuC to 3329 * safely preempt all the hw contexts configured for parallel submission 3330 * between each BB. The contract between the i915 and GuC is if the parent 3331 * context can be preempted, all the children can be preempted, and the GuC will 3332 * always try to preempt the parent before the children. A handshake between the 3333 * parent / children breadcrumbs ensures the i915 holds up its end of the deal 3334 * creating a window to preempt between each set of BBs. 3335 */ 3336 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, 3337 u64 offset, u32 len, 3338 const unsigned int flags); 3339 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, 3340 u64 offset, u32 len, 3341 const unsigned int flags); 3342 static u32 * 3343 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 3344 u32 *cs); 3345 static u32 * 3346 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 3347 u32 *cs); 3348 3349 static struct intel_context * 3350 guc_create_parallel(struct intel_engine_cs **engines, 3351 unsigned int num_siblings, 3352 unsigned int width) 3353 { 3354 struct intel_engine_cs **siblings = NULL; 3355 struct intel_context *parent = NULL, *ce, *err; 3356 int i, j; 3357 3358 siblings = kmalloc_array(num_siblings, 3359 sizeof(*siblings), 3360 GFP_KERNEL); 3361 if (!siblings) 3362 return ERR_PTR(-ENOMEM); 3363 3364 for (i = 0; i < width; ++i) { 3365 for (j = 0; j < num_siblings; ++j) 3366 siblings[j] = engines[i * num_siblings + j]; 3367 3368 ce = intel_engine_create_virtual(siblings, num_siblings, 3369 FORCE_VIRTUAL); 3370 if (IS_ERR(ce)) { 3371 err = ERR_CAST(ce); 3372 goto unwind; 3373 } 3374 3375 if (i == 0) { 3376 parent = ce; 3377 parent->ops = &virtual_parent_context_ops; 3378 } else { 3379 ce->ops = &virtual_child_context_ops; 3380 intel_context_bind_parent_child(parent, ce); 3381 } 3382 } 3383 3384 parent->parallel.fence_context = dma_fence_context_alloc(1); 3385 3386 parent->engine->emit_bb_start = 3387 emit_bb_start_parent_no_preempt_mid_batch; 3388 parent->engine->emit_fini_breadcrumb = 3389 emit_fini_breadcrumb_parent_no_preempt_mid_batch; 3390 parent->engine->emit_fini_breadcrumb_dw = 3391 12 + 4 * parent->parallel.number_children; 3392 for_each_child(parent, ce) { 3393 ce->engine->emit_bb_start = 3394 emit_bb_start_child_no_preempt_mid_batch; 3395 ce->engine->emit_fini_breadcrumb = 3396 emit_fini_breadcrumb_child_no_preempt_mid_batch; 3397 ce->engine->emit_fini_breadcrumb_dw = 16; 3398 } 3399 3400 kfree(siblings); 3401 return parent; 3402 3403 unwind: 3404 if (parent) 3405 intel_context_put(parent); 3406 kfree(siblings); 3407 return err; 3408 } 3409 3410 static bool 3411 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b) 3412 { 3413 struct intel_engine_cs *sibling; 3414 intel_engine_mask_t tmp, mask = b->engine_mask; 3415 bool result = false; 3416 3417 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) 3418 result |= intel_engine_irq_enable(sibling); 3419 3420 return result; 3421 } 3422 3423 static void 3424 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b) 3425 { 3426 struct intel_engine_cs *sibling; 3427 intel_engine_mask_t tmp, mask = b->engine_mask; 3428 3429 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) 3430 intel_engine_irq_disable(sibling); 3431 } 3432 3433 static void guc_init_breadcrumbs(struct intel_engine_cs *engine) 3434 { 3435 int i; 3436 3437 /* 3438 * In GuC submission mode we do not know which physical engine a request 3439 * will be scheduled on, this creates a problem because the breadcrumb 3440 * interrupt is per physical engine. To work around this we attach 3441 * requests and direct all breadcrumb interrupts to the first instance 3442 * of an engine per class. In addition all breadcrumb interrupts are 3443 * enabled / disabled across an engine class in unison. 3444 */ 3445 for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) { 3446 struct intel_engine_cs *sibling = 3447 engine->gt->engine_class[engine->class][i]; 3448 3449 if (sibling) { 3450 if (engine->breadcrumbs != sibling->breadcrumbs) { 3451 intel_breadcrumbs_put(engine->breadcrumbs); 3452 engine->breadcrumbs = 3453 intel_breadcrumbs_get(sibling->breadcrumbs); 3454 } 3455 break; 3456 } 3457 } 3458 3459 if (engine->breadcrumbs) { 3460 engine->breadcrumbs->engine_mask |= engine->mask; 3461 engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs; 3462 engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs; 3463 } 3464 } 3465 3466 static void guc_bump_inflight_request_prio(struct i915_request *rq, 3467 int prio) 3468 { 3469 struct intel_context *ce = request_to_scheduling_context(rq); 3470 u8 new_guc_prio = map_i915_prio_to_guc_prio(prio); 3471 3472 /* Short circuit function */ 3473 if (prio < I915_PRIORITY_NORMAL || 3474 rq->guc_prio == GUC_PRIO_FINI || 3475 (rq->guc_prio != GUC_PRIO_INIT && 3476 !new_guc_prio_higher(rq->guc_prio, new_guc_prio))) 3477 return; 3478 3479 spin_lock(&ce->guc_state.lock); 3480 if (rq->guc_prio != GUC_PRIO_FINI) { 3481 if (rq->guc_prio != GUC_PRIO_INIT) 3482 sub_context_inflight_prio(ce, rq->guc_prio); 3483 rq->guc_prio = new_guc_prio; 3484 add_context_inflight_prio(ce, rq->guc_prio); 3485 update_context_prio(ce); 3486 } 3487 spin_unlock(&ce->guc_state.lock); 3488 } 3489 3490 static void guc_retire_inflight_request_prio(struct i915_request *rq) 3491 { 3492 struct intel_context *ce = request_to_scheduling_context(rq); 3493 3494 spin_lock(&ce->guc_state.lock); 3495 guc_prio_fini(rq, ce); 3496 spin_unlock(&ce->guc_state.lock); 3497 } 3498 3499 static void sanitize_hwsp(struct intel_engine_cs *engine) 3500 { 3501 struct intel_timeline *tl; 3502 3503 list_for_each_entry(tl, &engine->status_page.timelines, engine_link) 3504 intel_timeline_reset_seqno(tl); 3505 } 3506 3507 static void guc_sanitize(struct intel_engine_cs *engine) 3508 { 3509 /* 3510 * Poison residual state on resume, in case the suspend didn't! 3511 * 3512 * We have to assume that across suspend/resume (or other loss 3513 * of control) that the contents of our pinned buffers has been 3514 * lost, replaced by garbage. Since this doesn't always happen, 3515 * let's poison such state so that we more quickly spot when 3516 * we falsely assume it has been preserved. 3517 */ 3518 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 3519 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE); 3520 3521 /* 3522 * The kernel_context HWSP is stored in the status_page. As above, 3523 * that may be lost on resume/initialisation, and so we need to 3524 * reset the value in the HWSP. 3525 */ 3526 sanitize_hwsp(engine); 3527 3528 /* And scrub the dirty cachelines for the HWSP */ 3529 clflush_cache_range(engine->status_page.addr, PAGE_SIZE); 3530 3531 intel_engine_reset_pinned_contexts(engine); 3532 } 3533 3534 static void setup_hwsp(struct intel_engine_cs *engine) 3535 { 3536 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */ 3537 3538 ENGINE_WRITE_FW(engine, 3539 RING_HWS_PGA, 3540 i915_ggtt_offset(engine->status_page.vma)); 3541 } 3542 3543 static void start_engine(struct intel_engine_cs *engine) 3544 { 3545 ENGINE_WRITE_FW(engine, 3546 RING_MODE_GEN7, 3547 _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE)); 3548 3549 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 3550 ENGINE_POSTING_READ(engine, RING_MI_MODE); 3551 } 3552 3553 static int guc_resume(struct intel_engine_cs *engine) 3554 { 3555 assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL); 3556 3557 intel_mocs_init_engine(engine); 3558 3559 intel_breadcrumbs_reset(engine->breadcrumbs); 3560 3561 setup_hwsp(engine); 3562 start_engine(engine); 3563 3564 return 0; 3565 } 3566 3567 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine) 3568 { 3569 return !sched_engine->tasklet.callback; 3570 } 3571 3572 static void guc_set_default_submission(struct intel_engine_cs *engine) 3573 { 3574 engine->submit_request = guc_submit_request; 3575 } 3576 3577 static inline void guc_kernel_context_pin(struct intel_guc *guc, 3578 struct intel_context *ce) 3579 { 3580 if (context_guc_id_invalid(ce)) 3581 pin_guc_id(guc, ce); 3582 guc_lrc_desc_pin(ce, true); 3583 } 3584 3585 static inline void guc_init_lrc_mapping(struct intel_guc *guc) 3586 { 3587 struct intel_gt *gt = guc_to_gt(guc); 3588 struct intel_engine_cs *engine; 3589 enum intel_engine_id id; 3590 3591 /* make sure all descriptors are clean... */ 3592 xa_destroy(&guc->context_lookup); 3593 3594 /* 3595 * Some contexts might have been pinned before we enabled GuC 3596 * submission, so we need to add them to the GuC bookeeping. 3597 * Also, after a reset the of the GuC we want to make sure that the 3598 * information shared with GuC is properly reset. The kernel LRCs are 3599 * not attached to the gem_context, so they need to be added separately. 3600 * 3601 * Note: we purposefully do not check the return of guc_lrc_desc_pin, 3602 * because that function can only fail if a reset is just starting. This 3603 * is at the end of reset so presumably another reset isn't happening 3604 * and even it did this code would be run again. 3605 */ 3606 3607 for_each_engine(engine, gt, id) { 3608 struct intel_context *ce; 3609 3610 list_for_each_entry(ce, &engine->pinned_contexts_list, 3611 pinned_contexts_link) 3612 guc_kernel_context_pin(guc, ce); 3613 } 3614 } 3615 3616 static void guc_release(struct intel_engine_cs *engine) 3617 { 3618 engine->sanitize = NULL; /* no longer in control, nothing to sanitize */ 3619 3620 intel_engine_cleanup_common(engine); 3621 lrc_fini_wa_ctx(engine); 3622 } 3623 3624 static void virtual_guc_bump_serial(struct intel_engine_cs *engine) 3625 { 3626 struct intel_engine_cs *e; 3627 intel_engine_mask_t tmp, mask = engine->mask; 3628 3629 for_each_engine_masked(e, engine->gt, mask, tmp) 3630 e->serial++; 3631 } 3632 3633 static void guc_default_vfuncs(struct intel_engine_cs *engine) 3634 { 3635 /* Default vfuncs which can be overridden by each engine. */ 3636 3637 engine->resume = guc_resume; 3638 3639 engine->cops = &guc_context_ops; 3640 engine->request_alloc = guc_request_alloc; 3641 engine->add_active_request = add_to_context; 3642 engine->remove_active_request = remove_from_context; 3643 3644 engine->sched_engine->schedule = i915_schedule; 3645 3646 engine->reset.prepare = guc_reset_nop; 3647 engine->reset.rewind = guc_rewind_nop; 3648 engine->reset.cancel = guc_reset_nop; 3649 engine->reset.finish = guc_reset_nop; 3650 3651 engine->emit_flush = gen8_emit_flush_xcs; 3652 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb; 3653 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs; 3654 if (GRAPHICS_VER(engine->i915) >= 12) { 3655 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs; 3656 engine->emit_flush = gen12_emit_flush_xcs; 3657 } 3658 engine->set_default_submission = guc_set_default_submission; 3659 engine->busyness = guc_engine_busyness; 3660 3661 engine->flags |= I915_ENGINE_SUPPORTS_STATS; 3662 engine->flags |= I915_ENGINE_HAS_PREEMPTION; 3663 engine->flags |= I915_ENGINE_HAS_TIMESLICES; 3664 3665 /* 3666 * TODO: GuC supports timeslicing and semaphores as well, but they're 3667 * handled by the firmware so some minor tweaks are required before 3668 * enabling. 3669 * 3670 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES; 3671 */ 3672 3673 engine->emit_bb_start = gen8_emit_bb_start; 3674 } 3675 3676 static void rcs_submission_override(struct intel_engine_cs *engine) 3677 { 3678 switch (GRAPHICS_VER(engine->i915)) { 3679 case 12: 3680 engine->emit_flush = gen12_emit_flush_rcs; 3681 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs; 3682 break; 3683 case 11: 3684 engine->emit_flush = gen11_emit_flush_rcs; 3685 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs; 3686 break; 3687 default: 3688 engine->emit_flush = gen8_emit_flush_rcs; 3689 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs; 3690 break; 3691 } 3692 } 3693 3694 static inline void guc_default_irqs(struct intel_engine_cs *engine) 3695 { 3696 engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT; 3697 intel_engine_set_irq_handler(engine, cs_irq_handler); 3698 } 3699 3700 static void guc_sched_engine_destroy(struct kref *kref) 3701 { 3702 struct i915_sched_engine *sched_engine = 3703 container_of(kref, typeof(*sched_engine), ref); 3704 struct intel_guc *guc = sched_engine->private_data; 3705 3706 guc->sched_engine = NULL; 3707 tasklet_kill(&sched_engine->tasklet); /* flush the callback */ 3708 kfree(sched_engine); 3709 } 3710 3711 int intel_guc_submission_setup(struct intel_engine_cs *engine) 3712 { 3713 struct drm_i915_private *i915 = engine->i915; 3714 struct intel_guc *guc = &engine->gt->uc.guc; 3715 3716 /* 3717 * The setup relies on several assumptions (e.g. irqs always enabled) 3718 * that are only valid on gen11+ 3719 */ 3720 GEM_BUG_ON(GRAPHICS_VER(i915) < 11); 3721 3722 if (!guc->sched_engine) { 3723 guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL); 3724 if (!guc->sched_engine) 3725 return -ENOMEM; 3726 3727 guc->sched_engine->schedule = i915_schedule; 3728 guc->sched_engine->disabled = guc_sched_engine_disabled; 3729 guc->sched_engine->private_data = guc; 3730 guc->sched_engine->destroy = guc_sched_engine_destroy; 3731 guc->sched_engine->bump_inflight_request_prio = 3732 guc_bump_inflight_request_prio; 3733 guc->sched_engine->retire_inflight_request_prio = 3734 guc_retire_inflight_request_prio; 3735 tasklet_setup(&guc->sched_engine->tasklet, 3736 guc_submission_tasklet); 3737 } 3738 i915_sched_engine_put(engine->sched_engine); 3739 engine->sched_engine = i915_sched_engine_get(guc->sched_engine); 3740 3741 guc_default_vfuncs(engine); 3742 guc_default_irqs(engine); 3743 guc_init_breadcrumbs(engine); 3744 3745 if (engine->class == RENDER_CLASS) 3746 rcs_submission_override(engine); 3747 3748 lrc_init_wa_ctx(engine); 3749 3750 /* Finally, take ownership and responsibility for cleanup! */ 3751 engine->sanitize = guc_sanitize; 3752 engine->release = guc_release; 3753 3754 return 0; 3755 } 3756 3757 void intel_guc_submission_enable(struct intel_guc *guc) 3758 { 3759 guc_init_lrc_mapping(guc); 3760 guc_init_engine_stats(guc); 3761 } 3762 3763 void intel_guc_submission_disable(struct intel_guc *guc) 3764 { 3765 /* Note: By the time we're here, GuC may have already been reset */ 3766 } 3767 3768 static bool __guc_submission_supported(struct intel_guc *guc) 3769 { 3770 /* GuC submission is unavailable for pre-Gen11 */ 3771 return intel_guc_is_supported(guc) && 3772 GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11; 3773 } 3774 3775 static bool __guc_submission_selected(struct intel_guc *guc) 3776 { 3777 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 3778 3779 if (!intel_guc_submission_is_supported(guc)) 3780 return false; 3781 3782 return i915->params.enable_guc & ENABLE_GUC_SUBMISSION; 3783 } 3784 3785 void intel_guc_submission_init_early(struct intel_guc *guc) 3786 { 3787 guc->submission_state.num_guc_ids = GUC_MAX_LRC_DESCRIPTORS; 3788 guc->submission_supported = __guc_submission_supported(guc); 3789 guc->submission_selected = __guc_submission_selected(guc); 3790 } 3791 3792 static inline struct intel_context * 3793 g2h_context_lookup(struct intel_guc *guc, u32 desc_idx) 3794 { 3795 struct intel_context *ce; 3796 3797 if (unlikely(desc_idx >= GUC_MAX_LRC_DESCRIPTORS)) { 3798 drm_err(&guc_to_gt(guc)->i915->drm, 3799 "Invalid desc_idx %u", desc_idx); 3800 return NULL; 3801 } 3802 3803 ce = __get_context(guc, desc_idx); 3804 if (unlikely(!ce)) { 3805 drm_err(&guc_to_gt(guc)->i915->drm, 3806 "Context is NULL, desc_idx %u", desc_idx); 3807 return NULL; 3808 } 3809 3810 if (unlikely(intel_context_is_child(ce))) { 3811 drm_err(&guc_to_gt(guc)->i915->drm, 3812 "Context is child, desc_idx %u", desc_idx); 3813 return NULL; 3814 } 3815 3816 return ce; 3817 } 3818 3819 int intel_guc_deregister_done_process_msg(struct intel_guc *guc, 3820 const u32 *msg, 3821 u32 len) 3822 { 3823 struct intel_context *ce; 3824 u32 desc_idx = msg[0]; 3825 3826 if (unlikely(len < 1)) { 3827 drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len); 3828 return -EPROTO; 3829 } 3830 3831 ce = g2h_context_lookup(guc, desc_idx); 3832 if (unlikely(!ce)) 3833 return -EPROTO; 3834 3835 trace_intel_context_deregister_done(ce); 3836 3837 #ifdef CONFIG_DRM_I915_SELFTEST 3838 if (unlikely(ce->drop_deregister)) { 3839 ce->drop_deregister = false; 3840 return 0; 3841 } 3842 #endif 3843 3844 if (context_wait_for_deregister_to_register(ce)) { 3845 struct intel_runtime_pm *runtime_pm = 3846 &ce->engine->gt->i915->runtime_pm; 3847 intel_wakeref_t wakeref; 3848 3849 /* 3850 * Previous owner of this guc_id has been deregistered, now safe 3851 * register this context. 3852 */ 3853 with_intel_runtime_pm(runtime_pm, wakeref) 3854 register_context(ce, true); 3855 guc_signal_context_fence(ce); 3856 intel_context_put(ce); 3857 } else if (context_destroyed(ce)) { 3858 /* Context has been destroyed */ 3859 intel_gt_pm_put_async(guc_to_gt(guc)); 3860 release_guc_id(guc, ce); 3861 __guc_context_destroy(ce); 3862 } 3863 3864 decr_outstanding_submission_g2h(guc); 3865 3866 return 0; 3867 } 3868 3869 int intel_guc_sched_done_process_msg(struct intel_guc *guc, 3870 const u32 *msg, 3871 u32 len) 3872 { 3873 struct intel_context *ce; 3874 unsigned long flags; 3875 u32 desc_idx = msg[0]; 3876 3877 if (unlikely(len < 2)) { 3878 drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len); 3879 return -EPROTO; 3880 } 3881 3882 ce = g2h_context_lookup(guc, desc_idx); 3883 if (unlikely(!ce)) 3884 return -EPROTO; 3885 3886 if (unlikely(context_destroyed(ce) || 3887 (!context_pending_enable(ce) && 3888 !context_pending_disable(ce)))) { 3889 drm_err(&guc_to_gt(guc)->i915->drm, 3890 "Bad context sched_state 0x%x, desc_idx %u", 3891 ce->guc_state.sched_state, desc_idx); 3892 return -EPROTO; 3893 } 3894 3895 trace_intel_context_sched_done(ce); 3896 3897 if (context_pending_enable(ce)) { 3898 #ifdef CONFIG_DRM_I915_SELFTEST 3899 if (unlikely(ce->drop_schedule_enable)) { 3900 ce->drop_schedule_enable = false; 3901 return 0; 3902 } 3903 #endif 3904 3905 spin_lock_irqsave(&ce->guc_state.lock, flags); 3906 clr_context_pending_enable(ce); 3907 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3908 } else if (context_pending_disable(ce)) { 3909 bool banned; 3910 3911 #ifdef CONFIG_DRM_I915_SELFTEST 3912 if (unlikely(ce->drop_schedule_disable)) { 3913 ce->drop_schedule_disable = false; 3914 return 0; 3915 } 3916 #endif 3917 3918 /* 3919 * Unpin must be done before __guc_signal_context_fence, 3920 * otherwise a race exists between the requests getting 3921 * submitted + retired before this unpin completes resulting in 3922 * the pin_count going to zero and the context still being 3923 * enabled. 3924 */ 3925 intel_context_sched_disable_unpin(ce); 3926 3927 spin_lock_irqsave(&ce->guc_state.lock, flags); 3928 banned = context_banned(ce); 3929 clr_context_banned(ce); 3930 clr_context_pending_disable(ce); 3931 __guc_signal_context_fence(ce); 3932 guc_blocked_fence_complete(ce); 3933 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3934 3935 if (banned) { 3936 guc_cancel_context_requests(ce); 3937 intel_engine_signal_breadcrumbs(ce->engine); 3938 } 3939 } 3940 3941 decr_outstanding_submission_g2h(guc); 3942 intel_context_put(ce); 3943 3944 return 0; 3945 } 3946 3947 static void capture_error_state(struct intel_guc *guc, 3948 struct intel_context *ce) 3949 { 3950 struct intel_gt *gt = guc_to_gt(guc); 3951 struct drm_i915_private *i915 = gt->i915; 3952 struct intel_engine_cs *engine = __context_to_physical_engine(ce); 3953 intel_wakeref_t wakeref; 3954 3955 intel_engine_set_hung_context(engine, ce); 3956 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 3957 i915_capture_error_state(gt, engine->mask); 3958 atomic_inc(&i915->gpu_error.reset_engine_count[engine->uabi_class]); 3959 } 3960 3961 static void guc_context_replay(struct intel_context *ce) 3962 { 3963 struct i915_sched_engine *sched_engine = ce->engine->sched_engine; 3964 3965 __guc_reset_context(ce, true); 3966 tasklet_hi_schedule(&sched_engine->tasklet); 3967 } 3968 3969 static void guc_handle_context_reset(struct intel_guc *guc, 3970 struct intel_context *ce) 3971 { 3972 trace_intel_context_reset(ce); 3973 3974 /* 3975 * XXX: Racey if request cancellation has occurred, see comment in 3976 * __guc_reset_context(). 3977 */ 3978 if (likely(!intel_context_is_banned(ce) && 3979 !context_blocked(ce))) { 3980 capture_error_state(guc, ce); 3981 guc_context_replay(ce); 3982 } 3983 } 3984 3985 int intel_guc_context_reset_process_msg(struct intel_guc *guc, 3986 const u32 *msg, u32 len) 3987 { 3988 struct intel_context *ce; 3989 unsigned long flags; 3990 int desc_idx; 3991 3992 if (unlikely(len != 1)) { 3993 drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len); 3994 return -EPROTO; 3995 } 3996 3997 desc_idx = msg[0]; 3998 3999 /* 4000 * The context lookup uses the xarray but lookups only require an RCU lock 4001 * not the full spinlock. So take the lock explicitly and keep it until the 4002 * context has been reference count locked to ensure it can't be destroyed 4003 * asynchronously until the reset is done. 4004 */ 4005 xa_lock_irqsave(&guc->context_lookup, flags); 4006 ce = g2h_context_lookup(guc, desc_idx); 4007 if (ce) 4008 intel_context_get(ce); 4009 xa_unlock_irqrestore(&guc->context_lookup, flags); 4010 4011 if (unlikely(!ce)) 4012 return -EPROTO; 4013 4014 guc_handle_context_reset(guc, ce); 4015 intel_context_put(ce); 4016 4017 return 0; 4018 } 4019 4020 static struct intel_engine_cs * 4021 guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance) 4022 { 4023 struct intel_gt *gt = guc_to_gt(guc); 4024 u8 engine_class = guc_class_to_engine_class(guc_class); 4025 4026 /* Class index is checked in class converter */ 4027 GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE); 4028 4029 return gt->engine_class[engine_class][instance]; 4030 } 4031 4032 int intel_guc_engine_failure_process_msg(struct intel_guc *guc, 4033 const u32 *msg, u32 len) 4034 { 4035 struct intel_engine_cs *engine; 4036 struct intel_gt *gt = guc_to_gt(guc); 4037 u8 guc_class, instance; 4038 u32 reason; 4039 4040 if (unlikely(len != 3)) { 4041 drm_err(>->i915->drm, "Invalid length %u", len); 4042 return -EPROTO; 4043 } 4044 4045 guc_class = msg[0]; 4046 instance = msg[1]; 4047 reason = msg[2]; 4048 4049 engine = guc_lookup_engine(guc, guc_class, instance); 4050 if (unlikely(!engine)) { 4051 drm_err(>->i915->drm, 4052 "Invalid engine %d:%d", guc_class, instance); 4053 return -EPROTO; 4054 } 4055 4056 /* 4057 * This is an unexpected failure of a hardware feature. So, log a real 4058 * error message not just the informational that comes with the reset. 4059 */ 4060 drm_err(>->i915->drm, "GuC engine reset request failed on %d:%d (%s) because 0x%08X", 4061 guc_class, instance, engine->name, reason); 4062 4063 intel_gt_handle_error(gt, engine->mask, 4064 I915_ERROR_CAPTURE, 4065 "GuC failed to reset %s (reason=0x%08x)\n", 4066 engine->name, reason); 4067 4068 return 0; 4069 } 4070 4071 void intel_guc_find_hung_context(struct intel_engine_cs *engine) 4072 { 4073 struct intel_guc *guc = &engine->gt->uc.guc; 4074 struct intel_context *ce; 4075 struct i915_request *rq; 4076 unsigned long index; 4077 unsigned long flags; 4078 4079 /* Reset called during driver load? GuC not yet initialised! */ 4080 if (unlikely(!guc_submission_initialized(guc))) 4081 return; 4082 4083 xa_lock_irqsave(&guc->context_lookup, flags); 4084 xa_for_each(&guc->context_lookup, index, ce) { 4085 if (!kref_get_unless_zero(&ce->ref)) 4086 continue; 4087 4088 xa_unlock(&guc->context_lookup); 4089 4090 if (!intel_context_is_pinned(ce)) 4091 goto next; 4092 4093 if (intel_engine_is_virtual(ce->engine)) { 4094 if (!(ce->engine->mask & engine->mask)) 4095 goto next; 4096 } else { 4097 if (ce->engine != engine) 4098 goto next; 4099 } 4100 4101 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) { 4102 if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE) 4103 continue; 4104 4105 intel_engine_set_hung_context(engine, ce); 4106 4107 /* Can only cope with one hang at a time... */ 4108 intel_context_put(ce); 4109 xa_lock(&guc->context_lookup); 4110 goto done; 4111 } 4112 next: 4113 intel_context_put(ce); 4114 xa_lock(&guc->context_lookup); 4115 } 4116 done: 4117 xa_unlock_irqrestore(&guc->context_lookup, flags); 4118 } 4119 4120 void intel_guc_dump_active_requests(struct intel_engine_cs *engine, 4121 struct i915_request *hung_rq, 4122 struct drm_printer *m) 4123 { 4124 struct intel_guc *guc = &engine->gt->uc.guc; 4125 struct intel_context *ce; 4126 unsigned long index; 4127 unsigned long flags; 4128 4129 /* Reset called during driver load? GuC not yet initialised! */ 4130 if (unlikely(!guc_submission_initialized(guc))) 4131 return; 4132 4133 xa_lock_irqsave(&guc->context_lookup, flags); 4134 xa_for_each(&guc->context_lookup, index, ce) { 4135 if (!kref_get_unless_zero(&ce->ref)) 4136 continue; 4137 4138 xa_unlock(&guc->context_lookup); 4139 4140 if (!intel_context_is_pinned(ce)) 4141 goto next; 4142 4143 if (intel_engine_is_virtual(ce->engine)) { 4144 if (!(ce->engine->mask & engine->mask)) 4145 goto next; 4146 } else { 4147 if (ce->engine != engine) 4148 goto next; 4149 } 4150 4151 spin_lock(&ce->guc_state.lock); 4152 intel_engine_dump_active_requests(&ce->guc_state.requests, 4153 hung_rq, m); 4154 spin_unlock(&ce->guc_state.lock); 4155 4156 next: 4157 intel_context_put(ce); 4158 xa_lock(&guc->context_lookup); 4159 } 4160 xa_unlock_irqrestore(&guc->context_lookup, flags); 4161 } 4162 4163 void intel_guc_submission_print_info(struct intel_guc *guc, 4164 struct drm_printer *p) 4165 { 4166 struct i915_sched_engine *sched_engine = guc->sched_engine; 4167 struct rb_node *rb; 4168 unsigned long flags; 4169 4170 if (!sched_engine) 4171 return; 4172 4173 drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n", 4174 atomic_read(&guc->outstanding_submission_g2h)); 4175 drm_printf(p, "GuC tasklet count: %u\n\n", 4176 atomic_read(&sched_engine->tasklet.count)); 4177 4178 spin_lock_irqsave(&sched_engine->lock, flags); 4179 drm_printf(p, "Requests in GuC submit tasklet:\n"); 4180 for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) { 4181 struct i915_priolist *pl = to_priolist(rb); 4182 struct i915_request *rq; 4183 4184 priolist_for_each_request(rq, pl) 4185 drm_printf(p, "guc_id=%u, seqno=%llu\n", 4186 rq->context->guc_id.id, 4187 rq->fence.seqno); 4188 } 4189 spin_unlock_irqrestore(&sched_engine->lock, flags); 4190 drm_printf(p, "\n"); 4191 } 4192 4193 static inline void guc_log_context_priority(struct drm_printer *p, 4194 struct intel_context *ce) 4195 { 4196 int i; 4197 4198 drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio); 4199 drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n"); 4200 for (i = GUC_CLIENT_PRIORITY_KMD_HIGH; 4201 i < GUC_CLIENT_PRIORITY_NUM; ++i) { 4202 drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n", 4203 i, ce->guc_state.prio_count[i]); 4204 } 4205 drm_printf(p, "\n"); 4206 } 4207 4208 static inline void guc_log_context(struct drm_printer *p, 4209 struct intel_context *ce) 4210 { 4211 drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id); 4212 drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca); 4213 drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n", 4214 ce->ring->head, 4215 ce->lrc_reg_state[CTX_RING_HEAD]); 4216 drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n", 4217 ce->ring->tail, 4218 ce->lrc_reg_state[CTX_RING_TAIL]); 4219 drm_printf(p, "\t\tContext Pin Count: %u\n", 4220 atomic_read(&ce->pin_count)); 4221 drm_printf(p, "\t\tGuC ID Ref Count: %u\n", 4222 atomic_read(&ce->guc_id.ref)); 4223 drm_printf(p, "\t\tSchedule State: 0x%x\n\n", 4224 ce->guc_state.sched_state); 4225 } 4226 4227 void intel_guc_submission_print_context_info(struct intel_guc *guc, 4228 struct drm_printer *p) 4229 { 4230 struct intel_context *ce; 4231 unsigned long index; 4232 unsigned long flags; 4233 4234 xa_lock_irqsave(&guc->context_lookup, flags); 4235 xa_for_each(&guc->context_lookup, index, ce) { 4236 GEM_BUG_ON(intel_context_is_child(ce)); 4237 4238 guc_log_context(p, ce); 4239 guc_log_context_priority(p, ce); 4240 4241 if (intel_context_is_parent(ce)) { 4242 struct guc_process_desc *desc = __get_process_desc(ce); 4243 struct intel_context *child; 4244 4245 drm_printf(p, "\t\tNumber children: %u\n", 4246 ce->parallel.number_children); 4247 drm_printf(p, "\t\tWQI Head: %u\n", 4248 READ_ONCE(desc->head)); 4249 drm_printf(p, "\t\tWQI Tail: %u\n", 4250 READ_ONCE(desc->tail)); 4251 drm_printf(p, "\t\tWQI Status: %u\n\n", 4252 READ_ONCE(desc->wq_status)); 4253 4254 if (ce->engine->emit_bb_start == 4255 emit_bb_start_parent_no_preempt_mid_batch) { 4256 u8 i; 4257 4258 drm_printf(p, "\t\tChildren Go: %u\n\n", 4259 get_children_go_value(ce)); 4260 for (i = 0; i < ce->parallel.number_children; ++i) 4261 drm_printf(p, "\t\tChildren Join: %u\n", 4262 get_children_join_value(ce, i)); 4263 } 4264 4265 for_each_child(ce, child) 4266 guc_log_context(p, child); 4267 } 4268 } 4269 xa_unlock_irqrestore(&guc->context_lookup, flags); 4270 } 4271 4272 static inline u32 get_children_go_addr(struct intel_context *ce) 4273 { 4274 GEM_BUG_ON(!intel_context_is_parent(ce)); 4275 4276 return i915_ggtt_offset(ce->state) + 4277 __get_parent_scratch_offset(ce) + 4278 offsetof(struct parent_scratch, go.semaphore); 4279 } 4280 4281 static inline u32 get_children_join_addr(struct intel_context *ce, 4282 u8 child_index) 4283 { 4284 GEM_BUG_ON(!intel_context_is_parent(ce)); 4285 4286 return i915_ggtt_offset(ce->state) + 4287 __get_parent_scratch_offset(ce) + 4288 offsetof(struct parent_scratch, join[child_index].semaphore); 4289 } 4290 4291 #define PARENT_GO_BB 1 4292 #define PARENT_GO_FINI_BREADCRUMB 0 4293 #define CHILD_GO_BB 1 4294 #define CHILD_GO_FINI_BREADCRUMB 0 4295 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, 4296 u64 offset, u32 len, 4297 const unsigned int flags) 4298 { 4299 struct intel_context *ce = rq->context; 4300 u32 *cs; 4301 u8 i; 4302 4303 GEM_BUG_ON(!intel_context_is_parent(ce)); 4304 4305 cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children); 4306 if (IS_ERR(cs)) 4307 return PTR_ERR(cs); 4308 4309 /* Wait on children */ 4310 for (i = 0; i < ce->parallel.number_children; ++i) { 4311 *cs++ = (MI_SEMAPHORE_WAIT | 4312 MI_SEMAPHORE_GLOBAL_GTT | 4313 MI_SEMAPHORE_POLL | 4314 MI_SEMAPHORE_SAD_EQ_SDD); 4315 *cs++ = PARENT_GO_BB; 4316 *cs++ = get_children_join_addr(ce, i); 4317 *cs++ = 0; 4318 } 4319 4320 /* Turn off preemption */ 4321 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 4322 *cs++ = MI_NOOP; 4323 4324 /* Tell children go */ 4325 cs = gen8_emit_ggtt_write(cs, 4326 CHILD_GO_BB, 4327 get_children_go_addr(ce), 4328 0); 4329 4330 /* Jump to batch */ 4331 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 4332 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 4333 *cs++ = lower_32_bits(offset); 4334 *cs++ = upper_32_bits(offset); 4335 *cs++ = MI_NOOP; 4336 4337 intel_ring_advance(rq, cs); 4338 4339 return 0; 4340 } 4341 4342 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, 4343 u64 offset, u32 len, 4344 const unsigned int flags) 4345 { 4346 struct intel_context *ce = rq->context; 4347 struct intel_context *parent = intel_context_to_parent(ce); 4348 u32 *cs; 4349 4350 GEM_BUG_ON(!intel_context_is_child(ce)); 4351 4352 cs = intel_ring_begin(rq, 12); 4353 if (IS_ERR(cs)) 4354 return PTR_ERR(cs); 4355 4356 /* Signal parent */ 4357 cs = gen8_emit_ggtt_write(cs, 4358 PARENT_GO_BB, 4359 get_children_join_addr(parent, 4360 ce->parallel.child_index), 4361 0); 4362 4363 /* Wait on parent for go */ 4364 *cs++ = (MI_SEMAPHORE_WAIT | 4365 MI_SEMAPHORE_GLOBAL_GTT | 4366 MI_SEMAPHORE_POLL | 4367 MI_SEMAPHORE_SAD_EQ_SDD); 4368 *cs++ = CHILD_GO_BB; 4369 *cs++ = get_children_go_addr(parent); 4370 *cs++ = 0; 4371 4372 /* Turn off preemption */ 4373 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 4374 4375 /* Jump to batch */ 4376 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 4377 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 4378 *cs++ = lower_32_bits(offset); 4379 *cs++ = upper_32_bits(offset); 4380 4381 intel_ring_advance(rq, cs); 4382 4383 return 0; 4384 } 4385 4386 static u32 * 4387 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 4388 u32 *cs) 4389 { 4390 struct intel_context *ce = rq->context; 4391 u8 i; 4392 4393 GEM_BUG_ON(!intel_context_is_parent(ce)); 4394 4395 /* Wait on children */ 4396 for (i = 0; i < ce->parallel.number_children; ++i) { 4397 *cs++ = (MI_SEMAPHORE_WAIT | 4398 MI_SEMAPHORE_GLOBAL_GTT | 4399 MI_SEMAPHORE_POLL | 4400 MI_SEMAPHORE_SAD_EQ_SDD); 4401 *cs++ = PARENT_GO_FINI_BREADCRUMB; 4402 *cs++ = get_children_join_addr(ce, i); 4403 *cs++ = 0; 4404 } 4405 4406 /* Turn on preemption */ 4407 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 4408 *cs++ = MI_NOOP; 4409 4410 /* Tell children go */ 4411 cs = gen8_emit_ggtt_write(cs, 4412 CHILD_GO_FINI_BREADCRUMB, 4413 get_children_go_addr(ce), 4414 0); 4415 4416 return cs; 4417 } 4418 4419 /* 4420 * If this true, a submission of multi-lrc requests had an error and the 4421 * requests need to be skipped. The front end (execuf IOCTL) should've called 4422 * i915_request_skip which squashes the BB but we still need to emit the fini 4423 * breadrcrumbs seqno write. At this point we don't know how many of the 4424 * requests in the multi-lrc submission were generated so we can't do the 4425 * handshake between the parent and children (e.g. if 4 requests should be 4426 * generated but 2nd hit an error only 1 would be seen by the GuC backend). 4427 * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error 4428 * has occurred on any of the requests in submission / relationship. 4429 */ 4430 static inline bool skip_handshake(struct i915_request *rq) 4431 { 4432 return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags); 4433 } 4434 4435 static u32 * 4436 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 4437 u32 *cs) 4438 { 4439 struct intel_context *ce = rq->context; 4440 4441 GEM_BUG_ON(!intel_context_is_parent(ce)); 4442 4443 if (unlikely(skip_handshake(rq))) { 4444 /* 4445 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch, 4446 * the -6 comes from the length of the emits below. 4447 */ 4448 memset(cs, 0, sizeof(u32) * 4449 (ce->engine->emit_fini_breadcrumb_dw - 6)); 4450 cs += ce->engine->emit_fini_breadcrumb_dw - 6; 4451 } else { 4452 cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs); 4453 } 4454 4455 /* Emit fini breadcrumb */ 4456 cs = gen8_emit_ggtt_write(cs, 4457 rq->fence.seqno, 4458 i915_request_active_timeline(rq)->hwsp_offset, 4459 0); 4460 4461 /* User interrupt */ 4462 *cs++ = MI_USER_INTERRUPT; 4463 *cs++ = MI_NOOP; 4464 4465 rq->tail = intel_ring_offset(rq, cs); 4466 4467 return cs; 4468 } 4469 4470 static u32 * 4471 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 4472 u32 *cs) 4473 { 4474 struct intel_context *ce = rq->context; 4475 struct intel_context *parent = intel_context_to_parent(ce); 4476 4477 GEM_BUG_ON(!intel_context_is_child(ce)); 4478 4479 /* Turn on preemption */ 4480 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 4481 *cs++ = MI_NOOP; 4482 4483 /* Signal parent */ 4484 cs = gen8_emit_ggtt_write(cs, 4485 PARENT_GO_FINI_BREADCRUMB, 4486 get_children_join_addr(parent, 4487 ce->parallel.child_index), 4488 0); 4489 4490 /* Wait parent on for go */ 4491 *cs++ = (MI_SEMAPHORE_WAIT | 4492 MI_SEMAPHORE_GLOBAL_GTT | 4493 MI_SEMAPHORE_POLL | 4494 MI_SEMAPHORE_SAD_EQ_SDD); 4495 *cs++ = CHILD_GO_FINI_BREADCRUMB; 4496 *cs++ = get_children_go_addr(parent); 4497 *cs++ = 0; 4498 4499 return cs; 4500 } 4501 4502 static u32 * 4503 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 4504 u32 *cs) 4505 { 4506 struct intel_context *ce = rq->context; 4507 4508 GEM_BUG_ON(!intel_context_is_child(ce)); 4509 4510 if (unlikely(skip_handshake(rq))) { 4511 /* 4512 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch, 4513 * the -6 comes from the length of the emits below. 4514 */ 4515 memset(cs, 0, sizeof(u32) * 4516 (ce->engine->emit_fini_breadcrumb_dw - 6)); 4517 cs += ce->engine->emit_fini_breadcrumb_dw - 6; 4518 } else { 4519 cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs); 4520 } 4521 4522 /* Emit fini breadcrumb */ 4523 cs = gen8_emit_ggtt_write(cs, 4524 rq->fence.seqno, 4525 i915_request_active_timeline(rq)->hwsp_offset, 4526 0); 4527 4528 /* User interrupt */ 4529 *cs++ = MI_USER_INTERRUPT; 4530 *cs++ = MI_NOOP; 4531 4532 rq->tail = intel_ring_offset(rq, cs); 4533 4534 return cs; 4535 } 4536 4537 static struct intel_context * 4538 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, 4539 unsigned long flags) 4540 { 4541 struct guc_virtual_engine *ve; 4542 struct intel_guc *guc; 4543 unsigned int n; 4544 int err; 4545 4546 ve = kzalloc(sizeof(*ve), GFP_KERNEL); 4547 if (!ve) 4548 return ERR_PTR(-ENOMEM); 4549 4550 guc = &siblings[0]->gt->uc.guc; 4551 4552 ve->base.i915 = siblings[0]->i915; 4553 ve->base.gt = siblings[0]->gt; 4554 ve->base.uncore = siblings[0]->uncore; 4555 ve->base.id = -1; 4556 4557 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID; 4558 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 4559 ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 4560 ve->base.saturated = ALL_ENGINES; 4561 4562 snprintf(ve->base.name, sizeof(ve->base.name), "virtual"); 4563 4564 ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine); 4565 4566 ve->base.cops = &virtual_guc_context_ops; 4567 ve->base.request_alloc = guc_request_alloc; 4568 ve->base.bump_serial = virtual_guc_bump_serial; 4569 4570 ve->base.submit_request = guc_submit_request; 4571 4572 ve->base.flags = I915_ENGINE_IS_VIRTUAL; 4573 4574 intel_context_init(&ve->context, &ve->base); 4575 4576 for (n = 0; n < count; n++) { 4577 struct intel_engine_cs *sibling = siblings[n]; 4578 4579 GEM_BUG_ON(!is_power_of_2(sibling->mask)); 4580 if (sibling->mask & ve->base.mask) { 4581 DRM_DEBUG("duplicate %s entry in load balancer\n", 4582 sibling->name); 4583 err = -EINVAL; 4584 goto err_put; 4585 } 4586 4587 ve->base.mask |= sibling->mask; 4588 ve->base.logical_mask |= sibling->logical_mask; 4589 4590 if (n != 0 && ve->base.class != sibling->class) { 4591 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n", 4592 sibling->class, ve->base.class); 4593 err = -EINVAL; 4594 goto err_put; 4595 } else if (n == 0) { 4596 ve->base.class = sibling->class; 4597 ve->base.uabi_class = sibling->uabi_class; 4598 snprintf(ve->base.name, sizeof(ve->base.name), 4599 "v%dx%d", ve->base.class, count); 4600 ve->base.context_size = sibling->context_size; 4601 4602 ve->base.add_active_request = 4603 sibling->add_active_request; 4604 ve->base.remove_active_request = 4605 sibling->remove_active_request; 4606 ve->base.emit_bb_start = sibling->emit_bb_start; 4607 ve->base.emit_flush = sibling->emit_flush; 4608 ve->base.emit_init_breadcrumb = 4609 sibling->emit_init_breadcrumb; 4610 ve->base.emit_fini_breadcrumb = 4611 sibling->emit_fini_breadcrumb; 4612 ve->base.emit_fini_breadcrumb_dw = 4613 sibling->emit_fini_breadcrumb_dw; 4614 ve->base.breadcrumbs = 4615 intel_breadcrumbs_get(sibling->breadcrumbs); 4616 4617 ve->base.flags |= sibling->flags; 4618 4619 ve->base.props.timeslice_duration_ms = 4620 sibling->props.timeslice_duration_ms; 4621 ve->base.props.preempt_timeout_ms = 4622 sibling->props.preempt_timeout_ms; 4623 } 4624 } 4625 4626 return &ve->context; 4627 4628 err_put: 4629 intel_context_put(&ve->context); 4630 return ERR_PTR(err); 4631 } 4632 4633 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve) 4634 { 4635 struct intel_engine_cs *engine; 4636 intel_engine_mask_t tmp, mask = ve->mask; 4637 4638 for_each_engine_masked(engine, ve->gt, mask, tmp) 4639 if (READ_ONCE(engine->props.heartbeat_interval_ms)) 4640 return true; 4641 4642 return false; 4643 } 4644 4645 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 4646 #include "selftest_guc.c" 4647 #include "selftest_guc_multi_lrc.c" 4648 #endif 4649