xref: /openbmc/linux/drivers/gpu/drm/i915/gt/uc/intel_guc_submission.c (revision 25ebbc57ca56df3cf9149e9da6b1d3169c8487db)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include <linux/circ_buf.h>
7 
8 #include "gem/i915_gem_context.h"
9 #include "gem/i915_gem_lmem.h"
10 #include "gt/gen8_engine_cs.h"
11 #include "gt/intel_breadcrumbs.h"
12 #include "gt/intel_context.h"
13 #include "gt/intel_engine_heartbeat.h"
14 #include "gt/intel_engine_pm.h"
15 #include "gt/intel_engine_regs.h"
16 #include "gt/intel_gpu_commands.h"
17 #include "gt/intel_gt.h"
18 #include "gt/intel_gt_clock_utils.h"
19 #include "gt/intel_gt_irq.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_gt_regs.h"
22 #include "gt/intel_gt_requests.h"
23 #include "gt/intel_lrc.h"
24 #include "gt/intel_lrc_reg.h"
25 #include "gt/intel_mocs.h"
26 #include "gt/intel_ring.h"
27 
28 #include "intel_guc_ads.h"
29 #include "intel_guc_capture.h"
30 #include "intel_guc_print.h"
31 #include "intel_guc_submission.h"
32 
33 #include "i915_drv.h"
34 #include "i915_reg.h"
35 #include "i915_trace.h"
36 
37 /**
38  * DOC: GuC-based command submission
39  *
40  * The Scratch registers:
41  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
42  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
43  * triggers an interrupt on the GuC via another register write (0xC4C8).
44  * Firmware writes a success/fail code back to the action register after
45  * processes the request. The kernel driver polls waiting for this update and
46  * then proceeds.
47  *
48  * Command Transport buffers (CTBs):
49  * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
50  * - G2H) are a message interface between the i915 and GuC.
51  *
52  * Context registration:
53  * Before a context can be submitted it must be registered with the GuC via a
54  * H2G. A unique guc_id is associated with each context. The context is either
55  * registered at request creation time (normal operation) or at submission time
56  * (abnormal operation, e.g. after a reset).
57  *
58  * Context submission:
59  * The i915 updates the LRC tail value in memory. The i915 must enable the
60  * scheduling of the context within the GuC for the GuC to actually consider it.
61  * Therefore, the first time a disabled context is submitted we use a schedule
62  * enable H2G, while follow up submissions are done via the context submit H2G,
63  * which informs the GuC that a previously enabled context has new work
64  * available.
65  *
66  * Context unpin:
67  * To unpin a context a H2G is used to disable scheduling. When the
68  * corresponding G2H returns indicating the scheduling disable operation has
69  * completed it is safe to unpin the context. While a disable is in flight it
70  * isn't safe to resubmit the context so a fence is used to stall all future
71  * requests of that context until the G2H is returned. Because this interaction
72  * with the GuC takes a non-zero amount of time we delay the disabling of
73  * scheduling after the pin count goes to zero by a configurable period of time
74  * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of
75  * time to resubmit something on the context before doing this costly operation.
76  * This delay is only done if the context isn't closed and the guc_id usage is
77  * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD).
78  *
79  * Context deregistration:
80  * Before a context can be destroyed or if we steal its guc_id we must
81  * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
82  * safe to submit anything to this guc_id until the deregister completes so a
83  * fence is used to stall all requests associated with this guc_id until the
84  * corresponding G2H returns indicating the guc_id has been deregistered.
85  *
86  * submission_state.guc_ids:
87  * Unique number associated with private GuC context data passed in during
88  * context registration / submission / deregistration. 64k available. Simple ida
89  * is used for allocation.
90  *
91  * Stealing guc_ids:
92  * If no guc_ids are available they can be stolen from another context at
93  * request creation time if that context is unpinned. If a guc_id can't be found
94  * we punt this problem to the user as we believe this is near impossible to hit
95  * during normal use cases.
96  *
97  * Locking:
98  * In the GuC submission code we have 3 basic spin locks which protect
99  * everything. Details about each below.
100  *
101  * sched_engine->lock
102  * This is the submission lock for all contexts that share an i915 schedule
103  * engine (sched_engine), thus only one of the contexts which share a
104  * sched_engine can be submitting at a time. Currently only one sched_engine is
105  * used for all of GuC submission but that could change in the future.
106  *
107  * guc->submission_state.lock
108  * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
109  * list.
110  *
111  * ce->guc_state.lock
112  * Protects everything under ce->guc_state. Ensures that a context is in the
113  * correct state before issuing a H2G. e.g. We don't issue a schedule disable
114  * on a disabled context (bad idea), we don't issue a schedule enable when a
115  * schedule disable is in flight, etc... Also protects list of inflight requests
116  * on the context and the priority management state. Lock is individual to each
117  * context.
118  *
119  * Lock ordering rules:
120  * sched_engine->lock -> ce->guc_state.lock
121  * guc->submission_state.lock -> ce->guc_state.lock
122  *
123  * Reset races:
124  * When a full GT reset is triggered it is assumed that some G2H responses to
125  * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
126  * fatal as we do certain operations upon receiving a G2H (e.g. destroy
127  * contexts, release guc_ids, etc...). When this occurs we can scrub the
128  * context state and cleanup appropriately, however this is quite racey.
129  * To avoid races, the reset code must disable submission before scrubbing for
130  * the missing G2H, while the submission code must check for submission being
131  * disabled and skip sending H2Gs and updating context states when it is. Both
132  * sides must also make sure to hold the relevant locks.
133  */
134 
135 /* GuC Virtual Engine */
136 struct guc_virtual_engine {
137 	struct intel_engine_cs base;
138 	struct intel_context context;
139 };
140 
141 static struct intel_context *
142 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
143 		   unsigned long flags);
144 
145 static struct intel_context *
146 guc_create_parallel(struct intel_engine_cs **engines,
147 		    unsigned int num_siblings,
148 		    unsigned int width);
149 
150 #define GUC_REQUEST_SIZE 64 /* bytes */
151 
152 /*
153  * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
154  * per the GuC submission interface. A different allocation algorithm is used
155  * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
156  * partition the guc_id space. We believe the number of multi-lrc contexts in
157  * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
158  * multi-lrc.
159  */
160 #define NUMBER_MULTI_LRC_GUC_ID(guc)	\
161 	((guc)->submission_state.num_guc_ids / 16)
162 
163 /*
164  * Below is a set of functions which control the GuC scheduling state which
165  * require a lock.
166  */
167 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER	BIT(0)
168 #define SCHED_STATE_DESTROYED				BIT(1)
169 #define SCHED_STATE_PENDING_DISABLE			BIT(2)
170 #define SCHED_STATE_BANNED				BIT(3)
171 #define SCHED_STATE_ENABLED				BIT(4)
172 #define SCHED_STATE_PENDING_ENABLE			BIT(5)
173 #define SCHED_STATE_REGISTERED				BIT(6)
174 #define SCHED_STATE_POLICY_REQUIRED			BIT(7)
175 #define SCHED_STATE_CLOSED				BIT(8)
176 #define SCHED_STATE_BLOCKED_SHIFT			9
177 #define SCHED_STATE_BLOCKED		BIT(SCHED_STATE_BLOCKED_SHIFT)
178 #define SCHED_STATE_BLOCKED_MASK	(0xfff << SCHED_STATE_BLOCKED_SHIFT)
179 
180 static inline void init_sched_state(struct intel_context *ce)
181 {
182 	lockdep_assert_held(&ce->guc_state.lock);
183 	ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
184 }
185 
186 /*
187  * Kernel contexts can have SCHED_STATE_REGISTERED after suspend.
188  * A context close can race with the submission path, so SCHED_STATE_CLOSED
189  * can be set immediately before we try to register.
190  */
191 #define SCHED_STATE_VALID_INIT \
192 	(SCHED_STATE_BLOCKED_MASK | \
193 	 SCHED_STATE_CLOSED | \
194 	 SCHED_STATE_REGISTERED)
195 
196 __maybe_unused
197 static bool sched_state_is_init(struct intel_context *ce)
198 {
199 	return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT);
200 }
201 
202 static inline bool
203 context_wait_for_deregister_to_register(struct intel_context *ce)
204 {
205 	return ce->guc_state.sched_state &
206 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
207 }
208 
209 static inline void
210 set_context_wait_for_deregister_to_register(struct intel_context *ce)
211 {
212 	lockdep_assert_held(&ce->guc_state.lock);
213 	ce->guc_state.sched_state |=
214 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
215 }
216 
217 static inline void
218 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
219 {
220 	lockdep_assert_held(&ce->guc_state.lock);
221 	ce->guc_state.sched_state &=
222 		~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
223 }
224 
225 static inline bool
226 context_destroyed(struct intel_context *ce)
227 {
228 	return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
229 }
230 
231 static inline void
232 set_context_destroyed(struct intel_context *ce)
233 {
234 	lockdep_assert_held(&ce->guc_state.lock);
235 	ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
236 }
237 
238 static inline bool context_pending_disable(struct intel_context *ce)
239 {
240 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
241 }
242 
243 static inline void set_context_pending_disable(struct intel_context *ce)
244 {
245 	lockdep_assert_held(&ce->guc_state.lock);
246 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
247 }
248 
249 static inline void clr_context_pending_disable(struct intel_context *ce)
250 {
251 	lockdep_assert_held(&ce->guc_state.lock);
252 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
253 }
254 
255 static inline bool context_banned(struct intel_context *ce)
256 {
257 	return ce->guc_state.sched_state & SCHED_STATE_BANNED;
258 }
259 
260 static inline void set_context_banned(struct intel_context *ce)
261 {
262 	lockdep_assert_held(&ce->guc_state.lock);
263 	ce->guc_state.sched_state |= SCHED_STATE_BANNED;
264 }
265 
266 static inline void clr_context_banned(struct intel_context *ce)
267 {
268 	lockdep_assert_held(&ce->guc_state.lock);
269 	ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
270 }
271 
272 static inline bool context_enabled(struct intel_context *ce)
273 {
274 	return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
275 }
276 
277 static inline void set_context_enabled(struct intel_context *ce)
278 {
279 	lockdep_assert_held(&ce->guc_state.lock);
280 	ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
281 }
282 
283 static inline void clr_context_enabled(struct intel_context *ce)
284 {
285 	lockdep_assert_held(&ce->guc_state.lock);
286 	ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
287 }
288 
289 static inline bool context_pending_enable(struct intel_context *ce)
290 {
291 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
292 }
293 
294 static inline void set_context_pending_enable(struct intel_context *ce)
295 {
296 	lockdep_assert_held(&ce->guc_state.lock);
297 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
298 }
299 
300 static inline void clr_context_pending_enable(struct intel_context *ce)
301 {
302 	lockdep_assert_held(&ce->guc_state.lock);
303 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
304 }
305 
306 static inline bool context_registered(struct intel_context *ce)
307 {
308 	return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
309 }
310 
311 static inline void set_context_registered(struct intel_context *ce)
312 {
313 	lockdep_assert_held(&ce->guc_state.lock);
314 	ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
315 }
316 
317 static inline void clr_context_registered(struct intel_context *ce)
318 {
319 	lockdep_assert_held(&ce->guc_state.lock);
320 	ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
321 }
322 
323 static inline bool context_policy_required(struct intel_context *ce)
324 {
325 	return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
326 }
327 
328 static inline void set_context_policy_required(struct intel_context *ce)
329 {
330 	lockdep_assert_held(&ce->guc_state.lock);
331 	ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
332 }
333 
334 static inline void clr_context_policy_required(struct intel_context *ce)
335 {
336 	lockdep_assert_held(&ce->guc_state.lock);
337 	ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
338 }
339 
340 static inline bool context_close_done(struct intel_context *ce)
341 {
342 	return ce->guc_state.sched_state & SCHED_STATE_CLOSED;
343 }
344 
345 static inline void set_context_close_done(struct intel_context *ce)
346 {
347 	lockdep_assert_held(&ce->guc_state.lock);
348 	ce->guc_state.sched_state |= SCHED_STATE_CLOSED;
349 }
350 
351 static inline u32 context_blocked(struct intel_context *ce)
352 {
353 	return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
354 		SCHED_STATE_BLOCKED_SHIFT;
355 }
356 
357 static inline void incr_context_blocked(struct intel_context *ce)
358 {
359 	lockdep_assert_held(&ce->guc_state.lock);
360 
361 	ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
362 
363 	GEM_BUG_ON(!context_blocked(ce));	/* Overflow check */
364 }
365 
366 static inline void decr_context_blocked(struct intel_context *ce)
367 {
368 	lockdep_assert_held(&ce->guc_state.lock);
369 
370 	GEM_BUG_ON(!context_blocked(ce));	/* Underflow check */
371 
372 	ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
373 }
374 
375 static struct intel_context *
376 request_to_scheduling_context(struct i915_request *rq)
377 {
378 	return intel_context_to_parent(rq->context);
379 }
380 
381 static inline bool context_guc_id_invalid(struct intel_context *ce)
382 {
383 	return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
384 }
385 
386 static inline void set_context_guc_id_invalid(struct intel_context *ce)
387 {
388 	ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
389 }
390 
391 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
392 {
393 	return &ce->engine->gt->uc.guc;
394 }
395 
396 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
397 {
398 	return rb_entry(rb, struct i915_priolist, node);
399 }
400 
401 /*
402  * When using multi-lrc submission a scratch memory area is reserved in the
403  * parent's context state for the process descriptor, work queue, and handshake
404  * between the parent + children contexts to insert safe preemption points
405  * between each of the BBs. Currently the scratch area is sized to a page.
406  *
407  * The layout of this scratch area is below:
408  * 0						guc_process_desc
409  * + sizeof(struct guc_process_desc)		child go
410  * + CACHELINE_BYTES				child join[0]
411  * ...
412  * + CACHELINE_BYTES				child join[n - 1]
413  * ...						unused
414  * PARENT_SCRATCH_SIZE / 2			work queue start
415  * ...						work queue
416  * PARENT_SCRATCH_SIZE - 1			work queue end
417  */
418 #define WQ_SIZE			(PARENT_SCRATCH_SIZE / 2)
419 #define WQ_OFFSET		(PARENT_SCRATCH_SIZE - WQ_SIZE)
420 
421 struct sync_semaphore {
422 	u32 semaphore;
423 	u8 unused[CACHELINE_BYTES - sizeof(u32)];
424 };
425 
426 struct parent_scratch {
427 	union guc_descs {
428 		struct guc_sched_wq_desc wq_desc;
429 		struct guc_process_desc_v69 pdesc;
430 	} descs;
431 
432 	struct sync_semaphore go;
433 	struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
434 
435 	u8 unused[WQ_OFFSET - sizeof(union guc_descs) -
436 		sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
437 
438 	u32 wq[WQ_SIZE / sizeof(u32)];
439 };
440 
441 static u32 __get_parent_scratch_offset(struct intel_context *ce)
442 {
443 	GEM_BUG_ON(!ce->parallel.guc.parent_page);
444 
445 	return ce->parallel.guc.parent_page * PAGE_SIZE;
446 }
447 
448 static u32 __get_wq_offset(struct intel_context *ce)
449 {
450 	BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
451 
452 	return __get_parent_scratch_offset(ce) + WQ_OFFSET;
453 }
454 
455 static struct parent_scratch *
456 __get_parent_scratch(struct intel_context *ce)
457 {
458 	BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
459 	BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
460 
461 	/*
462 	 * Need to subtract LRC_STATE_OFFSET here as the
463 	 * parallel.guc.parent_page is the offset into ce->state while
464 	 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
465 	 */
466 	return (struct parent_scratch *)
467 		(ce->lrc_reg_state +
468 		 ((__get_parent_scratch_offset(ce) -
469 		   LRC_STATE_OFFSET) / sizeof(u32)));
470 }
471 
472 static struct guc_process_desc_v69 *
473 __get_process_desc_v69(struct intel_context *ce)
474 {
475 	struct parent_scratch *ps = __get_parent_scratch(ce);
476 
477 	return &ps->descs.pdesc;
478 }
479 
480 static struct guc_sched_wq_desc *
481 __get_wq_desc_v70(struct intel_context *ce)
482 {
483 	struct parent_scratch *ps = __get_parent_scratch(ce);
484 
485 	return &ps->descs.wq_desc;
486 }
487 
488 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size)
489 {
490 	/*
491 	 * Check for space in work queue. Caching a value of head pointer in
492 	 * intel_context structure in order reduce the number accesses to shared
493 	 * GPU memory which may be across a PCIe bus.
494 	 */
495 #define AVAILABLE_SPACE	\
496 	CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
497 	if (wqi_size > AVAILABLE_SPACE) {
498 		ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head);
499 
500 		if (wqi_size > AVAILABLE_SPACE)
501 			return NULL;
502 	}
503 #undef AVAILABLE_SPACE
504 
505 	return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
506 }
507 
508 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
509 {
510 	struct intel_context *ce = xa_load(&guc->context_lookup, id);
511 
512 	GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
513 
514 	return ce;
515 }
516 
517 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index)
518 {
519 	struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69;
520 
521 	if (!base)
522 		return NULL;
523 
524 	GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID);
525 
526 	return &base[index];
527 }
528 
529 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc)
530 {
531 	u32 size;
532 	int ret;
533 
534 	size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) *
535 			  GUC_MAX_CONTEXT_ID);
536 	ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69,
537 					     (void **)&guc->lrc_desc_pool_vaddr_v69);
538 	if (ret)
539 		return ret;
540 
541 	return 0;
542 }
543 
544 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc)
545 {
546 	if (!guc->lrc_desc_pool_vaddr_v69)
547 		return;
548 
549 	guc->lrc_desc_pool_vaddr_v69 = NULL;
550 	i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP);
551 }
552 
553 static inline bool guc_submission_initialized(struct intel_guc *guc)
554 {
555 	return guc->submission_initialized;
556 }
557 
558 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id)
559 {
560 	struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id);
561 
562 	if (desc)
563 		memset(desc, 0, sizeof(*desc));
564 }
565 
566 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
567 {
568 	return __get_context(guc, id);
569 }
570 
571 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
572 				      struct intel_context *ce)
573 {
574 	unsigned long flags;
575 
576 	/*
577 	 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
578 	 * lower level functions directly.
579 	 */
580 	xa_lock_irqsave(&guc->context_lookup, flags);
581 	__xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
582 	xa_unlock_irqrestore(&guc->context_lookup, flags);
583 }
584 
585 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
586 {
587 	unsigned long flags;
588 
589 	if (unlikely(!guc_submission_initialized(guc)))
590 		return;
591 
592 	_reset_lrc_desc_v69(guc, id);
593 
594 	/*
595 	 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
596 	 * the lower level functions directly.
597 	 */
598 	xa_lock_irqsave(&guc->context_lookup, flags);
599 	__xa_erase(&guc->context_lookup, id);
600 	xa_unlock_irqrestore(&guc->context_lookup, flags);
601 }
602 
603 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
604 {
605 	if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
606 		wake_up_all(&guc->ct.wq);
607 }
608 
609 static int guc_submission_send_busy_loop(struct intel_guc *guc,
610 					 const u32 *action,
611 					 u32 len,
612 					 u32 g2h_len_dw,
613 					 bool loop)
614 {
615 	/*
616 	 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
617 	 * so we don't handle the case where we don't get a reply because we
618 	 * aborted the send due to the channel being busy.
619 	 */
620 	GEM_BUG_ON(g2h_len_dw && !loop);
621 
622 	if (g2h_len_dw)
623 		atomic_inc(&guc->outstanding_submission_g2h);
624 
625 	return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
626 }
627 
628 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
629 				   atomic_t *wait_var,
630 				   bool interruptible,
631 				   long timeout)
632 {
633 	const int state = interruptible ?
634 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
635 	DEFINE_WAIT(wait);
636 
637 	might_sleep();
638 	GEM_BUG_ON(timeout < 0);
639 
640 	if (!atomic_read(wait_var))
641 		return 0;
642 
643 	if (!timeout)
644 		return -ETIME;
645 
646 	for (;;) {
647 		prepare_to_wait(&guc->ct.wq, &wait, state);
648 
649 		if (!atomic_read(wait_var))
650 			break;
651 
652 		if (signal_pending_state(state, current)) {
653 			timeout = -EINTR;
654 			break;
655 		}
656 
657 		if (!timeout) {
658 			timeout = -ETIME;
659 			break;
660 		}
661 
662 		timeout = io_schedule_timeout(timeout);
663 	}
664 	finish_wait(&guc->ct.wq, &wait);
665 
666 	return (timeout < 0) ? timeout : 0;
667 }
668 
669 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
670 {
671 	if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
672 		return 0;
673 
674 	return intel_guc_wait_for_pending_msg(guc,
675 					      &guc->outstanding_submission_g2h,
676 					      true, timeout);
677 }
678 
679 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop);
680 static int try_context_registration(struct intel_context *ce, bool loop);
681 
682 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
683 {
684 	int err = 0;
685 	struct intel_context *ce = request_to_scheduling_context(rq);
686 	u32 action[3];
687 	int len = 0;
688 	u32 g2h_len_dw = 0;
689 	bool enabled;
690 
691 	lockdep_assert_held(&rq->engine->sched_engine->lock);
692 
693 	/*
694 	 * Corner case where requests were sitting in the priority list or a
695 	 * request resubmitted after the context was banned.
696 	 */
697 	if (unlikely(!intel_context_is_schedulable(ce))) {
698 		i915_request_put(i915_request_mark_eio(rq));
699 		intel_engine_signal_breadcrumbs(ce->engine);
700 		return 0;
701 	}
702 
703 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
704 	GEM_BUG_ON(context_guc_id_invalid(ce));
705 
706 	if (context_policy_required(ce)) {
707 		err = guc_context_policy_init_v70(ce, false);
708 		if (err)
709 			return err;
710 	}
711 
712 	spin_lock(&ce->guc_state.lock);
713 
714 	/*
715 	 * The request / context will be run on the hardware when scheduling
716 	 * gets enabled in the unblock. For multi-lrc we still submit the
717 	 * context to move the LRC tails.
718 	 */
719 	if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
720 		goto out;
721 
722 	enabled = context_enabled(ce) || context_blocked(ce);
723 
724 	if (!enabled) {
725 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
726 		action[len++] = ce->guc_id.id;
727 		action[len++] = GUC_CONTEXT_ENABLE;
728 		set_context_pending_enable(ce);
729 		intel_context_get(ce);
730 		g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
731 	} else {
732 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
733 		action[len++] = ce->guc_id.id;
734 	}
735 
736 	err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
737 	if (!enabled && !err) {
738 		trace_intel_context_sched_enable(ce);
739 		atomic_inc(&guc->outstanding_submission_g2h);
740 		set_context_enabled(ce);
741 
742 		/*
743 		 * Without multi-lrc KMD does the submission step (moving the
744 		 * lrc tail) so enabling scheduling is sufficient to submit the
745 		 * context. This isn't the case in multi-lrc submission as the
746 		 * GuC needs to move the tails, hence the need for another H2G
747 		 * to submit a multi-lrc context after enabling scheduling.
748 		 */
749 		if (intel_context_is_parent(ce)) {
750 			action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
751 			err = intel_guc_send_nb(guc, action, len - 1, 0);
752 		}
753 	} else if (!enabled) {
754 		clr_context_pending_enable(ce);
755 		intel_context_put(ce);
756 	}
757 	if (likely(!err))
758 		trace_i915_request_guc_submit(rq);
759 
760 out:
761 	spin_unlock(&ce->guc_state.lock);
762 	return err;
763 }
764 
765 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
766 {
767 	int ret = __guc_add_request(guc, rq);
768 
769 	if (unlikely(ret == -EBUSY)) {
770 		guc->stalled_request = rq;
771 		guc->submission_stall_reason = STALL_ADD_REQUEST;
772 	}
773 
774 	return ret;
775 }
776 
777 static inline void guc_set_lrc_tail(struct i915_request *rq)
778 {
779 	rq->context->lrc_reg_state[CTX_RING_TAIL] =
780 		intel_ring_set_tail(rq->ring, rq->tail);
781 }
782 
783 static inline int rq_prio(const struct i915_request *rq)
784 {
785 	return rq->sched.attr.priority;
786 }
787 
788 static bool is_multi_lrc_rq(struct i915_request *rq)
789 {
790 	return intel_context_is_parallel(rq->context);
791 }
792 
793 static bool can_merge_rq(struct i915_request *rq,
794 			 struct i915_request *last)
795 {
796 	return request_to_scheduling_context(rq) ==
797 		request_to_scheduling_context(last);
798 }
799 
800 static u32 wq_space_until_wrap(struct intel_context *ce)
801 {
802 	return (WQ_SIZE - ce->parallel.guc.wqi_tail);
803 }
804 
805 static void write_wqi(struct intel_context *ce, u32 wqi_size)
806 {
807 	BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
808 
809 	/*
810 	 * Ensure WQI are visible before updating tail
811 	 */
812 	intel_guc_write_barrier(ce_to_guc(ce));
813 
814 	ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
815 		(WQ_SIZE - 1);
816 	WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail);
817 }
818 
819 static int guc_wq_noop_append(struct intel_context *ce)
820 {
821 	u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce));
822 	u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
823 
824 	if (!wqi)
825 		return -EBUSY;
826 
827 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
828 
829 	*wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
830 		FIELD_PREP(WQ_LEN_MASK, len_dw);
831 	ce->parallel.guc.wqi_tail = 0;
832 
833 	return 0;
834 }
835 
836 static int __guc_wq_item_append(struct i915_request *rq)
837 {
838 	struct intel_context *ce = request_to_scheduling_context(rq);
839 	struct intel_context *child;
840 	unsigned int wqi_size = (ce->parallel.number_children + 4) *
841 		sizeof(u32);
842 	u32 *wqi;
843 	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
844 	int ret;
845 
846 	/* Ensure context is in correct state updating work queue */
847 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
848 	GEM_BUG_ON(context_guc_id_invalid(ce));
849 	GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
850 	GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
851 
852 	/* Insert NOOP if this work queue item will wrap the tail pointer. */
853 	if (wqi_size > wq_space_until_wrap(ce)) {
854 		ret = guc_wq_noop_append(ce);
855 		if (ret)
856 			return ret;
857 	}
858 
859 	wqi = get_wq_pointer(ce, wqi_size);
860 	if (!wqi)
861 		return -EBUSY;
862 
863 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
864 
865 	*wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
866 		FIELD_PREP(WQ_LEN_MASK, len_dw);
867 	*wqi++ = ce->lrc.lrca;
868 	*wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
869 	       FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
870 	*wqi++ = 0;	/* fence_id */
871 	for_each_child(ce, child)
872 		*wqi++ = child->ring->tail / sizeof(u64);
873 
874 	write_wqi(ce, wqi_size);
875 
876 	return 0;
877 }
878 
879 static int guc_wq_item_append(struct intel_guc *guc,
880 			      struct i915_request *rq)
881 {
882 	struct intel_context *ce = request_to_scheduling_context(rq);
883 	int ret;
884 
885 	if (unlikely(!intel_context_is_schedulable(ce)))
886 		return 0;
887 
888 	ret = __guc_wq_item_append(rq);
889 	if (unlikely(ret == -EBUSY)) {
890 		guc->stalled_request = rq;
891 		guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
892 	}
893 
894 	return ret;
895 }
896 
897 static bool multi_lrc_submit(struct i915_request *rq)
898 {
899 	struct intel_context *ce = request_to_scheduling_context(rq);
900 
901 	intel_ring_set_tail(rq->ring, rq->tail);
902 
903 	/*
904 	 * We expect the front end (execbuf IOCTL) to set this flag on the last
905 	 * request generated from a multi-BB submission. This indicates to the
906 	 * backend (GuC interface) that we should submit this context thus
907 	 * submitting all the requests generated in parallel.
908 	 */
909 	return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
910 	       !intel_context_is_schedulable(ce);
911 }
912 
913 static int guc_dequeue_one_context(struct intel_guc *guc)
914 {
915 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
916 	struct i915_request *last = NULL;
917 	bool submit = false;
918 	struct rb_node *rb;
919 	int ret;
920 
921 	lockdep_assert_held(&sched_engine->lock);
922 
923 	if (guc->stalled_request) {
924 		submit = true;
925 		last = guc->stalled_request;
926 
927 		switch (guc->submission_stall_reason) {
928 		case STALL_REGISTER_CONTEXT:
929 			goto register_context;
930 		case STALL_MOVE_LRC_TAIL:
931 			goto move_lrc_tail;
932 		case STALL_ADD_REQUEST:
933 			goto add_request;
934 		default:
935 			MISSING_CASE(guc->submission_stall_reason);
936 		}
937 	}
938 
939 	while ((rb = rb_first_cached(&sched_engine->queue))) {
940 		struct i915_priolist *p = to_priolist(rb);
941 		struct i915_request *rq, *rn;
942 
943 		priolist_for_each_request_consume(rq, rn, p) {
944 			if (last && !can_merge_rq(rq, last))
945 				goto register_context;
946 
947 			list_del_init(&rq->sched.link);
948 
949 			__i915_request_submit(rq);
950 
951 			trace_i915_request_in(rq, 0);
952 			last = rq;
953 
954 			if (is_multi_lrc_rq(rq)) {
955 				/*
956 				 * We need to coalesce all multi-lrc requests in
957 				 * a relationship into a single H2G. We are
958 				 * guaranteed that all of these requests will be
959 				 * submitted sequentially.
960 				 */
961 				if (multi_lrc_submit(rq)) {
962 					submit = true;
963 					goto register_context;
964 				}
965 			} else {
966 				submit = true;
967 			}
968 		}
969 
970 		rb_erase_cached(&p->node, &sched_engine->queue);
971 		i915_priolist_free(p);
972 	}
973 
974 register_context:
975 	if (submit) {
976 		struct intel_context *ce = request_to_scheduling_context(last);
977 
978 		if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
979 			     intel_context_is_schedulable(ce))) {
980 			ret = try_context_registration(ce, false);
981 			if (unlikely(ret == -EPIPE)) {
982 				goto deadlk;
983 			} else if (ret == -EBUSY) {
984 				guc->stalled_request = last;
985 				guc->submission_stall_reason =
986 					STALL_REGISTER_CONTEXT;
987 				goto schedule_tasklet;
988 			} else if (ret != 0) {
989 				GEM_WARN_ON(ret);	/* Unexpected */
990 				goto deadlk;
991 			}
992 		}
993 
994 move_lrc_tail:
995 		if (is_multi_lrc_rq(last)) {
996 			ret = guc_wq_item_append(guc, last);
997 			if (ret == -EBUSY) {
998 				goto schedule_tasklet;
999 			} else if (ret != 0) {
1000 				GEM_WARN_ON(ret);	/* Unexpected */
1001 				goto deadlk;
1002 			}
1003 		} else {
1004 			guc_set_lrc_tail(last);
1005 		}
1006 
1007 add_request:
1008 		ret = guc_add_request(guc, last);
1009 		if (unlikely(ret == -EPIPE)) {
1010 			goto deadlk;
1011 		} else if (ret == -EBUSY) {
1012 			goto schedule_tasklet;
1013 		} else if (ret != 0) {
1014 			GEM_WARN_ON(ret);	/* Unexpected */
1015 			goto deadlk;
1016 		}
1017 	}
1018 
1019 	guc->stalled_request = NULL;
1020 	guc->submission_stall_reason = STALL_NONE;
1021 	return submit;
1022 
1023 deadlk:
1024 	sched_engine->tasklet.callback = NULL;
1025 	tasklet_disable_nosync(&sched_engine->tasklet);
1026 	return false;
1027 
1028 schedule_tasklet:
1029 	tasklet_schedule(&sched_engine->tasklet);
1030 	return false;
1031 }
1032 
1033 static void guc_submission_tasklet(struct tasklet_struct *t)
1034 {
1035 	struct i915_sched_engine *sched_engine =
1036 		from_tasklet(sched_engine, t, tasklet);
1037 	unsigned long flags;
1038 	bool loop;
1039 
1040 	spin_lock_irqsave(&sched_engine->lock, flags);
1041 
1042 	do {
1043 		loop = guc_dequeue_one_context(sched_engine->private_data);
1044 	} while (loop);
1045 
1046 	i915_sched_engine_reset_on_empty(sched_engine);
1047 
1048 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1049 }
1050 
1051 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
1052 {
1053 	if (iir & GT_RENDER_USER_INTERRUPT)
1054 		intel_engine_signal_breadcrumbs(engine);
1055 }
1056 
1057 static void __guc_context_destroy(struct intel_context *ce);
1058 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
1059 static void guc_signal_context_fence(struct intel_context *ce);
1060 static void guc_cancel_context_requests(struct intel_context *ce);
1061 static void guc_blocked_fence_complete(struct intel_context *ce);
1062 
1063 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1064 {
1065 	struct intel_context *ce;
1066 	unsigned long index, flags;
1067 	bool pending_disable, pending_enable, deregister, destroyed, banned;
1068 
1069 	xa_lock_irqsave(&guc->context_lookup, flags);
1070 	xa_for_each(&guc->context_lookup, index, ce) {
1071 		/*
1072 		 * Corner case where the ref count on the object is zero but and
1073 		 * deregister G2H was lost. In this case we don't touch the ref
1074 		 * count and finish the destroy of the context.
1075 		 */
1076 		bool do_put = kref_get_unless_zero(&ce->ref);
1077 
1078 		xa_unlock(&guc->context_lookup);
1079 
1080 		if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
1081 		    (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) {
1082 			/* successful cancel so jump straight to close it */
1083 			intel_context_sched_disable_unpin(ce);
1084 		}
1085 
1086 		spin_lock(&ce->guc_state.lock);
1087 
1088 		/*
1089 		 * Once we are at this point submission_disabled() is guaranteed
1090 		 * to be visible to all callers who set the below flags (see above
1091 		 * flush and flushes in reset_prepare). If submission_disabled()
1092 		 * is set, the caller shouldn't set these flags.
1093 		 */
1094 
1095 		destroyed = context_destroyed(ce);
1096 		pending_enable = context_pending_enable(ce);
1097 		pending_disable = context_pending_disable(ce);
1098 		deregister = context_wait_for_deregister_to_register(ce);
1099 		banned = context_banned(ce);
1100 		init_sched_state(ce);
1101 
1102 		spin_unlock(&ce->guc_state.lock);
1103 
1104 		if (pending_enable || destroyed || deregister) {
1105 			decr_outstanding_submission_g2h(guc);
1106 			if (deregister)
1107 				guc_signal_context_fence(ce);
1108 			if (destroyed) {
1109 				intel_gt_pm_put_async(guc_to_gt(guc));
1110 				release_guc_id(guc, ce);
1111 				__guc_context_destroy(ce);
1112 			}
1113 			if (pending_enable || deregister)
1114 				intel_context_put(ce);
1115 		}
1116 
1117 		/* Not mutualy exclusive with above if statement. */
1118 		if (pending_disable) {
1119 			guc_signal_context_fence(ce);
1120 			if (banned) {
1121 				guc_cancel_context_requests(ce);
1122 				intel_engine_signal_breadcrumbs(ce->engine);
1123 			}
1124 			intel_context_sched_disable_unpin(ce);
1125 			decr_outstanding_submission_g2h(guc);
1126 
1127 			spin_lock(&ce->guc_state.lock);
1128 			guc_blocked_fence_complete(ce);
1129 			spin_unlock(&ce->guc_state.lock);
1130 
1131 			intel_context_put(ce);
1132 		}
1133 
1134 		if (do_put)
1135 			intel_context_put(ce);
1136 		xa_lock(&guc->context_lookup);
1137 	}
1138 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1139 }
1140 
1141 /*
1142  * GuC stores busyness stats for each engine at context in/out boundaries. A
1143  * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1144  * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1145  * GuC.
1146  *
1147  * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1148  * is valid (!= ~0) and start is non-zero, the engine is considered to be
1149  * active. For an active engine total busyness = total + (now - start), where
1150  * 'now' is the time at which the busyness is sampled. For inactive engine,
1151  * total busyness = total.
1152  *
1153  * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1154  *
1155  * The start and total values provided by GuC are 32 bits and wrap around in a
1156  * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1157  * increasing ns values, there is a need for this implementation to account for
1158  * overflows and extend the GuC provided values to 64 bits before returning
1159  * busyness to the user. In order to do that, a worker runs periodically at
1160  * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1161  * 27 seconds for a gt clock frequency of 19.2 MHz).
1162  */
1163 
1164 #define WRAP_TIME_CLKS U32_MAX
1165 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1166 
1167 static void
1168 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1169 {
1170 	u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1171 	u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1172 
1173 	if (new_start == lower_32_bits(*prev_start))
1174 		return;
1175 
1176 	/*
1177 	 * When gt is unparked, we update the gt timestamp and start the ping
1178 	 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1179 	 * is unparked, all switched in contexts will have a start time that is
1180 	 * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1181 	 *
1182 	 * If neither gt_stamp nor new_start has rolled over, then the
1183 	 * gt_stamp_hi does not need to be adjusted, however if one of them has
1184 	 * rolled over, we need to adjust gt_stamp_hi accordingly.
1185 	 *
1186 	 * The below conditions address the cases of new_start rollover and
1187 	 * gt_stamp_last rollover respectively.
1188 	 */
1189 	if (new_start < gt_stamp_last &&
1190 	    (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1191 		gt_stamp_hi++;
1192 
1193 	if (new_start > gt_stamp_last &&
1194 	    (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1195 		gt_stamp_hi--;
1196 
1197 	*prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1198 }
1199 
1200 #define record_read(map_, field_) \
1201 	iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1202 
1203 /*
1204  * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1205  * we run into a race where the value read is inconsistent. Sometimes the
1206  * inconsistency is in reading the upper MSB bytes of the last_in value when
1207  * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1208  * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1209  * determine validity of these values. Instead we read the values multiple times
1210  * until they are consistent. In test runs, 3 attempts results in consistent
1211  * values. The upper bound is set to 6 attempts and may need to be tuned as per
1212  * any new occurences.
1213  */
1214 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1215 				      u32 *last_in, u32 *id, u32 *total)
1216 {
1217 	struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1218 	int i = 0;
1219 
1220 	do {
1221 		*last_in = record_read(&rec_map, last_switch_in_stamp);
1222 		*id = record_read(&rec_map, current_context_index);
1223 		*total = record_read(&rec_map, total_runtime);
1224 
1225 		if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1226 		    record_read(&rec_map, current_context_index) == *id &&
1227 		    record_read(&rec_map, total_runtime) == *total)
1228 			break;
1229 	} while (++i < 6);
1230 }
1231 
1232 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1233 {
1234 	struct intel_engine_guc_stats *stats = &engine->stats.guc;
1235 	struct intel_guc *guc = &engine->gt->uc.guc;
1236 	u32 last_switch, ctx_id, total;
1237 
1238 	lockdep_assert_held(&guc->timestamp.lock);
1239 
1240 	__get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1241 
1242 	stats->running = ctx_id != ~0U && last_switch;
1243 	if (stats->running)
1244 		__extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1245 
1246 	/*
1247 	 * Instead of adjusting the total for overflow, just add the
1248 	 * difference from previous sample stats->total_gt_clks
1249 	 */
1250 	if (total && total != ~0U) {
1251 		stats->total_gt_clks += (u32)(total - stats->prev_total);
1252 		stats->prev_total = total;
1253 	}
1254 }
1255 
1256 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1257 {
1258 	intel_wakeref_t wakeref;
1259 	u32 reg, shift;
1260 
1261 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1262 		reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1263 
1264 	shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
1265 		GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;
1266 
1267 	return 3 - shift;
1268 }
1269 
1270 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1271 {
1272 	struct intel_gt *gt = guc_to_gt(guc);
1273 	u32 gt_stamp_lo, gt_stamp_hi;
1274 	u64 gpm_ts;
1275 
1276 	lockdep_assert_held(&guc->timestamp.lock);
1277 
1278 	gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1279 	gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1280 					  MISC_STATUS1) >> guc->timestamp.shift;
1281 	gt_stamp_lo = lower_32_bits(gpm_ts);
1282 	*now = ktime_get();
1283 
1284 	if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1285 		gt_stamp_hi++;
1286 
1287 	guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1288 }
1289 
1290 /*
1291  * Unlike the execlist mode of submission total and active times are in terms of
1292  * gt clocks. The *now parameter is retained to return the cpu time at which the
1293  * busyness was sampled.
1294  */
1295 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1296 {
1297 	struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1298 	struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1299 	struct intel_gt *gt = engine->gt;
1300 	struct intel_guc *guc = &gt->uc.guc;
1301 	u64 total, gt_stamp_saved;
1302 	unsigned long flags;
1303 	u32 reset_count;
1304 	bool in_reset;
1305 
1306 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1307 
1308 	/*
1309 	 * If a reset happened, we risk reading partially updated engine
1310 	 * busyness from GuC, so we just use the driver stored copy of busyness.
1311 	 * Synchronize with gt reset using reset_count and the
1312 	 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1313 	 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1314 	 * usable by checking the flag afterwards.
1315 	 */
1316 	reset_count = i915_reset_count(gpu_error);
1317 	in_reset = test_bit(I915_RESET_BACKOFF, &gt->reset.flags);
1318 
1319 	*now = ktime_get();
1320 
1321 	/*
1322 	 * The active busyness depends on start_gt_clk and gt_stamp.
1323 	 * gt_stamp is updated by i915 only when gt is awake and the
1324 	 * start_gt_clk is derived from GuC state. To get a consistent
1325 	 * view of activity, we query the GuC state only if gt is awake.
1326 	 */
1327 	if (!in_reset && intel_gt_pm_get_if_awake(gt)) {
1328 		stats_saved = *stats;
1329 		gt_stamp_saved = guc->timestamp.gt_stamp;
1330 		/*
1331 		 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1332 		 * start_gt_clk' calculation below for active engines.
1333 		 */
1334 		guc_update_engine_gt_clks(engine);
1335 		guc_update_pm_timestamp(guc, now);
1336 		intel_gt_pm_put_async(gt);
1337 		if (i915_reset_count(gpu_error) != reset_count) {
1338 			*stats = stats_saved;
1339 			guc->timestamp.gt_stamp = gt_stamp_saved;
1340 		}
1341 	}
1342 
1343 	total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1344 	if (stats->running) {
1345 		u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1346 
1347 		total += intel_gt_clock_interval_to_ns(gt, clk);
1348 	}
1349 
1350 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1351 
1352 	return ns_to_ktime(total);
1353 }
1354 
1355 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1356 {
1357 	struct intel_gt *gt = guc_to_gt(guc);
1358 	struct intel_engine_cs *engine;
1359 	enum intel_engine_id id;
1360 	unsigned long flags;
1361 	ktime_t unused;
1362 
1363 	cancel_delayed_work_sync(&guc->timestamp.work);
1364 
1365 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1366 
1367 	guc_update_pm_timestamp(guc, &unused);
1368 	for_each_engine(engine, gt, id) {
1369 		guc_update_engine_gt_clks(engine);
1370 		engine->stats.guc.prev_total = 0;
1371 	}
1372 
1373 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1374 }
1375 
1376 static void __update_guc_busyness_stats(struct intel_guc *guc)
1377 {
1378 	struct intel_gt *gt = guc_to_gt(guc);
1379 	struct intel_engine_cs *engine;
1380 	enum intel_engine_id id;
1381 	unsigned long flags;
1382 	ktime_t unused;
1383 
1384 	guc->timestamp.last_stat_jiffies = jiffies;
1385 
1386 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1387 
1388 	guc_update_pm_timestamp(guc, &unused);
1389 	for_each_engine(engine, gt, id)
1390 		guc_update_engine_gt_clks(engine);
1391 
1392 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1393 }
1394 
1395 static void guc_timestamp_ping(struct work_struct *wrk)
1396 {
1397 	struct intel_guc *guc = container_of(wrk, typeof(*guc),
1398 					     timestamp.work.work);
1399 	struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1400 	struct intel_gt *gt = guc_to_gt(guc);
1401 	intel_wakeref_t wakeref;
1402 	int srcu, ret;
1403 
1404 	/*
1405 	 * Synchronize with gt reset to make sure the worker does not
1406 	 * corrupt the engine/guc stats. NB: can't actually block waiting
1407 	 * for a reset to complete as the reset requires flushing out
1408 	 * this worker thread if started. So waiting would deadlock.
1409 	 */
1410 	ret = intel_gt_reset_trylock(gt, &srcu);
1411 	if (ret)
1412 		return;
1413 
1414 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
1415 		__update_guc_busyness_stats(guc);
1416 
1417 	intel_gt_reset_unlock(gt, srcu);
1418 
1419 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
1420 			 guc->timestamp.ping_delay);
1421 }
1422 
1423 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1424 {
1425 	u32 offset = intel_guc_engine_usage_offset(guc);
1426 	u32 action[] = {
1427 		INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1428 		offset,
1429 		0,
1430 	};
1431 
1432 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
1433 }
1434 
1435 static void guc_init_engine_stats(struct intel_guc *guc)
1436 {
1437 	struct intel_gt *gt = guc_to_gt(guc);
1438 	intel_wakeref_t wakeref;
1439 
1440 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
1441 			 guc->timestamp.ping_delay);
1442 
1443 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
1444 		int ret = guc_action_enable_usage_stats(guc);
1445 
1446 		if (ret)
1447 			guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret));
1448 	}
1449 }
1450 
1451 void intel_guc_busyness_park(struct intel_gt *gt)
1452 {
1453 	struct intel_guc *guc = &gt->uc.guc;
1454 
1455 	if (!guc_submission_initialized(guc))
1456 		return;
1457 
1458 	/*
1459 	 * There is a race with suspend flow where the worker runs after suspend
1460 	 * and causes an unclaimed register access warning. Cancel the worker
1461 	 * synchronously here.
1462 	 */
1463 	cancel_delayed_work_sync(&guc->timestamp.work);
1464 
1465 	/*
1466 	 * Before parking, we should sample engine busyness stats if we need to.
1467 	 * We can skip it if we are less than half a ping from the last time we
1468 	 * sampled the busyness stats.
1469 	 */
1470 	if (guc->timestamp.last_stat_jiffies &&
1471 	    !time_after(jiffies, guc->timestamp.last_stat_jiffies +
1472 			(guc->timestamp.ping_delay / 2)))
1473 		return;
1474 
1475 	__update_guc_busyness_stats(guc);
1476 }
1477 
1478 void intel_guc_busyness_unpark(struct intel_gt *gt)
1479 {
1480 	struct intel_guc *guc = &gt->uc.guc;
1481 	unsigned long flags;
1482 	ktime_t unused;
1483 
1484 	if (!guc_submission_initialized(guc))
1485 		return;
1486 
1487 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1488 	guc_update_pm_timestamp(guc, &unused);
1489 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1490 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
1491 			 guc->timestamp.ping_delay);
1492 }
1493 
1494 static inline bool
1495 submission_disabled(struct intel_guc *guc)
1496 {
1497 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1498 
1499 	return unlikely(!sched_engine ||
1500 			!__tasklet_is_enabled(&sched_engine->tasklet) ||
1501 			intel_gt_is_wedged(guc_to_gt(guc)));
1502 }
1503 
1504 static void disable_submission(struct intel_guc *guc)
1505 {
1506 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1507 
1508 	if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1509 		GEM_BUG_ON(!guc->ct.enabled);
1510 		__tasklet_disable_sync_once(&sched_engine->tasklet);
1511 		sched_engine->tasklet.callback = NULL;
1512 	}
1513 }
1514 
1515 static void enable_submission(struct intel_guc *guc)
1516 {
1517 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1518 	unsigned long flags;
1519 
1520 	spin_lock_irqsave(&guc->sched_engine->lock, flags);
1521 	sched_engine->tasklet.callback = guc_submission_tasklet;
1522 	wmb();	/* Make sure callback visible */
1523 	if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1524 	    __tasklet_enable(&sched_engine->tasklet)) {
1525 		GEM_BUG_ON(!guc->ct.enabled);
1526 
1527 		/* And kick in case we missed a new request submission. */
1528 		tasklet_hi_schedule(&sched_engine->tasklet);
1529 	}
1530 	spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1531 }
1532 
1533 static void guc_flush_submissions(struct intel_guc *guc)
1534 {
1535 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1536 	unsigned long flags;
1537 
1538 	spin_lock_irqsave(&sched_engine->lock, flags);
1539 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1540 }
1541 
1542 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1543 
1544 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1545 {
1546 	if (unlikely(!guc_submission_initialized(guc))) {
1547 		/* Reset called during driver load? GuC not yet initialised! */
1548 		return;
1549 	}
1550 
1551 	intel_gt_park_heartbeats(guc_to_gt(guc));
1552 	disable_submission(guc);
1553 	guc->interrupts.disable(guc);
1554 	__reset_guc_busyness_stats(guc);
1555 
1556 	/* Flush IRQ handler */
1557 	spin_lock_irq(guc_to_gt(guc)->irq_lock);
1558 	spin_unlock_irq(guc_to_gt(guc)->irq_lock);
1559 
1560 	guc_flush_submissions(guc);
1561 	guc_flush_destroyed_contexts(guc);
1562 	flush_work(&guc->ct.requests.worker);
1563 
1564 	scrub_guc_desc_for_outstanding_g2h(guc);
1565 }
1566 
1567 static struct intel_engine_cs *
1568 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1569 {
1570 	struct intel_engine_cs *engine;
1571 	intel_engine_mask_t tmp, mask = ve->mask;
1572 	unsigned int num_siblings = 0;
1573 
1574 	for_each_engine_masked(engine, ve->gt, mask, tmp)
1575 		if (num_siblings++ == sibling)
1576 			return engine;
1577 
1578 	return NULL;
1579 }
1580 
1581 static inline struct intel_engine_cs *
1582 __context_to_physical_engine(struct intel_context *ce)
1583 {
1584 	struct intel_engine_cs *engine = ce->engine;
1585 
1586 	if (intel_engine_is_virtual(engine))
1587 		engine = guc_virtual_get_sibling(engine, 0);
1588 
1589 	return engine;
1590 }
1591 
1592 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1593 {
1594 	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1595 
1596 	if (!intel_context_is_schedulable(ce))
1597 		return;
1598 
1599 	GEM_BUG_ON(!intel_context_is_pinned(ce));
1600 
1601 	/*
1602 	 * We want a simple context + ring to execute the breadcrumb update.
1603 	 * We cannot rely on the context being intact across the GPU hang,
1604 	 * so clear it and rebuild just what we need for the breadcrumb.
1605 	 * All pending requests for this context will be zapped, and any
1606 	 * future request will be after userspace has had the opportunity
1607 	 * to recreate its own state.
1608 	 */
1609 	if (scrub)
1610 		lrc_init_regs(ce, engine, true);
1611 
1612 	/* Rerun the request; its payload has been neutered (if guilty). */
1613 	lrc_update_regs(ce, engine, head);
1614 }
1615 
1616 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1617 {
1618 	if (!IS_GRAPHICS_VER(engine->i915, 11, 12))
1619 		return;
1620 
1621 	intel_engine_stop_cs(engine);
1622 
1623 	/*
1624 	 * Wa_22011802037: In addition to stopping the cs, we need
1625 	 * to wait for any pending mi force wakeups
1626 	 */
1627 	intel_engine_wait_for_pending_mi_fw(engine);
1628 }
1629 
1630 static void guc_reset_nop(struct intel_engine_cs *engine)
1631 {
1632 }
1633 
1634 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1635 {
1636 }
1637 
1638 static void
1639 __unwind_incomplete_requests(struct intel_context *ce)
1640 {
1641 	struct i915_request *rq, *rn;
1642 	struct list_head *pl;
1643 	int prio = I915_PRIORITY_INVALID;
1644 	struct i915_sched_engine * const sched_engine =
1645 		ce->engine->sched_engine;
1646 	unsigned long flags;
1647 
1648 	spin_lock_irqsave(&sched_engine->lock, flags);
1649 	spin_lock(&ce->guc_state.lock);
1650 	list_for_each_entry_safe_reverse(rq, rn,
1651 					 &ce->guc_state.requests,
1652 					 sched.link) {
1653 		if (i915_request_completed(rq))
1654 			continue;
1655 
1656 		list_del_init(&rq->sched.link);
1657 		__i915_request_unsubmit(rq);
1658 
1659 		/* Push the request back into the queue for later resubmission. */
1660 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1661 		if (rq_prio(rq) != prio) {
1662 			prio = rq_prio(rq);
1663 			pl = i915_sched_lookup_priolist(sched_engine, prio);
1664 		}
1665 		GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1666 
1667 		list_add(&rq->sched.link, pl);
1668 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1669 	}
1670 	spin_unlock(&ce->guc_state.lock);
1671 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1672 }
1673 
1674 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1675 {
1676 	bool guilty;
1677 	struct i915_request *rq;
1678 	unsigned long flags;
1679 	u32 head;
1680 	int i, number_children = ce->parallel.number_children;
1681 	struct intel_context *parent = ce;
1682 
1683 	GEM_BUG_ON(intel_context_is_child(ce));
1684 
1685 	intel_context_get(ce);
1686 
1687 	/*
1688 	 * GuC will implicitly mark the context as non-schedulable when it sends
1689 	 * the reset notification. Make sure our state reflects this change. The
1690 	 * context will be marked enabled on resubmission.
1691 	 */
1692 	spin_lock_irqsave(&ce->guc_state.lock, flags);
1693 	clr_context_enabled(ce);
1694 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1695 
1696 	/*
1697 	 * For each context in the relationship find the hanging request
1698 	 * resetting each context / request as needed
1699 	 */
1700 	for (i = 0; i < number_children + 1; ++i) {
1701 		if (!intel_context_is_pinned(ce))
1702 			goto next_context;
1703 
1704 		guilty = false;
1705 		rq = intel_context_get_active_request(ce);
1706 		if (!rq) {
1707 			head = ce->ring->tail;
1708 			goto out_replay;
1709 		}
1710 
1711 		if (i915_request_started(rq))
1712 			guilty = stalled & ce->engine->mask;
1713 
1714 		GEM_BUG_ON(i915_active_is_idle(&ce->active));
1715 		head = intel_ring_wrap(ce->ring, rq->head);
1716 
1717 		__i915_request_reset(rq, guilty);
1718 		i915_request_put(rq);
1719 out_replay:
1720 		guc_reset_state(ce, head, guilty);
1721 next_context:
1722 		if (i != number_children)
1723 			ce = list_next_entry(ce, parallel.child_link);
1724 	}
1725 
1726 	__unwind_incomplete_requests(parent);
1727 	intel_context_put(parent);
1728 }
1729 
1730 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1731 {
1732 	struct intel_context *ce;
1733 	unsigned long index;
1734 	unsigned long flags;
1735 
1736 	if (unlikely(!guc_submission_initialized(guc))) {
1737 		/* Reset called during driver load? GuC not yet initialised! */
1738 		return;
1739 	}
1740 
1741 	xa_lock_irqsave(&guc->context_lookup, flags);
1742 	xa_for_each(&guc->context_lookup, index, ce) {
1743 		if (!kref_get_unless_zero(&ce->ref))
1744 			continue;
1745 
1746 		xa_unlock(&guc->context_lookup);
1747 
1748 		if (intel_context_is_pinned(ce) &&
1749 		    !intel_context_is_child(ce))
1750 			__guc_reset_context(ce, stalled);
1751 
1752 		intel_context_put(ce);
1753 
1754 		xa_lock(&guc->context_lookup);
1755 	}
1756 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1757 
1758 	/* GuC is blown away, drop all references to contexts */
1759 	xa_destroy(&guc->context_lookup);
1760 }
1761 
1762 static void guc_cancel_context_requests(struct intel_context *ce)
1763 {
1764 	struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1765 	struct i915_request *rq;
1766 	unsigned long flags;
1767 
1768 	/* Mark all executing requests as skipped. */
1769 	spin_lock_irqsave(&sched_engine->lock, flags);
1770 	spin_lock(&ce->guc_state.lock);
1771 	list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1772 		i915_request_put(i915_request_mark_eio(rq));
1773 	spin_unlock(&ce->guc_state.lock);
1774 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1775 }
1776 
1777 static void
1778 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1779 {
1780 	struct i915_request *rq, *rn;
1781 	struct rb_node *rb;
1782 	unsigned long flags;
1783 
1784 	/* Can be called during boot if GuC fails to load */
1785 	if (!sched_engine)
1786 		return;
1787 
1788 	/*
1789 	 * Before we call engine->cancel_requests(), we should have exclusive
1790 	 * access to the submission state. This is arranged for us by the
1791 	 * caller disabling the interrupt generation, the tasklet and other
1792 	 * threads that may then access the same state, giving us a free hand
1793 	 * to reset state. However, we still need to let lockdep be aware that
1794 	 * we know this state may be accessed in hardirq context, so we
1795 	 * disable the irq around this manipulation and we want to keep
1796 	 * the spinlock focused on its duties and not accidentally conflate
1797 	 * coverage to the submission's irq state. (Similarly, although we
1798 	 * shouldn't need to disable irq around the manipulation of the
1799 	 * submission's irq state, we also wish to remind ourselves that
1800 	 * it is irq state.)
1801 	 */
1802 	spin_lock_irqsave(&sched_engine->lock, flags);
1803 
1804 	/* Flush the queued requests to the timeline list (for retiring). */
1805 	while ((rb = rb_first_cached(&sched_engine->queue))) {
1806 		struct i915_priolist *p = to_priolist(rb);
1807 
1808 		priolist_for_each_request_consume(rq, rn, p) {
1809 			list_del_init(&rq->sched.link);
1810 
1811 			__i915_request_submit(rq);
1812 
1813 			i915_request_put(i915_request_mark_eio(rq));
1814 		}
1815 
1816 		rb_erase_cached(&p->node, &sched_engine->queue);
1817 		i915_priolist_free(p);
1818 	}
1819 
1820 	/* Remaining _unready_ requests will be nop'ed when submitted */
1821 
1822 	sched_engine->queue_priority_hint = INT_MIN;
1823 	sched_engine->queue = RB_ROOT_CACHED;
1824 
1825 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1826 }
1827 
1828 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
1829 {
1830 	struct intel_context *ce;
1831 	unsigned long index;
1832 	unsigned long flags;
1833 
1834 	xa_lock_irqsave(&guc->context_lookup, flags);
1835 	xa_for_each(&guc->context_lookup, index, ce) {
1836 		if (!kref_get_unless_zero(&ce->ref))
1837 			continue;
1838 
1839 		xa_unlock(&guc->context_lookup);
1840 
1841 		if (intel_context_is_pinned(ce) &&
1842 		    !intel_context_is_child(ce))
1843 			guc_cancel_context_requests(ce);
1844 
1845 		intel_context_put(ce);
1846 
1847 		xa_lock(&guc->context_lookup);
1848 	}
1849 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1850 
1851 	guc_cancel_sched_engine_requests(guc->sched_engine);
1852 
1853 	/* GuC is blown away, drop all references to contexts */
1854 	xa_destroy(&guc->context_lookup);
1855 }
1856 
1857 void intel_guc_submission_reset_finish(struct intel_guc *guc)
1858 {
1859 	/* Reset called during driver load or during wedge? */
1860 	if (unlikely(!guc_submission_initialized(guc) ||
1861 		     intel_gt_is_wedged(guc_to_gt(guc)))) {
1862 		return;
1863 	}
1864 
1865 	/*
1866 	 * Technically possible for either of these values to be non-zero here,
1867 	 * but very unlikely + harmless. Regardless let's add a warn so we can
1868 	 * see in CI if this happens frequently / a precursor to taking down the
1869 	 * machine.
1870 	 */
1871 	GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h));
1872 	atomic_set(&guc->outstanding_submission_g2h, 0);
1873 
1874 	intel_guc_global_policies_update(guc);
1875 	enable_submission(guc);
1876 	intel_gt_unpark_heartbeats(guc_to_gt(guc));
1877 }
1878 
1879 static void destroyed_worker_func(struct work_struct *w);
1880 static void reset_fail_worker_func(struct work_struct *w);
1881 
1882 /*
1883  * Set up the memory resources to be shared with the GuC (via the GGTT)
1884  * at firmware loading time.
1885  */
1886 int intel_guc_submission_init(struct intel_guc *guc)
1887 {
1888 	struct intel_gt *gt = guc_to_gt(guc);
1889 	int ret;
1890 
1891 	if (guc->submission_initialized)
1892 		return 0;
1893 
1894 	if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) {
1895 		ret = guc_lrc_desc_pool_create_v69(guc);
1896 		if (ret)
1897 			return ret;
1898 	}
1899 
1900 	guc->submission_state.guc_ids_bitmap =
1901 		bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
1902 	if (!guc->submission_state.guc_ids_bitmap) {
1903 		ret = -ENOMEM;
1904 		goto destroy_pool;
1905 	}
1906 
1907 	guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
1908 	guc->timestamp.shift = gpm_timestamp_shift(gt);
1909 	guc->submission_initialized = true;
1910 
1911 	return 0;
1912 
1913 destroy_pool:
1914 	guc_lrc_desc_pool_destroy_v69(guc);
1915 
1916 	return ret;
1917 }
1918 
1919 void intel_guc_submission_fini(struct intel_guc *guc)
1920 {
1921 	if (!guc->submission_initialized)
1922 		return;
1923 
1924 	guc_flush_destroyed_contexts(guc);
1925 	guc_lrc_desc_pool_destroy_v69(guc);
1926 	i915_sched_engine_put(guc->sched_engine);
1927 	bitmap_free(guc->submission_state.guc_ids_bitmap);
1928 	guc->submission_initialized = false;
1929 }
1930 
1931 static inline void queue_request(struct i915_sched_engine *sched_engine,
1932 				 struct i915_request *rq,
1933 				 int prio)
1934 {
1935 	GEM_BUG_ON(!list_empty(&rq->sched.link));
1936 	list_add_tail(&rq->sched.link,
1937 		      i915_sched_lookup_priolist(sched_engine, prio));
1938 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1939 	tasklet_hi_schedule(&sched_engine->tasklet);
1940 }
1941 
1942 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
1943 				     struct i915_request *rq)
1944 {
1945 	int ret = 0;
1946 
1947 	__i915_request_submit(rq);
1948 
1949 	trace_i915_request_in(rq, 0);
1950 
1951 	if (is_multi_lrc_rq(rq)) {
1952 		if (multi_lrc_submit(rq)) {
1953 			ret = guc_wq_item_append(guc, rq);
1954 			if (!ret)
1955 				ret = guc_add_request(guc, rq);
1956 		}
1957 	} else {
1958 		guc_set_lrc_tail(rq);
1959 		ret = guc_add_request(guc, rq);
1960 	}
1961 
1962 	if (unlikely(ret == -EPIPE))
1963 		disable_submission(guc);
1964 
1965 	return ret;
1966 }
1967 
1968 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
1969 {
1970 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
1971 	struct intel_context *ce = request_to_scheduling_context(rq);
1972 
1973 	return submission_disabled(guc) || guc->stalled_request ||
1974 		!i915_sched_engine_is_empty(sched_engine) ||
1975 		!ctx_id_mapped(guc, ce->guc_id.id);
1976 }
1977 
1978 static void guc_submit_request(struct i915_request *rq)
1979 {
1980 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
1981 	struct intel_guc *guc = &rq->engine->gt->uc.guc;
1982 	unsigned long flags;
1983 
1984 	/* Will be called from irq-context when using foreign fences. */
1985 	spin_lock_irqsave(&sched_engine->lock, flags);
1986 
1987 	if (need_tasklet(guc, rq))
1988 		queue_request(sched_engine, rq, rq_prio(rq));
1989 	else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
1990 		tasklet_hi_schedule(&sched_engine->tasklet);
1991 
1992 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1993 }
1994 
1995 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
1996 {
1997 	int ret;
1998 
1999 	GEM_BUG_ON(intel_context_is_child(ce));
2000 
2001 	if (intel_context_is_parent(ce))
2002 		ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
2003 					      NUMBER_MULTI_LRC_GUC_ID(guc),
2004 					      order_base_2(ce->parallel.number_children
2005 							   + 1));
2006 	else
2007 		ret = ida_simple_get(&guc->submission_state.guc_ids,
2008 				     NUMBER_MULTI_LRC_GUC_ID(guc),
2009 				     guc->submission_state.num_guc_ids,
2010 				     GFP_KERNEL | __GFP_RETRY_MAYFAIL |
2011 				     __GFP_NOWARN);
2012 	if (unlikely(ret < 0))
2013 		return ret;
2014 
2015 	if (!intel_context_is_parent(ce))
2016 		++guc->submission_state.guc_ids_in_use;
2017 
2018 	ce->guc_id.id = ret;
2019 	return 0;
2020 }
2021 
2022 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2023 {
2024 	GEM_BUG_ON(intel_context_is_child(ce));
2025 
2026 	if (!context_guc_id_invalid(ce)) {
2027 		if (intel_context_is_parent(ce)) {
2028 			bitmap_release_region(guc->submission_state.guc_ids_bitmap,
2029 					      ce->guc_id.id,
2030 					      order_base_2(ce->parallel.number_children
2031 							   + 1));
2032 		} else {
2033 			--guc->submission_state.guc_ids_in_use;
2034 			ida_simple_remove(&guc->submission_state.guc_ids,
2035 					  ce->guc_id.id);
2036 		}
2037 		clr_ctx_id_mapping(guc, ce->guc_id.id);
2038 		set_context_guc_id_invalid(ce);
2039 	}
2040 	if (!list_empty(&ce->guc_id.link))
2041 		list_del_init(&ce->guc_id.link);
2042 }
2043 
2044 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2045 {
2046 	unsigned long flags;
2047 
2048 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2049 	__release_guc_id(guc, ce);
2050 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2051 }
2052 
2053 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
2054 {
2055 	struct intel_context *cn;
2056 
2057 	lockdep_assert_held(&guc->submission_state.lock);
2058 	GEM_BUG_ON(intel_context_is_child(ce));
2059 	GEM_BUG_ON(intel_context_is_parent(ce));
2060 
2061 	if (!list_empty(&guc->submission_state.guc_id_list)) {
2062 		cn = list_first_entry(&guc->submission_state.guc_id_list,
2063 				      struct intel_context,
2064 				      guc_id.link);
2065 
2066 		GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
2067 		GEM_BUG_ON(context_guc_id_invalid(cn));
2068 		GEM_BUG_ON(intel_context_is_child(cn));
2069 		GEM_BUG_ON(intel_context_is_parent(cn));
2070 
2071 		list_del_init(&cn->guc_id.link);
2072 		ce->guc_id.id = cn->guc_id.id;
2073 
2074 		spin_lock(&cn->guc_state.lock);
2075 		clr_context_registered(cn);
2076 		spin_unlock(&cn->guc_state.lock);
2077 
2078 		set_context_guc_id_invalid(cn);
2079 
2080 #ifdef CONFIG_DRM_I915_SELFTEST
2081 		guc->number_guc_id_stolen++;
2082 #endif
2083 
2084 		return 0;
2085 	} else {
2086 		return -EAGAIN;
2087 	}
2088 }
2089 
2090 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2091 {
2092 	int ret;
2093 
2094 	lockdep_assert_held(&guc->submission_state.lock);
2095 	GEM_BUG_ON(intel_context_is_child(ce));
2096 
2097 	ret = new_guc_id(guc, ce);
2098 	if (unlikely(ret < 0)) {
2099 		if (intel_context_is_parent(ce))
2100 			return -ENOSPC;
2101 
2102 		ret = steal_guc_id(guc, ce);
2103 		if (ret < 0)
2104 			return ret;
2105 	}
2106 
2107 	if (intel_context_is_parent(ce)) {
2108 		struct intel_context *child;
2109 		int i = 1;
2110 
2111 		for_each_child(ce, child)
2112 			child->guc_id.id = ce->guc_id.id + i++;
2113 	}
2114 
2115 	return 0;
2116 }
2117 
2118 #define PIN_GUC_ID_TRIES	4
2119 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2120 {
2121 	int ret = 0;
2122 	unsigned long flags, tries = PIN_GUC_ID_TRIES;
2123 
2124 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2125 
2126 try_again:
2127 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2128 
2129 	might_lock(&ce->guc_state.lock);
2130 
2131 	if (context_guc_id_invalid(ce)) {
2132 		ret = assign_guc_id(guc, ce);
2133 		if (ret)
2134 			goto out_unlock;
2135 		ret = 1;	/* Indidcates newly assigned guc_id */
2136 	}
2137 	if (!list_empty(&ce->guc_id.link))
2138 		list_del_init(&ce->guc_id.link);
2139 	atomic_inc(&ce->guc_id.ref);
2140 
2141 out_unlock:
2142 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2143 
2144 	/*
2145 	 * -EAGAIN indicates no guc_id are available, let's retire any
2146 	 * outstanding requests to see if that frees up a guc_id. If the first
2147 	 * retire didn't help, insert a sleep with the timeslice duration before
2148 	 * attempting to retire more requests. Double the sleep period each
2149 	 * subsequent pass before finally giving up. The sleep period has max of
2150 	 * 100ms and minimum of 1ms.
2151 	 */
2152 	if (ret == -EAGAIN && --tries) {
2153 		if (PIN_GUC_ID_TRIES - tries > 1) {
2154 			unsigned int timeslice_shifted =
2155 				ce->engine->props.timeslice_duration_ms <<
2156 				(PIN_GUC_ID_TRIES - tries - 2);
2157 			unsigned int max = min_t(unsigned int, 100,
2158 						 timeslice_shifted);
2159 
2160 			msleep(max_t(unsigned int, max, 1));
2161 		}
2162 		intel_gt_retire_requests(guc_to_gt(guc));
2163 		goto try_again;
2164 	}
2165 
2166 	return ret;
2167 }
2168 
2169 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2170 {
2171 	unsigned long flags;
2172 
2173 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2174 	GEM_BUG_ON(intel_context_is_child(ce));
2175 
2176 	if (unlikely(context_guc_id_invalid(ce) ||
2177 		     intel_context_is_parent(ce)))
2178 		return;
2179 
2180 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2181 	if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2182 	    !atomic_read(&ce->guc_id.ref))
2183 		list_add_tail(&ce->guc_id.link,
2184 			      &guc->submission_state.guc_id_list);
2185 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2186 }
2187 
2188 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc,
2189 					       struct intel_context *ce,
2190 					       u32 guc_id,
2191 					       u32 offset,
2192 					       bool loop)
2193 {
2194 	struct intel_context *child;
2195 	u32 action[4 + MAX_ENGINE_INSTANCE];
2196 	int len = 0;
2197 
2198 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2199 
2200 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2201 	action[len++] = guc_id;
2202 	action[len++] = ce->parallel.number_children + 1;
2203 	action[len++] = offset;
2204 	for_each_child(ce, child) {
2205 		offset += sizeof(struct guc_lrc_desc_v69);
2206 		action[len++] = offset;
2207 	}
2208 
2209 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2210 }
2211 
2212 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc,
2213 					       struct intel_context *ce,
2214 					       struct guc_ctxt_registration_info *info,
2215 					       bool loop)
2216 {
2217 	struct intel_context *child;
2218 	u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2219 	int len = 0;
2220 	u32 next_id;
2221 
2222 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2223 
2224 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2225 	action[len++] = info->flags;
2226 	action[len++] = info->context_idx;
2227 	action[len++] = info->engine_class;
2228 	action[len++] = info->engine_submit_mask;
2229 	action[len++] = info->wq_desc_lo;
2230 	action[len++] = info->wq_desc_hi;
2231 	action[len++] = info->wq_base_lo;
2232 	action[len++] = info->wq_base_hi;
2233 	action[len++] = info->wq_size;
2234 	action[len++] = ce->parallel.number_children + 1;
2235 	action[len++] = info->hwlrca_lo;
2236 	action[len++] = info->hwlrca_hi;
2237 
2238 	next_id = info->context_idx + 1;
2239 	for_each_child(ce, child) {
2240 		GEM_BUG_ON(next_id++ != child->guc_id.id);
2241 
2242 		/*
2243 		 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2244 		 * only supports 32 bit currently.
2245 		 */
2246 		action[len++] = lower_32_bits(child->lrc.lrca);
2247 		action[len++] = upper_32_bits(child->lrc.lrca);
2248 	}
2249 
2250 	GEM_BUG_ON(len > ARRAY_SIZE(action));
2251 
2252 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2253 }
2254 
2255 static int __guc_action_register_context_v69(struct intel_guc *guc,
2256 					     u32 guc_id,
2257 					     u32 offset,
2258 					     bool loop)
2259 {
2260 	u32 action[] = {
2261 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2262 		guc_id,
2263 		offset,
2264 	};
2265 
2266 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2267 					     0, loop);
2268 }
2269 
2270 static int __guc_action_register_context_v70(struct intel_guc *guc,
2271 					     struct guc_ctxt_registration_info *info,
2272 					     bool loop)
2273 {
2274 	u32 action[] = {
2275 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2276 		info->flags,
2277 		info->context_idx,
2278 		info->engine_class,
2279 		info->engine_submit_mask,
2280 		info->wq_desc_lo,
2281 		info->wq_desc_hi,
2282 		info->wq_base_lo,
2283 		info->wq_base_hi,
2284 		info->wq_size,
2285 		info->hwlrca_lo,
2286 		info->hwlrca_hi,
2287 	};
2288 
2289 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2290 					     0, loop);
2291 }
2292 
2293 static void prepare_context_registration_info_v69(struct intel_context *ce);
2294 static void prepare_context_registration_info_v70(struct intel_context *ce,
2295 						  struct guc_ctxt_registration_info *info);
2296 
2297 static int
2298 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop)
2299 {
2300 	u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) +
2301 		ce->guc_id.id * sizeof(struct guc_lrc_desc_v69);
2302 
2303 	prepare_context_registration_info_v69(ce);
2304 
2305 	if (intel_context_is_parent(ce))
2306 		return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id,
2307 							   offset, loop);
2308 	else
2309 		return __guc_action_register_context_v69(guc, ce->guc_id.id,
2310 							 offset, loop);
2311 }
2312 
2313 static int
2314 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop)
2315 {
2316 	struct guc_ctxt_registration_info info;
2317 
2318 	prepare_context_registration_info_v70(ce, &info);
2319 
2320 	if (intel_context_is_parent(ce))
2321 		return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop);
2322 	else
2323 		return __guc_action_register_context_v70(guc, &info, loop);
2324 }
2325 
2326 static int register_context(struct intel_context *ce, bool loop)
2327 {
2328 	struct intel_guc *guc = ce_to_guc(ce);
2329 	int ret;
2330 
2331 	GEM_BUG_ON(intel_context_is_child(ce));
2332 	trace_intel_context_register(ce);
2333 
2334 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2335 		ret = register_context_v70(guc, ce, loop);
2336 	else
2337 		ret = register_context_v69(guc, ce, loop);
2338 
2339 	if (likely(!ret)) {
2340 		unsigned long flags;
2341 
2342 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2343 		set_context_registered(ce);
2344 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2345 
2346 		if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2347 			guc_context_policy_init_v70(ce, loop);
2348 	}
2349 
2350 	return ret;
2351 }
2352 
2353 static int __guc_action_deregister_context(struct intel_guc *guc,
2354 					   u32 guc_id)
2355 {
2356 	u32 action[] = {
2357 		INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2358 		guc_id,
2359 	};
2360 
2361 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2362 					     G2H_LEN_DW_DEREGISTER_CONTEXT,
2363 					     true);
2364 }
2365 
2366 static int deregister_context(struct intel_context *ce, u32 guc_id)
2367 {
2368 	struct intel_guc *guc = ce_to_guc(ce);
2369 
2370 	GEM_BUG_ON(intel_context_is_child(ce));
2371 	trace_intel_context_deregister(ce);
2372 
2373 	return __guc_action_deregister_context(guc, guc_id);
2374 }
2375 
2376 static inline void clear_children_join_go_memory(struct intel_context *ce)
2377 {
2378 	struct parent_scratch *ps = __get_parent_scratch(ce);
2379 	int i;
2380 
2381 	ps->go.semaphore = 0;
2382 	for (i = 0; i < ce->parallel.number_children + 1; ++i)
2383 		ps->join[i].semaphore = 0;
2384 }
2385 
2386 static inline u32 get_children_go_value(struct intel_context *ce)
2387 {
2388 	return __get_parent_scratch(ce)->go.semaphore;
2389 }
2390 
2391 static inline u32 get_children_join_value(struct intel_context *ce,
2392 					  u8 child_index)
2393 {
2394 	return __get_parent_scratch(ce)->join[child_index].semaphore;
2395 }
2396 
2397 struct context_policy {
2398 	u32 count;
2399 	struct guc_update_context_policy h2g;
2400 };
2401 
2402 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2403 {
2404 	size_t bytes = sizeof(policy->h2g.header) +
2405 		       (sizeof(policy->h2g.klv[0]) * policy->count);
2406 
2407 	return bytes / sizeof(u32);
2408 }
2409 
2410 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2411 {
2412 	policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2413 	policy->h2g.header.ctx_id = guc_id;
2414 	policy->count = 0;
2415 }
2416 
2417 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2418 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2419 { \
2420 	GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2421 	policy->h2g.klv[policy->count].kl = \
2422 		FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2423 		FIELD_PREP(GUC_KLV_0_LEN, 1); \
2424 	policy->h2g.klv[policy->count].value = data; \
2425 	policy->count++; \
2426 }
2427 
2428 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2429 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2430 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2431 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2432 
2433 #undef MAKE_CONTEXT_POLICY_ADD
2434 
2435 static int __guc_context_set_context_policies(struct intel_guc *guc,
2436 					      struct context_policy *policy,
2437 					      bool loop)
2438 {
2439 	return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2440 					__guc_context_policy_action_size(policy),
2441 					0, loop);
2442 }
2443 
2444 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop)
2445 {
2446 	struct intel_engine_cs *engine = ce->engine;
2447 	struct intel_guc *guc = &engine->gt->uc.guc;
2448 	struct context_policy policy;
2449 	u32 execution_quantum;
2450 	u32 preemption_timeout;
2451 	unsigned long flags;
2452 	int ret;
2453 
2454 	/* NB: For both of these, zero means disabled. */
2455 	GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2456 				  execution_quantum));
2457 	GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2458 				  preemption_timeout));
2459 	execution_quantum = engine->props.timeslice_duration_ms * 1000;
2460 	preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2461 
2462 	__guc_context_policy_start_klv(&policy, ce->guc_id.id);
2463 
2464 	__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2465 	__guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2466 	__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2467 
2468 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2469 		__guc_context_policy_add_preempt_to_idle(&policy, 1);
2470 
2471 	ret = __guc_context_set_context_policies(guc, &policy, loop);
2472 
2473 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2474 	if (ret != 0)
2475 		set_context_policy_required(ce);
2476 	else
2477 		clr_context_policy_required(ce);
2478 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2479 
2480 	return ret;
2481 }
2482 
2483 static void guc_context_policy_init_v69(struct intel_engine_cs *engine,
2484 					struct guc_lrc_desc_v69 *desc)
2485 {
2486 	desc->policy_flags = 0;
2487 
2488 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2489 		desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69;
2490 
2491 	/* NB: For both of these, zero means disabled. */
2492 	GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2493 				  desc->execution_quantum));
2494 	GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2495 				  desc->preemption_timeout));
2496 	desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
2497 	desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2498 }
2499 
2500 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio)
2501 {
2502 	/*
2503 	 * this matches the mapping we do in map_i915_prio_to_guc_prio()
2504 	 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL)
2505 	 */
2506 	switch (prio) {
2507 	default:
2508 		MISSING_CASE(prio);
2509 		fallthrough;
2510 	case GUC_CLIENT_PRIORITY_KMD_NORMAL:
2511 		return GEN12_CTX_PRIORITY_NORMAL;
2512 	case GUC_CLIENT_PRIORITY_NORMAL:
2513 		return GEN12_CTX_PRIORITY_LOW;
2514 	case GUC_CLIENT_PRIORITY_HIGH:
2515 	case GUC_CLIENT_PRIORITY_KMD_HIGH:
2516 		return GEN12_CTX_PRIORITY_HIGH;
2517 	}
2518 }
2519 
2520 static void prepare_context_registration_info_v69(struct intel_context *ce)
2521 {
2522 	struct intel_engine_cs *engine = ce->engine;
2523 	struct intel_guc *guc = &engine->gt->uc.guc;
2524 	u32 ctx_id = ce->guc_id.id;
2525 	struct guc_lrc_desc_v69 *desc;
2526 	struct intel_context *child;
2527 
2528 	GEM_BUG_ON(!engine->mask);
2529 
2530 	/*
2531 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2532 	 * based on CT vma region.
2533 	 */
2534 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2535 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2536 
2537 	desc = __get_lrc_desc_v69(guc, ctx_id);
2538 	GEM_BUG_ON(!desc);
2539 	desc->engine_class = engine_class_to_guc_class(engine->class);
2540 	desc->engine_submit_mask = engine->logical_mask;
2541 	desc->hw_context_desc = ce->lrc.lrca;
2542 	desc->priority = ce->guc_state.prio;
2543 	desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2544 	guc_context_policy_init_v69(engine, desc);
2545 
2546 	/*
2547 	 * If context is a parent, we need to register a process descriptor
2548 	 * describing a work queue and register all child contexts.
2549 	 */
2550 	if (intel_context_is_parent(ce)) {
2551 		struct guc_process_desc_v69 *pdesc;
2552 
2553 		ce->parallel.guc.wqi_tail = 0;
2554 		ce->parallel.guc.wqi_head = 0;
2555 
2556 		desc->process_desc = i915_ggtt_offset(ce->state) +
2557 			__get_parent_scratch_offset(ce);
2558 		desc->wq_addr = i915_ggtt_offset(ce->state) +
2559 			__get_wq_offset(ce);
2560 		desc->wq_size = WQ_SIZE;
2561 
2562 		pdesc = __get_process_desc_v69(ce);
2563 		memset(pdesc, 0, sizeof(*(pdesc)));
2564 		pdesc->stage_id = ce->guc_id.id;
2565 		pdesc->wq_base_addr = desc->wq_addr;
2566 		pdesc->wq_size_bytes = desc->wq_size;
2567 		pdesc->wq_status = WQ_STATUS_ACTIVE;
2568 
2569 		ce->parallel.guc.wq_head = &pdesc->head;
2570 		ce->parallel.guc.wq_tail = &pdesc->tail;
2571 		ce->parallel.guc.wq_status = &pdesc->wq_status;
2572 
2573 		for_each_child(ce, child) {
2574 			desc = __get_lrc_desc_v69(guc, child->guc_id.id);
2575 
2576 			desc->engine_class =
2577 				engine_class_to_guc_class(engine->class);
2578 			desc->hw_context_desc = child->lrc.lrca;
2579 			desc->priority = ce->guc_state.prio;
2580 			desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2581 			guc_context_policy_init_v69(engine, desc);
2582 		}
2583 
2584 		clear_children_join_go_memory(ce);
2585 	}
2586 }
2587 
2588 static void prepare_context_registration_info_v70(struct intel_context *ce,
2589 						  struct guc_ctxt_registration_info *info)
2590 {
2591 	struct intel_engine_cs *engine = ce->engine;
2592 	struct intel_guc *guc = &engine->gt->uc.guc;
2593 	u32 ctx_id = ce->guc_id.id;
2594 
2595 	GEM_BUG_ON(!engine->mask);
2596 
2597 	/*
2598 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2599 	 * based on CT vma region.
2600 	 */
2601 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2602 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2603 
2604 	memset(info, 0, sizeof(*info));
2605 	info->context_idx = ctx_id;
2606 	info->engine_class = engine_class_to_guc_class(engine->class);
2607 	info->engine_submit_mask = engine->logical_mask;
2608 	/*
2609 	 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2610 	 * only supports 32 bit currently.
2611 	 */
2612 	info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2613 	info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2614 	if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
2615 		info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio);
2616 	info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2617 
2618 	/*
2619 	 * If context is a parent, we need to register a process descriptor
2620 	 * describing a work queue and register all child contexts.
2621 	 */
2622 	if (intel_context_is_parent(ce)) {
2623 		struct guc_sched_wq_desc *wq_desc;
2624 		u64 wq_desc_offset, wq_base_offset;
2625 
2626 		ce->parallel.guc.wqi_tail = 0;
2627 		ce->parallel.guc.wqi_head = 0;
2628 
2629 		wq_desc_offset = i915_ggtt_offset(ce->state) +
2630 				 __get_parent_scratch_offset(ce);
2631 		wq_base_offset = i915_ggtt_offset(ce->state) +
2632 				 __get_wq_offset(ce);
2633 		info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2634 		info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2635 		info->wq_base_lo = lower_32_bits(wq_base_offset);
2636 		info->wq_base_hi = upper_32_bits(wq_base_offset);
2637 		info->wq_size = WQ_SIZE;
2638 
2639 		wq_desc = __get_wq_desc_v70(ce);
2640 		memset(wq_desc, 0, sizeof(*wq_desc));
2641 		wq_desc->wq_status = WQ_STATUS_ACTIVE;
2642 
2643 		ce->parallel.guc.wq_head = &wq_desc->head;
2644 		ce->parallel.guc.wq_tail = &wq_desc->tail;
2645 		ce->parallel.guc.wq_status = &wq_desc->wq_status;
2646 
2647 		clear_children_join_go_memory(ce);
2648 	}
2649 }
2650 
2651 static int try_context_registration(struct intel_context *ce, bool loop)
2652 {
2653 	struct intel_engine_cs *engine = ce->engine;
2654 	struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2655 	struct intel_guc *guc = &engine->gt->uc.guc;
2656 	intel_wakeref_t wakeref;
2657 	u32 ctx_id = ce->guc_id.id;
2658 	bool context_registered;
2659 	int ret = 0;
2660 
2661 	GEM_BUG_ON(!sched_state_is_init(ce));
2662 
2663 	context_registered = ctx_id_mapped(guc, ctx_id);
2664 
2665 	clr_ctx_id_mapping(guc, ctx_id);
2666 	set_ctx_id_mapping(guc, ctx_id, ce);
2667 
2668 	/*
2669 	 * The context_lookup xarray is used to determine if the hardware
2670 	 * context is currently registered. There are two cases in which it
2671 	 * could be registered either the guc_id has been stolen from another
2672 	 * context or the lrc descriptor address of this context has changed. In
2673 	 * either case the context needs to be deregistered with the GuC before
2674 	 * registering this context.
2675 	 */
2676 	if (context_registered) {
2677 		bool disabled;
2678 		unsigned long flags;
2679 
2680 		trace_intel_context_steal_guc_id(ce);
2681 		GEM_BUG_ON(!loop);
2682 
2683 		/* Seal race with Reset */
2684 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2685 		disabled = submission_disabled(guc);
2686 		if (likely(!disabled)) {
2687 			set_context_wait_for_deregister_to_register(ce);
2688 			intel_context_get(ce);
2689 		}
2690 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2691 		if (unlikely(disabled)) {
2692 			clr_ctx_id_mapping(guc, ctx_id);
2693 			return 0;	/* Will get registered later */
2694 		}
2695 
2696 		/*
2697 		 * If stealing the guc_id, this ce has the same guc_id as the
2698 		 * context whose guc_id was stolen.
2699 		 */
2700 		with_intel_runtime_pm(runtime_pm, wakeref)
2701 			ret = deregister_context(ce, ce->guc_id.id);
2702 		if (unlikely(ret == -ENODEV))
2703 			ret = 0;	/* Will get registered later */
2704 	} else {
2705 		with_intel_runtime_pm(runtime_pm, wakeref)
2706 			ret = register_context(ce, loop);
2707 		if (unlikely(ret == -EBUSY)) {
2708 			clr_ctx_id_mapping(guc, ctx_id);
2709 		} else if (unlikely(ret == -ENODEV)) {
2710 			clr_ctx_id_mapping(guc, ctx_id);
2711 			ret = 0;	/* Will get registered later */
2712 		}
2713 	}
2714 
2715 	return ret;
2716 }
2717 
2718 static int __guc_context_pre_pin(struct intel_context *ce,
2719 				 struct intel_engine_cs *engine,
2720 				 struct i915_gem_ww_ctx *ww,
2721 				 void **vaddr)
2722 {
2723 	return lrc_pre_pin(ce, engine, ww, vaddr);
2724 }
2725 
2726 static int __guc_context_pin(struct intel_context *ce,
2727 			     struct intel_engine_cs *engine,
2728 			     void *vaddr)
2729 {
2730 	if (i915_ggtt_offset(ce->state) !=
2731 	    (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
2732 		set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
2733 
2734 	/*
2735 	 * GuC context gets pinned in guc_request_alloc. See that function for
2736 	 * explaination of why.
2737 	 */
2738 
2739 	return lrc_pin(ce, engine, vaddr);
2740 }
2741 
2742 static int guc_context_pre_pin(struct intel_context *ce,
2743 			       struct i915_gem_ww_ctx *ww,
2744 			       void **vaddr)
2745 {
2746 	return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
2747 }
2748 
2749 static int guc_context_pin(struct intel_context *ce, void *vaddr)
2750 {
2751 	int ret = __guc_context_pin(ce, ce->engine, vaddr);
2752 
2753 	if (likely(!ret && !intel_context_is_barrier(ce)))
2754 		intel_engine_pm_get(ce->engine);
2755 
2756 	return ret;
2757 }
2758 
2759 static void guc_context_unpin(struct intel_context *ce)
2760 {
2761 	struct intel_guc *guc = ce_to_guc(ce);
2762 
2763 	unpin_guc_id(guc, ce);
2764 	lrc_unpin(ce);
2765 
2766 	if (likely(!intel_context_is_barrier(ce)))
2767 		intel_engine_pm_put_async(ce->engine);
2768 }
2769 
2770 static void guc_context_post_unpin(struct intel_context *ce)
2771 {
2772 	lrc_post_unpin(ce);
2773 }
2774 
2775 static void __guc_context_sched_enable(struct intel_guc *guc,
2776 				       struct intel_context *ce)
2777 {
2778 	u32 action[] = {
2779 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2780 		ce->guc_id.id,
2781 		GUC_CONTEXT_ENABLE
2782 	};
2783 
2784 	trace_intel_context_sched_enable(ce);
2785 
2786 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2787 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2788 }
2789 
2790 static void __guc_context_sched_disable(struct intel_guc *guc,
2791 					struct intel_context *ce,
2792 					u16 guc_id)
2793 {
2794 	u32 action[] = {
2795 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2796 		guc_id,	/* ce->guc_id.id not stable */
2797 		GUC_CONTEXT_DISABLE
2798 	};
2799 
2800 	GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
2801 
2802 	GEM_BUG_ON(intel_context_is_child(ce));
2803 	trace_intel_context_sched_disable(ce);
2804 
2805 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2806 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2807 }
2808 
2809 static void guc_blocked_fence_complete(struct intel_context *ce)
2810 {
2811 	lockdep_assert_held(&ce->guc_state.lock);
2812 
2813 	if (!i915_sw_fence_done(&ce->guc_state.blocked))
2814 		i915_sw_fence_complete(&ce->guc_state.blocked);
2815 }
2816 
2817 static void guc_blocked_fence_reinit(struct intel_context *ce)
2818 {
2819 	lockdep_assert_held(&ce->guc_state.lock);
2820 	GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
2821 
2822 	/*
2823 	 * This fence is always complete unless a pending schedule disable is
2824 	 * outstanding. We arm the fence here and complete it when we receive
2825 	 * the pending schedule disable complete message.
2826 	 */
2827 	i915_sw_fence_fini(&ce->guc_state.blocked);
2828 	i915_sw_fence_reinit(&ce->guc_state.blocked);
2829 	i915_sw_fence_await(&ce->guc_state.blocked);
2830 	i915_sw_fence_commit(&ce->guc_state.blocked);
2831 }
2832 
2833 static u16 prep_context_pending_disable(struct intel_context *ce)
2834 {
2835 	lockdep_assert_held(&ce->guc_state.lock);
2836 
2837 	set_context_pending_disable(ce);
2838 	clr_context_enabled(ce);
2839 	guc_blocked_fence_reinit(ce);
2840 	intel_context_get(ce);
2841 
2842 	return ce->guc_id.id;
2843 }
2844 
2845 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
2846 {
2847 	struct intel_guc *guc = ce_to_guc(ce);
2848 	unsigned long flags;
2849 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
2850 	intel_wakeref_t wakeref;
2851 	u16 guc_id;
2852 	bool enabled;
2853 
2854 	GEM_BUG_ON(intel_context_is_child(ce));
2855 
2856 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2857 
2858 	incr_context_blocked(ce);
2859 
2860 	enabled = context_enabled(ce);
2861 	if (unlikely(!enabled || submission_disabled(guc))) {
2862 		if (enabled)
2863 			clr_context_enabled(ce);
2864 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2865 		return &ce->guc_state.blocked;
2866 	}
2867 
2868 	/*
2869 	 * We add +2 here as the schedule disable complete CTB handler calls
2870 	 * intel_context_sched_disable_unpin (-2 to pin_count).
2871 	 */
2872 	atomic_add(2, &ce->pin_count);
2873 
2874 	guc_id = prep_context_pending_disable(ce);
2875 
2876 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2877 
2878 	with_intel_runtime_pm(runtime_pm, wakeref)
2879 		__guc_context_sched_disable(guc, ce, guc_id);
2880 
2881 	return &ce->guc_state.blocked;
2882 }
2883 
2884 #define SCHED_STATE_MULTI_BLOCKED_MASK \
2885 	(SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
2886 #define SCHED_STATE_NO_UNBLOCK \
2887 	(SCHED_STATE_MULTI_BLOCKED_MASK | \
2888 	 SCHED_STATE_PENDING_DISABLE | \
2889 	 SCHED_STATE_BANNED)
2890 
2891 static bool context_cant_unblock(struct intel_context *ce)
2892 {
2893 	lockdep_assert_held(&ce->guc_state.lock);
2894 
2895 	return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
2896 		context_guc_id_invalid(ce) ||
2897 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
2898 		!intel_context_is_pinned(ce);
2899 }
2900 
2901 static void guc_context_unblock(struct intel_context *ce)
2902 {
2903 	struct intel_guc *guc = ce_to_guc(ce);
2904 	unsigned long flags;
2905 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
2906 	intel_wakeref_t wakeref;
2907 	bool enable;
2908 
2909 	GEM_BUG_ON(context_enabled(ce));
2910 	GEM_BUG_ON(intel_context_is_child(ce));
2911 
2912 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2913 
2914 	if (unlikely(submission_disabled(guc) ||
2915 		     context_cant_unblock(ce))) {
2916 		enable = false;
2917 	} else {
2918 		enable = true;
2919 		set_context_pending_enable(ce);
2920 		set_context_enabled(ce);
2921 		intel_context_get(ce);
2922 	}
2923 
2924 	decr_context_blocked(ce);
2925 
2926 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2927 
2928 	if (enable) {
2929 		with_intel_runtime_pm(runtime_pm, wakeref)
2930 			__guc_context_sched_enable(guc, ce);
2931 	}
2932 }
2933 
2934 static void guc_context_cancel_request(struct intel_context *ce,
2935 				       struct i915_request *rq)
2936 {
2937 	struct intel_context *block_context =
2938 		request_to_scheduling_context(rq);
2939 
2940 	if (i915_sw_fence_signaled(&rq->submit)) {
2941 		struct i915_sw_fence *fence;
2942 
2943 		intel_context_get(ce);
2944 		fence = guc_context_block(block_context);
2945 		i915_sw_fence_wait(fence);
2946 		if (!i915_request_completed(rq)) {
2947 			__i915_request_skip(rq);
2948 			guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
2949 					true);
2950 		}
2951 
2952 		guc_context_unblock(block_context);
2953 		intel_context_put(ce);
2954 	}
2955 }
2956 
2957 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
2958 						 u16 guc_id,
2959 						 u32 preemption_timeout)
2960 {
2961 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
2962 		struct context_policy policy;
2963 
2964 		__guc_context_policy_start_klv(&policy, guc_id);
2965 		__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2966 		__guc_context_set_context_policies(guc, &policy, true);
2967 	} else {
2968 		u32 action[] = {
2969 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT,
2970 			guc_id,
2971 			preemption_timeout
2972 		};
2973 
2974 		intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
2975 	}
2976 }
2977 
2978 static void
2979 guc_context_revoke(struct intel_context *ce, struct i915_request *rq,
2980 		   unsigned int preempt_timeout_ms)
2981 {
2982 	struct intel_guc *guc = ce_to_guc(ce);
2983 	struct intel_runtime_pm *runtime_pm =
2984 		&ce->engine->gt->i915->runtime_pm;
2985 	intel_wakeref_t wakeref;
2986 	unsigned long flags;
2987 
2988 	GEM_BUG_ON(intel_context_is_child(ce));
2989 
2990 	guc_flush_submissions(guc);
2991 
2992 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2993 	set_context_banned(ce);
2994 
2995 	if (submission_disabled(guc) ||
2996 	    (!context_enabled(ce) && !context_pending_disable(ce))) {
2997 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2998 
2999 		guc_cancel_context_requests(ce);
3000 		intel_engine_signal_breadcrumbs(ce->engine);
3001 	} else if (!context_pending_disable(ce)) {
3002 		u16 guc_id;
3003 
3004 		/*
3005 		 * We add +2 here as the schedule disable complete CTB handler
3006 		 * calls intel_context_sched_disable_unpin (-2 to pin_count).
3007 		 */
3008 		atomic_add(2, &ce->pin_count);
3009 
3010 		guc_id = prep_context_pending_disable(ce);
3011 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3012 
3013 		/*
3014 		 * In addition to disabling scheduling, set the preemption
3015 		 * timeout to the minimum value (1 us) so the banned context
3016 		 * gets kicked off the HW ASAP.
3017 		 */
3018 		with_intel_runtime_pm(runtime_pm, wakeref) {
3019 			__guc_context_set_preemption_timeout(guc, guc_id,
3020 							     preempt_timeout_ms);
3021 			__guc_context_sched_disable(guc, ce, guc_id);
3022 		}
3023 	} else {
3024 		if (!context_guc_id_invalid(ce))
3025 			with_intel_runtime_pm(runtime_pm, wakeref)
3026 				__guc_context_set_preemption_timeout(guc,
3027 								     ce->guc_id.id,
3028 								     preempt_timeout_ms);
3029 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3030 	}
3031 }
3032 
3033 static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce,
3034 			     unsigned long flags)
3035 	__releases(ce->guc_state.lock)
3036 {
3037 	struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
3038 	intel_wakeref_t wakeref;
3039 	u16 guc_id;
3040 
3041 	lockdep_assert_held(&ce->guc_state.lock);
3042 	guc_id = prep_context_pending_disable(ce);
3043 
3044 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3045 
3046 	with_intel_runtime_pm(runtime_pm, wakeref)
3047 		__guc_context_sched_disable(guc, ce, guc_id);
3048 }
3049 
3050 static bool bypass_sched_disable(struct intel_guc *guc,
3051 				 struct intel_context *ce)
3052 {
3053 	lockdep_assert_held(&ce->guc_state.lock);
3054 	GEM_BUG_ON(intel_context_is_child(ce));
3055 
3056 	if (submission_disabled(guc) || context_guc_id_invalid(ce) ||
3057 	    !ctx_id_mapped(guc, ce->guc_id.id)) {
3058 		clr_context_enabled(ce);
3059 		return true;
3060 	}
3061 
3062 	return !context_enabled(ce);
3063 }
3064 
3065 static void __delay_sched_disable(struct work_struct *wrk)
3066 {
3067 	struct intel_context *ce =
3068 		container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work);
3069 	struct intel_guc *guc = ce_to_guc(ce);
3070 	unsigned long flags;
3071 
3072 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3073 
3074 	if (bypass_sched_disable(guc, ce)) {
3075 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3076 		intel_context_sched_disable_unpin(ce);
3077 	} else {
3078 		do_sched_disable(guc, ce, flags);
3079 	}
3080 }
3081 
3082 static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce)
3083 {
3084 	/*
3085 	 * parent contexts are perma-pinned, if we are unpinning do schedule
3086 	 * disable immediately.
3087 	 */
3088 	if (intel_context_is_parent(ce))
3089 		return true;
3090 
3091 	/*
3092 	 * If we are beyond the threshold for avail guc_ids, do schedule disable immediately.
3093 	 */
3094 	return guc->submission_state.guc_ids_in_use >
3095 		guc->submission_state.sched_disable_gucid_threshold;
3096 }
3097 
3098 static void guc_context_sched_disable(struct intel_context *ce)
3099 {
3100 	struct intel_guc *guc = ce_to_guc(ce);
3101 	u64 delay = guc->submission_state.sched_disable_delay_ms;
3102 	unsigned long flags;
3103 
3104 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3105 
3106 	if (bypass_sched_disable(guc, ce)) {
3107 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3108 		intel_context_sched_disable_unpin(ce);
3109 	} else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) &&
3110 		   delay) {
3111 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3112 		mod_delayed_work(system_unbound_wq,
3113 				 &ce->guc_state.sched_disable_delay_work,
3114 				 msecs_to_jiffies(delay));
3115 	} else {
3116 		do_sched_disable(guc, ce, flags);
3117 	}
3118 }
3119 
3120 static void guc_context_close(struct intel_context *ce)
3121 {
3122 	unsigned long flags;
3123 
3124 	if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
3125 	    cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))
3126 		__delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work);
3127 
3128 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3129 	set_context_close_done(ce);
3130 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3131 }
3132 
3133 static inline void guc_lrc_desc_unpin(struct intel_context *ce)
3134 {
3135 	struct intel_guc *guc = ce_to_guc(ce);
3136 	struct intel_gt *gt = guc_to_gt(guc);
3137 	unsigned long flags;
3138 	bool disabled;
3139 
3140 	GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
3141 	GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
3142 	GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
3143 	GEM_BUG_ON(context_enabled(ce));
3144 
3145 	/* Seal race with Reset */
3146 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3147 	disabled = submission_disabled(guc);
3148 	if (likely(!disabled)) {
3149 		__intel_gt_pm_get(gt);
3150 		set_context_destroyed(ce);
3151 		clr_context_registered(ce);
3152 	}
3153 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3154 	if (unlikely(disabled)) {
3155 		release_guc_id(guc, ce);
3156 		__guc_context_destroy(ce);
3157 		return;
3158 	}
3159 
3160 	deregister_context(ce, ce->guc_id.id);
3161 }
3162 
3163 static void __guc_context_destroy(struct intel_context *ce)
3164 {
3165 	GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
3166 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
3167 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
3168 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
3169 
3170 	lrc_fini(ce);
3171 	intel_context_fini(ce);
3172 
3173 	if (intel_engine_is_virtual(ce->engine)) {
3174 		struct guc_virtual_engine *ve =
3175 			container_of(ce, typeof(*ve), context);
3176 
3177 		if (ve->base.breadcrumbs)
3178 			intel_breadcrumbs_put(ve->base.breadcrumbs);
3179 
3180 		kfree(ve);
3181 	} else {
3182 		intel_context_free(ce);
3183 	}
3184 }
3185 
3186 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
3187 {
3188 	struct intel_context *ce;
3189 	unsigned long flags;
3190 
3191 	GEM_BUG_ON(!submission_disabled(guc) &&
3192 		   guc_submission_initialized(guc));
3193 
3194 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3195 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3196 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3197 					      struct intel_context,
3198 					      destroyed_link);
3199 		if (ce)
3200 			list_del_init(&ce->destroyed_link);
3201 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3202 
3203 		if (!ce)
3204 			break;
3205 
3206 		release_guc_id(guc, ce);
3207 		__guc_context_destroy(ce);
3208 	}
3209 }
3210 
3211 static void deregister_destroyed_contexts(struct intel_guc *guc)
3212 {
3213 	struct intel_context *ce;
3214 	unsigned long flags;
3215 
3216 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3217 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3218 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3219 					      struct intel_context,
3220 					      destroyed_link);
3221 		if (ce)
3222 			list_del_init(&ce->destroyed_link);
3223 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3224 
3225 		if (!ce)
3226 			break;
3227 
3228 		guc_lrc_desc_unpin(ce);
3229 	}
3230 }
3231 
3232 static void destroyed_worker_func(struct work_struct *w)
3233 {
3234 	struct intel_guc *guc = container_of(w, struct intel_guc,
3235 					     submission_state.destroyed_worker);
3236 	struct intel_gt *gt = guc_to_gt(guc);
3237 	int tmp;
3238 
3239 	with_intel_gt_pm(gt, tmp)
3240 		deregister_destroyed_contexts(guc);
3241 }
3242 
3243 static void guc_context_destroy(struct kref *kref)
3244 {
3245 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3246 	struct intel_guc *guc = ce_to_guc(ce);
3247 	unsigned long flags;
3248 	bool destroy;
3249 
3250 	/*
3251 	 * If the guc_id is invalid this context has been stolen and we can free
3252 	 * it immediately. Also can be freed immediately if the context is not
3253 	 * registered with the GuC or the GuC is in the middle of a reset.
3254 	 */
3255 	spin_lock_irqsave(&guc->submission_state.lock, flags);
3256 	destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
3257 		!ctx_id_mapped(guc, ce->guc_id.id);
3258 	if (likely(!destroy)) {
3259 		if (!list_empty(&ce->guc_id.link))
3260 			list_del_init(&ce->guc_id.link);
3261 		list_add_tail(&ce->destroyed_link,
3262 			      &guc->submission_state.destroyed_contexts);
3263 	} else {
3264 		__release_guc_id(guc, ce);
3265 	}
3266 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3267 	if (unlikely(destroy)) {
3268 		__guc_context_destroy(ce);
3269 		return;
3270 	}
3271 
3272 	/*
3273 	 * We use a worker to issue the H2G to deregister the context as we can
3274 	 * take the GT PM for the first time which isn't allowed from an atomic
3275 	 * context.
3276 	 */
3277 	queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
3278 }
3279 
3280 static int guc_context_alloc(struct intel_context *ce)
3281 {
3282 	return lrc_alloc(ce, ce->engine);
3283 }
3284 
3285 static void __guc_context_set_prio(struct intel_guc *guc,
3286 				   struct intel_context *ce)
3287 {
3288 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3289 		struct context_policy policy;
3290 
3291 		__guc_context_policy_start_klv(&policy, ce->guc_id.id);
3292 		__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
3293 		__guc_context_set_context_policies(guc, &policy, true);
3294 	} else {
3295 		u32 action[] = {
3296 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY,
3297 			ce->guc_id.id,
3298 			ce->guc_state.prio,
3299 		};
3300 
3301 		guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3302 	}
3303 }
3304 
3305 static void guc_context_set_prio(struct intel_guc *guc,
3306 				 struct intel_context *ce,
3307 				 u8 prio)
3308 {
3309 	GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
3310 		   prio > GUC_CLIENT_PRIORITY_NORMAL);
3311 	lockdep_assert_held(&ce->guc_state.lock);
3312 
3313 	if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3314 	    !context_registered(ce)) {
3315 		ce->guc_state.prio = prio;
3316 		return;
3317 	}
3318 
3319 	ce->guc_state.prio = prio;
3320 	__guc_context_set_prio(guc, ce);
3321 
3322 	trace_intel_context_set_prio(ce);
3323 }
3324 
3325 static inline u8 map_i915_prio_to_guc_prio(int prio)
3326 {
3327 	if (prio == I915_PRIORITY_NORMAL)
3328 		return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3329 	else if (prio < I915_PRIORITY_NORMAL)
3330 		return GUC_CLIENT_PRIORITY_NORMAL;
3331 	else if (prio < I915_PRIORITY_DISPLAY)
3332 		return GUC_CLIENT_PRIORITY_HIGH;
3333 	else
3334 		return GUC_CLIENT_PRIORITY_KMD_HIGH;
3335 }
3336 
3337 static inline void add_context_inflight_prio(struct intel_context *ce,
3338 					     u8 guc_prio)
3339 {
3340 	lockdep_assert_held(&ce->guc_state.lock);
3341 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3342 
3343 	++ce->guc_state.prio_count[guc_prio];
3344 
3345 	/* Overflow protection */
3346 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3347 }
3348 
3349 static inline void sub_context_inflight_prio(struct intel_context *ce,
3350 					     u8 guc_prio)
3351 {
3352 	lockdep_assert_held(&ce->guc_state.lock);
3353 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3354 
3355 	/* Underflow protection */
3356 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3357 
3358 	--ce->guc_state.prio_count[guc_prio];
3359 }
3360 
3361 static inline void update_context_prio(struct intel_context *ce)
3362 {
3363 	struct intel_guc *guc = &ce->engine->gt->uc.guc;
3364 	int i;
3365 
3366 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3367 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3368 
3369 	lockdep_assert_held(&ce->guc_state.lock);
3370 
3371 	for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3372 		if (ce->guc_state.prio_count[i]) {
3373 			guc_context_set_prio(guc, ce, i);
3374 			break;
3375 		}
3376 	}
3377 }
3378 
3379 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3380 {
3381 	/* Lower value is higher priority */
3382 	return new_guc_prio < old_guc_prio;
3383 }
3384 
3385 static void add_to_context(struct i915_request *rq)
3386 {
3387 	struct intel_context *ce = request_to_scheduling_context(rq);
3388 	u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3389 
3390 	GEM_BUG_ON(intel_context_is_child(ce));
3391 	GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3392 
3393 	spin_lock(&ce->guc_state.lock);
3394 	list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3395 
3396 	if (rq->guc_prio == GUC_PRIO_INIT) {
3397 		rq->guc_prio = new_guc_prio;
3398 		add_context_inflight_prio(ce, rq->guc_prio);
3399 	} else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3400 		sub_context_inflight_prio(ce, rq->guc_prio);
3401 		rq->guc_prio = new_guc_prio;
3402 		add_context_inflight_prio(ce, rq->guc_prio);
3403 	}
3404 	update_context_prio(ce);
3405 
3406 	spin_unlock(&ce->guc_state.lock);
3407 }
3408 
3409 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3410 {
3411 	lockdep_assert_held(&ce->guc_state.lock);
3412 
3413 	if (rq->guc_prio != GUC_PRIO_INIT &&
3414 	    rq->guc_prio != GUC_PRIO_FINI) {
3415 		sub_context_inflight_prio(ce, rq->guc_prio);
3416 		update_context_prio(ce);
3417 	}
3418 	rq->guc_prio = GUC_PRIO_FINI;
3419 }
3420 
3421 static void remove_from_context(struct i915_request *rq)
3422 {
3423 	struct intel_context *ce = request_to_scheduling_context(rq);
3424 
3425 	GEM_BUG_ON(intel_context_is_child(ce));
3426 
3427 	spin_lock_irq(&ce->guc_state.lock);
3428 
3429 	list_del_init(&rq->sched.link);
3430 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3431 
3432 	/* Prevent further __await_execution() registering a cb, then flush */
3433 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3434 
3435 	guc_prio_fini(rq, ce);
3436 
3437 	spin_unlock_irq(&ce->guc_state.lock);
3438 
3439 	atomic_dec(&ce->guc_id.ref);
3440 	i915_request_notify_execute_cb_imm(rq);
3441 }
3442 
3443 static const struct intel_context_ops guc_context_ops = {
3444 	.alloc = guc_context_alloc,
3445 
3446 	.close = guc_context_close,
3447 
3448 	.pre_pin = guc_context_pre_pin,
3449 	.pin = guc_context_pin,
3450 	.unpin = guc_context_unpin,
3451 	.post_unpin = guc_context_post_unpin,
3452 
3453 	.revoke = guc_context_revoke,
3454 
3455 	.cancel_request = guc_context_cancel_request,
3456 
3457 	.enter = intel_context_enter_engine,
3458 	.exit = intel_context_exit_engine,
3459 
3460 	.sched_disable = guc_context_sched_disable,
3461 
3462 	.reset = lrc_reset,
3463 	.destroy = guc_context_destroy,
3464 
3465 	.create_virtual = guc_create_virtual,
3466 	.create_parallel = guc_create_parallel,
3467 };
3468 
3469 static void submit_work_cb(struct irq_work *wrk)
3470 {
3471 	struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3472 
3473 	might_lock(&rq->engine->sched_engine->lock);
3474 	i915_sw_fence_complete(&rq->submit);
3475 }
3476 
3477 static void __guc_signal_context_fence(struct intel_context *ce)
3478 {
3479 	struct i915_request *rq, *rn;
3480 
3481 	lockdep_assert_held(&ce->guc_state.lock);
3482 
3483 	if (!list_empty(&ce->guc_state.fences))
3484 		trace_intel_context_fence_release(ce);
3485 
3486 	/*
3487 	 * Use an IRQ to ensure locking order of sched_engine->lock ->
3488 	 * ce->guc_state.lock is preserved.
3489 	 */
3490 	list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3491 				 guc_fence_link) {
3492 		list_del(&rq->guc_fence_link);
3493 		irq_work_queue(&rq->submit_work);
3494 	}
3495 
3496 	INIT_LIST_HEAD(&ce->guc_state.fences);
3497 }
3498 
3499 static void guc_signal_context_fence(struct intel_context *ce)
3500 {
3501 	unsigned long flags;
3502 
3503 	GEM_BUG_ON(intel_context_is_child(ce));
3504 
3505 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3506 	clr_context_wait_for_deregister_to_register(ce);
3507 	__guc_signal_context_fence(ce);
3508 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3509 }
3510 
3511 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3512 {
3513 	return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3514 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3515 		!submission_disabled(ce_to_guc(ce));
3516 }
3517 
3518 static void guc_context_init(struct intel_context *ce)
3519 {
3520 	const struct i915_gem_context *ctx;
3521 	int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3522 
3523 	rcu_read_lock();
3524 	ctx = rcu_dereference(ce->gem_context);
3525 	if (ctx)
3526 		prio = ctx->sched.priority;
3527 	rcu_read_unlock();
3528 
3529 	ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3530 
3531 	INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work,
3532 			  __delay_sched_disable);
3533 
3534 	set_bit(CONTEXT_GUC_INIT, &ce->flags);
3535 }
3536 
3537 static int guc_request_alloc(struct i915_request *rq)
3538 {
3539 	struct intel_context *ce = request_to_scheduling_context(rq);
3540 	struct intel_guc *guc = ce_to_guc(ce);
3541 	unsigned long flags;
3542 	int ret;
3543 
3544 	GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3545 
3546 	/*
3547 	 * Flush enough space to reduce the likelihood of waiting after
3548 	 * we start building the request - in which case we will just
3549 	 * have to repeat work.
3550 	 */
3551 	rq->reserved_space += GUC_REQUEST_SIZE;
3552 
3553 	/*
3554 	 * Note that after this point, we have committed to using
3555 	 * this request as it is being used to both track the
3556 	 * state of engine initialisation and liveness of the
3557 	 * golden renderstate above. Think twice before you try
3558 	 * to cancel/unwind this request now.
3559 	 */
3560 
3561 	/* Unconditionally invalidate GPU caches and TLBs. */
3562 	ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3563 	if (ret)
3564 		return ret;
3565 
3566 	rq->reserved_space -= GUC_REQUEST_SIZE;
3567 
3568 	if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3569 		guc_context_init(ce);
3570 
3571 	/*
3572 	 * If the context gets closed while the execbuf is ongoing, the context
3573 	 * close code will race with the below code to cancel the delayed work.
3574 	 * If the context close wins the race and cancels the work, it will
3575 	 * immediately call the sched disable (see guc_context_close), so there
3576 	 * is a chance we can get past this check while the sched_disable code
3577 	 * is being executed. To make sure that code completes before we check
3578 	 * the status further down, we wait for the close process to complete.
3579 	 * Else, this code path could send a request down thinking that the
3580 	 * context is still in a schedule-enable mode while the GuC ends up
3581 	 * dropping the request completely because the disable did go from the
3582 	 * context_close path right to GuC just prior. In the event the CT is
3583 	 * full, we could potentially need to wait up to 1.5 seconds.
3584 	 */
3585 	if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work))
3586 		intel_context_sched_disable_unpin(ce);
3587 	else if (intel_context_is_closed(ce))
3588 		if (wait_for(context_close_done(ce), 1500))
3589 			guc_warn(guc, "timed out waiting on context sched close before realloc\n");
3590 	/*
3591 	 * Call pin_guc_id here rather than in the pinning step as with
3592 	 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3593 	 * guc_id and creating horrible race conditions. This is especially bad
3594 	 * when guc_id are being stolen due to over subscription. By the time
3595 	 * this function is reached, it is guaranteed that the guc_id will be
3596 	 * persistent until the generated request is retired. Thus, sealing these
3597 	 * race conditions. It is still safe to fail here if guc_id are
3598 	 * exhausted and return -EAGAIN to the user indicating that they can try
3599 	 * again in the future.
3600 	 *
3601 	 * There is no need for a lock here as the timeline mutex ensures at
3602 	 * most one context can be executing this code path at once. The
3603 	 * guc_id_ref is incremented once for every request in flight and
3604 	 * decremented on each retire. When it is zero, a lock around the
3605 	 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3606 	 */
3607 	if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3608 		goto out;
3609 
3610 	ret = pin_guc_id(guc, ce);	/* returns 1 if new guc_id assigned */
3611 	if (unlikely(ret < 0))
3612 		return ret;
3613 	if (context_needs_register(ce, !!ret)) {
3614 		ret = try_context_registration(ce, true);
3615 		if (unlikely(ret)) {	/* unwind */
3616 			if (ret == -EPIPE) {
3617 				disable_submission(guc);
3618 				goto out;	/* GPU will be reset */
3619 			}
3620 			atomic_dec(&ce->guc_id.ref);
3621 			unpin_guc_id(guc, ce);
3622 			return ret;
3623 		}
3624 	}
3625 
3626 	clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3627 
3628 out:
3629 	/*
3630 	 * We block all requests on this context if a G2H is pending for a
3631 	 * schedule disable or context deregistration as the GuC will fail a
3632 	 * schedule enable or context registration if either G2H is pending
3633 	 * respectfully. Once a G2H returns, the fence is released that is
3634 	 * blocking these requests (see guc_signal_context_fence).
3635 	 */
3636 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3637 	if (context_wait_for_deregister_to_register(ce) ||
3638 	    context_pending_disable(ce)) {
3639 		init_irq_work(&rq->submit_work, submit_work_cb);
3640 		i915_sw_fence_await(&rq->submit);
3641 
3642 		list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3643 	}
3644 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3645 
3646 	return 0;
3647 }
3648 
3649 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3650 				       struct i915_gem_ww_ctx *ww,
3651 				       void **vaddr)
3652 {
3653 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3654 
3655 	return __guc_context_pre_pin(ce, engine, ww, vaddr);
3656 }
3657 
3658 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3659 {
3660 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3661 	int ret = __guc_context_pin(ce, engine, vaddr);
3662 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3663 
3664 	if (likely(!ret))
3665 		for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3666 			intel_engine_pm_get(engine);
3667 
3668 	return ret;
3669 }
3670 
3671 static void guc_virtual_context_unpin(struct intel_context *ce)
3672 {
3673 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3674 	struct intel_engine_cs *engine;
3675 	struct intel_guc *guc = ce_to_guc(ce);
3676 
3677 	GEM_BUG_ON(context_enabled(ce));
3678 	GEM_BUG_ON(intel_context_is_barrier(ce));
3679 
3680 	unpin_guc_id(guc, ce);
3681 	lrc_unpin(ce);
3682 
3683 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3684 		intel_engine_pm_put_async(engine);
3685 }
3686 
3687 static void guc_virtual_context_enter(struct intel_context *ce)
3688 {
3689 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3690 	struct intel_engine_cs *engine;
3691 
3692 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3693 		intel_engine_pm_get(engine);
3694 
3695 	intel_timeline_enter(ce->timeline);
3696 }
3697 
3698 static void guc_virtual_context_exit(struct intel_context *ce)
3699 {
3700 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3701 	struct intel_engine_cs *engine;
3702 
3703 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3704 		intel_engine_pm_put(engine);
3705 
3706 	intel_timeline_exit(ce->timeline);
3707 }
3708 
3709 static int guc_virtual_context_alloc(struct intel_context *ce)
3710 {
3711 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3712 
3713 	return lrc_alloc(ce, engine);
3714 }
3715 
3716 static const struct intel_context_ops virtual_guc_context_ops = {
3717 	.alloc = guc_virtual_context_alloc,
3718 
3719 	.close = guc_context_close,
3720 
3721 	.pre_pin = guc_virtual_context_pre_pin,
3722 	.pin = guc_virtual_context_pin,
3723 	.unpin = guc_virtual_context_unpin,
3724 	.post_unpin = guc_context_post_unpin,
3725 
3726 	.revoke = guc_context_revoke,
3727 
3728 	.cancel_request = guc_context_cancel_request,
3729 
3730 	.enter = guc_virtual_context_enter,
3731 	.exit = guc_virtual_context_exit,
3732 
3733 	.sched_disable = guc_context_sched_disable,
3734 
3735 	.destroy = guc_context_destroy,
3736 
3737 	.get_sibling = guc_virtual_get_sibling,
3738 };
3739 
3740 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
3741 {
3742 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3743 	struct intel_guc *guc = ce_to_guc(ce);
3744 	int ret;
3745 
3746 	GEM_BUG_ON(!intel_context_is_parent(ce));
3747 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3748 
3749 	ret = pin_guc_id(guc, ce);
3750 	if (unlikely(ret < 0))
3751 		return ret;
3752 
3753 	return __guc_context_pin(ce, engine, vaddr);
3754 }
3755 
3756 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
3757 {
3758 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3759 
3760 	GEM_BUG_ON(!intel_context_is_child(ce));
3761 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3762 
3763 	__intel_context_pin(ce->parallel.parent);
3764 	return __guc_context_pin(ce, engine, vaddr);
3765 }
3766 
3767 static void guc_parent_context_unpin(struct intel_context *ce)
3768 {
3769 	struct intel_guc *guc = ce_to_guc(ce);
3770 
3771 	GEM_BUG_ON(context_enabled(ce));
3772 	GEM_BUG_ON(intel_context_is_barrier(ce));
3773 	GEM_BUG_ON(!intel_context_is_parent(ce));
3774 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3775 
3776 	unpin_guc_id(guc, ce);
3777 	lrc_unpin(ce);
3778 }
3779 
3780 static void guc_child_context_unpin(struct intel_context *ce)
3781 {
3782 	GEM_BUG_ON(context_enabled(ce));
3783 	GEM_BUG_ON(intel_context_is_barrier(ce));
3784 	GEM_BUG_ON(!intel_context_is_child(ce));
3785 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3786 
3787 	lrc_unpin(ce);
3788 }
3789 
3790 static void guc_child_context_post_unpin(struct intel_context *ce)
3791 {
3792 	GEM_BUG_ON(!intel_context_is_child(ce));
3793 	GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
3794 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3795 
3796 	lrc_post_unpin(ce);
3797 	intel_context_unpin(ce->parallel.parent);
3798 }
3799 
3800 static void guc_child_context_destroy(struct kref *kref)
3801 {
3802 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3803 
3804 	__guc_context_destroy(ce);
3805 }
3806 
3807 static const struct intel_context_ops virtual_parent_context_ops = {
3808 	.alloc = guc_virtual_context_alloc,
3809 
3810 	.close = guc_context_close,
3811 
3812 	.pre_pin = guc_context_pre_pin,
3813 	.pin = guc_parent_context_pin,
3814 	.unpin = guc_parent_context_unpin,
3815 	.post_unpin = guc_context_post_unpin,
3816 
3817 	.revoke = guc_context_revoke,
3818 
3819 	.cancel_request = guc_context_cancel_request,
3820 
3821 	.enter = guc_virtual_context_enter,
3822 	.exit = guc_virtual_context_exit,
3823 
3824 	.sched_disable = guc_context_sched_disable,
3825 
3826 	.destroy = guc_context_destroy,
3827 
3828 	.get_sibling = guc_virtual_get_sibling,
3829 };
3830 
3831 static const struct intel_context_ops virtual_child_context_ops = {
3832 	.alloc = guc_virtual_context_alloc,
3833 
3834 	.pre_pin = guc_context_pre_pin,
3835 	.pin = guc_child_context_pin,
3836 	.unpin = guc_child_context_unpin,
3837 	.post_unpin = guc_child_context_post_unpin,
3838 
3839 	.cancel_request = guc_context_cancel_request,
3840 
3841 	.enter = guc_virtual_context_enter,
3842 	.exit = guc_virtual_context_exit,
3843 
3844 	.destroy = guc_child_context_destroy,
3845 
3846 	.get_sibling = guc_virtual_get_sibling,
3847 };
3848 
3849 /*
3850  * The below override of the breadcrumbs is enabled when the user configures a
3851  * context for parallel submission (multi-lrc, parent-child).
3852  *
3853  * The overridden breadcrumbs implements an algorithm which allows the GuC to
3854  * safely preempt all the hw contexts configured for parallel submission
3855  * between each BB. The contract between the i915 and GuC is if the parent
3856  * context can be preempted, all the children can be preempted, and the GuC will
3857  * always try to preempt the parent before the children. A handshake between the
3858  * parent / children breadcrumbs ensures the i915 holds up its end of the deal
3859  * creating a window to preempt between each set of BBs.
3860  */
3861 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
3862 						     u64 offset, u32 len,
3863 						     const unsigned int flags);
3864 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
3865 						    u64 offset, u32 len,
3866 						    const unsigned int flags);
3867 static u32 *
3868 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
3869 						 u32 *cs);
3870 static u32 *
3871 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
3872 						u32 *cs);
3873 
3874 static struct intel_context *
3875 guc_create_parallel(struct intel_engine_cs **engines,
3876 		    unsigned int num_siblings,
3877 		    unsigned int width)
3878 {
3879 	struct intel_engine_cs **siblings = NULL;
3880 	struct intel_context *parent = NULL, *ce, *err;
3881 	int i, j;
3882 
3883 	siblings = kmalloc_array(num_siblings,
3884 				 sizeof(*siblings),
3885 				 GFP_KERNEL);
3886 	if (!siblings)
3887 		return ERR_PTR(-ENOMEM);
3888 
3889 	for (i = 0; i < width; ++i) {
3890 		for (j = 0; j < num_siblings; ++j)
3891 			siblings[j] = engines[i * num_siblings + j];
3892 
3893 		ce = intel_engine_create_virtual(siblings, num_siblings,
3894 						 FORCE_VIRTUAL);
3895 		if (IS_ERR(ce)) {
3896 			err = ERR_CAST(ce);
3897 			goto unwind;
3898 		}
3899 
3900 		if (i == 0) {
3901 			parent = ce;
3902 			parent->ops = &virtual_parent_context_ops;
3903 		} else {
3904 			ce->ops = &virtual_child_context_ops;
3905 			intel_context_bind_parent_child(parent, ce);
3906 		}
3907 	}
3908 
3909 	parent->parallel.fence_context = dma_fence_context_alloc(1);
3910 
3911 	parent->engine->emit_bb_start =
3912 		emit_bb_start_parent_no_preempt_mid_batch;
3913 	parent->engine->emit_fini_breadcrumb =
3914 		emit_fini_breadcrumb_parent_no_preempt_mid_batch;
3915 	parent->engine->emit_fini_breadcrumb_dw =
3916 		12 + 4 * parent->parallel.number_children;
3917 	for_each_child(parent, ce) {
3918 		ce->engine->emit_bb_start =
3919 			emit_bb_start_child_no_preempt_mid_batch;
3920 		ce->engine->emit_fini_breadcrumb =
3921 			emit_fini_breadcrumb_child_no_preempt_mid_batch;
3922 		ce->engine->emit_fini_breadcrumb_dw = 16;
3923 	}
3924 
3925 	kfree(siblings);
3926 	return parent;
3927 
3928 unwind:
3929 	if (parent)
3930 		intel_context_put(parent);
3931 	kfree(siblings);
3932 	return err;
3933 }
3934 
3935 static bool
3936 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
3937 {
3938 	struct intel_engine_cs *sibling;
3939 	intel_engine_mask_t tmp, mask = b->engine_mask;
3940 	bool result = false;
3941 
3942 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
3943 		result |= intel_engine_irq_enable(sibling);
3944 
3945 	return result;
3946 }
3947 
3948 static void
3949 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
3950 {
3951 	struct intel_engine_cs *sibling;
3952 	intel_engine_mask_t tmp, mask = b->engine_mask;
3953 
3954 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
3955 		intel_engine_irq_disable(sibling);
3956 }
3957 
3958 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
3959 {
3960 	int i;
3961 
3962 	/*
3963 	 * In GuC submission mode we do not know which physical engine a request
3964 	 * will be scheduled on, this creates a problem because the breadcrumb
3965 	 * interrupt is per physical engine. To work around this we attach
3966 	 * requests and direct all breadcrumb interrupts to the first instance
3967 	 * of an engine per class. In addition all breadcrumb interrupts are
3968 	 * enabled / disabled across an engine class in unison.
3969 	 */
3970 	for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
3971 		struct intel_engine_cs *sibling =
3972 			engine->gt->engine_class[engine->class][i];
3973 
3974 		if (sibling) {
3975 			if (engine->breadcrumbs != sibling->breadcrumbs) {
3976 				intel_breadcrumbs_put(engine->breadcrumbs);
3977 				engine->breadcrumbs =
3978 					intel_breadcrumbs_get(sibling->breadcrumbs);
3979 			}
3980 			break;
3981 		}
3982 	}
3983 
3984 	if (engine->breadcrumbs) {
3985 		engine->breadcrumbs->engine_mask |= engine->mask;
3986 		engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
3987 		engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
3988 	}
3989 }
3990 
3991 static void guc_bump_inflight_request_prio(struct i915_request *rq,
3992 					   int prio)
3993 {
3994 	struct intel_context *ce = request_to_scheduling_context(rq);
3995 	u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
3996 
3997 	/* Short circuit function */
3998 	if (prio < I915_PRIORITY_NORMAL ||
3999 	    rq->guc_prio == GUC_PRIO_FINI ||
4000 	    (rq->guc_prio != GUC_PRIO_INIT &&
4001 	     !new_guc_prio_higher(rq->guc_prio, new_guc_prio)))
4002 		return;
4003 
4004 	spin_lock(&ce->guc_state.lock);
4005 	if (rq->guc_prio != GUC_PRIO_FINI) {
4006 		if (rq->guc_prio != GUC_PRIO_INIT)
4007 			sub_context_inflight_prio(ce, rq->guc_prio);
4008 		rq->guc_prio = new_guc_prio;
4009 		add_context_inflight_prio(ce, rq->guc_prio);
4010 		update_context_prio(ce);
4011 	}
4012 	spin_unlock(&ce->guc_state.lock);
4013 }
4014 
4015 static void guc_retire_inflight_request_prio(struct i915_request *rq)
4016 {
4017 	struct intel_context *ce = request_to_scheduling_context(rq);
4018 
4019 	spin_lock(&ce->guc_state.lock);
4020 	guc_prio_fini(rq, ce);
4021 	spin_unlock(&ce->guc_state.lock);
4022 }
4023 
4024 static void sanitize_hwsp(struct intel_engine_cs *engine)
4025 {
4026 	struct intel_timeline *tl;
4027 
4028 	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
4029 		intel_timeline_reset_seqno(tl);
4030 }
4031 
4032 static void guc_sanitize(struct intel_engine_cs *engine)
4033 {
4034 	/*
4035 	 * Poison residual state on resume, in case the suspend didn't!
4036 	 *
4037 	 * We have to assume that across suspend/resume (or other loss
4038 	 * of control) that the contents of our pinned buffers has been
4039 	 * lost, replaced by garbage. Since this doesn't always happen,
4040 	 * let's poison such state so that we more quickly spot when
4041 	 * we falsely assume it has been preserved.
4042 	 */
4043 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
4044 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
4045 
4046 	/*
4047 	 * The kernel_context HWSP is stored in the status_page. As above,
4048 	 * that may be lost on resume/initialisation, and so we need to
4049 	 * reset the value in the HWSP.
4050 	 */
4051 	sanitize_hwsp(engine);
4052 
4053 	/* And scrub the dirty cachelines for the HWSP */
4054 	drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
4055 
4056 	intel_engine_reset_pinned_contexts(engine);
4057 }
4058 
4059 static void setup_hwsp(struct intel_engine_cs *engine)
4060 {
4061 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
4062 
4063 	ENGINE_WRITE_FW(engine,
4064 			RING_HWS_PGA,
4065 			i915_ggtt_offset(engine->status_page.vma));
4066 }
4067 
4068 static void start_engine(struct intel_engine_cs *engine)
4069 {
4070 	ENGINE_WRITE_FW(engine,
4071 			RING_MODE_GEN7,
4072 			_MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
4073 
4074 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
4075 	ENGINE_POSTING_READ(engine, RING_MI_MODE);
4076 }
4077 
4078 static int guc_resume(struct intel_engine_cs *engine)
4079 {
4080 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
4081 
4082 	intel_mocs_init_engine(engine);
4083 
4084 	intel_breadcrumbs_reset(engine->breadcrumbs);
4085 
4086 	setup_hwsp(engine);
4087 	start_engine(engine);
4088 
4089 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
4090 		xehp_enable_ccs_engines(engine);
4091 
4092 	return 0;
4093 }
4094 
4095 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
4096 {
4097 	return !sched_engine->tasklet.callback;
4098 }
4099 
4100 static void guc_set_default_submission(struct intel_engine_cs *engine)
4101 {
4102 	engine->submit_request = guc_submit_request;
4103 }
4104 
4105 static inline void guc_kernel_context_pin(struct intel_guc *guc,
4106 					  struct intel_context *ce)
4107 {
4108 	/*
4109 	 * Note: we purposefully do not check the returns below because
4110 	 * the registration can only fail if a reset is just starting.
4111 	 * This is called at the end of reset so presumably another reset
4112 	 * isn't happening and even it did this code would be run again.
4113 	 */
4114 
4115 	if (context_guc_id_invalid(ce))
4116 		pin_guc_id(guc, ce);
4117 
4118 	if (!test_bit(CONTEXT_GUC_INIT, &ce->flags))
4119 		guc_context_init(ce);
4120 
4121 	try_context_registration(ce, true);
4122 }
4123 
4124 static inline void guc_init_lrc_mapping(struct intel_guc *guc)
4125 {
4126 	struct intel_gt *gt = guc_to_gt(guc);
4127 	struct intel_engine_cs *engine;
4128 	enum intel_engine_id id;
4129 
4130 	/* make sure all descriptors are clean... */
4131 	xa_destroy(&guc->context_lookup);
4132 
4133 	/*
4134 	 * A reset might have occurred while we had a pending stalled request,
4135 	 * so make sure we clean that up.
4136 	 */
4137 	guc->stalled_request = NULL;
4138 	guc->submission_stall_reason = STALL_NONE;
4139 
4140 	/*
4141 	 * Some contexts might have been pinned before we enabled GuC
4142 	 * submission, so we need to add them to the GuC bookeeping.
4143 	 * Also, after a reset the of the GuC we want to make sure that the
4144 	 * information shared with GuC is properly reset. The kernel LRCs are
4145 	 * not attached to the gem_context, so they need to be added separately.
4146 	 */
4147 	for_each_engine(engine, gt, id) {
4148 		struct intel_context *ce;
4149 
4150 		list_for_each_entry(ce, &engine->pinned_contexts_list,
4151 				    pinned_contexts_link)
4152 			guc_kernel_context_pin(guc, ce);
4153 	}
4154 }
4155 
4156 static void guc_release(struct intel_engine_cs *engine)
4157 {
4158 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
4159 
4160 	intel_engine_cleanup_common(engine);
4161 	lrc_fini_wa_ctx(engine);
4162 }
4163 
4164 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
4165 {
4166 	struct intel_engine_cs *e;
4167 	intel_engine_mask_t tmp, mask = engine->mask;
4168 
4169 	for_each_engine_masked(e, engine->gt, mask, tmp)
4170 		e->serial++;
4171 }
4172 
4173 static void guc_default_vfuncs(struct intel_engine_cs *engine)
4174 {
4175 	/* Default vfuncs which can be overridden by each engine. */
4176 
4177 	engine->resume = guc_resume;
4178 
4179 	engine->cops = &guc_context_ops;
4180 	engine->request_alloc = guc_request_alloc;
4181 	engine->add_active_request = add_to_context;
4182 	engine->remove_active_request = remove_from_context;
4183 
4184 	engine->sched_engine->schedule = i915_schedule;
4185 
4186 	engine->reset.prepare = guc_engine_reset_prepare;
4187 	engine->reset.rewind = guc_rewind_nop;
4188 	engine->reset.cancel = guc_reset_nop;
4189 	engine->reset.finish = guc_reset_nop;
4190 
4191 	engine->emit_flush = gen8_emit_flush_xcs;
4192 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
4193 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
4194 	if (GRAPHICS_VER(engine->i915) >= 12) {
4195 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
4196 		engine->emit_flush = gen12_emit_flush_xcs;
4197 	}
4198 	engine->set_default_submission = guc_set_default_submission;
4199 	engine->busyness = guc_engine_busyness;
4200 
4201 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4202 	engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4203 	engine->flags |= I915_ENGINE_HAS_TIMESLICES;
4204 
4205 	/* Wa_14014475959:dg2 */
4206 	if (engine->class == COMPUTE_CLASS)
4207 		if (IS_MTL_GRAPHICS_STEP(engine->i915, M, STEP_A0, STEP_B0) ||
4208 		    IS_DG2(engine->i915))
4209 			engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT;
4210 
4211 	/*
4212 	 * TODO: GuC supports timeslicing and semaphores as well, but they're
4213 	 * handled by the firmware so some minor tweaks are required before
4214 	 * enabling.
4215 	 *
4216 	 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4217 	 */
4218 
4219 	engine->emit_bb_start = gen8_emit_bb_start;
4220 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
4221 		engine->emit_bb_start = xehp_emit_bb_start;
4222 }
4223 
4224 static void rcs_submission_override(struct intel_engine_cs *engine)
4225 {
4226 	switch (GRAPHICS_VER(engine->i915)) {
4227 	case 12:
4228 		engine->emit_flush = gen12_emit_flush_rcs;
4229 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
4230 		break;
4231 	case 11:
4232 		engine->emit_flush = gen11_emit_flush_rcs;
4233 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
4234 		break;
4235 	default:
4236 		engine->emit_flush = gen8_emit_flush_rcs;
4237 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
4238 		break;
4239 	}
4240 }
4241 
4242 static inline void guc_default_irqs(struct intel_engine_cs *engine)
4243 {
4244 	engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
4245 	intel_engine_set_irq_handler(engine, cs_irq_handler);
4246 }
4247 
4248 static void guc_sched_engine_destroy(struct kref *kref)
4249 {
4250 	struct i915_sched_engine *sched_engine =
4251 		container_of(kref, typeof(*sched_engine), ref);
4252 	struct intel_guc *guc = sched_engine->private_data;
4253 
4254 	guc->sched_engine = NULL;
4255 	tasklet_kill(&sched_engine->tasklet); /* flush the callback */
4256 	kfree(sched_engine);
4257 }
4258 
4259 int intel_guc_submission_setup(struct intel_engine_cs *engine)
4260 {
4261 	struct drm_i915_private *i915 = engine->i915;
4262 	struct intel_guc *guc = &engine->gt->uc.guc;
4263 
4264 	/*
4265 	 * The setup relies on several assumptions (e.g. irqs always enabled)
4266 	 * that are only valid on gen11+
4267 	 */
4268 	GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
4269 
4270 	if (!guc->sched_engine) {
4271 		guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
4272 		if (!guc->sched_engine)
4273 			return -ENOMEM;
4274 
4275 		guc->sched_engine->schedule = i915_schedule;
4276 		guc->sched_engine->disabled = guc_sched_engine_disabled;
4277 		guc->sched_engine->private_data = guc;
4278 		guc->sched_engine->destroy = guc_sched_engine_destroy;
4279 		guc->sched_engine->bump_inflight_request_prio =
4280 			guc_bump_inflight_request_prio;
4281 		guc->sched_engine->retire_inflight_request_prio =
4282 			guc_retire_inflight_request_prio;
4283 		tasklet_setup(&guc->sched_engine->tasklet,
4284 			      guc_submission_tasklet);
4285 	}
4286 	i915_sched_engine_put(engine->sched_engine);
4287 	engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
4288 
4289 	guc_default_vfuncs(engine);
4290 	guc_default_irqs(engine);
4291 	guc_init_breadcrumbs(engine);
4292 
4293 	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
4294 		rcs_submission_override(engine);
4295 
4296 	lrc_init_wa_ctx(engine);
4297 
4298 	/* Finally, take ownership and responsibility for cleanup! */
4299 	engine->sanitize = guc_sanitize;
4300 	engine->release = guc_release;
4301 
4302 	return 0;
4303 }
4304 
4305 struct scheduling_policy {
4306 	/* internal data */
4307 	u32 max_words, num_words;
4308 	u32 count;
4309 	/* API data */
4310 	struct guc_update_scheduling_policy h2g;
4311 };
4312 
4313 static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy)
4314 {
4315 	u32 *start = (void *)&policy->h2g;
4316 	u32 *end = policy->h2g.data + policy->num_words;
4317 	size_t delta = end - start;
4318 
4319 	return delta;
4320 }
4321 
4322 static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy)
4323 {
4324 	policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV;
4325 	policy->max_words = ARRAY_SIZE(policy->h2g.data);
4326 	policy->num_words = 0;
4327 	policy->count = 0;
4328 
4329 	return policy;
4330 }
4331 
4332 static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy,
4333 					    u32 action, u32 *data, u32 len)
4334 {
4335 	u32 *klv_ptr = policy->h2g.data + policy->num_words;
4336 
4337 	GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words);
4338 	*(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) |
4339 		       FIELD_PREP(GUC_KLV_0_LEN, len);
4340 	memcpy(klv_ptr, data, sizeof(u32) * len);
4341 	policy->num_words += 1 + len;
4342 	policy->count++;
4343 }
4344 
4345 static int __guc_action_set_scheduling_policies(struct intel_guc *guc,
4346 						struct scheduling_policy *policy)
4347 {
4348 	int ret;
4349 
4350 	ret = intel_guc_send(guc, (u32 *)&policy->h2g,
4351 			     __guc_scheduling_policy_action_size(policy));
4352 	if (ret < 0) {
4353 		guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n",
4354 				ERR_PTR(ret));
4355 		return ret;
4356 	}
4357 
4358 	if (ret != policy->count) {
4359 		guc_warn(guc, "global scheduler policy processed %d of %d KLVs!",
4360 			 ret, policy->count);
4361 		if (ret > policy->count)
4362 			return -EPROTO;
4363 	}
4364 
4365 	return 0;
4366 }
4367 
4368 static int guc_init_global_schedule_policy(struct intel_guc *guc)
4369 {
4370 	struct scheduling_policy policy;
4371 	struct intel_gt *gt = guc_to_gt(guc);
4372 	intel_wakeref_t wakeref;
4373 	int ret;
4374 
4375 	if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0))
4376 		return 0;
4377 
4378 	__guc_scheduling_policy_start_klv(&policy);
4379 
4380 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
4381 		u32 yield[] = {
4382 			GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION,
4383 			GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO,
4384 		};
4385 
4386 		__guc_scheduling_policy_add_klv(&policy,
4387 						GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD,
4388 						yield, ARRAY_SIZE(yield));
4389 
4390 		ret = __guc_action_set_scheduling_policies(guc, &policy);
4391 	}
4392 
4393 	return ret;
4394 }
4395 
4396 void intel_guc_submission_enable(struct intel_guc *guc)
4397 {
4398 	struct intel_gt *gt = guc_to_gt(guc);
4399 
4400 	/* Enable and route to GuC */
4401 	if (GRAPHICS_VER(gt->i915) >= 12)
4402 		intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES,
4403 				   GUC_SEM_INTR_ROUTE_TO_GUC |
4404 				   GUC_SEM_INTR_ENABLE_ALL);
4405 
4406 	guc_init_lrc_mapping(guc);
4407 	guc_init_engine_stats(guc);
4408 	guc_init_global_schedule_policy(guc);
4409 }
4410 
4411 void intel_guc_submission_disable(struct intel_guc *guc)
4412 {
4413 	struct intel_gt *gt = guc_to_gt(guc);
4414 
4415 	/* Note: By the time we're here, GuC may have already been reset */
4416 
4417 	/* Disable and route to host */
4418 	if (GRAPHICS_VER(gt->i915) >= 12)
4419 		intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, 0x0);
4420 }
4421 
4422 static bool __guc_submission_supported(struct intel_guc *guc)
4423 {
4424 	/* GuC submission is unavailable for pre-Gen11 */
4425 	return intel_guc_is_supported(guc) &&
4426 	       GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11;
4427 }
4428 
4429 static bool __guc_submission_selected(struct intel_guc *guc)
4430 {
4431 	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
4432 
4433 	if (!intel_guc_submission_is_supported(guc))
4434 		return false;
4435 
4436 	return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
4437 }
4438 
4439 int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc)
4440 {
4441 	return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc);
4442 }
4443 
4444 /*
4445  * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher
4446  * workloads are able to enjoy the latency reduction when delaying the schedule-disable
4447  * operation. This matches the 30fps game-render + encode (real world) workload this
4448  * knob was tested against.
4449  */
4450 #define SCHED_DISABLE_DELAY_MS	34
4451 
4452 /*
4453  * A threshold of 75% is a reasonable starting point considering that real world apps
4454  * generally don't get anywhere near this.
4455  */
4456 #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \
4457 	(((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4)
4458 
4459 void intel_guc_submission_init_early(struct intel_guc *guc)
4460 {
4461 	xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
4462 
4463 	spin_lock_init(&guc->submission_state.lock);
4464 	INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
4465 	ida_init(&guc->submission_state.guc_ids);
4466 	INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
4467 	INIT_WORK(&guc->submission_state.destroyed_worker,
4468 		  destroyed_worker_func);
4469 	INIT_WORK(&guc->submission_state.reset_fail_worker,
4470 		  reset_fail_worker_func);
4471 
4472 	spin_lock_init(&guc->timestamp.lock);
4473 	INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
4474 
4475 	guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS;
4476 	guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
4477 	guc->submission_state.sched_disable_gucid_threshold =
4478 		NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc);
4479 	guc->submission_supported = __guc_submission_supported(guc);
4480 	guc->submission_selected = __guc_submission_selected(guc);
4481 }
4482 
4483 static inline struct intel_context *
4484 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4485 {
4486 	struct intel_context *ce;
4487 
4488 	if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4489 		guc_err(guc, "Invalid ctx_id %u\n", ctx_id);
4490 		return NULL;
4491 	}
4492 
4493 	ce = __get_context(guc, ctx_id);
4494 	if (unlikely(!ce)) {
4495 		guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id);
4496 		return NULL;
4497 	}
4498 
4499 	if (unlikely(intel_context_is_child(ce))) {
4500 		guc_err(guc, "Context is child, ctx_id %u\n", ctx_id);
4501 		return NULL;
4502 	}
4503 
4504 	return ce;
4505 }
4506 
4507 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
4508 					  const u32 *msg,
4509 					  u32 len)
4510 {
4511 	struct intel_context *ce;
4512 	u32 ctx_id;
4513 
4514 	if (unlikely(len < 1)) {
4515 		guc_err(guc, "Invalid length %u\n", len);
4516 		return -EPROTO;
4517 	}
4518 	ctx_id = msg[0];
4519 
4520 	ce = g2h_context_lookup(guc, ctx_id);
4521 	if (unlikely(!ce))
4522 		return -EPROTO;
4523 
4524 	trace_intel_context_deregister_done(ce);
4525 
4526 #ifdef CONFIG_DRM_I915_SELFTEST
4527 	if (unlikely(ce->drop_deregister)) {
4528 		ce->drop_deregister = false;
4529 		return 0;
4530 	}
4531 #endif
4532 
4533 	if (context_wait_for_deregister_to_register(ce)) {
4534 		struct intel_runtime_pm *runtime_pm =
4535 			&ce->engine->gt->i915->runtime_pm;
4536 		intel_wakeref_t wakeref;
4537 
4538 		/*
4539 		 * Previous owner of this guc_id has been deregistered, now safe
4540 		 * register this context.
4541 		 */
4542 		with_intel_runtime_pm(runtime_pm, wakeref)
4543 			register_context(ce, true);
4544 		guc_signal_context_fence(ce);
4545 		intel_context_put(ce);
4546 	} else if (context_destroyed(ce)) {
4547 		/* Context has been destroyed */
4548 		intel_gt_pm_put_async(guc_to_gt(guc));
4549 		release_guc_id(guc, ce);
4550 		__guc_context_destroy(ce);
4551 	}
4552 
4553 	decr_outstanding_submission_g2h(guc);
4554 
4555 	return 0;
4556 }
4557 
4558 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
4559 				     const u32 *msg,
4560 				     u32 len)
4561 {
4562 	struct intel_context *ce;
4563 	unsigned long flags;
4564 	u32 ctx_id;
4565 
4566 	if (unlikely(len < 2)) {
4567 		guc_err(guc, "Invalid length %u\n", len);
4568 		return -EPROTO;
4569 	}
4570 	ctx_id = msg[0];
4571 
4572 	ce = g2h_context_lookup(guc, ctx_id);
4573 	if (unlikely(!ce))
4574 		return -EPROTO;
4575 
4576 	if (unlikely(context_destroyed(ce) ||
4577 		     (!context_pending_enable(ce) &&
4578 		     !context_pending_disable(ce)))) {
4579 		guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n",
4580 			ce->guc_state.sched_state, ctx_id);
4581 		return -EPROTO;
4582 	}
4583 
4584 	trace_intel_context_sched_done(ce);
4585 
4586 	if (context_pending_enable(ce)) {
4587 #ifdef CONFIG_DRM_I915_SELFTEST
4588 		if (unlikely(ce->drop_schedule_enable)) {
4589 			ce->drop_schedule_enable = false;
4590 			return 0;
4591 		}
4592 #endif
4593 
4594 		spin_lock_irqsave(&ce->guc_state.lock, flags);
4595 		clr_context_pending_enable(ce);
4596 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4597 	} else if (context_pending_disable(ce)) {
4598 		bool banned;
4599 
4600 #ifdef CONFIG_DRM_I915_SELFTEST
4601 		if (unlikely(ce->drop_schedule_disable)) {
4602 			ce->drop_schedule_disable = false;
4603 			return 0;
4604 		}
4605 #endif
4606 
4607 		/*
4608 		 * Unpin must be done before __guc_signal_context_fence,
4609 		 * otherwise a race exists between the requests getting
4610 		 * submitted + retired before this unpin completes resulting in
4611 		 * the pin_count going to zero and the context still being
4612 		 * enabled.
4613 		 */
4614 		intel_context_sched_disable_unpin(ce);
4615 
4616 		spin_lock_irqsave(&ce->guc_state.lock, flags);
4617 		banned = context_banned(ce);
4618 		clr_context_banned(ce);
4619 		clr_context_pending_disable(ce);
4620 		__guc_signal_context_fence(ce);
4621 		guc_blocked_fence_complete(ce);
4622 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4623 
4624 		if (banned) {
4625 			guc_cancel_context_requests(ce);
4626 			intel_engine_signal_breadcrumbs(ce->engine);
4627 		}
4628 	}
4629 
4630 	decr_outstanding_submission_g2h(guc);
4631 	intel_context_put(ce);
4632 
4633 	return 0;
4634 }
4635 
4636 static void capture_error_state(struct intel_guc *guc,
4637 				struct intel_context *ce)
4638 {
4639 	struct intel_gt *gt = guc_to_gt(guc);
4640 	struct drm_i915_private *i915 = gt->i915;
4641 	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
4642 	intel_wakeref_t wakeref;
4643 
4644 	intel_engine_set_hung_context(engine, ce);
4645 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
4646 		i915_capture_error_state(gt, engine->mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
4647 	atomic_inc(&i915->gpu_error.reset_engine_count[engine->uabi_class]);
4648 }
4649 
4650 static void guc_context_replay(struct intel_context *ce)
4651 {
4652 	struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
4653 
4654 	__guc_reset_context(ce, ce->engine->mask);
4655 	tasklet_hi_schedule(&sched_engine->tasklet);
4656 }
4657 
4658 static void guc_handle_context_reset(struct intel_guc *guc,
4659 				     struct intel_context *ce)
4660 {
4661 	trace_intel_context_reset(ce);
4662 
4663 	drm_dbg(&guc_to_gt(guc)->i915->drm, "Got GuC reset of 0x%04X, exiting = %d, banned = %d\n",
4664 		ce->guc_id.id, test_bit(CONTEXT_EXITING, &ce->flags),
4665 		test_bit(CONTEXT_BANNED, &ce->flags));
4666 
4667 	if (likely(intel_context_is_schedulable(ce))) {
4668 		capture_error_state(guc, ce);
4669 		guc_context_replay(ce);
4670 	} else {
4671 		guc_info(guc, "Ignoring context reset notification of exiting context 0x%04X on %s",
4672 			 ce->guc_id.id, ce->engine->name);
4673 	}
4674 }
4675 
4676 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
4677 					const u32 *msg, u32 len)
4678 {
4679 	struct intel_context *ce;
4680 	unsigned long flags;
4681 	int ctx_id;
4682 
4683 	if (unlikely(len != 1)) {
4684 		guc_err(guc, "Invalid length %u", len);
4685 		return -EPROTO;
4686 	}
4687 
4688 	ctx_id = msg[0];
4689 
4690 	/*
4691 	 * The context lookup uses the xarray but lookups only require an RCU lock
4692 	 * not the full spinlock. So take the lock explicitly and keep it until the
4693 	 * context has been reference count locked to ensure it can't be destroyed
4694 	 * asynchronously until the reset is done.
4695 	 */
4696 	xa_lock_irqsave(&guc->context_lookup, flags);
4697 	ce = g2h_context_lookup(guc, ctx_id);
4698 	if (ce)
4699 		intel_context_get(ce);
4700 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4701 
4702 	if (unlikely(!ce))
4703 		return -EPROTO;
4704 
4705 	guc_handle_context_reset(guc, ce);
4706 	intel_context_put(ce);
4707 
4708 	return 0;
4709 }
4710 
4711 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
4712 					const u32 *msg, u32 len)
4713 {
4714 	u32 status;
4715 
4716 	if (unlikely(len != 1)) {
4717 		guc_dbg(guc, "Invalid length %u", len);
4718 		return -EPROTO;
4719 	}
4720 
4721 	status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
4722 	if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
4723 		guc_warn(guc, "No space for error capture");
4724 
4725 	intel_guc_capture_process(guc);
4726 
4727 	return 0;
4728 }
4729 
4730 struct intel_engine_cs *
4731 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
4732 {
4733 	struct intel_gt *gt = guc_to_gt(guc);
4734 	u8 engine_class = guc_class_to_engine_class(guc_class);
4735 
4736 	/* Class index is checked in class converter */
4737 	GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
4738 
4739 	return gt->engine_class[engine_class][instance];
4740 }
4741 
4742 static void reset_fail_worker_func(struct work_struct *w)
4743 {
4744 	struct intel_guc *guc = container_of(w, struct intel_guc,
4745 					     submission_state.reset_fail_worker);
4746 	struct intel_gt *gt = guc_to_gt(guc);
4747 	intel_engine_mask_t reset_fail_mask;
4748 	unsigned long flags;
4749 
4750 	spin_lock_irqsave(&guc->submission_state.lock, flags);
4751 	reset_fail_mask = guc->submission_state.reset_fail_mask;
4752 	guc->submission_state.reset_fail_mask = 0;
4753 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
4754 
4755 	if (likely(reset_fail_mask)) {
4756 		struct intel_engine_cs *engine;
4757 		enum intel_engine_id id;
4758 
4759 		/*
4760 		 * GuC is toast at this point - it dead loops after sending the failed
4761 		 * reset notification. So need to manually determine the guilty context.
4762 		 * Note that it should be reliable to do this here because the GuC is
4763 		 * toast and will not be scheduling behind the KMD's back.
4764 		 */
4765 		for_each_engine_masked(engine, gt, reset_fail_mask, id)
4766 			intel_guc_find_hung_context(engine);
4767 
4768 		intel_gt_handle_error(gt, reset_fail_mask,
4769 				      I915_ERROR_CAPTURE,
4770 				      "GuC failed to reset engine mask=0x%x",
4771 				      reset_fail_mask);
4772 	}
4773 }
4774 
4775 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
4776 					 const u32 *msg, u32 len)
4777 {
4778 	struct intel_engine_cs *engine;
4779 	u8 guc_class, instance;
4780 	u32 reason;
4781 	unsigned long flags;
4782 
4783 	if (unlikely(len != 3)) {
4784 		guc_err(guc, "Invalid length %u", len);
4785 		return -EPROTO;
4786 	}
4787 
4788 	guc_class = msg[0];
4789 	instance = msg[1];
4790 	reason = msg[2];
4791 
4792 	engine = intel_guc_lookup_engine(guc, guc_class, instance);
4793 	if (unlikely(!engine)) {
4794 		guc_err(guc, "Invalid engine %d:%d", guc_class, instance);
4795 		return -EPROTO;
4796 	}
4797 
4798 	/*
4799 	 * This is an unexpected failure of a hardware feature. So, log a real
4800 	 * error message not just the informational that comes with the reset.
4801 	 */
4802 	guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X",
4803 		guc_class, instance, engine->name, reason);
4804 
4805 	spin_lock_irqsave(&guc->submission_state.lock, flags);
4806 	guc->submission_state.reset_fail_mask |= engine->mask;
4807 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
4808 
4809 	/*
4810 	 * A GT reset flushes this worker queue (G2H handler) so we must use
4811 	 * another worker to trigger a GT reset.
4812 	 */
4813 	queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
4814 
4815 	return 0;
4816 }
4817 
4818 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
4819 {
4820 	struct intel_guc *guc = &engine->gt->uc.guc;
4821 	struct intel_context *ce;
4822 	struct i915_request *rq;
4823 	unsigned long index;
4824 	unsigned long flags;
4825 
4826 	/* Reset called during driver load? GuC not yet initialised! */
4827 	if (unlikely(!guc_submission_initialized(guc)))
4828 		return;
4829 
4830 	xa_lock_irqsave(&guc->context_lookup, flags);
4831 	xa_for_each(&guc->context_lookup, index, ce) {
4832 		bool found;
4833 
4834 		if (!kref_get_unless_zero(&ce->ref))
4835 			continue;
4836 
4837 		xa_unlock(&guc->context_lookup);
4838 
4839 		if (!intel_context_is_pinned(ce))
4840 			goto next;
4841 
4842 		if (intel_engine_is_virtual(ce->engine)) {
4843 			if (!(ce->engine->mask & engine->mask))
4844 				goto next;
4845 		} else {
4846 			if (ce->engine != engine)
4847 				goto next;
4848 		}
4849 
4850 		found = false;
4851 		spin_lock(&ce->guc_state.lock);
4852 		list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
4853 			if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
4854 				continue;
4855 
4856 			found = true;
4857 			break;
4858 		}
4859 		spin_unlock(&ce->guc_state.lock);
4860 
4861 		if (found) {
4862 			intel_engine_set_hung_context(engine, ce);
4863 
4864 			/* Can only cope with one hang at a time... */
4865 			intel_context_put(ce);
4866 			xa_lock(&guc->context_lookup);
4867 			goto done;
4868 		}
4869 
4870 next:
4871 		intel_context_put(ce);
4872 		xa_lock(&guc->context_lookup);
4873 	}
4874 done:
4875 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4876 }
4877 
4878 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
4879 				    struct i915_request *hung_rq,
4880 				    struct drm_printer *m)
4881 {
4882 	struct intel_guc *guc = &engine->gt->uc.guc;
4883 	struct intel_context *ce;
4884 	unsigned long index;
4885 	unsigned long flags;
4886 
4887 	/* Reset called during driver load? GuC not yet initialised! */
4888 	if (unlikely(!guc_submission_initialized(guc)))
4889 		return;
4890 
4891 	xa_lock_irqsave(&guc->context_lookup, flags);
4892 	xa_for_each(&guc->context_lookup, index, ce) {
4893 		if (!kref_get_unless_zero(&ce->ref))
4894 			continue;
4895 
4896 		xa_unlock(&guc->context_lookup);
4897 
4898 		if (!intel_context_is_pinned(ce))
4899 			goto next;
4900 
4901 		if (intel_engine_is_virtual(ce->engine)) {
4902 			if (!(ce->engine->mask & engine->mask))
4903 				goto next;
4904 		} else {
4905 			if (ce->engine != engine)
4906 				goto next;
4907 		}
4908 
4909 		spin_lock(&ce->guc_state.lock);
4910 		intel_engine_dump_active_requests(&ce->guc_state.requests,
4911 						  hung_rq, m);
4912 		spin_unlock(&ce->guc_state.lock);
4913 
4914 next:
4915 		intel_context_put(ce);
4916 		xa_lock(&guc->context_lookup);
4917 	}
4918 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4919 }
4920 
4921 void intel_guc_submission_print_info(struct intel_guc *guc,
4922 				     struct drm_printer *p)
4923 {
4924 	struct i915_sched_engine *sched_engine = guc->sched_engine;
4925 	struct rb_node *rb;
4926 	unsigned long flags;
4927 
4928 	if (!sched_engine)
4929 		return;
4930 
4931 	drm_printf(p, "GuC Submission API Version: %d.%d.%d\n",
4932 		   guc->submission_version.major, guc->submission_version.minor,
4933 		   guc->submission_version.patch);
4934 	drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
4935 		   atomic_read(&guc->outstanding_submission_g2h));
4936 	drm_printf(p, "GuC tasklet count: %u\n",
4937 		   atomic_read(&sched_engine->tasklet.count));
4938 
4939 	spin_lock_irqsave(&sched_engine->lock, flags);
4940 	drm_printf(p, "Requests in GuC submit tasklet:\n");
4941 	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
4942 		struct i915_priolist *pl = to_priolist(rb);
4943 		struct i915_request *rq;
4944 
4945 		priolist_for_each_request(rq, pl)
4946 			drm_printf(p, "guc_id=%u, seqno=%llu\n",
4947 				   rq->context->guc_id.id,
4948 				   rq->fence.seqno);
4949 	}
4950 	spin_unlock_irqrestore(&sched_engine->lock, flags);
4951 	drm_printf(p, "\n");
4952 }
4953 
4954 static inline void guc_log_context_priority(struct drm_printer *p,
4955 					    struct intel_context *ce)
4956 {
4957 	int i;
4958 
4959 	drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
4960 	drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
4961 	for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
4962 	     i < GUC_CLIENT_PRIORITY_NUM; ++i) {
4963 		drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
4964 			   i, ce->guc_state.prio_count[i]);
4965 	}
4966 	drm_printf(p, "\n");
4967 }
4968 
4969 static inline void guc_log_context(struct drm_printer *p,
4970 				   struct intel_context *ce)
4971 {
4972 	drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
4973 	drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
4974 	drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
4975 		   ce->ring->head,
4976 		   ce->lrc_reg_state[CTX_RING_HEAD]);
4977 	drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
4978 		   ce->ring->tail,
4979 		   ce->lrc_reg_state[CTX_RING_TAIL]);
4980 	drm_printf(p, "\t\tContext Pin Count: %u\n",
4981 		   atomic_read(&ce->pin_count));
4982 	drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
4983 		   atomic_read(&ce->guc_id.ref));
4984 	drm_printf(p, "\t\tSchedule State: 0x%x\n",
4985 		   ce->guc_state.sched_state);
4986 }
4987 
4988 void intel_guc_submission_print_context_info(struct intel_guc *guc,
4989 					     struct drm_printer *p)
4990 {
4991 	struct intel_context *ce;
4992 	unsigned long index;
4993 	unsigned long flags;
4994 
4995 	xa_lock_irqsave(&guc->context_lookup, flags);
4996 	xa_for_each(&guc->context_lookup, index, ce) {
4997 		GEM_BUG_ON(intel_context_is_child(ce));
4998 
4999 		guc_log_context(p, ce);
5000 		guc_log_context_priority(p, ce);
5001 
5002 		if (intel_context_is_parent(ce)) {
5003 			struct intel_context *child;
5004 
5005 			drm_printf(p, "\t\tNumber children: %u\n",
5006 				   ce->parallel.number_children);
5007 
5008 			if (ce->parallel.guc.wq_status) {
5009 				drm_printf(p, "\t\tWQI Head: %u\n",
5010 					   READ_ONCE(*ce->parallel.guc.wq_head));
5011 				drm_printf(p, "\t\tWQI Tail: %u\n",
5012 					   READ_ONCE(*ce->parallel.guc.wq_tail));
5013 				drm_printf(p, "\t\tWQI Status: %u\n",
5014 					   READ_ONCE(*ce->parallel.guc.wq_status));
5015 			}
5016 
5017 			if (ce->engine->emit_bb_start ==
5018 			    emit_bb_start_parent_no_preempt_mid_batch) {
5019 				u8 i;
5020 
5021 				drm_printf(p, "\t\tChildren Go: %u\n",
5022 					   get_children_go_value(ce));
5023 				for (i = 0; i < ce->parallel.number_children; ++i)
5024 					drm_printf(p, "\t\tChildren Join: %u\n",
5025 						   get_children_join_value(ce, i));
5026 			}
5027 
5028 			for_each_child(ce, child)
5029 				guc_log_context(p, child);
5030 		}
5031 	}
5032 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5033 }
5034 
5035 static inline u32 get_children_go_addr(struct intel_context *ce)
5036 {
5037 	GEM_BUG_ON(!intel_context_is_parent(ce));
5038 
5039 	return i915_ggtt_offset(ce->state) +
5040 		__get_parent_scratch_offset(ce) +
5041 		offsetof(struct parent_scratch, go.semaphore);
5042 }
5043 
5044 static inline u32 get_children_join_addr(struct intel_context *ce,
5045 					 u8 child_index)
5046 {
5047 	GEM_BUG_ON(!intel_context_is_parent(ce));
5048 
5049 	return i915_ggtt_offset(ce->state) +
5050 		__get_parent_scratch_offset(ce) +
5051 		offsetof(struct parent_scratch, join[child_index].semaphore);
5052 }
5053 
5054 #define PARENT_GO_BB			1
5055 #define PARENT_GO_FINI_BREADCRUMB	0
5056 #define CHILD_GO_BB			1
5057 #define CHILD_GO_FINI_BREADCRUMB	0
5058 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
5059 						     u64 offset, u32 len,
5060 						     const unsigned int flags)
5061 {
5062 	struct intel_context *ce = rq->context;
5063 	u32 *cs;
5064 	u8 i;
5065 
5066 	GEM_BUG_ON(!intel_context_is_parent(ce));
5067 
5068 	cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
5069 	if (IS_ERR(cs))
5070 		return PTR_ERR(cs);
5071 
5072 	/* Wait on children */
5073 	for (i = 0; i < ce->parallel.number_children; ++i) {
5074 		*cs++ = (MI_SEMAPHORE_WAIT |
5075 			 MI_SEMAPHORE_GLOBAL_GTT |
5076 			 MI_SEMAPHORE_POLL |
5077 			 MI_SEMAPHORE_SAD_EQ_SDD);
5078 		*cs++ = PARENT_GO_BB;
5079 		*cs++ = get_children_join_addr(ce, i);
5080 		*cs++ = 0;
5081 	}
5082 
5083 	/* Turn off preemption */
5084 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5085 	*cs++ = MI_NOOP;
5086 
5087 	/* Tell children go */
5088 	cs = gen8_emit_ggtt_write(cs,
5089 				  CHILD_GO_BB,
5090 				  get_children_go_addr(ce),
5091 				  0);
5092 
5093 	/* Jump to batch */
5094 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
5095 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5096 	*cs++ = lower_32_bits(offset);
5097 	*cs++ = upper_32_bits(offset);
5098 	*cs++ = MI_NOOP;
5099 
5100 	intel_ring_advance(rq, cs);
5101 
5102 	return 0;
5103 }
5104 
5105 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
5106 						    u64 offset, u32 len,
5107 						    const unsigned int flags)
5108 {
5109 	struct intel_context *ce = rq->context;
5110 	struct intel_context *parent = intel_context_to_parent(ce);
5111 	u32 *cs;
5112 
5113 	GEM_BUG_ON(!intel_context_is_child(ce));
5114 
5115 	cs = intel_ring_begin(rq, 12);
5116 	if (IS_ERR(cs))
5117 		return PTR_ERR(cs);
5118 
5119 	/* Signal parent */
5120 	cs = gen8_emit_ggtt_write(cs,
5121 				  PARENT_GO_BB,
5122 				  get_children_join_addr(parent,
5123 							 ce->parallel.child_index),
5124 				  0);
5125 
5126 	/* Wait on parent for go */
5127 	*cs++ = (MI_SEMAPHORE_WAIT |
5128 		 MI_SEMAPHORE_GLOBAL_GTT |
5129 		 MI_SEMAPHORE_POLL |
5130 		 MI_SEMAPHORE_SAD_EQ_SDD);
5131 	*cs++ = CHILD_GO_BB;
5132 	*cs++ = get_children_go_addr(parent);
5133 	*cs++ = 0;
5134 
5135 	/* Turn off preemption */
5136 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5137 
5138 	/* Jump to batch */
5139 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
5140 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5141 	*cs++ = lower_32_bits(offset);
5142 	*cs++ = upper_32_bits(offset);
5143 
5144 	intel_ring_advance(rq, cs);
5145 
5146 	return 0;
5147 }
5148 
5149 static u32 *
5150 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5151 						   u32 *cs)
5152 {
5153 	struct intel_context *ce = rq->context;
5154 	u8 i;
5155 
5156 	GEM_BUG_ON(!intel_context_is_parent(ce));
5157 
5158 	/* Wait on children */
5159 	for (i = 0; i < ce->parallel.number_children; ++i) {
5160 		*cs++ = (MI_SEMAPHORE_WAIT |
5161 			 MI_SEMAPHORE_GLOBAL_GTT |
5162 			 MI_SEMAPHORE_POLL |
5163 			 MI_SEMAPHORE_SAD_EQ_SDD);
5164 		*cs++ = PARENT_GO_FINI_BREADCRUMB;
5165 		*cs++ = get_children_join_addr(ce, i);
5166 		*cs++ = 0;
5167 	}
5168 
5169 	/* Turn on preemption */
5170 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5171 	*cs++ = MI_NOOP;
5172 
5173 	/* Tell children go */
5174 	cs = gen8_emit_ggtt_write(cs,
5175 				  CHILD_GO_FINI_BREADCRUMB,
5176 				  get_children_go_addr(ce),
5177 				  0);
5178 
5179 	return cs;
5180 }
5181 
5182 /*
5183  * If this true, a submission of multi-lrc requests had an error and the
5184  * requests need to be skipped. The front end (execuf IOCTL) should've called
5185  * i915_request_skip which squashes the BB but we still need to emit the fini
5186  * breadrcrumbs seqno write. At this point we don't know how many of the
5187  * requests in the multi-lrc submission were generated so we can't do the
5188  * handshake between the parent and children (e.g. if 4 requests should be
5189  * generated but 2nd hit an error only 1 would be seen by the GuC backend).
5190  * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
5191  * has occurred on any of the requests in submission / relationship.
5192  */
5193 static inline bool skip_handshake(struct i915_request *rq)
5194 {
5195 	return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
5196 }
5197 
5198 #define NON_SKIP_LEN	6
5199 static u32 *
5200 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5201 						 u32 *cs)
5202 {
5203 	struct intel_context *ce = rq->context;
5204 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5205 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5206 
5207 	GEM_BUG_ON(!intel_context_is_parent(ce));
5208 
5209 	if (unlikely(skip_handshake(rq))) {
5210 		/*
5211 		 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
5212 		 * the NON_SKIP_LEN comes from the length of the emits below.
5213 		 */
5214 		memset(cs, 0, sizeof(u32) *
5215 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5216 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5217 	} else {
5218 		cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
5219 	}
5220 
5221 	/* Emit fini breadcrumb */
5222 	before_fini_breadcrumb_user_interrupt_cs = cs;
5223 	cs = gen8_emit_ggtt_write(cs,
5224 				  rq->fence.seqno,
5225 				  i915_request_active_timeline(rq)->hwsp_offset,
5226 				  0);
5227 
5228 	/* User interrupt */
5229 	*cs++ = MI_USER_INTERRUPT;
5230 	*cs++ = MI_NOOP;
5231 
5232 	/* Ensure our math for skip + emit is correct */
5233 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5234 		   cs);
5235 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5236 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5237 
5238 	rq->tail = intel_ring_offset(rq, cs);
5239 
5240 	return cs;
5241 }
5242 
5243 static u32 *
5244 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5245 						  u32 *cs)
5246 {
5247 	struct intel_context *ce = rq->context;
5248 	struct intel_context *parent = intel_context_to_parent(ce);
5249 
5250 	GEM_BUG_ON(!intel_context_is_child(ce));
5251 
5252 	/* Turn on preemption */
5253 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5254 	*cs++ = MI_NOOP;
5255 
5256 	/* Signal parent */
5257 	cs = gen8_emit_ggtt_write(cs,
5258 				  PARENT_GO_FINI_BREADCRUMB,
5259 				  get_children_join_addr(parent,
5260 							 ce->parallel.child_index),
5261 				  0);
5262 
5263 	/* Wait parent on for go */
5264 	*cs++ = (MI_SEMAPHORE_WAIT |
5265 		 MI_SEMAPHORE_GLOBAL_GTT |
5266 		 MI_SEMAPHORE_POLL |
5267 		 MI_SEMAPHORE_SAD_EQ_SDD);
5268 	*cs++ = CHILD_GO_FINI_BREADCRUMB;
5269 	*cs++ = get_children_go_addr(parent);
5270 	*cs++ = 0;
5271 
5272 	return cs;
5273 }
5274 
5275 static u32 *
5276 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5277 						u32 *cs)
5278 {
5279 	struct intel_context *ce = rq->context;
5280 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5281 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5282 
5283 	GEM_BUG_ON(!intel_context_is_child(ce));
5284 
5285 	if (unlikely(skip_handshake(rq))) {
5286 		/*
5287 		 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
5288 		 * the NON_SKIP_LEN comes from the length of the emits below.
5289 		 */
5290 		memset(cs, 0, sizeof(u32) *
5291 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5292 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5293 	} else {
5294 		cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
5295 	}
5296 
5297 	/* Emit fini breadcrumb */
5298 	before_fini_breadcrumb_user_interrupt_cs = cs;
5299 	cs = gen8_emit_ggtt_write(cs,
5300 				  rq->fence.seqno,
5301 				  i915_request_active_timeline(rq)->hwsp_offset,
5302 				  0);
5303 
5304 	/* User interrupt */
5305 	*cs++ = MI_USER_INTERRUPT;
5306 	*cs++ = MI_NOOP;
5307 
5308 	/* Ensure our math for skip + emit is correct */
5309 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5310 		   cs);
5311 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5312 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5313 
5314 	rq->tail = intel_ring_offset(rq, cs);
5315 
5316 	return cs;
5317 }
5318 
5319 #undef NON_SKIP_LEN
5320 
5321 static struct intel_context *
5322 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
5323 		   unsigned long flags)
5324 {
5325 	struct guc_virtual_engine *ve;
5326 	struct intel_guc *guc;
5327 	unsigned int n;
5328 	int err;
5329 
5330 	ve = kzalloc(sizeof(*ve), GFP_KERNEL);
5331 	if (!ve)
5332 		return ERR_PTR(-ENOMEM);
5333 
5334 	guc = &siblings[0]->gt->uc.guc;
5335 
5336 	ve->base.i915 = siblings[0]->i915;
5337 	ve->base.gt = siblings[0]->gt;
5338 	ve->base.uncore = siblings[0]->uncore;
5339 	ve->base.id = -1;
5340 
5341 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5342 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5343 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5344 	ve->base.saturated = ALL_ENGINES;
5345 
5346 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5347 
5348 	ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
5349 
5350 	ve->base.cops = &virtual_guc_context_ops;
5351 	ve->base.request_alloc = guc_request_alloc;
5352 	ve->base.bump_serial = virtual_guc_bump_serial;
5353 
5354 	ve->base.submit_request = guc_submit_request;
5355 
5356 	ve->base.flags = I915_ENGINE_IS_VIRTUAL;
5357 
5358 	intel_context_init(&ve->context, &ve->base);
5359 
5360 	for (n = 0; n < count; n++) {
5361 		struct intel_engine_cs *sibling = siblings[n];
5362 
5363 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
5364 		if (sibling->mask & ve->base.mask) {
5365 			guc_dbg(guc, "duplicate %s entry in load balancer\n",
5366 				sibling->name);
5367 			err = -EINVAL;
5368 			goto err_put;
5369 		}
5370 
5371 		ve->base.mask |= sibling->mask;
5372 		ve->base.logical_mask |= sibling->logical_mask;
5373 
5374 		if (n != 0 && ve->base.class != sibling->class) {
5375 			guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n",
5376 				sibling->class, ve->base.class);
5377 			err = -EINVAL;
5378 			goto err_put;
5379 		} else if (n == 0) {
5380 			ve->base.class = sibling->class;
5381 			ve->base.uabi_class = sibling->uabi_class;
5382 			snprintf(ve->base.name, sizeof(ve->base.name),
5383 				 "v%dx%d", ve->base.class, count);
5384 			ve->base.context_size = sibling->context_size;
5385 
5386 			ve->base.add_active_request =
5387 				sibling->add_active_request;
5388 			ve->base.remove_active_request =
5389 				sibling->remove_active_request;
5390 			ve->base.emit_bb_start = sibling->emit_bb_start;
5391 			ve->base.emit_flush = sibling->emit_flush;
5392 			ve->base.emit_init_breadcrumb =
5393 				sibling->emit_init_breadcrumb;
5394 			ve->base.emit_fini_breadcrumb =
5395 				sibling->emit_fini_breadcrumb;
5396 			ve->base.emit_fini_breadcrumb_dw =
5397 				sibling->emit_fini_breadcrumb_dw;
5398 			ve->base.breadcrumbs =
5399 				intel_breadcrumbs_get(sibling->breadcrumbs);
5400 
5401 			ve->base.flags |= sibling->flags;
5402 
5403 			ve->base.props.timeslice_duration_ms =
5404 				sibling->props.timeslice_duration_ms;
5405 			ve->base.props.preempt_timeout_ms =
5406 				sibling->props.preempt_timeout_ms;
5407 		}
5408 	}
5409 
5410 	return &ve->context;
5411 
5412 err_put:
5413 	intel_context_put(&ve->context);
5414 	return ERR_PTR(err);
5415 }
5416 
5417 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
5418 {
5419 	struct intel_engine_cs *engine;
5420 	intel_engine_mask_t tmp, mask = ve->mask;
5421 
5422 	for_each_engine_masked(engine, ve->gt, mask, tmp)
5423 		if (READ_ONCE(engine->props.heartbeat_interval_ms))
5424 			return true;
5425 
5426 	return false;
5427 }
5428 
5429 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5430 #include "selftest_guc.c"
5431 #include "selftest_guc_multi_lrc.c"
5432 #include "selftest_guc_hangcheck.c"
5433 #endif
5434