xref: /openbmc/linux/drivers/gpu/drm/i915/gt/uc/intel_guc_submission.c (revision 2584e54502e1c77ce143d5874520f36240395e6f)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include <linux/circ_buf.h>
7 
8 #include "gem/i915_gem_context.h"
9 #include "gem/i915_gem_lmem.h"
10 #include "gt/gen8_engine_cs.h"
11 #include "gt/intel_breadcrumbs.h"
12 #include "gt/intel_context.h"
13 #include "gt/intel_engine_heartbeat.h"
14 #include "gt/intel_engine_pm.h"
15 #include "gt/intel_engine_regs.h"
16 #include "gt/intel_gpu_commands.h"
17 #include "gt/intel_gt.h"
18 #include "gt/intel_gt_clock_utils.h"
19 #include "gt/intel_gt_irq.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_gt_regs.h"
22 #include "gt/intel_gt_requests.h"
23 #include "gt/intel_lrc.h"
24 #include "gt/intel_lrc_reg.h"
25 #include "gt/intel_mocs.h"
26 #include "gt/intel_ring.h"
27 
28 #include "intel_guc_ads.h"
29 #include "intel_guc_capture.h"
30 #include "intel_guc_print.h"
31 #include "intel_guc_submission.h"
32 
33 #include "i915_drv.h"
34 #include "i915_reg.h"
35 #include "i915_trace.h"
36 
37 /**
38  * DOC: GuC-based command submission
39  *
40  * The Scratch registers:
41  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
42  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
43  * triggers an interrupt on the GuC via another register write (0xC4C8).
44  * Firmware writes a success/fail code back to the action register after
45  * processes the request. The kernel driver polls waiting for this update and
46  * then proceeds.
47  *
48  * Command Transport buffers (CTBs):
49  * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
50  * - G2H) are a message interface between the i915 and GuC.
51  *
52  * Context registration:
53  * Before a context can be submitted it must be registered with the GuC via a
54  * H2G. A unique guc_id is associated with each context. The context is either
55  * registered at request creation time (normal operation) or at submission time
56  * (abnormal operation, e.g. after a reset).
57  *
58  * Context submission:
59  * The i915 updates the LRC tail value in memory. The i915 must enable the
60  * scheduling of the context within the GuC for the GuC to actually consider it.
61  * Therefore, the first time a disabled context is submitted we use a schedule
62  * enable H2G, while follow up submissions are done via the context submit H2G,
63  * which informs the GuC that a previously enabled context has new work
64  * available.
65  *
66  * Context unpin:
67  * To unpin a context a H2G is used to disable scheduling. When the
68  * corresponding G2H returns indicating the scheduling disable operation has
69  * completed it is safe to unpin the context. While a disable is in flight it
70  * isn't safe to resubmit the context so a fence is used to stall all future
71  * requests of that context until the G2H is returned. Because this interaction
72  * with the GuC takes a non-zero amount of time we delay the disabling of
73  * scheduling after the pin count goes to zero by a configurable period of time
74  * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of
75  * time to resubmit something on the context before doing this costly operation.
76  * This delay is only done if the context isn't closed and the guc_id usage is
77  * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD).
78  *
79  * Context deregistration:
80  * Before a context can be destroyed or if we steal its guc_id we must
81  * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
82  * safe to submit anything to this guc_id until the deregister completes so a
83  * fence is used to stall all requests associated with this guc_id until the
84  * corresponding G2H returns indicating the guc_id has been deregistered.
85  *
86  * submission_state.guc_ids:
87  * Unique number associated with private GuC context data passed in during
88  * context registration / submission / deregistration. 64k available. Simple ida
89  * is used for allocation.
90  *
91  * Stealing guc_ids:
92  * If no guc_ids are available they can be stolen from another context at
93  * request creation time if that context is unpinned. If a guc_id can't be found
94  * we punt this problem to the user as we believe this is near impossible to hit
95  * during normal use cases.
96  *
97  * Locking:
98  * In the GuC submission code we have 3 basic spin locks which protect
99  * everything. Details about each below.
100  *
101  * sched_engine->lock
102  * This is the submission lock for all contexts that share an i915 schedule
103  * engine (sched_engine), thus only one of the contexts which share a
104  * sched_engine can be submitting at a time. Currently only one sched_engine is
105  * used for all of GuC submission but that could change in the future.
106  *
107  * guc->submission_state.lock
108  * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
109  * list.
110  *
111  * ce->guc_state.lock
112  * Protects everything under ce->guc_state. Ensures that a context is in the
113  * correct state before issuing a H2G. e.g. We don't issue a schedule disable
114  * on a disabled context (bad idea), we don't issue a schedule enable when a
115  * schedule disable is in flight, etc... Also protects list of inflight requests
116  * on the context and the priority management state. Lock is individual to each
117  * context.
118  *
119  * Lock ordering rules:
120  * sched_engine->lock -> ce->guc_state.lock
121  * guc->submission_state.lock -> ce->guc_state.lock
122  *
123  * Reset races:
124  * When a full GT reset is triggered it is assumed that some G2H responses to
125  * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
126  * fatal as we do certain operations upon receiving a G2H (e.g. destroy
127  * contexts, release guc_ids, etc...). When this occurs we can scrub the
128  * context state and cleanup appropriately, however this is quite racey.
129  * To avoid races, the reset code must disable submission before scrubbing for
130  * the missing G2H, while the submission code must check for submission being
131  * disabled and skip sending H2Gs and updating context states when it is. Both
132  * sides must also make sure to hold the relevant locks.
133  */
134 
135 /* GuC Virtual Engine */
136 struct guc_virtual_engine {
137 	struct intel_engine_cs base;
138 	struct intel_context context;
139 };
140 
141 static struct intel_context *
142 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
143 		   unsigned long flags);
144 
145 static struct intel_context *
146 guc_create_parallel(struct intel_engine_cs **engines,
147 		    unsigned int num_siblings,
148 		    unsigned int width);
149 
150 #define GUC_REQUEST_SIZE 64 /* bytes */
151 
152 /*
153  * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
154  * per the GuC submission interface. A different allocation algorithm is used
155  * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
156  * partition the guc_id space. We believe the number of multi-lrc contexts in
157  * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
158  * multi-lrc.
159  */
160 #define NUMBER_MULTI_LRC_GUC_ID(guc)	\
161 	((guc)->submission_state.num_guc_ids / 16)
162 
163 /*
164  * Below is a set of functions which control the GuC scheduling state which
165  * require a lock.
166  */
167 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER	BIT(0)
168 #define SCHED_STATE_DESTROYED				BIT(1)
169 #define SCHED_STATE_PENDING_DISABLE			BIT(2)
170 #define SCHED_STATE_BANNED				BIT(3)
171 #define SCHED_STATE_ENABLED				BIT(4)
172 #define SCHED_STATE_PENDING_ENABLE			BIT(5)
173 #define SCHED_STATE_REGISTERED				BIT(6)
174 #define SCHED_STATE_POLICY_REQUIRED			BIT(7)
175 #define SCHED_STATE_CLOSED				BIT(8)
176 #define SCHED_STATE_BLOCKED_SHIFT			9
177 #define SCHED_STATE_BLOCKED		BIT(SCHED_STATE_BLOCKED_SHIFT)
178 #define SCHED_STATE_BLOCKED_MASK	(0xfff << SCHED_STATE_BLOCKED_SHIFT)
179 
180 static inline void init_sched_state(struct intel_context *ce)
181 {
182 	lockdep_assert_held(&ce->guc_state.lock);
183 	ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
184 }
185 
186 /*
187  * Kernel contexts can have SCHED_STATE_REGISTERED after suspend.
188  * A context close can race with the submission path, so SCHED_STATE_CLOSED
189  * can be set immediately before we try to register.
190  */
191 #define SCHED_STATE_VALID_INIT \
192 	(SCHED_STATE_BLOCKED_MASK | \
193 	 SCHED_STATE_CLOSED | \
194 	 SCHED_STATE_REGISTERED)
195 
196 __maybe_unused
197 static bool sched_state_is_init(struct intel_context *ce)
198 {
199 	return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT);
200 }
201 
202 static inline bool
203 context_wait_for_deregister_to_register(struct intel_context *ce)
204 {
205 	return ce->guc_state.sched_state &
206 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
207 }
208 
209 static inline void
210 set_context_wait_for_deregister_to_register(struct intel_context *ce)
211 {
212 	lockdep_assert_held(&ce->guc_state.lock);
213 	ce->guc_state.sched_state |=
214 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
215 }
216 
217 static inline void
218 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
219 {
220 	lockdep_assert_held(&ce->guc_state.lock);
221 	ce->guc_state.sched_state &=
222 		~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
223 }
224 
225 static inline bool
226 context_destroyed(struct intel_context *ce)
227 {
228 	return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
229 }
230 
231 static inline void
232 set_context_destroyed(struct intel_context *ce)
233 {
234 	lockdep_assert_held(&ce->guc_state.lock);
235 	ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
236 }
237 
238 static inline bool context_pending_disable(struct intel_context *ce)
239 {
240 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
241 }
242 
243 static inline void set_context_pending_disable(struct intel_context *ce)
244 {
245 	lockdep_assert_held(&ce->guc_state.lock);
246 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
247 }
248 
249 static inline void clr_context_pending_disable(struct intel_context *ce)
250 {
251 	lockdep_assert_held(&ce->guc_state.lock);
252 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
253 }
254 
255 static inline bool context_banned(struct intel_context *ce)
256 {
257 	return ce->guc_state.sched_state & SCHED_STATE_BANNED;
258 }
259 
260 static inline void set_context_banned(struct intel_context *ce)
261 {
262 	lockdep_assert_held(&ce->guc_state.lock);
263 	ce->guc_state.sched_state |= SCHED_STATE_BANNED;
264 }
265 
266 static inline void clr_context_banned(struct intel_context *ce)
267 {
268 	lockdep_assert_held(&ce->guc_state.lock);
269 	ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
270 }
271 
272 static inline bool context_enabled(struct intel_context *ce)
273 {
274 	return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
275 }
276 
277 static inline void set_context_enabled(struct intel_context *ce)
278 {
279 	lockdep_assert_held(&ce->guc_state.lock);
280 	ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
281 }
282 
283 static inline void clr_context_enabled(struct intel_context *ce)
284 {
285 	lockdep_assert_held(&ce->guc_state.lock);
286 	ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
287 }
288 
289 static inline bool context_pending_enable(struct intel_context *ce)
290 {
291 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
292 }
293 
294 static inline void set_context_pending_enable(struct intel_context *ce)
295 {
296 	lockdep_assert_held(&ce->guc_state.lock);
297 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
298 }
299 
300 static inline void clr_context_pending_enable(struct intel_context *ce)
301 {
302 	lockdep_assert_held(&ce->guc_state.lock);
303 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
304 }
305 
306 static inline bool context_registered(struct intel_context *ce)
307 {
308 	return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
309 }
310 
311 static inline void set_context_registered(struct intel_context *ce)
312 {
313 	lockdep_assert_held(&ce->guc_state.lock);
314 	ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
315 }
316 
317 static inline void clr_context_registered(struct intel_context *ce)
318 {
319 	lockdep_assert_held(&ce->guc_state.lock);
320 	ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
321 }
322 
323 static inline bool context_policy_required(struct intel_context *ce)
324 {
325 	return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
326 }
327 
328 static inline void set_context_policy_required(struct intel_context *ce)
329 {
330 	lockdep_assert_held(&ce->guc_state.lock);
331 	ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
332 }
333 
334 static inline void clr_context_policy_required(struct intel_context *ce)
335 {
336 	lockdep_assert_held(&ce->guc_state.lock);
337 	ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
338 }
339 
340 static inline bool context_close_done(struct intel_context *ce)
341 {
342 	return ce->guc_state.sched_state & SCHED_STATE_CLOSED;
343 }
344 
345 static inline void set_context_close_done(struct intel_context *ce)
346 {
347 	lockdep_assert_held(&ce->guc_state.lock);
348 	ce->guc_state.sched_state |= SCHED_STATE_CLOSED;
349 }
350 
351 static inline u32 context_blocked(struct intel_context *ce)
352 {
353 	return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
354 		SCHED_STATE_BLOCKED_SHIFT;
355 }
356 
357 static inline void incr_context_blocked(struct intel_context *ce)
358 {
359 	lockdep_assert_held(&ce->guc_state.lock);
360 
361 	ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
362 
363 	GEM_BUG_ON(!context_blocked(ce));	/* Overflow check */
364 }
365 
366 static inline void decr_context_blocked(struct intel_context *ce)
367 {
368 	lockdep_assert_held(&ce->guc_state.lock);
369 
370 	GEM_BUG_ON(!context_blocked(ce));	/* Underflow check */
371 
372 	ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
373 }
374 
375 static struct intel_context *
376 request_to_scheduling_context(struct i915_request *rq)
377 {
378 	return intel_context_to_parent(rq->context);
379 }
380 
381 static inline bool context_guc_id_invalid(struct intel_context *ce)
382 {
383 	return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
384 }
385 
386 static inline void set_context_guc_id_invalid(struct intel_context *ce)
387 {
388 	ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
389 }
390 
391 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
392 {
393 	return &ce->engine->gt->uc.guc;
394 }
395 
396 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
397 {
398 	return rb_entry(rb, struct i915_priolist, node);
399 }
400 
401 /*
402  * When using multi-lrc submission a scratch memory area is reserved in the
403  * parent's context state for the process descriptor, work queue, and handshake
404  * between the parent + children contexts to insert safe preemption points
405  * between each of the BBs. Currently the scratch area is sized to a page.
406  *
407  * The layout of this scratch area is below:
408  * 0						guc_process_desc
409  * + sizeof(struct guc_process_desc)		child go
410  * + CACHELINE_BYTES				child join[0]
411  * ...
412  * + CACHELINE_BYTES				child join[n - 1]
413  * ...						unused
414  * PARENT_SCRATCH_SIZE / 2			work queue start
415  * ...						work queue
416  * PARENT_SCRATCH_SIZE - 1			work queue end
417  */
418 #define WQ_SIZE			(PARENT_SCRATCH_SIZE / 2)
419 #define WQ_OFFSET		(PARENT_SCRATCH_SIZE - WQ_SIZE)
420 
421 struct sync_semaphore {
422 	u32 semaphore;
423 	u8 unused[CACHELINE_BYTES - sizeof(u32)];
424 };
425 
426 struct parent_scratch {
427 	union guc_descs {
428 		struct guc_sched_wq_desc wq_desc;
429 		struct guc_process_desc_v69 pdesc;
430 	} descs;
431 
432 	struct sync_semaphore go;
433 	struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
434 
435 	u8 unused[WQ_OFFSET - sizeof(union guc_descs) -
436 		sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
437 
438 	u32 wq[WQ_SIZE / sizeof(u32)];
439 };
440 
441 static u32 __get_parent_scratch_offset(struct intel_context *ce)
442 {
443 	GEM_BUG_ON(!ce->parallel.guc.parent_page);
444 
445 	return ce->parallel.guc.parent_page * PAGE_SIZE;
446 }
447 
448 static u32 __get_wq_offset(struct intel_context *ce)
449 {
450 	BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
451 
452 	return __get_parent_scratch_offset(ce) + WQ_OFFSET;
453 }
454 
455 static struct parent_scratch *
456 __get_parent_scratch(struct intel_context *ce)
457 {
458 	BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
459 	BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
460 
461 	/*
462 	 * Need to subtract LRC_STATE_OFFSET here as the
463 	 * parallel.guc.parent_page is the offset into ce->state while
464 	 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
465 	 */
466 	return (struct parent_scratch *)
467 		(ce->lrc_reg_state +
468 		 ((__get_parent_scratch_offset(ce) -
469 		   LRC_STATE_OFFSET) / sizeof(u32)));
470 }
471 
472 static struct guc_process_desc_v69 *
473 __get_process_desc_v69(struct intel_context *ce)
474 {
475 	struct parent_scratch *ps = __get_parent_scratch(ce);
476 
477 	return &ps->descs.pdesc;
478 }
479 
480 static struct guc_sched_wq_desc *
481 __get_wq_desc_v70(struct intel_context *ce)
482 {
483 	struct parent_scratch *ps = __get_parent_scratch(ce);
484 
485 	return &ps->descs.wq_desc;
486 }
487 
488 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size)
489 {
490 	/*
491 	 * Check for space in work queue. Caching a value of head pointer in
492 	 * intel_context structure in order reduce the number accesses to shared
493 	 * GPU memory which may be across a PCIe bus.
494 	 */
495 #define AVAILABLE_SPACE	\
496 	CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
497 	if (wqi_size > AVAILABLE_SPACE) {
498 		ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head);
499 
500 		if (wqi_size > AVAILABLE_SPACE)
501 			return NULL;
502 	}
503 #undef AVAILABLE_SPACE
504 
505 	return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
506 }
507 
508 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
509 {
510 	struct intel_context *ce = xa_load(&guc->context_lookup, id);
511 
512 	GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
513 
514 	return ce;
515 }
516 
517 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index)
518 {
519 	struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69;
520 
521 	if (!base)
522 		return NULL;
523 
524 	GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID);
525 
526 	return &base[index];
527 }
528 
529 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc)
530 {
531 	u32 size;
532 	int ret;
533 
534 	size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) *
535 			  GUC_MAX_CONTEXT_ID);
536 	ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69,
537 					     (void **)&guc->lrc_desc_pool_vaddr_v69);
538 	if (ret)
539 		return ret;
540 
541 	return 0;
542 }
543 
544 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc)
545 {
546 	if (!guc->lrc_desc_pool_vaddr_v69)
547 		return;
548 
549 	guc->lrc_desc_pool_vaddr_v69 = NULL;
550 	i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP);
551 }
552 
553 static inline bool guc_submission_initialized(struct intel_guc *guc)
554 {
555 	return guc->submission_initialized;
556 }
557 
558 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id)
559 {
560 	struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id);
561 
562 	if (desc)
563 		memset(desc, 0, sizeof(*desc));
564 }
565 
566 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
567 {
568 	return __get_context(guc, id);
569 }
570 
571 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
572 				      struct intel_context *ce)
573 {
574 	unsigned long flags;
575 
576 	/*
577 	 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
578 	 * lower level functions directly.
579 	 */
580 	xa_lock_irqsave(&guc->context_lookup, flags);
581 	__xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
582 	xa_unlock_irqrestore(&guc->context_lookup, flags);
583 }
584 
585 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
586 {
587 	unsigned long flags;
588 
589 	if (unlikely(!guc_submission_initialized(guc)))
590 		return;
591 
592 	_reset_lrc_desc_v69(guc, id);
593 
594 	/*
595 	 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
596 	 * the lower level functions directly.
597 	 */
598 	xa_lock_irqsave(&guc->context_lookup, flags);
599 	__xa_erase(&guc->context_lookup, id);
600 	xa_unlock_irqrestore(&guc->context_lookup, flags);
601 }
602 
603 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
604 {
605 	if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
606 		wake_up_all(&guc->ct.wq);
607 }
608 
609 static int guc_submission_send_busy_loop(struct intel_guc *guc,
610 					 const u32 *action,
611 					 u32 len,
612 					 u32 g2h_len_dw,
613 					 bool loop)
614 {
615 	/*
616 	 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
617 	 * so we don't handle the case where we don't get a reply because we
618 	 * aborted the send due to the channel being busy.
619 	 */
620 	GEM_BUG_ON(g2h_len_dw && !loop);
621 
622 	if (g2h_len_dw)
623 		atomic_inc(&guc->outstanding_submission_g2h);
624 
625 	return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
626 }
627 
628 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
629 				   atomic_t *wait_var,
630 				   bool interruptible,
631 				   long timeout)
632 {
633 	const int state = interruptible ?
634 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
635 	DEFINE_WAIT(wait);
636 
637 	might_sleep();
638 	GEM_BUG_ON(timeout < 0);
639 
640 	if (!atomic_read(wait_var))
641 		return 0;
642 
643 	if (!timeout)
644 		return -ETIME;
645 
646 	for (;;) {
647 		prepare_to_wait(&guc->ct.wq, &wait, state);
648 
649 		if (!atomic_read(wait_var))
650 			break;
651 
652 		if (signal_pending_state(state, current)) {
653 			timeout = -EINTR;
654 			break;
655 		}
656 
657 		if (!timeout) {
658 			timeout = -ETIME;
659 			break;
660 		}
661 
662 		timeout = io_schedule_timeout(timeout);
663 	}
664 	finish_wait(&guc->ct.wq, &wait);
665 
666 	return (timeout < 0) ? timeout : 0;
667 }
668 
669 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
670 {
671 	if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
672 		return 0;
673 
674 	return intel_guc_wait_for_pending_msg(guc,
675 					      &guc->outstanding_submission_g2h,
676 					      true, timeout);
677 }
678 
679 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop);
680 static int try_context_registration(struct intel_context *ce, bool loop);
681 
682 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
683 {
684 	int err = 0;
685 	struct intel_context *ce = request_to_scheduling_context(rq);
686 	u32 action[3];
687 	int len = 0;
688 	u32 g2h_len_dw = 0;
689 	bool enabled;
690 
691 	lockdep_assert_held(&rq->engine->sched_engine->lock);
692 
693 	/*
694 	 * Corner case where requests were sitting in the priority list or a
695 	 * request resubmitted after the context was banned.
696 	 */
697 	if (unlikely(!intel_context_is_schedulable(ce))) {
698 		i915_request_put(i915_request_mark_eio(rq));
699 		intel_engine_signal_breadcrumbs(ce->engine);
700 		return 0;
701 	}
702 
703 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
704 	GEM_BUG_ON(context_guc_id_invalid(ce));
705 
706 	if (context_policy_required(ce)) {
707 		err = guc_context_policy_init_v70(ce, false);
708 		if (err)
709 			return err;
710 	}
711 
712 	spin_lock(&ce->guc_state.lock);
713 
714 	/*
715 	 * The request / context will be run on the hardware when scheduling
716 	 * gets enabled in the unblock. For multi-lrc we still submit the
717 	 * context to move the LRC tails.
718 	 */
719 	if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
720 		goto out;
721 
722 	enabled = context_enabled(ce) || context_blocked(ce);
723 
724 	if (!enabled) {
725 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
726 		action[len++] = ce->guc_id.id;
727 		action[len++] = GUC_CONTEXT_ENABLE;
728 		set_context_pending_enable(ce);
729 		intel_context_get(ce);
730 		g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
731 	} else {
732 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
733 		action[len++] = ce->guc_id.id;
734 	}
735 
736 	err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
737 	if (!enabled && !err) {
738 		trace_intel_context_sched_enable(ce);
739 		atomic_inc(&guc->outstanding_submission_g2h);
740 		set_context_enabled(ce);
741 
742 		/*
743 		 * Without multi-lrc KMD does the submission step (moving the
744 		 * lrc tail) so enabling scheduling is sufficient to submit the
745 		 * context. This isn't the case in multi-lrc submission as the
746 		 * GuC needs to move the tails, hence the need for another H2G
747 		 * to submit a multi-lrc context after enabling scheduling.
748 		 */
749 		if (intel_context_is_parent(ce)) {
750 			action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
751 			err = intel_guc_send_nb(guc, action, len - 1, 0);
752 		}
753 	} else if (!enabled) {
754 		clr_context_pending_enable(ce);
755 		intel_context_put(ce);
756 	}
757 	if (likely(!err))
758 		trace_i915_request_guc_submit(rq);
759 
760 out:
761 	spin_unlock(&ce->guc_state.lock);
762 	return err;
763 }
764 
765 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
766 {
767 	int ret = __guc_add_request(guc, rq);
768 
769 	if (unlikely(ret == -EBUSY)) {
770 		guc->stalled_request = rq;
771 		guc->submission_stall_reason = STALL_ADD_REQUEST;
772 	}
773 
774 	return ret;
775 }
776 
777 static inline void guc_set_lrc_tail(struct i915_request *rq)
778 {
779 	rq->context->lrc_reg_state[CTX_RING_TAIL] =
780 		intel_ring_set_tail(rq->ring, rq->tail);
781 }
782 
783 static inline int rq_prio(const struct i915_request *rq)
784 {
785 	return rq->sched.attr.priority;
786 }
787 
788 static bool is_multi_lrc_rq(struct i915_request *rq)
789 {
790 	return intel_context_is_parallel(rq->context);
791 }
792 
793 static bool can_merge_rq(struct i915_request *rq,
794 			 struct i915_request *last)
795 {
796 	return request_to_scheduling_context(rq) ==
797 		request_to_scheduling_context(last);
798 }
799 
800 static u32 wq_space_until_wrap(struct intel_context *ce)
801 {
802 	return (WQ_SIZE - ce->parallel.guc.wqi_tail);
803 }
804 
805 static void write_wqi(struct intel_context *ce, u32 wqi_size)
806 {
807 	BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
808 
809 	/*
810 	 * Ensure WQI are visible before updating tail
811 	 */
812 	intel_guc_write_barrier(ce_to_guc(ce));
813 
814 	ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
815 		(WQ_SIZE - 1);
816 	WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail);
817 }
818 
819 static int guc_wq_noop_append(struct intel_context *ce)
820 {
821 	u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce));
822 	u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
823 
824 	if (!wqi)
825 		return -EBUSY;
826 
827 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
828 
829 	*wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
830 		FIELD_PREP(WQ_LEN_MASK, len_dw);
831 	ce->parallel.guc.wqi_tail = 0;
832 
833 	return 0;
834 }
835 
836 static int __guc_wq_item_append(struct i915_request *rq)
837 {
838 	struct intel_context *ce = request_to_scheduling_context(rq);
839 	struct intel_context *child;
840 	unsigned int wqi_size = (ce->parallel.number_children + 4) *
841 		sizeof(u32);
842 	u32 *wqi;
843 	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
844 	int ret;
845 
846 	/* Ensure context is in correct state updating work queue */
847 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
848 	GEM_BUG_ON(context_guc_id_invalid(ce));
849 	GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
850 	GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
851 
852 	/* Insert NOOP if this work queue item will wrap the tail pointer. */
853 	if (wqi_size > wq_space_until_wrap(ce)) {
854 		ret = guc_wq_noop_append(ce);
855 		if (ret)
856 			return ret;
857 	}
858 
859 	wqi = get_wq_pointer(ce, wqi_size);
860 	if (!wqi)
861 		return -EBUSY;
862 
863 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
864 
865 	*wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
866 		FIELD_PREP(WQ_LEN_MASK, len_dw);
867 	*wqi++ = ce->lrc.lrca;
868 	*wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
869 	       FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
870 	*wqi++ = 0;	/* fence_id */
871 	for_each_child(ce, child)
872 		*wqi++ = child->ring->tail / sizeof(u64);
873 
874 	write_wqi(ce, wqi_size);
875 
876 	return 0;
877 }
878 
879 static int guc_wq_item_append(struct intel_guc *guc,
880 			      struct i915_request *rq)
881 {
882 	struct intel_context *ce = request_to_scheduling_context(rq);
883 	int ret;
884 
885 	if (unlikely(!intel_context_is_schedulable(ce)))
886 		return 0;
887 
888 	ret = __guc_wq_item_append(rq);
889 	if (unlikely(ret == -EBUSY)) {
890 		guc->stalled_request = rq;
891 		guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
892 	}
893 
894 	return ret;
895 }
896 
897 static bool multi_lrc_submit(struct i915_request *rq)
898 {
899 	struct intel_context *ce = request_to_scheduling_context(rq);
900 
901 	intel_ring_set_tail(rq->ring, rq->tail);
902 
903 	/*
904 	 * We expect the front end (execbuf IOCTL) to set this flag on the last
905 	 * request generated from a multi-BB submission. This indicates to the
906 	 * backend (GuC interface) that we should submit this context thus
907 	 * submitting all the requests generated in parallel.
908 	 */
909 	return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
910 	       !intel_context_is_schedulable(ce);
911 }
912 
913 static int guc_dequeue_one_context(struct intel_guc *guc)
914 {
915 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
916 	struct i915_request *last = NULL;
917 	bool submit = false;
918 	struct rb_node *rb;
919 	int ret;
920 
921 	lockdep_assert_held(&sched_engine->lock);
922 
923 	if (guc->stalled_request) {
924 		submit = true;
925 		last = guc->stalled_request;
926 
927 		switch (guc->submission_stall_reason) {
928 		case STALL_REGISTER_CONTEXT:
929 			goto register_context;
930 		case STALL_MOVE_LRC_TAIL:
931 			goto move_lrc_tail;
932 		case STALL_ADD_REQUEST:
933 			goto add_request;
934 		default:
935 			MISSING_CASE(guc->submission_stall_reason);
936 		}
937 	}
938 
939 	while ((rb = rb_first_cached(&sched_engine->queue))) {
940 		struct i915_priolist *p = to_priolist(rb);
941 		struct i915_request *rq, *rn;
942 
943 		priolist_for_each_request_consume(rq, rn, p) {
944 			if (last && !can_merge_rq(rq, last))
945 				goto register_context;
946 
947 			list_del_init(&rq->sched.link);
948 
949 			__i915_request_submit(rq);
950 
951 			trace_i915_request_in(rq, 0);
952 			last = rq;
953 
954 			if (is_multi_lrc_rq(rq)) {
955 				/*
956 				 * We need to coalesce all multi-lrc requests in
957 				 * a relationship into a single H2G. We are
958 				 * guaranteed that all of these requests will be
959 				 * submitted sequentially.
960 				 */
961 				if (multi_lrc_submit(rq)) {
962 					submit = true;
963 					goto register_context;
964 				}
965 			} else {
966 				submit = true;
967 			}
968 		}
969 
970 		rb_erase_cached(&p->node, &sched_engine->queue);
971 		i915_priolist_free(p);
972 	}
973 
974 register_context:
975 	if (submit) {
976 		struct intel_context *ce = request_to_scheduling_context(last);
977 
978 		if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
979 			     intel_context_is_schedulable(ce))) {
980 			ret = try_context_registration(ce, false);
981 			if (unlikely(ret == -EPIPE)) {
982 				goto deadlk;
983 			} else if (ret == -EBUSY) {
984 				guc->stalled_request = last;
985 				guc->submission_stall_reason =
986 					STALL_REGISTER_CONTEXT;
987 				goto schedule_tasklet;
988 			} else if (ret != 0) {
989 				GEM_WARN_ON(ret);	/* Unexpected */
990 				goto deadlk;
991 			}
992 		}
993 
994 move_lrc_tail:
995 		if (is_multi_lrc_rq(last)) {
996 			ret = guc_wq_item_append(guc, last);
997 			if (ret == -EBUSY) {
998 				goto schedule_tasklet;
999 			} else if (ret != 0) {
1000 				GEM_WARN_ON(ret);	/* Unexpected */
1001 				goto deadlk;
1002 			}
1003 		} else {
1004 			guc_set_lrc_tail(last);
1005 		}
1006 
1007 add_request:
1008 		ret = guc_add_request(guc, last);
1009 		if (unlikely(ret == -EPIPE)) {
1010 			goto deadlk;
1011 		} else if (ret == -EBUSY) {
1012 			goto schedule_tasklet;
1013 		} else if (ret != 0) {
1014 			GEM_WARN_ON(ret);	/* Unexpected */
1015 			goto deadlk;
1016 		}
1017 	}
1018 
1019 	guc->stalled_request = NULL;
1020 	guc->submission_stall_reason = STALL_NONE;
1021 	return submit;
1022 
1023 deadlk:
1024 	sched_engine->tasklet.callback = NULL;
1025 	tasklet_disable_nosync(&sched_engine->tasklet);
1026 	return false;
1027 
1028 schedule_tasklet:
1029 	tasklet_schedule(&sched_engine->tasklet);
1030 	return false;
1031 }
1032 
1033 static void guc_submission_tasklet(struct tasklet_struct *t)
1034 {
1035 	struct i915_sched_engine *sched_engine =
1036 		from_tasklet(sched_engine, t, tasklet);
1037 	unsigned long flags;
1038 	bool loop;
1039 
1040 	spin_lock_irqsave(&sched_engine->lock, flags);
1041 
1042 	do {
1043 		loop = guc_dequeue_one_context(sched_engine->private_data);
1044 	} while (loop);
1045 
1046 	i915_sched_engine_reset_on_empty(sched_engine);
1047 
1048 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1049 }
1050 
1051 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
1052 {
1053 	if (iir & GT_RENDER_USER_INTERRUPT)
1054 		intel_engine_signal_breadcrumbs(engine);
1055 }
1056 
1057 static void __guc_context_destroy(struct intel_context *ce);
1058 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
1059 static void guc_signal_context_fence(struct intel_context *ce);
1060 static void guc_cancel_context_requests(struct intel_context *ce);
1061 static void guc_blocked_fence_complete(struct intel_context *ce);
1062 
1063 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1064 {
1065 	struct intel_context *ce;
1066 	unsigned long index, flags;
1067 	bool pending_disable, pending_enable, deregister, destroyed, banned;
1068 
1069 	xa_lock_irqsave(&guc->context_lookup, flags);
1070 	xa_for_each(&guc->context_lookup, index, ce) {
1071 		/*
1072 		 * Corner case where the ref count on the object is zero but and
1073 		 * deregister G2H was lost. In this case we don't touch the ref
1074 		 * count and finish the destroy of the context.
1075 		 */
1076 		bool do_put = kref_get_unless_zero(&ce->ref);
1077 
1078 		xa_unlock(&guc->context_lookup);
1079 
1080 		if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
1081 		    (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) {
1082 			/* successful cancel so jump straight to close it */
1083 			intel_context_sched_disable_unpin(ce);
1084 		}
1085 
1086 		spin_lock(&ce->guc_state.lock);
1087 
1088 		/*
1089 		 * Once we are at this point submission_disabled() is guaranteed
1090 		 * to be visible to all callers who set the below flags (see above
1091 		 * flush and flushes in reset_prepare). If submission_disabled()
1092 		 * is set, the caller shouldn't set these flags.
1093 		 */
1094 
1095 		destroyed = context_destroyed(ce);
1096 		pending_enable = context_pending_enable(ce);
1097 		pending_disable = context_pending_disable(ce);
1098 		deregister = context_wait_for_deregister_to_register(ce);
1099 		banned = context_banned(ce);
1100 		init_sched_state(ce);
1101 
1102 		spin_unlock(&ce->guc_state.lock);
1103 
1104 		if (pending_enable || destroyed || deregister) {
1105 			decr_outstanding_submission_g2h(guc);
1106 			if (deregister)
1107 				guc_signal_context_fence(ce);
1108 			if (destroyed) {
1109 				intel_gt_pm_put_async(guc_to_gt(guc));
1110 				release_guc_id(guc, ce);
1111 				__guc_context_destroy(ce);
1112 			}
1113 			if (pending_enable || deregister)
1114 				intel_context_put(ce);
1115 		}
1116 
1117 		/* Not mutualy exclusive with above if statement. */
1118 		if (pending_disable) {
1119 			guc_signal_context_fence(ce);
1120 			if (banned) {
1121 				guc_cancel_context_requests(ce);
1122 				intel_engine_signal_breadcrumbs(ce->engine);
1123 			}
1124 			intel_context_sched_disable_unpin(ce);
1125 			decr_outstanding_submission_g2h(guc);
1126 
1127 			spin_lock(&ce->guc_state.lock);
1128 			guc_blocked_fence_complete(ce);
1129 			spin_unlock(&ce->guc_state.lock);
1130 
1131 			intel_context_put(ce);
1132 		}
1133 
1134 		if (do_put)
1135 			intel_context_put(ce);
1136 		xa_lock(&guc->context_lookup);
1137 	}
1138 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1139 }
1140 
1141 /*
1142  * GuC stores busyness stats for each engine at context in/out boundaries. A
1143  * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1144  * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1145  * GuC.
1146  *
1147  * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1148  * is valid (!= ~0) and start is non-zero, the engine is considered to be
1149  * active. For an active engine total busyness = total + (now - start), where
1150  * 'now' is the time at which the busyness is sampled. For inactive engine,
1151  * total busyness = total.
1152  *
1153  * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1154  *
1155  * The start and total values provided by GuC are 32 bits and wrap around in a
1156  * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1157  * increasing ns values, there is a need for this implementation to account for
1158  * overflows and extend the GuC provided values to 64 bits before returning
1159  * busyness to the user. In order to do that, a worker runs periodically at
1160  * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1161  * 27 seconds for a gt clock frequency of 19.2 MHz).
1162  */
1163 
1164 #define WRAP_TIME_CLKS U32_MAX
1165 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1166 
1167 static void
1168 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1169 {
1170 	u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1171 	u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1172 
1173 	if (new_start == lower_32_bits(*prev_start))
1174 		return;
1175 
1176 	/*
1177 	 * When gt is unparked, we update the gt timestamp and start the ping
1178 	 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1179 	 * is unparked, all switched in contexts will have a start time that is
1180 	 * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1181 	 *
1182 	 * If neither gt_stamp nor new_start has rolled over, then the
1183 	 * gt_stamp_hi does not need to be adjusted, however if one of them has
1184 	 * rolled over, we need to adjust gt_stamp_hi accordingly.
1185 	 *
1186 	 * The below conditions address the cases of new_start rollover and
1187 	 * gt_stamp_last rollover respectively.
1188 	 */
1189 	if (new_start < gt_stamp_last &&
1190 	    (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1191 		gt_stamp_hi++;
1192 
1193 	if (new_start > gt_stamp_last &&
1194 	    (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1195 		gt_stamp_hi--;
1196 
1197 	*prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1198 }
1199 
1200 #define record_read(map_, field_) \
1201 	iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1202 
1203 /*
1204  * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1205  * we run into a race where the value read is inconsistent. Sometimes the
1206  * inconsistency is in reading the upper MSB bytes of the last_in value when
1207  * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1208  * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1209  * determine validity of these values. Instead we read the values multiple times
1210  * until they are consistent. In test runs, 3 attempts results in consistent
1211  * values. The upper bound is set to 6 attempts and may need to be tuned as per
1212  * any new occurences.
1213  */
1214 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1215 				      u32 *last_in, u32 *id, u32 *total)
1216 {
1217 	struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1218 	int i = 0;
1219 
1220 	do {
1221 		*last_in = record_read(&rec_map, last_switch_in_stamp);
1222 		*id = record_read(&rec_map, current_context_index);
1223 		*total = record_read(&rec_map, total_runtime);
1224 
1225 		if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1226 		    record_read(&rec_map, current_context_index) == *id &&
1227 		    record_read(&rec_map, total_runtime) == *total)
1228 			break;
1229 	} while (++i < 6);
1230 }
1231 
1232 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1233 {
1234 	struct intel_engine_guc_stats *stats = &engine->stats.guc;
1235 	struct intel_guc *guc = &engine->gt->uc.guc;
1236 	u32 last_switch, ctx_id, total;
1237 
1238 	lockdep_assert_held(&guc->timestamp.lock);
1239 
1240 	__get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1241 
1242 	stats->running = ctx_id != ~0U && last_switch;
1243 	if (stats->running)
1244 		__extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1245 
1246 	/*
1247 	 * Instead of adjusting the total for overflow, just add the
1248 	 * difference from previous sample stats->total_gt_clks
1249 	 */
1250 	if (total && total != ~0U) {
1251 		stats->total_gt_clks += (u32)(total - stats->prev_total);
1252 		stats->prev_total = total;
1253 	}
1254 }
1255 
1256 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1257 {
1258 	intel_wakeref_t wakeref;
1259 	u32 reg, shift;
1260 
1261 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1262 		reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1263 
1264 	shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
1265 		GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;
1266 
1267 	return 3 - shift;
1268 }
1269 
1270 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1271 {
1272 	struct intel_gt *gt = guc_to_gt(guc);
1273 	u32 gt_stamp_lo, gt_stamp_hi;
1274 	u64 gpm_ts;
1275 
1276 	lockdep_assert_held(&guc->timestamp.lock);
1277 
1278 	gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1279 	gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1280 					  MISC_STATUS1) >> guc->timestamp.shift;
1281 	gt_stamp_lo = lower_32_bits(gpm_ts);
1282 	*now = ktime_get();
1283 
1284 	if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1285 		gt_stamp_hi++;
1286 
1287 	guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1288 }
1289 
1290 /*
1291  * Unlike the execlist mode of submission total and active times are in terms of
1292  * gt clocks. The *now parameter is retained to return the cpu time at which the
1293  * busyness was sampled.
1294  */
1295 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1296 {
1297 	struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1298 	struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1299 	struct intel_gt *gt = engine->gt;
1300 	struct intel_guc *guc = &gt->uc.guc;
1301 	u64 total, gt_stamp_saved;
1302 	unsigned long flags;
1303 	u32 reset_count;
1304 	bool in_reset;
1305 
1306 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1307 
1308 	/*
1309 	 * If a reset happened, we risk reading partially updated engine
1310 	 * busyness from GuC, so we just use the driver stored copy of busyness.
1311 	 * Synchronize with gt reset using reset_count and the
1312 	 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1313 	 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1314 	 * usable by checking the flag afterwards.
1315 	 */
1316 	reset_count = i915_reset_count(gpu_error);
1317 	in_reset = test_bit(I915_RESET_BACKOFF, &gt->reset.flags);
1318 
1319 	*now = ktime_get();
1320 
1321 	/*
1322 	 * The active busyness depends on start_gt_clk and gt_stamp.
1323 	 * gt_stamp is updated by i915 only when gt is awake and the
1324 	 * start_gt_clk is derived from GuC state. To get a consistent
1325 	 * view of activity, we query the GuC state only if gt is awake.
1326 	 */
1327 	if (!in_reset && intel_gt_pm_get_if_awake(gt)) {
1328 		stats_saved = *stats;
1329 		gt_stamp_saved = guc->timestamp.gt_stamp;
1330 		/*
1331 		 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1332 		 * start_gt_clk' calculation below for active engines.
1333 		 */
1334 		guc_update_engine_gt_clks(engine);
1335 		guc_update_pm_timestamp(guc, now);
1336 		intel_gt_pm_put_async(gt);
1337 		if (i915_reset_count(gpu_error) != reset_count) {
1338 			*stats = stats_saved;
1339 			guc->timestamp.gt_stamp = gt_stamp_saved;
1340 		}
1341 	}
1342 
1343 	total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1344 	if (stats->running) {
1345 		u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1346 
1347 		total += intel_gt_clock_interval_to_ns(gt, clk);
1348 	}
1349 
1350 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1351 
1352 	return ns_to_ktime(total);
1353 }
1354 
1355 static void guc_enable_busyness_worker(struct intel_guc *guc)
1356 {
1357 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work, guc->timestamp.ping_delay);
1358 }
1359 
1360 static void guc_cancel_busyness_worker(struct intel_guc *guc)
1361 {
1362 	cancel_delayed_work_sync(&guc->timestamp.work);
1363 }
1364 
1365 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1366 {
1367 	struct intel_gt *gt = guc_to_gt(guc);
1368 	struct intel_engine_cs *engine;
1369 	enum intel_engine_id id;
1370 	unsigned long flags;
1371 	ktime_t unused;
1372 
1373 	guc_cancel_busyness_worker(guc);
1374 
1375 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1376 
1377 	guc_update_pm_timestamp(guc, &unused);
1378 	for_each_engine(engine, gt, id) {
1379 		guc_update_engine_gt_clks(engine);
1380 		engine->stats.guc.prev_total = 0;
1381 	}
1382 
1383 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1384 }
1385 
1386 static void __update_guc_busyness_stats(struct intel_guc *guc)
1387 {
1388 	struct intel_gt *gt = guc_to_gt(guc);
1389 	struct intel_engine_cs *engine;
1390 	enum intel_engine_id id;
1391 	unsigned long flags;
1392 	ktime_t unused;
1393 
1394 	guc->timestamp.last_stat_jiffies = jiffies;
1395 
1396 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1397 
1398 	guc_update_pm_timestamp(guc, &unused);
1399 	for_each_engine(engine, gt, id)
1400 		guc_update_engine_gt_clks(engine);
1401 
1402 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1403 }
1404 
1405 static void __guc_context_update_stats(struct intel_context *ce)
1406 {
1407 	struct intel_guc *guc = ce_to_guc(ce);
1408 	unsigned long flags;
1409 
1410 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1411 	lrc_update_runtime(ce);
1412 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1413 }
1414 
1415 static void guc_context_update_stats(struct intel_context *ce)
1416 {
1417 	if (!intel_context_pin_if_active(ce))
1418 		return;
1419 
1420 	__guc_context_update_stats(ce);
1421 	intel_context_unpin(ce);
1422 }
1423 
1424 static void guc_timestamp_ping(struct work_struct *wrk)
1425 {
1426 	struct intel_guc *guc = container_of(wrk, typeof(*guc),
1427 					     timestamp.work.work);
1428 	struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1429 	struct intel_gt *gt = guc_to_gt(guc);
1430 	struct intel_context *ce;
1431 	intel_wakeref_t wakeref;
1432 	unsigned long index;
1433 	int srcu, ret;
1434 
1435 	/*
1436 	 * Ideally the busyness worker should take a gt pm wakeref because the
1437 	 * worker only needs to be active while gt is awake. However, the
1438 	 * gt_park path cancels the worker synchronously and this complicates
1439 	 * the flow if the worker is also running at the same time. The cancel
1440 	 * waits for the worker and when the worker releases the wakeref, that
1441 	 * would call gt_park and would lead to a deadlock.
1442 	 *
1443 	 * The resolution is to take the global pm wakeref if runtime pm is
1444 	 * already active. If not, we don't need to update the busyness stats as
1445 	 * the stats would already be updated when the gt was parked.
1446 	 *
1447 	 * Note:
1448 	 * - We do not requeue the worker if we cannot take a reference to runtime
1449 	 *   pm since intel_guc_busyness_unpark would requeue the worker in the
1450 	 *   resume path.
1451 	 *
1452 	 * - If the gt was parked longer than time taken for GT timestamp to roll
1453 	 *   over, we ignore those rollovers since we don't care about tracking
1454 	 *   the exact GT time. We only care about roll overs when the gt is
1455 	 *   active and running workloads.
1456 	 *
1457 	 * - There is a window of time between gt_park and runtime suspend,
1458 	 *   where the worker may run. This is acceptable since the worker will
1459 	 *   not find any new data to update busyness.
1460 	 */
1461 	wakeref = intel_runtime_pm_get_if_active(&gt->i915->runtime_pm);
1462 	if (!wakeref)
1463 		return;
1464 
1465 	/*
1466 	 * Synchronize with gt reset to make sure the worker does not
1467 	 * corrupt the engine/guc stats. NB: can't actually block waiting
1468 	 * for a reset to complete as the reset requires flushing out
1469 	 * this worker thread if started. So waiting would deadlock.
1470 	 */
1471 	ret = intel_gt_reset_trylock(gt, &srcu);
1472 	if (ret)
1473 		goto err_trylock;
1474 
1475 	__update_guc_busyness_stats(guc);
1476 
1477 	/* adjust context stats for overflow */
1478 	xa_for_each(&guc->context_lookup, index, ce)
1479 		guc_context_update_stats(ce);
1480 
1481 	intel_gt_reset_unlock(gt, srcu);
1482 
1483 	guc_enable_busyness_worker(guc);
1484 
1485 err_trylock:
1486 	intel_runtime_pm_put(&gt->i915->runtime_pm, wakeref);
1487 }
1488 
1489 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1490 {
1491 	u32 offset = intel_guc_engine_usage_offset(guc);
1492 	u32 action[] = {
1493 		INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1494 		offset,
1495 		0,
1496 	};
1497 
1498 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
1499 }
1500 
1501 static int guc_init_engine_stats(struct intel_guc *guc)
1502 {
1503 	struct intel_gt *gt = guc_to_gt(guc);
1504 	intel_wakeref_t wakeref;
1505 	int ret;
1506 
1507 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
1508 		ret = guc_action_enable_usage_stats(guc);
1509 
1510 	if (ret)
1511 		guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret));
1512 	else
1513 		guc_enable_busyness_worker(guc);
1514 
1515 	return ret;
1516 }
1517 
1518 static void guc_fini_engine_stats(struct intel_guc *guc)
1519 {
1520 	guc_cancel_busyness_worker(guc);
1521 }
1522 
1523 void intel_guc_busyness_park(struct intel_gt *gt)
1524 {
1525 	struct intel_guc *guc = &gt->uc.guc;
1526 
1527 	if (!guc_submission_initialized(guc))
1528 		return;
1529 
1530 	/*
1531 	 * There is a race with suspend flow where the worker runs after suspend
1532 	 * and causes an unclaimed register access warning. Cancel the worker
1533 	 * synchronously here.
1534 	 */
1535 	guc_cancel_busyness_worker(guc);
1536 
1537 	/*
1538 	 * Before parking, we should sample engine busyness stats if we need to.
1539 	 * We can skip it if we are less than half a ping from the last time we
1540 	 * sampled the busyness stats.
1541 	 */
1542 	if (guc->timestamp.last_stat_jiffies &&
1543 	    !time_after(jiffies, guc->timestamp.last_stat_jiffies +
1544 			(guc->timestamp.ping_delay / 2)))
1545 		return;
1546 
1547 	__update_guc_busyness_stats(guc);
1548 }
1549 
1550 void intel_guc_busyness_unpark(struct intel_gt *gt)
1551 {
1552 	struct intel_guc *guc = &gt->uc.guc;
1553 	unsigned long flags;
1554 	ktime_t unused;
1555 
1556 	if (!guc_submission_initialized(guc))
1557 		return;
1558 
1559 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1560 	guc_update_pm_timestamp(guc, &unused);
1561 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1562 	guc_enable_busyness_worker(guc);
1563 }
1564 
1565 static inline bool
1566 submission_disabled(struct intel_guc *guc)
1567 {
1568 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1569 
1570 	return unlikely(!sched_engine ||
1571 			!__tasklet_is_enabled(&sched_engine->tasklet) ||
1572 			intel_gt_is_wedged(guc_to_gt(guc)));
1573 }
1574 
1575 static void disable_submission(struct intel_guc *guc)
1576 {
1577 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1578 
1579 	if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1580 		GEM_BUG_ON(!guc->ct.enabled);
1581 		__tasklet_disable_sync_once(&sched_engine->tasklet);
1582 		sched_engine->tasklet.callback = NULL;
1583 	}
1584 }
1585 
1586 static void enable_submission(struct intel_guc *guc)
1587 {
1588 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1589 	unsigned long flags;
1590 
1591 	spin_lock_irqsave(&guc->sched_engine->lock, flags);
1592 	sched_engine->tasklet.callback = guc_submission_tasklet;
1593 	wmb();	/* Make sure callback visible */
1594 	if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1595 	    __tasklet_enable(&sched_engine->tasklet)) {
1596 		GEM_BUG_ON(!guc->ct.enabled);
1597 
1598 		/* And kick in case we missed a new request submission. */
1599 		tasklet_hi_schedule(&sched_engine->tasklet);
1600 	}
1601 	spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1602 }
1603 
1604 static void guc_flush_submissions(struct intel_guc *guc)
1605 {
1606 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1607 	unsigned long flags;
1608 
1609 	spin_lock_irqsave(&sched_engine->lock, flags);
1610 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1611 }
1612 
1613 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1614 
1615 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1616 {
1617 	if (unlikely(!guc_submission_initialized(guc))) {
1618 		/* Reset called during driver load? GuC not yet initialised! */
1619 		return;
1620 	}
1621 
1622 	intel_gt_park_heartbeats(guc_to_gt(guc));
1623 	disable_submission(guc);
1624 	guc->interrupts.disable(guc);
1625 	__reset_guc_busyness_stats(guc);
1626 
1627 	/* Flush IRQ handler */
1628 	spin_lock_irq(guc_to_gt(guc)->irq_lock);
1629 	spin_unlock_irq(guc_to_gt(guc)->irq_lock);
1630 
1631 	guc_flush_submissions(guc);
1632 	guc_flush_destroyed_contexts(guc);
1633 	flush_work(&guc->ct.requests.worker);
1634 
1635 	scrub_guc_desc_for_outstanding_g2h(guc);
1636 }
1637 
1638 static struct intel_engine_cs *
1639 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1640 {
1641 	struct intel_engine_cs *engine;
1642 	intel_engine_mask_t tmp, mask = ve->mask;
1643 	unsigned int num_siblings = 0;
1644 
1645 	for_each_engine_masked(engine, ve->gt, mask, tmp)
1646 		if (num_siblings++ == sibling)
1647 			return engine;
1648 
1649 	return NULL;
1650 }
1651 
1652 static inline struct intel_engine_cs *
1653 __context_to_physical_engine(struct intel_context *ce)
1654 {
1655 	struct intel_engine_cs *engine = ce->engine;
1656 
1657 	if (intel_engine_is_virtual(engine))
1658 		engine = guc_virtual_get_sibling(engine, 0);
1659 
1660 	return engine;
1661 }
1662 
1663 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1664 {
1665 	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1666 
1667 	if (!intel_context_is_schedulable(ce))
1668 		return;
1669 
1670 	GEM_BUG_ON(!intel_context_is_pinned(ce));
1671 
1672 	/*
1673 	 * We want a simple context + ring to execute the breadcrumb update.
1674 	 * We cannot rely on the context being intact across the GPU hang,
1675 	 * so clear it and rebuild just what we need for the breadcrumb.
1676 	 * All pending requests for this context will be zapped, and any
1677 	 * future request will be after userspace has had the opportunity
1678 	 * to recreate its own state.
1679 	 */
1680 	if (scrub)
1681 		lrc_init_regs(ce, engine, true);
1682 
1683 	/* Rerun the request; its payload has been neutered (if guilty). */
1684 	lrc_update_regs(ce, engine, head);
1685 }
1686 
1687 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1688 {
1689 	/*
1690 	 * Wa_22011802037: In addition to stopping the cs, we need
1691 	 * to wait for any pending mi force wakeups
1692 	 */
1693 	if (IS_MTL_GRAPHICS_STEP(engine->i915, M, STEP_A0, STEP_B0) ||
1694 	    (GRAPHICS_VER(engine->i915) >= 11 &&
1695 	     GRAPHICS_VER_FULL(engine->i915) < IP_VER(12, 70))) {
1696 		intel_engine_stop_cs(engine);
1697 		intel_engine_wait_for_pending_mi_fw(engine);
1698 	}
1699 }
1700 
1701 static void guc_reset_nop(struct intel_engine_cs *engine)
1702 {
1703 }
1704 
1705 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1706 {
1707 }
1708 
1709 static void
1710 __unwind_incomplete_requests(struct intel_context *ce)
1711 {
1712 	struct i915_request *rq, *rn;
1713 	struct list_head *pl;
1714 	int prio = I915_PRIORITY_INVALID;
1715 	struct i915_sched_engine * const sched_engine =
1716 		ce->engine->sched_engine;
1717 	unsigned long flags;
1718 
1719 	spin_lock_irqsave(&sched_engine->lock, flags);
1720 	spin_lock(&ce->guc_state.lock);
1721 	list_for_each_entry_safe_reverse(rq, rn,
1722 					 &ce->guc_state.requests,
1723 					 sched.link) {
1724 		if (i915_request_completed(rq))
1725 			continue;
1726 
1727 		list_del_init(&rq->sched.link);
1728 		__i915_request_unsubmit(rq);
1729 
1730 		/* Push the request back into the queue for later resubmission. */
1731 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1732 		if (rq_prio(rq) != prio) {
1733 			prio = rq_prio(rq);
1734 			pl = i915_sched_lookup_priolist(sched_engine, prio);
1735 		}
1736 		GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1737 
1738 		list_add(&rq->sched.link, pl);
1739 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1740 	}
1741 	spin_unlock(&ce->guc_state.lock);
1742 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1743 }
1744 
1745 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1746 {
1747 	bool guilty;
1748 	struct i915_request *rq;
1749 	unsigned long flags;
1750 	u32 head;
1751 	int i, number_children = ce->parallel.number_children;
1752 	struct intel_context *parent = ce;
1753 
1754 	GEM_BUG_ON(intel_context_is_child(ce));
1755 
1756 	intel_context_get(ce);
1757 
1758 	/*
1759 	 * GuC will implicitly mark the context as non-schedulable when it sends
1760 	 * the reset notification. Make sure our state reflects this change. The
1761 	 * context will be marked enabled on resubmission.
1762 	 */
1763 	spin_lock_irqsave(&ce->guc_state.lock, flags);
1764 	clr_context_enabled(ce);
1765 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1766 
1767 	/*
1768 	 * For each context in the relationship find the hanging request
1769 	 * resetting each context / request as needed
1770 	 */
1771 	for (i = 0; i < number_children + 1; ++i) {
1772 		if (!intel_context_is_pinned(ce))
1773 			goto next_context;
1774 
1775 		guilty = false;
1776 		rq = intel_context_get_active_request(ce);
1777 		if (!rq) {
1778 			head = ce->ring->tail;
1779 			goto out_replay;
1780 		}
1781 
1782 		if (i915_request_started(rq))
1783 			guilty = stalled & ce->engine->mask;
1784 
1785 		GEM_BUG_ON(i915_active_is_idle(&ce->active));
1786 		head = intel_ring_wrap(ce->ring, rq->head);
1787 
1788 		__i915_request_reset(rq, guilty);
1789 		i915_request_put(rq);
1790 out_replay:
1791 		guc_reset_state(ce, head, guilty);
1792 next_context:
1793 		if (i != number_children)
1794 			ce = list_next_entry(ce, parallel.child_link);
1795 	}
1796 
1797 	__unwind_incomplete_requests(parent);
1798 	intel_context_put(parent);
1799 }
1800 
1801 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1802 {
1803 	struct intel_context *ce;
1804 	unsigned long index;
1805 	unsigned long flags;
1806 
1807 	if (unlikely(!guc_submission_initialized(guc))) {
1808 		/* Reset called during driver load? GuC not yet initialised! */
1809 		return;
1810 	}
1811 
1812 	xa_lock_irqsave(&guc->context_lookup, flags);
1813 	xa_for_each(&guc->context_lookup, index, ce) {
1814 		if (!kref_get_unless_zero(&ce->ref))
1815 			continue;
1816 
1817 		xa_unlock(&guc->context_lookup);
1818 
1819 		if (intel_context_is_pinned(ce) &&
1820 		    !intel_context_is_child(ce))
1821 			__guc_reset_context(ce, stalled);
1822 
1823 		intel_context_put(ce);
1824 
1825 		xa_lock(&guc->context_lookup);
1826 	}
1827 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1828 
1829 	/* GuC is blown away, drop all references to contexts */
1830 	xa_destroy(&guc->context_lookup);
1831 }
1832 
1833 static void guc_cancel_context_requests(struct intel_context *ce)
1834 {
1835 	struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1836 	struct i915_request *rq;
1837 	unsigned long flags;
1838 
1839 	/* Mark all executing requests as skipped. */
1840 	spin_lock_irqsave(&sched_engine->lock, flags);
1841 	spin_lock(&ce->guc_state.lock);
1842 	list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1843 		i915_request_put(i915_request_mark_eio(rq));
1844 	spin_unlock(&ce->guc_state.lock);
1845 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1846 }
1847 
1848 static void
1849 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1850 {
1851 	struct i915_request *rq, *rn;
1852 	struct rb_node *rb;
1853 	unsigned long flags;
1854 
1855 	/* Can be called during boot if GuC fails to load */
1856 	if (!sched_engine)
1857 		return;
1858 
1859 	/*
1860 	 * Before we call engine->cancel_requests(), we should have exclusive
1861 	 * access to the submission state. This is arranged for us by the
1862 	 * caller disabling the interrupt generation, the tasklet and other
1863 	 * threads that may then access the same state, giving us a free hand
1864 	 * to reset state. However, we still need to let lockdep be aware that
1865 	 * we know this state may be accessed in hardirq context, so we
1866 	 * disable the irq around this manipulation and we want to keep
1867 	 * the spinlock focused on its duties and not accidentally conflate
1868 	 * coverage to the submission's irq state. (Similarly, although we
1869 	 * shouldn't need to disable irq around the manipulation of the
1870 	 * submission's irq state, we also wish to remind ourselves that
1871 	 * it is irq state.)
1872 	 */
1873 	spin_lock_irqsave(&sched_engine->lock, flags);
1874 
1875 	/* Flush the queued requests to the timeline list (for retiring). */
1876 	while ((rb = rb_first_cached(&sched_engine->queue))) {
1877 		struct i915_priolist *p = to_priolist(rb);
1878 
1879 		priolist_for_each_request_consume(rq, rn, p) {
1880 			list_del_init(&rq->sched.link);
1881 
1882 			__i915_request_submit(rq);
1883 
1884 			i915_request_put(i915_request_mark_eio(rq));
1885 		}
1886 
1887 		rb_erase_cached(&p->node, &sched_engine->queue);
1888 		i915_priolist_free(p);
1889 	}
1890 
1891 	/* Remaining _unready_ requests will be nop'ed when submitted */
1892 
1893 	sched_engine->queue_priority_hint = INT_MIN;
1894 	sched_engine->queue = RB_ROOT_CACHED;
1895 
1896 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1897 }
1898 
1899 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
1900 {
1901 	struct intel_context *ce;
1902 	unsigned long index;
1903 	unsigned long flags;
1904 
1905 	xa_lock_irqsave(&guc->context_lookup, flags);
1906 	xa_for_each(&guc->context_lookup, index, ce) {
1907 		if (!kref_get_unless_zero(&ce->ref))
1908 			continue;
1909 
1910 		xa_unlock(&guc->context_lookup);
1911 
1912 		if (intel_context_is_pinned(ce) &&
1913 		    !intel_context_is_child(ce))
1914 			guc_cancel_context_requests(ce);
1915 
1916 		intel_context_put(ce);
1917 
1918 		xa_lock(&guc->context_lookup);
1919 	}
1920 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1921 
1922 	guc_cancel_sched_engine_requests(guc->sched_engine);
1923 
1924 	/* GuC is blown away, drop all references to contexts */
1925 	xa_destroy(&guc->context_lookup);
1926 }
1927 
1928 void intel_guc_submission_reset_finish(struct intel_guc *guc)
1929 {
1930 	/* Reset called during driver load or during wedge? */
1931 	if (unlikely(!guc_submission_initialized(guc) ||
1932 		     intel_gt_is_wedged(guc_to_gt(guc)))) {
1933 		return;
1934 	}
1935 
1936 	/*
1937 	 * Technically possible for either of these values to be non-zero here,
1938 	 * but very unlikely + harmless. Regardless let's add a warn so we can
1939 	 * see in CI if this happens frequently / a precursor to taking down the
1940 	 * machine.
1941 	 */
1942 	GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h));
1943 	atomic_set(&guc->outstanding_submission_g2h, 0);
1944 
1945 	intel_guc_global_policies_update(guc);
1946 	enable_submission(guc);
1947 	intel_gt_unpark_heartbeats(guc_to_gt(guc));
1948 }
1949 
1950 static void destroyed_worker_func(struct work_struct *w);
1951 static void reset_fail_worker_func(struct work_struct *w);
1952 
1953 /*
1954  * Set up the memory resources to be shared with the GuC (via the GGTT)
1955  * at firmware loading time.
1956  */
1957 int intel_guc_submission_init(struct intel_guc *guc)
1958 {
1959 	struct intel_gt *gt = guc_to_gt(guc);
1960 	int ret;
1961 
1962 	if (guc->submission_initialized)
1963 		return 0;
1964 
1965 	if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) {
1966 		ret = guc_lrc_desc_pool_create_v69(guc);
1967 		if (ret)
1968 			return ret;
1969 	}
1970 
1971 	guc->submission_state.guc_ids_bitmap =
1972 		bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
1973 	if (!guc->submission_state.guc_ids_bitmap) {
1974 		ret = -ENOMEM;
1975 		goto destroy_pool;
1976 	}
1977 
1978 	guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
1979 	guc->timestamp.shift = gpm_timestamp_shift(gt);
1980 	guc->submission_initialized = true;
1981 
1982 	return 0;
1983 
1984 destroy_pool:
1985 	guc_lrc_desc_pool_destroy_v69(guc);
1986 
1987 	return ret;
1988 }
1989 
1990 void intel_guc_submission_fini(struct intel_guc *guc)
1991 {
1992 	if (!guc->submission_initialized)
1993 		return;
1994 
1995 	guc_flush_destroyed_contexts(guc);
1996 	guc_lrc_desc_pool_destroy_v69(guc);
1997 	i915_sched_engine_put(guc->sched_engine);
1998 	bitmap_free(guc->submission_state.guc_ids_bitmap);
1999 	guc->submission_initialized = false;
2000 }
2001 
2002 static inline void queue_request(struct i915_sched_engine *sched_engine,
2003 				 struct i915_request *rq,
2004 				 int prio)
2005 {
2006 	GEM_BUG_ON(!list_empty(&rq->sched.link));
2007 	list_add_tail(&rq->sched.link,
2008 		      i915_sched_lookup_priolist(sched_engine, prio));
2009 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2010 	tasklet_hi_schedule(&sched_engine->tasklet);
2011 }
2012 
2013 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
2014 				     struct i915_request *rq)
2015 {
2016 	int ret = 0;
2017 
2018 	__i915_request_submit(rq);
2019 
2020 	trace_i915_request_in(rq, 0);
2021 
2022 	if (is_multi_lrc_rq(rq)) {
2023 		if (multi_lrc_submit(rq)) {
2024 			ret = guc_wq_item_append(guc, rq);
2025 			if (!ret)
2026 				ret = guc_add_request(guc, rq);
2027 		}
2028 	} else {
2029 		guc_set_lrc_tail(rq);
2030 		ret = guc_add_request(guc, rq);
2031 	}
2032 
2033 	if (unlikely(ret == -EPIPE))
2034 		disable_submission(guc);
2035 
2036 	return ret;
2037 }
2038 
2039 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
2040 {
2041 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2042 	struct intel_context *ce = request_to_scheduling_context(rq);
2043 
2044 	return submission_disabled(guc) || guc->stalled_request ||
2045 		!i915_sched_engine_is_empty(sched_engine) ||
2046 		!ctx_id_mapped(guc, ce->guc_id.id);
2047 }
2048 
2049 static void guc_submit_request(struct i915_request *rq)
2050 {
2051 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2052 	struct intel_guc *guc = &rq->engine->gt->uc.guc;
2053 	unsigned long flags;
2054 
2055 	/* Will be called from irq-context when using foreign fences. */
2056 	spin_lock_irqsave(&sched_engine->lock, flags);
2057 
2058 	if (need_tasklet(guc, rq))
2059 		queue_request(sched_engine, rq, rq_prio(rq));
2060 	else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
2061 		tasklet_hi_schedule(&sched_engine->tasklet);
2062 
2063 	spin_unlock_irqrestore(&sched_engine->lock, flags);
2064 }
2065 
2066 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
2067 {
2068 	int ret;
2069 
2070 	GEM_BUG_ON(intel_context_is_child(ce));
2071 
2072 	if (intel_context_is_parent(ce))
2073 		ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
2074 					      NUMBER_MULTI_LRC_GUC_ID(guc),
2075 					      order_base_2(ce->parallel.number_children
2076 							   + 1));
2077 	else
2078 		ret = ida_simple_get(&guc->submission_state.guc_ids,
2079 				     NUMBER_MULTI_LRC_GUC_ID(guc),
2080 				     guc->submission_state.num_guc_ids,
2081 				     GFP_KERNEL | __GFP_RETRY_MAYFAIL |
2082 				     __GFP_NOWARN);
2083 	if (unlikely(ret < 0))
2084 		return ret;
2085 
2086 	if (!intel_context_is_parent(ce))
2087 		++guc->submission_state.guc_ids_in_use;
2088 
2089 	ce->guc_id.id = ret;
2090 	return 0;
2091 }
2092 
2093 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2094 {
2095 	GEM_BUG_ON(intel_context_is_child(ce));
2096 
2097 	if (!context_guc_id_invalid(ce)) {
2098 		if (intel_context_is_parent(ce)) {
2099 			bitmap_release_region(guc->submission_state.guc_ids_bitmap,
2100 					      ce->guc_id.id,
2101 					      order_base_2(ce->parallel.number_children
2102 							   + 1));
2103 		} else {
2104 			--guc->submission_state.guc_ids_in_use;
2105 			ida_simple_remove(&guc->submission_state.guc_ids,
2106 					  ce->guc_id.id);
2107 		}
2108 		clr_ctx_id_mapping(guc, ce->guc_id.id);
2109 		set_context_guc_id_invalid(ce);
2110 	}
2111 	if (!list_empty(&ce->guc_id.link))
2112 		list_del_init(&ce->guc_id.link);
2113 }
2114 
2115 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2116 {
2117 	unsigned long flags;
2118 
2119 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2120 	__release_guc_id(guc, ce);
2121 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2122 }
2123 
2124 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
2125 {
2126 	struct intel_context *cn;
2127 
2128 	lockdep_assert_held(&guc->submission_state.lock);
2129 	GEM_BUG_ON(intel_context_is_child(ce));
2130 	GEM_BUG_ON(intel_context_is_parent(ce));
2131 
2132 	if (!list_empty(&guc->submission_state.guc_id_list)) {
2133 		cn = list_first_entry(&guc->submission_state.guc_id_list,
2134 				      struct intel_context,
2135 				      guc_id.link);
2136 
2137 		GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
2138 		GEM_BUG_ON(context_guc_id_invalid(cn));
2139 		GEM_BUG_ON(intel_context_is_child(cn));
2140 		GEM_BUG_ON(intel_context_is_parent(cn));
2141 
2142 		list_del_init(&cn->guc_id.link);
2143 		ce->guc_id.id = cn->guc_id.id;
2144 
2145 		spin_lock(&cn->guc_state.lock);
2146 		clr_context_registered(cn);
2147 		spin_unlock(&cn->guc_state.lock);
2148 
2149 		set_context_guc_id_invalid(cn);
2150 
2151 #ifdef CONFIG_DRM_I915_SELFTEST
2152 		guc->number_guc_id_stolen++;
2153 #endif
2154 
2155 		return 0;
2156 	} else {
2157 		return -EAGAIN;
2158 	}
2159 }
2160 
2161 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2162 {
2163 	int ret;
2164 
2165 	lockdep_assert_held(&guc->submission_state.lock);
2166 	GEM_BUG_ON(intel_context_is_child(ce));
2167 
2168 	ret = new_guc_id(guc, ce);
2169 	if (unlikely(ret < 0)) {
2170 		if (intel_context_is_parent(ce))
2171 			return -ENOSPC;
2172 
2173 		ret = steal_guc_id(guc, ce);
2174 		if (ret < 0)
2175 			return ret;
2176 	}
2177 
2178 	if (intel_context_is_parent(ce)) {
2179 		struct intel_context *child;
2180 		int i = 1;
2181 
2182 		for_each_child(ce, child)
2183 			child->guc_id.id = ce->guc_id.id + i++;
2184 	}
2185 
2186 	return 0;
2187 }
2188 
2189 #define PIN_GUC_ID_TRIES	4
2190 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2191 {
2192 	int ret = 0;
2193 	unsigned long flags, tries = PIN_GUC_ID_TRIES;
2194 
2195 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2196 
2197 try_again:
2198 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2199 
2200 	might_lock(&ce->guc_state.lock);
2201 
2202 	if (context_guc_id_invalid(ce)) {
2203 		ret = assign_guc_id(guc, ce);
2204 		if (ret)
2205 			goto out_unlock;
2206 		ret = 1;	/* Indidcates newly assigned guc_id */
2207 	}
2208 	if (!list_empty(&ce->guc_id.link))
2209 		list_del_init(&ce->guc_id.link);
2210 	atomic_inc(&ce->guc_id.ref);
2211 
2212 out_unlock:
2213 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2214 
2215 	/*
2216 	 * -EAGAIN indicates no guc_id are available, let's retire any
2217 	 * outstanding requests to see if that frees up a guc_id. If the first
2218 	 * retire didn't help, insert a sleep with the timeslice duration before
2219 	 * attempting to retire more requests. Double the sleep period each
2220 	 * subsequent pass before finally giving up. The sleep period has max of
2221 	 * 100ms and minimum of 1ms.
2222 	 */
2223 	if (ret == -EAGAIN && --tries) {
2224 		if (PIN_GUC_ID_TRIES - tries > 1) {
2225 			unsigned int timeslice_shifted =
2226 				ce->engine->props.timeslice_duration_ms <<
2227 				(PIN_GUC_ID_TRIES - tries - 2);
2228 			unsigned int max = min_t(unsigned int, 100,
2229 						 timeslice_shifted);
2230 
2231 			msleep(max_t(unsigned int, max, 1));
2232 		}
2233 		intel_gt_retire_requests(guc_to_gt(guc));
2234 		goto try_again;
2235 	}
2236 
2237 	return ret;
2238 }
2239 
2240 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2241 {
2242 	unsigned long flags;
2243 
2244 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2245 	GEM_BUG_ON(intel_context_is_child(ce));
2246 
2247 	if (unlikely(context_guc_id_invalid(ce) ||
2248 		     intel_context_is_parent(ce)))
2249 		return;
2250 
2251 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2252 	if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2253 	    !atomic_read(&ce->guc_id.ref))
2254 		list_add_tail(&ce->guc_id.link,
2255 			      &guc->submission_state.guc_id_list);
2256 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2257 }
2258 
2259 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc,
2260 					       struct intel_context *ce,
2261 					       u32 guc_id,
2262 					       u32 offset,
2263 					       bool loop)
2264 {
2265 	struct intel_context *child;
2266 	u32 action[4 + MAX_ENGINE_INSTANCE];
2267 	int len = 0;
2268 
2269 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2270 
2271 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2272 	action[len++] = guc_id;
2273 	action[len++] = ce->parallel.number_children + 1;
2274 	action[len++] = offset;
2275 	for_each_child(ce, child) {
2276 		offset += sizeof(struct guc_lrc_desc_v69);
2277 		action[len++] = offset;
2278 	}
2279 
2280 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2281 }
2282 
2283 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc,
2284 					       struct intel_context *ce,
2285 					       struct guc_ctxt_registration_info *info,
2286 					       bool loop)
2287 {
2288 	struct intel_context *child;
2289 	u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2290 	int len = 0;
2291 	u32 next_id;
2292 
2293 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2294 
2295 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2296 	action[len++] = info->flags;
2297 	action[len++] = info->context_idx;
2298 	action[len++] = info->engine_class;
2299 	action[len++] = info->engine_submit_mask;
2300 	action[len++] = info->wq_desc_lo;
2301 	action[len++] = info->wq_desc_hi;
2302 	action[len++] = info->wq_base_lo;
2303 	action[len++] = info->wq_base_hi;
2304 	action[len++] = info->wq_size;
2305 	action[len++] = ce->parallel.number_children + 1;
2306 	action[len++] = info->hwlrca_lo;
2307 	action[len++] = info->hwlrca_hi;
2308 
2309 	next_id = info->context_idx + 1;
2310 	for_each_child(ce, child) {
2311 		GEM_BUG_ON(next_id++ != child->guc_id.id);
2312 
2313 		/*
2314 		 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2315 		 * only supports 32 bit currently.
2316 		 */
2317 		action[len++] = lower_32_bits(child->lrc.lrca);
2318 		action[len++] = upper_32_bits(child->lrc.lrca);
2319 	}
2320 
2321 	GEM_BUG_ON(len > ARRAY_SIZE(action));
2322 
2323 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2324 }
2325 
2326 static int __guc_action_register_context_v69(struct intel_guc *guc,
2327 					     u32 guc_id,
2328 					     u32 offset,
2329 					     bool loop)
2330 {
2331 	u32 action[] = {
2332 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2333 		guc_id,
2334 		offset,
2335 	};
2336 
2337 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2338 					     0, loop);
2339 }
2340 
2341 static int __guc_action_register_context_v70(struct intel_guc *guc,
2342 					     struct guc_ctxt_registration_info *info,
2343 					     bool loop)
2344 {
2345 	u32 action[] = {
2346 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2347 		info->flags,
2348 		info->context_idx,
2349 		info->engine_class,
2350 		info->engine_submit_mask,
2351 		info->wq_desc_lo,
2352 		info->wq_desc_hi,
2353 		info->wq_base_lo,
2354 		info->wq_base_hi,
2355 		info->wq_size,
2356 		info->hwlrca_lo,
2357 		info->hwlrca_hi,
2358 	};
2359 
2360 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2361 					     0, loop);
2362 }
2363 
2364 static void prepare_context_registration_info_v69(struct intel_context *ce);
2365 static void prepare_context_registration_info_v70(struct intel_context *ce,
2366 						  struct guc_ctxt_registration_info *info);
2367 
2368 static int
2369 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop)
2370 {
2371 	u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) +
2372 		ce->guc_id.id * sizeof(struct guc_lrc_desc_v69);
2373 
2374 	prepare_context_registration_info_v69(ce);
2375 
2376 	if (intel_context_is_parent(ce))
2377 		return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id,
2378 							   offset, loop);
2379 	else
2380 		return __guc_action_register_context_v69(guc, ce->guc_id.id,
2381 							 offset, loop);
2382 }
2383 
2384 static int
2385 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop)
2386 {
2387 	struct guc_ctxt_registration_info info;
2388 
2389 	prepare_context_registration_info_v70(ce, &info);
2390 
2391 	if (intel_context_is_parent(ce))
2392 		return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop);
2393 	else
2394 		return __guc_action_register_context_v70(guc, &info, loop);
2395 }
2396 
2397 static int register_context(struct intel_context *ce, bool loop)
2398 {
2399 	struct intel_guc *guc = ce_to_guc(ce);
2400 	int ret;
2401 
2402 	GEM_BUG_ON(intel_context_is_child(ce));
2403 	trace_intel_context_register(ce);
2404 
2405 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2406 		ret = register_context_v70(guc, ce, loop);
2407 	else
2408 		ret = register_context_v69(guc, ce, loop);
2409 
2410 	if (likely(!ret)) {
2411 		unsigned long flags;
2412 
2413 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2414 		set_context_registered(ce);
2415 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2416 
2417 		if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2418 			guc_context_policy_init_v70(ce, loop);
2419 	}
2420 
2421 	return ret;
2422 }
2423 
2424 static int __guc_action_deregister_context(struct intel_guc *guc,
2425 					   u32 guc_id)
2426 {
2427 	u32 action[] = {
2428 		INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2429 		guc_id,
2430 	};
2431 
2432 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2433 					     G2H_LEN_DW_DEREGISTER_CONTEXT,
2434 					     true);
2435 }
2436 
2437 static int deregister_context(struct intel_context *ce, u32 guc_id)
2438 {
2439 	struct intel_guc *guc = ce_to_guc(ce);
2440 
2441 	GEM_BUG_ON(intel_context_is_child(ce));
2442 	trace_intel_context_deregister(ce);
2443 
2444 	return __guc_action_deregister_context(guc, guc_id);
2445 }
2446 
2447 static inline void clear_children_join_go_memory(struct intel_context *ce)
2448 {
2449 	struct parent_scratch *ps = __get_parent_scratch(ce);
2450 	int i;
2451 
2452 	ps->go.semaphore = 0;
2453 	for (i = 0; i < ce->parallel.number_children + 1; ++i)
2454 		ps->join[i].semaphore = 0;
2455 }
2456 
2457 static inline u32 get_children_go_value(struct intel_context *ce)
2458 {
2459 	return __get_parent_scratch(ce)->go.semaphore;
2460 }
2461 
2462 static inline u32 get_children_join_value(struct intel_context *ce,
2463 					  u8 child_index)
2464 {
2465 	return __get_parent_scratch(ce)->join[child_index].semaphore;
2466 }
2467 
2468 struct context_policy {
2469 	u32 count;
2470 	struct guc_update_context_policy h2g;
2471 };
2472 
2473 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2474 {
2475 	size_t bytes = sizeof(policy->h2g.header) +
2476 		       (sizeof(policy->h2g.klv[0]) * policy->count);
2477 
2478 	return bytes / sizeof(u32);
2479 }
2480 
2481 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2482 {
2483 	policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2484 	policy->h2g.header.ctx_id = guc_id;
2485 	policy->count = 0;
2486 }
2487 
2488 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2489 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2490 { \
2491 	GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2492 	policy->h2g.klv[policy->count].kl = \
2493 		FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2494 		FIELD_PREP(GUC_KLV_0_LEN, 1); \
2495 	policy->h2g.klv[policy->count].value = data; \
2496 	policy->count++; \
2497 }
2498 
2499 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2500 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2501 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2502 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2503 
2504 #undef MAKE_CONTEXT_POLICY_ADD
2505 
2506 static int __guc_context_set_context_policies(struct intel_guc *guc,
2507 					      struct context_policy *policy,
2508 					      bool loop)
2509 {
2510 	return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2511 					__guc_context_policy_action_size(policy),
2512 					0, loop);
2513 }
2514 
2515 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop)
2516 {
2517 	struct intel_engine_cs *engine = ce->engine;
2518 	struct intel_guc *guc = &engine->gt->uc.guc;
2519 	struct context_policy policy;
2520 	u32 execution_quantum;
2521 	u32 preemption_timeout;
2522 	unsigned long flags;
2523 	int ret;
2524 
2525 	/* NB: For both of these, zero means disabled. */
2526 	GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2527 				  execution_quantum));
2528 	GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2529 				  preemption_timeout));
2530 	execution_quantum = engine->props.timeslice_duration_ms * 1000;
2531 	preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2532 
2533 	__guc_context_policy_start_klv(&policy, ce->guc_id.id);
2534 
2535 	__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2536 	__guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2537 	__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2538 
2539 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2540 		__guc_context_policy_add_preempt_to_idle(&policy, 1);
2541 
2542 	ret = __guc_context_set_context_policies(guc, &policy, loop);
2543 
2544 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2545 	if (ret != 0)
2546 		set_context_policy_required(ce);
2547 	else
2548 		clr_context_policy_required(ce);
2549 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2550 
2551 	return ret;
2552 }
2553 
2554 static void guc_context_policy_init_v69(struct intel_engine_cs *engine,
2555 					struct guc_lrc_desc_v69 *desc)
2556 {
2557 	desc->policy_flags = 0;
2558 
2559 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2560 		desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69;
2561 
2562 	/* NB: For both of these, zero means disabled. */
2563 	GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2564 				  desc->execution_quantum));
2565 	GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2566 				  desc->preemption_timeout));
2567 	desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
2568 	desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2569 }
2570 
2571 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio)
2572 {
2573 	/*
2574 	 * this matches the mapping we do in map_i915_prio_to_guc_prio()
2575 	 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL)
2576 	 */
2577 	switch (prio) {
2578 	default:
2579 		MISSING_CASE(prio);
2580 		fallthrough;
2581 	case GUC_CLIENT_PRIORITY_KMD_NORMAL:
2582 		return GEN12_CTX_PRIORITY_NORMAL;
2583 	case GUC_CLIENT_PRIORITY_NORMAL:
2584 		return GEN12_CTX_PRIORITY_LOW;
2585 	case GUC_CLIENT_PRIORITY_HIGH:
2586 	case GUC_CLIENT_PRIORITY_KMD_HIGH:
2587 		return GEN12_CTX_PRIORITY_HIGH;
2588 	}
2589 }
2590 
2591 static void prepare_context_registration_info_v69(struct intel_context *ce)
2592 {
2593 	struct intel_engine_cs *engine = ce->engine;
2594 	struct intel_guc *guc = &engine->gt->uc.guc;
2595 	u32 ctx_id = ce->guc_id.id;
2596 	struct guc_lrc_desc_v69 *desc;
2597 	struct intel_context *child;
2598 
2599 	GEM_BUG_ON(!engine->mask);
2600 
2601 	/*
2602 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2603 	 * based on CT vma region.
2604 	 */
2605 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2606 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2607 
2608 	desc = __get_lrc_desc_v69(guc, ctx_id);
2609 	GEM_BUG_ON(!desc);
2610 	desc->engine_class = engine_class_to_guc_class(engine->class);
2611 	desc->engine_submit_mask = engine->logical_mask;
2612 	desc->hw_context_desc = ce->lrc.lrca;
2613 	desc->priority = ce->guc_state.prio;
2614 	desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2615 	guc_context_policy_init_v69(engine, desc);
2616 
2617 	/*
2618 	 * If context is a parent, we need to register a process descriptor
2619 	 * describing a work queue and register all child contexts.
2620 	 */
2621 	if (intel_context_is_parent(ce)) {
2622 		struct guc_process_desc_v69 *pdesc;
2623 
2624 		ce->parallel.guc.wqi_tail = 0;
2625 		ce->parallel.guc.wqi_head = 0;
2626 
2627 		desc->process_desc = i915_ggtt_offset(ce->state) +
2628 			__get_parent_scratch_offset(ce);
2629 		desc->wq_addr = i915_ggtt_offset(ce->state) +
2630 			__get_wq_offset(ce);
2631 		desc->wq_size = WQ_SIZE;
2632 
2633 		pdesc = __get_process_desc_v69(ce);
2634 		memset(pdesc, 0, sizeof(*(pdesc)));
2635 		pdesc->stage_id = ce->guc_id.id;
2636 		pdesc->wq_base_addr = desc->wq_addr;
2637 		pdesc->wq_size_bytes = desc->wq_size;
2638 		pdesc->wq_status = WQ_STATUS_ACTIVE;
2639 
2640 		ce->parallel.guc.wq_head = &pdesc->head;
2641 		ce->parallel.guc.wq_tail = &pdesc->tail;
2642 		ce->parallel.guc.wq_status = &pdesc->wq_status;
2643 
2644 		for_each_child(ce, child) {
2645 			desc = __get_lrc_desc_v69(guc, child->guc_id.id);
2646 
2647 			desc->engine_class =
2648 				engine_class_to_guc_class(engine->class);
2649 			desc->hw_context_desc = child->lrc.lrca;
2650 			desc->priority = ce->guc_state.prio;
2651 			desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2652 			guc_context_policy_init_v69(engine, desc);
2653 		}
2654 
2655 		clear_children_join_go_memory(ce);
2656 	}
2657 }
2658 
2659 static void prepare_context_registration_info_v70(struct intel_context *ce,
2660 						  struct guc_ctxt_registration_info *info)
2661 {
2662 	struct intel_engine_cs *engine = ce->engine;
2663 	struct intel_guc *guc = &engine->gt->uc.guc;
2664 	u32 ctx_id = ce->guc_id.id;
2665 
2666 	GEM_BUG_ON(!engine->mask);
2667 
2668 	/*
2669 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2670 	 * based on CT vma region.
2671 	 */
2672 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2673 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2674 
2675 	memset(info, 0, sizeof(*info));
2676 	info->context_idx = ctx_id;
2677 	info->engine_class = engine_class_to_guc_class(engine->class);
2678 	info->engine_submit_mask = engine->logical_mask;
2679 	/*
2680 	 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2681 	 * only supports 32 bit currently.
2682 	 */
2683 	info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2684 	info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2685 	if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
2686 		info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio);
2687 	info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2688 
2689 	/*
2690 	 * If context is a parent, we need to register a process descriptor
2691 	 * describing a work queue and register all child contexts.
2692 	 */
2693 	if (intel_context_is_parent(ce)) {
2694 		struct guc_sched_wq_desc *wq_desc;
2695 		u64 wq_desc_offset, wq_base_offset;
2696 
2697 		ce->parallel.guc.wqi_tail = 0;
2698 		ce->parallel.guc.wqi_head = 0;
2699 
2700 		wq_desc_offset = i915_ggtt_offset(ce->state) +
2701 				 __get_parent_scratch_offset(ce);
2702 		wq_base_offset = i915_ggtt_offset(ce->state) +
2703 				 __get_wq_offset(ce);
2704 		info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2705 		info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2706 		info->wq_base_lo = lower_32_bits(wq_base_offset);
2707 		info->wq_base_hi = upper_32_bits(wq_base_offset);
2708 		info->wq_size = WQ_SIZE;
2709 
2710 		wq_desc = __get_wq_desc_v70(ce);
2711 		memset(wq_desc, 0, sizeof(*wq_desc));
2712 		wq_desc->wq_status = WQ_STATUS_ACTIVE;
2713 
2714 		ce->parallel.guc.wq_head = &wq_desc->head;
2715 		ce->parallel.guc.wq_tail = &wq_desc->tail;
2716 		ce->parallel.guc.wq_status = &wq_desc->wq_status;
2717 
2718 		clear_children_join_go_memory(ce);
2719 	}
2720 }
2721 
2722 static int try_context_registration(struct intel_context *ce, bool loop)
2723 {
2724 	struct intel_engine_cs *engine = ce->engine;
2725 	struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2726 	struct intel_guc *guc = &engine->gt->uc.guc;
2727 	intel_wakeref_t wakeref;
2728 	u32 ctx_id = ce->guc_id.id;
2729 	bool context_registered;
2730 	int ret = 0;
2731 
2732 	GEM_BUG_ON(!sched_state_is_init(ce));
2733 
2734 	context_registered = ctx_id_mapped(guc, ctx_id);
2735 
2736 	clr_ctx_id_mapping(guc, ctx_id);
2737 	set_ctx_id_mapping(guc, ctx_id, ce);
2738 
2739 	/*
2740 	 * The context_lookup xarray is used to determine if the hardware
2741 	 * context is currently registered. There are two cases in which it
2742 	 * could be registered either the guc_id has been stolen from another
2743 	 * context or the lrc descriptor address of this context has changed. In
2744 	 * either case the context needs to be deregistered with the GuC before
2745 	 * registering this context.
2746 	 */
2747 	if (context_registered) {
2748 		bool disabled;
2749 		unsigned long flags;
2750 
2751 		trace_intel_context_steal_guc_id(ce);
2752 		GEM_BUG_ON(!loop);
2753 
2754 		/* Seal race with Reset */
2755 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2756 		disabled = submission_disabled(guc);
2757 		if (likely(!disabled)) {
2758 			set_context_wait_for_deregister_to_register(ce);
2759 			intel_context_get(ce);
2760 		}
2761 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2762 		if (unlikely(disabled)) {
2763 			clr_ctx_id_mapping(guc, ctx_id);
2764 			return 0;	/* Will get registered later */
2765 		}
2766 
2767 		/*
2768 		 * If stealing the guc_id, this ce has the same guc_id as the
2769 		 * context whose guc_id was stolen.
2770 		 */
2771 		with_intel_runtime_pm(runtime_pm, wakeref)
2772 			ret = deregister_context(ce, ce->guc_id.id);
2773 		if (unlikely(ret == -ENODEV))
2774 			ret = 0;	/* Will get registered later */
2775 	} else {
2776 		with_intel_runtime_pm(runtime_pm, wakeref)
2777 			ret = register_context(ce, loop);
2778 		if (unlikely(ret == -EBUSY)) {
2779 			clr_ctx_id_mapping(guc, ctx_id);
2780 		} else if (unlikely(ret == -ENODEV)) {
2781 			clr_ctx_id_mapping(guc, ctx_id);
2782 			ret = 0;	/* Will get registered later */
2783 		}
2784 	}
2785 
2786 	return ret;
2787 }
2788 
2789 static int __guc_context_pre_pin(struct intel_context *ce,
2790 				 struct intel_engine_cs *engine,
2791 				 struct i915_gem_ww_ctx *ww,
2792 				 void **vaddr)
2793 {
2794 	return lrc_pre_pin(ce, engine, ww, vaddr);
2795 }
2796 
2797 static int __guc_context_pin(struct intel_context *ce,
2798 			     struct intel_engine_cs *engine,
2799 			     void *vaddr)
2800 {
2801 	if (i915_ggtt_offset(ce->state) !=
2802 	    (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
2803 		set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
2804 
2805 	/*
2806 	 * GuC context gets pinned in guc_request_alloc. See that function for
2807 	 * explaination of why.
2808 	 */
2809 
2810 	return lrc_pin(ce, engine, vaddr);
2811 }
2812 
2813 static int guc_context_pre_pin(struct intel_context *ce,
2814 			       struct i915_gem_ww_ctx *ww,
2815 			       void **vaddr)
2816 {
2817 	return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
2818 }
2819 
2820 static int guc_context_pin(struct intel_context *ce, void *vaddr)
2821 {
2822 	int ret = __guc_context_pin(ce, ce->engine, vaddr);
2823 
2824 	if (likely(!ret && !intel_context_is_barrier(ce)))
2825 		intel_engine_pm_get(ce->engine);
2826 
2827 	return ret;
2828 }
2829 
2830 static void guc_context_unpin(struct intel_context *ce)
2831 {
2832 	struct intel_guc *guc = ce_to_guc(ce);
2833 
2834 	__guc_context_update_stats(ce);
2835 	unpin_guc_id(guc, ce);
2836 	lrc_unpin(ce);
2837 
2838 	if (likely(!intel_context_is_barrier(ce)))
2839 		intel_engine_pm_put_async(ce->engine);
2840 }
2841 
2842 static void guc_context_post_unpin(struct intel_context *ce)
2843 {
2844 	lrc_post_unpin(ce);
2845 }
2846 
2847 static void __guc_context_sched_enable(struct intel_guc *guc,
2848 				       struct intel_context *ce)
2849 {
2850 	u32 action[] = {
2851 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2852 		ce->guc_id.id,
2853 		GUC_CONTEXT_ENABLE
2854 	};
2855 
2856 	trace_intel_context_sched_enable(ce);
2857 
2858 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2859 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2860 }
2861 
2862 static void __guc_context_sched_disable(struct intel_guc *guc,
2863 					struct intel_context *ce,
2864 					u16 guc_id)
2865 {
2866 	u32 action[] = {
2867 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2868 		guc_id,	/* ce->guc_id.id not stable */
2869 		GUC_CONTEXT_DISABLE
2870 	};
2871 
2872 	GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
2873 
2874 	GEM_BUG_ON(intel_context_is_child(ce));
2875 	trace_intel_context_sched_disable(ce);
2876 
2877 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2878 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2879 }
2880 
2881 static void guc_blocked_fence_complete(struct intel_context *ce)
2882 {
2883 	lockdep_assert_held(&ce->guc_state.lock);
2884 
2885 	if (!i915_sw_fence_done(&ce->guc_state.blocked))
2886 		i915_sw_fence_complete(&ce->guc_state.blocked);
2887 }
2888 
2889 static void guc_blocked_fence_reinit(struct intel_context *ce)
2890 {
2891 	lockdep_assert_held(&ce->guc_state.lock);
2892 	GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
2893 
2894 	/*
2895 	 * This fence is always complete unless a pending schedule disable is
2896 	 * outstanding. We arm the fence here and complete it when we receive
2897 	 * the pending schedule disable complete message.
2898 	 */
2899 	i915_sw_fence_fini(&ce->guc_state.blocked);
2900 	i915_sw_fence_reinit(&ce->guc_state.blocked);
2901 	i915_sw_fence_await(&ce->guc_state.blocked);
2902 	i915_sw_fence_commit(&ce->guc_state.blocked);
2903 }
2904 
2905 static u16 prep_context_pending_disable(struct intel_context *ce)
2906 {
2907 	lockdep_assert_held(&ce->guc_state.lock);
2908 
2909 	set_context_pending_disable(ce);
2910 	clr_context_enabled(ce);
2911 	guc_blocked_fence_reinit(ce);
2912 	intel_context_get(ce);
2913 
2914 	return ce->guc_id.id;
2915 }
2916 
2917 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
2918 {
2919 	struct intel_guc *guc = ce_to_guc(ce);
2920 	unsigned long flags;
2921 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
2922 	intel_wakeref_t wakeref;
2923 	u16 guc_id;
2924 	bool enabled;
2925 
2926 	GEM_BUG_ON(intel_context_is_child(ce));
2927 
2928 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2929 
2930 	incr_context_blocked(ce);
2931 
2932 	enabled = context_enabled(ce);
2933 	if (unlikely(!enabled || submission_disabled(guc))) {
2934 		if (enabled)
2935 			clr_context_enabled(ce);
2936 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2937 		return &ce->guc_state.blocked;
2938 	}
2939 
2940 	/*
2941 	 * We add +2 here as the schedule disable complete CTB handler calls
2942 	 * intel_context_sched_disable_unpin (-2 to pin_count).
2943 	 */
2944 	atomic_add(2, &ce->pin_count);
2945 
2946 	guc_id = prep_context_pending_disable(ce);
2947 
2948 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2949 
2950 	with_intel_runtime_pm(runtime_pm, wakeref)
2951 		__guc_context_sched_disable(guc, ce, guc_id);
2952 
2953 	return &ce->guc_state.blocked;
2954 }
2955 
2956 #define SCHED_STATE_MULTI_BLOCKED_MASK \
2957 	(SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
2958 #define SCHED_STATE_NO_UNBLOCK \
2959 	(SCHED_STATE_MULTI_BLOCKED_MASK | \
2960 	 SCHED_STATE_PENDING_DISABLE | \
2961 	 SCHED_STATE_BANNED)
2962 
2963 static bool context_cant_unblock(struct intel_context *ce)
2964 {
2965 	lockdep_assert_held(&ce->guc_state.lock);
2966 
2967 	return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
2968 		context_guc_id_invalid(ce) ||
2969 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
2970 		!intel_context_is_pinned(ce);
2971 }
2972 
2973 static void guc_context_unblock(struct intel_context *ce)
2974 {
2975 	struct intel_guc *guc = ce_to_guc(ce);
2976 	unsigned long flags;
2977 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
2978 	intel_wakeref_t wakeref;
2979 	bool enable;
2980 
2981 	GEM_BUG_ON(context_enabled(ce));
2982 	GEM_BUG_ON(intel_context_is_child(ce));
2983 
2984 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2985 
2986 	if (unlikely(submission_disabled(guc) ||
2987 		     context_cant_unblock(ce))) {
2988 		enable = false;
2989 	} else {
2990 		enable = true;
2991 		set_context_pending_enable(ce);
2992 		set_context_enabled(ce);
2993 		intel_context_get(ce);
2994 	}
2995 
2996 	decr_context_blocked(ce);
2997 
2998 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2999 
3000 	if (enable) {
3001 		with_intel_runtime_pm(runtime_pm, wakeref)
3002 			__guc_context_sched_enable(guc, ce);
3003 	}
3004 }
3005 
3006 static void guc_context_cancel_request(struct intel_context *ce,
3007 				       struct i915_request *rq)
3008 {
3009 	struct intel_context *block_context =
3010 		request_to_scheduling_context(rq);
3011 
3012 	if (i915_sw_fence_signaled(&rq->submit)) {
3013 		struct i915_sw_fence *fence;
3014 
3015 		intel_context_get(ce);
3016 		fence = guc_context_block(block_context);
3017 		i915_sw_fence_wait(fence);
3018 		if (!i915_request_completed(rq)) {
3019 			__i915_request_skip(rq);
3020 			guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
3021 					true);
3022 		}
3023 
3024 		guc_context_unblock(block_context);
3025 		intel_context_put(ce);
3026 	}
3027 }
3028 
3029 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
3030 						 u16 guc_id,
3031 						 u32 preemption_timeout)
3032 {
3033 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3034 		struct context_policy policy;
3035 
3036 		__guc_context_policy_start_klv(&policy, guc_id);
3037 		__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
3038 		__guc_context_set_context_policies(guc, &policy, true);
3039 	} else {
3040 		u32 action[] = {
3041 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT,
3042 			guc_id,
3043 			preemption_timeout
3044 		};
3045 
3046 		intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3047 	}
3048 }
3049 
3050 static void
3051 guc_context_revoke(struct intel_context *ce, struct i915_request *rq,
3052 		   unsigned int preempt_timeout_ms)
3053 {
3054 	struct intel_guc *guc = ce_to_guc(ce);
3055 	struct intel_runtime_pm *runtime_pm =
3056 		&ce->engine->gt->i915->runtime_pm;
3057 	intel_wakeref_t wakeref;
3058 	unsigned long flags;
3059 
3060 	GEM_BUG_ON(intel_context_is_child(ce));
3061 
3062 	guc_flush_submissions(guc);
3063 
3064 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3065 	set_context_banned(ce);
3066 
3067 	if (submission_disabled(guc) ||
3068 	    (!context_enabled(ce) && !context_pending_disable(ce))) {
3069 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3070 
3071 		guc_cancel_context_requests(ce);
3072 		intel_engine_signal_breadcrumbs(ce->engine);
3073 	} else if (!context_pending_disable(ce)) {
3074 		u16 guc_id;
3075 
3076 		/*
3077 		 * We add +2 here as the schedule disable complete CTB handler
3078 		 * calls intel_context_sched_disable_unpin (-2 to pin_count).
3079 		 */
3080 		atomic_add(2, &ce->pin_count);
3081 
3082 		guc_id = prep_context_pending_disable(ce);
3083 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3084 
3085 		/*
3086 		 * In addition to disabling scheduling, set the preemption
3087 		 * timeout to the minimum value (1 us) so the banned context
3088 		 * gets kicked off the HW ASAP.
3089 		 */
3090 		with_intel_runtime_pm(runtime_pm, wakeref) {
3091 			__guc_context_set_preemption_timeout(guc, guc_id,
3092 							     preempt_timeout_ms);
3093 			__guc_context_sched_disable(guc, ce, guc_id);
3094 		}
3095 	} else {
3096 		if (!context_guc_id_invalid(ce))
3097 			with_intel_runtime_pm(runtime_pm, wakeref)
3098 				__guc_context_set_preemption_timeout(guc,
3099 								     ce->guc_id.id,
3100 								     preempt_timeout_ms);
3101 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3102 	}
3103 }
3104 
3105 static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce,
3106 			     unsigned long flags)
3107 	__releases(ce->guc_state.lock)
3108 {
3109 	struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
3110 	intel_wakeref_t wakeref;
3111 	u16 guc_id;
3112 
3113 	lockdep_assert_held(&ce->guc_state.lock);
3114 	guc_id = prep_context_pending_disable(ce);
3115 
3116 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3117 
3118 	with_intel_runtime_pm(runtime_pm, wakeref)
3119 		__guc_context_sched_disable(guc, ce, guc_id);
3120 }
3121 
3122 static bool bypass_sched_disable(struct intel_guc *guc,
3123 				 struct intel_context *ce)
3124 {
3125 	lockdep_assert_held(&ce->guc_state.lock);
3126 	GEM_BUG_ON(intel_context_is_child(ce));
3127 
3128 	if (submission_disabled(guc) || context_guc_id_invalid(ce) ||
3129 	    !ctx_id_mapped(guc, ce->guc_id.id)) {
3130 		clr_context_enabled(ce);
3131 		return true;
3132 	}
3133 
3134 	return !context_enabled(ce);
3135 }
3136 
3137 static void __delay_sched_disable(struct work_struct *wrk)
3138 {
3139 	struct intel_context *ce =
3140 		container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work);
3141 	struct intel_guc *guc = ce_to_guc(ce);
3142 	unsigned long flags;
3143 
3144 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3145 
3146 	if (bypass_sched_disable(guc, ce)) {
3147 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3148 		intel_context_sched_disable_unpin(ce);
3149 	} else {
3150 		do_sched_disable(guc, ce, flags);
3151 	}
3152 }
3153 
3154 static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce)
3155 {
3156 	/*
3157 	 * parent contexts are perma-pinned, if we are unpinning do schedule
3158 	 * disable immediately.
3159 	 */
3160 	if (intel_context_is_parent(ce))
3161 		return true;
3162 
3163 	/*
3164 	 * If we are beyond the threshold for avail guc_ids, do schedule disable immediately.
3165 	 */
3166 	return guc->submission_state.guc_ids_in_use >
3167 		guc->submission_state.sched_disable_gucid_threshold;
3168 }
3169 
3170 static void guc_context_sched_disable(struct intel_context *ce)
3171 {
3172 	struct intel_guc *guc = ce_to_guc(ce);
3173 	u64 delay = guc->submission_state.sched_disable_delay_ms;
3174 	unsigned long flags;
3175 
3176 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3177 
3178 	if (bypass_sched_disable(guc, ce)) {
3179 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3180 		intel_context_sched_disable_unpin(ce);
3181 	} else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) &&
3182 		   delay) {
3183 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3184 		mod_delayed_work(system_unbound_wq,
3185 				 &ce->guc_state.sched_disable_delay_work,
3186 				 msecs_to_jiffies(delay));
3187 	} else {
3188 		do_sched_disable(guc, ce, flags);
3189 	}
3190 }
3191 
3192 static void guc_context_close(struct intel_context *ce)
3193 {
3194 	unsigned long flags;
3195 
3196 	if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
3197 	    cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))
3198 		__delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work);
3199 
3200 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3201 	set_context_close_done(ce);
3202 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3203 }
3204 
3205 static inline void guc_lrc_desc_unpin(struct intel_context *ce)
3206 {
3207 	struct intel_guc *guc = ce_to_guc(ce);
3208 	struct intel_gt *gt = guc_to_gt(guc);
3209 	unsigned long flags;
3210 	bool disabled;
3211 
3212 	GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
3213 	GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
3214 	GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
3215 	GEM_BUG_ON(context_enabled(ce));
3216 
3217 	/* Seal race with Reset */
3218 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3219 	disabled = submission_disabled(guc);
3220 	if (likely(!disabled)) {
3221 		__intel_gt_pm_get(gt);
3222 		set_context_destroyed(ce);
3223 		clr_context_registered(ce);
3224 	}
3225 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3226 	if (unlikely(disabled)) {
3227 		release_guc_id(guc, ce);
3228 		__guc_context_destroy(ce);
3229 		return;
3230 	}
3231 
3232 	deregister_context(ce, ce->guc_id.id);
3233 }
3234 
3235 static void __guc_context_destroy(struct intel_context *ce)
3236 {
3237 	GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
3238 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
3239 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
3240 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
3241 
3242 	lrc_fini(ce);
3243 	intel_context_fini(ce);
3244 
3245 	if (intel_engine_is_virtual(ce->engine)) {
3246 		struct guc_virtual_engine *ve =
3247 			container_of(ce, typeof(*ve), context);
3248 
3249 		if (ve->base.breadcrumbs)
3250 			intel_breadcrumbs_put(ve->base.breadcrumbs);
3251 
3252 		kfree(ve);
3253 	} else {
3254 		intel_context_free(ce);
3255 	}
3256 }
3257 
3258 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
3259 {
3260 	struct intel_context *ce;
3261 	unsigned long flags;
3262 
3263 	GEM_BUG_ON(!submission_disabled(guc) &&
3264 		   guc_submission_initialized(guc));
3265 
3266 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3267 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3268 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3269 					      struct intel_context,
3270 					      destroyed_link);
3271 		if (ce)
3272 			list_del_init(&ce->destroyed_link);
3273 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3274 
3275 		if (!ce)
3276 			break;
3277 
3278 		release_guc_id(guc, ce);
3279 		__guc_context_destroy(ce);
3280 	}
3281 }
3282 
3283 static void deregister_destroyed_contexts(struct intel_guc *guc)
3284 {
3285 	struct intel_context *ce;
3286 	unsigned long flags;
3287 
3288 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3289 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3290 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3291 					      struct intel_context,
3292 					      destroyed_link);
3293 		if (ce)
3294 			list_del_init(&ce->destroyed_link);
3295 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3296 
3297 		if (!ce)
3298 			break;
3299 
3300 		guc_lrc_desc_unpin(ce);
3301 	}
3302 }
3303 
3304 static void destroyed_worker_func(struct work_struct *w)
3305 {
3306 	struct intel_guc *guc = container_of(w, struct intel_guc,
3307 					     submission_state.destroyed_worker);
3308 	struct intel_gt *gt = guc_to_gt(guc);
3309 	int tmp;
3310 
3311 	with_intel_gt_pm(gt, tmp)
3312 		deregister_destroyed_contexts(guc);
3313 }
3314 
3315 static void guc_context_destroy(struct kref *kref)
3316 {
3317 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3318 	struct intel_guc *guc = ce_to_guc(ce);
3319 	unsigned long flags;
3320 	bool destroy;
3321 
3322 	/*
3323 	 * If the guc_id is invalid this context has been stolen and we can free
3324 	 * it immediately. Also can be freed immediately if the context is not
3325 	 * registered with the GuC or the GuC is in the middle of a reset.
3326 	 */
3327 	spin_lock_irqsave(&guc->submission_state.lock, flags);
3328 	destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
3329 		!ctx_id_mapped(guc, ce->guc_id.id);
3330 	if (likely(!destroy)) {
3331 		if (!list_empty(&ce->guc_id.link))
3332 			list_del_init(&ce->guc_id.link);
3333 		list_add_tail(&ce->destroyed_link,
3334 			      &guc->submission_state.destroyed_contexts);
3335 	} else {
3336 		__release_guc_id(guc, ce);
3337 	}
3338 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3339 	if (unlikely(destroy)) {
3340 		__guc_context_destroy(ce);
3341 		return;
3342 	}
3343 
3344 	/*
3345 	 * We use a worker to issue the H2G to deregister the context as we can
3346 	 * take the GT PM for the first time which isn't allowed from an atomic
3347 	 * context.
3348 	 */
3349 	queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
3350 }
3351 
3352 static int guc_context_alloc(struct intel_context *ce)
3353 {
3354 	return lrc_alloc(ce, ce->engine);
3355 }
3356 
3357 static void __guc_context_set_prio(struct intel_guc *guc,
3358 				   struct intel_context *ce)
3359 {
3360 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3361 		struct context_policy policy;
3362 
3363 		__guc_context_policy_start_klv(&policy, ce->guc_id.id);
3364 		__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
3365 		__guc_context_set_context_policies(guc, &policy, true);
3366 	} else {
3367 		u32 action[] = {
3368 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY,
3369 			ce->guc_id.id,
3370 			ce->guc_state.prio,
3371 		};
3372 
3373 		guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3374 	}
3375 }
3376 
3377 static void guc_context_set_prio(struct intel_guc *guc,
3378 				 struct intel_context *ce,
3379 				 u8 prio)
3380 {
3381 	GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
3382 		   prio > GUC_CLIENT_PRIORITY_NORMAL);
3383 	lockdep_assert_held(&ce->guc_state.lock);
3384 
3385 	if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3386 	    !context_registered(ce)) {
3387 		ce->guc_state.prio = prio;
3388 		return;
3389 	}
3390 
3391 	ce->guc_state.prio = prio;
3392 	__guc_context_set_prio(guc, ce);
3393 
3394 	trace_intel_context_set_prio(ce);
3395 }
3396 
3397 static inline u8 map_i915_prio_to_guc_prio(int prio)
3398 {
3399 	if (prio == I915_PRIORITY_NORMAL)
3400 		return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3401 	else if (prio < I915_PRIORITY_NORMAL)
3402 		return GUC_CLIENT_PRIORITY_NORMAL;
3403 	else if (prio < I915_PRIORITY_DISPLAY)
3404 		return GUC_CLIENT_PRIORITY_HIGH;
3405 	else
3406 		return GUC_CLIENT_PRIORITY_KMD_HIGH;
3407 }
3408 
3409 static inline void add_context_inflight_prio(struct intel_context *ce,
3410 					     u8 guc_prio)
3411 {
3412 	lockdep_assert_held(&ce->guc_state.lock);
3413 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3414 
3415 	++ce->guc_state.prio_count[guc_prio];
3416 
3417 	/* Overflow protection */
3418 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3419 }
3420 
3421 static inline void sub_context_inflight_prio(struct intel_context *ce,
3422 					     u8 guc_prio)
3423 {
3424 	lockdep_assert_held(&ce->guc_state.lock);
3425 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3426 
3427 	/* Underflow protection */
3428 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3429 
3430 	--ce->guc_state.prio_count[guc_prio];
3431 }
3432 
3433 static inline void update_context_prio(struct intel_context *ce)
3434 {
3435 	struct intel_guc *guc = &ce->engine->gt->uc.guc;
3436 	int i;
3437 
3438 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3439 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3440 
3441 	lockdep_assert_held(&ce->guc_state.lock);
3442 
3443 	for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3444 		if (ce->guc_state.prio_count[i]) {
3445 			guc_context_set_prio(guc, ce, i);
3446 			break;
3447 		}
3448 	}
3449 }
3450 
3451 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3452 {
3453 	/* Lower value is higher priority */
3454 	return new_guc_prio < old_guc_prio;
3455 }
3456 
3457 static void add_to_context(struct i915_request *rq)
3458 {
3459 	struct intel_context *ce = request_to_scheduling_context(rq);
3460 	u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3461 
3462 	GEM_BUG_ON(intel_context_is_child(ce));
3463 	GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3464 
3465 	spin_lock(&ce->guc_state.lock);
3466 	list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3467 
3468 	if (rq->guc_prio == GUC_PRIO_INIT) {
3469 		rq->guc_prio = new_guc_prio;
3470 		add_context_inflight_prio(ce, rq->guc_prio);
3471 	} else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3472 		sub_context_inflight_prio(ce, rq->guc_prio);
3473 		rq->guc_prio = new_guc_prio;
3474 		add_context_inflight_prio(ce, rq->guc_prio);
3475 	}
3476 	update_context_prio(ce);
3477 
3478 	spin_unlock(&ce->guc_state.lock);
3479 }
3480 
3481 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3482 {
3483 	lockdep_assert_held(&ce->guc_state.lock);
3484 
3485 	if (rq->guc_prio != GUC_PRIO_INIT &&
3486 	    rq->guc_prio != GUC_PRIO_FINI) {
3487 		sub_context_inflight_prio(ce, rq->guc_prio);
3488 		update_context_prio(ce);
3489 	}
3490 	rq->guc_prio = GUC_PRIO_FINI;
3491 }
3492 
3493 static void remove_from_context(struct i915_request *rq)
3494 {
3495 	struct intel_context *ce = request_to_scheduling_context(rq);
3496 
3497 	GEM_BUG_ON(intel_context_is_child(ce));
3498 
3499 	spin_lock_irq(&ce->guc_state.lock);
3500 
3501 	list_del_init(&rq->sched.link);
3502 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3503 
3504 	/* Prevent further __await_execution() registering a cb, then flush */
3505 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3506 
3507 	guc_prio_fini(rq, ce);
3508 
3509 	spin_unlock_irq(&ce->guc_state.lock);
3510 
3511 	atomic_dec(&ce->guc_id.ref);
3512 	i915_request_notify_execute_cb_imm(rq);
3513 }
3514 
3515 static const struct intel_context_ops guc_context_ops = {
3516 	.flags = COPS_RUNTIME_CYCLES,
3517 	.alloc = guc_context_alloc,
3518 
3519 	.close = guc_context_close,
3520 
3521 	.pre_pin = guc_context_pre_pin,
3522 	.pin = guc_context_pin,
3523 	.unpin = guc_context_unpin,
3524 	.post_unpin = guc_context_post_unpin,
3525 
3526 	.revoke = guc_context_revoke,
3527 
3528 	.cancel_request = guc_context_cancel_request,
3529 
3530 	.enter = intel_context_enter_engine,
3531 	.exit = intel_context_exit_engine,
3532 
3533 	.sched_disable = guc_context_sched_disable,
3534 
3535 	.update_stats = guc_context_update_stats,
3536 
3537 	.reset = lrc_reset,
3538 	.destroy = guc_context_destroy,
3539 
3540 	.create_virtual = guc_create_virtual,
3541 	.create_parallel = guc_create_parallel,
3542 };
3543 
3544 static void submit_work_cb(struct irq_work *wrk)
3545 {
3546 	struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3547 
3548 	might_lock(&rq->engine->sched_engine->lock);
3549 	i915_sw_fence_complete(&rq->submit);
3550 }
3551 
3552 static void __guc_signal_context_fence(struct intel_context *ce)
3553 {
3554 	struct i915_request *rq, *rn;
3555 
3556 	lockdep_assert_held(&ce->guc_state.lock);
3557 
3558 	if (!list_empty(&ce->guc_state.fences))
3559 		trace_intel_context_fence_release(ce);
3560 
3561 	/*
3562 	 * Use an IRQ to ensure locking order of sched_engine->lock ->
3563 	 * ce->guc_state.lock is preserved.
3564 	 */
3565 	list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3566 				 guc_fence_link) {
3567 		list_del(&rq->guc_fence_link);
3568 		irq_work_queue(&rq->submit_work);
3569 	}
3570 
3571 	INIT_LIST_HEAD(&ce->guc_state.fences);
3572 }
3573 
3574 static void guc_signal_context_fence(struct intel_context *ce)
3575 {
3576 	unsigned long flags;
3577 
3578 	GEM_BUG_ON(intel_context_is_child(ce));
3579 
3580 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3581 	clr_context_wait_for_deregister_to_register(ce);
3582 	__guc_signal_context_fence(ce);
3583 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3584 }
3585 
3586 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3587 {
3588 	return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3589 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3590 		!submission_disabled(ce_to_guc(ce));
3591 }
3592 
3593 static void guc_context_init(struct intel_context *ce)
3594 {
3595 	const struct i915_gem_context *ctx;
3596 	int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3597 
3598 	rcu_read_lock();
3599 	ctx = rcu_dereference(ce->gem_context);
3600 	if (ctx)
3601 		prio = ctx->sched.priority;
3602 	rcu_read_unlock();
3603 
3604 	ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3605 
3606 	INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work,
3607 			  __delay_sched_disable);
3608 
3609 	set_bit(CONTEXT_GUC_INIT, &ce->flags);
3610 }
3611 
3612 static int guc_request_alloc(struct i915_request *rq)
3613 {
3614 	struct intel_context *ce = request_to_scheduling_context(rq);
3615 	struct intel_guc *guc = ce_to_guc(ce);
3616 	unsigned long flags;
3617 	int ret;
3618 
3619 	GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3620 
3621 	/*
3622 	 * Flush enough space to reduce the likelihood of waiting after
3623 	 * we start building the request - in which case we will just
3624 	 * have to repeat work.
3625 	 */
3626 	rq->reserved_space += GUC_REQUEST_SIZE;
3627 
3628 	/*
3629 	 * Note that after this point, we have committed to using
3630 	 * this request as it is being used to both track the
3631 	 * state of engine initialisation and liveness of the
3632 	 * golden renderstate above. Think twice before you try
3633 	 * to cancel/unwind this request now.
3634 	 */
3635 
3636 	/* Unconditionally invalidate GPU caches and TLBs. */
3637 	ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3638 	if (ret)
3639 		return ret;
3640 
3641 	rq->reserved_space -= GUC_REQUEST_SIZE;
3642 
3643 	if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3644 		guc_context_init(ce);
3645 
3646 	/*
3647 	 * If the context gets closed while the execbuf is ongoing, the context
3648 	 * close code will race with the below code to cancel the delayed work.
3649 	 * If the context close wins the race and cancels the work, it will
3650 	 * immediately call the sched disable (see guc_context_close), so there
3651 	 * is a chance we can get past this check while the sched_disable code
3652 	 * is being executed. To make sure that code completes before we check
3653 	 * the status further down, we wait for the close process to complete.
3654 	 * Else, this code path could send a request down thinking that the
3655 	 * context is still in a schedule-enable mode while the GuC ends up
3656 	 * dropping the request completely because the disable did go from the
3657 	 * context_close path right to GuC just prior. In the event the CT is
3658 	 * full, we could potentially need to wait up to 1.5 seconds.
3659 	 */
3660 	if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work))
3661 		intel_context_sched_disable_unpin(ce);
3662 	else if (intel_context_is_closed(ce))
3663 		if (wait_for(context_close_done(ce), 1500))
3664 			guc_warn(guc, "timed out waiting on context sched close before realloc\n");
3665 	/*
3666 	 * Call pin_guc_id here rather than in the pinning step as with
3667 	 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3668 	 * guc_id and creating horrible race conditions. This is especially bad
3669 	 * when guc_id are being stolen due to over subscription. By the time
3670 	 * this function is reached, it is guaranteed that the guc_id will be
3671 	 * persistent until the generated request is retired. Thus, sealing these
3672 	 * race conditions. It is still safe to fail here if guc_id are
3673 	 * exhausted and return -EAGAIN to the user indicating that they can try
3674 	 * again in the future.
3675 	 *
3676 	 * There is no need for a lock here as the timeline mutex ensures at
3677 	 * most one context can be executing this code path at once. The
3678 	 * guc_id_ref is incremented once for every request in flight and
3679 	 * decremented on each retire. When it is zero, a lock around the
3680 	 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3681 	 */
3682 	if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3683 		goto out;
3684 
3685 	ret = pin_guc_id(guc, ce);	/* returns 1 if new guc_id assigned */
3686 	if (unlikely(ret < 0))
3687 		return ret;
3688 	if (context_needs_register(ce, !!ret)) {
3689 		ret = try_context_registration(ce, true);
3690 		if (unlikely(ret)) {	/* unwind */
3691 			if (ret == -EPIPE) {
3692 				disable_submission(guc);
3693 				goto out;	/* GPU will be reset */
3694 			}
3695 			atomic_dec(&ce->guc_id.ref);
3696 			unpin_guc_id(guc, ce);
3697 			return ret;
3698 		}
3699 	}
3700 
3701 	clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3702 
3703 out:
3704 	/*
3705 	 * We block all requests on this context if a G2H is pending for a
3706 	 * schedule disable or context deregistration as the GuC will fail a
3707 	 * schedule enable or context registration if either G2H is pending
3708 	 * respectfully. Once a G2H returns, the fence is released that is
3709 	 * blocking these requests (see guc_signal_context_fence).
3710 	 */
3711 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3712 	if (context_wait_for_deregister_to_register(ce) ||
3713 	    context_pending_disable(ce)) {
3714 		init_irq_work(&rq->submit_work, submit_work_cb);
3715 		i915_sw_fence_await(&rq->submit);
3716 
3717 		list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3718 	}
3719 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3720 
3721 	return 0;
3722 }
3723 
3724 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3725 				       struct i915_gem_ww_ctx *ww,
3726 				       void **vaddr)
3727 {
3728 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3729 
3730 	return __guc_context_pre_pin(ce, engine, ww, vaddr);
3731 }
3732 
3733 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3734 {
3735 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3736 	int ret = __guc_context_pin(ce, engine, vaddr);
3737 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3738 
3739 	if (likely(!ret))
3740 		for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3741 			intel_engine_pm_get(engine);
3742 
3743 	return ret;
3744 }
3745 
3746 static void guc_virtual_context_unpin(struct intel_context *ce)
3747 {
3748 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3749 	struct intel_engine_cs *engine;
3750 	struct intel_guc *guc = ce_to_guc(ce);
3751 
3752 	GEM_BUG_ON(context_enabled(ce));
3753 	GEM_BUG_ON(intel_context_is_barrier(ce));
3754 
3755 	unpin_guc_id(guc, ce);
3756 	lrc_unpin(ce);
3757 
3758 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3759 		intel_engine_pm_put_async(engine);
3760 }
3761 
3762 static void guc_virtual_context_enter(struct intel_context *ce)
3763 {
3764 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3765 	struct intel_engine_cs *engine;
3766 
3767 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3768 		intel_engine_pm_get(engine);
3769 
3770 	intel_timeline_enter(ce->timeline);
3771 }
3772 
3773 static void guc_virtual_context_exit(struct intel_context *ce)
3774 {
3775 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3776 	struct intel_engine_cs *engine;
3777 
3778 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3779 		intel_engine_pm_put(engine);
3780 
3781 	intel_timeline_exit(ce->timeline);
3782 }
3783 
3784 static int guc_virtual_context_alloc(struct intel_context *ce)
3785 {
3786 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3787 
3788 	return lrc_alloc(ce, engine);
3789 }
3790 
3791 static const struct intel_context_ops virtual_guc_context_ops = {
3792 	.flags = COPS_RUNTIME_CYCLES,
3793 	.alloc = guc_virtual_context_alloc,
3794 
3795 	.close = guc_context_close,
3796 
3797 	.pre_pin = guc_virtual_context_pre_pin,
3798 	.pin = guc_virtual_context_pin,
3799 	.unpin = guc_virtual_context_unpin,
3800 	.post_unpin = guc_context_post_unpin,
3801 
3802 	.revoke = guc_context_revoke,
3803 
3804 	.cancel_request = guc_context_cancel_request,
3805 
3806 	.enter = guc_virtual_context_enter,
3807 	.exit = guc_virtual_context_exit,
3808 
3809 	.sched_disable = guc_context_sched_disable,
3810 	.update_stats = guc_context_update_stats,
3811 
3812 	.destroy = guc_context_destroy,
3813 
3814 	.get_sibling = guc_virtual_get_sibling,
3815 };
3816 
3817 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
3818 {
3819 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3820 	struct intel_guc *guc = ce_to_guc(ce);
3821 	int ret;
3822 
3823 	GEM_BUG_ON(!intel_context_is_parent(ce));
3824 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3825 
3826 	ret = pin_guc_id(guc, ce);
3827 	if (unlikely(ret < 0))
3828 		return ret;
3829 
3830 	return __guc_context_pin(ce, engine, vaddr);
3831 }
3832 
3833 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
3834 {
3835 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3836 
3837 	GEM_BUG_ON(!intel_context_is_child(ce));
3838 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3839 
3840 	__intel_context_pin(ce->parallel.parent);
3841 	return __guc_context_pin(ce, engine, vaddr);
3842 }
3843 
3844 static void guc_parent_context_unpin(struct intel_context *ce)
3845 {
3846 	struct intel_guc *guc = ce_to_guc(ce);
3847 
3848 	GEM_BUG_ON(context_enabled(ce));
3849 	GEM_BUG_ON(intel_context_is_barrier(ce));
3850 	GEM_BUG_ON(!intel_context_is_parent(ce));
3851 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3852 
3853 	unpin_guc_id(guc, ce);
3854 	lrc_unpin(ce);
3855 }
3856 
3857 static void guc_child_context_unpin(struct intel_context *ce)
3858 {
3859 	GEM_BUG_ON(context_enabled(ce));
3860 	GEM_BUG_ON(intel_context_is_barrier(ce));
3861 	GEM_BUG_ON(!intel_context_is_child(ce));
3862 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3863 
3864 	lrc_unpin(ce);
3865 }
3866 
3867 static void guc_child_context_post_unpin(struct intel_context *ce)
3868 {
3869 	GEM_BUG_ON(!intel_context_is_child(ce));
3870 	GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
3871 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3872 
3873 	lrc_post_unpin(ce);
3874 	intel_context_unpin(ce->parallel.parent);
3875 }
3876 
3877 static void guc_child_context_destroy(struct kref *kref)
3878 {
3879 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3880 
3881 	__guc_context_destroy(ce);
3882 }
3883 
3884 static const struct intel_context_ops virtual_parent_context_ops = {
3885 	.alloc = guc_virtual_context_alloc,
3886 
3887 	.close = guc_context_close,
3888 
3889 	.pre_pin = guc_context_pre_pin,
3890 	.pin = guc_parent_context_pin,
3891 	.unpin = guc_parent_context_unpin,
3892 	.post_unpin = guc_context_post_unpin,
3893 
3894 	.revoke = guc_context_revoke,
3895 
3896 	.cancel_request = guc_context_cancel_request,
3897 
3898 	.enter = guc_virtual_context_enter,
3899 	.exit = guc_virtual_context_exit,
3900 
3901 	.sched_disable = guc_context_sched_disable,
3902 
3903 	.destroy = guc_context_destroy,
3904 
3905 	.get_sibling = guc_virtual_get_sibling,
3906 };
3907 
3908 static const struct intel_context_ops virtual_child_context_ops = {
3909 	.alloc = guc_virtual_context_alloc,
3910 
3911 	.pre_pin = guc_context_pre_pin,
3912 	.pin = guc_child_context_pin,
3913 	.unpin = guc_child_context_unpin,
3914 	.post_unpin = guc_child_context_post_unpin,
3915 
3916 	.cancel_request = guc_context_cancel_request,
3917 
3918 	.enter = guc_virtual_context_enter,
3919 	.exit = guc_virtual_context_exit,
3920 
3921 	.destroy = guc_child_context_destroy,
3922 
3923 	.get_sibling = guc_virtual_get_sibling,
3924 };
3925 
3926 /*
3927  * The below override of the breadcrumbs is enabled when the user configures a
3928  * context for parallel submission (multi-lrc, parent-child).
3929  *
3930  * The overridden breadcrumbs implements an algorithm which allows the GuC to
3931  * safely preempt all the hw contexts configured for parallel submission
3932  * between each BB. The contract between the i915 and GuC is if the parent
3933  * context can be preempted, all the children can be preempted, and the GuC will
3934  * always try to preempt the parent before the children. A handshake between the
3935  * parent / children breadcrumbs ensures the i915 holds up its end of the deal
3936  * creating a window to preempt between each set of BBs.
3937  */
3938 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
3939 						     u64 offset, u32 len,
3940 						     const unsigned int flags);
3941 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
3942 						    u64 offset, u32 len,
3943 						    const unsigned int flags);
3944 static u32 *
3945 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
3946 						 u32 *cs);
3947 static u32 *
3948 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
3949 						u32 *cs);
3950 
3951 static struct intel_context *
3952 guc_create_parallel(struct intel_engine_cs **engines,
3953 		    unsigned int num_siblings,
3954 		    unsigned int width)
3955 {
3956 	struct intel_engine_cs **siblings = NULL;
3957 	struct intel_context *parent = NULL, *ce, *err;
3958 	int i, j;
3959 
3960 	siblings = kmalloc_array(num_siblings,
3961 				 sizeof(*siblings),
3962 				 GFP_KERNEL);
3963 	if (!siblings)
3964 		return ERR_PTR(-ENOMEM);
3965 
3966 	for (i = 0; i < width; ++i) {
3967 		for (j = 0; j < num_siblings; ++j)
3968 			siblings[j] = engines[i * num_siblings + j];
3969 
3970 		ce = intel_engine_create_virtual(siblings, num_siblings,
3971 						 FORCE_VIRTUAL);
3972 		if (IS_ERR(ce)) {
3973 			err = ERR_CAST(ce);
3974 			goto unwind;
3975 		}
3976 
3977 		if (i == 0) {
3978 			parent = ce;
3979 			parent->ops = &virtual_parent_context_ops;
3980 		} else {
3981 			ce->ops = &virtual_child_context_ops;
3982 			intel_context_bind_parent_child(parent, ce);
3983 		}
3984 	}
3985 
3986 	parent->parallel.fence_context = dma_fence_context_alloc(1);
3987 
3988 	parent->engine->emit_bb_start =
3989 		emit_bb_start_parent_no_preempt_mid_batch;
3990 	parent->engine->emit_fini_breadcrumb =
3991 		emit_fini_breadcrumb_parent_no_preempt_mid_batch;
3992 	parent->engine->emit_fini_breadcrumb_dw =
3993 		12 + 4 * parent->parallel.number_children;
3994 	for_each_child(parent, ce) {
3995 		ce->engine->emit_bb_start =
3996 			emit_bb_start_child_no_preempt_mid_batch;
3997 		ce->engine->emit_fini_breadcrumb =
3998 			emit_fini_breadcrumb_child_no_preempt_mid_batch;
3999 		ce->engine->emit_fini_breadcrumb_dw = 16;
4000 	}
4001 
4002 	kfree(siblings);
4003 	return parent;
4004 
4005 unwind:
4006 	if (parent)
4007 		intel_context_put(parent);
4008 	kfree(siblings);
4009 	return err;
4010 }
4011 
4012 static bool
4013 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
4014 {
4015 	struct intel_engine_cs *sibling;
4016 	intel_engine_mask_t tmp, mask = b->engine_mask;
4017 	bool result = false;
4018 
4019 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4020 		result |= intel_engine_irq_enable(sibling);
4021 
4022 	return result;
4023 }
4024 
4025 static void
4026 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
4027 {
4028 	struct intel_engine_cs *sibling;
4029 	intel_engine_mask_t tmp, mask = b->engine_mask;
4030 
4031 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4032 		intel_engine_irq_disable(sibling);
4033 }
4034 
4035 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
4036 {
4037 	int i;
4038 
4039 	/*
4040 	 * In GuC submission mode we do not know which physical engine a request
4041 	 * will be scheduled on, this creates a problem because the breadcrumb
4042 	 * interrupt is per physical engine. To work around this we attach
4043 	 * requests and direct all breadcrumb interrupts to the first instance
4044 	 * of an engine per class. In addition all breadcrumb interrupts are
4045 	 * enabled / disabled across an engine class in unison.
4046 	 */
4047 	for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
4048 		struct intel_engine_cs *sibling =
4049 			engine->gt->engine_class[engine->class][i];
4050 
4051 		if (sibling) {
4052 			if (engine->breadcrumbs != sibling->breadcrumbs) {
4053 				intel_breadcrumbs_put(engine->breadcrumbs);
4054 				engine->breadcrumbs =
4055 					intel_breadcrumbs_get(sibling->breadcrumbs);
4056 			}
4057 			break;
4058 		}
4059 	}
4060 
4061 	if (engine->breadcrumbs) {
4062 		engine->breadcrumbs->engine_mask |= engine->mask;
4063 		engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
4064 		engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
4065 	}
4066 }
4067 
4068 static void guc_bump_inflight_request_prio(struct i915_request *rq,
4069 					   int prio)
4070 {
4071 	struct intel_context *ce = request_to_scheduling_context(rq);
4072 	u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
4073 
4074 	/* Short circuit function */
4075 	if (prio < I915_PRIORITY_NORMAL ||
4076 	    rq->guc_prio == GUC_PRIO_FINI ||
4077 	    (rq->guc_prio != GUC_PRIO_INIT &&
4078 	     !new_guc_prio_higher(rq->guc_prio, new_guc_prio)))
4079 		return;
4080 
4081 	spin_lock(&ce->guc_state.lock);
4082 	if (rq->guc_prio != GUC_PRIO_FINI) {
4083 		if (rq->guc_prio != GUC_PRIO_INIT)
4084 			sub_context_inflight_prio(ce, rq->guc_prio);
4085 		rq->guc_prio = new_guc_prio;
4086 		add_context_inflight_prio(ce, rq->guc_prio);
4087 		update_context_prio(ce);
4088 	}
4089 	spin_unlock(&ce->guc_state.lock);
4090 }
4091 
4092 static void guc_retire_inflight_request_prio(struct i915_request *rq)
4093 {
4094 	struct intel_context *ce = request_to_scheduling_context(rq);
4095 
4096 	spin_lock(&ce->guc_state.lock);
4097 	guc_prio_fini(rq, ce);
4098 	spin_unlock(&ce->guc_state.lock);
4099 }
4100 
4101 static void sanitize_hwsp(struct intel_engine_cs *engine)
4102 {
4103 	struct intel_timeline *tl;
4104 
4105 	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
4106 		intel_timeline_reset_seqno(tl);
4107 }
4108 
4109 static void guc_sanitize(struct intel_engine_cs *engine)
4110 {
4111 	/*
4112 	 * Poison residual state on resume, in case the suspend didn't!
4113 	 *
4114 	 * We have to assume that across suspend/resume (or other loss
4115 	 * of control) that the contents of our pinned buffers has been
4116 	 * lost, replaced by garbage. Since this doesn't always happen,
4117 	 * let's poison such state so that we more quickly spot when
4118 	 * we falsely assume it has been preserved.
4119 	 */
4120 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
4121 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
4122 
4123 	/*
4124 	 * The kernel_context HWSP is stored in the status_page. As above,
4125 	 * that may be lost on resume/initialisation, and so we need to
4126 	 * reset the value in the HWSP.
4127 	 */
4128 	sanitize_hwsp(engine);
4129 
4130 	/* And scrub the dirty cachelines for the HWSP */
4131 	drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
4132 
4133 	intel_engine_reset_pinned_contexts(engine);
4134 }
4135 
4136 static void setup_hwsp(struct intel_engine_cs *engine)
4137 {
4138 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
4139 
4140 	ENGINE_WRITE_FW(engine,
4141 			RING_HWS_PGA,
4142 			i915_ggtt_offset(engine->status_page.vma));
4143 }
4144 
4145 static void start_engine(struct intel_engine_cs *engine)
4146 {
4147 	ENGINE_WRITE_FW(engine,
4148 			RING_MODE_GEN7,
4149 			_MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
4150 
4151 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
4152 	ENGINE_POSTING_READ(engine, RING_MI_MODE);
4153 }
4154 
4155 static int guc_resume(struct intel_engine_cs *engine)
4156 {
4157 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
4158 
4159 	intel_mocs_init_engine(engine);
4160 
4161 	intel_breadcrumbs_reset(engine->breadcrumbs);
4162 
4163 	setup_hwsp(engine);
4164 	start_engine(engine);
4165 
4166 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
4167 		xehp_enable_ccs_engines(engine);
4168 
4169 	return 0;
4170 }
4171 
4172 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
4173 {
4174 	return !sched_engine->tasklet.callback;
4175 }
4176 
4177 static void guc_set_default_submission(struct intel_engine_cs *engine)
4178 {
4179 	engine->submit_request = guc_submit_request;
4180 }
4181 
4182 static inline int guc_kernel_context_pin(struct intel_guc *guc,
4183 					 struct intel_context *ce)
4184 {
4185 	int ret;
4186 
4187 	/*
4188 	 * Note: we purposefully do not check the returns below because
4189 	 * the registration can only fail if a reset is just starting.
4190 	 * This is called at the end of reset so presumably another reset
4191 	 * isn't happening and even it did this code would be run again.
4192 	 */
4193 
4194 	if (context_guc_id_invalid(ce)) {
4195 		ret = pin_guc_id(guc, ce);
4196 
4197 		if (ret < 0)
4198 			return ret;
4199 	}
4200 
4201 	if (!test_bit(CONTEXT_GUC_INIT, &ce->flags))
4202 		guc_context_init(ce);
4203 
4204 	ret = try_context_registration(ce, true);
4205 	if (ret)
4206 		unpin_guc_id(guc, ce);
4207 
4208 	return ret;
4209 }
4210 
4211 static inline int guc_init_submission(struct intel_guc *guc)
4212 {
4213 	struct intel_gt *gt = guc_to_gt(guc);
4214 	struct intel_engine_cs *engine;
4215 	enum intel_engine_id id;
4216 
4217 	/* make sure all descriptors are clean... */
4218 	xa_destroy(&guc->context_lookup);
4219 
4220 	/*
4221 	 * A reset might have occurred while we had a pending stalled request,
4222 	 * so make sure we clean that up.
4223 	 */
4224 	guc->stalled_request = NULL;
4225 	guc->submission_stall_reason = STALL_NONE;
4226 
4227 	/*
4228 	 * Some contexts might have been pinned before we enabled GuC
4229 	 * submission, so we need to add them to the GuC bookeeping.
4230 	 * Also, after a reset the of the GuC we want to make sure that the
4231 	 * information shared with GuC is properly reset. The kernel LRCs are
4232 	 * not attached to the gem_context, so they need to be added separately.
4233 	 */
4234 	for_each_engine(engine, gt, id) {
4235 		struct intel_context *ce;
4236 
4237 		list_for_each_entry(ce, &engine->pinned_contexts_list,
4238 				    pinned_contexts_link) {
4239 			int ret = guc_kernel_context_pin(guc, ce);
4240 
4241 			if (ret) {
4242 				/* No point in trying to clean up as i915 will wedge on failure */
4243 				return ret;
4244 			}
4245 		}
4246 	}
4247 
4248 	return 0;
4249 }
4250 
4251 static void guc_release(struct intel_engine_cs *engine)
4252 {
4253 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
4254 
4255 	intel_engine_cleanup_common(engine);
4256 	lrc_fini_wa_ctx(engine);
4257 }
4258 
4259 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
4260 {
4261 	struct intel_engine_cs *e;
4262 	intel_engine_mask_t tmp, mask = engine->mask;
4263 
4264 	for_each_engine_masked(e, engine->gt, mask, tmp)
4265 		e->serial++;
4266 }
4267 
4268 static void guc_default_vfuncs(struct intel_engine_cs *engine)
4269 {
4270 	/* Default vfuncs which can be overridden by each engine. */
4271 
4272 	engine->resume = guc_resume;
4273 
4274 	engine->cops = &guc_context_ops;
4275 	engine->request_alloc = guc_request_alloc;
4276 	engine->add_active_request = add_to_context;
4277 	engine->remove_active_request = remove_from_context;
4278 
4279 	engine->sched_engine->schedule = i915_schedule;
4280 
4281 	engine->reset.prepare = guc_engine_reset_prepare;
4282 	engine->reset.rewind = guc_rewind_nop;
4283 	engine->reset.cancel = guc_reset_nop;
4284 	engine->reset.finish = guc_reset_nop;
4285 
4286 	engine->emit_flush = gen8_emit_flush_xcs;
4287 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
4288 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
4289 	if (GRAPHICS_VER(engine->i915) >= 12) {
4290 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
4291 		engine->emit_flush = gen12_emit_flush_xcs;
4292 	}
4293 	engine->set_default_submission = guc_set_default_submission;
4294 	engine->busyness = guc_engine_busyness;
4295 
4296 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4297 	engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4298 	engine->flags |= I915_ENGINE_HAS_TIMESLICES;
4299 
4300 	/* Wa_14014475959:dg2 */
4301 	if (engine->class == COMPUTE_CLASS)
4302 		if (IS_MTL_GRAPHICS_STEP(engine->i915, M, STEP_A0, STEP_B0) ||
4303 		    IS_DG2(engine->i915))
4304 			engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT;
4305 
4306 	/*
4307 	 * TODO: GuC supports timeslicing and semaphores as well, but they're
4308 	 * handled by the firmware so some minor tweaks are required before
4309 	 * enabling.
4310 	 *
4311 	 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4312 	 */
4313 
4314 	engine->emit_bb_start = gen8_emit_bb_start;
4315 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
4316 		engine->emit_bb_start = xehp_emit_bb_start;
4317 }
4318 
4319 static void rcs_submission_override(struct intel_engine_cs *engine)
4320 {
4321 	switch (GRAPHICS_VER(engine->i915)) {
4322 	case 12:
4323 		engine->emit_flush = gen12_emit_flush_rcs;
4324 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
4325 		break;
4326 	case 11:
4327 		engine->emit_flush = gen11_emit_flush_rcs;
4328 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
4329 		break;
4330 	default:
4331 		engine->emit_flush = gen8_emit_flush_rcs;
4332 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
4333 		break;
4334 	}
4335 }
4336 
4337 static inline void guc_default_irqs(struct intel_engine_cs *engine)
4338 {
4339 	engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
4340 	intel_engine_set_irq_handler(engine, cs_irq_handler);
4341 }
4342 
4343 static void guc_sched_engine_destroy(struct kref *kref)
4344 {
4345 	struct i915_sched_engine *sched_engine =
4346 		container_of(kref, typeof(*sched_engine), ref);
4347 	struct intel_guc *guc = sched_engine->private_data;
4348 
4349 	guc->sched_engine = NULL;
4350 	tasklet_kill(&sched_engine->tasklet); /* flush the callback */
4351 	kfree(sched_engine);
4352 }
4353 
4354 int intel_guc_submission_setup(struct intel_engine_cs *engine)
4355 {
4356 	struct drm_i915_private *i915 = engine->i915;
4357 	struct intel_guc *guc = &engine->gt->uc.guc;
4358 
4359 	/*
4360 	 * The setup relies on several assumptions (e.g. irqs always enabled)
4361 	 * that are only valid on gen11+
4362 	 */
4363 	GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
4364 
4365 	if (!guc->sched_engine) {
4366 		guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
4367 		if (!guc->sched_engine)
4368 			return -ENOMEM;
4369 
4370 		guc->sched_engine->schedule = i915_schedule;
4371 		guc->sched_engine->disabled = guc_sched_engine_disabled;
4372 		guc->sched_engine->private_data = guc;
4373 		guc->sched_engine->destroy = guc_sched_engine_destroy;
4374 		guc->sched_engine->bump_inflight_request_prio =
4375 			guc_bump_inflight_request_prio;
4376 		guc->sched_engine->retire_inflight_request_prio =
4377 			guc_retire_inflight_request_prio;
4378 		tasklet_setup(&guc->sched_engine->tasklet,
4379 			      guc_submission_tasklet);
4380 	}
4381 	i915_sched_engine_put(engine->sched_engine);
4382 	engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
4383 
4384 	guc_default_vfuncs(engine);
4385 	guc_default_irqs(engine);
4386 	guc_init_breadcrumbs(engine);
4387 
4388 	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
4389 		rcs_submission_override(engine);
4390 
4391 	lrc_init_wa_ctx(engine);
4392 
4393 	/* Finally, take ownership and responsibility for cleanup! */
4394 	engine->sanitize = guc_sanitize;
4395 	engine->release = guc_release;
4396 
4397 	return 0;
4398 }
4399 
4400 struct scheduling_policy {
4401 	/* internal data */
4402 	u32 max_words, num_words;
4403 	u32 count;
4404 	/* API data */
4405 	struct guc_update_scheduling_policy h2g;
4406 };
4407 
4408 static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy)
4409 {
4410 	u32 *start = (void *)&policy->h2g;
4411 	u32 *end = policy->h2g.data + policy->num_words;
4412 	size_t delta = end - start;
4413 
4414 	return delta;
4415 }
4416 
4417 static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy)
4418 {
4419 	policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV;
4420 	policy->max_words = ARRAY_SIZE(policy->h2g.data);
4421 	policy->num_words = 0;
4422 	policy->count = 0;
4423 
4424 	return policy;
4425 }
4426 
4427 static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy,
4428 					    u32 action, u32 *data, u32 len)
4429 {
4430 	u32 *klv_ptr = policy->h2g.data + policy->num_words;
4431 
4432 	GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words);
4433 	*(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) |
4434 		       FIELD_PREP(GUC_KLV_0_LEN, len);
4435 	memcpy(klv_ptr, data, sizeof(u32) * len);
4436 	policy->num_words += 1 + len;
4437 	policy->count++;
4438 }
4439 
4440 static int __guc_action_set_scheduling_policies(struct intel_guc *guc,
4441 						struct scheduling_policy *policy)
4442 {
4443 	int ret;
4444 
4445 	ret = intel_guc_send(guc, (u32 *)&policy->h2g,
4446 			     __guc_scheduling_policy_action_size(policy));
4447 	if (ret < 0) {
4448 		guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n",
4449 				ERR_PTR(ret));
4450 		return ret;
4451 	}
4452 
4453 	if (ret != policy->count) {
4454 		guc_warn(guc, "global scheduler policy processed %d of %d KLVs!",
4455 			 ret, policy->count);
4456 		if (ret > policy->count)
4457 			return -EPROTO;
4458 	}
4459 
4460 	return 0;
4461 }
4462 
4463 static int guc_init_global_schedule_policy(struct intel_guc *guc)
4464 {
4465 	struct scheduling_policy policy;
4466 	struct intel_gt *gt = guc_to_gt(guc);
4467 	intel_wakeref_t wakeref;
4468 	int ret;
4469 
4470 	if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0))
4471 		return 0;
4472 
4473 	__guc_scheduling_policy_start_klv(&policy);
4474 
4475 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
4476 		u32 yield[] = {
4477 			GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION,
4478 			GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO,
4479 		};
4480 
4481 		__guc_scheduling_policy_add_klv(&policy,
4482 						GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD,
4483 						yield, ARRAY_SIZE(yield));
4484 
4485 		ret = __guc_action_set_scheduling_policies(guc, &policy);
4486 	}
4487 
4488 	return ret;
4489 }
4490 
4491 static void guc_route_semaphores(struct intel_guc *guc, bool to_guc)
4492 {
4493 	struct intel_gt *gt = guc_to_gt(guc);
4494 	u32 val;
4495 
4496 	if (GRAPHICS_VER(gt->i915) < 12)
4497 		return;
4498 
4499 	if (to_guc)
4500 		val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL;
4501 	else
4502 		val = 0;
4503 
4504 	intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val);
4505 }
4506 
4507 int intel_guc_submission_enable(struct intel_guc *guc)
4508 {
4509 	int ret;
4510 
4511 	/* Semaphore interrupt enable and route to GuC */
4512 	guc_route_semaphores(guc, true);
4513 
4514 	ret = guc_init_submission(guc);
4515 	if (ret)
4516 		goto fail_sem;
4517 
4518 	ret = guc_init_engine_stats(guc);
4519 	if (ret)
4520 		goto fail_sem;
4521 
4522 	ret = guc_init_global_schedule_policy(guc);
4523 	if (ret)
4524 		goto fail_stats;
4525 
4526 	return 0;
4527 
4528 fail_stats:
4529 	guc_fini_engine_stats(guc);
4530 fail_sem:
4531 	guc_route_semaphores(guc, false);
4532 	return ret;
4533 }
4534 
4535 /* Note: By the time we're here, GuC may have already been reset */
4536 void intel_guc_submission_disable(struct intel_guc *guc)
4537 {
4538 	guc_cancel_busyness_worker(guc);
4539 
4540 	/* Semaphore interrupt disable and route to host */
4541 	guc_route_semaphores(guc, false);
4542 }
4543 
4544 static bool __guc_submission_supported(struct intel_guc *guc)
4545 {
4546 	/* GuC submission is unavailable for pre-Gen11 */
4547 	return intel_guc_is_supported(guc) &&
4548 	       GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11;
4549 }
4550 
4551 static bool __guc_submission_selected(struct intel_guc *guc)
4552 {
4553 	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
4554 
4555 	if (!intel_guc_submission_is_supported(guc))
4556 		return false;
4557 
4558 	return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
4559 }
4560 
4561 int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc)
4562 {
4563 	return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc);
4564 }
4565 
4566 /*
4567  * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher
4568  * workloads are able to enjoy the latency reduction when delaying the schedule-disable
4569  * operation. This matches the 30fps game-render + encode (real world) workload this
4570  * knob was tested against.
4571  */
4572 #define SCHED_DISABLE_DELAY_MS	34
4573 
4574 /*
4575  * A threshold of 75% is a reasonable starting point considering that real world apps
4576  * generally don't get anywhere near this.
4577  */
4578 #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \
4579 	(((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4)
4580 
4581 void intel_guc_submission_init_early(struct intel_guc *guc)
4582 {
4583 	xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
4584 
4585 	spin_lock_init(&guc->submission_state.lock);
4586 	INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
4587 	ida_init(&guc->submission_state.guc_ids);
4588 	INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
4589 	INIT_WORK(&guc->submission_state.destroyed_worker,
4590 		  destroyed_worker_func);
4591 	INIT_WORK(&guc->submission_state.reset_fail_worker,
4592 		  reset_fail_worker_func);
4593 
4594 	spin_lock_init(&guc->timestamp.lock);
4595 	INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
4596 
4597 	guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS;
4598 	guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
4599 	guc->submission_state.sched_disable_gucid_threshold =
4600 		NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc);
4601 	guc->submission_supported = __guc_submission_supported(guc);
4602 	guc->submission_selected = __guc_submission_selected(guc);
4603 }
4604 
4605 static inline struct intel_context *
4606 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4607 {
4608 	struct intel_context *ce;
4609 
4610 	if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4611 		guc_err(guc, "Invalid ctx_id %u\n", ctx_id);
4612 		return NULL;
4613 	}
4614 
4615 	ce = __get_context(guc, ctx_id);
4616 	if (unlikely(!ce)) {
4617 		guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id);
4618 		return NULL;
4619 	}
4620 
4621 	if (unlikely(intel_context_is_child(ce))) {
4622 		guc_err(guc, "Context is child, ctx_id %u\n", ctx_id);
4623 		return NULL;
4624 	}
4625 
4626 	return ce;
4627 }
4628 
4629 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
4630 					  const u32 *msg,
4631 					  u32 len)
4632 {
4633 	struct intel_context *ce;
4634 	u32 ctx_id;
4635 
4636 	if (unlikely(len < 1)) {
4637 		guc_err(guc, "Invalid length %u\n", len);
4638 		return -EPROTO;
4639 	}
4640 	ctx_id = msg[0];
4641 
4642 	ce = g2h_context_lookup(guc, ctx_id);
4643 	if (unlikely(!ce))
4644 		return -EPROTO;
4645 
4646 	trace_intel_context_deregister_done(ce);
4647 
4648 #ifdef CONFIG_DRM_I915_SELFTEST
4649 	if (unlikely(ce->drop_deregister)) {
4650 		ce->drop_deregister = false;
4651 		return 0;
4652 	}
4653 #endif
4654 
4655 	if (context_wait_for_deregister_to_register(ce)) {
4656 		struct intel_runtime_pm *runtime_pm =
4657 			&ce->engine->gt->i915->runtime_pm;
4658 		intel_wakeref_t wakeref;
4659 
4660 		/*
4661 		 * Previous owner of this guc_id has been deregistered, now safe
4662 		 * register this context.
4663 		 */
4664 		with_intel_runtime_pm(runtime_pm, wakeref)
4665 			register_context(ce, true);
4666 		guc_signal_context_fence(ce);
4667 		intel_context_put(ce);
4668 	} else if (context_destroyed(ce)) {
4669 		/* Context has been destroyed */
4670 		intel_gt_pm_put_async(guc_to_gt(guc));
4671 		release_guc_id(guc, ce);
4672 		__guc_context_destroy(ce);
4673 	}
4674 
4675 	decr_outstanding_submission_g2h(guc);
4676 
4677 	return 0;
4678 }
4679 
4680 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
4681 				     const u32 *msg,
4682 				     u32 len)
4683 {
4684 	struct intel_context *ce;
4685 	unsigned long flags;
4686 	u32 ctx_id;
4687 
4688 	if (unlikely(len < 2)) {
4689 		guc_err(guc, "Invalid length %u\n", len);
4690 		return -EPROTO;
4691 	}
4692 	ctx_id = msg[0];
4693 
4694 	ce = g2h_context_lookup(guc, ctx_id);
4695 	if (unlikely(!ce))
4696 		return -EPROTO;
4697 
4698 	if (unlikely(context_destroyed(ce) ||
4699 		     (!context_pending_enable(ce) &&
4700 		     !context_pending_disable(ce)))) {
4701 		guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n",
4702 			ce->guc_state.sched_state, ctx_id);
4703 		return -EPROTO;
4704 	}
4705 
4706 	trace_intel_context_sched_done(ce);
4707 
4708 	if (context_pending_enable(ce)) {
4709 #ifdef CONFIG_DRM_I915_SELFTEST
4710 		if (unlikely(ce->drop_schedule_enable)) {
4711 			ce->drop_schedule_enable = false;
4712 			return 0;
4713 		}
4714 #endif
4715 
4716 		spin_lock_irqsave(&ce->guc_state.lock, flags);
4717 		clr_context_pending_enable(ce);
4718 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4719 	} else if (context_pending_disable(ce)) {
4720 		bool banned;
4721 
4722 #ifdef CONFIG_DRM_I915_SELFTEST
4723 		if (unlikely(ce->drop_schedule_disable)) {
4724 			ce->drop_schedule_disable = false;
4725 			return 0;
4726 		}
4727 #endif
4728 
4729 		/*
4730 		 * Unpin must be done before __guc_signal_context_fence,
4731 		 * otherwise a race exists between the requests getting
4732 		 * submitted + retired before this unpin completes resulting in
4733 		 * the pin_count going to zero and the context still being
4734 		 * enabled.
4735 		 */
4736 		intel_context_sched_disable_unpin(ce);
4737 
4738 		spin_lock_irqsave(&ce->guc_state.lock, flags);
4739 		banned = context_banned(ce);
4740 		clr_context_banned(ce);
4741 		clr_context_pending_disable(ce);
4742 		__guc_signal_context_fence(ce);
4743 		guc_blocked_fence_complete(ce);
4744 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4745 
4746 		if (banned) {
4747 			guc_cancel_context_requests(ce);
4748 			intel_engine_signal_breadcrumbs(ce->engine);
4749 		}
4750 	}
4751 
4752 	decr_outstanding_submission_g2h(guc);
4753 	intel_context_put(ce);
4754 
4755 	return 0;
4756 }
4757 
4758 static void capture_error_state(struct intel_guc *guc,
4759 				struct intel_context *ce)
4760 {
4761 	struct intel_gt *gt = guc_to_gt(guc);
4762 	struct drm_i915_private *i915 = gt->i915;
4763 	intel_wakeref_t wakeref;
4764 	intel_engine_mask_t engine_mask;
4765 
4766 	if (intel_engine_is_virtual(ce->engine)) {
4767 		struct intel_engine_cs *e;
4768 		intel_engine_mask_t tmp, virtual_mask = ce->engine->mask;
4769 
4770 		engine_mask = 0;
4771 		for_each_engine_masked(e, ce->engine->gt, virtual_mask, tmp) {
4772 			bool match = intel_guc_capture_is_matching_engine(gt, ce, e);
4773 
4774 			if (match) {
4775 				intel_engine_set_hung_context(e, ce);
4776 				engine_mask |= e->mask;
4777 				atomic_inc(&i915->gpu_error.reset_engine_count[e->uabi_class]);
4778 			}
4779 		}
4780 
4781 		if (!engine_mask) {
4782 			guc_warn(guc, "No matching physical engine capture for virtual engine context 0x%04X / %s",
4783 				 ce->guc_id.id, ce->engine->name);
4784 			engine_mask = ~0U;
4785 		}
4786 	} else {
4787 		intel_engine_set_hung_context(ce->engine, ce);
4788 		engine_mask = ce->engine->mask;
4789 		atomic_inc(&i915->gpu_error.reset_engine_count[ce->engine->uabi_class]);
4790 	}
4791 
4792 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
4793 		i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
4794 }
4795 
4796 static void guc_context_replay(struct intel_context *ce)
4797 {
4798 	struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
4799 
4800 	__guc_reset_context(ce, ce->engine->mask);
4801 	tasklet_hi_schedule(&sched_engine->tasklet);
4802 }
4803 
4804 static void guc_handle_context_reset(struct intel_guc *guc,
4805 				     struct intel_context *ce)
4806 {
4807 	trace_intel_context_reset(ce);
4808 
4809 	guc_dbg(guc, "Got context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n",
4810 		ce->guc_id.id, ce->engine->name,
4811 		str_yes_no(intel_context_is_exiting(ce)),
4812 		str_yes_no(intel_context_is_banned(ce)));
4813 
4814 	if (likely(intel_context_is_schedulable(ce))) {
4815 		capture_error_state(guc, ce);
4816 		guc_context_replay(ce);
4817 	} else {
4818 		guc_info(guc, "Ignoring context reset notification of exiting context 0x%04X on %s",
4819 			 ce->guc_id.id, ce->engine->name);
4820 	}
4821 }
4822 
4823 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
4824 					const u32 *msg, u32 len)
4825 {
4826 	struct intel_context *ce;
4827 	unsigned long flags;
4828 	int ctx_id;
4829 
4830 	if (unlikely(len != 1)) {
4831 		guc_err(guc, "Invalid length %u", len);
4832 		return -EPROTO;
4833 	}
4834 
4835 	ctx_id = msg[0];
4836 
4837 	/*
4838 	 * The context lookup uses the xarray but lookups only require an RCU lock
4839 	 * not the full spinlock. So take the lock explicitly and keep it until the
4840 	 * context has been reference count locked to ensure it can't be destroyed
4841 	 * asynchronously until the reset is done.
4842 	 */
4843 	xa_lock_irqsave(&guc->context_lookup, flags);
4844 	ce = g2h_context_lookup(guc, ctx_id);
4845 	if (ce)
4846 		intel_context_get(ce);
4847 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4848 
4849 	if (unlikely(!ce))
4850 		return -EPROTO;
4851 
4852 	guc_handle_context_reset(guc, ce);
4853 	intel_context_put(ce);
4854 
4855 	return 0;
4856 }
4857 
4858 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
4859 					const u32 *msg, u32 len)
4860 {
4861 	u32 status;
4862 
4863 	if (unlikely(len != 1)) {
4864 		guc_dbg(guc, "Invalid length %u", len);
4865 		return -EPROTO;
4866 	}
4867 
4868 	status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
4869 	if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
4870 		guc_warn(guc, "No space for error capture");
4871 
4872 	intel_guc_capture_process(guc);
4873 
4874 	return 0;
4875 }
4876 
4877 struct intel_engine_cs *
4878 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
4879 {
4880 	struct intel_gt *gt = guc_to_gt(guc);
4881 	u8 engine_class = guc_class_to_engine_class(guc_class);
4882 
4883 	/* Class index is checked in class converter */
4884 	GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
4885 
4886 	return gt->engine_class[engine_class][instance];
4887 }
4888 
4889 static void reset_fail_worker_func(struct work_struct *w)
4890 {
4891 	struct intel_guc *guc = container_of(w, struct intel_guc,
4892 					     submission_state.reset_fail_worker);
4893 	struct intel_gt *gt = guc_to_gt(guc);
4894 	intel_engine_mask_t reset_fail_mask;
4895 	unsigned long flags;
4896 
4897 	spin_lock_irqsave(&guc->submission_state.lock, flags);
4898 	reset_fail_mask = guc->submission_state.reset_fail_mask;
4899 	guc->submission_state.reset_fail_mask = 0;
4900 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
4901 
4902 	if (likely(reset_fail_mask)) {
4903 		struct intel_engine_cs *engine;
4904 		enum intel_engine_id id;
4905 
4906 		/*
4907 		 * GuC is toast at this point - it dead loops after sending the failed
4908 		 * reset notification. So need to manually determine the guilty context.
4909 		 * Note that it should be reliable to do this here because the GuC is
4910 		 * toast and will not be scheduling behind the KMD's back.
4911 		 */
4912 		for_each_engine_masked(engine, gt, reset_fail_mask, id)
4913 			intel_guc_find_hung_context(engine);
4914 
4915 		intel_gt_handle_error(gt, reset_fail_mask,
4916 				      I915_ERROR_CAPTURE,
4917 				      "GuC failed to reset engine mask=0x%x",
4918 				      reset_fail_mask);
4919 	}
4920 }
4921 
4922 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
4923 					 const u32 *msg, u32 len)
4924 {
4925 	struct intel_engine_cs *engine;
4926 	u8 guc_class, instance;
4927 	u32 reason;
4928 	unsigned long flags;
4929 
4930 	if (unlikely(len != 3)) {
4931 		guc_err(guc, "Invalid length %u", len);
4932 		return -EPROTO;
4933 	}
4934 
4935 	guc_class = msg[0];
4936 	instance = msg[1];
4937 	reason = msg[2];
4938 
4939 	engine = intel_guc_lookup_engine(guc, guc_class, instance);
4940 	if (unlikely(!engine)) {
4941 		guc_err(guc, "Invalid engine %d:%d", guc_class, instance);
4942 		return -EPROTO;
4943 	}
4944 
4945 	/*
4946 	 * This is an unexpected failure of a hardware feature. So, log a real
4947 	 * error message not just the informational that comes with the reset.
4948 	 */
4949 	guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X",
4950 		guc_class, instance, engine->name, reason);
4951 
4952 	spin_lock_irqsave(&guc->submission_state.lock, flags);
4953 	guc->submission_state.reset_fail_mask |= engine->mask;
4954 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
4955 
4956 	/*
4957 	 * A GT reset flushes this worker queue (G2H handler) so we must use
4958 	 * another worker to trigger a GT reset.
4959 	 */
4960 	queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
4961 
4962 	return 0;
4963 }
4964 
4965 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
4966 {
4967 	struct intel_guc *guc = &engine->gt->uc.guc;
4968 	struct intel_context *ce;
4969 	struct i915_request *rq;
4970 	unsigned long index;
4971 	unsigned long flags;
4972 
4973 	/* Reset called during driver load? GuC not yet initialised! */
4974 	if (unlikely(!guc_submission_initialized(guc)))
4975 		return;
4976 
4977 	xa_lock_irqsave(&guc->context_lookup, flags);
4978 	xa_for_each(&guc->context_lookup, index, ce) {
4979 		bool found;
4980 
4981 		if (!kref_get_unless_zero(&ce->ref))
4982 			continue;
4983 
4984 		xa_unlock(&guc->context_lookup);
4985 
4986 		if (!intel_context_is_pinned(ce))
4987 			goto next;
4988 
4989 		if (intel_engine_is_virtual(ce->engine)) {
4990 			if (!(ce->engine->mask & engine->mask))
4991 				goto next;
4992 		} else {
4993 			if (ce->engine != engine)
4994 				goto next;
4995 		}
4996 
4997 		found = false;
4998 		spin_lock(&ce->guc_state.lock);
4999 		list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
5000 			if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
5001 				continue;
5002 
5003 			found = true;
5004 			break;
5005 		}
5006 		spin_unlock(&ce->guc_state.lock);
5007 
5008 		if (found) {
5009 			intel_engine_set_hung_context(engine, ce);
5010 
5011 			/* Can only cope with one hang at a time... */
5012 			intel_context_put(ce);
5013 			xa_lock(&guc->context_lookup);
5014 			goto done;
5015 		}
5016 
5017 next:
5018 		intel_context_put(ce);
5019 		xa_lock(&guc->context_lookup);
5020 	}
5021 done:
5022 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5023 }
5024 
5025 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
5026 				    struct i915_request *hung_rq,
5027 				    struct drm_printer *m)
5028 {
5029 	struct intel_guc *guc = &engine->gt->uc.guc;
5030 	struct intel_context *ce;
5031 	unsigned long index;
5032 	unsigned long flags;
5033 
5034 	/* Reset called during driver load? GuC not yet initialised! */
5035 	if (unlikely(!guc_submission_initialized(guc)))
5036 		return;
5037 
5038 	xa_lock_irqsave(&guc->context_lookup, flags);
5039 	xa_for_each(&guc->context_lookup, index, ce) {
5040 		if (!kref_get_unless_zero(&ce->ref))
5041 			continue;
5042 
5043 		xa_unlock(&guc->context_lookup);
5044 
5045 		if (!intel_context_is_pinned(ce))
5046 			goto next;
5047 
5048 		if (intel_engine_is_virtual(ce->engine)) {
5049 			if (!(ce->engine->mask & engine->mask))
5050 				goto next;
5051 		} else {
5052 			if (ce->engine != engine)
5053 				goto next;
5054 		}
5055 
5056 		spin_lock(&ce->guc_state.lock);
5057 		intel_engine_dump_active_requests(&ce->guc_state.requests,
5058 						  hung_rq, m);
5059 		spin_unlock(&ce->guc_state.lock);
5060 
5061 next:
5062 		intel_context_put(ce);
5063 		xa_lock(&guc->context_lookup);
5064 	}
5065 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5066 }
5067 
5068 void intel_guc_submission_print_info(struct intel_guc *guc,
5069 				     struct drm_printer *p)
5070 {
5071 	struct i915_sched_engine *sched_engine = guc->sched_engine;
5072 	struct rb_node *rb;
5073 	unsigned long flags;
5074 
5075 	if (!sched_engine)
5076 		return;
5077 
5078 	drm_printf(p, "GuC Submission API Version: %d.%d.%d\n",
5079 		   guc->submission_version.major, guc->submission_version.minor,
5080 		   guc->submission_version.patch);
5081 	drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
5082 		   atomic_read(&guc->outstanding_submission_g2h));
5083 	drm_printf(p, "GuC tasklet count: %u\n",
5084 		   atomic_read(&sched_engine->tasklet.count));
5085 
5086 	spin_lock_irqsave(&sched_engine->lock, flags);
5087 	drm_printf(p, "Requests in GuC submit tasklet:\n");
5088 	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
5089 		struct i915_priolist *pl = to_priolist(rb);
5090 		struct i915_request *rq;
5091 
5092 		priolist_for_each_request(rq, pl)
5093 			drm_printf(p, "guc_id=%u, seqno=%llu\n",
5094 				   rq->context->guc_id.id,
5095 				   rq->fence.seqno);
5096 	}
5097 	spin_unlock_irqrestore(&sched_engine->lock, flags);
5098 	drm_printf(p, "\n");
5099 }
5100 
5101 static inline void guc_log_context_priority(struct drm_printer *p,
5102 					    struct intel_context *ce)
5103 {
5104 	int i;
5105 
5106 	drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
5107 	drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
5108 	for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
5109 	     i < GUC_CLIENT_PRIORITY_NUM; ++i) {
5110 		drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
5111 			   i, ce->guc_state.prio_count[i]);
5112 	}
5113 	drm_printf(p, "\n");
5114 }
5115 
5116 static inline void guc_log_context(struct drm_printer *p,
5117 				   struct intel_context *ce)
5118 {
5119 	drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
5120 	drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
5121 	drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
5122 		   ce->ring->head,
5123 		   ce->lrc_reg_state[CTX_RING_HEAD]);
5124 	drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
5125 		   ce->ring->tail,
5126 		   ce->lrc_reg_state[CTX_RING_TAIL]);
5127 	drm_printf(p, "\t\tContext Pin Count: %u\n",
5128 		   atomic_read(&ce->pin_count));
5129 	drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
5130 		   atomic_read(&ce->guc_id.ref));
5131 	drm_printf(p, "\t\tSchedule State: 0x%x\n",
5132 		   ce->guc_state.sched_state);
5133 }
5134 
5135 void intel_guc_submission_print_context_info(struct intel_guc *guc,
5136 					     struct drm_printer *p)
5137 {
5138 	struct intel_context *ce;
5139 	unsigned long index;
5140 	unsigned long flags;
5141 
5142 	xa_lock_irqsave(&guc->context_lookup, flags);
5143 	xa_for_each(&guc->context_lookup, index, ce) {
5144 		GEM_BUG_ON(intel_context_is_child(ce));
5145 
5146 		guc_log_context(p, ce);
5147 		guc_log_context_priority(p, ce);
5148 
5149 		if (intel_context_is_parent(ce)) {
5150 			struct intel_context *child;
5151 
5152 			drm_printf(p, "\t\tNumber children: %u\n",
5153 				   ce->parallel.number_children);
5154 
5155 			if (ce->parallel.guc.wq_status) {
5156 				drm_printf(p, "\t\tWQI Head: %u\n",
5157 					   READ_ONCE(*ce->parallel.guc.wq_head));
5158 				drm_printf(p, "\t\tWQI Tail: %u\n",
5159 					   READ_ONCE(*ce->parallel.guc.wq_tail));
5160 				drm_printf(p, "\t\tWQI Status: %u\n",
5161 					   READ_ONCE(*ce->parallel.guc.wq_status));
5162 			}
5163 
5164 			if (ce->engine->emit_bb_start ==
5165 			    emit_bb_start_parent_no_preempt_mid_batch) {
5166 				u8 i;
5167 
5168 				drm_printf(p, "\t\tChildren Go: %u\n",
5169 					   get_children_go_value(ce));
5170 				for (i = 0; i < ce->parallel.number_children; ++i)
5171 					drm_printf(p, "\t\tChildren Join: %u\n",
5172 						   get_children_join_value(ce, i));
5173 			}
5174 
5175 			for_each_child(ce, child)
5176 				guc_log_context(p, child);
5177 		}
5178 	}
5179 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5180 }
5181 
5182 static inline u32 get_children_go_addr(struct intel_context *ce)
5183 {
5184 	GEM_BUG_ON(!intel_context_is_parent(ce));
5185 
5186 	return i915_ggtt_offset(ce->state) +
5187 		__get_parent_scratch_offset(ce) +
5188 		offsetof(struct parent_scratch, go.semaphore);
5189 }
5190 
5191 static inline u32 get_children_join_addr(struct intel_context *ce,
5192 					 u8 child_index)
5193 {
5194 	GEM_BUG_ON(!intel_context_is_parent(ce));
5195 
5196 	return i915_ggtt_offset(ce->state) +
5197 		__get_parent_scratch_offset(ce) +
5198 		offsetof(struct parent_scratch, join[child_index].semaphore);
5199 }
5200 
5201 #define PARENT_GO_BB			1
5202 #define PARENT_GO_FINI_BREADCRUMB	0
5203 #define CHILD_GO_BB			1
5204 #define CHILD_GO_FINI_BREADCRUMB	0
5205 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
5206 						     u64 offset, u32 len,
5207 						     const unsigned int flags)
5208 {
5209 	struct intel_context *ce = rq->context;
5210 	u32 *cs;
5211 	u8 i;
5212 
5213 	GEM_BUG_ON(!intel_context_is_parent(ce));
5214 
5215 	cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
5216 	if (IS_ERR(cs))
5217 		return PTR_ERR(cs);
5218 
5219 	/* Wait on children */
5220 	for (i = 0; i < ce->parallel.number_children; ++i) {
5221 		*cs++ = (MI_SEMAPHORE_WAIT |
5222 			 MI_SEMAPHORE_GLOBAL_GTT |
5223 			 MI_SEMAPHORE_POLL |
5224 			 MI_SEMAPHORE_SAD_EQ_SDD);
5225 		*cs++ = PARENT_GO_BB;
5226 		*cs++ = get_children_join_addr(ce, i);
5227 		*cs++ = 0;
5228 	}
5229 
5230 	/* Turn off preemption */
5231 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5232 	*cs++ = MI_NOOP;
5233 
5234 	/* Tell children go */
5235 	cs = gen8_emit_ggtt_write(cs,
5236 				  CHILD_GO_BB,
5237 				  get_children_go_addr(ce),
5238 				  0);
5239 
5240 	/* Jump to batch */
5241 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
5242 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5243 	*cs++ = lower_32_bits(offset);
5244 	*cs++ = upper_32_bits(offset);
5245 	*cs++ = MI_NOOP;
5246 
5247 	intel_ring_advance(rq, cs);
5248 
5249 	return 0;
5250 }
5251 
5252 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
5253 						    u64 offset, u32 len,
5254 						    const unsigned int flags)
5255 {
5256 	struct intel_context *ce = rq->context;
5257 	struct intel_context *parent = intel_context_to_parent(ce);
5258 	u32 *cs;
5259 
5260 	GEM_BUG_ON(!intel_context_is_child(ce));
5261 
5262 	cs = intel_ring_begin(rq, 12);
5263 	if (IS_ERR(cs))
5264 		return PTR_ERR(cs);
5265 
5266 	/* Signal parent */
5267 	cs = gen8_emit_ggtt_write(cs,
5268 				  PARENT_GO_BB,
5269 				  get_children_join_addr(parent,
5270 							 ce->parallel.child_index),
5271 				  0);
5272 
5273 	/* Wait on parent for go */
5274 	*cs++ = (MI_SEMAPHORE_WAIT |
5275 		 MI_SEMAPHORE_GLOBAL_GTT |
5276 		 MI_SEMAPHORE_POLL |
5277 		 MI_SEMAPHORE_SAD_EQ_SDD);
5278 	*cs++ = CHILD_GO_BB;
5279 	*cs++ = get_children_go_addr(parent);
5280 	*cs++ = 0;
5281 
5282 	/* Turn off preemption */
5283 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5284 
5285 	/* Jump to batch */
5286 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
5287 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5288 	*cs++ = lower_32_bits(offset);
5289 	*cs++ = upper_32_bits(offset);
5290 
5291 	intel_ring_advance(rq, cs);
5292 
5293 	return 0;
5294 }
5295 
5296 static u32 *
5297 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5298 						   u32 *cs)
5299 {
5300 	struct intel_context *ce = rq->context;
5301 	u8 i;
5302 
5303 	GEM_BUG_ON(!intel_context_is_parent(ce));
5304 
5305 	/* Wait on children */
5306 	for (i = 0; i < ce->parallel.number_children; ++i) {
5307 		*cs++ = (MI_SEMAPHORE_WAIT |
5308 			 MI_SEMAPHORE_GLOBAL_GTT |
5309 			 MI_SEMAPHORE_POLL |
5310 			 MI_SEMAPHORE_SAD_EQ_SDD);
5311 		*cs++ = PARENT_GO_FINI_BREADCRUMB;
5312 		*cs++ = get_children_join_addr(ce, i);
5313 		*cs++ = 0;
5314 	}
5315 
5316 	/* Turn on preemption */
5317 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5318 	*cs++ = MI_NOOP;
5319 
5320 	/* Tell children go */
5321 	cs = gen8_emit_ggtt_write(cs,
5322 				  CHILD_GO_FINI_BREADCRUMB,
5323 				  get_children_go_addr(ce),
5324 				  0);
5325 
5326 	return cs;
5327 }
5328 
5329 /*
5330  * If this true, a submission of multi-lrc requests had an error and the
5331  * requests need to be skipped. The front end (execuf IOCTL) should've called
5332  * i915_request_skip which squashes the BB but we still need to emit the fini
5333  * breadrcrumbs seqno write. At this point we don't know how many of the
5334  * requests in the multi-lrc submission were generated so we can't do the
5335  * handshake between the parent and children (e.g. if 4 requests should be
5336  * generated but 2nd hit an error only 1 would be seen by the GuC backend).
5337  * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
5338  * has occurred on any of the requests in submission / relationship.
5339  */
5340 static inline bool skip_handshake(struct i915_request *rq)
5341 {
5342 	return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
5343 }
5344 
5345 #define NON_SKIP_LEN	6
5346 static u32 *
5347 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5348 						 u32 *cs)
5349 {
5350 	struct intel_context *ce = rq->context;
5351 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5352 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5353 
5354 	GEM_BUG_ON(!intel_context_is_parent(ce));
5355 
5356 	if (unlikely(skip_handshake(rq))) {
5357 		/*
5358 		 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
5359 		 * the NON_SKIP_LEN comes from the length of the emits below.
5360 		 */
5361 		memset(cs, 0, sizeof(u32) *
5362 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5363 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5364 	} else {
5365 		cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
5366 	}
5367 
5368 	/* Emit fini breadcrumb */
5369 	before_fini_breadcrumb_user_interrupt_cs = cs;
5370 	cs = gen8_emit_ggtt_write(cs,
5371 				  rq->fence.seqno,
5372 				  i915_request_active_timeline(rq)->hwsp_offset,
5373 				  0);
5374 
5375 	/* User interrupt */
5376 	*cs++ = MI_USER_INTERRUPT;
5377 	*cs++ = MI_NOOP;
5378 
5379 	/* Ensure our math for skip + emit is correct */
5380 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5381 		   cs);
5382 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5383 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5384 
5385 	rq->tail = intel_ring_offset(rq, cs);
5386 
5387 	return cs;
5388 }
5389 
5390 static u32 *
5391 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5392 						  u32 *cs)
5393 {
5394 	struct intel_context *ce = rq->context;
5395 	struct intel_context *parent = intel_context_to_parent(ce);
5396 
5397 	GEM_BUG_ON(!intel_context_is_child(ce));
5398 
5399 	/* Turn on preemption */
5400 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5401 	*cs++ = MI_NOOP;
5402 
5403 	/* Signal parent */
5404 	cs = gen8_emit_ggtt_write(cs,
5405 				  PARENT_GO_FINI_BREADCRUMB,
5406 				  get_children_join_addr(parent,
5407 							 ce->parallel.child_index),
5408 				  0);
5409 
5410 	/* Wait parent on for go */
5411 	*cs++ = (MI_SEMAPHORE_WAIT |
5412 		 MI_SEMAPHORE_GLOBAL_GTT |
5413 		 MI_SEMAPHORE_POLL |
5414 		 MI_SEMAPHORE_SAD_EQ_SDD);
5415 	*cs++ = CHILD_GO_FINI_BREADCRUMB;
5416 	*cs++ = get_children_go_addr(parent);
5417 	*cs++ = 0;
5418 
5419 	return cs;
5420 }
5421 
5422 static u32 *
5423 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5424 						u32 *cs)
5425 {
5426 	struct intel_context *ce = rq->context;
5427 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5428 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5429 
5430 	GEM_BUG_ON(!intel_context_is_child(ce));
5431 
5432 	if (unlikely(skip_handshake(rq))) {
5433 		/*
5434 		 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
5435 		 * the NON_SKIP_LEN comes from the length of the emits below.
5436 		 */
5437 		memset(cs, 0, sizeof(u32) *
5438 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5439 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5440 	} else {
5441 		cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
5442 	}
5443 
5444 	/* Emit fini breadcrumb */
5445 	before_fini_breadcrumb_user_interrupt_cs = cs;
5446 	cs = gen8_emit_ggtt_write(cs,
5447 				  rq->fence.seqno,
5448 				  i915_request_active_timeline(rq)->hwsp_offset,
5449 				  0);
5450 
5451 	/* User interrupt */
5452 	*cs++ = MI_USER_INTERRUPT;
5453 	*cs++ = MI_NOOP;
5454 
5455 	/* Ensure our math for skip + emit is correct */
5456 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5457 		   cs);
5458 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5459 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5460 
5461 	rq->tail = intel_ring_offset(rq, cs);
5462 
5463 	return cs;
5464 }
5465 
5466 #undef NON_SKIP_LEN
5467 
5468 static struct intel_context *
5469 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
5470 		   unsigned long flags)
5471 {
5472 	struct guc_virtual_engine *ve;
5473 	struct intel_guc *guc;
5474 	unsigned int n;
5475 	int err;
5476 
5477 	ve = kzalloc(sizeof(*ve), GFP_KERNEL);
5478 	if (!ve)
5479 		return ERR_PTR(-ENOMEM);
5480 
5481 	guc = &siblings[0]->gt->uc.guc;
5482 
5483 	ve->base.i915 = siblings[0]->i915;
5484 	ve->base.gt = siblings[0]->gt;
5485 	ve->base.uncore = siblings[0]->uncore;
5486 	ve->base.id = -1;
5487 
5488 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5489 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5490 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5491 	ve->base.saturated = ALL_ENGINES;
5492 
5493 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5494 
5495 	ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
5496 
5497 	ve->base.cops = &virtual_guc_context_ops;
5498 	ve->base.request_alloc = guc_request_alloc;
5499 	ve->base.bump_serial = virtual_guc_bump_serial;
5500 
5501 	ve->base.submit_request = guc_submit_request;
5502 
5503 	ve->base.flags = I915_ENGINE_IS_VIRTUAL;
5504 
5505 	BUILD_BUG_ON(ilog2(VIRTUAL_ENGINES) < I915_NUM_ENGINES);
5506 	ve->base.mask = VIRTUAL_ENGINES;
5507 
5508 	intel_context_init(&ve->context, &ve->base);
5509 
5510 	for (n = 0; n < count; n++) {
5511 		struct intel_engine_cs *sibling = siblings[n];
5512 
5513 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
5514 		if (sibling->mask & ve->base.mask) {
5515 			guc_dbg(guc, "duplicate %s entry in load balancer\n",
5516 				sibling->name);
5517 			err = -EINVAL;
5518 			goto err_put;
5519 		}
5520 
5521 		ve->base.mask |= sibling->mask;
5522 		ve->base.logical_mask |= sibling->logical_mask;
5523 
5524 		if (n != 0 && ve->base.class != sibling->class) {
5525 			guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n",
5526 				sibling->class, ve->base.class);
5527 			err = -EINVAL;
5528 			goto err_put;
5529 		} else if (n == 0) {
5530 			ve->base.class = sibling->class;
5531 			ve->base.uabi_class = sibling->uabi_class;
5532 			snprintf(ve->base.name, sizeof(ve->base.name),
5533 				 "v%dx%d", ve->base.class, count);
5534 			ve->base.context_size = sibling->context_size;
5535 
5536 			ve->base.add_active_request =
5537 				sibling->add_active_request;
5538 			ve->base.remove_active_request =
5539 				sibling->remove_active_request;
5540 			ve->base.emit_bb_start = sibling->emit_bb_start;
5541 			ve->base.emit_flush = sibling->emit_flush;
5542 			ve->base.emit_init_breadcrumb =
5543 				sibling->emit_init_breadcrumb;
5544 			ve->base.emit_fini_breadcrumb =
5545 				sibling->emit_fini_breadcrumb;
5546 			ve->base.emit_fini_breadcrumb_dw =
5547 				sibling->emit_fini_breadcrumb_dw;
5548 			ve->base.breadcrumbs =
5549 				intel_breadcrumbs_get(sibling->breadcrumbs);
5550 
5551 			ve->base.flags |= sibling->flags;
5552 
5553 			ve->base.props.timeslice_duration_ms =
5554 				sibling->props.timeslice_duration_ms;
5555 			ve->base.props.preempt_timeout_ms =
5556 				sibling->props.preempt_timeout_ms;
5557 		}
5558 	}
5559 
5560 	return &ve->context;
5561 
5562 err_put:
5563 	intel_context_put(&ve->context);
5564 	return ERR_PTR(err);
5565 }
5566 
5567 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
5568 {
5569 	struct intel_engine_cs *engine;
5570 	intel_engine_mask_t tmp, mask = ve->mask;
5571 
5572 	for_each_engine_masked(engine, ve->gt, mask, tmp)
5573 		if (READ_ONCE(engine->props.heartbeat_interval_ms))
5574 			return true;
5575 
5576 	return false;
5577 }
5578 
5579 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5580 #include "selftest_guc.c"
5581 #include "selftest_guc_multi_lrc.c"
5582 #include "selftest_guc_hangcheck.c"
5583 #endif
5584