1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include <linux/circ_buf.h>
7 
8 #include "gem/i915_gem_context.h"
9 #include "gt/gen8_engine_cs.h"
10 #include "gt/intel_breadcrumbs.h"
11 #include "gt/intel_context.h"
12 #include "gt/intel_engine_heartbeat.h"
13 #include "gt/intel_engine_pm.h"
14 #include "gt/intel_engine_regs.h"
15 #include "gt/intel_gpu_commands.h"
16 #include "gt/intel_gt.h"
17 #include "gt/intel_gt_clock_utils.h"
18 #include "gt/intel_gt_irq.h"
19 #include "gt/intel_gt_pm.h"
20 #include "gt/intel_gt_regs.h"
21 #include "gt/intel_gt_requests.h"
22 #include "gt/intel_lrc.h"
23 #include "gt/intel_lrc_reg.h"
24 #include "gt/intel_mocs.h"
25 #include "gt/intel_ring.h"
26 
27 #include "intel_guc_ads.h"
28 #include "intel_guc_capture.h"
29 #include "intel_guc_submission.h"
30 
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 
34 /**
35  * DOC: GuC-based command submission
36  *
37  * The Scratch registers:
38  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
39  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
40  * triggers an interrupt on the GuC via another register write (0xC4C8).
41  * Firmware writes a success/fail code back to the action register after
42  * processes the request. The kernel driver polls waiting for this update and
43  * then proceeds.
44  *
45  * Command Transport buffers (CTBs):
46  * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
47  * - G2H) are a message interface between the i915 and GuC.
48  *
49  * Context registration:
50  * Before a context can be submitted it must be registered with the GuC via a
51  * H2G. A unique guc_id is associated with each context. The context is either
52  * registered at request creation time (normal operation) or at submission time
53  * (abnormal operation, e.g. after a reset).
54  *
55  * Context submission:
56  * The i915 updates the LRC tail value in memory. The i915 must enable the
57  * scheduling of the context within the GuC for the GuC to actually consider it.
58  * Therefore, the first time a disabled context is submitted we use a schedule
59  * enable H2G, while follow up submissions are done via the context submit H2G,
60  * which informs the GuC that a previously enabled context has new work
61  * available.
62  *
63  * Context unpin:
64  * To unpin a context a H2G is used to disable scheduling. When the
65  * corresponding G2H returns indicating the scheduling disable operation has
66  * completed it is safe to unpin the context. While a disable is in flight it
67  * isn't safe to resubmit the context so a fence is used to stall all future
68  * requests of that context until the G2H is returned.
69  *
70  * Context deregistration:
71  * Before a context can be destroyed or if we steal its guc_id we must
72  * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
73  * safe to submit anything to this guc_id until the deregister completes so a
74  * fence is used to stall all requests associated with this guc_id until the
75  * corresponding G2H returns indicating the guc_id has been deregistered.
76  *
77  * submission_state.guc_ids:
78  * Unique number associated with private GuC context data passed in during
79  * context registration / submission / deregistration. 64k available. Simple ida
80  * is used for allocation.
81  *
82  * Stealing guc_ids:
83  * If no guc_ids are available they can be stolen from another context at
84  * request creation time if that context is unpinned. If a guc_id can't be found
85  * we punt this problem to the user as we believe this is near impossible to hit
86  * during normal use cases.
87  *
88  * Locking:
89  * In the GuC submission code we have 3 basic spin locks which protect
90  * everything. Details about each below.
91  *
92  * sched_engine->lock
93  * This is the submission lock for all contexts that share an i915 schedule
94  * engine (sched_engine), thus only one of the contexts which share a
95  * sched_engine can be submitting at a time. Currently only one sched_engine is
96  * used for all of GuC submission but that could change in the future.
97  *
98  * guc->submission_state.lock
99  * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
100  * list.
101  *
102  * ce->guc_state.lock
103  * Protects everything under ce->guc_state. Ensures that a context is in the
104  * correct state before issuing a H2G. e.g. We don't issue a schedule disable
105  * on a disabled context (bad idea), we don't issue a schedule enable when a
106  * schedule disable is in flight, etc... Also protects list of inflight requests
107  * on the context and the priority management state. Lock is individual to each
108  * context.
109  *
110  * Lock ordering rules:
111  * sched_engine->lock -> ce->guc_state.lock
112  * guc->submission_state.lock -> ce->guc_state.lock
113  *
114  * Reset races:
115  * When a full GT reset is triggered it is assumed that some G2H responses to
116  * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
117  * fatal as we do certain operations upon receiving a G2H (e.g. destroy
118  * contexts, release guc_ids, etc...). When this occurs we can scrub the
119  * context state and cleanup appropriately, however this is quite racey.
120  * To avoid races, the reset code must disable submission before scrubbing for
121  * the missing G2H, while the submission code must check for submission being
122  * disabled and skip sending H2Gs and updating context states when it is. Both
123  * sides must also make sure to hold the relevant locks.
124  */
125 
126 /* GuC Virtual Engine */
127 struct guc_virtual_engine {
128 	struct intel_engine_cs base;
129 	struct intel_context context;
130 };
131 
132 static struct intel_context *
133 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
134 		   unsigned long flags);
135 
136 static struct intel_context *
137 guc_create_parallel(struct intel_engine_cs **engines,
138 		    unsigned int num_siblings,
139 		    unsigned int width);
140 
141 #define GUC_REQUEST_SIZE 64 /* bytes */
142 
143 /*
144  * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
145  * per the GuC submission interface. A different allocation algorithm is used
146  * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
147  * partition the guc_id space. We believe the number of multi-lrc contexts in
148  * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
149  * multi-lrc.
150  */
151 #define NUMBER_MULTI_LRC_GUC_ID(guc)	\
152 	((guc)->submission_state.num_guc_ids / 16)
153 
154 /*
155  * Below is a set of functions which control the GuC scheduling state which
156  * require a lock.
157  */
158 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER	BIT(0)
159 #define SCHED_STATE_DESTROYED				BIT(1)
160 #define SCHED_STATE_PENDING_DISABLE			BIT(2)
161 #define SCHED_STATE_BANNED				BIT(3)
162 #define SCHED_STATE_ENABLED				BIT(4)
163 #define SCHED_STATE_PENDING_ENABLE			BIT(5)
164 #define SCHED_STATE_REGISTERED				BIT(6)
165 #define SCHED_STATE_POLICY_REQUIRED			BIT(7)
166 #define SCHED_STATE_BLOCKED_SHIFT			8
167 #define SCHED_STATE_BLOCKED		BIT(SCHED_STATE_BLOCKED_SHIFT)
168 #define SCHED_STATE_BLOCKED_MASK	(0xfff << SCHED_STATE_BLOCKED_SHIFT)
169 
170 static inline void init_sched_state(struct intel_context *ce)
171 {
172 	lockdep_assert_held(&ce->guc_state.lock);
173 	ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
174 }
175 
176 __maybe_unused
177 static bool sched_state_is_init(struct intel_context *ce)
178 {
179 	/* Kernel contexts can have SCHED_STATE_REGISTERED after suspend. */
180 	return !(ce->guc_state.sched_state &
181 		 ~(SCHED_STATE_BLOCKED_MASK | SCHED_STATE_REGISTERED));
182 }
183 
184 static inline bool
185 context_wait_for_deregister_to_register(struct intel_context *ce)
186 {
187 	return ce->guc_state.sched_state &
188 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
189 }
190 
191 static inline void
192 set_context_wait_for_deregister_to_register(struct intel_context *ce)
193 {
194 	lockdep_assert_held(&ce->guc_state.lock);
195 	ce->guc_state.sched_state |=
196 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
197 }
198 
199 static inline void
200 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
201 {
202 	lockdep_assert_held(&ce->guc_state.lock);
203 	ce->guc_state.sched_state &=
204 		~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
205 }
206 
207 static inline bool
208 context_destroyed(struct intel_context *ce)
209 {
210 	return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
211 }
212 
213 static inline void
214 set_context_destroyed(struct intel_context *ce)
215 {
216 	lockdep_assert_held(&ce->guc_state.lock);
217 	ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
218 }
219 
220 static inline bool context_pending_disable(struct intel_context *ce)
221 {
222 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
223 }
224 
225 static inline void set_context_pending_disable(struct intel_context *ce)
226 {
227 	lockdep_assert_held(&ce->guc_state.lock);
228 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
229 }
230 
231 static inline void clr_context_pending_disable(struct intel_context *ce)
232 {
233 	lockdep_assert_held(&ce->guc_state.lock);
234 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
235 }
236 
237 static inline bool context_banned(struct intel_context *ce)
238 {
239 	return ce->guc_state.sched_state & SCHED_STATE_BANNED;
240 }
241 
242 static inline void set_context_banned(struct intel_context *ce)
243 {
244 	lockdep_assert_held(&ce->guc_state.lock);
245 	ce->guc_state.sched_state |= SCHED_STATE_BANNED;
246 }
247 
248 static inline void clr_context_banned(struct intel_context *ce)
249 {
250 	lockdep_assert_held(&ce->guc_state.lock);
251 	ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
252 }
253 
254 static inline bool context_enabled(struct intel_context *ce)
255 {
256 	return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
257 }
258 
259 static inline void set_context_enabled(struct intel_context *ce)
260 {
261 	lockdep_assert_held(&ce->guc_state.lock);
262 	ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
263 }
264 
265 static inline void clr_context_enabled(struct intel_context *ce)
266 {
267 	lockdep_assert_held(&ce->guc_state.lock);
268 	ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
269 }
270 
271 static inline bool context_pending_enable(struct intel_context *ce)
272 {
273 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
274 }
275 
276 static inline void set_context_pending_enable(struct intel_context *ce)
277 {
278 	lockdep_assert_held(&ce->guc_state.lock);
279 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
280 }
281 
282 static inline void clr_context_pending_enable(struct intel_context *ce)
283 {
284 	lockdep_assert_held(&ce->guc_state.lock);
285 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
286 }
287 
288 static inline bool context_registered(struct intel_context *ce)
289 {
290 	return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
291 }
292 
293 static inline void set_context_registered(struct intel_context *ce)
294 {
295 	lockdep_assert_held(&ce->guc_state.lock);
296 	ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
297 }
298 
299 static inline void clr_context_registered(struct intel_context *ce)
300 {
301 	lockdep_assert_held(&ce->guc_state.lock);
302 	ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
303 }
304 
305 static inline bool context_policy_required(struct intel_context *ce)
306 {
307 	return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
308 }
309 
310 static inline void set_context_policy_required(struct intel_context *ce)
311 {
312 	lockdep_assert_held(&ce->guc_state.lock);
313 	ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
314 }
315 
316 static inline void clr_context_policy_required(struct intel_context *ce)
317 {
318 	lockdep_assert_held(&ce->guc_state.lock);
319 	ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
320 }
321 
322 static inline u32 context_blocked(struct intel_context *ce)
323 {
324 	return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
325 		SCHED_STATE_BLOCKED_SHIFT;
326 }
327 
328 static inline void incr_context_blocked(struct intel_context *ce)
329 {
330 	lockdep_assert_held(&ce->guc_state.lock);
331 
332 	ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
333 
334 	GEM_BUG_ON(!context_blocked(ce));	/* Overflow check */
335 }
336 
337 static inline void decr_context_blocked(struct intel_context *ce)
338 {
339 	lockdep_assert_held(&ce->guc_state.lock);
340 
341 	GEM_BUG_ON(!context_blocked(ce));	/* Underflow check */
342 
343 	ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
344 }
345 
346 static inline bool context_has_committed_requests(struct intel_context *ce)
347 {
348 	return !!ce->guc_state.number_committed_requests;
349 }
350 
351 static inline void incr_context_committed_requests(struct intel_context *ce)
352 {
353 	lockdep_assert_held(&ce->guc_state.lock);
354 	++ce->guc_state.number_committed_requests;
355 	GEM_BUG_ON(ce->guc_state.number_committed_requests < 0);
356 }
357 
358 static inline void decr_context_committed_requests(struct intel_context *ce)
359 {
360 	lockdep_assert_held(&ce->guc_state.lock);
361 	--ce->guc_state.number_committed_requests;
362 	GEM_BUG_ON(ce->guc_state.number_committed_requests < 0);
363 }
364 
365 static struct intel_context *
366 request_to_scheduling_context(struct i915_request *rq)
367 {
368 	return intel_context_to_parent(rq->context);
369 }
370 
371 static inline bool context_guc_id_invalid(struct intel_context *ce)
372 {
373 	return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
374 }
375 
376 static inline void set_context_guc_id_invalid(struct intel_context *ce)
377 {
378 	ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
379 }
380 
381 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
382 {
383 	return &ce->engine->gt->uc.guc;
384 }
385 
386 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
387 {
388 	return rb_entry(rb, struct i915_priolist, node);
389 }
390 
391 /*
392  * When using multi-lrc submission a scratch memory area is reserved in the
393  * parent's context state for the process descriptor, work queue, and handshake
394  * between the parent + children contexts to insert safe preemption points
395  * between each of the BBs. Currently the scratch area is sized to a page.
396  *
397  * The layout of this scratch area is below:
398  * 0						guc_process_desc
399  * + sizeof(struct guc_process_desc)		child go
400  * + CACHELINE_BYTES				child join[0]
401  * ...
402  * + CACHELINE_BYTES				child join[n - 1]
403  * ...						unused
404  * PARENT_SCRATCH_SIZE / 2			work queue start
405  * ...						work queue
406  * PARENT_SCRATCH_SIZE - 1			work queue end
407  */
408 #define WQ_SIZE			(PARENT_SCRATCH_SIZE / 2)
409 #define WQ_OFFSET		(PARENT_SCRATCH_SIZE - WQ_SIZE)
410 
411 struct sync_semaphore {
412 	u32 semaphore;
413 	u8 unused[CACHELINE_BYTES - sizeof(u32)];
414 };
415 
416 struct parent_scratch {
417 	struct guc_sched_wq_desc wq_desc;
418 
419 	struct sync_semaphore go;
420 	struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
421 
422 	u8 unused[WQ_OFFSET - sizeof(struct guc_sched_wq_desc) -
423 		sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
424 
425 	u32 wq[WQ_SIZE / sizeof(u32)];
426 };
427 
428 static u32 __get_parent_scratch_offset(struct intel_context *ce)
429 {
430 	GEM_BUG_ON(!ce->parallel.guc.parent_page);
431 
432 	return ce->parallel.guc.parent_page * PAGE_SIZE;
433 }
434 
435 static u32 __get_wq_offset(struct intel_context *ce)
436 {
437 	BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
438 
439 	return __get_parent_scratch_offset(ce) + WQ_OFFSET;
440 }
441 
442 static struct parent_scratch *
443 __get_parent_scratch(struct intel_context *ce)
444 {
445 	BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
446 	BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
447 
448 	/*
449 	 * Need to subtract LRC_STATE_OFFSET here as the
450 	 * parallel.guc.parent_page is the offset into ce->state while
451 	 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
452 	 */
453 	return (struct parent_scratch *)
454 		(ce->lrc_reg_state +
455 		 ((__get_parent_scratch_offset(ce) -
456 		   LRC_STATE_OFFSET) / sizeof(u32)));
457 }
458 
459 static struct guc_sched_wq_desc *
460 __get_wq_desc(struct intel_context *ce)
461 {
462 	struct parent_scratch *ps = __get_parent_scratch(ce);
463 
464 	return &ps->wq_desc;
465 }
466 
467 static u32 *get_wq_pointer(struct guc_sched_wq_desc *wq_desc,
468 			   struct intel_context *ce,
469 			   u32 wqi_size)
470 {
471 	/*
472 	 * Check for space in work queue. Caching a value of head pointer in
473 	 * intel_context structure in order reduce the number accesses to shared
474 	 * GPU memory which may be across a PCIe bus.
475 	 */
476 #define AVAILABLE_SPACE	\
477 	CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
478 	if (wqi_size > AVAILABLE_SPACE) {
479 		ce->parallel.guc.wqi_head = READ_ONCE(wq_desc->head);
480 
481 		if (wqi_size > AVAILABLE_SPACE)
482 			return NULL;
483 	}
484 #undef AVAILABLE_SPACE
485 
486 	return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
487 }
488 
489 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
490 {
491 	struct intel_context *ce = xa_load(&guc->context_lookup, id);
492 
493 	GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
494 
495 	return ce;
496 }
497 
498 static inline bool guc_submission_initialized(struct intel_guc *guc)
499 {
500 	return guc->submission_initialized;
501 }
502 
503 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
504 {
505 	return __get_context(guc, id);
506 }
507 
508 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
509 				      struct intel_context *ce)
510 {
511 	unsigned long flags;
512 
513 	/*
514 	 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
515 	 * lower level functions directly.
516 	 */
517 	xa_lock_irqsave(&guc->context_lookup, flags);
518 	__xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
519 	xa_unlock_irqrestore(&guc->context_lookup, flags);
520 }
521 
522 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
523 {
524 	unsigned long flags;
525 
526 	if (unlikely(!guc_submission_initialized(guc)))
527 		return;
528 
529 	/*
530 	 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
531 	 * the lower level functions directly.
532 	 */
533 	xa_lock_irqsave(&guc->context_lookup, flags);
534 	__xa_erase(&guc->context_lookup, id);
535 	xa_unlock_irqrestore(&guc->context_lookup, flags);
536 }
537 
538 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
539 {
540 	if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
541 		wake_up_all(&guc->ct.wq);
542 }
543 
544 static int guc_submission_send_busy_loop(struct intel_guc *guc,
545 					 const u32 *action,
546 					 u32 len,
547 					 u32 g2h_len_dw,
548 					 bool loop)
549 {
550 	/*
551 	 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
552 	 * so we don't handle the case where we don't get a reply because we
553 	 * aborted the send due to the channel being busy.
554 	 */
555 	GEM_BUG_ON(g2h_len_dw && !loop);
556 
557 	if (g2h_len_dw)
558 		atomic_inc(&guc->outstanding_submission_g2h);
559 
560 	return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
561 }
562 
563 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
564 				   atomic_t *wait_var,
565 				   bool interruptible,
566 				   long timeout)
567 {
568 	const int state = interruptible ?
569 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
570 	DEFINE_WAIT(wait);
571 
572 	might_sleep();
573 	GEM_BUG_ON(timeout < 0);
574 
575 	if (!atomic_read(wait_var))
576 		return 0;
577 
578 	if (!timeout)
579 		return -ETIME;
580 
581 	for (;;) {
582 		prepare_to_wait(&guc->ct.wq, &wait, state);
583 
584 		if (!atomic_read(wait_var))
585 			break;
586 
587 		if (signal_pending_state(state, current)) {
588 			timeout = -EINTR;
589 			break;
590 		}
591 
592 		if (!timeout) {
593 			timeout = -ETIME;
594 			break;
595 		}
596 
597 		timeout = io_schedule_timeout(timeout);
598 	}
599 	finish_wait(&guc->ct.wq, &wait);
600 
601 	return (timeout < 0) ? timeout : 0;
602 }
603 
604 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
605 {
606 	if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
607 		return 0;
608 
609 	return intel_guc_wait_for_pending_msg(guc,
610 					      &guc->outstanding_submission_g2h,
611 					      true, timeout);
612 }
613 
614 static int guc_context_policy_init(struct intel_context *ce, bool loop);
615 static int try_context_registration(struct intel_context *ce, bool loop);
616 
617 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
618 {
619 	int err = 0;
620 	struct intel_context *ce = request_to_scheduling_context(rq);
621 	u32 action[3];
622 	int len = 0;
623 	u32 g2h_len_dw = 0;
624 	bool enabled;
625 
626 	lockdep_assert_held(&rq->engine->sched_engine->lock);
627 
628 	/*
629 	 * Corner case where requests were sitting in the priority list or a
630 	 * request resubmitted after the context was banned.
631 	 */
632 	if (unlikely(intel_context_is_banned(ce))) {
633 		i915_request_put(i915_request_mark_eio(rq));
634 		intel_engine_signal_breadcrumbs(ce->engine);
635 		return 0;
636 	}
637 
638 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
639 	GEM_BUG_ON(context_guc_id_invalid(ce));
640 
641 	if (context_policy_required(ce)) {
642 		err = guc_context_policy_init(ce, false);
643 		if (err)
644 			return err;
645 	}
646 
647 	spin_lock(&ce->guc_state.lock);
648 
649 	/*
650 	 * The request / context will be run on the hardware when scheduling
651 	 * gets enabled in the unblock. For multi-lrc we still submit the
652 	 * context to move the LRC tails.
653 	 */
654 	if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
655 		goto out;
656 
657 	enabled = context_enabled(ce) || context_blocked(ce);
658 
659 	if (!enabled) {
660 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
661 		action[len++] = ce->guc_id.id;
662 		action[len++] = GUC_CONTEXT_ENABLE;
663 		set_context_pending_enable(ce);
664 		intel_context_get(ce);
665 		g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
666 	} else {
667 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
668 		action[len++] = ce->guc_id.id;
669 	}
670 
671 	err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
672 	if (!enabled && !err) {
673 		trace_intel_context_sched_enable(ce);
674 		atomic_inc(&guc->outstanding_submission_g2h);
675 		set_context_enabled(ce);
676 
677 		/*
678 		 * Without multi-lrc KMD does the submission step (moving the
679 		 * lrc tail) so enabling scheduling is sufficient to submit the
680 		 * context. This isn't the case in multi-lrc submission as the
681 		 * GuC needs to move the tails, hence the need for another H2G
682 		 * to submit a multi-lrc context after enabling scheduling.
683 		 */
684 		if (intel_context_is_parent(ce)) {
685 			action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
686 			err = intel_guc_send_nb(guc, action, len - 1, 0);
687 		}
688 	} else if (!enabled) {
689 		clr_context_pending_enable(ce);
690 		intel_context_put(ce);
691 	}
692 	if (likely(!err))
693 		trace_i915_request_guc_submit(rq);
694 
695 out:
696 	spin_unlock(&ce->guc_state.lock);
697 	return err;
698 }
699 
700 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
701 {
702 	int ret = __guc_add_request(guc, rq);
703 
704 	if (unlikely(ret == -EBUSY)) {
705 		guc->stalled_request = rq;
706 		guc->submission_stall_reason = STALL_ADD_REQUEST;
707 	}
708 
709 	return ret;
710 }
711 
712 static inline void guc_set_lrc_tail(struct i915_request *rq)
713 {
714 	rq->context->lrc_reg_state[CTX_RING_TAIL] =
715 		intel_ring_set_tail(rq->ring, rq->tail);
716 }
717 
718 static inline int rq_prio(const struct i915_request *rq)
719 {
720 	return rq->sched.attr.priority;
721 }
722 
723 static bool is_multi_lrc_rq(struct i915_request *rq)
724 {
725 	return intel_context_is_parallel(rq->context);
726 }
727 
728 static bool can_merge_rq(struct i915_request *rq,
729 			 struct i915_request *last)
730 {
731 	return request_to_scheduling_context(rq) ==
732 		request_to_scheduling_context(last);
733 }
734 
735 static u32 wq_space_until_wrap(struct intel_context *ce)
736 {
737 	return (WQ_SIZE - ce->parallel.guc.wqi_tail);
738 }
739 
740 static void write_wqi(struct guc_sched_wq_desc *wq_desc,
741 		      struct intel_context *ce,
742 		      u32 wqi_size)
743 {
744 	BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
745 
746 	/*
747 	 * Ensure WQI are visible before updating tail
748 	 */
749 	intel_guc_write_barrier(ce_to_guc(ce));
750 
751 	ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
752 		(WQ_SIZE - 1);
753 	WRITE_ONCE(wq_desc->tail, ce->parallel.guc.wqi_tail);
754 }
755 
756 static int guc_wq_noop_append(struct intel_context *ce)
757 {
758 	struct guc_sched_wq_desc *wq_desc = __get_wq_desc(ce);
759 	u32 *wqi = get_wq_pointer(wq_desc, ce, wq_space_until_wrap(ce));
760 	u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
761 
762 	if (!wqi)
763 		return -EBUSY;
764 
765 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
766 
767 	*wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
768 		FIELD_PREP(WQ_LEN_MASK, len_dw);
769 	ce->parallel.guc.wqi_tail = 0;
770 
771 	return 0;
772 }
773 
774 static int __guc_wq_item_append(struct i915_request *rq)
775 {
776 	struct intel_context *ce = request_to_scheduling_context(rq);
777 	struct intel_context *child;
778 	struct guc_sched_wq_desc *wq_desc = __get_wq_desc(ce);
779 	unsigned int wqi_size = (ce->parallel.number_children + 4) *
780 		sizeof(u32);
781 	u32 *wqi;
782 	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
783 	int ret;
784 
785 	/* Ensure context is in correct state updating work queue */
786 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
787 	GEM_BUG_ON(context_guc_id_invalid(ce));
788 	GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
789 	GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
790 
791 	/* Insert NOOP if this work queue item will wrap the tail pointer. */
792 	if (wqi_size > wq_space_until_wrap(ce)) {
793 		ret = guc_wq_noop_append(ce);
794 		if (ret)
795 			return ret;
796 	}
797 
798 	wqi = get_wq_pointer(wq_desc, ce, wqi_size);
799 	if (!wqi)
800 		return -EBUSY;
801 
802 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
803 
804 	*wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
805 		FIELD_PREP(WQ_LEN_MASK, len_dw);
806 	*wqi++ = ce->lrc.lrca;
807 	*wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
808 	       FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
809 	*wqi++ = 0;	/* fence_id */
810 	for_each_child(ce, child)
811 		*wqi++ = child->ring->tail / sizeof(u64);
812 
813 	write_wqi(wq_desc, ce, wqi_size);
814 
815 	return 0;
816 }
817 
818 static int guc_wq_item_append(struct intel_guc *guc,
819 			      struct i915_request *rq)
820 {
821 	struct intel_context *ce = request_to_scheduling_context(rq);
822 	int ret = 0;
823 
824 	if (likely(!intel_context_is_banned(ce))) {
825 		ret = __guc_wq_item_append(rq);
826 
827 		if (unlikely(ret == -EBUSY)) {
828 			guc->stalled_request = rq;
829 			guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
830 		}
831 	}
832 
833 	return ret;
834 }
835 
836 static bool multi_lrc_submit(struct i915_request *rq)
837 {
838 	struct intel_context *ce = request_to_scheduling_context(rq);
839 
840 	intel_ring_set_tail(rq->ring, rq->tail);
841 
842 	/*
843 	 * We expect the front end (execbuf IOCTL) to set this flag on the last
844 	 * request generated from a multi-BB submission. This indicates to the
845 	 * backend (GuC interface) that we should submit this context thus
846 	 * submitting all the requests generated in parallel.
847 	 */
848 	return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
849 		intel_context_is_banned(ce);
850 }
851 
852 static int guc_dequeue_one_context(struct intel_guc *guc)
853 {
854 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
855 	struct i915_request *last = NULL;
856 	bool submit = false;
857 	struct rb_node *rb;
858 	int ret;
859 
860 	lockdep_assert_held(&sched_engine->lock);
861 
862 	if (guc->stalled_request) {
863 		submit = true;
864 		last = guc->stalled_request;
865 
866 		switch (guc->submission_stall_reason) {
867 		case STALL_REGISTER_CONTEXT:
868 			goto register_context;
869 		case STALL_MOVE_LRC_TAIL:
870 			goto move_lrc_tail;
871 		case STALL_ADD_REQUEST:
872 			goto add_request;
873 		default:
874 			MISSING_CASE(guc->submission_stall_reason);
875 		}
876 	}
877 
878 	while ((rb = rb_first_cached(&sched_engine->queue))) {
879 		struct i915_priolist *p = to_priolist(rb);
880 		struct i915_request *rq, *rn;
881 
882 		priolist_for_each_request_consume(rq, rn, p) {
883 			if (last && !can_merge_rq(rq, last))
884 				goto register_context;
885 
886 			list_del_init(&rq->sched.link);
887 
888 			__i915_request_submit(rq);
889 
890 			trace_i915_request_in(rq, 0);
891 			last = rq;
892 
893 			if (is_multi_lrc_rq(rq)) {
894 				/*
895 				 * We need to coalesce all multi-lrc requests in
896 				 * a relationship into a single H2G. We are
897 				 * guaranteed that all of these requests will be
898 				 * submitted sequentially.
899 				 */
900 				if (multi_lrc_submit(rq)) {
901 					submit = true;
902 					goto register_context;
903 				}
904 			} else {
905 				submit = true;
906 			}
907 		}
908 
909 		rb_erase_cached(&p->node, &sched_engine->queue);
910 		i915_priolist_free(p);
911 	}
912 
913 register_context:
914 	if (submit) {
915 		struct intel_context *ce = request_to_scheduling_context(last);
916 
917 		if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
918 			     !intel_context_is_banned(ce))) {
919 			ret = try_context_registration(ce, false);
920 			if (unlikely(ret == -EPIPE)) {
921 				goto deadlk;
922 			} else if (ret == -EBUSY) {
923 				guc->stalled_request = last;
924 				guc->submission_stall_reason =
925 					STALL_REGISTER_CONTEXT;
926 				goto schedule_tasklet;
927 			} else if (ret != 0) {
928 				GEM_WARN_ON(ret);	/* Unexpected */
929 				goto deadlk;
930 			}
931 		}
932 
933 move_lrc_tail:
934 		if (is_multi_lrc_rq(last)) {
935 			ret = guc_wq_item_append(guc, last);
936 			if (ret == -EBUSY) {
937 				goto schedule_tasklet;
938 			} else if (ret != 0) {
939 				GEM_WARN_ON(ret);	/* Unexpected */
940 				goto deadlk;
941 			}
942 		} else {
943 			guc_set_lrc_tail(last);
944 		}
945 
946 add_request:
947 		ret = guc_add_request(guc, last);
948 		if (unlikely(ret == -EPIPE)) {
949 			goto deadlk;
950 		} else if (ret == -EBUSY) {
951 			goto schedule_tasklet;
952 		} else if (ret != 0) {
953 			GEM_WARN_ON(ret);	/* Unexpected */
954 			goto deadlk;
955 		}
956 	}
957 
958 	guc->stalled_request = NULL;
959 	guc->submission_stall_reason = STALL_NONE;
960 	return submit;
961 
962 deadlk:
963 	sched_engine->tasklet.callback = NULL;
964 	tasklet_disable_nosync(&sched_engine->tasklet);
965 	return false;
966 
967 schedule_tasklet:
968 	tasklet_schedule(&sched_engine->tasklet);
969 	return false;
970 }
971 
972 static void guc_submission_tasklet(struct tasklet_struct *t)
973 {
974 	struct i915_sched_engine *sched_engine =
975 		from_tasklet(sched_engine, t, tasklet);
976 	unsigned long flags;
977 	bool loop;
978 
979 	spin_lock_irqsave(&sched_engine->lock, flags);
980 
981 	do {
982 		loop = guc_dequeue_one_context(sched_engine->private_data);
983 	} while (loop);
984 
985 	i915_sched_engine_reset_on_empty(sched_engine);
986 
987 	spin_unlock_irqrestore(&sched_engine->lock, flags);
988 }
989 
990 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
991 {
992 	if (iir & GT_RENDER_USER_INTERRUPT)
993 		intel_engine_signal_breadcrumbs(engine);
994 }
995 
996 static void __guc_context_destroy(struct intel_context *ce);
997 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
998 static void guc_signal_context_fence(struct intel_context *ce);
999 static void guc_cancel_context_requests(struct intel_context *ce);
1000 static void guc_blocked_fence_complete(struct intel_context *ce);
1001 
1002 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1003 {
1004 	struct intel_context *ce;
1005 	unsigned long index, flags;
1006 	bool pending_disable, pending_enable, deregister, destroyed, banned;
1007 
1008 	xa_lock_irqsave(&guc->context_lookup, flags);
1009 	xa_for_each(&guc->context_lookup, index, ce) {
1010 		/*
1011 		 * Corner case where the ref count on the object is zero but and
1012 		 * deregister G2H was lost. In this case we don't touch the ref
1013 		 * count and finish the destroy of the context.
1014 		 */
1015 		bool do_put = kref_get_unless_zero(&ce->ref);
1016 
1017 		xa_unlock(&guc->context_lookup);
1018 
1019 		spin_lock(&ce->guc_state.lock);
1020 
1021 		/*
1022 		 * Once we are at this point submission_disabled() is guaranteed
1023 		 * to be visible to all callers who set the below flags (see above
1024 		 * flush and flushes in reset_prepare). If submission_disabled()
1025 		 * is set, the caller shouldn't set these flags.
1026 		 */
1027 
1028 		destroyed = context_destroyed(ce);
1029 		pending_enable = context_pending_enable(ce);
1030 		pending_disable = context_pending_disable(ce);
1031 		deregister = context_wait_for_deregister_to_register(ce);
1032 		banned = context_banned(ce);
1033 		init_sched_state(ce);
1034 
1035 		spin_unlock(&ce->guc_state.lock);
1036 
1037 		if (pending_enable || destroyed || deregister) {
1038 			decr_outstanding_submission_g2h(guc);
1039 			if (deregister)
1040 				guc_signal_context_fence(ce);
1041 			if (destroyed) {
1042 				intel_gt_pm_put_async(guc_to_gt(guc));
1043 				release_guc_id(guc, ce);
1044 				__guc_context_destroy(ce);
1045 			}
1046 			if (pending_enable || deregister)
1047 				intel_context_put(ce);
1048 		}
1049 
1050 		/* Not mutualy exclusive with above if statement. */
1051 		if (pending_disable) {
1052 			guc_signal_context_fence(ce);
1053 			if (banned) {
1054 				guc_cancel_context_requests(ce);
1055 				intel_engine_signal_breadcrumbs(ce->engine);
1056 			}
1057 			intel_context_sched_disable_unpin(ce);
1058 			decr_outstanding_submission_g2h(guc);
1059 
1060 			spin_lock(&ce->guc_state.lock);
1061 			guc_blocked_fence_complete(ce);
1062 			spin_unlock(&ce->guc_state.lock);
1063 
1064 			intel_context_put(ce);
1065 		}
1066 
1067 		if (do_put)
1068 			intel_context_put(ce);
1069 		xa_lock(&guc->context_lookup);
1070 	}
1071 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1072 }
1073 
1074 /*
1075  * GuC stores busyness stats for each engine at context in/out boundaries. A
1076  * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1077  * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1078  * GuC.
1079  *
1080  * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1081  * is valid (!= ~0) and start is non-zero, the engine is considered to be
1082  * active. For an active engine total busyness = total + (now - start), where
1083  * 'now' is the time at which the busyness is sampled. For inactive engine,
1084  * total busyness = total.
1085  *
1086  * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1087  *
1088  * The start and total values provided by GuC are 32 bits and wrap around in a
1089  * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1090  * increasing ns values, there is a need for this implementation to account for
1091  * overflows and extend the GuC provided values to 64 bits before returning
1092  * busyness to the user. In order to do that, a worker runs periodically at
1093  * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1094  * 27 seconds for a gt clock frequency of 19.2 MHz).
1095  */
1096 
1097 #define WRAP_TIME_CLKS U32_MAX
1098 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1099 
1100 static void
1101 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1102 {
1103 	u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1104 	u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1105 
1106 	if (new_start == lower_32_bits(*prev_start))
1107 		return;
1108 
1109 	/*
1110 	 * When gt is unparked, we update the gt timestamp and start the ping
1111 	 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1112 	 * is unparked, all switched in contexts will have a start time that is
1113 	 * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1114 	 *
1115 	 * If neither gt_stamp nor new_start has rolled over, then the
1116 	 * gt_stamp_hi does not need to be adjusted, however if one of them has
1117 	 * rolled over, we need to adjust gt_stamp_hi accordingly.
1118 	 *
1119 	 * The below conditions address the cases of new_start rollover and
1120 	 * gt_stamp_last rollover respectively.
1121 	 */
1122 	if (new_start < gt_stamp_last &&
1123 	    (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1124 		gt_stamp_hi++;
1125 
1126 	if (new_start > gt_stamp_last &&
1127 	    (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1128 		gt_stamp_hi--;
1129 
1130 	*prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1131 }
1132 
1133 #define record_read(map_, field_) \
1134 	iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1135 
1136 /*
1137  * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1138  * we run into a race where the value read is inconsistent. Sometimes the
1139  * inconsistency is in reading the upper MSB bytes of the last_in value when
1140  * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1141  * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1142  * determine validity of these values. Instead we read the values multiple times
1143  * until they are consistent. In test runs, 3 attempts results in consistent
1144  * values. The upper bound is set to 6 attempts and may need to be tuned as per
1145  * any new occurences.
1146  */
1147 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1148 				      u32 *last_in, u32 *id, u32 *total)
1149 {
1150 	struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1151 	int i = 0;
1152 
1153 	do {
1154 		*last_in = record_read(&rec_map, last_switch_in_stamp);
1155 		*id = record_read(&rec_map, current_context_index);
1156 		*total = record_read(&rec_map, total_runtime);
1157 
1158 		if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1159 		    record_read(&rec_map, current_context_index) == *id &&
1160 		    record_read(&rec_map, total_runtime) == *total)
1161 			break;
1162 	} while (++i < 6);
1163 }
1164 
1165 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1166 {
1167 	struct intel_engine_guc_stats *stats = &engine->stats.guc;
1168 	struct intel_guc *guc = &engine->gt->uc.guc;
1169 	u32 last_switch, ctx_id, total;
1170 
1171 	lockdep_assert_held(&guc->timestamp.lock);
1172 
1173 	__get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1174 
1175 	stats->running = ctx_id != ~0U && last_switch;
1176 	if (stats->running)
1177 		__extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1178 
1179 	/*
1180 	 * Instead of adjusting the total for overflow, just add the
1181 	 * difference from previous sample stats->total_gt_clks
1182 	 */
1183 	if (total && total != ~0U) {
1184 		stats->total_gt_clks += (u32)(total - stats->prev_total);
1185 		stats->prev_total = total;
1186 	}
1187 }
1188 
1189 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1190 {
1191 	intel_wakeref_t wakeref;
1192 	u32 reg, shift;
1193 
1194 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1195 		reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1196 
1197 	shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
1198 		GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;
1199 
1200 	return 3 - shift;
1201 }
1202 
1203 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1204 {
1205 	struct intel_gt *gt = guc_to_gt(guc);
1206 	u32 gt_stamp_lo, gt_stamp_hi;
1207 	u64 gpm_ts;
1208 
1209 	lockdep_assert_held(&guc->timestamp.lock);
1210 
1211 	gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1212 	gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1213 					  MISC_STATUS1) >> guc->timestamp.shift;
1214 	gt_stamp_lo = lower_32_bits(gpm_ts);
1215 	*now = ktime_get();
1216 
1217 	if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1218 		gt_stamp_hi++;
1219 
1220 	guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1221 }
1222 
1223 /*
1224  * Unlike the execlist mode of submission total and active times are in terms of
1225  * gt clocks. The *now parameter is retained to return the cpu time at which the
1226  * busyness was sampled.
1227  */
1228 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1229 {
1230 	struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1231 	struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1232 	struct intel_gt *gt = engine->gt;
1233 	struct intel_guc *guc = &gt->uc.guc;
1234 	u64 total, gt_stamp_saved;
1235 	unsigned long flags;
1236 	u32 reset_count;
1237 	bool in_reset;
1238 
1239 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1240 
1241 	/*
1242 	 * If a reset happened, we risk reading partially updated engine
1243 	 * busyness from GuC, so we just use the driver stored copy of busyness.
1244 	 * Synchronize with gt reset using reset_count and the
1245 	 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1246 	 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1247 	 * usable by checking the flag afterwards.
1248 	 */
1249 	reset_count = i915_reset_count(gpu_error);
1250 	in_reset = test_bit(I915_RESET_BACKOFF, &gt->reset.flags);
1251 
1252 	*now = ktime_get();
1253 
1254 	/*
1255 	 * The active busyness depends on start_gt_clk and gt_stamp.
1256 	 * gt_stamp is updated by i915 only when gt is awake and the
1257 	 * start_gt_clk is derived from GuC state. To get a consistent
1258 	 * view of activity, we query the GuC state only if gt is awake.
1259 	 */
1260 	if (!in_reset && intel_gt_pm_get_if_awake(gt)) {
1261 		stats_saved = *stats;
1262 		gt_stamp_saved = guc->timestamp.gt_stamp;
1263 		/*
1264 		 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1265 		 * start_gt_clk' calculation below for active engines.
1266 		 */
1267 		guc_update_engine_gt_clks(engine);
1268 		guc_update_pm_timestamp(guc, now);
1269 		intel_gt_pm_put_async(gt);
1270 		if (i915_reset_count(gpu_error) != reset_count) {
1271 			*stats = stats_saved;
1272 			guc->timestamp.gt_stamp = gt_stamp_saved;
1273 		}
1274 	}
1275 
1276 	total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1277 	if (stats->running) {
1278 		u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1279 
1280 		total += intel_gt_clock_interval_to_ns(gt, clk);
1281 	}
1282 
1283 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1284 
1285 	return ns_to_ktime(total);
1286 }
1287 
1288 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1289 {
1290 	struct intel_gt *gt = guc_to_gt(guc);
1291 	struct intel_engine_cs *engine;
1292 	enum intel_engine_id id;
1293 	unsigned long flags;
1294 	ktime_t unused;
1295 
1296 	cancel_delayed_work_sync(&guc->timestamp.work);
1297 
1298 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1299 
1300 	guc_update_pm_timestamp(guc, &unused);
1301 	for_each_engine(engine, gt, id) {
1302 		guc_update_engine_gt_clks(engine);
1303 		engine->stats.guc.prev_total = 0;
1304 	}
1305 
1306 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1307 }
1308 
1309 static void __update_guc_busyness_stats(struct intel_guc *guc)
1310 {
1311 	struct intel_gt *gt = guc_to_gt(guc);
1312 	struct intel_engine_cs *engine;
1313 	enum intel_engine_id id;
1314 	unsigned long flags;
1315 	ktime_t unused;
1316 
1317 	guc->timestamp.last_stat_jiffies = jiffies;
1318 
1319 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1320 
1321 	guc_update_pm_timestamp(guc, &unused);
1322 	for_each_engine(engine, gt, id)
1323 		guc_update_engine_gt_clks(engine);
1324 
1325 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1326 }
1327 
1328 static void guc_timestamp_ping(struct work_struct *wrk)
1329 {
1330 	struct intel_guc *guc = container_of(wrk, typeof(*guc),
1331 					     timestamp.work.work);
1332 	struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1333 	struct intel_gt *gt = guc_to_gt(guc);
1334 	intel_wakeref_t wakeref;
1335 	int srcu, ret;
1336 
1337 	/*
1338 	 * Synchronize with gt reset to make sure the worker does not
1339 	 * corrupt the engine/guc stats.
1340 	 */
1341 	ret = intel_gt_reset_trylock(gt, &srcu);
1342 	if (ret)
1343 		return;
1344 
1345 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
1346 		__update_guc_busyness_stats(guc);
1347 
1348 	intel_gt_reset_unlock(gt, srcu);
1349 
1350 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
1351 			 guc->timestamp.ping_delay);
1352 }
1353 
1354 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1355 {
1356 	u32 offset = intel_guc_engine_usage_offset(guc);
1357 	u32 action[] = {
1358 		INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1359 		offset,
1360 		0,
1361 	};
1362 
1363 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
1364 }
1365 
1366 static void guc_init_engine_stats(struct intel_guc *guc)
1367 {
1368 	struct intel_gt *gt = guc_to_gt(guc);
1369 	intel_wakeref_t wakeref;
1370 
1371 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
1372 			 guc->timestamp.ping_delay);
1373 
1374 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
1375 		int ret = guc_action_enable_usage_stats(guc);
1376 
1377 		if (ret)
1378 			drm_err(&gt->i915->drm,
1379 				"Failed to enable usage stats: %d!\n", ret);
1380 	}
1381 }
1382 
1383 void intel_guc_busyness_park(struct intel_gt *gt)
1384 {
1385 	struct intel_guc *guc = &gt->uc.guc;
1386 
1387 	if (!guc_submission_initialized(guc))
1388 		return;
1389 
1390 	cancel_delayed_work(&guc->timestamp.work);
1391 
1392 	/*
1393 	 * Before parking, we should sample engine busyness stats if we need to.
1394 	 * We can skip it if we are less than half a ping from the last time we
1395 	 * sampled the busyness stats.
1396 	 */
1397 	if (guc->timestamp.last_stat_jiffies &&
1398 	    !time_after(jiffies, guc->timestamp.last_stat_jiffies +
1399 			(guc->timestamp.ping_delay / 2)))
1400 		return;
1401 
1402 	__update_guc_busyness_stats(guc);
1403 }
1404 
1405 void intel_guc_busyness_unpark(struct intel_gt *gt)
1406 {
1407 	struct intel_guc *guc = &gt->uc.guc;
1408 	unsigned long flags;
1409 	ktime_t unused;
1410 
1411 	if (!guc_submission_initialized(guc))
1412 		return;
1413 
1414 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1415 	guc_update_pm_timestamp(guc, &unused);
1416 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1417 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
1418 			 guc->timestamp.ping_delay);
1419 }
1420 
1421 static inline bool
1422 submission_disabled(struct intel_guc *guc)
1423 {
1424 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1425 
1426 	return unlikely(!sched_engine ||
1427 			!__tasklet_is_enabled(&sched_engine->tasklet) ||
1428 			intel_gt_is_wedged(guc_to_gt(guc)));
1429 }
1430 
1431 static void disable_submission(struct intel_guc *guc)
1432 {
1433 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1434 
1435 	if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1436 		GEM_BUG_ON(!guc->ct.enabled);
1437 		__tasklet_disable_sync_once(&sched_engine->tasklet);
1438 		sched_engine->tasklet.callback = NULL;
1439 	}
1440 }
1441 
1442 static void enable_submission(struct intel_guc *guc)
1443 {
1444 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1445 	unsigned long flags;
1446 
1447 	spin_lock_irqsave(&guc->sched_engine->lock, flags);
1448 	sched_engine->tasklet.callback = guc_submission_tasklet;
1449 	wmb();	/* Make sure callback visible */
1450 	if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1451 	    __tasklet_enable(&sched_engine->tasklet)) {
1452 		GEM_BUG_ON(!guc->ct.enabled);
1453 
1454 		/* And kick in case we missed a new request submission. */
1455 		tasklet_hi_schedule(&sched_engine->tasklet);
1456 	}
1457 	spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1458 }
1459 
1460 static void guc_flush_submissions(struct intel_guc *guc)
1461 {
1462 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1463 	unsigned long flags;
1464 
1465 	spin_lock_irqsave(&sched_engine->lock, flags);
1466 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1467 }
1468 
1469 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1470 
1471 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1472 {
1473 	if (unlikely(!guc_submission_initialized(guc))) {
1474 		/* Reset called during driver load? GuC not yet initialised! */
1475 		return;
1476 	}
1477 
1478 	intel_gt_park_heartbeats(guc_to_gt(guc));
1479 	disable_submission(guc);
1480 	guc->interrupts.disable(guc);
1481 	__reset_guc_busyness_stats(guc);
1482 
1483 	/* Flush IRQ handler */
1484 	spin_lock_irq(&guc_to_gt(guc)->irq_lock);
1485 	spin_unlock_irq(&guc_to_gt(guc)->irq_lock);
1486 
1487 	guc_flush_submissions(guc);
1488 	guc_flush_destroyed_contexts(guc);
1489 	flush_work(&guc->ct.requests.worker);
1490 
1491 	scrub_guc_desc_for_outstanding_g2h(guc);
1492 }
1493 
1494 static struct intel_engine_cs *
1495 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1496 {
1497 	struct intel_engine_cs *engine;
1498 	intel_engine_mask_t tmp, mask = ve->mask;
1499 	unsigned int num_siblings = 0;
1500 
1501 	for_each_engine_masked(engine, ve->gt, mask, tmp)
1502 		if (num_siblings++ == sibling)
1503 			return engine;
1504 
1505 	return NULL;
1506 }
1507 
1508 static inline struct intel_engine_cs *
1509 __context_to_physical_engine(struct intel_context *ce)
1510 {
1511 	struct intel_engine_cs *engine = ce->engine;
1512 
1513 	if (intel_engine_is_virtual(engine))
1514 		engine = guc_virtual_get_sibling(engine, 0);
1515 
1516 	return engine;
1517 }
1518 
1519 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1520 {
1521 	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1522 
1523 	if (intel_context_is_banned(ce))
1524 		return;
1525 
1526 	GEM_BUG_ON(!intel_context_is_pinned(ce));
1527 
1528 	/*
1529 	 * We want a simple context + ring to execute the breadcrumb update.
1530 	 * We cannot rely on the context being intact across the GPU hang,
1531 	 * so clear it and rebuild just what we need for the breadcrumb.
1532 	 * All pending requests for this context will be zapped, and any
1533 	 * future request will be after userspace has had the opportunity
1534 	 * to recreate its own state.
1535 	 */
1536 	if (scrub)
1537 		lrc_init_regs(ce, engine, true);
1538 
1539 	/* Rerun the request; its payload has been neutered (if guilty). */
1540 	lrc_update_regs(ce, engine, head);
1541 }
1542 
1543 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1544 {
1545 	if (!IS_GRAPHICS_VER(engine->i915, 11, 12))
1546 		return;
1547 
1548 	intel_engine_stop_cs(engine);
1549 
1550 	/*
1551 	 * Wa_22011802037:gen11/gen12: In addition to stopping the cs, we need
1552 	 * to wait for any pending mi force wakeups
1553 	 */
1554 	intel_engine_wait_for_pending_mi_fw(engine);
1555 }
1556 
1557 static void guc_reset_nop(struct intel_engine_cs *engine)
1558 {
1559 }
1560 
1561 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1562 {
1563 }
1564 
1565 static void
1566 __unwind_incomplete_requests(struct intel_context *ce)
1567 {
1568 	struct i915_request *rq, *rn;
1569 	struct list_head *pl;
1570 	int prio = I915_PRIORITY_INVALID;
1571 	struct i915_sched_engine * const sched_engine =
1572 		ce->engine->sched_engine;
1573 	unsigned long flags;
1574 
1575 	spin_lock_irqsave(&sched_engine->lock, flags);
1576 	spin_lock(&ce->guc_state.lock);
1577 	list_for_each_entry_safe_reverse(rq, rn,
1578 					 &ce->guc_state.requests,
1579 					 sched.link) {
1580 		if (i915_request_completed(rq))
1581 			continue;
1582 
1583 		list_del_init(&rq->sched.link);
1584 		__i915_request_unsubmit(rq);
1585 
1586 		/* Push the request back into the queue for later resubmission. */
1587 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1588 		if (rq_prio(rq) != prio) {
1589 			prio = rq_prio(rq);
1590 			pl = i915_sched_lookup_priolist(sched_engine, prio);
1591 		}
1592 		GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1593 
1594 		list_add(&rq->sched.link, pl);
1595 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1596 	}
1597 	spin_unlock(&ce->guc_state.lock);
1598 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1599 }
1600 
1601 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1602 {
1603 	bool guilty;
1604 	struct i915_request *rq;
1605 	unsigned long flags;
1606 	u32 head;
1607 	int i, number_children = ce->parallel.number_children;
1608 	struct intel_context *parent = ce;
1609 
1610 	GEM_BUG_ON(intel_context_is_child(ce));
1611 
1612 	intel_context_get(ce);
1613 
1614 	/*
1615 	 * GuC will implicitly mark the context as non-schedulable when it sends
1616 	 * the reset notification. Make sure our state reflects this change. The
1617 	 * context will be marked enabled on resubmission.
1618 	 */
1619 	spin_lock_irqsave(&ce->guc_state.lock, flags);
1620 	clr_context_enabled(ce);
1621 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1622 
1623 	/*
1624 	 * For each context in the relationship find the hanging request
1625 	 * resetting each context / request as needed
1626 	 */
1627 	for (i = 0; i < number_children + 1; ++i) {
1628 		if (!intel_context_is_pinned(ce))
1629 			goto next_context;
1630 
1631 		guilty = false;
1632 		rq = intel_context_find_active_request(ce);
1633 		if (!rq) {
1634 			head = ce->ring->tail;
1635 			goto out_replay;
1636 		}
1637 
1638 		if (i915_request_started(rq))
1639 			guilty = stalled & ce->engine->mask;
1640 
1641 		GEM_BUG_ON(i915_active_is_idle(&ce->active));
1642 		head = intel_ring_wrap(ce->ring, rq->head);
1643 
1644 		__i915_request_reset(rq, guilty);
1645 out_replay:
1646 		guc_reset_state(ce, head, guilty);
1647 next_context:
1648 		if (i != number_children)
1649 			ce = list_next_entry(ce, parallel.child_link);
1650 	}
1651 
1652 	__unwind_incomplete_requests(parent);
1653 	intel_context_put(parent);
1654 }
1655 
1656 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1657 {
1658 	struct intel_context *ce;
1659 	unsigned long index;
1660 	unsigned long flags;
1661 
1662 	if (unlikely(!guc_submission_initialized(guc))) {
1663 		/* Reset called during driver load? GuC not yet initialised! */
1664 		return;
1665 	}
1666 
1667 	xa_lock_irqsave(&guc->context_lookup, flags);
1668 	xa_for_each(&guc->context_lookup, index, ce) {
1669 		if (!kref_get_unless_zero(&ce->ref))
1670 			continue;
1671 
1672 		xa_unlock(&guc->context_lookup);
1673 
1674 		if (intel_context_is_pinned(ce) &&
1675 		    !intel_context_is_child(ce))
1676 			__guc_reset_context(ce, stalled);
1677 
1678 		intel_context_put(ce);
1679 
1680 		xa_lock(&guc->context_lookup);
1681 	}
1682 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1683 
1684 	/* GuC is blown away, drop all references to contexts */
1685 	xa_destroy(&guc->context_lookup);
1686 }
1687 
1688 static void guc_cancel_context_requests(struct intel_context *ce)
1689 {
1690 	struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1691 	struct i915_request *rq;
1692 	unsigned long flags;
1693 
1694 	/* Mark all executing requests as skipped. */
1695 	spin_lock_irqsave(&sched_engine->lock, flags);
1696 	spin_lock(&ce->guc_state.lock);
1697 	list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1698 		i915_request_put(i915_request_mark_eio(rq));
1699 	spin_unlock(&ce->guc_state.lock);
1700 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1701 }
1702 
1703 static void
1704 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1705 {
1706 	struct i915_request *rq, *rn;
1707 	struct rb_node *rb;
1708 	unsigned long flags;
1709 
1710 	/* Can be called during boot if GuC fails to load */
1711 	if (!sched_engine)
1712 		return;
1713 
1714 	/*
1715 	 * Before we call engine->cancel_requests(), we should have exclusive
1716 	 * access to the submission state. This is arranged for us by the
1717 	 * caller disabling the interrupt generation, the tasklet and other
1718 	 * threads that may then access the same state, giving us a free hand
1719 	 * to reset state. However, we still need to let lockdep be aware that
1720 	 * we know this state may be accessed in hardirq context, so we
1721 	 * disable the irq around this manipulation and we want to keep
1722 	 * the spinlock focused on its duties and not accidentally conflate
1723 	 * coverage to the submission's irq state. (Similarly, although we
1724 	 * shouldn't need to disable irq around the manipulation of the
1725 	 * submission's irq state, we also wish to remind ourselves that
1726 	 * it is irq state.)
1727 	 */
1728 	spin_lock_irqsave(&sched_engine->lock, flags);
1729 
1730 	/* Flush the queued requests to the timeline list (for retiring). */
1731 	while ((rb = rb_first_cached(&sched_engine->queue))) {
1732 		struct i915_priolist *p = to_priolist(rb);
1733 
1734 		priolist_for_each_request_consume(rq, rn, p) {
1735 			list_del_init(&rq->sched.link);
1736 
1737 			__i915_request_submit(rq);
1738 
1739 			i915_request_put(i915_request_mark_eio(rq));
1740 		}
1741 
1742 		rb_erase_cached(&p->node, &sched_engine->queue);
1743 		i915_priolist_free(p);
1744 	}
1745 
1746 	/* Remaining _unready_ requests will be nop'ed when submitted */
1747 
1748 	sched_engine->queue_priority_hint = INT_MIN;
1749 	sched_engine->queue = RB_ROOT_CACHED;
1750 
1751 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1752 }
1753 
1754 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
1755 {
1756 	struct intel_context *ce;
1757 	unsigned long index;
1758 	unsigned long flags;
1759 
1760 	xa_lock_irqsave(&guc->context_lookup, flags);
1761 	xa_for_each(&guc->context_lookup, index, ce) {
1762 		if (!kref_get_unless_zero(&ce->ref))
1763 			continue;
1764 
1765 		xa_unlock(&guc->context_lookup);
1766 
1767 		if (intel_context_is_pinned(ce) &&
1768 		    !intel_context_is_child(ce))
1769 			guc_cancel_context_requests(ce);
1770 
1771 		intel_context_put(ce);
1772 
1773 		xa_lock(&guc->context_lookup);
1774 	}
1775 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1776 
1777 	guc_cancel_sched_engine_requests(guc->sched_engine);
1778 
1779 	/* GuC is blown away, drop all references to contexts */
1780 	xa_destroy(&guc->context_lookup);
1781 }
1782 
1783 void intel_guc_submission_reset_finish(struct intel_guc *guc)
1784 {
1785 	/* Reset called during driver load or during wedge? */
1786 	if (unlikely(!guc_submission_initialized(guc) ||
1787 		     intel_gt_is_wedged(guc_to_gt(guc)))) {
1788 		return;
1789 	}
1790 
1791 	/*
1792 	 * Technically possible for either of these values to be non-zero here,
1793 	 * but very unlikely + harmless. Regardless let's add a warn so we can
1794 	 * see in CI if this happens frequently / a precursor to taking down the
1795 	 * machine.
1796 	 */
1797 	GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h));
1798 	atomic_set(&guc->outstanding_submission_g2h, 0);
1799 
1800 	intel_guc_global_policies_update(guc);
1801 	enable_submission(guc);
1802 	intel_gt_unpark_heartbeats(guc_to_gt(guc));
1803 }
1804 
1805 static void destroyed_worker_func(struct work_struct *w);
1806 static void reset_fail_worker_func(struct work_struct *w);
1807 
1808 /*
1809  * Set up the memory resources to be shared with the GuC (via the GGTT)
1810  * at firmware loading time.
1811  */
1812 int intel_guc_submission_init(struct intel_guc *guc)
1813 {
1814 	struct intel_gt *gt = guc_to_gt(guc);
1815 
1816 	if (guc->submission_initialized)
1817 		return 0;
1818 
1819 	guc->submission_state.guc_ids_bitmap =
1820 		bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
1821 	if (!guc->submission_state.guc_ids_bitmap)
1822 		return -ENOMEM;
1823 
1824 	guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
1825 	guc->timestamp.shift = gpm_timestamp_shift(gt);
1826 	guc->submission_initialized = true;
1827 
1828 	return 0;
1829 }
1830 
1831 void intel_guc_submission_fini(struct intel_guc *guc)
1832 {
1833 	if (!guc->submission_initialized)
1834 		return;
1835 
1836 	guc_flush_destroyed_contexts(guc);
1837 	i915_sched_engine_put(guc->sched_engine);
1838 	bitmap_free(guc->submission_state.guc_ids_bitmap);
1839 	guc->submission_initialized = false;
1840 }
1841 
1842 static inline void queue_request(struct i915_sched_engine *sched_engine,
1843 				 struct i915_request *rq,
1844 				 int prio)
1845 {
1846 	GEM_BUG_ON(!list_empty(&rq->sched.link));
1847 	list_add_tail(&rq->sched.link,
1848 		      i915_sched_lookup_priolist(sched_engine, prio));
1849 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1850 	tasklet_hi_schedule(&sched_engine->tasklet);
1851 }
1852 
1853 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
1854 				     struct i915_request *rq)
1855 {
1856 	int ret = 0;
1857 
1858 	__i915_request_submit(rq);
1859 
1860 	trace_i915_request_in(rq, 0);
1861 
1862 	if (is_multi_lrc_rq(rq)) {
1863 		if (multi_lrc_submit(rq)) {
1864 			ret = guc_wq_item_append(guc, rq);
1865 			if (!ret)
1866 				ret = guc_add_request(guc, rq);
1867 		}
1868 	} else {
1869 		guc_set_lrc_tail(rq);
1870 		ret = guc_add_request(guc, rq);
1871 	}
1872 
1873 	if (unlikely(ret == -EPIPE))
1874 		disable_submission(guc);
1875 
1876 	return ret;
1877 }
1878 
1879 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
1880 {
1881 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
1882 	struct intel_context *ce = request_to_scheduling_context(rq);
1883 
1884 	return submission_disabled(guc) || guc->stalled_request ||
1885 		!i915_sched_engine_is_empty(sched_engine) ||
1886 		!ctx_id_mapped(guc, ce->guc_id.id);
1887 }
1888 
1889 static void guc_submit_request(struct i915_request *rq)
1890 {
1891 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
1892 	struct intel_guc *guc = &rq->engine->gt->uc.guc;
1893 	unsigned long flags;
1894 
1895 	/* Will be called from irq-context when using foreign fences. */
1896 	spin_lock_irqsave(&sched_engine->lock, flags);
1897 
1898 	if (need_tasklet(guc, rq))
1899 		queue_request(sched_engine, rq, rq_prio(rq));
1900 	else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
1901 		tasklet_hi_schedule(&sched_engine->tasklet);
1902 
1903 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1904 }
1905 
1906 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
1907 {
1908 	int ret;
1909 
1910 	GEM_BUG_ON(intel_context_is_child(ce));
1911 
1912 	if (intel_context_is_parent(ce))
1913 		ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
1914 					      NUMBER_MULTI_LRC_GUC_ID(guc),
1915 					      order_base_2(ce->parallel.number_children
1916 							   + 1));
1917 	else
1918 		ret = ida_simple_get(&guc->submission_state.guc_ids,
1919 				     NUMBER_MULTI_LRC_GUC_ID(guc),
1920 				     guc->submission_state.num_guc_ids,
1921 				     GFP_KERNEL | __GFP_RETRY_MAYFAIL |
1922 				     __GFP_NOWARN);
1923 	if (unlikely(ret < 0))
1924 		return ret;
1925 
1926 	ce->guc_id.id = ret;
1927 	return 0;
1928 }
1929 
1930 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
1931 {
1932 	GEM_BUG_ON(intel_context_is_child(ce));
1933 
1934 	if (!context_guc_id_invalid(ce)) {
1935 		if (intel_context_is_parent(ce))
1936 			bitmap_release_region(guc->submission_state.guc_ids_bitmap,
1937 					      ce->guc_id.id,
1938 					      order_base_2(ce->parallel.number_children
1939 							   + 1));
1940 		else
1941 			ida_simple_remove(&guc->submission_state.guc_ids,
1942 					  ce->guc_id.id);
1943 		clr_ctx_id_mapping(guc, ce->guc_id.id);
1944 		set_context_guc_id_invalid(ce);
1945 	}
1946 	if (!list_empty(&ce->guc_id.link))
1947 		list_del_init(&ce->guc_id.link);
1948 }
1949 
1950 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
1951 {
1952 	unsigned long flags;
1953 
1954 	spin_lock_irqsave(&guc->submission_state.lock, flags);
1955 	__release_guc_id(guc, ce);
1956 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
1957 }
1958 
1959 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
1960 {
1961 	struct intel_context *cn;
1962 
1963 	lockdep_assert_held(&guc->submission_state.lock);
1964 	GEM_BUG_ON(intel_context_is_child(ce));
1965 	GEM_BUG_ON(intel_context_is_parent(ce));
1966 
1967 	if (!list_empty(&guc->submission_state.guc_id_list)) {
1968 		cn = list_first_entry(&guc->submission_state.guc_id_list,
1969 				      struct intel_context,
1970 				      guc_id.link);
1971 
1972 		GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
1973 		GEM_BUG_ON(context_guc_id_invalid(cn));
1974 		GEM_BUG_ON(intel_context_is_child(cn));
1975 		GEM_BUG_ON(intel_context_is_parent(cn));
1976 
1977 		list_del_init(&cn->guc_id.link);
1978 		ce->guc_id.id = cn->guc_id.id;
1979 
1980 		spin_lock(&cn->guc_state.lock);
1981 		clr_context_registered(cn);
1982 		spin_unlock(&cn->guc_state.lock);
1983 
1984 		set_context_guc_id_invalid(cn);
1985 
1986 #ifdef CONFIG_DRM_I915_SELFTEST
1987 		guc->number_guc_id_stolen++;
1988 #endif
1989 
1990 		return 0;
1991 	} else {
1992 		return -EAGAIN;
1993 	}
1994 }
1995 
1996 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
1997 {
1998 	int ret;
1999 
2000 	lockdep_assert_held(&guc->submission_state.lock);
2001 	GEM_BUG_ON(intel_context_is_child(ce));
2002 
2003 	ret = new_guc_id(guc, ce);
2004 	if (unlikely(ret < 0)) {
2005 		if (intel_context_is_parent(ce))
2006 			return -ENOSPC;
2007 
2008 		ret = steal_guc_id(guc, ce);
2009 		if (ret < 0)
2010 			return ret;
2011 	}
2012 
2013 	if (intel_context_is_parent(ce)) {
2014 		struct intel_context *child;
2015 		int i = 1;
2016 
2017 		for_each_child(ce, child)
2018 			child->guc_id.id = ce->guc_id.id + i++;
2019 	}
2020 
2021 	return 0;
2022 }
2023 
2024 #define PIN_GUC_ID_TRIES	4
2025 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2026 {
2027 	int ret = 0;
2028 	unsigned long flags, tries = PIN_GUC_ID_TRIES;
2029 
2030 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2031 
2032 try_again:
2033 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2034 
2035 	might_lock(&ce->guc_state.lock);
2036 
2037 	if (context_guc_id_invalid(ce)) {
2038 		ret = assign_guc_id(guc, ce);
2039 		if (ret)
2040 			goto out_unlock;
2041 		ret = 1;	/* Indidcates newly assigned guc_id */
2042 	}
2043 	if (!list_empty(&ce->guc_id.link))
2044 		list_del_init(&ce->guc_id.link);
2045 	atomic_inc(&ce->guc_id.ref);
2046 
2047 out_unlock:
2048 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2049 
2050 	/*
2051 	 * -EAGAIN indicates no guc_id are available, let's retire any
2052 	 * outstanding requests to see if that frees up a guc_id. If the first
2053 	 * retire didn't help, insert a sleep with the timeslice duration before
2054 	 * attempting to retire more requests. Double the sleep period each
2055 	 * subsequent pass before finally giving up. The sleep period has max of
2056 	 * 100ms and minimum of 1ms.
2057 	 */
2058 	if (ret == -EAGAIN && --tries) {
2059 		if (PIN_GUC_ID_TRIES - tries > 1) {
2060 			unsigned int timeslice_shifted =
2061 				ce->engine->props.timeslice_duration_ms <<
2062 				(PIN_GUC_ID_TRIES - tries - 2);
2063 			unsigned int max = min_t(unsigned int, 100,
2064 						 timeslice_shifted);
2065 
2066 			msleep(max_t(unsigned int, max, 1));
2067 		}
2068 		intel_gt_retire_requests(guc_to_gt(guc));
2069 		goto try_again;
2070 	}
2071 
2072 	return ret;
2073 }
2074 
2075 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2076 {
2077 	unsigned long flags;
2078 
2079 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2080 	GEM_BUG_ON(intel_context_is_child(ce));
2081 
2082 	if (unlikely(context_guc_id_invalid(ce) ||
2083 		     intel_context_is_parent(ce)))
2084 		return;
2085 
2086 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2087 	if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2088 	    !atomic_read(&ce->guc_id.ref))
2089 		list_add_tail(&ce->guc_id.link,
2090 			      &guc->submission_state.guc_id_list);
2091 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2092 }
2093 
2094 static int __guc_action_register_multi_lrc(struct intel_guc *guc,
2095 					   struct intel_context *ce,
2096 					   struct guc_ctxt_registration_info *info,
2097 					   bool loop)
2098 {
2099 	struct intel_context *child;
2100 	u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2101 	int len = 0;
2102 	u32 next_id;
2103 
2104 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2105 
2106 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2107 	action[len++] = info->flags;
2108 	action[len++] = info->context_idx;
2109 	action[len++] = info->engine_class;
2110 	action[len++] = info->engine_submit_mask;
2111 	action[len++] = info->wq_desc_lo;
2112 	action[len++] = info->wq_desc_hi;
2113 	action[len++] = info->wq_base_lo;
2114 	action[len++] = info->wq_base_hi;
2115 	action[len++] = info->wq_size;
2116 	action[len++] = ce->parallel.number_children + 1;
2117 	action[len++] = info->hwlrca_lo;
2118 	action[len++] = info->hwlrca_hi;
2119 
2120 	next_id = info->context_idx + 1;
2121 	for_each_child(ce, child) {
2122 		GEM_BUG_ON(next_id++ != child->guc_id.id);
2123 
2124 		/*
2125 		 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2126 		 * only supports 32 bit currently.
2127 		 */
2128 		action[len++] = lower_32_bits(child->lrc.lrca);
2129 		action[len++] = upper_32_bits(child->lrc.lrca);
2130 	}
2131 
2132 	GEM_BUG_ON(len > ARRAY_SIZE(action));
2133 
2134 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2135 }
2136 
2137 static int __guc_action_register_context(struct intel_guc *guc,
2138 					 struct guc_ctxt_registration_info *info,
2139 					 bool loop)
2140 {
2141 	u32 action[] = {
2142 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2143 		info->flags,
2144 		info->context_idx,
2145 		info->engine_class,
2146 		info->engine_submit_mask,
2147 		info->wq_desc_lo,
2148 		info->wq_desc_hi,
2149 		info->wq_base_lo,
2150 		info->wq_base_hi,
2151 		info->wq_size,
2152 		info->hwlrca_lo,
2153 		info->hwlrca_hi,
2154 	};
2155 
2156 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2157 					     0, loop);
2158 }
2159 
2160 static void prepare_context_registration_info(struct intel_context *ce,
2161 					      struct guc_ctxt_registration_info *info);
2162 
2163 static int register_context(struct intel_context *ce, bool loop)
2164 {
2165 	struct guc_ctxt_registration_info info;
2166 	struct intel_guc *guc = ce_to_guc(ce);
2167 	int ret;
2168 
2169 	GEM_BUG_ON(intel_context_is_child(ce));
2170 	trace_intel_context_register(ce);
2171 
2172 	prepare_context_registration_info(ce, &info);
2173 
2174 	if (intel_context_is_parent(ce))
2175 		ret = __guc_action_register_multi_lrc(guc, ce, &info, loop);
2176 	else
2177 		ret = __guc_action_register_context(guc, &info, loop);
2178 	if (likely(!ret)) {
2179 		unsigned long flags;
2180 
2181 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2182 		set_context_registered(ce);
2183 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2184 
2185 		guc_context_policy_init(ce, loop);
2186 	}
2187 
2188 	return ret;
2189 }
2190 
2191 static int __guc_action_deregister_context(struct intel_guc *guc,
2192 					   u32 guc_id)
2193 {
2194 	u32 action[] = {
2195 		INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2196 		guc_id,
2197 	};
2198 
2199 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2200 					     G2H_LEN_DW_DEREGISTER_CONTEXT,
2201 					     true);
2202 }
2203 
2204 static int deregister_context(struct intel_context *ce, u32 guc_id)
2205 {
2206 	struct intel_guc *guc = ce_to_guc(ce);
2207 
2208 	GEM_BUG_ON(intel_context_is_child(ce));
2209 	trace_intel_context_deregister(ce);
2210 
2211 	return __guc_action_deregister_context(guc, guc_id);
2212 }
2213 
2214 static inline void clear_children_join_go_memory(struct intel_context *ce)
2215 {
2216 	struct parent_scratch *ps = __get_parent_scratch(ce);
2217 	int i;
2218 
2219 	ps->go.semaphore = 0;
2220 	for (i = 0; i < ce->parallel.number_children + 1; ++i)
2221 		ps->join[i].semaphore = 0;
2222 }
2223 
2224 static inline u32 get_children_go_value(struct intel_context *ce)
2225 {
2226 	return __get_parent_scratch(ce)->go.semaphore;
2227 }
2228 
2229 static inline u32 get_children_join_value(struct intel_context *ce,
2230 					  u8 child_index)
2231 {
2232 	return __get_parent_scratch(ce)->join[child_index].semaphore;
2233 }
2234 
2235 struct context_policy {
2236 	u32 count;
2237 	struct guc_update_context_policy h2g;
2238 };
2239 
2240 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2241 {
2242 	size_t bytes = sizeof(policy->h2g.header) +
2243 		       (sizeof(policy->h2g.klv[0]) * policy->count);
2244 
2245 	return bytes / sizeof(u32);
2246 }
2247 
2248 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2249 {
2250 	policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2251 	policy->h2g.header.ctx_id = guc_id;
2252 	policy->count = 0;
2253 }
2254 
2255 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2256 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2257 { \
2258 	GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2259 	policy->h2g.klv[policy->count].kl = \
2260 		FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2261 		FIELD_PREP(GUC_KLV_0_LEN, 1); \
2262 	policy->h2g.klv[policy->count].value = data; \
2263 	policy->count++; \
2264 }
2265 
2266 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2267 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2268 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2269 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2270 
2271 #undef MAKE_CONTEXT_POLICY_ADD
2272 
2273 static int __guc_context_set_context_policies(struct intel_guc *guc,
2274 					      struct context_policy *policy,
2275 					      bool loop)
2276 {
2277 	return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2278 					__guc_context_policy_action_size(policy),
2279 					0, loop);
2280 }
2281 
2282 static int guc_context_policy_init(struct intel_context *ce, bool loop)
2283 {
2284 	struct intel_engine_cs *engine = ce->engine;
2285 	struct intel_guc *guc = &engine->gt->uc.guc;
2286 	struct context_policy policy;
2287 	u32 execution_quantum;
2288 	u32 preemption_timeout;
2289 	bool missing = false;
2290 	unsigned long flags;
2291 	int ret;
2292 
2293 	/* NB: For both of these, zero means disabled. */
2294 	execution_quantum = engine->props.timeslice_duration_ms * 1000;
2295 	preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2296 
2297 	__guc_context_policy_start_klv(&policy, ce->guc_id.id);
2298 
2299 	__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2300 	__guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2301 	__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2302 
2303 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2304 		__guc_context_policy_add_preempt_to_idle(&policy, 1);
2305 
2306 	ret = __guc_context_set_context_policies(guc, &policy, loop);
2307 	missing = ret != 0;
2308 
2309 	if (!missing && intel_context_is_parent(ce)) {
2310 		struct intel_context *child;
2311 
2312 		for_each_child(ce, child) {
2313 			__guc_context_policy_start_klv(&policy, child->guc_id.id);
2314 
2315 			if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2316 				__guc_context_policy_add_preempt_to_idle(&policy, 1);
2317 
2318 			child->guc_state.prio = ce->guc_state.prio;
2319 			__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2320 			__guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2321 			__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2322 
2323 			ret = __guc_context_set_context_policies(guc, &policy, loop);
2324 			if (ret) {
2325 				missing = true;
2326 				break;
2327 			}
2328 		}
2329 	}
2330 
2331 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2332 	if (missing)
2333 		set_context_policy_required(ce);
2334 	else
2335 		clr_context_policy_required(ce);
2336 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2337 
2338 	return ret;
2339 }
2340 
2341 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio)
2342 {
2343 	/*
2344 	 * this matches the mapping we do in map_i915_prio_to_guc_prio()
2345 	 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL)
2346 	 */
2347 	switch (prio) {
2348 	default:
2349 		MISSING_CASE(prio);
2350 		fallthrough;
2351 	case GUC_CLIENT_PRIORITY_KMD_NORMAL:
2352 		return GEN12_CTX_PRIORITY_NORMAL;
2353 	case GUC_CLIENT_PRIORITY_NORMAL:
2354 		return GEN12_CTX_PRIORITY_LOW;
2355 	case GUC_CLIENT_PRIORITY_HIGH:
2356 	case GUC_CLIENT_PRIORITY_KMD_HIGH:
2357 		return GEN12_CTX_PRIORITY_HIGH;
2358 	}
2359 }
2360 
2361 static void prepare_context_registration_info(struct intel_context *ce,
2362 					      struct guc_ctxt_registration_info *info)
2363 {
2364 	struct intel_engine_cs *engine = ce->engine;
2365 	struct intel_guc *guc = &engine->gt->uc.guc;
2366 	u32 ctx_id = ce->guc_id.id;
2367 
2368 	GEM_BUG_ON(!engine->mask);
2369 
2370 	/*
2371 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2372 	 * based on CT vma region.
2373 	 */
2374 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2375 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2376 
2377 	memset(info, 0, sizeof(*info));
2378 	info->context_idx = ctx_id;
2379 	info->engine_class = engine_class_to_guc_class(engine->class);
2380 	info->engine_submit_mask = engine->logical_mask;
2381 	/*
2382 	 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2383 	 * only supports 32 bit currently.
2384 	 */
2385 	info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2386 	info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2387 	if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
2388 		info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio);
2389 	info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2390 
2391 	/*
2392 	 * If context is a parent, we need to register a process descriptor
2393 	 * describing a work queue and register all child contexts.
2394 	 */
2395 	if (intel_context_is_parent(ce)) {
2396 		struct guc_sched_wq_desc *wq_desc;
2397 		u64 wq_desc_offset, wq_base_offset;
2398 
2399 		ce->parallel.guc.wqi_tail = 0;
2400 		ce->parallel.guc.wqi_head = 0;
2401 
2402 		wq_desc_offset = i915_ggtt_offset(ce->state) +
2403 				 __get_parent_scratch_offset(ce);
2404 		wq_base_offset = i915_ggtt_offset(ce->state) +
2405 				 __get_wq_offset(ce);
2406 		info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2407 		info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2408 		info->wq_base_lo = lower_32_bits(wq_base_offset);
2409 		info->wq_base_hi = upper_32_bits(wq_base_offset);
2410 		info->wq_size = WQ_SIZE;
2411 
2412 		wq_desc = __get_wq_desc(ce);
2413 		memset(wq_desc, 0, sizeof(*wq_desc));
2414 		wq_desc->wq_status = WQ_STATUS_ACTIVE;
2415 
2416 		clear_children_join_go_memory(ce);
2417 	}
2418 }
2419 
2420 static int try_context_registration(struct intel_context *ce, bool loop)
2421 {
2422 	struct intel_engine_cs *engine = ce->engine;
2423 	struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2424 	struct intel_guc *guc = &engine->gt->uc.guc;
2425 	intel_wakeref_t wakeref;
2426 	u32 ctx_id = ce->guc_id.id;
2427 	bool context_registered;
2428 	int ret = 0;
2429 
2430 	GEM_BUG_ON(!sched_state_is_init(ce));
2431 
2432 	context_registered = ctx_id_mapped(guc, ctx_id);
2433 
2434 	clr_ctx_id_mapping(guc, ctx_id);
2435 	set_ctx_id_mapping(guc, ctx_id, ce);
2436 
2437 	/*
2438 	 * The context_lookup xarray is used to determine if the hardware
2439 	 * context is currently registered. There are two cases in which it
2440 	 * could be registered either the guc_id has been stolen from another
2441 	 * context or the lrc descriptor address of this context has changed. In
2442 	 * either case the context needs to be deregistered with the GuC before
2443 	 * registering this context.
2444 	 */
2445 	if (context_registered) {
2446 		bool disabled;
2447 		unsigned long flags;
2448 
2449 		trace_intel_context_steal_guc_id(ce);
2450 		GEM_BUG_ON(!loop);
2451 
2452 		/* Seal race with Reset */
2453 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2454 		disabled = submission_disabled(guc);
2455 		if (likely(!disabled)) {
2456 			set_context_wait_for_deregister_to_register(ce);
2457 			intel_context_get(ce);
2458 		}
2459 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2460 		if (unlikely(disabled)) {
2461 			clr_ctx_id_mapping(guc, ctx_id);
2462 			return 0;	/* Will get registered later */
2463 		}
2464 
2465 		/*
2466 		 * If stealing the guc_id, this ce has the same guc_id as the
2467 		 * context whose guc_id was stolen.
2468 		 */
2469 		with_intel_runtime_pm(runtime_pm, wakeref)
2470 			ret = deregister_context(ce, ce->guc_id.id);
2471 		if (unlikely(ret == -ENODEV))
2472 			ret = 0;	/* Will get registered later */
2473 	} else {
2474 		with_intel_runtime_pm(runtime_pm, wakeref)
2475 			ret = register_context(ce, loop);
2476 		if (unlikely(ret == -EBUSY)) {
2477 			clr_ctx_id_mapping(guc, ctx_id);
2478 		} else if (unlikely(ret == -ENODEV)) {
2479 			clr_ctx_id_mapping(guc, ctx_id);
2480 			ret = 0;	/* Will get registered later */
2481 		}
2482 	}
2483 
2484 	return ret;
2485 }
2486 
2487 static int __guc_context_pre_pin(struct intel_context *ce,
2488 				 struct intel_engine_cs *engine,
2489 				 struct i915_gem_ww_ctx *ww,
2490 				 void **vaddr)
2491 {
2492 	return lrc_pre_pin(ce, engine, ww, vaddr);
2493 }
2494 
2495 static int __guc_context_pin(struct intel_context *ce,
2496 			     struct intel_engine_cs *engine,
2497 			     void *vaddr)
2498 {
2499 	if (i915_ggtt_offset(ce->state) !=
2500 	    (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
2501 		set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
2502 
2503 	/*
2504 	 * GuC context gets pinned in guc_request_alloc. See that function for
2505 	 * explaination of why.
2506 	 */
2507 
2508 	return lrc_pin(ce, engine, vaddr);
2509 }
2510 
2511 static int guc_context_pre_pin(struct intel_context *ce,
2512 			       struct i915_gem_ww_ctx *ww,
2513 			       void **vaddr)
2514 {
2515 	return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
2516 }
2517 
2518 static int guc_context_pin(struct intel_context *ce, void *vaddr)
2519 {
2520 	int ret = __guc_context_pin(ce, ce->engine, vaddr);
2521 
2522 	if (likely(!ret && !intel_context_is_barrier(ce)))
2523 		intel_engine_pm_get(ce->engine);
2524 
2525 	return ret;
2526 }
2527 
2528 static void guc_context_unpin(struct intel_context *ce)
2529 {
2530 	struct intel_guc *guc = ce_to_guc(ce);
2531 
2532 	unpin_guc_id(guc, ce);
2533 	lrc_unpin(ce);
2534 
2535 	if (likely(!intel_context_is_barrier(ce)))
2536 		intel_engine_pm_put_async(ce->engine);
2537 }
2538 
2539 static void guc_context_post_unpin(struct intel_context *ce)
2540 {
2541 	lrc_post_unpin(ce);
2542 }
2543 
2544 static void __guc_context_sched_enable(struct intel_guc *guc,
2545 				       struct intel_context *ce)
2546 {
2547 	u32 action[] = {
2548 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2549 		ce->guc_id.id,
2550 		GUC_CONTEXT_ENABLE
2551 	};
2552 
2553 	trace_intel_context_sched_enable(ce);
2554 
2555 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2556 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2557 }
2558 
2559 static void __guc_context_sched_disable(struct intel_guc *guc,
2560 					struct intel_context *ce,
2561 					u16 guc_id)
2562 {
2563 	u32 action[] = {
2564 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2565 		guc_id,	/* ce->guc_id.id not stable */
2566 		GUC_CONTEXT_DISABLE
2567 	};
2568 
2569 	GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
2570 
2571 	GEM_BUG_ON(intel_context_is_child(ce));
2572 	trace_intel_context_sched_disable(ce);
2573 
2574 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2575 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2576 }
2577 
2578 static void guc_blocked_fence_complete(struct intel_context *ce)
2579 {
2580 	lockdep_assert_held(&ce->guc_state.lock);
2581 
2582 	if (!i915_sw_fence_done(&ce->guc_state.blocked))
2583 		i915_sw_fence_complete(&ce->guc_state.blocked);
2584 }
2585 
2586 static void guc_blocked_fence_reinit(struct intel_context *ce)
2587 {
2588 	lockdep_assert_held(&ce->guc_state.lock);
2589 	GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
2590 
2591 	/*
2592 	 * This fence is always complete unless a pending schedule disable is
2593 	 * outstanding. We arm the fence here and complete it when we receive
2594 	 * the pending schedule disable complete message.
2595 	 */
2596 	i915_sw_fence_fini(&ce->guc_state.blocked);
2597 	i915_sw_fence_reinit(&ce->guc_state.blocked);
2598 	i915_sw_fence_await(&ce->guc_state.blocked);
2599 	i915_sw_fence_commit(&ce->guc_state.blocked);
2600 }
2601 
2602 static u16 prep_context_pending_disable(struct intel_context *ce)
2603 {
2604 	lockdep_assert_held(&ce->guc_state.lock);
2605 
2606 	set_context_pending_disable(ce);
2607 	clr_context_enabled(ce);
2608 	guc_blocked_fence_reinit(ce);
2609 	intel_context_get(ce);
2610 
2611 	return ce->guc_id.id;
2612 }
2613 
2614 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
2615 {
2616 	struct intel_guc *guc = ce_to_guc(ce);
2617 	unsigned long flags;
2618 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
2619 	intel_wakeref_t wakeref;
2620 	u16 guc_id;
2621 	bool enabled;
2622 
2623 	GEM_BUG_ON(intel_context_is_child(ce));
2624 
2625 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2626 
2627 	incr_context_blocked(ce);
2628 
2629 	enabled = context_enabled(ce);
2630 	if (unlikely(!enabled || submission_disabled(guc))) {
2631 		if (enabled)
2632 			clr_context_enabled(ce);
2633 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2634 		return &ce->guc_state.blocked;
2635 	}
2636 
2637 	/*
2638 	 * We add +2 here as the schedule disable complete CTB handler calls
2639 	 * intel_context_sched_disable_unpin (-2 to pin_count).
2640 	 */
2641 	atomic_add(2, &ce->pin_count);
2642 
2643 	guc_id = prep_context_pending_disable(ce);
2644 
2645 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2646 
2647 	with_intel_runtime_pm(runtime_pm, wakeref)
2648 		__guc_context_sched_disable(guc, ce, guc_id);
2649 
2650 	return &ce->guc_state.blocked;
2651 }
2652 
2653 #define SCHED_STATE_MULTI_BLOCKED_MASK \
2654 	(SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
2655 #define SCHED_STATE_NO_UNBLOCK \
2656 	(SCHED_STATE_MULTI_BLOCKED_MASK | \
2657 	 SCHED_STATE_PENDING_DISABLE | \
2658 	 SCHED_STATE_BANNED)
2659 
2660 static bool context_cant_unblock(struct intel_context *ce)
2661 {
2662 	lockdep_assert_held(&ce->guc_state.lock);
2663 
2664 	return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
2665 		context_guc_id_invalid(ce) ||
2666 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
2667 		!intel_context_is_pinned(ce);
2668 }
2669 
2670 static void guc_context_unblock(struct intel_context *ce)
2671 {
2672 	struct intel_guc *guc = ce_to_guc(ce);
2673 	unsigned long flags;
2674 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
2675 	intel_wakeref_t wakeref;
2676 	bool enable;
2677 
2678 	GEM_BUG_ON(context_enabled(ce));
2679 	GEM_BUG_ON(intel_context_is_child(ce));
2680 
2681 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2682 
2683 	if (unlikely(submission_disabled(guc) ||
2684 		     context_cant_unblock(ce))) {
2685 		enable = false;
2686 	} else {
2687 		enable = true;
2688 		set_context_pending_enable(ce);
2689 		set_context_enabled(ce);
2690 		intel_context_get(ce);
2691 	}
2692 
2693 	decr_context_blocked(ce);
2694 
2695 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2696 
2697 	if (enable) {
2698 		with_intel_runtime_pm(runtime_pm, wakeref)
2699 			__guc_context_sched_enable(guc, ce);
2700 	}
2701 }
2702 
2703 static void guc_context_cancel_request(struct intel_context *ce,
2704 				       struct i915_request *rq)
2705 {
2706 	struct intel_context *block_context =
2707 		request_to_scheduling_context(rq);
2708 
2709 	if (i915_sw_fence_signaled(&rq->submit)) {
2710 		struct i915_sw_fence *fence;
2711 
2712 		intel_context_get(ce);
2713 		fence = guc_context_block(block_context);
2714 		i915_sw_fence_wait(fence);
2715 		if (!i915_request_completed(rq)) {
2716 			__i915_request_skip(rq);
2717 			guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
2718 					true);
2719 		}
2720 
2721 		guc_context_unblock(block_context);
2722 		intel_context_put(ce);
2723 	}
2724 }
2725 
2726 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
2727 						 u16 guc_id,
2728 						 u32 preemption_timeout)
2729 {
2730 	struct context_policy policy;
2731 
2732 	__guc_context_policy_start_klv(&policy, guc_id);
2733 	__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2734 	__guc_context_set_context_policies(guc, &policy, true);
2735 }
2736 
2737 static void
2738 guc_context_revoke(struct intel_context *ce, struct i915_request *rq,
2739 		   unsigned int preempt_timeout_ms)
2740 {
2741 	struct intel_guc *guc = ce_to_guc(ce);
2742 	struct intel_runtime_pm *runtime_pm =
2743 		&ce->engine->gt->i915->runtime_pm;
2744 	intel_wakeref_t wakeref;
2745 	unsigned long flags;
2746 
2747 	GEM_BUG_ON(intel_context_is_child(ce));
2748 
2749 	guc_flush_submissions(guc);
2750 
2751 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2752 	set_context_banned(ce);
2753 
2754 	if (submission_disabled(guc) ||
2755 	    (!context_enabled(ce) && !context_pending_disable(ce))) {
2756 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2757 
2758 		guc_cancel_context_requests(ce);
2759 		intel_engine_signal_breadcrumbs(ce->engine);
2760 	} else if (!context_pending_disable(ce)) {
2761 		u16 guc_id;
2762 
2763 		/*
2764 		 * We add +2 here as the schedule disable complete CTB handler
2765 		 * calls intel_context_sched_disable_unpin (-2 to pin_count).
2766 		 */
2767 		atomic_add(2, &ce->pin_count);
2768 
2769 		guc_id = prep_context_pending_disable(ce);
2770 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2771 
2772 		/*
2773 		 * In addition to disabling scheduling, set the preemption
2774 		 * timeout to the minimum value (1 us) so the banned context
2775 		 * gets kicked off the HW ASAP.
2776 		 */
2777 		with_intel_runtime_pm(runtime_pm, wakeref) {
2778 			__guc_context_set_preemption_timeout(guc, guc_id,
2779 							     preempt_timeout_ms);
2780 			__guc_context_sched_disable(guc, ce, guc_id);
2781 		}
2782 	} else {
2783 		if (!context_guc_id_invalid(ce))
2784 			with_intel_runtime_pm(runtime_pm, wakeref)
2785 				__guc_context_set_preemption_timeout(guc,
2786 								     ce->guc_id.id,
2787 								     preempt_timeout_ms);
2788 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2789 	}
2790 }
2791 
2792 static void guc_context_sched_disable(struct intel_context *ce)
2793 {
2794 	struct intel_guc *guc = ce_to_guc(ce);
2795 	unsigned long flags;
2796 	struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
2797 	intel_wakeref_t wakeref;
2798 	u16 guc_id;
2799 
2800 	GEM_BUG_ON(intel_context_is_child(ce));
2801 
2802 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2803 
2804 	/*
2805 	 * We have to check if the context has been disabled by another thread,
2806 	 * check if submssion has been disabled to seal a race with reset and
2807 	 * finally check if any more requests have been committed to the
2808 	 * context ensursing that a request doesn't slip through the
2809 	 * 'context_pending_disable' fence.
2810 	 */
2811 	if (unlikely(!context_enabled(ce) || submission_disabled(guc) ||
2812 		     context_has_committed_requests(ce))) {
2813 		clr_context_enabled(ce);
2814 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2815 		goto unpin;
2816 	}
2817 	guc_id = prep_context_pending_disable(ce);
2818 
2819 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2820 
2821 	with_intel_runtime_pm(runtime_pm, wakeref)
2822 		__guc_context_sched_disable(guc, ce, guc_id);
2823 
2824 	return;
2825 unpin:
2826 	intel_context_sched_disable_unpin(ce);
2827 }
2828 
2829 static inline void guc_lrc_desc_unpin(struct intel_context *ce)
2830 {
2831 	struct intel_guc *guc = ce_to_guc(ce);
2832 	struct intel_gt *gt = guc_to_gt(guc);
2833 	unsigned long flags;
2834 	bool disabled;
2835 
2836 	GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
2837 	GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
2838 	GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
2839 	GEM_BUG_ON(context_enabled(ce));
2840 
2841 	/* Seal race with Reset */
2842 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2843 	disabled = submission_disabled(guc);
2844 	if (likely(!disabled)) {
2845 		__intel_gt_pm_get(gt);
2846 		set_context_destroyed(ce);
2847 		clr_context_registered(ce);
2848 	}
2849 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2850 	if (unlikely(disabled)) {
2851 		release_guc_id(guc, ce);
2852 		__guc_context_destroy(ce);
2853 		return;
2854 	}
2855 
2856 	deregister_context(ce, ce->guc_id.id);
2857 }
2858 
2859 static void __guc_context_destroy(struct intel_context *ce)
2860 {
2861 	GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
2862 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
2863 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
2864 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
2865 	GEM_BUG_ON(ce->guc_state.number_committed_requests);
2866 
2867 	lrc_fini(ce);
2868 	intel_context_fini(ce);
2869 
2870 	if (intel_engine_is_virtual(ce->engine)) {
2871 		struct guc_virtual_engine *ve =
2872 			container_of(ce, typeof(*ve), context);
2873 
2874 		if (ve->base.breadcrumbs)
2875 			intel_breadcrumbs_put(ve->base.breadcrumbs);
2876 
2877 		kfree(ve);
2878 	} else {
2879 		intel_context_free(ce);
2880 	}
2881 }
2882 
2883 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
2884 {
2885 	struct intel_context *ce;
2886 	unsigned long flags;
2887 
2888 	GEM_BUG_ON(!submission_disabled(guc) &&
2889 		   guc_submission_initialized(guc));
2890 
2891 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
2892 		spin_lock_irqsave(&guc->submission_state.lock, flags);
2893 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
2894 					      struct intel_context,
2895 					      destroyed_link);
2896 		if (ce)
2897 			list_del_init(&ce->destroyed_link);
2898 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2899 
2900 		if (!ce)
2901 			break;
2902 
2903 		release_guc_id(guc, ce);
2904 		__guc_context_destroy(ce);
2905 	}
2906 }
2907 
2908 static void deregister_destroyed_contexts(struct intel_guc *guc)
2909 {
2910 	struct intel_context *ce;
2911 	unsigned long flags;
2912 
2913 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
2914 		spin_lock_irqsave(&guc->submission_state.lock, flags);
2915 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
2916 					      struct intel_context,
2917 					      destroyed_link);
2918 		if (ce)
2919 			list_del_init(&ce->destroyed_link);
2920 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2921 
2922 		if (!ce)
2923 			break;
2924 
2925 		guc_lrc_desc_unpin(ce);
2926 	}
2927 }
2928 
2929 static void destroyed_worker_func(struct work_struct *w)
2930 {
2931 	struct intel_guc *guc = container_of(w, struct intel_guc,
2932 					     submission_state.destroyed_worker);
2933 	struct intel_gt *gt = guc_to_gt(guc);
2934 	int tmp;
2935 
2936 	with_intel_gt_pm(gt, tmp)
2937 		deregister_destroyed_contexts(guc);
2938 }
2939 
2940 static void guc_context_destroy(struct kref *kref)
2941 {
2942 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
2943 	struct intel_guc *guc = ce_to_guc(ce);
2944 	unsigned long flags;
2945 	bool destroy;
2946 
2947 	/*
2948 	 * If the guc_id is invalid this context has been stolen and we can free
2949 	 * it immediately. Also can be freed immediately if the context is not
2950 	 * registered with the GuC or the GuC is in the middle of a reset.
2951 	 */
2952 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2953 	destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
2954 		!ctx_id_mapped(guc, ce->guc_id.id);
2955 	if (likely(!destroy)) {
2956 		if (!list_empty(&ce->guc_id.link))
2957 			list_del_init(&ce->guc_id.link);
2958 		list_add_tail(&ce->destroyed_link,
2959 			      &guc->submission_state.destroyed_contexts);
2960 	} else {
2961 		__release_guc_id(guc, ce);
2962 	}
2963 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2964 	if (unlikely(destroy)) {
2965 		__guc_context_destroy(ce);
2966 		return;
2967 	}
2968 
2969 	/*
2970 	 * We use a worker to issue the H2G to deregister the context as we can
2971 	 * take the GT PM for the first time which isn't allowed from an atomic
2972 	 * context.
2973 	 */
2974 	queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
2975 }
2976 
2977 static int guc_context_alloc(struct intel_context *ce)
2978 {
2979 	return lrc_alloc(ce, ce->engine);
2980 }
2981 
2982 static void __guc_context_set_prio(struct intel_guc *guc,
2983 				   struct intel_context *ce)
2984 {
2985 	struct context_policy policy;
2986 
2987 	__guc_context_policy_start_klv(&policy, ce->guc_id.id);
2988 	__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2989 	__guc_context_set_context_policies(guc, &policy, true);
2990 }
2991 
2992 static void guc_context_set_prio(struct intel_guc *guc,
2993 				 struct intel_context *ce,
2994 				 u8 prio)
2995 {
2996 	GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
2997 		   prio > GUC_CLIENT_PRIORITY_NORMAL);
2998 	lockdep_assert_held(&ce->guc_state.lock);
2999 
3000 	if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3001 	    !context_registered(ce)) {
3002 		ce->guc_state.prio = prio;
3003 		return;
3004 	}
3005 
3006 	ce->guc_state.prio = prio;
3007 	__guc_context_set_prio(guc, ce);
3008 
3009 	trace_intel_context_set_prio(ce);
3010 }
3011 
3012 static inline u8 map_i915_prio_to_guc_prio(int prio)
3013 {
3014 	if (prio == I915_PRIORITY_NORMAL)
3015 		return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3016 	else if (prio < I915_PRIORITY_NORMAL)
3017 		return GUC_CLIENT_PRIORITY_NORMAL;
3018 	else if (prio < I915_PRIORITY_DISPLAY)
3019 		return GUC_CLIENT_PRIORITY_HIGH;
3020 	else
3021 		return GUC_CLIENT_PRIORITY_KMD_HIGH;
3022 }
3023 
3024 static inline void add_context_inflight_prio(struct intel_context *ce,
3025 					     u8 guc_prio)
3026 {
3027 	lockdep_assert_held(&ce->guc_state.lock);
3028 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3029 
3030 	++ce->guc_state.prio_count[guc_prio];
3031 
3032 	/* Overflow protection */
3033 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3034 }
3035 
3036 static inline void sub_context_inflight_prio(struct intel_context *ce,
3037 					     u8 guc_prio)
3038 {
3039 	lockdep_assert_held(&ce->guc_state.lock);
3040 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3041 
3042 	/* Underflow protection */
3043 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3044 
3045 	--ce->guc_state.prio_count[guc_prio];
3046 }
3047 
3048 static inline void update_context_prio(struct intel_context *ce)
3049 {
3050 	struct intel_guc *guc = &ce->engine->gt->uc.guc;
3051 	int i;
3052 
3053 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3054 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3055 
3056 	lockdep_assert_held(&ce->guc_state.lock);
3057 
3058 	for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3059 		if (ce->guc_state.prio_count[i]) {
3060 			guc_context_set_prio(guc, ce, i);
3061 			break;
3062 		}
3063 	}
3064 }
3065 
3066 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3067 {
3068 	/* Lower value is higher priority */
3069 	return new_guc_prio < old_guc_prio;
3070 }
3071 
3072 static void add_to_context(struct i915_request *rq)
3073 {
3074 	struct intel_context *ce = request_to_scheduling_context(rq);
3075 	u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3076 
3077 	GEM_BUG_ON(intel_context_is_child(ce));
3078 	GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3079 
3080 	spin_lock(&ce->guc_state.lock);
3081 	list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3082 
3083 	if (rq->guc_prio == GUC_PRIO_INIT) {
3084 		rq->guc_prio = new_guc_prio;
3085 		add_context_inflight_prio(ce, rq->guc_prio);
3086 	} else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3087 		sub_context_inflight_prio(ce, rq->guc_prio);
3088 		rq->guc_prio = new_guc_prio;
3089 		add_context_inflight_prio(ce, rq->guc_prio);
3090 	}
3091 	update_context_prio(ce);
3092 
3093 	spin_unlock(&ce->guc_state.lock);
3094 }
3095 
3096 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3097 {
3098 	lockdep_assert_held(&ce->guc_state.lock);
3099 
3100 	if (rq->guc_prio != GUC_PRIO_INIT &&
3101 	    rq->guc_prio != GUC_PRIO_FINI) {
3102 		sub_context_inflight_prio(ce, rq->guc_prio);
3103 		update_context_prio(ce);
3104 	}
3105 	rq->guc_prio = GUC_PRIO_FINI;
3106 }
3107 
3108 static void remove_from_context(struct i915_request *rq)
3109 {
3110 	struct intel_context *ce = request_to_scheduling_context(rq);
3111 
3112 	GEM_BUG_ON(intel_context_is_child(ce));
3113 
3114 	spin_lock_irq(&ce->guc_state.lock);
3115 
3116 	list_del_init(&rq->sched.link);
3117 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3118 
3119 	/* Prevent further __await_execution() registering a cb, then flush */
3120 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3121 
3122 	guc_prio_fini(rq, ce);
3123 
3124 	decr_context_committed_requests(ce);
3125 
3126 	spin_unlock_irq(&ce->guc_state.lock);
3127 
3128 	atomic_dec(&ce->guc_id.ref);
3129 	i915_request_notify_execute_cb_imm(rq);
3130 }
3131 
3132 static const struct intel_context_ops guc_context_ops = {
3133 	.alloc = guc_context_alloc,
3134 
3135 	.pre_pin = guc_context_pre_pin,
3136 	.pin = guc_context_pin,
3137 	.unpin = guc_context_unpin,
3138 	.post_unpin = guc_context_post_unpin,
3139 
3140 	.revoke = guc_context_revoke,
3141 
3142 	.cancel_request = guc_context_cancel_request,
3143 
3144 	.enter = intel_context_enter_engine,
3145 	.exit = intel_context_exit_engine,
3146 
3147 	.sched_disable = guc_context_sched_disable,
3148 
3149 	.reset = lrc_reset,
3150 	.destroy = guc_context_destroy,
3151 
3152 	.create_virtual = guc_create_virtual,
3153 	.create_parallel = guc_create_parallel,
3154 };
3155 
3156 static void submit_work_cb(struct irq_work *wrk)
3157 {
3158 	struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3159 
3160 	might_lock(&rq->engine->sched_engine->lock);
3161 	i915_sw_fence_complete(&rq->submit);
3162 }
3163 
3164 static void __guc_signal_context_fence(struct intel_context *ce)
3165 {
3166 	struct i915_request *rq, *rn;
3167 
3168 	lockdep_assert_held(&ce->guc_state.lock);
3169 
3170 	if (!list_empty(&ce->guc_state.fences))
3171 		trace_intel_context_fence_release(ce);
3172 
3173 	/*
3174 	 * Use an IRQ to ensure locking order of sched_engine->lock ->
3175 	 * ce->guc_state.lock is preserved.
3176 	 */
3177 	list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3178 				 guc_fence_link) {
3179 		list_del(&rq->guc_fence_link);
3180 		irq_work_queue(&rq->submit_work);
3181 	}
3182 
3183 	INIT_LIST_HEAD(&ce->guc_state.fences);
3184 }
3185 
3186 static void guc_signal_context_fence(struct intel_context *ce)
3187 {
3188 	unsigned long flags;
3189 
3190 	GEM_BUG_ON(intel_context_is_child(ce));
3191 
3192 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3193 	clr_context_wait_for_deregister_to_register(ce);
3194 	__guc_signal_context_fence(ce);
3195 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3196 }
3197 
3198 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3199 {
3200 	return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3201 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3202 		!submission_disabled(ce_to_guc(ce));
3203 }
3204 
3205 static void guc_context_init(struct intel_context *ce)
3206 {
3207 	const struct i915_gem_context *ctx;
3208 	int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3209 
3210 	rcu_read_lock();
3211 	ctx = rcu_dereference(ce->gem_context);
3212 	if (ctx)
3213 		prio = ctx->sched.priority;
3214 	rcu_read_unlock();
3215 
3216 	ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3217 	set_bit(CONTEXT_GUC_INIT, &ce->flags);
3218 }
3219 
3220 static int guc_request_alloc(struct i915_request *rq)
3221 {
3222 	struct intel_context *ce = request_to_scheduling_context(rq);
3223 	struct intel_guc *guc = ce_to_guc(ce);
3224 	unsigned long flags;
3225 	int ret;
3226 
3227 	GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3228 
3229 	/*
3230 	 * Flush enough space to reduce the likelihood of waiting after
3231 	 * we start building the request - in which case we will just
3232 	 * have to repeat work.
3233 	 */
3234 	rq->reserved_space += GUC_REQUEST_SIZE;
3235 
3236 	/*
3237 	 * Note that after this point, we have committed to using
3238 	 * this request as it is being used to both track the
3239 	 * state of engine initialisation and liveness of the
3240 	 * golden renderstate above. Think twice before you try
3241 	 * to cancel/unwind this request now.
3242 	 */
3243 
3244 	/* Unconditionally invalidate GPU caches and TLBs. */
3245 	ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3246 	if (ret)
3247 		return ret;
3248 
3249 	rq->reserved_space -= GUC_REQUEST_SIZE;
3250 
3251 	if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3252 		guc_context_init(ce);
3253 
3254 	/*
3255 	 * Call pin_guc_id here rather than in the pinning step as with
3256 	 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3257 	 * guc_id and creating horrible race conditions. This is especially bad
3258 	 * when guc_id are being stolen due to over subscription. By the time
3259 	 * this function is reached, it is guaranteed that the guc_id will be
3260 	 * persistent until the generated request is retired. Thus, sealing these
3261 	 * race conditions. It is still safe to fail here if guc_id are
3262 	 * exhausted and return -EAGAIN to the user indicating that they can try
3263 	 * again in the future.
3264 	 *
3265 	 * There is no need for a lock here as the timeline mutex ensures at
3266 	 * most one context can be executing this code path at once. The
3267 	 * guc_id_ref is incremented once for every request in flight and
3268 	 * decremented on each retire. When it is zero, a lock around the
3269 	 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3270 	 */
3271 	if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3272 		goto out;
3273 
3274 	ret = pin_guc_id(guc, ce);	/* returns 1 if new guc_id assigned */
3275 	if (unlikely(ret < 0))
3276 		return ret;
3277 	if (context_needs_register(ce, !!ret)) {
3278 		ret = try_context_registration(ce, true);
3279 		if (unlikely(ret)) {	/* unwind */
3280 			if (ret == -EPIPE) {
3281 				disable_submission(guc);
3282 				goto out;	/* GPU will be reset */
3283 			}
3284 			atomic_dec(&ce->guc_id.ref);
3285 			unpin_guc_id(guc, ce);
3286 			return ret;
3287 		}
3288 	}
3289 
3290 	clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3291 
3292 out:
3293 	/*
3294 	 * We block all requests on this context if a G2H is pending for a
3295 	 * schedule disable or context deregistration as the GuC will fail a
3296 	 * schedule enable or context registration if either G2H is pending
3297 	 * respectfully. Once a G2H returns, the fence is released that is
3298 	 * blocking these requests (see guc_signal_context_fence).
3299 	 */
3300 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3301 	if (context_wait_for_deregister_to_register(ce) ||
3302 	    context_pending_disable(ce)) {
3303 		init_irq_work(&rq->submit_work, submit_work_cb);
3304 		i915_sw_fence_await(&rq->submit);
3305 
3306 		list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3307 	}
3308 	incr_context_committed_requests(ce);
3309 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3310 
3311 	return 0;
3312 }
3313 
3314 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3315 				       struct i915_gem_ww_ctx *ww,
3316 				       void **vaddr)
3317 {
3318 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3319 
3320 	return __guc_context_pre_pin(ce, engine, ww, vaddr);
3321 }
3322 
3323 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3324 {
3325 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3326 	int ret = __guc_context_pin(ce, engine, vaddr);
3327 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3328 
3329 	if (likely(!ret))
3330 		for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3331 			intel_engine_pm_get(engine);
3332 
3333 	return ret;
3334 }
3335 
3336 static void guc_virtual_context_unpin(struct intel_context *ce)
3337 {
3338 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3339 	struct intel_engine_cs *engine;
3340 	struct intel_guc *guc = ce_to_guc(ce);
3341 
3342 	GEM_BUG_ON(context_enabled(ce));
3343 	GEM_BUG_ON(intel_context_is_barrier(ce));
3344 
3345 	unpin_guc_id(guc, ce);
3346 	lrc_unpin(ce);
3347 
3348 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3349 		intel_engine_pm_put_async(engine);
3350 }
3351 
3352 static void guc_virtual_context_enter(struct intel_context *ce)
3353 {
3354 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3355 	struct intel_engine_cs *engine;
3356 
3357 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3358 		intel_engine_pm_get(engine);
3359 
3360 	intel_timeline_enter(ce->timeline);
3361 }
3362 
3363 static void guc_virtual_context_exit(struct intel_context *ce)
3364 {
3365 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3366 	struct intel_engine_cs *engine;
3367 
3368 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3369 		intel_engine_pm_put(engine);
3370 
3371 	intel_timeline_exit(ce->timeline);
3372 }
3373 
3374 static int guc_virtual_context_alloc(struct intel_context *ce)
3375 {
3376 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3377 
3378 	return lrc_alloc(ce, engine);
3379 }
3380 
3381 static const struct intel_context_ops virtual_guc_context_ops = {
3382 	.alloc = guc_virtual_context_alloc,
3383 
3384 	.pre_pin = guc_virtual_context_pre_pin,
3385 	.pin = guc_virtual_context_pin,
3386 	.unpin = guc_virtual_context_unpin,
3387 	.post_unpin = guc_context_post_unpin,
3388 
3389 	.revoke = guc_context_revoke,
3390 
3391 	.cancel_request = guc_context_cancel_request,
3392 
3393 	.enter = guc_virtual_context_enter,
3394 	.exit = guc_virtual_context_exit,
3395 
3396 	.sched_disable = guc_context_sched_disable,
3397 
3398 	.destroy = guc_context_destroy,
3399 
3400 	.get_sibling = guc_virtual_get_sibling,
3401 };
3402 
3403 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
3404 {
3405 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3406 	struct intel_guc *guc = ce_to_guc(ce);
3407 	int ret;
3408 
3409 	GEM_BUG_ON(!intel_context_is_parent(ce));
3410 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3411 
3412 	ret = pin_guc_id(guc, ce);
3413 	if (unlikely(ret < 0))
3414 		return ret;
3415 
3416 	return __guc_context_pin(ce, engine, vaddr);
3417 }
3418 
3419 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
3420 {
3421 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3422 
3423 	GEM_BUG_ON(!intel_context_is_child(ce));
3424 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3425 
3426 	__intel_context_pin(ce->parallel.parent);
3427 	return __guc_context_pin(ce, engine, vaddr);
3428 }
3429 
3430 static void guc_parent_context_unpin(struct intel_context *ce)
3431 {
3432 	struct intel_guc *guc = ce_to_guc(ce);
3433 
3434 	GEM_BUG_ON(context_enabled(ce));
3435 	GEM_BUG_ON(intel_context_is_barrier(ce));
3436 	GEM_BUG_ON(!intel_context_is_parent(ce));
3437 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3438 
3439 	unpin_guc_id(guc, ce);
3440 	lrc_unpin(ce);
3441 }
3442 
3443 static void guc_child_context_unpin(struct intel_context *ce)
3444 {
3445 	GEM_BUG_ON(context_enabled(ce));
3446 	GEM_BUG_ON(intel_context_is_barrier(ce));
3447 	GEM_BUG_ON(!intel_context_is_child(ce));
3448 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3449 
3450 	lrc_unpin(ce);
3451 }
3452 
3453 static void guc_child_context_post_unpin(struct intel_context *ce)
3454 {
3455 	GEM_BUG_ON(!intel_context_is_child(ce));
3456 	GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
3457 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3458 
3459 	lrc_post_unpin(ce);
3460 	intel_context_unpin(ce->parallel.parent);
3461 }
3462 
3463 static void guc_child_context_destroy(struct kref *kref)
3464 {
3465 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3466 
3467 	__guc_context_destroy(ce);
3468 }
3469 
3470 static const struct intel_context_ops virtual_parent_context_ops = {
3471 	.alloc = guc_virtual_context_alloc,
3472 
3473 	.pre_pin = guc_context_pre_pin,
3474 	.pin = guc_parent_context_pin,
3475 	.unpin = guc_parent_context_unpin,
3476 	.post_unpin = guc_context_post_unpin,
3477 
3478 	.revoke = guc_context_revoke,
3479 
3480 	.cancel_request = guc_context_cancel_request,
3481 
3482 	.enter = guc_virtual_context_enter,
3483 	.exit = guc_virtual_context_exit,
3484 
3485 	.sched_disable = guc_context_sched_disable,
3486 
3487 	.destroy = guc_context_destroy,
3488 
3489 	.get_sibling = guc_virtual_get_sibling,
3490 };
3491 
3492 static const struct intel_context_ops virtual_child_context_ops = {
3493 	.alloc = guc_virtual_context_alloc,
3494 
3495 	.pre_pin = guc_context_pre_pin,
3496 	.pin = guc_child_context_pin,
3497 	.unpin = guc_child_context_unpin,
3498 	.post_unpin = guc_child_context_post_unpin,
3499 
3500 	.cancel_request = guc_context_cancel_request,
3501 
3502 	.enter = guc_virtual_context_enter,
3503 	.exit = guc_virtual_context_exit,
3504 
3505 	.destroy = guc_child_context_destroy,
3506 
3507 	.get_sibling = guc_virtual_get_sibling,
3508 };
3509 
3510 /*
3511  * The below override of the breadcrumbs is enabled when the user configures a
3512  * context for parallel submission (multi-lrc, parent-child).
3513  *
3514  * The overridden breadcrumbs implements an algorithm which allows the GuC to
3515  * safely preempt all the hw contexts configured for parallel submission
3516  * between each BB. The contract between the i915 and GuC is if the parent
3517  * context can be preempted, all the children can be preempted, and the GuC will
3518  * always try to preempt the parent before the children. A handshake between the
3519  * parent / children breadcrumbs ensures the i915 holds up its end of the deal
3520  * creating a window to preempt between each set of BBs.
3521  */
3522 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
3523 						     u64 offset, u32 len,
3524 						     const unsigned int flags);
3525 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
3526 						    u64 offset, u32 len,
3527 						    const unsigned int flags);
3528 static u32 *
3529 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
3530 						 u32 *cs);
3531 static u32 *
3532 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
3533 						u32 *cs);
3534 
3535 static struct intel_context *
3536 guc_create_parallel(struct intel_engine_cs **engines,
3537 		    unsigned int num_siblings,
3538 		    unsigned int width)
3539 {
3540 	struct intel_engine_cs **siblings = NULL;
3541 	struct intel_context *parent = NULL, *ce, *err;
3542 	int i, j;
3543 
3544 	siblings = kmalloc_array(num_siblings,
3545 				 sizeof(*siblings),
3546 				 GFP_KERNEL);
3547 	if (!siblings)
3548 		return ERR_PTR(-ENOMEM);
3549 
3550 	for (i = 0; i < width; ++i) {
3551 		for (j = 0; j < num_siblings; ++j)
3552 			siblings[j] = engines[i * num_siblings + j];
3553 
3554 		ce = intel_engine_create_virtual(siblings, num_siblings,
3555 						 FORCE_VIRTUAL);
3556 		if (IS_ERR(ce)) {
3557 			err = ERR_CAST(ce);
3558 			goto unwind;
3559 		}
3560 
3561 		if (i == 0) {
3562 			parent = ce;
3563 			parent->ops = &virtual_parent_context_ops;
3564 		} else {
3565 			ce->ops = &virtual_child_context_ops;
3566 			intel_context_bind_parent_child(parent, ce);
3567 		}
3568 	}
3569 
3570 	parent->parallel.fence_context = dma_fence_context_alloc(1);
3571 
3572 	parent->engine->emit_bb_start =
3573 		emit_bb_start_parent_no_preempt_mid_batch;
3574 	parent->engine->emit_fini_breadcrumb =
3575 		emit_fini_breadcrumb_parent_no_preempt_mid_batch;
3576 	parent->engine->emit_fini_breadcrumb_dw =
3577 		12 + 4 * parent->parallel.number_children;
3578 	for_each_child(parent, ce) {
3579 		ce->engine->emit_bb_start =
3580 			emit_bb_start_child_no_preempt_mid_batch;
3581 		ce->engine->emit_fini_breadcrumb =
3582 			emit_fini_breadcrumb_child_no_preempt_mid_batch;
3583 		ce->engine->emit_fini_breadcrumb_dw = 16;
3584 	}
3585 
3586 	kfree(siblings);
3587 	return parent;
3588 
3589 unwind:
3590 	if (parent)
3591 		intel_context_put(parent);
3592 	kfree(siblings);
3593 	return err;
3594 }
3595 
3596 static bool
3597 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
3598 {
3599 	struct intel_engine_cs *sibling;
3600 	intel_engine_mask_t tmp, mask = b->engine_mask;
3601 	bool result = false;
3602 
3603 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
3604 		result |= intel_engine_irq_enable(sibling);
3605 
3606 	return result;
3607 }
3608 
3609 static void
3610 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
3611 {
3612 	struct intel_engine_cs *sibling;
3613 	intel_engine_mask_t tmp, mask = b->engine_mask;
3614 
3615 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
3616 		intel_engine_irq_disable(sibling);
3617 }
3618 
3619 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
3620 {
3621 	int i;
3622 
3623 	/*
3624 	 * In GuC submission mode we do not know which physical engine a request
3625 	 * will be scheduled on, this creates a problem because the breadcrumb
3626 	 * interrupt is per physical engine. To work around this we attach
3627 	 * requests and direct all breadcrumb interrupts to the first instance
3628 	 * of an engine per class. In addition all breadcrumb interrupts are
3629 	 * enabled / disabled across an engine class in unison.
3630 	 */
3631 	for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
3632 		struct intel_engine_cs *sibling =
3633 			engine->gt->engine_class[engine->class][i];
3634 
3635 		if (sibling) {
3636 			if (engine->breadcrumbs != sibling->breadcrumbs) {
3637 				intel_breadcrumbs_put(engine->breadcrumbs);
3638 				engine->breadcrumbs =
3639 					intel_breadcrumbs_get(sibling->breadcrumbs);
3640 			}
3641 			break;
3642 		}
3643 	}
3644 
3645 	if (engine->breadcrumbs) {
3646 		engine->breadcrumbs->engine_mask |= engine->mask;
3647 		engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
3648 		engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
3649 	}
3650 }
3651 
3652 static void guc_bump_inflight_request_prio(struct i915_request *rq,
3653 					   int prio)
3654 {
3655 	struct intel_context *ce = request_to_scheduling_context(rq);
3656 	u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
3657 
3658 	/* Short circuit function */
3659 	if (prio < I915_PRIORITY_NORMAL ||
3660 	    rq->guc_prio == GUC_PRIO_FINI ||
3661 	    (rq->guc_prio != GUC_PRIO_INIT &&
3662 	     !new_guc_prio_higher(rq->guc_prio, new_guc_prio)))
3663 		return;
3664 
3665 	spin_lock(&ce->guc_state.lock);
3666 	if (rq->guc_prio != GUC_PRIO_FINI) {
3667 		if (rq->guc_prio != GUC_PRIO_INIT)
3668 			sub_context_inflight_prio(ce, rq->guc_prio);
3669 		rq->guc_prio = new_guc_prio;
3670 		add_context_inflight_prio(ce, rq->guc_prio);
3671 		update_context_prio(ce);
3672 	}
3673 	spin_unlock(&ce->guc_state.lock);
3674 }
3675 
3676 static void guc_retire_inflight_request_prio(struct i915_request *rq)
3677 {
3678 	struct intel_context *ce = request_to_scheduling_context(rq);
3679 
3680 	spin_lock(&ce->guc_state.lock);
3681 	guc_prio_fini(rq, ce);
3682 	spin_unlock(&ce->guc_state.lock);
3683 }
3684 
3685 static void sanitize_hwsp(struct intel_engine_cs *engine)
3686 {
3687 	struct intel_timeline *tl;
3688 
3689 	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
3690 		intel_timeline_reset_seqno(tl);
3691 }
3692 
3693 static void guc_sanitize(struct intel_engine_cs *engine)
3694 {
3695 	/*
3696 	 * Poison residual state on resume, in case the suspend didn't!
3697 	 *
3698 	 * We have to assume that across suspend/resume (or other loss
3699 	 * of control) that the contents of our pinned buffers has been
3700 	 * lost, replaced by garbage. Since this doesn't always happen,
3701 	 * let's poison such state so that we more quickly spot when
3702 	 * we falsely assume it has been preserved.
3703 	 */
3704 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
3705 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
3706 
3707 	/*
3708 	 * The kernel_context HWSP is stored in the status_page. As above,
3709 	 * that may be lost on resume/initialisation, and so we need to
3710 	 * reset the value in the HWSP.
3711 	 */
3712 	sanitize_hwsp(engine);
3713 
3714 	/* And scrub the dirty cachelines for the HWSP */
3715 	drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
3716 
3717 	intel_engine_reset_pinned_contexts(engine);
3718 }
3719 
3720 static void setup_hwsp(struct intel_engine_cs *engine)
3721 {
3722 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
3723 
3724 	ENGINE_WRITE_FW(engine,
3725 			RING_HWS_PGA,
3726 			i915_ggtt_offset(engine->status_page.vma));
3727 }
3728 
3729 static void start_engine(struct intel_engine_cs *engine)
3730 {
3731 	ENGINE_WRITE_FW(engine,
3732 			RING_MODE_GEN7,
3733 			_MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
3734 
3735 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
3736 	ENGINE_POSTING_READ(engine, RING_MI_MODE);
3737 }
3738 
3739 static int guc_resume(struct intel_engine_cs *engine)
3740 {
3741 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
3742 
3743 	intel_mocs_init_engine(engine);
3744 
3745 	intel_breadcrumbs_reset(engine->breadcrumbs);
3746 
3747 	setup_hwsp(engine);
3748 	start_engine(engine);
3749 
3750 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
3751 		xehp_enable_ccs_engines(engine);
3752 
3753 	return 0;
3754 }
3755 
3756 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
3757 {
3758 	return !sched_engine->tasklet.callback;
3759 }
3760 
3761 static void guc_set_default_submission(struct intel_engine_cs *engine)
3762 {
3763 	engine->submit_request = guc_submit_request;
3764 }
3765 
3766 static inline void guc_kernel_context_pin(struct intel_guc *guc,
3767 					  struct intel_context *ce)
3768 {
3769 	/*
3770 	 * Note: we purposefully do not check the returns below because
3771 	 * the registration can only fail if a reset is just starting.
3772 	 * This is called at the end of reset so presumably another reset
3773 	 * isn't happening and even it did this code would be run again.
3774 	 */
3775 
3776 	if (context_guc_id_invalid(ce))
3777 		pin_guc_id(guc, ce);
3778 
3779 	try_context_registration(ce, true);
3780 }
3781 
3782 static inline void guc_init_lrc_mapping(struct intel_guc *guc)
3783 {
3784 	struct intel_gt *gt = guc_to_gt(guc);
3785 	struct intel_engine_cs *engine;
3786 	enum intel_engine_id id;
3787 
3788 	/* make sure all descriptors are clean... */
3789 	xa_destroy(&guc->context_lookup);
3790 
3791 	/*
3792 	 * Some contexts might have been pinned before we enabled GuC
3793 	 * submission, so we need to add them to the GuC bookeeping.
3794 	 * Also, after a reset the of the GuC we want to make sure that the
3795 	 * information shared with GuC is properly reset. The kernel LRCs are
3796 	 * not attached to the gem_context, so they need to be added separately.
3797 	 */
3798 	for_each_engine(engine, gt, id) {
3799 		struct intel_context *ce;
3800 
3801 		list_for_each_entry(ce, &engine->pinned_contexts_list,
3802 				    pinned_contexts_link)
3803 			guc_kernel_context_pin(guc, ce);
3804 	}
3805 }
3806 
3807 static void guc_release(struct intel_engine_cs *engine)
3808 {
3809 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
3810 
3811 	intel_engine_cleanup_common(engine);
3812 	lrc_fini_wa_ctx(engine);
3813 }
3814 
3815 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
3816 {
3817 	struct intel_engine_cs *e;
3818 	intel_engine_mask_t tmp, mask = engine->mask;
3819 
3820 	for_each_engine_masked(e, engine->gt, mask, tmp)
3821 		e->serial++;
3822 }
3823 
3824 static void guc_default_vfuncs(struct intel_engine_cs *engine)
3825 {
3826 	/* Default vfuncs which can be overridden by each engine. */
3827 
3828 	engine->resume = guc_resume;
3829 
3830 	engine->cops = &guc_context_ops;
3831 	engine->request_alloc = guc_request_alloc;
3832 	engine->add_active_request = add_to_context;
3833 	engine->remove_active_request = remove_from_context;
3834 
3835 	engine->sched_engine->schedule = i915_schedule;
3836 
3837 	engine->reset.prepare = guc_engine_reset_prepare;
3838 	engine->reset.rewind = guc_rewind_nop;
3839 	engine->reset.cancel = guc_reset_nop;
3840 	engine->reset.finish = guc_reset_nop;
3841 
3842 	engine->emit_flush = gen8_emit_flush_xcs;
3843 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
3844 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
3845 	if (GRAPHICS_VER(engine->i915) >= 12) {
3846 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
3847 		engine->emit_flush = gen12_emit_flush_xcs;
3848 	}
3849 	engine->set_default_submission = guc_set_default_submission;
3850 	engine->busyness = guc_engine_busyness;
3851 
3852 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
3853 	engine->flags |= I915_ENGINE_HAS_PREEMPTION;
3854 	engine->flags |= I915_ENGINE_HAS_TIMESLICES;
3855 
3856 	/* Wa_14014475959:dg2 */
3857 	if (IS_DG2(engine->i915) && engine->class == COMPUTE_CLASS)
3858 		engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT;
3859 
3860 	/*
3861 	 * TODO: GuC supports timeslicing and semaphores as well, but they're
3862 	 * handled by the firmware so some minor tweaks are required before
3863 	 * enabling.
3864 	 *
3865 	 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
3866 	 */
3867 
3868 	engine->emit_bb_start = gen8_emit_bb_start;
3869 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
3870 		engine->emit_bb_start = gen125_emit_bb_start;
3871 }
3872 
3873 static void rcs_submission_override(struct intel_engine_cs *engine)
3874 {
3875 	switch (GRAPHICS_VER(engine->i915)) {
3876 	case 12:
3877 		engine->emit_flush = gen12_emit_flush_rcs;
3878 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
3879 		break;
3880 	case 11:
3881 		engine->emit_flush = gen11_emit_flush_rcs;
3882 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
3883 		break;
3884 	default:
3885 		engine->emit_flush = gen8_emit_flush_rcs;
3886 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
3887 		break;
3888 	}
3889 }
3890 
3891 static inline void guc_default_irqs(struct intel_engine_cs *engine)
3892 {
3893 	engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
3894 	intel_engine_set_irq_handler(engine, cs_irq_handler);
3895 }
3896 
3897 static void guc_sched_engine_destroy(struct kref *kref)
3898 {
3899 	struct i915_sched_engine *sched_engine =
3900 		container_of(kref, typeof(*sched_engine), ref);
3901 	struct intel_guc *guc = sched_engine->private_data;
3902 
3903 	guc->sched_engine = NULL;
3904 	tasklet_kill(&sched_engine->tasklet); /* flush the callback */
3905 	kfree(sched_engine);
3906 }
3907 
3908 int intel_guc_submission_setup(struct intel_engine_cs *engine)
3909 {
3910 	struct drm_i915_private *i915 = engine->i915;
3911 	struct intel_guc *guc = &engine->gt->uc.guc;
3912 
3913 	/*
3914 	 * The setup relies on several assumptions (e.g. irqs always enabled)
3915 	 * that are only valid on gen11+
3916 	 */
3917 	GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
3918 
3919 	if (!guc->sched_engine) {
3920 		guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
3921 		if (!guc->sched_engine)
3922 			return -ENOMEM;
3923 
3924 		guc->sched_engine->schedule = i915_schedule;
3925 		guc->sched_engine->disabled = guc_sched_engine_disabled;
3926 		guc->sched_engine->private_data = guc;
3927 		guc->sched_engine->destroy = guc_sched_engine_destroy;
3928 		guc->sched_engine->bump_inflight_request_prio =
3929 			guc_bump_inflight_request_prio;
3930 		guc->sched_engine->retire_inflight_request_prio =
3931 			guc_retire_inflight_request_prio;
3932 		tasklet_setup(&guc->sched_engine->tasklet,
3933 			      guc_submission_tasklet);
3934 	}
3935 	i915_sched_engine_put(engine->sched_engine);
3936 	engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
3937 
3938 	guc_default_vfuncs(engine);
3939 	guc_default_irqs(engine);
3940 	guc_init_breadcrumbs(engine);
3941 
3942 	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
3943 		rcs_submission_override(engine);
3944 
3945 	lrc_init_wa_ctx(engine);
3946 
3947 	/* Finally, take ownership and responsibility for cleanup! */
3948 	engine->sanitize = guc_sanitize;
3949 	engine->release = guc_release;
3950 
3951 	return 0;
3952 }
3953 
3954 void intel_guc_submission_enable(struct intel_guc *guc)
3955 {
3956 	guc_init_lrc_mapping(guc);
3957 	guc_init_engine_stats(guc);
3958 }
3959 
3960 void intel_guc_submission_disable(struct intel_guc *guc)
3961 {
3962 	/* Note: By the time we're here, GuC may have already been reset */
3963 }
3964 
3965 static bool __guc_submission_supported(struct intel_guc *guc)
3966 {
3967 	/* GuC submission is unavailable for pre-Gen11 */
3968 	return intel_guc_is_supported(guc) &&
3969 	       GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11;
3970 }
3971 
3972 static bool __guc_submission_selected(struct intel_guc *guc)
3973 {
3974 	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
3975 
3976 	if (!intel_guc_submission_is_supported(guc))
3977 		return false;
3978 
3979 	return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
3980 }
3981 
3982 void intel_guc_submission_init_early(struct intel_guc *guc)
3983 {
3984 	xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
3985 
3986 	spin_lock_init(&guc->submission_state.lock);
3987 	INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
3988 	ida_init(&guc->submission_state.guc_ids);
3989 	INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
3990 	INIT_WORK(&guc->submission_state.destroyed_worker,
3991 		  destroyed_worker_func);
3992 	INIT_WORK(&guc->submission_state.reset_fail_worker,
3993 		  reset_fail_worker_func);
3994 
3995 	spin_lock_init(&guc->timestamp.lock);
3996 	INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
3997 
3998 	guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
3999 	guc->submission_supported = __guc_submission_supported(guc);
4000 	guc->submission_selected = __guc_submission_selected(guc);
4001 }
4002 
4003 static inline struct intel_context *
4004 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4005 {
4006 	struct intel_context *ce;
4007 
4008 	if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4009 		drm_err(&guc_to_gt(guc)->i915->drm,
4010 			"Invalid ctx_id %u\n", ctx_id);
4011 		return NULL;
4012 	}
4013 
4014 	ce = __get_context(guc, ctx_id);
4015 	if (unlikely(!ce)) {
4016 		drm_err(&guc_to_gt(guc)->i915->drm,
4017 			"Context is NULL, ctx_id %u\n", ctx_id);
4018 		return NULL;
4019 	}
4020 
4021 	if (unlikely(intel_context_is_child(ce))) {
4022 		drm_err(&guc_to_gt(guc)->i915->drm,
4023 			"Context is child, ctx_id %u\n", ctx_id);
4024 		return NULL;
4025 	}
4026 
4027 	return ce;
4028 }
4029 
4030 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
4031 					  const u32 *msg,
4032 					  u32 len)
4033 {
4034 	struct intel_context *ce;
4035 	u32 ctx_id;
4036 
4037 	if (unlikely(len < 1)) {
4038 		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len);
4039 		return -EPROTO;
4040 	}
4041 	ctx_id = msg[0];
4042 
4043 	ce = g2h_context_lookup(guc, ctx_id);
4044 	if (unlikely(!ce))
4045 		return -EPROTO;
4046 
4047 	trace_intel_context_deregister_done(ce);
4048 
4049 #ifdef CONFIG_DRM_I915_SELFTEST
4050 	if (unlikely(ce->drop_deregister)) {
4051 		ce->drop_deregister = false;
4052 		return 0;
4053 	}
4054 #endif
4055 
4056 	if (context_wait_for_deregister_to_register(ce)) {
4057 		struct intel_runtime_pm *runtime_pm =
4058 			&ce->engine->gt->i915->runtime_pm;
4059 		intel_wakeref_t wakeref;
4060 
4061 		/*
4062 		 * Previous owner of this guc_id has been deregistered, now safe
4063 		 * register this context.
4064 		 */
4065 		with_intel_runtime_pm(runtime_pm, wakeref)
4066 			register_context(ce, true);
4067 		guc_signal_context_fence(ce);
4068 		intel_context_put(ce);
4069 	} else if (context_destroyed(ce)) {
4070 		/* Context has been destroyed */
4071 		intel_gt_pm_put_async(guc_to_gt(guc));
4072 		release_guc_id(guc, ce);
4073 		__guc_context_destroy(ce);
4074 	}
4075 
4076 	decr_outstanding_submission_g2h(guc);
4077 
4078 	return 0;
4079 }
4080 
4081 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
4082 				     const u32 *msg,
4083 				     u32 len)
4084 {
4085 	struct intel_context *ce;
4086 	unsigned long flags;
4087 	u32 ctx_id;
4088 
4089 	if (unlikely(len < 2)) {
4090 		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len);
4091 		return -EPROTO;
4092 	}
4093 	ctx_id = msg[0];
4094 
4095 	ce = g2h_context_lookup(guc, ctx_id);
4096 	if (unlikely(!ce))
4097 		return -EPROTO;
4098 
4099 	if (unlikely(context_destroyed(ce) ||
4100 		     (!context_pending_enable(ce) &&
4101 		     !context_pending_disable(ce)))) {
4102 		drm_err(&guc_to_gt(guc)->i915->drm,
4103 			"Bad context sched_state 0x%x, ctx_id %u\n",
4104 			ce->guc_state.sched_state, ctx_id);
4105 		return -EPROTO;
4106 	}
4107 
4108 	trace_intel_context_sched_done(ce);
4109 
4110 	if (context_pending_enable(ce)) {
4111 #ifdef CONFIG_DRM_I915_SELFTEST
4112 		if (unlikely(ce->drop_schedule_enable)) {
4113 			ce->drop_schedule_enable = false;
4114 			return 0;
4115 		}
4116 #endif
4117 
4118 		spin_lock_irqsave(&ce->guc_state.lock, flags);
4119 		clr_context_pending_enable(ce);
4120 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4121 	} else if (context_pending_disable(ce)) {
4122 		bool banned;
4123 
4124 #ifdef CONFIG_DRM_I915_SELFTEST
4125 		if (unlikely(ce->drop_schedule_disable)) {
4126 			ce->drop_schedule_disable = false;
4127 			return 0;
4128 		}
4129 #endif
4130 
4131 		/*
4132 		 * Unpin must be done before __guc_signal_context_fence,
4133 		 * otherwise a race exists between the requests getting
4134 		 * submitted + retired before this unpin completes resulting in
4135 		 * the pin_count going to zero and the context still being
4136 		 * enabled.
4137 		 */
4138 		intel_context_sched_disable_unpin(ce);
4139 
4140 		spin_lock_irqsave(&ce->guc_state.lock, flags);
4141 		banned = context_banned(ce);
4142 		clr_context_banned(ce);
4143 		clr_context_pending_disable(ce);
4144 		__guc_signal_context_fence(ce);
4145 		guc_blocked_fence_complete(ce);
4146 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4147 
4148 		if (banned) {
4149 			guc_cancel_context_requests(ce);
4150 			intel_engine_signal_breadcrumbs(ce->engine);
4151 		}
4152 	}
4153 
4154 	decr_outstanding_submission_g2h(guc);
4155 	intel_context_put(ce);
4156 
4157 	return 0;
4158 }
4159 
4160 static void capture_error_state(struct intel_guc *guc,
4161 				struct intel_context *ce)
4162 {
4163 	struct intel_gt *gt = guc_to_gt(guc);
4164 	struct drm_i915_private *i915 = gt->i915;
4165 	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
4166 	intel_wakeref_t wakeref;
4167 
4168 	intel_engine_set_hung_context(engine, ce);
4169 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
4170 		i915_capture_error_state(gt, engine->mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
4171 	atomic_inc(&i915->gpu_error.reset_engine_count[engine->uabi_class]);
4172 }
4173 
4174 static void guc_context_replay(struct intel_context *ce)
4175 {
4176 	struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
4177 
4178 	__guc_reset_context(ce, ce->engine->mask);
4179 	tasklet_hi_schedule(&sched_engine->tasklet);
4180 }
4181 
4182 static void guc_handle_context_reset(struct intel_guc *guc,
4183 				     struct intel_context *ce)
4184 {
4185 	trace_intel_context_reset(ce);
4186 
4187 	if (likely(!intel_context_is_banned(ce))) {
4188 		capture_error_state(guc, ce);
4189 		guc_context_replay(ce);
4190 	} else {
4191 		drm_info(&guc_to_gt(guc)->i915->drm,
4192 			 "Ignoring context reset notification of banned context 0x%04X on %s",
4193 			 ce->guc_id.id, ce->engine->name);
4194 	}
4195 }
4196 
4197 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
4198 					const u32 *msg, u32 len)
4199 {
4200 	struct intel_context *ce;
4201 	unsigned long flags;
4202 	int ctx_id;
4203 
4204 	if (unlikely(len != 1)) {
4205 		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
4206 		return -EPROTO;
4207 	}
4208 
4209 	ctx_id = msg[0];
4210 
4211 	/*
4212 	 * The context lookup uses the xarray but lookups only require an RCU lock
4213 	 * not the full spinlock. So take the lock explicitly and keep it until the
4214 	 * context has been reference count locked to ensure it can't be destroyed
4215 	 * asynchronously until the reset is done.
4216 	 */
4217 	xa_lock_irqsave(&guc->context_lookup, flags);
4218 	ce = g2h_context_lookup(guc, ctx_id);
4219 	if (ce)
4220 		intel_context_get(ce);
4221 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4222 
4223 	if (unlikely(!ce))
4224 		return -EPROTO;
4225 
4226 	guc_handle_context_reset(guc, ce);
4227 	intel_context_put(ce);
4228 
4229 	return 0;
4230 }
4231 
4232 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
4233 					const u32 *msg, u32 len)
4234 {
4235 	u32 status;
4236 
4237 	if (unlikely(len != 1)) {
4238 		drm_dbg(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
4239 		return -EPROTO;
4240 	}
4241 
4242 	status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
4243 	if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
4244 		drm_warn(&guc_to_gt(guc)->i915->drm, "G2H-Error capture no space");
4245 
4246 	intel_guc_capture_process(guc);
4247 
4248 	return 0;
4249 }
4250 
4251 struct intel_engine_cs *
4252 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
4253 {
4254 	struct intel_gt *gt = guc_to_gt(guc);
4255 	u8 engine_class = guc_class_to_engine_class(guc_class);
4256 
4257 	/* Class index is checked in class converter */
4258 	GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
4259 
4260 	return gt->engine_class[engine_class][instance];
4261 }
4262 
4263 static void reset_fail_worker_func(struct work_struct *w)
4264 {
4265 	struct intel_guc *guc = container_of(w, struct intel_guc,
4266 					     submission_state.reset_fail_worker);
4267 	struct intel_gt *gt = guc_to_gt(guc);
4268 	intel_engine_mask_t reset_fail_mask;
4269 	unsigned long flags;
4270 
4271 	spin_lock_irqsave(&guc->submission_state.lock, flags);
4272 	reset_fail_mask = guc->submission_state.reset_fail_mask;
4273 	guc->submission_state.reset_fail_mask = 0;
4274 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
4275 
4276 	if (likely(reset_fail_mask))
4277 		intel_gt_handle_error(gt, reset_fail_mask,
4278 				      I915_ERROR_CAPTURE,
4279 				      "GuC failed to reset engine mask=0x%x\n",
4280 				      reset_fail_mask);
4281 }
4282 
4283 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
4284 					 const u32 *msg, u32 len)
4285 {
4286 	struct intel_engine_cs *engine;
4287 	struct intel_gt *gt = guc_to_gt(guc);
4288 	u8 guc_class, instance;
4289 	u32 reason;
4290 	unsigned long flags;
4291 
4292 	if (unlikely(len != 3)) {
4293 		drm_err(&gt->i915->drm, "Invalid length %u", len);
4294 		return -EPROTO;
4295 	}
4296 
4297 	guc_class = msg[0];
4298 	instance = msg[1];
4299 	reason = msg[2];
4300 
4301 	engine = intel_guc_lookup_engine(guc, guc_class, instance);
4302 	if (unlikely(!engine)) {
4303 		drm_err(&gt->i915->drm,
4304 			"Invalid engine %d:%d", guc_class, instance);
4305 		return -EPROTO;
4306 	}
4307 
4308 	/*
4309 	 * This is an unexpected failure of a hardware feature. So, log a real
4310 	 * error message not just the informational that comes with the reset.
4311 	 */
4312 	drm_err(&gt->i915->drm, "GuC engine reset request failed on %d:%d (%s) because 0x%08X",
4313 		guc_class, instance, engine->name, reason);
4314 
4315 	spin_lock_irqsave(&guc->submission_state.lock, flags);
4316 	guc->submission_state.reset_fail_mask |= engine->mask;
4317 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
4318 
4319 	/*
4320 	 * A GT reset flushes this worker queue (G2H handler) so we must use
4321 	 * another worker to trigger a GT reset.
4322 	 */
4323 	queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
4324 
4325 	return 0;
4326 }
4327 
4328 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
4329 {
4330 	struct intel_guc *guc = &engine->gt->uc.guc;
4331 	struct intel_context *ce;
4332 	struct i915_request *rq;
4333 	unsigned long index;
4334 	unsigned long flags;
4335 
4336 	/* Reset called during driver load? GuC not yet initialised! */
4337 	if (unlikely(!guc_submission_initialized(guc)))
4338 		return;
4339 
4340 	xa_lock_irqsave(&guc->context_lookup, flags);
4341 	xa_for_each(&guc->context_lookup, index, ce) {
4342 		if (!kref_get_unless_zero(&ce->ref))
4343 			continue;
4344 
4345 		xa_unlock(&guc->context_lookup);
4346 
4347 		if (!intel_context_is_pinned(ce))
4348 			goto next;
4349 
4350 		if (intel_engine_is_virtual(ce->engine)) {
4351 			if (!(ce->engine->mask & engine->mask))
4352 				goto next;
4353 		} else {
4354 			if (ce->engine != engine)
4355 				goto next;
4356 		}
4357 
4358 		list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
4359 			if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
4360 				continue;
4361 
4362 			intel_engine_set_hung_context(engine, ce);
4363 
4364 			/* Can only cope with one hang at a time... */
4365 			intel_context_put(ce);
4366 			xa_lock(&guc->context_lookup);
4367 			goto done;
4368 		}
4369 next:
4370 		intel_context_put(ce);
4371 		xa_lock(&guc->context_lookup);
4372 	}
4373 done:
4374 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4375 }
4376 
4377 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
4378 				    struct i915_request *hung_rq,
4379 				    struct drm_printer *m)
4380 {
4381 	struct intel_guc *guc = &engine->gt->uc.guc;
4382 	struct intel_context *ce;
4383 	unsigned long index;
4384 	unsigned long flags;
4385 
4386 	/* Reset called during driver load? GuC not yet initialised! */
4387 	if (unlikely(!guc_submission_initialized(guc)))
4388 		return;
4389 
4390 	xa_lock_irqsave(&guc->context_lookup, flags);
4391 	xa_for_each(&guc->context_lookup, index, ce) {
4392 		if (!kref_get_unless_zero(&ce->ref))
4393 			continue;
4394 
4395 		xa_unlock(&guc->context_lookup);
4396 
4397 		if (!intel_context_is_pinned(ce))
4398 			goto next;
4399 
4400 		if (intel_engine_is_virtual(ce->engine)) {
4401 			if (!(ce->engine->mask & engine->mask))
4402 				goto next;
4403 		} else {
4404 			if (ce->engine != engine)
4405 				goto next;
4406 		}
4407 
4408 		spin_lock(&ce->guc_state.lock);
4409 		intel_engine_dump_active_requests(&ce->guc_state.requests,
4410 						  hung_rq, m);
4411 		spin_unlock(&ce->guc_state.lock);
4412 
4413 next:
4414 		intel_context_put(ce);
4415 		xa_lock(&guc->context_lookup);
4416 	}
4417 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4418 }
4419 
4420 void intel_guc_submission_print_info(struct intel_guc *guc,
4421 				     struct drm_printer *p)
4422 {
4423 	struct i915_sched_engine *sched_engine = guc->sched_engine;
4424 	struct rb_node *rb;
4425 	unsigned long flags;
4426 
4427 	if (!sched_engine)
4428 		return;
4429 
4430 	drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
4431 		   atomic_read(&guc->outstanding_submission_g2h));
4432 	drm_printf(p, "GuC tasklet count: %u\n\n",
4433 		   atomic_read(&sched_engine->tasklet.count));
4434 
4435 	spin_lock_irqsave(&sched_engine->lock, flags);
4436 	drm_printf(p, "Requests in GuC submit tasklet:\n");
4437 	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
4438 		struct i915_priolist *pl = to_priolist(rb);
4439 		struct i915_request *rq;
4440 
4441 		priolist_for_each_request(rq, pl)
4442 			drm_printf(p, "guc_id=%u, seqno=%llu\n",
4443 				   rq->context->guc_id.id,
4444 				   rq->fence.seqno);
4445 	}
4446 	spin_unlock_irqrestore(&sched_engine->lock, flags);
4447 	drm_printf(p, "\n");
4448 }
4449 
4450 static inline void guc_log_context_priority(struct drm_printer *p,
4451 					    struct intel_context *ce)
4452 {
4453 	int i;
4454 
4455 	drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
4456 	drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
4457 	for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
4458 	     i < GUC_CLIENT_PRIORITY_NUM; ++i) {
4459 		drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
4460 			   i, ce->guc_state.prio_count[i]);
4461 	}
4462 	drm_printf(p, "\n");
4463 }
4464 
4465 static inline void guc_log_context(struct drm_printer *p,
4466 				   struct intel_context *ce)
4467 {
4468 	drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
4469 	drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
4470 	drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
4471 		   ce->ring->head,
4472 		   ce->lrc_reg_state[CTX_RING_HEAD]);
4473 	drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
4474 		   ce->ring->tail,
4475 		   ce->lrc_reg_state[CTX_RING_TAIL]);
4476 	drm_printf(p, "\t\tContext Pin Count: %u\n",
4477 		   atomic_read(&ce->pin_count));
4478 	drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
4479 		   atomic_read(&ce->guc_id.ref));
4480 	drm_printf(p, "\t\tSchedule State: 0x%x\n\n",
4481 		   ce->guc_state.sched_state);
4482 }
4483 
4484 void intel_guc_submission_print_context_info(struct intel_guc *guc,
4485 					     struct drm_printer *p)
4486 {
4487 	struct intel_context *ce;
4488 	unsigned long index;
4489 	unsigned long flags;
4490 
4491 	xa_lock_irqsave(&guc->context_lookup, flags);
4492 	xa_for_each(&guc->context_lookup, index, ce) {
4493 		GEM_BUG_ON(intel_context_is_child(ce));
4494 
4495 		guc_log_context(p, ce);
4496 		guc_log_context_priority(p, ce);
4497 
4498 		if (intel_context_is_parent(ce)) {
4499 			struct guc_sched_wq_desc *wq_desc = __get_wq_desc(ce);
4500 			struct intel_context *child;
4501 
4502 			drm_printf(p, "\t\tNumber children: %u\n",
4503 				   ce->parallel.number_children);
4504 			drm_printf(p, "\t\tWQI Head: %u\n",
4505 				   READ_ONCE(wq_desc->head));
4506 			drm_printf(p, "\t\tWQI Tail: %u\n",
4507 				   READ_ONCE(wq_desc->tail));
4508 			drm_printf(p, "\t\tWQI Status: %u\n\n",
4509 				   READ_ONCE(wq_desc->wq_status));
4510 
4511 			if (ce->engine->emit_bb_start ==
4512 			    emit_bb_start_parent_no_preempt_mid_batch) {
4513 				u8 i;
4514 
4515 				drm_printf(p, "\t\tChildren Go: %u\n\n",
4516 					   get_children_go_value(ce));
4517 				for (i = 0; i < ce->parallel.number_children; ++i)
4518 					drm_printf(p, "\t\tChildren Join: %u\n",
4519 						   get_children_join_value(ce, i));
4520 			}
4521 
4522 			for_each_child(ce, child)
4523 				guc_log_context(p, child);
4524 		}
4525 	}
4526 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4527 }
4528 
4529 static inline u32 get_children_go_addr(struct intel_context *ce)
4530 {
4531 	GEM_BUG_ON(!intel_context_is_parent(ce));
4532 
4533 	return i915_ggtt_offset(ce->state) +
4534 		__get_parent_scratch_offset(ce) +
4535 		offsetof(struct parent_scratch, go.semaphore);
4536 }
4537 
4538 static inline u32 get_children_join_addr(struct intel_context *ce,
4539 					 u8 child_index)
4540 {
4541 	GEM_BUG_ON(!intel_context_is_parent(ce));
4542 
4543 	return i915_ggtt_offset(ce->state) +
4544 		__get_parent_scratch_offset(ce) +
4545 		offsetof(struct parent_scratch, join[child_index].semaphore);
4546 }
4547 
4548 #define PARENT_GO_BB			1
4549 #define PARENT_GO_FINI_BREADCRUMB	0
4550 #define CHILD_GO_BB			1
4551 #define CHILD_GO_FINI_BREADCRUMB	0
4552 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
4553 						     u64 offset, u32 len,
4554 						     const unsigned int flags)
4555 {
4556 	struct intel_context *ce = rq->context;
4557 	u32 *cs;
4558 	u8 i;
4559 
4560 	GEM_BUG_ON(!intel_context_is_parent(ce));
4561 
4562 	cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
4563 	if (IS_ERR(cs))
4564 		return PTR_ERR(cs);
4565 
4566 	/* Wait on children */
4567 	for (i = 0; i < ce->parallel.number_children; ++i) {
4568 		*cs++ = (MI_SEMAPHORE_WAIT |
4569 			 MI_SEMAPHORE_GLOBAL_GTT |
4570 			 MI_SEMAPHORE_POLL |
4571 			 MI_SEMAPHORE_SAD_EQ_SDD);
4572 		*cs++ = PARENT_GO_BB;
4573 		*cs++ = get_children_join_addr(ce, i);
4574 		*cs++ = 0;
4575 	}
4576 
4577 	/* Turn off preemption */
4578 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
4579 	*cs++ = MI_NOOP;
4580 
4581 	/* Tell children go */
4582 	cs = gen8_emit_ggtt_write(cs,
4583 				  CHILD_GO_BB,
4584 				  get_children_go_addr(ce),
4585 				  0);
4586 
4587 	/* Jump to batch */
4588 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
4589 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
4590 	*cs++ = lower_32_bits(offset);
4591 	*cs++ = upper_32_bits(offset);
4592 	*cs++ = MI_NOOP;
4593 
4594 	intel_ring_advance(rq, cs);
4595 
4596 	return 0;
4597 }
4598 
4599 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
4600 						    u64 offset, u32 len,
4601 						    const unsigned int flags)
4602 {
4603 	struct intel_context *ce = rq->context;
4604 	struct intel_context *parent = intel_context_to_parent(ce);
4605 	u32 *cs;
4606 
4607 	GEM_BUG_ON(!intel_context_is_child(ce));
4608 
4609 	cs = intel_ring_begin(rq, 12);
4610 	if (IS_ERR(cs))
4611 		return PTR_ERR(cs);
4612 
4613 	/* Signal parent */
4614 	cs = gen8_emit_ggtt_write(cs,
4615 				  PARENT_GO_BB,
4616 				  get_children_join_addr(parent,
4617 							 ce->parallel.child_index),
4618 				  0);
4619 
4620 	/* Wait on parent for go */
4621 	*cs++ = (MI_SEMAPHORE_WAIT |
4622 		 MI_SEMAPHORE_GLOBAL_GTT |
4623 		 MI_SEMAPHORE_POLL |
4624 		 MI_SEMAPHORE_SAD_EQ_SDD);
4625 	*cs++ = CHILD_GO_BB;
4626 	*cs++ = get_children_go_addr(parent);
4627 	*cs++ = 0;
4628 
4629 	/* Turn off preemption */
4630 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
4631 
4632 	/* Jump to batch */
4633 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
4634 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
4635 	*cs++ = lower_32_bits(offset);
4636 	*cs++ = upper_32_bits(offset);
4637 
4638 	intel_ring_advance(rq, cs);
4639 
4640 	return 0;
4641 }
4642 
4643 static u32 *
4644 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4645 						   u32 *cs)
4646 {
4647 	struct intel_context *ce = rq->context;
4648 	u8 i;
4649 
4650 	GEM_BUG_ON(!intel_context_is_parent(ce));
4651 
4652 	/* Wait on children */
4653 	for (i = 0; i < ce->parallel.number_children; ++i) {
4654 		*cs++ = (MI_SEMAPHORE_WAIT |
4655 			 MI_SEMAPHORE_GLOBAL_GTT |
4656 			 MI_SEMAPHORE_POLL |
4657 			 MI_SEMAPHORE_SAD_EQ_SDD);
4658 		*cs++ = PARENT_GO_FINI_BREADCRUMB;
4659 		*cs++ = get_children_join_addr(ce, i);
4660 		*cs++ = 0;
4661 	}
4662 
4663 	/* Turn on preemption */
4664 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
4665 	*cs++ = MI_NOOP;
4666 
4667 	/* Tell children go */
4668 	cs = gen8_emit_ggtt_write(cs,
4669 				  CHILD_GO_FINI_BREADCRUMB,
4670 				  get_children_go_addr(ce),
4671 				  0);
4672 
4673 	return cs;
4674 }
4675 
4676 /*
4677  * If this true, a submission of multi-lrc requests had an error and the
4678  * requests need to be skipped. The front end (execuf IOCTL) should've called
4679  * i915_request_skip which squashes the BB but we still need to emit the fini
4680  * breadrcrumbs seqno write. At this point we don't know how many of the
4681  * requests in the multi-lrc submission were generated so we can't do the
4682  * handshake between the parent and children (e.g. if 4 requests should be
4683  * generated but 2nd hit an error only 1 would be seen by the GuC backend).
4684  * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
4685  * has occurred on any of the requests in submission / relationship.
4686  */
4687 static inline bool skip_handshake(struct i915_request *rq)
4688 {
4689 	return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
4690 }
4691 
4692 #define NON_SKIP_LEN	6
4693 static u32 *
4694 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4695 						 u32 *cs)
4696 {
4697 	struct intel_context *ce = rq->context;
4698 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
4699 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
4700 
4701 	GEM_BUG_ON(!intel_context_is_parent(ce));
4702 
4703 	if (unlikely(skip_handshake(rq))) {
4704 		/*
4705 		 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
4706 		 * the NON_SKIP_LEN comes from the length of the emits below.
4707 		 */
4708 		memset(cs, 0, sizeof(u32) *
4709 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
4710 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
4711 	} else {
4712 		cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
4713 	}
4714 
4715 	/* Emit fini breadcrumb */
4716 	before_fini_breadcrumb_user_interrupt_cs = cs;
4717 	cs = gen8_emit_ggtt_write(cs,
4718 				  rq->fence.seqno,
4719 				  i915_request_active_timeline(rq)->hwsp_offset,
4720 				  0);
4721 
4722 	/* User interrupt */
4723 	*cs++ = MI_USER_INTERRUPT;
4724 	*cs++ = MI_NOOP;
4725 
4726 	/* Ensure our math for skip + emit is correct */
4727 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
4728 		   cs);
4729 	GEM_BUG_ON(start_fini_breadcrumb_cs +
4730 		   ce->engine->emit_fini_breadcrumb_dw != cs);
4731 
4732 	rq->tail = intel_ring_offset(rq, cs);
4733 
4734 	return cs;
4735 }
4736 
4737 static u32 *
4738 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
4739 						  u32 *cs)
4740 {
4741 	struct intel_context *ce = rq->context;
4742 	struct intel_context *parent = intel_context_to_parent(ce);
4743 
4744 	GEM_BUG_ON(!intel_context_is_child(ce));
4745 
4746 	/* Turn on preemption */
4747 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
4748 	*cs++ = MI_NOOP;
4749 
4750 	/* Signal parent */
4751 	cs = gen8_emit_ggtt_write(cs,
4752 				  PARENT_GO_FINI_BREADCRUMB,
4753 				  get_children_join_addr(parent,
4754 							 ce->parallel.child_index),
4755 				  0);
4756 
4757 	/* Wait parent on for go */
4758 	*cs++ = (MI_SEMAPHORE_WAIT |
4759 		 MI_SEMAPHORE_GLOBAL_GTT |
4760 		 MI_SEMAPHORE_POLL |
4761 		 MI_SEMAPHORE_SAD_EQ_SDD);
4762 	*cs++ = CHILD_GO_FINI_BREADCRUMB;
4763 	*cs++ = get_children_go_addr(parent);
4764 	*cs++ = 0;
4765 
4766 	return cs;
4767 }
4768 
4769 static u32 *
4770 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
4771 						u32 *cs)
4772 {
4773 	struct intel_context *ce = rq->context;
4774 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
4775 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
4776 
4777 	GEM_BUG_ON(!intel_context_is_child(ce));
4778 
4779 	if (unlikely(skip_handshake(rq))) {
4780 		/*
4781 		 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
4782 		 * the NON_SKIP_LEN comes from the length of the emits below.
4783 		 */
4784 		memset(cs, 0, sizeof(u32) *
4785 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
4786 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
4787 	} else {
4788 		cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
4789 	}
4790 
4791 	/* Emit fini breadcrumb */
4792 	before_fini_breadcrumb_user_interrupt_cs = cs;
4793 	cs = gen8_emit_ggtt_write(cs,
4794 				  rq->fence.seqno,
4795 				  i915_request_active_timeline(rq)->hwsp_offset,
4796 				  0);
4797 
4798 	/* User interrupt */
4799 	*cs++ = MI_USER_INTERRUPT;
4800 	*cs++ = MI_NOOP;
4801 
4802 	/* Ensure our math for skip + emit is correct */
4803 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
4804 		   cs);
4805 	GEM_BUG_ON(start_fini_breadcrumb_cs +
4806 		   ce->engine->emit_fini_breadcrumb_dw != cs);
4807 
4808 	rq->tail = intel_ring_offset(rq, cs);
4809 
4810 	return cs;
4811 }
4812 
4813 #undef NON_SKIP_LEN
4814 
4815 static struct intel_context *
4816 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
4817 		   unsigned long flags)
4818 {
4819 	struct guc_virtual_engine *ve;
4820 	struct intel_guc *guc;
4821 	unsigned int n;
4822 	int err;
4823 
4824 	ve = kzalloc(sizeof(*ve), GFP_KERNEL);
4825 	if (!ve)
4826 		return ERR_PTR(-ENOMEM);
4827 
4828 	guc = &siblings[0]->gt->uc.guc;
4829 
4830 	ve->base.i915 = siblings[0]->i915;
4831 	ve->base.gt = siblings[0]->gt;
4832 	ve->base.uncore = siblings[0]->uncore;
4833 	ve->base.id = -1;
4834 
4835 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
4836 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
4837 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
4838 	ve->base.saturated = ALL_ENGINES;
4839 
4840 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
4841 
4842 	ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
4843 
4844 	ve->base.cops = &virtual_guc_context_ops;
4845 	ve->base.request_alloc = guc_request_alloc;
4846 	ve->base.bump_serial = virtual_guc_bump_serial;
4847 
4848 	ve->base.submit_request = guc_submit_request;
4849 
4850 	ve->base.flags = I915_ENGINE_IS_VIRTUAL;
4851 
4852 	intel_context_init(&ve->context, &ve->base);
4853 
4854 	for (n = 0; n < count; n++) {
4855 		struct intel_engine_cs *sibling = siblings[n];
4856 
4857 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
4858 		if (sibling->mask & ve->base.mask) {
4859 			DRM_DEBUG("duplicate %s entry in load balancer\n",
4860 				  sibling->name);
4861 			err = -EINVAL;
4862 			goto err_put;
4863 		}
4864 
4865 		ve->base.mask |= sibling->mask;
4866 		ve->base.logical_mask |= sibling->logical_mask;
4867 
4868 		if (n != 0 && ve->base.class != sibling->class) {
4869 			DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
4870 				  sibling->class, ve->base.class);
4871 			err = -EINVAL;
4872 			goto err_put;
4873 		} else if (n == 0) {
4874 			ve->base.class = sibling->class;
4875 			ve->base.uabi_class = sibling->uabi_class;
4876 			snprintf(ve->base.name, sizeof(ve->base.name),
4877 				 "v%dx%d", ve->base.class, count);
4878 			ve->base.context_size = sibling->context_size;
4879 
4880 			ve->base.add_active_request =
4881 				sibling->add_active_request;
4882 			ve->base.remove_active_request =
4883 				sibling->remove_active_request;
4884 			ve->base.emit_bb_start = sibling->emit_bb_start;
4885 			ve->base.emit_flush = sibling->emit_flush;
4886 			ve->base.emit_init_breadcrumb =
4887 				sibling->emit_init_breadcrumb;
4888 			ve->base.emit_fini_breadcrumb =
4889 				sibling->emit_fini_breadcrumb;
4890 			ve->base.emit_fini_breadcrumb_dw =
4891 				sibling->emit_fini_breadcrumb_dw;
4892 			ve->base.breadcrumbs =
4893 				intel_breadcrumbs_get(sibling->breadcrumbs);
4894 
4895 			ve->base.flags |= sibling->flags;
4896 
4897 			ve->base.props.timeslice_duration_ms =
4898 				sibling->props.timeslice_duration_ms;
4899 			ve->base.props.preempt_timeout_ms =
4900 				sibling->props.preempt_timeout_ms;
4901 		}
4902 	}
4903 
4904 	return &ve->context;
4905 
4906 err_put:
4907 	intel_context_put(&ve->context);
4908 	return ERR_PTR(err);
4909 }
4910 
4911 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
4912 {
4913 	struct intel_engine_cs *engine;
4914 	intel_engine_mask_t tmp, mask = ve->mask;
4915 
4916 	for_each_engine_masked(engine, ve->gt, mask, tmp)
4917 		if (READ_ONCE(engine->props.heartbeat_interval_ms))
4918 			return true;
4919 
4920 	return false;
4921 }
4922 
4923 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
4924 #include "selftest_guc.c"
4925 #include "selftest_guc_multi_lrc.c"
4926 #endif
4927