1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014 Intel Corporation 4 */ 5 6 #include <linux/circ_buf.h> 7 8 #include "gem/i915_gem_context.h" 9 #include "gt/gen8_engine_cs.h" 10 #include "gt/intel_breadcrumbs.h" 11 #include "gt/intel_context.h" 12 #include "gt/intel_engine_heartbeat.h" 13 #include "gt/intel_engine_pm.h" 14 #include "gt/intel_engine_regs.h" 15 #include "gt/intel_gpu_commands.h" 16 #include "gt/intel_gt.h" 17 #include "gt/intel_gt_clock_utils.h" 18 #include "gt/intel_gt_irq.h" 19 #include "gt/intel_gt_pm.h" 20 #include "gt/intel_gt_regs.h" 21 #include "gt/intel_gt_requests.h" 22 #include "gt/intel_lrc.h" 23 #include "gt/intel_lrc_reg.h" 24 #include "gt/intel_mocs.h" 25 #include "gt/intel_ring.h" 26 27 #include "intel_guc_ads.h" 28 #include "intel_guc_capture.h" 29 #include "intel_guc_submission.h" 30 31 #include "i915_drv.h" 32 #include "i915_trace.h" 33 34 /** 35 * DOC: GuC-based command submission 36 * 37 * The Scratch registers: 38 * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes 39 * a value to the action register (SOFT_SCRATCH_0) along with any data. It then 40 * triggers an interrupt on the GuC via another register write (0xC4C8). 41 * Firmware writes a success/fail code back to the action register after 42 * processes the request. The kernel driver polls waiting for this update and 43 * then proceeds. 44 * 45 * Command Transport buffers (CTBs): 46 * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host 47 * - G2H) are a message interface between the i915 and GuC. 48 * 49 * Context registration: 50 * Before a context can be submitted it must be registered with the GuC via a 51 * H2G. A unique guc_id is associated with each context. The context is either 52 * registered at request creation time (normal operation) or at submission time 53 * (abnormal operation, e.g. after a reset). 54 * 55 * Context submission: 56 * The i915 updates the LRC tail value in memory. The i915 must enable the 57 * scheduling of the context within the GuC for the GuC to actually consider it. 58 * Therefore, the first time a disabled context is submitted we use a schedule 59 * enable H2G, while follow up submissions are done via the context submit H2G, 60 * which informs the GuC that a previously enabled context has new work 61 * available. 62 * 63 * Context unpin: 64 * To unpin a context a H2G is used to disable scheduling. When the 65 * corresponding G2H returns indicating the scheduling disable operation has 66 * completed it is safe to unpin the context. While a disable is in flight it 67 * isn't safe to resubmit the context so a fence is used to stall all future 68 * requests of that context until the G2H is returned. 69 * 70 * Context deregistration: 71 * Before a context can be destroyed or if we steal its guc_id we must 72 * deregister the context with the GuC via H2G. If stealing the guc_id it isn't 73 * safe to submit anything to this guc_id until the deregister completes so a 74 * fence is used to stall all requests associated with this guc_id until the 75 * corresponding G2H returns indicating the guc_id has been deregistered. 76 * 77 * submission_state.guc_ids: 78 * Unique number associated with private GuC context data passed in during 79 * context registration / submission / deregistration. 64k available. Simple ida 80 * is used for allocation. 81 * 82 * Stealing guc_ids: 83 * If no guc_ids are available they can be stolen from another context at 84 * request creation time if that context is unpinned. If a guc_id can't be found 85 * we punt this problem to the user as we believe this is near impossible to hit 86 * during normal use cases. 87 * 88 * Locking: 89 * In the GuC submission code we have 3 basic spin locks which protect 90 * everything. Details about each below. 91 * 92 * sched_engine->lock 93 * This is the submission lock for all contexts that share an i915 schedule 94 * engine (sched_engine), thus only one of the contexts which share a 95 * sched_engine can be submitting at a time. Currently only one sched_engine is 96 * used for all of GuC submission but that could change in the future. 97 * 98 * guc->submission_state.lock 99 * Global lock for GuC submission state. Protects guc_ids and destroyed contexts 100 * list. 101 * 102 * ce->guc_state.lock 103 * Protects everything under ce->guc_state. Ensures that a context is in the 104 * correct state before issuing a H2G. e.g. We don't issue a schedule disable 105 * on a disabled context (bad idea), we don't issue a schedule enable when a 106 * schedule disable is in flight, etc... Also protects list of inflight requests 107 * on the context and the priority management state. Lock is individual to each 108 * context. 109 * 110 * Lock ordering rules: 111 * sched_engine->lock -> ce->guc_state.lock 112 * guc->submission_state.lock -> ce->guc_state.lock 113 * 114 * Reset races: 115 * When a full GT reset is triggered it is assumed that some G2H responses to 116 * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be 117 * fatal as we do certain operations upon receiving a G2H (e.g. destroy 118 * contexts, release guc_ids, etc...). When this occurs we can scrub the 119 * context state and cleanup appropriately, however this is quite racey. 120 * To avoid races, the reset code must disable submission before scrubbing for 121 * the missing G2H, while the submission code must check for submission being 122 * disabled and skip sending H2Gs and updating context states when it is. Both 123 * sides must also make sure to hold the relevant locks. 124 */ 125 126 /* GuC Virtual Engine */ 127 struct guc_virtual_engine { 128 struct intel_engine_cs base; 129 struct intel_context context; 130 }; 131 132 static struct intel_context * 133 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, 134 unsigned long flags); 135 136 static struct intel_context * 137 guc_create_parallel(struct intel_engine_cs **engines, 138 unsigned int num_siblings, 139 unsigned int width); 140 141 #define GUC_REQUEST_SIZE 64 /* bytes */ 142 143 /* 144 * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous 145 * per the GuC submission interface. A different allocation algorithm is used 146 * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to 147 * partition the guc_id space. We believe the number of multi-lrc contexts in 148 * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for 149 * multi-lrc. 150 */ 151 #define NUMBER_MULTI_LRC_GUC_ID(guc) \ 152 ((guc)->submission_state.num_guc_ids / 16) 153 154 /* 155 * Below is a set of functions which control the GuC scheduling state which 156 * require a lock. 157 */ 158 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER BIT(0) 159 #define SCHED_STATE_DESTROYED BIT(1) 160 #define SCHED_STATE_PENDING_DISABLE BIT(2) 161 #define SCHED_STATE_BANNED BIT(3) 162 #define SCHED_STATE_ENABLED BIT(4) 163 #define SCHED_STATE_PENDING_ENABLE BIT(5) 164 #define SCHED_STATE_REGISTERED BIT(6) 165 #define SCHED_STATE_POLICY_REQUIRED BIT(7) 166 #define SCHED_STATE_BLOCKED_SHIFT 8 167 #define SCHED_STATE_BLOCKED BIT(SCHED_STATE_BLOCKED_SHIFT) 168 #define SCHED_STATE_BLOCKED_MASK (0xfff << SCHED_STATE_BLOCKED_SHIFT) 169 170 static inline void init_sched_state(struct intel_context *ce) 171 { 172 lockdep_assert_held(&ce->guc_state.lock); 173 ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK; 174 } 175 176 __maybe_unused 177 static bool sched_state_is_init(struct intel_context *ce) 178 { 179 /* Kernel contexts can have SCHED_STATE_REGISTERED after suspend. */ 180 return !(ce->guc_state.sched_state & 181 ~(SCHED_STATE_BLOCKED_MASK | SCHED_STATE_REGISTERED)); 182 } 183 184 static inline bool 185 context_wait_for_deregister_to_register(struct intel_context *ce) 186 { 187 return ce->guc_state.sched_state & 188 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 189 } 190 191 static inline void 192 set_context_wait_for_deregister_to_register(struct intel_context *ce) 193 { 194 lockdep_assert_held(&ce->guc_state.lock); 195 ce->guc_state.sched_state |= 196 SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 197 } 198 199 static inline void 200 clr_context_wait_for_deregister_to_register(struct intel_context *ce) 201 { 202 lockdep_assert_held(&ce->guc_state.lock); 203 ce->guc_state.sched_state &= 204 ~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER; 205 } 206 207 static inline bool 208 context_destroyed(struct intel_context *ce) 209 { 210 return ce->guc_state.sched_state & SCHED_STATE_DESTROYED; 211 } 212 213 static inline void 214 set_context_destroyed(struct intel_context *ce) 215 { 216 lockdep_assert_held(&ce->guc_state.lock); 217 ce->guc_state.sched_state |= SCHED_STATE_DESTROYED; 218 } 219 220 static inline bool context_pending_disable(struct intel_context *ce) 221 { 222 return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE; 223 } 224 225 static inline void set_context_pending_disable(struct intel_context *ce) 226 { 227 lockdep_assert_held(&ce->guc_state.lock); 228 ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE; 229 } 230 231 static inline void clr_context_pending_disable(struct intel_context *ce) 232 { 233 lockdep_assert_held(&ce->guc_state.lock); 234 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE; 235 } 236 237 static inline bool context_banned(struct intel_context *ce) 238 { 239 return ce->guc_state.sched_state & SCHED_STATE_BANNED; 240 } 241 242 static inline void set_context_banned(struct intel_context *ce) 243 { 244 lockdep_assert_held(&ce->guc_state.lock); 245 ce->guc_state.sched_state |= SCHED_STATE_BANNED; 246 } 247 248 static inline void clr_context_banned(struct intel_context *ce) 249 { 250 lockdep_assert_held(&ce->guc_state.lock); 251 ce->guc_state.sched_state &= ~SCHED_STATE_BANNED; 252 } 253 254 static inline bool context_enabled(struct intel_context *ce) 255 { 256 return ce->guc_state.sched_state & SCHED_STATE_ENABLED; 257 } 258 259 static inline void set_context_enabled(struct intel_context *ce) 260 { 261 lockdep_assert_held(&ce->guc_state.lock); 262 ce->guc_state.sched_state |= SCHED_STATE_ENABLED; 263 } 264 265 static inline void clr_context_enabled(struct intel_context *ce) 266 { 267 lockdep_assert_held(&ce->guc_state.lock); 268 ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED; 269 } 270 271 static inline bool context_pending_enable(struct intel_context *ce) 272 { 273 return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE; 274 } 275 276 static inline void set_context_pending_enable(struct intel_context *ce) 277 { 278 lockdep_assert_held(&ce->guc_state.lock); 279 ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE; 280 } 281 282 static inline void clr_context_pending_enable(struct intel_context *ce) 283 { 284 lockdep_assert_held(&ce->guc_state.lock); 285 ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE; 286 } 287 288 static inline bool context_registered(struct intel_context *ce) 289 { 290 return ce->guc_state.sched_state & SCHED_STATE_REGISTERED; 291 } 292 293 static inline void set_context_registered(struct intel_context *ce) 294 { 295 lockdep_assert_held(&ce->guc_state.lock); 296 ce->guc_state.sched_state |= SCHED_STATE_REGISTERED; 297 } 298 299 static inline void clr_context_registered(struct intel_context *ce) 300 { 301 lockdep_assert_held(&ce->guc_state.lock); 302 ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED; 303 } 304 305 static inline bool context_policy_required(struct intel_context *ce) 306 { 307 return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED; 308 } 309 310 static inline void set_context_policy_required(struct intel_context *ce) 311 { 312 lockdep_assert_held(&ce->guc_state.lock); 313 ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED; 314 } 315 316 static inline void clr_context_policy_required(struct intel_context *ce) 317 { 318 lockdep_assert_held(&ce->guc_state.lock); 319 ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED; 320 } 321 322 static inline u32 context_blocked(struct intel_context *ce) 323 { 324 return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >> 325 SCHED_STATE_BLOCKED_SHIFT; 326 } 327 328 static inline void incr_context_blocked(struct intel_context *ce) 329 { 330 lockdep_assert_held(&ce->guc_state.lock); 331 332 ce->guc_state.sched_state += SCHED_STATE_BLOCKED; 333 334 GEM_BUG_ON(!context_blocked(ce)); /* Overflow check */ 335 } 336 337 static inline void decr_context_blocked(struct intel_context *ce) 338 { 339 lockdep_assert_held(&ce->guc_state.lock); 340 341 GEM_BUG_ON(!context_blocked(ce)); /* Underflow check */ 342 343 ce->guc_state.sched_state -= SCHED_STATE_BLOCKED; 344 } 345 346 static inline bool context_has_committed_requests(struct intel_context *ce) 347 { 348 return !!ce->guc_state.number_committed_requests; 349 } 350 351 static inline void incr_context_committed_requests(struct intel_context *ce) 352 { 353 lockdep_assert_held(&ce->guc_state.lock); 354 ++ce->guc_state.number_committed_requests; 355 GEM_BUG_ON(ce->guc_state.number_committed_requests < 0); 356 } 357 358 static inline void decr_context_committed_requests(struct intel_context *ce) 359 { 360 lockdep_assert_held(&ce->guc_state.lock); 361 --ce->guc_state.number_committed_requests; 362 GEM_BUG_ON(ce->guc_state.number_committed_requests < 0); 363 } 364 365 static struct intel_context * 366 request_to_scheduling_context(struct i915_request *rq) 367 { 368 return intel_context_to_parent(rq->context); 369 } 370 371 static inline bool context_guc_id_invalid(struct intel_context *ce) 372 { 373 return ce->guc_id.id == GUC_INVALID_CONTEXT_ID; 374 } 375 376 static inline void set_context_guc_id_invalid(struct intel_context *ce) 377 { 378 ce->guc_id.id = GUC_INVALID_CONTEXT_ID; 379 } 380 381 static inline struct intel_guc *ce_to_guc(struct intel_context *ce) 382 { 383 return &ce->engine->gt->uc.guc; 384 } 385 386 static inline struct i915_priolist *to_priolist(struct rb_node *rb) 387 { 388 return rb_entry(rb, struct i915_priolist, node); 389 } 390 391 /* 392 * When using multi-lrc submission a scratch memory area is reserved in the 393 * parent's context state for the process descriptor, work queue, and handshake 394 * between the parent + children contexts to insert safe preemption points 395 * between each of the BBs. Currently the scratch area is sized to a page. 396 * 397 * The layout of this scratch area is below: 398 * 0 guc_process_desc 399 * + sizeof(struct guc_process_desc) child go 400 * + CACHELINE_BYTES child join[0] 401 * ... 402 * + CACHELINE_BYTES child join[n - 1] 403 * ... unused 404 * PARENT_SCRATCH_SIZE / 2 work queue start 405 * ... work queue 406 * PARENT_SCRATCH_SIZE - 1 work queue end 407 */ 408 #define WQ_SIZE (PARENT_SCRATCH_SIZE / 2) 409 #define WQ_OFFSET (PARENT_SCRATCH_SIZE - WQ_SIZE) 410 411 struct sync_semaphore { 412 u32 semaphore; 413 u8 unused[CACHELINE_BYTES - sizeof(u32)]; 414 }; 415 416 struct parent_scratch { 417 union guc_descs { 418 struct guc_sched_wq_desc wq_desc; 419 struct guc_process_desc_v69 pdesc; 420 } descs; 421 422 struct sync_semaphore go; 423 struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1]; 424 425 u8 unused[WQ_OFFSET - sizeof(union guc_descs) - 426 sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)]; 427 428 u32 wq[WQ_SIZE / sizeof(u32)]; 429 }; 430 431 static u32 __get_parent_scratch_offset(struct intel_context *ce) 432 { 433 GEM_BUG_ON(!ce->parallel.guc.parent_page); 434 435 return ce->parallel.guc.parent_page * PAGE_SIZE; 436 } 437 438 static u32 __get_wq_offset(struct intel_context *ce) 439 { 440 BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET); 441 442 return __get_parent_scratch_offset(ce) + WQ_OFFSET; 443 } 444 445 static struct parent_scratch * 446 __get_parent_scratch(struct intel_context *ce) 447 { 448 BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE); 449 BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES); 450 451 /* 452 * Need to subtract LRC_STATE_OFFSET here as the 453 * parallel.guc.parent_page is the offset into ce->state while 454 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET. 455 */ 456 return (struct parent_scratch *) 457 (ce->lrc_reg_state + 458 ((__get_parent_scratch_offset(ce) - 459 LRC_STATE_OFFSET) / sizeof(u32))); 460 } 461 462 static struct guc_process_desc_v69 * 463 __get_process_desc_v69(struct intel_context *ce) 464 { 465 struct parent_scratch *ps = __get_parent_scratch(ce); 466 467 return &ps->descs.pdesc; 468 } 469 470 static struct guc_sched_wq_desc * 471 __get_wq_desc_v70(struct intel_context *ce) 472 { 473 struct parent_scratch *ps = __get_parent_scratch(ce); 474 475 return &ps->descs.wq_desc; 476 } 477 478 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size) 479 { 480 /* 481 * Check for space in work queue. Caching a value of head pointer in 482 * intel_context structure in order reduce the number accesses to shared 483 * GPU memory which may be across a PCIe bus. 484 */ 485 #define AVAILABLE_SPACE \ 486 CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE) 487 if (wqi_size > AVAILABLE_SPACE) { 488 ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head); 489 490 if (wqi_size > AVAILABLE_SPACE) 491 return NULL; 492 } 493 #undef AVAILABLE_SPACE 494 495 return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)]; 496 } 497 498 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id) 499 { 500 struct intel_context *ce = xa_load(&guc->context_lookup, id); 501 502 GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID); 503 504 return ce; 505 } 506 507 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index) 508 { 509 struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69; 510 511 if (!base) 512 return NULL; 513 514 GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID); 515 516 return &base[index]; 517 } 518 519 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc) 520 { 521 u32 size; 522 int ret; 523 524 size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) * 525 GUC_MAX_CONTEXT_ID); 526 ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69, 527 (void **)&guc->lrc_desc_pool_vaddr_v69); 528 if (ret) 529 return ret; 530 531 return 0; 532 } 533 534 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc) 535 { 536 if (!guc->lrc_desc_pool_vaddr_v69) 537 return; 538 539 guc->lrc_desc_pool_vaddr_v69 = NULL; 540 i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP); 541 } 542 543 static inline bool guc_submission_initialized(struct intel_guc *guc) 544 { 545 return guc->submission_initialized; 546 } 547 548 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id) 549 { 550 struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id); 551 552 if (desc) 553 memset(desc, 0, sizeof(*desc)); 554 } 555 556 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id) 557 { 558 return __get_context(guc, id); 559 } 560 561 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id, 562 struct intel_context *ce) 563 { 564 unsigned long flags; 565 566 /* 567 * xarray API doesn't have xa_save_irqsave wrapper, so calling the 568 * lower level functions directly. 569 */ 570 xa_lock_irqsave(&guc->context_lookup, flags); 571 __xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC); 572 xa_unlock_irqrestore(&guc->context_lookup, flags); 573 } 574 575 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id) 576 { 577 unsigned long flags; 578 579 if (unlikely(!guc_submission_initialized(guc))) 580 return; 581 582 _reset_lrc_desc_v69(guc, id); 583 584 /* 585 * xarray API doesn't have xa_erase_irqsave wrapper, so calling 586 * the lower level functions directly. 587 */ 588 xa_lock_irqsave(&guc->context_lookup, flags); 589 __xa_erase(&guc->context_lookup, id); 590 xa_unlock_irqrestore(&guc->context_lookup, flags); 591 } 592 593 static void decr_outstanding_submission_g2h(struct intel_guc *guc) 594 { 595 if (atomic_dec_and_test(&guc->outstanding_submission_g2h)) 596 wake_up_all(&guc->ct.wq); 597 } 598 599 static int guc_submission_send_busy_loop(struct intel_guc *guc, 600 const u32 *action, 601 u32 len, 602 u32 g2h_len_dw, 603 bool loop) 604 { 605 /* 606 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0), 607 * so we don't handle the case where we don't get a reply because we 608 * aborted the send due to the channel being busy. 609 */ 610 GEM_BUG_ON(g2h_len_dw && !loop); 611 612 if (g2h_len_dw) 613 atomic_inc(&guc->outstanding_submission_g2h); 614 615 return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop); 616 } 617 618 int intel_guc_wait_for_pending_msg(struct intel_guc *guc, 619 atomic_t *wait_var, 620 bool interruptible, 621 long timeout) 622 { 623 const int state = interruptible ? 624 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE; 625 DEFINE_WAIT(wait); 626 627 might_sleep(); 628 GEM_BUG_ON(timeout < 0); 629 630 if (!atomic_read(wait_var)) 631 return 0; 632 633 if (!timeout) 634 return -ETIME; 635 636 for (;;) { 637 prepare_to_wait(&guc->ct.wq, &wait, state); 638 639 if (!atomic_read(wait_var)) 640 break; 641 642 if (signal_pending_state(state, current)) { 643 timeout = -EINTR; 644 break; 645 } 646 647 if (!timeout) { 648 timeout = -ETIME; 649 break; 650 } 651 652 timeout = io_schedule_timeout(timeout); 653 } 654 finish_wait(&guc->ct.wq, &wait); 655 656 return (timeout < 0) ? timeout : 0; 657 } 658 659 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout) 660 { 661 if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc)) 662 return 0; 663 664 return intel_guc_wait_for_pending_msg(guc, 665 &guc->outstanding_submission_g2h, 666 true, timeout); 667 } 668 669 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop); 670 static int try_context_registration(struct intel_context *ce, bool loop); 671 672 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq) 673 { 674 int err = 0; 675 struct intel_context *ce = request_to_scheduling_context(rq); 676 u32 action[3]; 677 int len = 0; 678 u32 g2h_len_dw = 0; 679 bool enabled; 680 681 lockdep_assert_held(&rq->engine->sched_engine->lock); 682 683 /* 684 * Corner case where requests were sitting in the priority list or a 685 * request resubmitted after the context was banned. 686 */ 687 if (unlikely(intel_context_is_banned(ce))) { 688 i915_request_put(i915_request_mark_eio(rq)); 689 intel_engine_signal_breadcrumbs(ce->engine); 690 return 0; 691 } 692 693 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); 694 GEM_BUG_ON(context_guc_id_invalid(ce)); 695 696 if (context_policy_required(ce)) { 697 err = guc_context_policy_init_v70(ce, false); 698 if (err) 699 return err; 700 } 701 702 spin_lock(&ce->guc_state.lock); 703 704 /* 705 * The request / context will be run on the hardware when scheduling 706 * gets enabled in the unblock. For multi-lrc we still submit the 707 * context to move the LRC tails. 708 */ 709 if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce))) 710 goto out; 711 712 enabled = context_enabled(ce) || context_blocked(ce); 713 714 if (!enabled) { 715 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET; 716 action[len++] = ce->guc_id.id; 717 action[len++] = GUC_CONTEXT_ENABLE; 718 set_context_pending_enable(ce); 719 intel_context_get(ce); 720 g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET; 721 } else { 722 action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT; 723 action[len++] = ce->guc_id.id; 724 } 725 726 err = intel_guc_send_nb(guc, action, len, g2h_len_dw); 727 if (!enabled && !err) { 728 trace_intel_context_sched_enable(ce); 729 atomic_inc(&guc->outstanding_submission_g2h); 730 set_context_enabled(ce); 731 732 /* 733 * Without multi-lrc KMD does the submission step (moving the 734 * lrc tail) so enabling scheduling is sufficient to submit the 735 * context. This isn't the case in multi-lrc submission as the 736 * GuC needs to move the tails, hence the need for another H2G 737 * to submit a multi-lrc context after enabling scheduling. 738 */ 739 if (intel_context_is_parent(ce)) { 740 action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT; 741 err = intel_guc_send_nb(guc, action, len - 1, 0); 742 } 743 } else if (!enabled) { 744 clr_context_pending_enable(ce); 745 intel_context_put(ce); 746 } 747 if (likely(!err)) 748 trace_i915_request_guc_submit(rq); 749 750 out: 751 spin_unlock(&ce->guc_state.lock); 752 return err; 753 } 754 755 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq) 756 { 757 int ret = __guc_add_request(guc, rq); 758 759 if (unlikely(ret == -EBUSY)) { 760 guc->stalled_request = rq; 761 guc->submission_stall_reason = STALL_ADD_REQUEST; 762 } 763 764 return ret; 765 } 766 767 static inline void guc_set_lrc_tail(struct i915_request *rq) 768 { 769 rq->context->lrc_reg_state[CTX_RING_TAIL] = 770 intel_ring_set_tail(rq->ring, rq->tail); 771 } 772 773 static inline int rq_prio(const struct i915_request *rq) 774 { 775 return rq->sched.attr.priority; 776 } 777 778 static bool is_multi_lrc_rq(struct i915_request *rq) 779 { 780 return intel_context_is_parallel(rq->context); 781 } 782 783 static bool can_merge_rq(struct i915_request *rq, 784 struct i915_request *last) 785 { 786 return request_to_scheduling_context(rq) == 787 request_to_scheduling_context(last); 788 } 789 790 static u32 wq_space_until_wrap(struct intel_context *ce) 791 { 792 return (WQ_SIZE - ce->parallel.guc.wqi_tail); 793 } 794 795 static void write_wqi(struct intel_context *ce, u32 wqi_size) 796 { 797 BUILD_BUG_ON(!is_power_of_2(WQ_SIZE)); 798 799 /* 800 * Ensure WQI are visible before updating tail 801 */ 802 intel_guc_write_barrier(ce_to_guc(ce)); 803 804 ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) & 805 (WQ_SIZE - 1); 806 WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail); 807 } 808 809 static int guc_wq_noop_append(struct intel_context *ce) 810 { 811 u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce)); 812 u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1; 813 814 if (!wqi) 815 return -EBUSY; 816 817 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); 818 819 *wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) | 820 FIELD_PREP(WQ_LEN_MASK, len_dw); 821 ce->parallel.guc.wqi_tail = 0; 822 823 return 0; 824 } 825 826 static int __guc_wq_item_append(struct i915_request *rq) 827 { 828 struct intel_context *ce = request_to_scheduling_context(rq); 829 struct intel_context *child; 830 unsigned int wqi_size = (ce->parallel.number_children + 4) * 831 sizeof(u32); 832 u32 *wqi; 833 u32 len_dw = (wqi_size / sizeof(u32)) - 1; 834 int ret; 835 836 /* Ensure context is in correct state updating work queue */ 837 GEM_BUG_ON(!atomic_read(&ce->guc_id.ref)); 838 GEM_BUG_ON(context_guc_id_invalid(ce)); 839 GEM_BUG_ON(context_wait_for_deregister_to_register(ce)); 840 GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)); 841 842 /* Insert NOOP if this work queue item will wrap the tail pointer. */ 843 if (wqi_size > wq_space_until_wrap(ce)) { 844 ret = guc_wq_noop_append(ce); 845 if (ret) 846 return ret; 847 } 848 849 wqi = get_wq_pointer(ce, wqi_size); 850 if (!wqi) 851 return -EBUSY; 852 853 GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw)); 854 855 *wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) | 856 FIELD_PREP(WQ_LEN_MASK, len_dw); 857 *wqi++ = ce->lrc.lrca; 858 *wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) | 859 FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64)); 860 *wqi++ = 0; /* fence_id */ 861 for_each_child(ce, child) 862 *wqi++ = child->ring->tail / sizeof(u64); 863 864 write_wqi(ce, wqi_size); 865 866 return 0; 867 } 868 869 static int guc_wq_item_append(struct intel_guc *guc, 870 struct i915_request *rq) 871 { 872 struct intel_context *ce = request_to_scheduling_context(rq); 873 int ret = 0; 874 875 if (likely(!intel_context_is_banned(ce))) { 876 ret = __guc_wq_item_append(rq); 877 878 if (unlikely(ret == -EBUSY)) { 879 guc->stalled_request = rq; 880 guc->submission_stall_reason = STALL_MOVE_LRC_TAIL; 881 } 882 } 883 884 return ret; 885 } 886 887 static bool multi_lrc_submit(struct i915_request *rq) 888 { 889 struct intel_context *ce = request_to_scheduling_context(rq); 890 891 intel_ring_set_tail(rq->ring, rq->tail); 892 893 /* 894 * We expect the front end (execbuf IOCTL) to set this flag on the last 895 * request generated from a multi-BB submission. This indicates to the 896 * backend (GuC interface) that we should submit this context thus 897 * submitting all the requests generated in parallel. 898 */ 899 return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) || 900 intel_context_is_banned(ce); 901 } 902 903 static int guc_dequeue_one_context(struct intel_guc *guc) 904 { 905 struct i915_sched_engine * const sched_engine = guc->sched_engine; 906 struct i915_request *last = NULL; 907 bool submit = false; 908 struct rb_node *rb; 909 int ret; 910 911 lockdep_assert_held(&sched_engine->lock); 912 913 if (guc->stalled_request) { 914 submit = true; 915 last = guc->stalled_request; 916 917 switch (guc->submission_stall_reason) { 918 case STALL_REGISTER_CONTEXT: 919 goto register_context; 920 case STALL_MOVE_LRC_TAIL: 921 goto move_lrc_tail; 922 case STALL_ADD_REQUEST: 923 goto add_request; 924 default: 925 MISSING_CASE(guc->submission_stall_reason); 926 } 927 } 928 929 while ((rb = rb_first_cached(&sched_engine->queue))) { 930 struct i915_priolist *p = to_priolist(rb); 931 struct i915_request *rq, *rn; 932 933 priolist_for_each_request_consume(rq, rn, p) { 934 if (last && !can_merge_rq(rq, last)) 935 goto register_context; 936 937 list_del_init(&rq->sched.link); 938 939 __i915_request_submit(rq); 940 941 trace_i915_request_in(rq, 0); 942 last = rq; 943 944 if (is_multi_lrc_rq(rq)) { 945 /* 946 * We need to coalesce all multi-lrc requests in 947 * a relationship into a single H2G. We are 948 * guaranteed that all of these requests will be 949 * submitted sequentially. 950 */ 951 if (multi_lrc_submit(rq)) { 952 submit = true; 953 goto register_context; 954 } 955 } else { 956 submit = true; 957 } 958 } 959 960 rb_erase_cached(&p->node, &sched_engine->queue); 961 i915_priolist_free(p); 962 } 963 964 register_context: 965 if (submit) { 966 struct intel_context *ce = request_to_scheduling_context(last); 967 968 if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) && 969 !intel_context_is_banned(ce))) { 970 ret = try_context_registration(ce, false); 971 if (unlikely(ret == -EPIPE)) { 972 goto deadlk; 973 } else if (ret == -EBUSY) { 974 guc->stalled_request = last; 975 guc->submission_stall_reason = 976 STALL_REGISTER_CONTEXT; 977 goto schedule_tasklet; 978 } else if (ret != 0) { 979 GEM_WARN_ON(ret); /* Unexpected */ 980 goto deadlk; 981 } 982 } 983 984 move_lrc_tail: 985 if (is_multi_lrc_rq(last)) { 986 ret = guc_wq_item_append(guc, last); 987 if (ret == -EBUSY) { 988 goto schedule_tasklet; 989 } else if (ret != 0) { 990 GEM_WARN_ON(ret); /* Unexpected */ 991 goto deadlk; 992 } 993 } else { 994 guc_set_lrc_tail(last); 995 } 996 997 add_request: 998 ret = guc_add_request(guc, last); 999 if (unlikely(ret == -EPIPE)) { 1000 goto deadlk; 1001 } else if (ret == -EBUSY) { 1002 goto schedule_tasklet; 1003 } else if (ret != 0) { 1004 GEM_WARN_ON(ret); /* Unexpected */ 1005 goto deadlk; 1006 } 1007 } 1008 1009 guc->stalled_request = NULL; 1010 guc->submission_stall_reason = STALL_NONE; 1011 return submit; 1012 1013 deadlk: 1014 sched_engine->tasklet.callback = NULL; 1015 tasklet_disable_nosync(&sched_engine->tasklet); 1016 return false; 1017 1018 schedule_tasklet: 1019 tasklet_schedule(&sched_engine->tasklet); 1020 return false; 1021 } 1022 1023 static void guc_submission_tasklet(struct tasklet_struct *t) 1024 { 1025 struct i915_sched_engine *sched_engine = 1026 from_tasklet(sched_engine, t, tasklet); 1027 unsigned long flags; 1028 bool loop; 1029 1030 spin_lock_irqsave(&sched_engine->lock, flags); 1031 1032 do { 1033 loop = guc_dequeue_one_context(sched_engine->private_data); 1034 } while (loop); 1035 1036 i915_sched_engine_reset_on_empty(sched_engine); 1037 1038 spin_unlock_irqrestore(&sched_engine->lock, flags); 1039 } 1040 1041 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir) 1042 { 1043 if (iir & GT_RENDER_USER_INTERRUPT) 1044 intel_engine_signal_breadcrumbs(engine); 1045 } 1046 1047 static void __guc_context_destroy(struct intel_context *ce); 1048 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce); 1049 static void guc_signal_context_fence(struct intel_context *ce); 1050 static void guc_cancel_context_requests(struct intel_context *ce); 1051 static void guc_blocked_fence_complete(struct intel_context *ce); 1052 1053 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc) 1054 { 1055 struct intel_context *ce; 1056 unsigned long index, flags; 1057 bool pending_disable, pending_enable, deregister, destroyed, banned; 1058 1059 xa_lock_irqsave(&guc->context_lookup, flags); 1060 xa_for_each(&guc->context_lookup, index, ce) { 1061 /* 1062 * Corner case where the ref count on the object is zero but and 1063 * deregister G2H was lost. In this case we don't touch the ref 1064 * count and finish the destroy of the context. 1065 */ 1066 bool do_put = kref_get_unless_zero(&ce->ref); 1067 1068 xa_unlock(&guc->context_lookup); 1069 1070 spin_lock(&ce->guc_state.lock); 1071 1072 /* 1073 * Once we are at this point submission_disabled() is guaranteed 1074 * to be visible to all callers who set the below flags (see above 1075 * flush and flushes in reset_prepare). If submission_disabled() 1076 * is set, the caller shouldn't set these flags. 1077 */ 1078 1079 destroyed = context_destroyed(ce); 1080 pending_enable = context_pending_enable(ce); 1081 pending_disable = context_pending_disable(ce); 1082 deregister = context_wait_for_deregister_to_register(ce); 1083 banned = context_banned(ce); 1084 init_sched_state(ce); 1085 1086 spin_unlock(&ce->guc_state.lock); 1087 1088 if (pending_enable || destroyed || deregister) { 1089 decr_outstanding_submission_g2h(guc); 1090 if (deregister) 1091 guc_signal_context_fence(ce); 1092 if (destroyed) { 1093 intel_gt_pm_put_async(guc_to_gt(guc)); 1094 release_guc_id(guc, ce); 1095 __guc_context_destroy(ce); 1096 } 1097 if (pending_enable || deregister) 1098 intel_context_put(ce); 1099 } 1100 1101 /* Not mutualy exclusive with above if statement. */ 1102 if (pending_disable) { 1103 guc_signal_context_fence(ce); 1104 if (banned) { 1105 guc_cancel_context_requests(ce); 1106 intel_engine_signal_breadcrumbs(ce->engine); 1107 } 1108 intel_context_sched_disable_unpin(ce); 1109 decr_outstanding_submission_g2h(guc); 1110 1111 spin_lock(&ce->guc_state.lock); 1112 guc_blocked_fence_complete(ce); 1113 spin_unlock(&ce->guc_state.lock); 1114 1115 intel_context_put(ce); 1116 } 1117 1118 if (do_put) 1119 intel_context_put(ce); 1120 xa_lock(&guc->context_lookup); 1121 } 1122 xa_unlock_irqrestore(&guc->context_lookup, flags); 1123 } 1124 1125 /* 1126 * GuC stores busyness stats for each engine at context in/out boundaries. A 1127 * context 'in' logs execution start time, 'out' adds in -> out delta to total. 1128 * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with 1129 * GuC. 1130 * 1131 * __i915_pmu_event_read samples engine busyness. When sampling, if context id 1132 * is valid (!= ~0) and start is non-zero, the engine is considered to be 1133 * active. For an active engine total busyness = total + (now - start), where 1134 * 'now' is the time at which the busyness is sampled. For inactive engine, 1135 * total busyness = total. 1136 * 1137 * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain. 1138 * 1139 * The start and total values provided by GuC are 32 bits and wrap around in a 1140 * few minutes. Since perf pmu provides busyness as 64 bit monotonically 1141 * increasing ns values, there is a need for this implementation to account for 1142 * overflows and extend the GuC provided values to 64 bits before returning 1143 * busyness to the user. In order to do that, a worker runs periodically at 1144 * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in 1145 * 27 seconds for a gt clock frequency of 19.2 MHz). 1146 */ 1147 1148 #define WRAP_TIME_CLKS U32_MAX 1149 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3) 1150 1151 static void 1152 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start) 1153 { 1154 u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); 1155 u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp); 1156 1157 if (new_start == lower_32_bits(*prev_start)) 1158 return; 1159 1160 /* 1161 * When gt is unparked, we update the gt timestamp and start the ping 1162 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt 1163 * is unparked, all switched in contexts will have a start time that is 1164 * within +/- POLL_TIME_CLKS of the most recent gt_stamp. 1165 * 1166 * If neither gt_stamp nor new_start has rolled over, then the 1167 * gt_stamp_hi does not need to be adjusted, however if one of them has 1168 * rolled over, we need to adjust gt_stamp_hi accordingly. 1169 * 1170 * The below conditions address the cases of new_start rollover and 1171 * gt_stamp_last rollover respectively. 1172 */ 1173 if (new_start < gt_stamp_last && 1174 (new_start - gt_stamp_last) <= POLL_TIME_CLKS) 1175 gt_stamp_hi++; 1176 1177 if (new_start > gt_stamp_last && 1178 (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi) 1179 gt_stamp_hi--; 1180 1181 *prev_start = ((u64)gt_stamp_hi << 32) | new_start; 1182 } 1183 1184 #define record_read(map_, field_) \ 1185 iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_) 1186 1187 /* 1188 * GuC updates shared memory and KMD reads it. Since this is not synchronized, 1189 * we run into a race where the value read is inconsistent. Sometimes the 1190 * inconsistency is in reading the upper MSB bytes of the last_in value when 1191 * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper 1192 * 24 bits are zero. Since these are non-zero values, it is non-trivial to 1193 * determine validity of these values. Instead we read the values multiple times 1194 * until they are consistent. In test runs, 3 attempts results in consistent 1195 * values. The upper bound is set to 6 attempts and may need to be tuned as per 1196 * any new occurences. 1197 */ 1198 static void __get_engine_usage_record(struct intel_engine_cs *engine, 1199 u32 *last_in, u32 *id, u32 *total) 1200 { 1201 struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine); 1202 int i = 0; 1203 1204 do { 1205 *last_in = record_read(&rec_map, last_switch_in_stamp); 1206 *id = record_read(&rec_map, current_context_index); 1207 *total = record_read(&rec_map, total_runtime); 1208 1209 if (record_read(&rec_map, last_switch_in_stamp) == *last_in && 1210 record_read(&rec_map, current_context_index) == *id && 1211 record_read(&rec_map, total_runtime) == *total) 1212 break; 1213 } while (++i < 6); 1214 } 1215 1216 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine) 1217 { 1218 struct intel_engine_guc_stats *stats = &engine->stats.guc; 1219 struct intel_guc *guc = &engine->gt->uc.guc; 1220 u32 last_switch, ctx_id, total; 1221 1222 lockdep_assert_held(&guc->timestamp.lock); 1223 1224 __get_engine_usage_record(engine, &last_switch, &ctx_id, &total); 1225 1226 stats->running = ctx_id != ~0U && last_switch; 1227 if (stats->running) 1228 __extend_last_switch(guc, &stats->start_gt_clk, last_switch); 1229 1230 /* 1231 * Instead of adjusting the total for overflow, just add the 1232 * difference from previous sample stats->total_gt_clks 1233 */ 1234 if (total && total != ~0U) { 1235 stats->total_gt_clks += (u32)(total - stats->prev_total); 1236 stats->prev_total = total; 1237 } 1238 } 1239 1240 static u32 gpm_timestamp_shift(struct intel_gt *gt) 1241 { 1242 intel_wakeref_t wakeref; 1243 u32 reg, shift; 1244 1245 with_intel_runtime_pm(gt->uncore->rpm, wakeref) 1246 reg = intel_uncore_read(gt->uncore, RPM_CONFIG0); 1247 1248 shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >> 1249 GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT; 1250 1251 return 3 - shift; 1252 } 1253 1254 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now) 1255 { 1256 struct intel_gt *gt = guc_to_gt(guc); 1257 u32 gt_stamp_lo, gt_stamp_hi; 1258 u64 gpm_ts; 1259 1260 lockdep_assert_held(&guc->timestamp.lock); 1261 1262 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp); 1263 gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0, 1264 MISC_STATUS1) >> guc->timestamp.shift; 1265 gt_stamp_lo = lower_32_bits(gpm_ts); 1266 *now = ktime_get(); 1267 1268 if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp)) 1269 gt_stamp_hi++; 1270 1271 guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo; 1272 } 1273 1274 /* 1275 * Unlike the execlist mode of submission total and active times are in terms of 1276 * gt clocks. The *now parameter is retained to return the cpu time at which the 1277 * busyness was sampled. 1278 */ 1279 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now) 1280 { 1281 struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc; 1282 struct i915_gpu_error *gpu_error = &engine->i915->gpu_error; 1283 struct intel_gt *gt = engine->gt; 1284 struct intel_guc *guc = >->uc.guc; 1285 u64 total, gt_stamp_saved; 1286 unsigned long flags; 1287 u32 reset_count; 1288 bool in_reset; 1289 1290 spin_lock_irqsave(&guc->timestamp.lock, flags); 1291 1292 /* 1293 * If a reset happened, we risk reading partially updated engine 1294 * busyness from GuC, so we just use the driver stored copy of busyness. 1295 * Synchronize with gt reset using reset_count and the 1296 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count 1297 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is 1298 * usable by checking the flag afterwards. 1299 */ 1300 reset_count = i915_reset_count(gpu_error); 1301 in_reset = test_bit(I915_RESET_BACKOFF, >->reset.flags); 1302 1303 *now = ktime_get(); 1304 1305 /* 1306 * The active busyness depends on start_gt_clk and gt_stamp. 1307 * gt_stamp is updated by i915 only when gt is awake and the 1308 * start_gt_clk is derived from GuC state. To get a consistent 1309 * view of activity, we query the GuC state only if gt is awake. 1310 */ 1311 if (!in_reset && intel_gt_pm_get_if_awake(gt)) { 1312 stats_saved = *stats; 1313 gt_stamp_saved = guc->timestamp.gt_stamp; 1314 /* 1315 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp - 1316 * start_gt_clk' calculation below for active engines. 1317 */ 1318 guc_update_engine_gt_clks(engine); 1319 guc_update_pm_timestamp(guc, now); 1320 intel_gt_pm_put_async(gt); 1321 if (i915_reset_count(gpu_error) != reset_count) { 1322 *stats = stats_saved; 1323 guc->timestamp.gt_stamp = gt_stamp_saved; 1324 } 1325 } 1326 1327 total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks); 1328 if (stats->running) { 1329 u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk; 1330 1331 total += intel_gt_clock_interval_to_ns(gt, clk); 1332 } 1333 1334 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1335 1336 return ns_to_ktime(total); 1337 } 1338 1339 static void __reset_guc_busyness_stats(struct intel_guc *guc) 1340 { 1341 struct intel_gt *gt = guc_to_gt(guc); 1342 struct intel_engine_cs *engine; 1343 enum intel_engine_id id; 1344 unsigned long flags; 1345 ktime_t unused; 1346 1347 cancel_delayed_work_sync(&guc->timestamp.work); 1348 1349 spin_lock_irqsave(&guc->timestamp.lock, flags); 1350 1351 guc_update_pm_timestamp(guc, &unused); 1352 for_each_engine(engine, gt, id) { 1353 guc_update_engine_gt_clks(engine); 1354 engine->stats.guc.prev_total = 0; 1355 } 1356 1357 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1358 } 1359 1360 static void __update_guc_busyness_stats(struct intel_guc *guc) 1361 { 1362 struct intel_gt *gt = guc_to_gt(guc); 1363 struct intel_engine_cs *engine; 1364 enum intel_engine_id id; 1365 unsigned long flags; 1366 ktime_t unused; 1367 1368 guc->timestamp.last_stat_jiffies = jiffies; 1369 1370 spin_lock_irqsave(&guc->timestamp.lock, flags); 1371 1372 guc_update_pm_timestamp(guc, &unused); 1373 for_each_engine(engine, gt, id) 1374 guc_update_engine_gt_clks(engine); 1375 1376 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1377 } 1378 1379 static void guc_timestamp_ping(struct work_struct *wrk) 1380 { 1381 struct intel_guc *guc = container_of(wrk, typeof(*guc), 1382 timestamp.work.work); 1383 struct intel_uc *uc = container_of(guc, typeof(*uc), guc); 1384 struct intel_gt *gt = guc_to_gt(guc); 1385 intel_wakeref_t wakeref; 1386 int srcu, ret; 1387 1388 /* 1389 * Synchronize with gt reset to make sure the worker does not 1390 * corrupt the engine/guc stats. 1391 */ 1392 ret = intel_gt_reset_trylock(gt, &srcu); 1393 if (ret) 1394 return; 1395 1396 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) 1397 __update_guc_busyness_stats(guc); 1398 1399 intel_gt_reset_unlock(gt, srcu); 1400 1401 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, 1402 guc->timestamp.ping_delay); 1403 } 1404 1405 static int guc_action_enable_usage_stats(struct intel_guc *guc) 1406 { 1407 u32 offset = intel_guc_engine_usage_offset(guc); 1408 u32 action[] = { 1409 INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF, 1410 offset, 1411 0, 1412 }; 1413 1414 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 1415 } 1416 1417 static void guc_init_engine_stats(struct intel_guc *guc) 1418 { 1419 struct intel_gt *gt = guc_to_gt(guc); 1420 intel_wakeref_t wakeref; 1421 1422 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, 1423 guc->timestamp.ping_delay); 1424 1425 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) { 1426 int ret = guc_action_enable_usage_stats(guc); 1427 1428 if (ret) 1429 drm_err(>->i915->drm, 1430 "Failed to enable usage stats: %d!\n", ret); 1431 } 1432 } 1433 1434 void intel_guc_busyness_park(struct intel_gt *gt) 1435 { 1436 struct intel_guc *guc = >->uc.guc; 1437 1438 if (!guc_submission_initialized(guc)) 1439 return; 1440 1441 /* 1442 * There is a race with suspend flow where the worker runs after suspend 1443 * and causes an unclaimed register access warning. Cancel the worker 1444 * synchronously here. 1445 */ 1446 cancel_delayed_work_sync(&guc->timestamp.work); 1447 1448 /* 1449 * Before parking, we should sample engine busyness stats if we need to. 1450 * We can skip it if we are less than half a ping from the last time we 1451 * sampled the busyness stats. 1452 */ 1453 if (guc->timestamp.last_stat_jiffies && 1454 !time_after(jiffies, guc->timestamp.last_stat_jiffies + 1455 (guc->timestamp.ping_delay / 2))) 1456 return; 1457 1458 __update_guc_busyness_stats(guc); 1459 } 1460 1461 void intel_guc_busyness_unpark(struct intel_gt *gt) 1462 { 1463 struct intel_guc *guc = >->uc.guc; 1464 unsigned long flags; 1465 ktime_t unused; 1466 1467 if (!guc_submission_initialized(guc)) 1468 return; 1469 1470 spin_lock_irqsave(&guc->timestamp.lock, flags); 1471 guc_update_pm_timestamp(guc, &unused); 1472 spin_unlock_irqrestore(&guc->timestamp.lock, flags); 1473 mod_delayed_work(system_highpri_wq, &guc->timestamp.work, 1474 guc->timestamp.ping_delay); 1475 } 1476 1477 static inline bool 1478 submission_disabled(struct intel_guc *guc) 1479 { 1480 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1481 1482 return unlikely(!sched_engine || 1483 !__tasklet_is_enabled(&sched_engine->tasklet) || 1484 intel_gt_is_wedged(guc_to_gt(guc))); 1485 } 1486 1487 static void disable_submission(struct intel_guc *guc) 1488 { 1489 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1490 1491 if (__tasklet_is_enabled(&sched_engine->tasklet)) { 1492 GEM_BUG_ON(!guc->ct.enabled); 1493 __tasklet_disable_sync_once(&sched_engine->tasklet); 1494 sched_engine->tasklet.callback = NULL; 1495 } 1496 } 1497 1498 static void enable_submission(struct intel_guc *guc) 1499 { 1500 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1501 unsigned long flags; 1502 1503 spin_lock_irqsave(&guc->sched_engine->lock, flags); 1504 sched_engine->tasklet.callback = guc_submission_tasklet; 1505 wmb(); /* Make sure callback visible */ 1506 if (!__tasklet_is_enabled(&sched_engine->tasklet) && 1507 __tasklet_enable(&sched_engine->tasklet)) { 1508 GEM_BUG_ON(!guc->ct.enabled); 1509 1510 /* And kick in case we missed a new request submission. */ 1511 tasklet_hi_schedule(&sched_engine->tasklet); 1512 } 1513 spin_unlock_irqrestore(&guc->sched_engine->lock, flags); 1514 } 1515 1516 static void guc_flush_submissions(struct intel_guc *guc) 1517 { 1518 struct i915_sched_engine * const sched_engine = guc->sched_engine; 1519 unsigned long flags; 1520 1521 spin_lock_irqsave(&sched_engine->lock, flags); 1522 spin_unlock_irqrestore(&sched_engine->lock, flags); 1523 } 1524 1525 static void guc_flush_destroyed_contexts(struct intel_guc *guc); 1526 1527 void intel_guc_submission_reset_prepare(struct intel_guc *guc) 1528 { 1529 if (unlikely(!guc_submission_initialized(guc))) { 1530 /* Reset called during driver load? GuC not yet initialised! */ 1531 return; 1532 } 1533 1534 intel_gt_park_heartbeats(guc_to_gt(guc)); 1535 disable_submission(guc); 1536 guc->interrupts.disable(guc); 1537 __reset_guc_busyness_stats(guc); 1538 1539 /* Flush IRQ handler */ 1540 spin_lock_irq(&guc_to_gt(guc)->irq_lock); 1541 spin_unlock_irq(&guc_to_gt(guc)->irq_lock); 1542 1543 guc_flush_submissions(guc); 1544 guc_flush_destroyed_contexts(guc); 1545 flush_work(&guc->ct.requests.worker); 1546 1547 scrub_guc_desc_for_outstanding_g2h(guc); 1548 } 1549 1550 static struct intel_engine_cs * 1551 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling) 1552 { 1553 struct intel_engine_cs *engine; 1554 intel_engine_mask_t tmp, mask = ve->mask; 1555 unsigned int num_siblings = 0; 1556 1557 for_each_engine_masked(engine, ve->gt, mask, tmp) 1558 if (num_siblings++ == sibling) 1559 return engine; 1560 1561 return NULL; 1562 } 1563 1564 static inline struct intel_engine_cs * 1565 __context_to_physical_engine(struct intel_context *ce) 1566 { 1567 struct intel_engine_cs *engine = ce->engine; 1568 1569 if (intel_engine_is_virtual(engine)) 1570 engine = guc_virtual_get_sibling(engine, 0); 1571 1572 return engine; 1573 } 1574 1575 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub) 1576 { 1577 struct intel_engine_cs *engine = __context_to_physical_engine(ce); 1578 1579 if (intel_context_is_banned(ce)) 1580 return; 1581 1582 GEM_BUG_ON(!intel_context_is_pinned(ce)); 1583 1584 /* 1585 * We want a simple context + ring to execute the breadcrumb update. 1586 * We cannot rely on the context being intact across the GPU hang, 1587 * so clear it and rebuild just what we need for the breadcrumb. 1588 * All pending requests for this context will be zapped, and any 1589 * future request will be after userspace has had the opportunity 1590 * to recreate its own state. 1591 */ 1592 if (scrub) 1593 lrc_init_regs(ce, engine, true); 1594 1595 /* Rerun the request; its payload has been neutered (if guilty). */ 1596 lrc_update_regs(ce, engine, head); 1597 } 1598 1599 static void guc_engine_reset_prepare(struct intel_engine_cs *engine) 1600 { 1601 if (!IS_GRAPHICS_VER(engine->i915, 11, 12)) 1602 return; 1603 1604 intel_engine_stop_cs(engine); 1605 1606 /* 1607 * Wa_22011802037:gen11/gen12: In addition to stopping the cs, we need 1608 * to wait for any pending mi force wakeups 1609 */ 1610 intel_engine_wait_for_pending_mi_fw(engine); 1611 } 1612 1613 static void guc_reset_nop(struct intel_engine_cs *engine) 1614 { 1615 } 1616 1617 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled) 1618 { 1619 } 1620 1621 static void 1622 __unwind_incomplete_requests(struct intel_context *ce) 1623 { 1624 struct i915_request *rq, *rn; 1625 struct list_head *pl; 1626 int prio = I915_PRIORITY_INVALID; 1627 struct i915_sched_engine * const sched_engine = 1628 ce->engine->sched_engine; 1629 unsigned long flags; 1630 1631 spin_lock_irqsave(&sched_engine->lock, flags); 1632 spin_lock(&ce->guc_state.lock); 1633 list_for_each_entry_safe_reverse(rq, rn, 1634 &ce->guc_state.requests, 1635 sched.link) { 1636 if (i915_request_completed(rq)) 1637 continue; 1638 1639 list_del_init(&rq->sched.link); 1640 __i915_request_unsubmit(rq); 1641 1642 /* Push the request back into the queue for later resubmission. */ 1643 GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID); 1644 if (rq_prio(rq) != prio) { 1645 prio = rq_prio(rq); 1646 pl = i915_sched_lookup_priolist(sched_engine, prio); 1647 } 1648 GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine)); 1649 1650 list_add(&rq->sched.link, pl); 1651 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 1652 } 1653 spin_unlock(&ce->guc_state.lock); 1654 spin_unlock_irqrestore(&sched_engine->lock, flags); 1655 } 1656 1657 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled) 1658 { 1659 bool guilty; 1660 struct i915_request *rq; 1661 unsigned long flags; 1662 u32 head; 1663 int i, number_children = ce->parallel.number_children; 1664 struct intel_context *parent = ce; 1665 1666 GEM_BUG_ON(intel_context_is_child(ce)); 1667 1668 intel_context_get(ce); 1669 1670 /* 1671 * GuC will implicitly mark the context as non-schedulable when it sends 1672 * the reset notification. Make sure our state reflects this change. The 1673 * context will be marked enabled on resubmission. 1674 */ 1675 spin_lock_irqsave(&ce->guc_state.lock, flags); 1676 clr_context_enabled(ce); 1677 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 1678 1679 /* 1680 * For each context in the relationship find the hanging request 1681 * resetting each context / request as needed 1682 */ 1683 for (i = 0; i < number_children + 1; ++i) { 1684 if (!intel_context_is_pinned(ce)) 1685 goto next_context; 1686 1687 guilty = false; 1688 rq = intel_context_find_active_request(ce); 1689 if (!rq) { 1690 head = ce->ring->tail; 1691 goto out_replay; 1692 } 1693 1694 if (i915_request_started(rq)) 1695 guilty = stalled & ce->engine->mask; 1696 1697 GEM_BUG_ON(i915_active_is_idle(&ce->active)); 1698 head = intel_ring_wrap(ce->ring, rq->head); 1699 1700 __i915_request_reset(rq, guilty); 1701 out_replay: 1702 guc_reset_state(ce, head, guilty); 1703 next_context: 1704 if (i != number_children) 1705 ce = list_next_entry(ce, parallel.child_link); 1706 } 1707 1708 __unwind_incomplete_requests(parent); 1709 intel_context_put(parent); 1710 } 1711 1712 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled) 1713 { 1714 struct intel_context *ce; 1715 unsigned long index; 1716 unsigned long flags; 1717 1718 if (unlikely(!guc_submission_initialized(guc))) { 1719 /* Reset called during driver load? GuC not yet initialised! */ 1720 return; 1721 } 1722 1723 xa_lock_irqsave(&guc->context_lookup, flags); 1724 xa_for_each(&guc->context_lookup, index, ce) { 1725 if (!kref_get_unless_zero(&ce->ref)) 1726 continue; 1727 1728 xa_unlock(&guc->context_lookup); 1729 1730 if (intel_context_is_pinned(ce) && 1731 !intel_context_is_child(ce)) 1732 __guc_reset_context(ce, stalled); 1733 1734 intel_context_put(ce); 1735 1736 xa_lock(&guc->context_lookup); 1737 } 1738 xa_unlock_irqrestore(&guc->context_lookup, flags); 1739 1740 /* GuC is blown away, drop all references to contexts */ 1741 xa_destroy(&guc->context_lookup); 1742 } 1743 1744 static void guc_cancel_context_requests(struct intel_context *ce) 1745 { 1746 struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine; 1747 struct i915_request *rq; 1748 unsigned long flags; 1749 1750 /* Mark all executing requests as skipped. */ 1751 spin_lock_irqsave(&sched_engine->lock, flags); 1752 spin_lock(&ce->guc_state.lock); 1753 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) 1754 i915_request_put(i915_request_mark_eio(rq)); 1755 spin_unlock(&ce->guc_state.lock); 1756 spin_unlock_irqrestore(&sched_engine->lock, flags); 1757 } 1758 1759 static void 1760 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine) 1761 { 1762 struct i915_request *rq, *rn; 1763 struct rb_node *rb; 1764 unsigned long flags; 1765 1766 /* Can be called during boot if GuC fails to load */ 1767 if (!sched_engine) 1768 return; 1769 1770 /* 1771 * Before we call engine->cancel_requests(), we should have exclusive 1772 * access to the submission state. This is arranged for us by the 1773 * caller disabling the interrupt generation, the tasklet and other 1774 * threads that may then access the same state, giving us a free hand 1775 * to reset state. However, we still need to let lockdep be aware that 1776 * we know this state may be accessed in hardirq context, so we 1777 * disable the irq around this manipulation and we want to keep 1778 * the spinlock focused on its duties and not accidentally conflate 1779 * coverage to the submission's irq state. (Similarly, although we 1780 * shouldn't need to disable irq around the manipulation of the 1781 * submission's irq state, we also wish to remind ourselves that 1782 * it is irq state.) 1783 */ 1784 spin_lock_irqsave(&sched_engine->lock, flags); 1785 1786 /* Flush the queued requests to the timeline list (for retiring). */ 1787 while ((rb = rb_first_cached(&sched_engine->queue))) { 1788 struct i915_priolist *p = to_priolist(rb); 1789 1790 priolist_for_each_request_consume(rq, rn, p) { 1791 list_del_init(&rq->sched.link); 1792 1793 __i915_request_submit(rq); 1794 1795 i915_request_put(i915_request_mark_eio(rq)); 1796 } 1797 1798 rb_erase_cached(&p->node, &sched_engine->queue); 1799 i915_priolist_free(p); 1800 } 1801 1802 /* Remaining _unready_ requests will be nop'ed when submitted */ 1803 1804 sched_engine->queue_priority_hint = INT_MIN; 1805 sched_engine->queue = RB_ROOT_CACHED; 1806 1807 spin_unlock_irqrestore(&sched_engine->lock, flags); 1808 } 1809 1810 void intel_guc_submission_cancel_requests(struct intel_guc *guc) 1811 { 1812 struct intel_context *ce; 1813 unsigned long index; 1814 unsigned long flags; 1815 1816 xa_lock_irqsave(&guc->context_lookup, flags); 1817 xa_for_each(&guc->context_lookup, index, ce) { 1818 if (!kref_get_unless_zero(&ce->ref)) 1819 continue; 1820 1821 xa_unlock(&guc->context_lookup); 1822 1823 if (intel_context_is_pinned(ce) && 1824 !intel_context_is_child(ce)) 1825 guc_cancel_context_requests(ce); 1826 1827 intel_context_put(ce); 1828 1829 xa_lock(&guc->context_lookup); 1830 } 1831 xa_unlock_irqrestore(&guc->context_lookup, flags); 1832 1833 guc_cancel_sched_engine_requests(guc->sched_engine); 1834 1835 /* GuC is blown away, drop all references to contexts */ 1836 xa_destroy(&guc->context_lookup); 1837 } 1838 1839 void intel_guc_submission_reset_finish(struct intel_guc *guc) 1840 { 1841 /* Reset called during driver load or during wedge? */ 1842 if (unlikely(!guc_submission_initialized(guc) || 1843 intel_gt_is_wedged(guc_to_gt(guc)))) { 1844 return; 1845 } 1846 1847 /* 1848 * Technically possible for either of these values to be non-zero here, 1849 * but very unlikely + harmless. Regardless let's add a warn so we can 1850 * see in CI if this happens frequently / a precursor to taking down the 1851 * machine. 1852 */ 1853 GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h)); 1854 atomic_set(&guc->outstanding_submission_g2h, 0); 1855 1856 intel_guc_global_policies_update(guc); 1857 enable_submission(guc); 1858 intel_gt_unpark_heartbeats(guc_to_gt(guc)); 1859 } 1860 1861 static void destroyed_worker_func(struct work_struct *w); 1862 static void reset_fail_worker_func(struct work_struct *w); 1863 1864 /* 1865 * Set up the memory resources to be shared with the GuC (via the GGTT) 1866 * at firmware loading time. 1867 */ 1868 int intel_guc_submission_init(struct intel_guc *guc) 1869 { 1870 struct intel_gt *gt = guc_to_gt(guc); 1871 int ret; 1872 1873 if (guc->submission_initialized) 1874 return 0; 1875 1876 if (guc->fw.major_ver_found < 70) { 1877 ret = guc_lrc_desc_pool_create_v69(guc); 1878 if (ret) 1879 return ret; 1880 } 1881 1882 guc->submission_state.guc_ids_bitmap = 1883 bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL); 1884 if (!guc->submission_state.guc_ids_bitmap) { 1885 ret = -ENOMEM; 1886 goto destroy_pool; 1887 } 1888 1889 guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ; 1890 guc->timestamp.shift = gpm_timestamp_shift(gt); 1891 guc->submission_initialized = true; 1892 1893 return 0; 1894 1895 destroy_pool: 1896 guc_lrc_desc_pool_destroy_v69(guc); 1897 1898 return ret; 1899 } 1900 1901 void intel_guc_submission_fini(struct intel_guc *guc) 1902 { 1903 if (!guc->submission_initialized) 1904 return; 1905 1906 guc_flush_destroyed_contexts(guc); 1907 guc_lrc_desc_pool_destroy_v69(guc); 1908 i915_sched_engine_put(guc->sched_engine); 1909 bitmap_free(guc->submission_state.guc_ids_bitmap); 1910 guc->submission_initialized = false; 1911 } 1912 1913 static inline void queue_request(struct i915_sched_engine *sched_engine, 1914 struct i915_request *rq, 1915 int prio) 1916 { 1917 GEM_BUG_ON(!list_empty(&rq->sched.link)); 1918 list_add_tail(&rq->sched.link, 1919 i915_sched_lookup_priolist(sched_engine, prio)); 1920 set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 1921 tasklet_hi_schedule(&sched_engine->tasklet); 1922 } 1923 1924 static int guc_bypass_tasklet_submit(struct intel_guc *guc, 1925 struct i915_request *rq) 1926 { 1927 int ret = 0; 1928 1929 __i915_request_submit(rq); 1930 1931 trace_i915_request_in(rq, 0); 1932 1933 if (is_multi_lrc_rq(rq)) { 1934 if (multi_lrc_submit(rq)) { 1935 ret = guc_wq_item_append(guc, rq); 1936 if (!ret) 1937 ret = guc_add_request(guc, rq); 1938 } 1939 } else { 1940 guc_set_lrc_tail(rq); 1941 ret = guc_add_request(guc, rq); 1942 } 1943 1944 if (unlikely(ret == -EPIPE)) 1945 disable_submission(guc); 1946 1947 return ret; 1948 } 1949 1950 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq) 1951 { 1952 struct i915_sched_engine *sched_engine = rq->engine->sched_engine; 1953 struct intel_context *ce = request_to_scheduling_context(rq); 1954 1955 return submission_disabled(guc) || guc->stalled_request || 1956 !i915_sched_engine_is_empty(sched_engine) || 1957 !ctx_id_mapped(guc, ce->guc_id.id); 1958 } 1959 1960 static void guc_submit_request(struct i915_request *rq) 1961 { 1962 struct i915_sched_engine *sched_engine = rq->engine->sched_engine; 1963 struct intel_guc *guc = &rq->engine->gt->uc.guc; 1964 unsigned long flags; 1965 1966 /* Will be called from irq-context when using foreign fences. */ 1967 spin_lock_irqsave(&sched_engine->lock, flags); 1968 1969 if (need_tasklet(guc, rq)) 1970 queue_request(sched_engine, rq, rq_prio(rq)); 1971 else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY) 1972 tasklet_hi_schedule(&sched_engine->tasklet); 1973 1974 spin_unlock_irqrestore(&sched_engine->lock, flags); 1975 } 1976 1977 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce) 1978 { 1979 int ret; 1980 1981 GEM_BUG_ON(intel_context_is_child(ce)); 1982 1983 if (intel_context_is_parent(ce)) 1984 ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap, 1985 NUMBER_MULTI_LRC_GUC_ID(guc), 1986 order_base_2(ce->parallel.number_children 1987 + 1)); 1988 else 1989 ret = ida_simple_get(&guc->submission_state.guc_ids, 1990 NUMBER_MULTI_LRC_GUC_ID(guc), 1991 guc->submission_state.num_guc_ids, 1992 GFP_KERNEL | __GFP_RETRY_MAYFAIL | 1993 __GFP_NOWARN); 1994 if (unlikely(ret < 0)) 1995 return ret; 1996 1997 ce->guc_id.id = ret; 1998 return 0; 1999 } 2000 2001 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce) 2002 { 2003 GEM_BUG_ON(intel_context_is_child(ce)); 2004 2005 if (!context_guc_id_invalid(ce)) { 2006 if (intel_context_is_parent(ce)) 2007 bitmap_release_region(guc->submission_state.guc_ids_bitmap, 2008 ce->guc_id.id, 2009 order_base_2(ce->parallel.number_children 2010 + 1)); 2011 else 2012 ida_simple_remove(&guc->submission_state.guc_ids, 2013 ce->guc_id.id); 2014 clr_ctx_id_mapping(guc, ce->guc_id.id); 2015 set_context_guc_id_invalid(ce); 2016 } 2017 if (!list_empty(&ce->guc_id.link)) 2018 list_del_init(&ce->guc_id.link); 2019 } 2020 2021 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce) 2022 { 2023 unsigned long flags; 2024 2025 spin_lock_irqsave(&guc->submission_state.lock, flags); 2026 __release_guc_id(guc, ce); 2027 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2028 } 2029 2030 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce) 2031 { 2032 struct intel_context *cn; 2033 2034 lockdep_assert_held(&guc->submission_state.lock); 2035 GEM_BUG_ON(intel_context_is_child(ce)); 2036 GEM_BUG_ON(intel_context_is_parent(ce)); 2037 2038 if (!list_empty(&guc->submission_state.guc_id_list)) { 2039 cn = list_first_entry(&guc->submission_state.guc_id_list, 2040 struct intel_context, 2041 guc_id.link); 2042 2043 GEM_BUG_ON(atomic_read(&cn->guc_id.ref)); 2044 GEM_BUG_ON(context_guc_id_invalid(cn)); 2045 GEM_BUG_ON(intel_context_is_child(cn)); 2046 GEM_BUG_ON(intel_context_is_parent(cn)); 2047 2048 list_del_init(&cn->guc_id.link); 2049 ce->guc_id.id = cn->guc_id.id; 2050 2051 spin_lock(&cn->guc_state.lock); 2052 clr_context_registered(cn); 2053 spin_unlock(&cn->guc_state.lock); 2054 2055 set_context_guc_id_invalid(cn); 2056 2057 #ifdef CONFIG_DRM_I915_SELFTEST 2058 guc->number_guc_id_stolen++; 2059 #endif 2060 2061 return 0; 2062 } else { 2063 return -EAGAIN; 2064 } 2065 } 2066 2067 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce) 2068 { 2069 int ret; 2070 2071 lockdep_assert_held(&guc->submission_state.lock); 2072 GEM_BUG_ON(intel_context_is_child(ce)); 2073 2074 ret = new_guc_id(guc, ce); 2075 if (unlikely(ret < 0)) { 2076 if (intel_context_is_parent(ce)) 2077 return -ENOSPC; 2078 2079 ret = steal_guc_id(guc, ce); 2080 if (ret < 0) 2081 return ret; 2082 } 2083 2084 if (intel_context_is_parent(ce)) { 2085 struct intel_context *child; 2086 int i = 1; 2087 2088 for_each_child(ce, child) 2089 child->guc_id.id = ce->guc_id.id + i++; 2090 } 2091 2092 return 0; 2093 } 2094 2095 #define PIN_GUC_ID_TRIES 4 2096 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce) 2097 { 2098 int ret = 0; 2099 unsigned long flags, tries = PIN_GUC_ID_TRIES; 2100 2101 GEM_BUG_ON(atomic_read(&ce->guc_id.ref)); 2102 2103 try_again: 2104 spin_lock_irqsave(&guc->submission_state.lock, flags); 2105 2106 might_lock(&ce->guc_state.lock); 2107 2108 if (context_guc_id_invalid(ce)) { 2109 ret = assign_guc_id(guc, ce); 2110 if (ret) 2111 goto out_unlock; 2112 ret = 1; /* Indidcates newly assigned guc_id */ 2113 } 2114 if (!list_empty(&ce->guc_id.link)) 2115 list_del_init(&ce->guc_id.link); 2116 atomic_inc(&ce->guc_id.ref); 2117 2118 out_unlock: 2119 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2120 2121 /* 2122 * -EAGAIN indicates no guc_id are available, let's retire any 2123 * outstanding requests to see if that frees up a guc_id. If the first 2124 * retire didn't help, insert a sleep with the timeslice duration before 2125 * attempting to retire more requests. Double the sleep period each 2126 * subsequent pass before finally giving up. The sleep period has max of 2127 * 100ms and minimum of 1ms. 2128 */ 2129 if (ret == -EAGAIN && --tries) { 2130 if (PIN_GUC_ID_TRIES - tries > 1) { 2131 unsigned int timeslice_shifted = 2132 ce->engine->props.timeslice_duration_ms << 2133 (PIN_GUC_ID_TRIES - tries - 2); 2134 unsigned int max = min_t(unsigned int, 100, 2135 timeslice_shifted); 2136 2137 msleep(max_t(unsigned int, max, 1)); 2138 } 2139 intel_gt_retire_requests(guc_to_gt(guc)); 2140 goto try_again; 2141 } 2142 2143 return ret; 2144 } 2145 2146 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce) 2147 { 2148 unsigned long flags; 2149 2150 GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0); 2151 GEM_BUG_ON(intel_context_is_child(ce)); 2152 2153 if (unlikely(context_guc_id_invalid(ce) || 2154 intel_context_is_parent(ce))) 2155 return; 2156 2157 spin_lock_irqsave(&guc->submission_state.lock, flags); 2158 if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) && 2159 !atomic_read(&ce->guc_id.ref)) 2160 list_add_tail(&ce->guc_id.link, 2161 &guc->submission_state.guc_id_list); 2162 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 2163 } 2164 2165 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc, 2166 struct intel_context *ce, 2167 u32 guc_id, 2168 u32 offset, 2169 bool loop) 2170 { 2171 struct intel_context *child; 2172 u32 action[4 + MAX_ENGINE_INSTANCE]; 2173 int len = 0; 2174 2175 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); 2176 2177 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 2178 action[len++] = guc_id; 2179 action[len++] = ce->parallel.number_children + 1; 2180 action[len++] = offset; 2181 for_each_child(ce, child) { 2182 offset += sizeof(struct guc_lrc_desc_v69); 2183 action[len++] = offset; 2184 } 2185 2186 return guc_submission_send_busy_loop(guc, action, len, 0, loop); 2187 } 2188 2189 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc, 2190 struct intel_context *ce, 2191 struct guc_ctxt_registration_info *info, 2192 bool loop) 2193 { 2194 struct intel_context *child; 2195 u32 action[13 + (MAX_ENGINE_INSTANCE * 2)]; 2196 int len = 0; 2197 u32 next_id; 2198 2199 GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE); 2200 2201 action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC; 2202 action[len++] = info->flags; 2203 action[len++] = info->context_idx; 2204 action[len++] = info->engine_class; 2205 action[len++] = info->engine_submit_mask; 2206 action[len++] = info->wq_desc_lo; 2207 action[len++] = info->wq_desc_hi; 2208 action[len++] = info->wq_base_lo; 2209 action[len++] = info->wq_base_hi; 2210 action[len++] = info->wq_size; 2211 action[len++] = ce->parallel.number_children + 1; 2212 action[len++] = info->hwlrca_lo; 2213 action[len++] = info->hwlrca_hi; 2214 2215 next_id = info->context_idx + 1; 2216 for_each_child(ce, child) { 2217 GEM_BUG_ON(next_id++ != child->guc_id.id); 2218 2219 /* 2220 * NB: GuC interface supports 64 bit LRCA even though i915/HW 2221 * only supports 32 bit currently. 2222 */ 2223 action[len++] = lower_32_bits(child->lrc.lrca); 2224 action[len++] = upper_32_bits(child->lrc.lrca); 2225 } 2226 2227 GEM_BUG_ON(len > ARRAY_SIZE(action)); 2228 2229 return guc_submission_send_busy_loop(guc, action, len, 0, loop); 2230 } 2231 2232 static int __guc_action_register_context_v69(struct intel_guc *guc, 2233 u32 guc_id, 2234 u32 offset, 2235 bool loop) 2236 { 2237 u32 action[] = { 2238 INTEL_GUC_ACTION_REGISTER_CONTEXT, 2239 guc_id, 2240 offset, 2241 }; 2242 2243 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2244 0, loop); 2245 } 2246 2247 static int __guc_action_register_context_v70(struct intel_guc *guc, 2248 struct guc_ctxt_registration_info *info, 2249 bool loop) 2250 { 2251 u32 action[] = { 2252 INTEL_GUC_ACTION_REGISTER_CONTEXT, 2253 info->flags, 2254 info->context_idx, 2255 info->engine_class, 2256 info->engine_submit_mask, 2257 info->wq_desc_lo, 2258 info->wq_desc_hi, 2259 info->wq_base_lo, 2260 info->wq_base_hi, 2261 info->wq_size, 2262 info->hwlrca_lo, 2263 info->hwlrca_hi, 2264 }; 2265 2266 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2267 0, loop); 2268 } 2269 2270 static void prepare_context_registration_info_v69(struct intel_context *ce); 2271 static void prepare_context_registration_info_v70(struct intel_context *ce, 2272 struct guc_ctxt_registration_info *info); 2273 2274 static int 2275 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop) 2276 { 2277 u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) + 2278 ce->guc_id.id * sizeof(struct guc_lrc_desc_v69); 2279 2280 prepare_context_registration_info_v69(ce); 2281 2282 if (intel_context_is_parent(ce)) 2283 return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id, 2284 offset, loop); 2285 else 2286 return __guc_action_register_context_v69(guc, ce->guc_id.id, 2287 offset, loop); 2288 } 2289 2290 static int 2291 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop) 2292 { 2293 struct guc_ctxt_registration_info info; 2294 2295 prepare_context_registration_info_v70(ce, &info); 2296 2297 if (intel_context_is_parent(ce)) 2298 return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop); 2299 else 2300 return __guc_action_register_context_v70(guc, &info, loop); 2301 } 2302 2303 static int register_context(struct intel_context *ce, bool loop) 2304 { 2305 struct intel_guc *guc = ce_to_guc(ce); 2306 int ret; 2307 2308 GEM_BUG_ON(intel_context_is_child(ce)); 2309 trace_intel_context_register(ce); 2310 2311 if (guc->fw.major_ver_found >= 70) 2312 ret = register_context_v70(guc, ce, loop); 2313 else 2314 ret = register_context_v69(guc, ce, loop); 2315 2316 if (likely(!ret)) { 2317 unsigned long flags; 2318 2319 spin_lock_irqsave(&ce->guc_state.lock, flags); 2320 set_context_registered(ce); 2321 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2322 2323 if (guc->fw.major_ver_found >= 70) 2324 guc_context_policy_init_v70(ce, loop); 2325 } 2326 2327 return ret; 2328 } 2329 2330 static int __guc_action_deregister_context(struct intel_guc *guc, 2331 u32 guc_id) 2332 { 2333 u32 action[] = { 2334 INTEL_GUC_ACTION_DEREGISTER_CONTEXT, 2335 guc_id, 2336 }; 2337 2338 return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2339 G2H_LEN_DW_DEREGISTER_CONTEXT, 2340 true); 2341 } 2342 2343 static int deregister_context(struct intel_context *ce, u32 guc_id) 2344 { 2345 struct intel_guc *guc = ce_to_guc(ce); 2346 2347 GEM_BUG_ON(intel_context_is_child(ce)); 2348 trace_intel_context_deregister(ce); 2349 2350 return __guc_action_deregister_context(guc, guc_id); 2351 } 2352 2353 static inline void clear_children_join_go_memory(struct intel_context *ce) 2354 { 2355 struct parent_scratch *ps = __get_parent_scratch(ce); 2356 int i; 2357 2358 ps->go.semaphore = 0; 2359 for (i = 0; i < ce->parallel.number_children + 1; ++i) 2360 ps->join[i].semaphore = 0; 2361 } 2362 2363 static inline u32 get_children_go_value(struct intel_context *ce) 2364 { 2365 return __get_parent_scratch(ce)->go.semaphore; 2366 } 2367 2368 static inline u32 get_children_join_value(struct intel_context *ce, 2369 u8 child_index) 2370 { 2371 return __get_parent_scratch(ce)->join[child_index].semaphore; 2372 } 2373 2374 struct context_policy { 2375 u32 count; 2376 struct guc_update_context_policy h2g; 2377 }; 2378 2379 static u32 __guc_context_policy_action_size(struct context_policy *policy) 2380 { 2381 size_t bytes = sizeof(policy->h2g.header) + 2382 (sizeof(policy->h2g.klv[0]) * policy->count); 2383 2384 return bytes / sizeof(u32); 2385 } 2386 2387 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id) 2388 { 2389 policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES; 2390 policy->h2g.header.ctx_id = guc_id; 2391 policy->count = 0; 2392 } 2393 2394 #define MAKE_CONTEXT_POLICY_ADD(func, id) \ 2395 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \ 2396 { \ 2397 GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \ 2398 policy->h2g.klv[policy->count].kl = \ 2399 FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \ 2400 FIELD_PREP(GUC_KLV_0_LEN, 1); \ 2401 policy->h2g.klv[policy->count].value = data; \ 2402 policy->count++; \ 2403 } 2404 2405 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM) 2406 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT) 2407 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY) 2408 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY) 2409 2410 #undef MAKE_CONTEXT_POLICY_ADD 2411 2412 static int __guc_context_set_context_policies(struct intel_guc *guc, 2413 struct context_policy *policy, 2414 bool loop) 2415 { 2416 return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g, 2417 __guc_context_policy_action_size(policy), 2418 0, loop); 2419 } 2420 2421 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop) 2422 { 2423 struct intel_engine_cs *engine = ce->engine; 2424 struct intel_guc *guc = &engine->gt->uc.guc; 2425 struct context_policy policy; 2426 u32 execution_quantum; 2427 u32 preemption_timeout; 2428 bool missing = false; 2429 unsigned long flags; 2430 int ret; 2431 2432 /* NB: For both of these, zero means disabled. */ 2433 execution_quantum = engine->props.timeslice_duration_ms * 1000; 2434 preemption_timeout = engine->props.preempt_timeout_ms * 1000; 2435 2436 __guc_context_policy_start_klv(&policy, ce->guc_id.id); 2437 2438 __guc_context_policy_add_priority(&policy, ce->guc_state.prio); 2439 __guc_context_policy_add_execution_quantum(&policy, execution_quantum); 2440 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); 2441 2442 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) 2443 __guc_context_policy_add_preempt_to_idle(&policy, 1); 2444 2445 ret = __guc_context_set_context_policies(guc, &policy, loop); 2446 missing = ret != 0; 2447 2448 if (!missing && intel_context_is_parent(ce)) { 2449 struct intel_context *child; 2450 2451 for_each_child(ce, child) { 2452 __guc_context_policy_start_klv(&policy, child->guc_id.id); 2453 2454 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) 2455 __guc_context_policy_add_preempt_to_idle(&policy, 1); 2456 2457 child->guc_state.prio = ce->guc_state.prio; 2458 __guc_context_policy_add_priority(&policy, ce->guc_state.prio); 2459 __guc_context_policy_add_execution_quantum(&policy, execution_quantum); 2460 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); 2461 2462 ret = __guc_context_set_context_policies(guc, &policy, loop); 2463 if (ret) { 2464 missing = true; 2465 break; 2466 } 2467 } 2468 } 2469 2470 spin_lock_irqsave(&ce->guc_state.lock, flags); 2471 if (missing) 2472 set_context_policy_required(ce); 2473 else 2474 clr_context_policy_required(ce); 2475 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2476 2477 return ret; 2478 } 2479 2480 static void guc_context_policy_init_v69(struct intel_engine_cs *engine, 2481 struct guc_lrc_desc_v69 *desc) 2482 { 2483 desc->policy_flags = 0; 2484 2485 if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION) 2486 desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69; 2487 2488 /* NB: For both of these, zero means disabled. */ 2489 desc->execution_quantum = engine->props.timeslice_duration_ms * 1000; 2490 desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000; 2491 } 2492 2493 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio) 2494 { 2495 /* 2496 * this matches the mapping we do in map_i915_prio_to_guc_prio() 2497 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL) 2498 */ 2499 switch (prio) { 2500 default: 2501 MISSING_CASE(prio); 2502 fallthrough; 2503 case GUC_CLIENT_PRIORITY_KMD_NORMAL: 2504 return GEN12_CTX_PRIORITY_NORMAL; 2505 case GUC_CLIENT_PRIORITY_NORMAL: 2506 return GEN12_CTX_PRIORITY_LOW; 2507 case GUC_CLIENT_PRIORITY_HIGH: 2508 case GUC_CLIENT_PRIORITY_KMD_HIGH: 2509 return GEN12_CTX_PRIORITY_HIGH; 2510 } 2511 } 2512 2513 static void prepare_context_registration_info_v69(struct intel_context *ce) 2514 { 2515 struct intel_engine_cs *engine = ce->engine; 2516 struct intel_guc *guc = &engine->gt->uc.guc; 2517 u32 ctx_id = ce->guc_id.id; 2518 struct guc_lrc_desc_v69 *desc; 2519 struct intel_context *child; 2520 2521 GEM_BUG_ON(!engine->mask); 2522 2523 /* 2524 * Ensure LRC + CT vmas are is same region as write barrier is done 2525 * based on CT vma region. 2526 */ 2527 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != 2528 i915_gem_object_is_lmem(ce->ring->vma->obj)); 2529 2530 desc = __get_lrc_desc_v69(guc, ctx_id); 2531 desc->engine_class = engine_class_to_guc_class(engine->class); 2532 desc->engine_submit_mask = engine->logical_mask; 2533 desc->hw_context_desc = ce->lrc.lrca; 2534 desc->priority = ce->guc_state.prio; 2535 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; 2536 guc_context_policy_init_v69(engine, desc); 2537 2538 /* 2539 * If context is a parent, we need to register a process descriptor 2540 * describing a work queue and register all child contexts. 2541 */ 2542 if (intel_context_is_parent(ce)) { 2543 struct guc_process_desc_v69 *pdesc; 2544 2545 ce->parallel.guc.wqi_tail = 0; 2546 ce->parallel.guc.wqi_head = 0; 2547 2548 desc->process_desc = i915_ggtt_offset(ce->state) + 2549 __get_parent_scratch_offset(ce); 2550 desc->wq_addr = i915_ggtt_offset(ce->state) + 2551 __get_wq_offset(ce); 2552 desc->wq_size = WQ_SIZE; 2553 2554 pdesc = __get_process_desc_v69(ce); 2555 memset(pdesc, 0, sizeof(*(pdesc))); 2556 pdesc->stage_id = ce->guc_id.id; 2557 pdesc->wq_base_addr = desc->wq_addr; 2558 pdesc->wq_size_bytes = desc->wq_size; 2559 pdesc->wq_status = WQ_STATUS_ACTIVE; 2560 2561 ce->parallel.guc.wq_head = &pdesc->head; 2562 ce->parallel.guc.wq_tail = &pdesc->tail; 2563 ce->parallel.guc.wq_status = &pdesc->wq_status; 2564 2565 for_each_child(ce, child) { 2566 desc = __get_lrc_desc_v69(guc, child->guc_id.id); 2567 2568 desc->engine_class = 2569 engine_class_to_guc_class(engine->class); 2570 desc->hw_context_desc = child->lrc.lrca; 2571 desc->priority = ce->guc_state.prio; 2572 desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD; 2573 guc_context_policy_init_v69(engine, desc); 2574 } 2575 2576 clear_children_join_go_memory(ce); 2577 } 2578 } 2579 2580 static void prepare_context_registration_info_v70(struct intel_context *ce, 2581 struct guc_ctxt_registration_info *info) 2582 { 2583 struct intel_engine_cs *engine = ce->engine; 2584 struct intel_guc *guc = &engine->gt->uc.guc; 2585 u32 ctx_id = ce->guc_id.id; 2586 2587 GEM_BUG_ON(!engine->mask); 2588 2589 /* 2590 * Ensure LRC + CT vmas are is same region as write barrier is done 2591 * based on CT vma region. 2592 */ 2593 GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) != 2594 i915_gem_object_is_lmem(ce->ring->vma->obj)); 2595 2596 memset(info, 0, sizeof(*info)); 2597 info->context_idx = ctx_id; 2598 info->engine_class = engine_class_to_guc_class(engine->class); 2599 info->engine_submit_mask = engine->logical_mask; 2600 /* 2601 * NB: GuC interface supports 64 bit LRCA even though i915/HW 2602 * only supports 32 bit currently. 2603 */ 2604 info->hwlrca_lo = lower_32_bits(ce->lrc.lrca); 2605 info->hwlrca_hi = upper_32_bits(ce->lrc.lrca); 2606 if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY) 2607 info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio); 2608 info->flags = CONTEXT_REGISTRATION_FLAG_KMD; 2609 2610 /* 2611 * If context is a parent, we need to register a process descriptor 2612 * describing a work queue and register all child contexts. 2613 */ 2614 if (intel_context_is_parent(ce)) { 2615 struct guc_sched_wq_desc *wq_desc; 2616 u64 wq_desc_offset, wq_base_offset; 2617 2618 ce->parallel.guc.wqi_tail = 0; 2619 ce->parallel.guc.wqi_head = 0; 2620 2621 wq_desc_offset = i915_ggtt_offset(ce->state) + 2622 __get_parent_scratch_offset(ce); 2623 wq_base_offset = i915_ggtt_offset(ce->state) + 2624 __get_wq_offset(ce); 2625 info->wq_desc_lo = lower_32_bits(wq_desc_offset); 2626 info->wq_desc_hi = upper_32_bits(wq_desc_offset); 2627 info->wq_base_lo = lower_32_bits(wq_base_offset); 2628 info->wq_base_hi = upper_32_bits(wq_base_offset); 2629 info->wq_size = WQ_SIZE; 2630 2631 wq_desc = __get_wq_desc_v70(ce); 2632 memset(wq_desc, 0, sizeof(*wq_desc)); 2633 wq_desc->wq_status = WQ_STATUS_ACTIVE; 2634 2635 ce->parallel.guc.wq_head = &wq_desc->head; 2636 ce->parallel.guc.wq_tail = &wq_desc->tail; 2637 ce->parallel.guc.wq_status = &wq_desc->wq_status; 2638 2639 clear_children_join_go_memory(ce); 2640 } 2641 } 2642 2643 static int try_context_registration(struct intel_context *ce, bool loop) 2644 { 2645 struct intel_engine_cs *engine = ce->engine; 2646 struct intel_runtime_pm *runtime_pm = engine->uncore->rpm; 2647 struct intel_guc *guc = &engine->gt->uc.guc; 2648 intel_wakeref_t wakeref; 2649 u32 ctx_id = ce->guc_id.id; 2650 bool context_registered; 2651 int ret = 0; 2652 2653 GEM_BUG_ON(!sched_state_is_init(ce)); 2654 2655 context_registered = ctx_id_mapped(guc, ctx_id); 2656 2657 clr_ctx_id_mapping(guc, ctx_id); 2658 set_ctx_id_mapping(guc, ctx_id, ce); 2659 2660 /* 2661 * The context_lookup xarray is used to determine if the hardware 2662 * context is currently registered. There are two cases in which it 2663 * could be registered either the guc_id has been stolen from another 2664 * context or the lrc descriptor address of this context has changed. In 2665 * either case the context needs to be deregistered with the GuC before 2666 * registering this context. 2667 */ 2668 if (context_registered) { 2669 bool disabled; 2670 unsigned long flags; 2671 2672 trace_intel_context_steal_guc_id(ce); 2673 GEM_BUG_ON(!loop); 2674 2675 /* Seal race with Reset */ 2676 spin_lock_irqsave(&ce->guc_state.lock, flags); 2677 disabled = submission_disabled(guc); 2678 if (likely(!disabled)) { 2679 set_context_wait_for_deregister_to_register(ce); 2680 intel_context_get(ce); 2681 } 2682 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2683 if (unlikely(disabled)) { 2684 clr_ctx_id_mapping(guc, ctx_id); 2685 return 0; /* Will get registered later */ 2686 } 2687 2688 /* 2689 * If stealing the guc_id, this ce has the same guc_id as the 2690 * context whose guc_id was stolen. 2691 */ 2692 with_intel_runtime_pm(runtime_pm, wakeref) 2693 ret = deregister_context(ce, ce->guc_id.id); 2694 if (unlikely(ret == -ENODEV)) 2695 ret = 0; /* Will get registered later */ 2696 } else { 2697 with_intel_runtime_pm(runtime_pm, wakeref) 2698 ret = register_context(ce, loop); 2699 if (unlikely(ret == -EBUSY)) { 2700 clr_ctx_id_mapping(guc, ctx_id); 2701 } else if (unlikely(ret == -ENODEV)) { 2702 clr_ctx_id_mapping(guc, ctx_id); 2703 ret = 0; /* Will get registered later */ 2704 } 2705 } 2706 2707 return ret; 2708 } 2709 2710 static int __guc_context_pre_pin(struct intel_context *ce, 2711 struct intel_engine_cs *engine, 2712 struct i915_gem_ww_ctx *ww, 2713 void **vaddr) 2714 { 2715 return lrc_pre_pin(ce, engine, ww, vaddr); 2716 } 2717 2718 static int __guc_context_pin(struct intel_context *ce, 2719 struct intel_engine_cs *engine, 2720 void *vaddr) 2721 { 2722 if (i915_ggtt_offset(ce->state) != 2723 (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK)) 2724 set_bit(CONTEXT_LRCA_DIRTY, &ce->flags); 2725 2726 /* 2727 * GuC context gets pinned in guc_request_alloc. See that function for 2728 * explaination of why. 2729 */ 2730 2731 return lrc_pin(ce, engine, vaddr); 2732 } 2733 2734 static int guc_context_pre_pin(struct intel_context *ce, 2735 struct i915_gem_ww_ctx *ww, 2736 void **vaddr) 2737 { 2738 return __guc_context_pre_pin(ce, ce->engine, ww, vaddr); 2739 } 2740 2741 static int guc_context_pin(struct intel_context *ce, void *vaddr) 2742 { 2743 int ret = __guc_context_pin(ce, ce->engine, vaddr); 2744 2745 if (likely(!ret && !intel_context_is_barrier(ce))) 2746 intel_engine_pm_get(ce->engine); 2747 2748 return ret; 2749 } 2750 2751 static void guc_context_unpin(struct intel_context *ce) 2752 { 2753 struct intel_guc *guc = ce_to_guc(ce); 2754 2755 unpin_guc_id(guc, ce); 2756 lrc_unpin(ce); 2757 2758 if (likely(!intel_context_is_barrier(ce))) 2759 intel_engine_pm_put_async(ce->engine); 2760 } 2761 2762 static void guc_context_post_unpin(struct intel_context *ce) 2763 { 2764 lrc_post_unpin(ce); 2765 } 2766 2767 static void __guc_context_sched_enable(struct intel_guc *guc, 2768 struct intel_context *ce) 2769 { 2770 u32 action[] = { 2771 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, 2772 ce->guc_id.id, 2773 GUC_CONTEXT_ENABLE 2774 }; 2775 2776 trace_intel_context_sched_enable(ce); 2777 2778 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2779 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); 2780 } 2781 2782 static void __guc_context_sched_disable(struct intel_guc *guc, 2783 struct intel_context *ce, 2784 u16 guc_id) 2785 { 2786 u32 action[] = { 2787 INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET, 2788 guc_id, /* ce->guc_id.id not stable */ 2789 GUC_CONTEXT_DISABLE 2790 }; 2791 2792 GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID); 2793 2794 GEM_BUG_ON(intel_context_is_child(ce)); 2795 trace_intel_context_sched_disable(ce); 2796 2797 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 2798 G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true); 2799 } 2800 2801 static void guc_blocked_fence_complete(struct intel_context *ce) 2802 { 2803 lockdep_assert_held(&ce->guc_state.lock); 2804 2805 if (!i915_sw_fence_done(&ce->guc_state.blocked)) 2806 i915_sw_fence_complete(&ce->guc_state.blocked); 2807 } 2808 2809 static void guc_blocked_fence_reinit(struct intel_context *ce) 2810 { 2811 lockdep_assert_held(&ce->guc_state.lock); 2812 GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked)); 2813 2814 /* 2815 * This fence is always complete unless a pending schedule disable is 2816 * outstanding. We arm the fence here and complete it when we receive 2817 * the pending schedule disable complete message. 2818 */ 2819 i915_sw_fence_fini(&ce->guc_state.blocked); 2820 i915_sw_fence_reinit(&ce->guc_state.blocked); 2821 i915_sw_fence_await(&ce->guc_state.blocked); 2822 i915_sw_fence_commit(&ce->guc_state.blocked); 2823 } 2824 2825 static u16 prep_context_pending_disable(struct intel_context *ce) 2826 { 2827 lockdep_assert_held(&ce->guc_state.lock); 2828 2829 set_context_pending_disable(ce); 2830 clr_context_enabled(ce); 2831 guc_blocked_fence_reinit(ce); 2832 intel_context_get(ce); 2833 2834 return ce->guc_id.id; 2835 } 2836 2837 static struct i915_sw_fence *guc_context_block(struct intel_context *ce) 2838 { 2839 struct intel_guc *guc = ce_to_guc(ce); 2840 unsigned long flags; 2841 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; 2842 intel_wakeref_t wakeref; 2843 u16 guc_id; 2844 bool enabled; 2845 2846 GEM_BUG_ON(intel_context_is_child(ce)); 2847 2848 spin_lock_irqsave(&ce->guc_state.lock, flags); 2849 2850 incr_context_blocked(ce); 2851 2852 enabled = context_enabled(ce); 2853 if (unlikely(!enabled || submission_disabled(guc))) { 2854 if (enabled) 2855 clr_context_enabled(ce); 2856 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2857 return &ce->guc_state.blocked; 2858 } 2859 2860 /* 2861 * We add +2 here as the schedule disable complete CTB handler calls 2862 * intel_context_sched_disable_unpin (-2 to pin_count). 2863 */ 2864 atomic_add(2, &ce->pin_count); 2865 2866 guc_id = prep_context_pending_disable(ce); 2867 2868 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2869 2870 with_intel_runtime_pm(runtime_pm, wakeref) 2871 __guc_context_sched_disable(guc, ce, guc_id); 2872 2873 return &ce->guc_state.blocked; 2874 } 2875 2876 #define SCHED_STATE_MULTI_BLOCKED_MASK \ 2877 (SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED) 2878 #define SCHED_STATE_NO_UNBLOCK \ 2879 (SCHED_STATE_MULTI_BLOCKED_MASK | \ 2880 SCHED_STATE_PENDING_DISABLE | \ 2881 SCHED_STATE_BANNED) 2882 2883 static bool context_cant_unblock(struct intel_context *ce) 2884 { 2885 lockdep_assert_held(&ce->guc_state.lock); 2886 2887 return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) || 2888 context_guc_id_invalid(ce) || 2889 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) || 2890 !intel_context_is_pinned(ce); 2891 } 2892 2893 static void guc_context_unblock(struct intel_context *ce) 2894 { 2895 struct intel_guc *guc = ce_to_guc(ce); 2896 unsigned long flags; 2897 struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm; 2898 intel_wakeref_t wakeref; 2899 bool enable; 2900 2901 GEM_BUG_ON(context_enabled(ce)); 2902 GEM_BUG_ON(intel_context_is_child(ce)); 2903 2904 spin_lock_irqsave(&ce->guc_state.lock, flags); 2905 2906 if (unlikely(submission_disabled(guc) || 2907 context_cant_unblock(ce))) { 2908 enable = false; 2909 } else { 2910 enable = true; 2911 set_context_pending_enable(ce); 2912 set_context_enabled(ce); 2913 intel_context_get(ce); 2914 } 2915 2916 decr_context_blocked(ce); 2917 2918 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2919 2920 if (enable) { 2921 with_intel_runtime_pm(runtime_pm, wakeref) 2922 __guc_context_sched_enable(guc, ce); 2923 } 2924 } 2925 2926 static void guc_context_cancel_request(struct intel_context *ce, 2927 struct i915_request *rq) 2928 { 2929 struct intel_context *block_context = 2930 request_to_scheduling_context(rq); 2931 2932 if (i915_sw_fence_signaled(&rq->submit)) { 2933 struct i915_sw_fence *fence; 2934 2935 intel_context_get(ce); 2936 fence = guc_context_block(block_context); 2937 i915_sw_fence_wait(fence); 2938 if (!i915_request_completed(rq)) { 2939 __i915_request_skip(rq); 2940 guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head), 2941 true); 2942 } 2943 2944 guc_context_unblock(block_context); 2945 intel_context_put(ce); 2946 } 2947 } 2948 2949 static void __guc_context_set_preemption_timeout(struct intel_guc *guc, 2950 u16 guc_id, 2951 u32 preemption_timeout) 2952 { 2953 if (guc->fw.major_ver_found >= 70) { 2954 struct context_policy policy; 2955 2956 __guc_context_policy_start_klv(&policy, guc_id); 2957 __guc_context_policy_add_preemption_timeout(&policy, preemption_timeout); 2958 __guc_context_set_context_policies(guc, &policy, true); 2959 } else { 2960 u32 action[] = { 2961 INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT, 2962 guc_id, 2963 preemption_timeout 2964 }; 2965 2966 intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); 2967 } 2968 } 2969 2970 static void 2971 guc_context_revoke(struct intel_context *ce, struct i915_request *rq, 2972 unsigned int preempt_timeout_ms) 2973 { 2974 struct intel_guc *guc = ce_to_guc(ce); 2975 struct intel_runtime_pm *runtime_pm = 2976 &ce->engine->gt->i915->runtime_pm; 2977 intel_wakeref_t wakeref; 2978 unsigned long flags; 2979 2980 GEM_BUG_ON(intel_context_is_child(ce)); 2981 2982 guc_flush_submissions(guc); 2983 2984 spin_lock_irqsave(&ce->guc_state.lock, flags); 2985 set_context_banned(ce); 2986 2987 if (submission_disabled(guc) || 2988 (!context_enabled(ce) && !context_pending_disable(ce))) { 2989 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 2990 2991 guc_cancel_context_requests(ce); 2992 intel_engine_signal_breadcrumbs(ce->engine); 2993 } else if (!context_pending_disable(ce)) { 2994 u16 guc_id; 2995 2996 /* 2997 * We add +2 here as the schedule disable complete CTB handler 2998 * calls intel_context_sched_disable_unpin (-2 to pin_count). 2999 */ 3000 atomic_add(2, &ce->pin_count); 3001 3002 guc_id = prep_context_pending_disable(ce); 3003 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3004 3005 /* 3006 * In addition to disabling scheduling, set the preemption 3007 * timeout to the minimum value (1 us) so the banned context 3008 * gets kicked off the HW ASAP. 3009 */ 3010 with_intel_runtime_pm(runtime_pm, wakeref) { 3011 __guc_context_set_preemption_timeout(guc, guc_id, 3012 preempt_timeout_ms); 3013 __guc_context_sched_disable(guc, ce, guc_id); 3014 } 3015 } else { 3016 if (!context_guc_id_invalid(ce)) 3017 with_intel_runtime_pm(runtime_pm, wakeref) 3018 __guc_context_set_preemption_timeout(guc, 3019 ce->guc_id.id, 3020 preempt_timeout_ms); 3021 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3022 } 3023 } 3024 3025 static void guc_context_sched_disable(struct intel_context *ce) 3026 { 3027 struct intel_guc *guc = ce_to_guc(ce); 3028 unsigned long flags; 3029 struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm; 3030 intel_wakeref_t wakeref; 3031 u16 guc_id; 3032 3033 GEM_BUG_ON(intel_context_is_child(ce)); 3034 3035 spin_lock_irqsave(&ce->guc_state.lock, flags); 3036 3037 /* 3038 * We have to check if the context has been disabled by another thread, 3039 * check if submssion has been disabled to seal a race with reset and 3040 * finally check if any more requests have been committed to the 3041 * context ensursing that a request doesn't slip through the 3042 * 'context_pending_disable' fence. 3043 */ 3044 if (unlikely(!context_enabled(ce) || submission_disabled(guc) || 3045 context_has_committed_requests(ce))) { 3046 clr_context_enabled(ce); 3047 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3048 goto unpin; 3049 } 3050 guc_id = prep_context_pending_disable(ce); 3051 3052 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3053 3054 with_intel_runtime_pm(runtime_pm, wakeref) 3055 __guc_context_sched_disable(guc, ce, guc_id); 3056 3057 return; 3058 unpin: 3059 intel_context_sched_disable_unpin(ce); 3060 } 3061 3062 static inline void guc_lrc_desc_unpin(struct intel_context *ce) 3063 { 3064 struct intel_guc *guc = ce_to_guc(ce); 3065 struct intel_gt *gt = guc_to_gt(guc); 3066 unsigned long flags; 3067 bool disabled; 3068 3069 GEM_BUG_ON(!intel_gt_pm_is_awake(gt)); 3070 GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id)); 3071 GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id)); 3072 GEM_BUG_ON(context_enabled(ce)); 3073 3074 /* Seal race with Reset */ 3075 spin_lock_irqsave(&ce->guc_state.lock, flags); 3076 disabled = submission_disabled(guc); 3077 if (likely(!disabled)) { 3078 __intel_gt_pm_get(gt); 3079 set_context_destroyed(ce); 3080 clr_context_registered(ce); 3081 } 3082 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3083 if (unlikely(disabled)) { 3084 release_guc_id(guc, ce); 3085 __guc_context_destroy(ce); 3086 return; 3087 } 3088 3089 deregister_context(ce, ce->guc_id.id); 3090 } 3091 3092 static void __guc_context_destroy(struct intel_context *ce) 3093 { 3094 GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] || 3095 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] || 3096 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] || 3097 ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]); 3098 GEM_BUG_ON(ce->guc_state.number_committed_requests); 3099 3100 lrc_fini(ce); 3101 intel_context_fini(ce); 3102 3103 if (intel_engine_is_virtual(ce->engine)) { 3104 struct guc_virtual_engine *ve = 3105 container_of(ce, typeof(*ve), context); 3106 3107 if (ve->base.breadcrumbs) 3108 intel_breadcrumbs_put(ve->base.breadcrumbs); 3109 3110 kfree(ve); 3111 } else { 3112 intel_context_free(ce); 3113 } 3114 } 3115 3116 static void guc_flush_destroyed_contexts(struct intel_guc *guc) 3117 { 3118 struct intel_context *ce; 3119 unsigned long flags; 3120 3121 GEM_BUG_ON(!submission_disabled(guc) && 3122 guc_submission_initialized(guc)); 3123 3124 while (!list_empty(&guc->submission_state.destroyed_contexts)) { 3125 spin_lock_irqsave(&guc->submission_state.lock, flags); 3126 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, 3127 struct intel_context, 3128 destroyed_link); 3129 if (ce) 3130 list_del_init(&ce->destroyed_link); 3131 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3132 3133 if (!ce) 3134 break; 3135 3136 release_guc_id(guc, ce); 3137 __guc_context_destroy(ce); 3138 } 3139 } 3140 3141 static void deregister_destroyed_contexts(struct intel_guc *guc) 3142 { 3143 struct intel_context *ce; 3144 unsigned long flags; 3145 3146 while (!list_empty(&guc->submission_state.destroyed_contexts)) { 3147 spin_lock_irqsave(&guc->submission_state.lock, flags); 3148 ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts, 3149 struct intel_context, 3150 destroyed_link); 3151 if (ce) 3152 list_del_init(&ce->destroyed_link); 3153 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3154 3155 if (!ce) 3156 break; 3157 3158 guc_lrc_desc_unpin(ce); 3159 } 3160 } 3161 3162 static void destroyed_worker_func(struct work_struct *w) 3163 { 3164 struct intel_guc *guc = container_of(w, struct intel_guc, 3165 submission_state.destroyed_worker); 3166 struct intel_gt *gt = guc_to_gt(guc); 3167 int tmp; 3168 3169 with_intel_gt_pm(gt, tmp) 3170 deregister_destroyed_contexts(guc); 3171 } 3172 3173 static void guc_context_destroy(struct kref *kref) 3174 { 3175 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 3176 struct intel_guc *guc = ce_to_guc(ce); 3177 unsigned long flags; 3178 bool destroy; 3179 3180 /* 3181 * If the guc_id is invalid this context has been stolen and we can free 3182 * it immediately. Also can be freed immediately if the context is not 3183 * registered with the GuC or the GuC is in the middle of a reset. 3184 */ 3185 spin_lock_irqsave(&guc->submission_state.lock, flags); 3186 destroy = submission_disabled(guc) || context_guc_id_invalid(ce) || 3187 !ctx_id_mapped(guc, ce->guc_id.id); 3188 if (likely(!destroy)) { 3189 if (!list_empty(&ce->guc_id.link)) 3190 list_del_init(&ce->guc_id.link); 3191 list_add_tail(&ce->destroyed_link, 3192 &guc->submission_state.destroyed_contexts); 3193 } else { 3194 __release_guc_id(guc, ce); 3195 } 3196 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 3197 if (unlikely(destroy)) { 3198 __guc_context_destroy(ce); 3199 return; 3200 } 3201 3202 /* 3203 * We use a worker to issue the H2G to deregister the context as we can 3204 * take the GT PM for the first time which isn't allowed from an atomic 3205 * context. 3206 */ 3207 queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker); 3208 } 3209 3210 static int guc_context_alloc(struct intel_context *ce) 3211 { 3212 return lrc_alloc(ce, ce->engine); 3213 } 3214 3215 static void __guc_context_set_prio(struct intel_guc *guc, 3216 struct intel_context *ce) 3217 { 3218 if (guc->fw.major_ver_found >= 70) { 3219 struct context_policy policy; 3220 3221 __guc_context_policy_start_klv(&policy, ce->guc_id.id); 3222 __guc_context_policy_add_priority(&policy, ce->guc_state.prio); 3223 __guc_context_set_context_policies(guc, &policy, true); 3224 } else { 3225 u32 action[] = { 3226 INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY, 3227 ce->guc_id.id, 3228 ce->guc_state.prio, 3229 }; 3230 3231 guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true); 3232 } 3233 } 3234 3235 static void guc_context_set_prio(struct intel_guc *guc, 3236 struct intel_context *ce, 3237 u8 prio) 3238 { 3239 GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH || 3240 prio > GUC_CLIENT_PRIORITY_NORMAL); 3241 lockdep_assert_held(&ce->guc_state.lock); 3242 3243 if (ce->guc_state.prio == prio || submission_disabled(guc) || 3244 !context_registered(ce)) { 3245 ce->guc_state.prio = prio; 3246 return; 3247 } 3248 3249 ce->guc_state.prio = prio; 3250 __guc_context_set_prio(guc, ce); 3251 3252 trace_intel_context_set_prio(ce); 3253 } 3254 3255 static inline u8 map_i915_prio_to_guc_prio(int prio) 3256 { 3257 if (prio == I915_PRIORITY_NORMAL) 3258 return GUC_CLIENT_PRIORITY_KMD_NORMAL; 3259 else if (prio < I915_PRIORITY_NORMAL) 3260 return GUC_CLIENT_PRIORITY_NORMAL; 3261 else if (prio < I915_PRIORITY_DISPLAY) 3262 return GUC_CLIENT_PRIORITY_HIGH; 3263 else 3264 return GUC_CLIENT_PRIORITY_KMD_HIGH; 3265 } 3266 3267 static inline void add_context_inflight_prio(struct intel_context *ce, 3268 u8 guc_prio) 3269 { 3270 lockdep_assert_held(&ce->guc_state.lock); 3271 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); 3272 3273 ++ce->guc_state.prio_count[guc_prio]; 3274 3275 /* Overflow protection */ 3276 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); 3277 } 3278 3279 static inline void sub_context_inflight_prio(struct intel_context *ce, 3280 u8 guc_prio) 3281 { 3282 lockdep_assert_held(&ce->guc_state.lock); 3283 GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count)); 3284 3285 /* Underflow protection */ 3286 GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]); 3287 3288 --ce->guc_state.prio_count[guc_prio]; 3289 } 3290 3291 static inline void update_context_prio(struct intel_context *ce) 3292 { 3293 struct intel_guc *guc = &ce->engine->gt->uc.guc; 3294 int i; 3295 3296 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0); 3297 BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL); 3298 3299 lockdep_assert_held(&ce->guc_state.lock); 3300 3301 for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) { 3302 if (ce->guc_state.prio_count[i]) { 3303 guc_context_set_prio(guc, ce, i); 3304 break; 3305 } 3306 } 3307 } 3308 3309 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio) 3310 { 3311 /* Lower value is higher priority */ 3312 return new_guc_prio < old_guc_prio; 3313 } 3314 3315 static void add_to_context(struct i915_request *rq) 3316 { 3317 struct intel_context *ce = request_to_scheduling_context(rq); 3318 u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq)); 3319 3320 GEM_BUG_ON(intel_context_is_child(ce)); 3321 GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI); 3322 3323 spin_lock(&ce->guc_state.lock); 3324 list_move_tail(&rq->sched.link, &ce->guc_state.requests); 3325 3326 if (rq->guc_prio == GUC_PRIO_INIT) { 3327 rq->guc_prio = new_guc_prio; 3328 add_context_inflight_prio(ce, rq->guc_prio); 3329 } else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) { 3330 sub_context_inflight_prio(ce, rq->guc_prio); 3331 rq->guc_prio = new_guc_prio; 3332 add_context_inflight_prio(ce, rq->guc_prio); 3333 } 3334 update_context_prio(ce); 3335 3336 spin_unlock(&ce->guc_state.lock); 3337 } 3338 3339 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce) 3340 { 3341 lockdep_assert_held(&ce->guc_state.lock); 3342 3343 if (rq->guc_prio != GUC_PRIO_INIT && 3344 rq->guc_prio != GUC_PRIO_FINI) { 3345 sub_context_inflight_prio(ce, rq->guc_prio); 3346 update_context_prio(ce); 3347 } 3348 rq->guc_prio = GUC_PRIO_FINI; 3349 } 3350 3351 static void remove_from_context(struct i915_request *rq) 3352 { 3353 struct intel_context *ce = request_to_scheduling_context(rq); 3354 3355 GEM_BUG_ON(intel_context_is_child(ce)); 3356 3357 spin_lock_irq(&ce->guc_state.lock); 3358 3359 list_del_init(&rq->sched.link); 3360 clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags); 3361 3362 /* Prevent further __await_execution() registering a cb, then flush */ 3363 set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags); 3364 3365 guc_prio_fini(rq, ce); 3366 3367 decr_context_committed_requests(ce); 3368 3369 spin_unlock_irq(&ce->guc_state.lock); 3370 3371 atomic_dec(&ce->guc_id.ref); 3372 i915_request_notify_execute_cb_imm(rq); 3373 } 3374 3375 static const struct intel_context_ops guc_context_ops = { 3376 .alloc = guc_context_alloc, 3377 3378 .pre_pin = guc_context_pre_pin, 3379 .pin = guc_context_pin, 3380 .unpin = guc_context_unpin, 3381 .post_unpin = guc_context_post_unpin, 3382 3383 .revoke = guc_context_revoke, 3384 3385 .cancel_request = guc_context_cancel_request, 3386 3387 .enter = intel_context_enter_engine, 3388 .exit = intel_context_exit_engine, 3389 3390 .sched_disable = guc_context_sched_disable, 3391 3392 .reset = lrc_reset, 3393 .destroy = guc_context_destroy, 3394 3395 .create_virtual = guc_create_virtual, 3396 .create_parallel = guc_create_parallel, 3397 }; 3398 3399 static void submit_work_cb(struct irq_work *wrk) 3400 { 3401 struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work); 3402 3403 might_lock(&rq->engine->sched_engine->lock); 3404 i915_sw_fence_complete(&rq->submit); 3405 } 3406 3407 static void __guc_signal_context_fence(struct intel_context *ce) 3408 { 3409 struct i915_request *rq, *rn; 3410 3411 lockdep_assert_held(&ce->guc_state.lock); 3412 3413 if (!list_empty(&ce->guc_state.fences)) 3414 trace_intel_context_fence_release(ce); 3415 3416 /* 3417 * Use an IRQ to ensure locking order of sched_engine->lock -> 3418 * ce->guc_state.lock is preserved. 3419 */ 3420 list_for_each_entry_safe(rq, rn, &ce->guc_state.fences, 3421 guc_fence_link) { 3422 list_del(&rq->guc_fence_link); 3423 irq_work_queue(&rq->submit_work); 3424 } 3425 3426 INIT_LIST_HEAD(&ce->guc_state.fences); 3427 } 3428 3429 static void guc_signal_context_fence(struct intel_context *ce) 3430 { 3431 unsigned long flags; 3432 3433 GEM_BUG_ON(intel_context_is_child(ce)); 3434 3435 spin_lock_irqsave(&ce->guc_state.lock, flags); 3436 clr_context_wait_for_deregister_to_register(ce); 3437 __guc_signal_context_fence(ce); 3438 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3439 } 3440 3441 static bool context_needs_register(struct intel_context *ce, bool new_guc_id) 3442 { 3443 return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) || 3444 !ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) && 3445 !submission_disabled(ce_to_guc(ce)); 3446 } 3447 3448 static void guc_context_init(struct intel_context *ce) 3449 { 3450 const struct i915_gem_context *ctx; 3451 int prio = I915_CONTEXT_DEFAULT_PRIORITY; 3452 3453 rcu_read_lock(); 3454 ctx = rcu_dereference(ce->gem_context); 3455 if (ctx) 3456 prio = ctx->sched.priority; 3457 rcu_read_unlock(); 3458 3459 ce->guc_state.prio = map_i915_prio_to_guc_prio(prio); 3460 set_bit(CONTEXT_GUC_INIT, &ce->flags); 3461 } 3462 3463 static int guc_request_alloc(struct i915_request *rq) 3464 { 3465 struct intel_context *ce = request_to_scheduling_context(rq); 3466 struct intel_guc *guc = ce_to_guc(ce); 3467 unsigned long flags; 3468 int ret; 3469 3470 GEM_BUG_ON(!intel_context_is_pinned(rq->context)); 3471 3472 /* 3473 * Flush enough space to reduce the likelihood of waiting after 3474 * we start building the request - in which case we will just 3475 * have to repeat work. 3476 */ 3477 rq->reserved_space += GUC_REQUEST_SIZE; 3478 3479 /* 3480 * Note that after this point, we have committed to using 3481 * this request as it is being used to both track the 3482 * state of engine initialisation and liveness of the 3483 * golden renderstate above. Think twice before you try 3484 * to cancel/unwind this request now. 3485 */ 3486 3487 /* Unconditionally invalidate GPU caches and TLBs. */ 3488 ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE); 3489 if (ret) 3490 return ret; 3491 3492 rq->reserved_space -= GUC_REQUEST_SIZE; 3493 3494 if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags))) 3495 guc_context_init(ce); 3496 3497 /* 3498 * Call pin_guc_id here rather than in the pinning step as with 3499 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the 3500 * guc_id and creating horrible race conditions. This is especially bad 3501 * when guc_id are being stolen due to over subscription. By the time 3502 * this function is reached, it is guaranteed that the guc_id will be 3503 * persistent until the generated request is retired. Thus, sealing these 3504 * race conditions. It is still safe to fail here if guc_id are 3505 * exhausted and return -EAGAIN to the user indicating that they can try 3506 * again in the future. 3507 * 3508 * There is no need for a lock here as the timeline mutex ensures at 3509 * most one context can be executing this code path at once. The 3510 * guc_id_ref is incremented once for every request in flight and 3511 * decremented on each retire. When it is zero, a lock around the 3512 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id. 3513 */ 3514 if (atomic_add_unless(&ce->guc_id.ref, 1, 0)) 3515 goto out; 3516 3517 ret = pin_guc_id(guc, ce); /* returns 1 if new guc_id assigned */ 3518 if (unlikely(ret < 0)) 3519 return ret; 3520 if (context_needs_register(ce, !!ret)) { 3521 ret = try_context_registration(ce, true); 3522 if (unlikely(ret)) { /* unwind */ 3523 if (ret == -EPIPE) { 3524 disable_submission(guc); 3525 goto out; /* GPU will be reset */ 3526 } 3527 atomic_dec(&ce->guc_id.ref); 3528 unpin_guc_id(guc, ce); 3529 return ret; 3530 } 3531 } 3532 3533 clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags); 3534 3535 out: 3536 /* 3537 * We block all requests on this context if a G2H is pending for a 3538 * schedule disable or context deregistration as the GuC will fail a 3539 * schedule enable or context registration if either G2H is pending 3540 * respectfully. Once a G2H returns, the fence is released that is 3541 * blocking these requests (see guc_signal_context_fence). 3542 */ 3543 spin_lock_irqsave(&ce->guc_state.lock, flags); 3544 if (context_wait_for_deregister_to_register(ce) || 3545 context_pending_disable(ce)) { 3546 init_irq_work(&rq->submit_work, submit_work_cb); 3547 i915_sw_fence_await(&rq->submit); 3548 3549 list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences); 3550 } 3551 incr_context_committed_requests(ce); 3552 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 3553 3554 return 0; 3555 } 3556 3557 static int guc_virtual_context_pre_pin(struct intel_context *ce, 3558 struct i915_gem_ww_ctx *ww, 3559 void **vaddr) 3560 { 3561 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3562 3563 return __guc_context_pre_pin(ce, engine, ww, vaddr); 3564 } 3565 3566 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr) 3567 { 3568 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3569 int ret = __guc_context_pin(ce, engine, vaddr); 3570 intel_engine_mask_t tmp, mask = ce->engine->mask; 3571 3572 if (likely(!ret)) 3573 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3574 intel_engine_pm_get(engine); 3575 3576 return ret; 3577 } 3578 3579 static void guc_virtual_context_unpin(struct intel_context *ce) 3580 { 3581 intel_engine_mask_t tmp, mask = ce->engine->mask; 3582 struct intel_engine_cs *engine; 3583 struct intel_guc *guc = ce_to_guc(ce); 3584 3585 GEM_BUG_ON(context_enabled(ce)); 3586 GEM_BUG_ON(intel_context_is_barrier(ce)); 3587 3588 unpin_guc_id(guc, ce); 3589 lrc_unpin(ce); 3590 3591 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3592 intel_engine_pm_put_async(engine); 3593 } 3594 3595 static void guc_virtual_context_enter(struct intel_context *ce) 3596 { 3597 intel_engine_mask_t tmp, mask = ce->engine->mask; 3598 struct intel_engine_cs *engine; 3599 3600 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3601 intel_engine_pm_get(engine); 3602 3603 intel_timeline_enter(ce->timeline); 3604 } 3605 3606 static void guc_virtual_context_exit(struct intel_context *ce) 3607 { 3608 intel_engine_mask_t tmp, mask = ce->engine->mask; 3609 struct intel_engine_cs *engine; 3610 3611 for_each_engine_masked(engine, ce->engine->gt, mask, tmp) 3612 intel_engine_pm_put(engine); 3613 3614 intel_timeline_exit(ce->timeline); 3615 } 3616 3617 static int guc_virtual_context_alloc(struct intel_context *ce) 3618 { 3619 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3620 3621 return lrc_alloc(ce, engine); 3622 } 3623 3624 static const struct intel_context_ops virtual_guc_context_ops = { 3625 .alloc = guc_virtual_context_alloc, 3626 3627 .pre_pin = guc_virtual_context_pre_pin, 3628 .pin = guc_virtual_context_pin, 3629 .unpin = guc_virtual_context_unpin, 3630 .post_unpin = guc_context_post_unpin, 3631 3632 .revoke = guc_context_revoke, 3633 3634 .cancel_request = guc_context_cancel_request, 3635 3636 .enter = guc_virtual_context_enter, 3637 .exit = guc_virtual_context_exit, 3638 3639 .sched_disable = guc_context_sched_disable, 3640 3641 .destroy = guc_context_destroy, 3642 3643 .get_sibling = guc_virtual_get_sibling, 3644 }; 3645 3646 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr) 3647 { 3648 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3649 struct intel_guc *guc = ce_to_guc(ce); 3650 int ret; 3651 3652 GEM_BUG_ON(!intel_context_is_parent(ce)); 3653 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3654 3655 ret = pin_guc_id(guc, ce); 3656 if (unlikely(ret < 0)) 3657 return ret; 3658 3659 return __guc_context_pin(ce, engine, vaddr); 3660 } 3661 3662 static int guc_child_context_pin(struct intel_context *ce, void *vaddr) 3663 { 3664 struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0); 3665 3666 GEM_BUG_ON(!intel_context_is_child(ce)); 3667 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3668 3669 __intel_context_pin(ce->parallel.parent); 3670 return __guc_context_pin(ce, engine, vaddr); 3671 } 3672 3673 static void guc_parent_context_unpin(struct intel_context *ce) 3674 { 3675 struct intel_guc *guc = ce_to_guc(ce); 3676 3677 GEM_BUG_ON(context_enabled(ce)); 3678 GEM_BUG_ON(intel_context_is_barrier(ce)); 3679 GEM_BUG_ON(!intel_context_is_parent(ce)); 3680 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3681 3682 unpin_guc_id(guc, ce); 3683 lrc_unpin(ce); 3684 } 3685 3686 static void guc_child_context_unpin(struct intel_context *ce) 3687 { 3688 GEM_BUG_ON(context_enabled(ce)); 3689 GEM_BUG_ON(intel_context_is_barrier(ce)); 3690 GEM_BUG_ON(!intel_context_is_child(ce)); 3691 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3692 3693 lrc_unpin(ce); 3694 } 3695 3696 static void guc_child_context_post_unpin(struct intel_context *ce) 3697 { 3698 GEM_BUG_ON(!intel_context_is_child(ce)); 3699 GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent)); 3700 GEM_BUG_ON(!intel_engine_is_virtual(ce->engine)); 3701 3702 lrc_post_unpin(ce); 3703 intel_context_unpin(ce->parallel.parent); 3704 } 3705 3706 static void guc_child_context_destroy(struct kref *kref) 3707 { 3708 struct intel_context *ce = container_of(kref, typeof(*ce), ref); 3709 3710 __guc_context_destroy(ce); 3711 } 3712 3713 static const struct intel_context_ops virtual_parent_context_ops = { 3714 .alloc = guc_virtual_context_alloc, 3715 3716 .pre_pin = guc_context_pre_pin, 3717 .pin = guc_parent_context_pin, 3718 .unpin = guc_parent_context_unpin, 3719 .post_unpin = guc_context_post_unpin, 3720 3721 .revoke = guc_context_revoke, 3722 3723 .cancel_request = guc_context_cancel_request, 3724 3725 .enter = guc_virtual_context_enter, 3726 .exit = guc_virtual_context_exit, 3727 3728 .sched_disable = guc_context_sched_disable, 3729 3730 .destroy = guc_context_destroy, 3731 3732 .get_sibling = guc_virtual_get_sibling, 3733 }; 3734 3735 static const struct intel_context_ops virtual_child_context_ops = { 3736 .alloc = guc_virtual_context_alloc, 3737 3738 .pre_pin = guc_context_pre_pin, 3739 .pin = guc_child_context_pin, 3740 .unpin = guc_child_context_unpin, 3741 .post_unpin = guc_child_context_post_unpin, 3742 3743 .cancel_request = guc_context_cancel_request, 3744 3745 .enter = guc_virtual_context_enter, 3746 .exit = guc_virtual_context_exit, 3747 3748 .destroy = guc_child_context_destroy, 3749 3750 .get_sibling = guc_virtual_get_sibling, 3751 }; 3752 3753 /* 3754 * The below override of the breadcrumbs is enabled when the user configures a 3755 * context for parallel submission (multi-lrc, parent-child). 3756 * 3757 * The overridden breadcrumbs implements an algorithm which allows the GuC to 3758 * safely preempt all the hw contexts configured for parallel submission 3759 * between each BB. The contract between the i915 and GuC is if the parent 3760 * context can be preempted, all the children can be preempted, and the GuC will 3761 * always try to preempt the parent before the children. A handshake between the 3762 * parent / children breadcrumbs ensures the i915 holds up its end of the deal 3763 * creating a window to preempt between each set of BBs. 3764 */ 3765 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, 3766 u64 offset, u32 len, 3767 const unsigned int flags); 3768 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, 3769 u64 offset, u32 len, 3770 const unsigned int flags); 3771 static u32 * 3772 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 3773 u32 *cs); 3774 static u32 * 3775 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 3776 u32 *cs); 3777 3778 static struct intel_context * 3779 guc_create_parallel(struct intel_engine_cs **engines, 3780 unsigned int num_siblings, 3781 unsigned int width) 3782 { 3783 struct intel_engine_cs **siblings = NULL; 3784 struct intel_context *parent = NULL, *ce, *err; 3785 int i, j; 3786 3787 siblings = kmalloc_array(num_siblings, 3788 sizeof(*siblings), 3789 GFP_KERNEL); 3790 if (!siblings) 3791 return ERR_PTR(-ENOMEM); 3792 3793 for (i = 0; i < width; ++i) { 3794 for (j = 0; j < num_siblings; ++j) 3795 siblings[j] = engines[i * num_siblings + j]; 3796 3797 ce = intel_engine_create_virtual(siblings, num_siblings, 3798 FORCE_VIRTUAL); 3799 if (IS_ERR(ce)) { 3800 err = ERR_CAST(ce); 3801 goto unwind; 3802 } 3803 3804 if (i == 0) { 3805 parent = ce; 3806 parent->ops = &virtual_parent_context_ops; 3807 } else { 3808 ce->ops = &virtual_child_context_ops; 3809 intel_context_bind_parent_child(parent, ce); 3810 } 3811 } 3812 3813 parent->parallel.fence_context = dma_fence_context_alloc(1); 3814 3815 parent->engine->emit_bb_start = 3816 emit_bb_start_parent_no_preempt_mid_batch; 3817 parent->engine->emit_fini_breadcrumb = 3818 emit_fini_breadcrumb_parent_no_preempt_mid_batch; 3819 parent->engine->emit_fini_breadcrumb_dw = 3820 12 + 4 * parent->parallel.number_children; 3821 for_each_child(parent, ce) { 3822 ce->engine->emit_bb_start = 3823 emit_bb_start_child_no_preempt_mid_batch; 3824 ce->engine->emit_fini_breadcrumb = 3825 emit_fini_breadcrumb_child_no_preempt_mid_batch; 3826 ce->engine->emit_fini_breadcrumb_dw = 16; 3827 } 3828 3829 kfree(siblings); 3830 return parent; 3831 3832 unwind: 3833 if (parent) 3834 intel_context_put(parent); 3835 kfree(siblings); 3836 return err; 3837 } 3838 3839 static bool 3840 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b) 3841 { 3842 struct intel_engine_cs *sibling; 3843 intel_engine_mask_t tmp, mask = b->engine_mask; 3844 bool result = false; 3845 3846 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) 3847 result |= intel_engine_irq_enable(sibling); 3848 3849 return result; 3850 } 3851 3852 static void 3853 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b) 3854 { 3855 struct intel_engine_cs *sibling; 3856 intel_engine_mask_t tmp, mask = b->engine_mask; 3857 3858 for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp) 3859 intel_engine_irq_disable(sibling); 3860 } 3861 3862 static void guc_init_breadcrumbs(struct intel_engine_cs *engine) 3863 { 3864 int i; 3865 3866 /* 3867 * In GuC submission mode we do not know which physical engine a request 3868 * will be scheduled on, this creates a problem because the breadcrumb 3869 * interrupt is per physical engine. To work around this we attach 3870 * requests and direct all breadcrumb interrupts to the first instance 3871 * of an engine per class. In addition all breadcrumb interrupts are 3872 * enabled / disabled across an engine class in unison. 3873 */ 3874 for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) { 3875 struct intel_engine_cs *sibling = 3876 engine->gt->engine_class[engine->class][i]; 3877 3878 if (sibling) { 3879 if (engine->breadcrumbs != sibling->breadcrumbs) { 3880 intel_breadcrumbs_put(engine->breadcrumbs); 3881 engine->breadcrumbs = 3882 intel_breadcrumbs_get(sibling->breadcrumbs); 3883 } 3884 break; 3885 } 3886 } 3887 3888 if (engine->breadcrumbs) { 3889 engine->breadcrumbs->engine_mask |= engine->mask; 3890 engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs; 3891 engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs; 3892 } 3893 } 3894 3895 static void guc_bump_inflight_request_prio(struct i915_request *rq, 3896 int prio) 3897 { 3898 struct intel_context *ce = request_to_scheduling_context(rq); 3899 u8 new_guc_prio = map_i915_prio_to_guc_prio(prio); 3900 3901 /* Short circuit function */ 3902 if (prio < I915_PRIORITY_NORMAL || 3903 rq->guc_prio == GUC_PRIO_FINI || 3904 (rq->guc_prio != GUC_PRIO_INIT && 3905 !new_guc_prio_higher(rq->guc_prio, new_guc_prio))) 3906 return; 3907 3908 spin_lock(&ce->guc_state.lock); 3909 if (rq->guc_prio != GUC_PRIO_FINI) { 3910 if (rq->guc_prio != GUC_PRIO_INIT) 3911 sub_context_inflight_prio(ce, rq->guc_prio); 3912 rq->guc_prio = new_guc_prio; 3913 add_context_inflight_prio(ce, rq->guc_prio); 3914 update_context_prio(ce); 3915 } 3916 spin_unlock(&ce->guc_state.lock); 3917 } 3918 3919 static void guc_retire_inflight_request_prio(struct i915_request *rq) 3920 { 3921 struct intel_context *ce = request_to_scheduling_context(rq); 3922 3923 spin_lock(&ce->guc_state.lock); 3924 guc_prio_fini(rq, ce); 3925 spin_unlock(&ce->guc_state.lock); 3926 } 3927 3928 static void sanitize_hwsp(struct intel_engine_cs *engine) 3929 { 3930 struct intel_timeline *tl; 3931 3932 list_for_each_entry(tl, &engine->status_page.timelines, engine_link) 3933 intel_timeline_reset_seqno(tl); 3934 } 3935 3936 static void guc_sanitize(struct intel_engine_cs *engine) 3937 { 3938 /* 3939 * Poison residual state on resume, in case the suspend didn't! 3940 * 3941 * We have to assume that across suspend/resume (or other loss 3942 * of control) that the contents of our pinned buffers has been 3943 * lost, replaced by garbage. Since this doesn't always happen, 3944 * let's poison such state so that we more quickly spot when 3945 * we falsely assume it has been preserved. 3946 */ 3947 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) 3948 memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE); 3949 3950 /* 3951 * The kernel_context HWSP is stored in the status_page. As above, 3952 * that may be lost on resume/initialisation, and so we need to 3953 * reset the value in the HWSP. 3954 */ 3955 sanitize_hwsp(engine); 3956 3957 /* And scrub the dirty cachelines for the HWSP */ 3958 drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE); 3959 3960 intel_engine_reset_pinned_contexts(engine); 3961 } 3962 3963 static void setup_hwsp(struct intel_engine_cs *engine) 3964 { 3965 intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */ 3966 3967 ENGINE_WRITE_FW(engine, 3968 RING_HWS_PGA, 3969 i915_ggtt_offset(engine->status_page.vma)); 3970 } 3971 3972 static void start_engine(struct intel_engine_cs *engine) 3973 { 3974 ENGINE_WRITE_FW(engine, 3975 RING_MODE_GEN7, 3976 _MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE)); 3977 3978 ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING)); 3979 ENGINE_POSTING_READ(engine, RING_MI_MODE); 3980 } 3981 3982 static int guc_resume(struct intel_engine_cs *engine) 3983 { 3984 assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL); 3985 3986 intel_mocs_init_engine(engine); 3987 3988 intel_breadcrumbs_reset(engine->breadcrumbs); 3989 3990 setup_hwsp(engine); 3991 start_engine(engine); 3992 3993 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) 3994 xehp_enable_ccs_engines(engine); 3995 3996 return 0; 3997 } 3998 3999 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine) 4000 { 4001 return !sched_engine->tasklet.callback; 4002 } 4003 4004 static void guc_set_default_submission(struct intel_engine_cs *engine) 4005 { 4006 engine->submit_request = guc_submit_request; 4007 } 4008 4009 static inline void guc_kernel_context_pin(struct intel_guc *guc, 4010 struct intel_context *ce) 4011 { 4012 /* 4013 * Note: we purposefully do not check the returns below because 4014 * the registration can only fail if a reset is just starting. 4015 * This is called at the end of reset so presumably another reset 4016 * isn't happening and even it did this code would be run again. 4017 */ 4018 4019 if (context_guc_id_invalid(ce)) 4020 pin_guc_id(guc, ce); 4021 4022 try_context_registration(ce, true); 4023 } 4024 4025 static inline void guc_init_lrc_mapping(struct intel_guc *guc) 4026 { 4027 struct intel_gt *gt = guc_to_gt(guc); 4028 struct intel_engine_cs *engine; 4029 enum intel_engine_id id; 4030 4031 /* make sure all descriptors are clean... */ 4032 xa_destroy(&guc->context_lookup); 4033 4034 /* 4035 * A reset might have occurred while we had a pending stalled request, 4036 * so make sure we clean that up. 4037 */ 4038 guc->stalled_request = NULL; 4039 guc->submission_stall_reason = STALL_NONE; 4040 4041 /* 4042 * Some contexts might have been pinned before we enabled GuC 4043 * submission, so we need to add them to the GuC bookeeping. 4044 * Also, after a reset the of the GuC we want to make sure that the 4045 * information shared with GuC is properly reset. The kernel LRCs are 4046 * not attached to the gem_context, so they need to be added separately. 4047 */ 4048 for_each_engine(engine, gt, id) { 4049 struct intel_context *ce; 4050 4051 list_for_each_entry(ce, &engine->pinned_contexts_list, 4052 pinned_contexts_link) 4053 guc_kernel_context_pin(guc, ce); 4054 } 4055 } 4056 4057 static void guc_release(struct intel_engine_cs *engine) 4058 { 4059 engine->sanitize = NULL; /* no longer in control, nothing to sanitize */ 4060 4061 intel_engine_cleanup_common(engine); 4062 lrc_fini_wa_ctx(engine); 4063 } 4064 4065 static void virtual_guc_bump_serial(struct intel_engine_cs *engine) 4066 { 4067 struct intel_engine_cs *e; 4068 intel_engine_mask_t tmp, mask = engine->mask; 4069 4070 for_each_engine_masked(e, engine->gt, mask, tmp) 4071 e->serial++; 4072 } 4073 4074 static void guc_default_vfuncs(struct intel_engine_cs *engine) 4075 { 4076 /* Default vfuncs which can be overridden by each engine. */ 4077 4078 engine->resume = guc_resume; 4079 4080 engine->cops = &guc_context_ops; 4081 engine->request_alloc = guc_request_alloc; 4082 engine->add_active_request = add_to_context; 4083 engine->remove_active_request = remove_from_context; 4084 4085 engine->sched_engine->schedule = i915_schedule; 4086 4087 engine->reset.prepare = guc_engine_reset_prepare; 4088 engine->reset.rewind = guc_rewind_nop; 4089 engine->reset.cancel = guc_reset_nop; 4090 engine->reset.finish = guc_reset_nop; 4091 4092 engine->emit_flush = gen8_emit_flush_xcs; 4093 engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb; 4094 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs; 4095 if (GRAPHICS_VER(engine->i915) >= 12) { 4096 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs; 4097 engine->emit_flush = gen12_emit_flush_xcs; 4098 } 4099 engine->set_default_submission = guc_set_default_submission; 4100 engine->busyness = guc_engine_busyness; 4101 4102 engine->flags |= I915_ENGINE_SUPPORTS_STATS; 4103 engine->flags |= I915_ENGINE_HAS_PREEMPTION; 4104 engine->flags |= I915_ENGINE_HAS_TIMESLICES; 4105 4106 /* Wa_14014475959:dg2 */ 4107 if (IS_DG2(engine->i915) && engine->class == COMPUTE_CLASS) 4108 engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT; 4109 4110 /* 4111 * TODO: GuC supports timeslicing and semaphores as well, but they're 4112 * handled by the firmware so some minor tweaks are required before 4113 * enabling. 4114 * 4115 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES; 4116 */ 4117 4118 engine->emit_bb_start = gen8_emit_bb_start; 4119 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50)) 4120 engine->emit_bb_start = gen125_emit_bb_start; 4121 } 4122 4123 static void rcs_submission_override(struct intel_engine_cs *engine) 4124 { 4125 switch (GRAPHICS_VER(engine->i915)) { 4126 case 12: 4127 engine->emit_flush = gen12_emit_flush_rcs; 4128 engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs; 4129 break; 4130 case 11: 4131 engine->emit_flush = gen11_emit_flush_rcs; 4132 engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs; 4133 break; 4134 default: 4135 engine->emit_flush = gen8_emit_flush_rcs; 4136 engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs; 4137 break; 4138 } 4139 } 4140 4141 static inline void guc_default_irqs(struct intel_engine_cs *engine) 4142 { 4143 engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT; 4144 intel_engine_set_irq_handler(engine, cs_irq_handler); 4145 } 4146 4147 static void guc_sched_engine_destroy(struct kref *kref) 4148 { 4149 struct i915_sched_engine *sched_engine = 4150 container_of(kref, typeof(*sched_engine), ref); 4151 struct intel_guc *guc = sched_engine->private_data; 4152 4153 guc->sched_engine = NULL; 4154 tasklet_kill(&sched_engine->tasklet); /* flush the callback */ 4155 kfree(sched_engine); 4156 } 4157 4158 int intel_guc_submission_setup(struct intel_engine_cs *engine) 4159 { 4160 struct drm_i915_private *i915 = engine->i915; 4161 struct intel_guc *guc = &engine->gt->uc.guc; 4162 4163 /* 4164 * The setup relies on several assumptions (e.g. irqs always enabled) 4165 * that are only valid on gen11+ 4166 */ 4167 GEM_BUG_ON(GRAPHICS_VER(i915) < 11); 4168 4169 if (!guc->sched_engine) { 4170 guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL); 4171 if (!guc->sched_engine) 4172 return -ENOMEM; 4173 4174 guc->sched_engine->schedule = i915_schedule; 4175 guc->sched_engine->disabled = guc_sched_engine_disabled; 4176 guc->sched_engine->private_data = guc; 4177 guc->sched_engine->destroy = guc_sched_engine_destroy; 4178 guc->sched_engine->bump_inflight_request_prio = 4179 guc_bump_inflight_request_prio; 4180 guc->sched_engine->retire_inflight_request_prio = 4181 guc_retire_inflight_request_prio; 4182 tasklet_setup(&guc->sched_engine->tasklet, 4183 guc_submission_tasklet); 4184 } 4185 i915_sched_engine_put(engine->sched_engine); 4186 engine->sched_engine = i915_sched_engine_get(guc->sched_engine); 4187 4188 guc_default_vfuncs(engine); 4189 guc_default_irqs(engine); 4190 guc_init_breadcrumbs(engine); 4191 4192 if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE) 4193 rcs_submission_override(engine); 4194 4195 lrc_init_wa_ctx(engine); 4196 4197 /* Finally, take ownership and responsibility for cleanup! */ 4198 engine->sanitize = guc_sanitize; 4199 engine->release = guc_release; 4200 4201 return 0; 4202 } 4203 4204 void intel_guc_submission_enable(struct intel_guc *guc) 4205 { 4206 guc_init_lrc_mapping(guc); 4207 guc_init_engine_stats(guc); 4208 } 4209 4210 void intel_guc_submission_disable(struct intel_guc *guc) 4211 { 4212 /* Note: By the time we're here, GuC may have already been reset */ 4213 } 4214 4215 static bool __guc_submission_supported(struct intel_guc *guc) 4216 { 4217 /* GuC submission is unavailable for pre-Gen11 */ 4218 return intel_guc_is_supported(guc) && 4219 GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11; 4220 } 4221 4222 static bool __guc_submission_selected(struct intel_guc *guc) 4223 { 4224 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 4225 4226 if (!intel_guc_submission_is_supported(guc)) 4227 return false; 4228 4229 return i915->params.enable_guc & ENABLE_GUC_SUBMISSION; 4230 } 4231 4232 void intel_guc_submission_init_early(struct intel_guc *guc) 4233 { 4234 xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ); 4235 4236 spin_lock_init(&guc->submission_state.lock); 4237 INIT_LIST_HEAD(&guc->submission_state.guc_id_list); 4238 ida_init(&guc->submission_state.guc_ids); 4239 INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts); 4240 INIT_WORK(&guc->submission_state.destroyed_worker, 4241 destroyed_worker_func); 4242 INIT_WORK(&guc->submission_state.reset_fail_worker, 4243 reset_fail_worker_func); 4244 4245 spin_lock_init(&guc->timestamp.lock); 4246 INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping); 4247 4248 guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID; 4249 guc->submission_supported = __guc_submission_supported(guc); 4250 guc->submission_selected = __guc_submission_selected(guc); 4251 } 4252 4253 static inline struct intel_context * 4254 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id) 4255 { 4256 struct intel_context *ce; 4257 4258 if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) { 4259 drm_err(&guc_to_gt(guc)->i915->drm, 4260 "Invalid ctx_id %u\n", ctx_id); 4261 return NULL; 4262 } 4263 4264 ce = __get_context(guc, ctx_id); 4265 if (unlikely(!ce)) { 4266 drm_err(&guc_to_gt(guc)->i915->drm, 4267 "Context is NULL, ctx_id %u\n", ctx_id); 4268 return NULL; 4269 } 4270 4271 if (unlikely(intel_context_is_child(ce))) { 4272 drm_err(&guc_to_gt(guc)->i915->drm, 4273 "Context is child, ctx_id %u\n", ctx_id); 4274 return NULL; 4275 } 4276 4277 return ce; 4278 } 4279 4280 int intel_guc_deregister_done_process_msg(struct intel_guc *guc, 4281 const u32 *msg, 4282 u32 len) 4283 { 4284 struct intel_context *ce; 4285 u32 ctx_id; 4286 4287 if (unlikely(len < 1)) { 4288 drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len); 4289 return -EPROTO; 4290 } 4291 ctx_id = msg[0]; 4292 4293 ce = g2h_context_lookup(guc, ctx_id); 4294 if (unlikely(!ce)) 4295 return -EPROTO; 4296 4297 trace_intel_context_deregister_done(ce); 4298 4299 #ifdef CONFIG_DRM_I915_SELFTEST 4300 if (unlikely(ce->drop_deregister)) { 4301 ce->drop_deregister = false; 4302 return 0; 4303 } 4304 #endif 4305 4306 if (context_wait_for_deregister_to_register(ce)) { 4307 struct intel_runtime_pm *runtime_pm = 4308 &ce->engine->gt->i915->runtime_pm; 4309 intel_wakeref_t wakeref; 4310 4311 /* 4312 * Previous owner of this guc_id has been deregistered, now safe 4313 * register this context. 4314 */ 4315 with_intel_runtime_pm(runtime_pm, wakeref) 4316 register_context(ce, true); 4317 guc_signal_context_fence(ce); 4318 intel_context_put(ce); 4319 } else if (context_destroyed(ce)) { 4320 /* Context has been destroyed */ 4321 intel_gt_pm_put_async(guc_to_gt(guc)); 4322 release_guc_id(guc, ce); 4323 __guc_context_destroy(ce); 4324 } 4325 4326 decr_outstanding_submission_g2h(guc); 4327 4328 return 0; 4329 } 4330 4331 int intel_guc_sched_done_process_msg(struct intel_guc *guc, 4332 const u32 *msg, 4333 u32 len) 4334 { 4335 struct intel_context *ce; 4336 unsigned long flags; 4337 u32 ctx_id; 4338 4339 if (unlikely(len < 2)) { 4340 drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len); 4341 return -EPROTO; 4342 } 4343 ctx_id = msg[0]; 4344 4345 ce = g2h_context_lookup(guc, ctx_id); 4346 if (unlikely(!ce)) 4347 return -EPROTO; 4348 4349 if (unlikely(context_destroyed(ce) || 4350 (!context_pending_enable(ce) && 4351 !context_pending_disable(ce)))) { 4352 drm_err(&guc_to_gt(guc)->i915->drm, 4353 "Bad context sched_state 0x%x, ctx_id %u\n", 4354 ce->guc_state.sched_state, ctx_id); 4355 return -EPROTO; 4356 } 4357 4358 trace_intel_context_sched_done(ce); 4359 4360 if (context_pending_enable(ce)) { 4361 #ifdef CONFIG_DRM_I915_SELFTEST 4362 if (unlikely(ce->drop_schedule_enable)) { 4363 ce->drop_schedule_enable = false; 4364 return 0; 4365 } 4366 #endif 4367 4368 spin_lock_irqsave(&ce->guc_state.lock, flags); 4369 clr_context_pending_enable(ce); 4370 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 4371 } else if (context_pending_disable(ce)) { 4372 bool banned; 4373 4374 #ifdef CONFIG_DRM_I915_SELFTEST 4375 if (unlikely(ce->drop_schedule_disable)) { 4376 ce->drop_schedule_disable = false; 4377 return 0; 4378 } 4379 #endif 4380 4381 /* 4382 * Unpin must be done before __guc_signal_context_fence, 4383 * otherwise a race exists between the requests getting 4384 * submitted + retired before this unpin completes resulting in 4385 * the pin_count going to zero and the context still being 4386 * enabled. 4387 */ 4388 intel_context_sched_disable_unpin(ce); 4389 4390 spin_lock_irqsave(&ce->guc_state.lock, flags); 4391 banned = context_banned(ce); 4392 clr_context_banned(ce); 4393 clr_context_pending_disable(ce); 4394 __guc_signal_context_fence(ce); 4395 guc_blocked_fence_complete(ce); 4396 spin_unlock_irqrestore(&ce->guc_state.lock, flags); 4397 4398 if (banned) { 4399 guc_cancel_context_requests(ce); 4400 intel_engine_signal_breadcrumbs(ce->engine); 4401 } 4402 } 4403 4404 decr_outstanding_submission_g2h(guc); 4405 intel_context_put(ce); 4406 4407 return 0; 4408 } 4409 4410 static void capture_error_state(struct intel_guc *guc, 4411 struct intel_context *ce) 4412 { 4413 struct intel_gt *gt = guc_to_gt(guc); 4414 struct drm_i915_private *i915 = gt->i915; 4415 struct intel_engine_cs *engine = __context_to_physical_engine(ce); 4416 intel_wakeref_t wakeref; 4417 4418 intel_engine_set_hung_context(engine, ce); 4419 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 4420 i915_capture_error_state(gt, engine->mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE); 4421 atomic_inc(&i915->gpu_error.reset_engine_count[engine->uabi_class]); 4422 } 4423 4424 static void guc_context_replay(struct intel_context *ce) 4425 { 4426 struct i915_sched_engine *sched_engine = ce->engine->sched_engine; 4427 4428 __guc_reset_context(ce, ce->engine->mask); 4429 tasklet_hi_schedule(&sched_engine->tasklet); 4430 } 4431 4432 static void guc_handle_context_reset(struct intel_guc *guc, 4433 struct intel_context *ce) 4434 { 4435 trace_intel_context_reset(ce); 4436 4437 if (likely(!intel_context_is_banned(ce))) { 4438 capture_error_state(guc, ce); 4439 guc_context_replay(ce); 4440 } else { 4441 drm_info(&guc_to_gt(guc)->i915->drm, 4442 "Ignoring context reset notification of banned context 0x%04X on %s", 4443 ce->guc_id.id, ce->engine->name); 4444 } 4445 } 4446 4447 int intel_guc_context_reset_process_msg(struct intel_guc *guc, 4448 const u32 *msg, u32 len) 4449 { 4450 struct intel_context *ce; 4451 unsigned long flags; 4452 int ctx_id; 4453 4454 if (unlikely(len != 1)) { 4455 drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len); 4456 return -EPROTO; 4457 } 4458 4459 ctx_id = msg[0]; 4460 4461 /* 4462 * The context lookup uses the xarray but lookups only require an RCU lock 4463 * not the full spinlock. So take the lock explicitly and keep it until the 4464 * context has been reference count locked to ensure it can't be destroyed 4465 * asynchronously until the reset is done. 4466 */ 4467 xa_lock_irqsave(&guc->context_lookup, flags); 4468 ce = g2h_context_lookup(guc, ctx_id); 4469 if (ce) 4470 intel_context_get(ce); 4471 xa_unlock_irqrestore(&guc->context_lookup, flags); 4472 4473 if (unlikely(!ce)) 4474 return -EPROTO; 4475 4476 guc_handle_context_reset(guc, ce); 4477 intel_context_put(ce); 4478 4479 return 0; 4480 } 4481 4482 int intel_guc_error_capture_process_msg(struct intel_guc *guc, 4483 const u32 *msg, u32 len) 4484 { 4485 u32 status; 4486 4487 if (unlikely(len != 1)) { 4488 drm_dbg(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len); 4489 return -EPROTO; 4490 } 4491 4492 status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK; 4493 if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE) 4494 drm_warn(&guc_to_gt(guc)->i915->drm, "G2H-Error capture no space"); 4495 4496 intel_guc_capture_process(guc); 4497 4498 return 0; 4499 } 4500 4501 struct intel_engine_cs * 4502 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance) 4503 { 4504 struct intel_gt *gt = guc_to_gt(guc); 4505 u8 engine_class = guc_class_to_engine_class(guc_class); 4506 4507 /* Class index is checked in class converter */ 4508 GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE); 4509 4510 return gt->engine_class[engine_class][instance]; 4511 } 4512 4513 static void reset_fail_worker_func(struct work_struct *w) 4514 { 4515 struct intel_guc *guc = container_of(w, struct intel_guc, 4516 submission_state.reset_fail_worker); 4517 struct intel_gt *gt = guc_to_gt(guc); 4518 intel_engine_mask_t reset_fail_mask; 4519 unsigned long flags; 4520 4521 spin_lock_irqsave(&guc->submission_state.lock, flags); 4522 reset_fail_mask = guc->submission_state.reset_fail_mask; 4523 guc->submission_state.reset_fail_mask = 0; 4524 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 4525 4526 if (likely(reset_fail_mask)) 4527 intel_gt_handle_error(gt, reset_fail_mask, 4528 I915_ERROR_CAPTURE, 4529 "GuC failed to reset engine mask=0x%x\n", 4530 reset_fail_mask); 4531 } 4532 4533 int intel_guc_engine_failure_process_msg(struct intel_guc *guc, 4534 const u32 *msg, u32 len) 4535 { 4536 struct intel_engine_cs *engine; 4537 struct intel_gt *gt = guc_to_gt(guc); 4538 u8 guc_class, instance; 4539 u32 reason; 4540 unsigned long flags; 4541 4542 if (unlikely(len != 3)) { 4543 drm_err(>->i915->drm, "Invalid length %u", len); 4544 return -EPROTO; 4545 } 4546 4547 guc_class = msg[0]; 4548 instance = msg[1]; 4549 reason = msg[2]; 4550 4551 engine = intel_guc_lookup_engine(guc, guc_class, instance); 4552 if (unlikely(!engine)) { 4553 drm_err(>->i915->drm, 4554 "Invalid engine %d:%d", guc_class, instance); 4555 return -EPROTO; 4556 } 4557 4558 /* 4559 * This is an unexpected failure of a hardware feature. So, log a real 4560 * error message not just the informational that comes with the reset. 4561 */ 4562 drm_err(>->i915->drm, "GuC engine reset request failed on %d:%d (%s) because 0x%08X", 4563 guc_class, instance, engine->name, reason); 4564 4565 spin_lock_irqsave(&guc->submission_state.lock, flags); 4566 guc->submission_state.reset_fail_mask |= engine->mask; 4567 spin_unlock_irqrestore(&guc->submission_state.lock, flags); 4568 4569 /* 4570 * A GT reset flushes this worker queue (G2H handler) so we must use 4571 * another worker to trigger a GT reset. 4572 */ 4573 queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker); 4574 4575 return 0; 4576 } 4577 4578 void intel_guc_find_hung_context(struct intel_engine_cs *engine) 4579 { 4580 struct intel_guc *guc = &engine->gt->uc.guc; 4581 struct intel_context *ce; 4582 struct i915_request *rq; 4583 unsigned long index; 4584 unsigned long flags; 4585 4586 /* Reset called during driver load? GuC not yet initialised! */ 4587 if (unlikely(!guc_submission_initialized(guc))) 4588 return; 4589 4590 xa_lock_irqsave(&guc->context_lookup, flags); 4591 xa_for_each(&guc->context_lookup, index, ce) { 4592 if (!kref_get_unless_zero(&ce->ref)) 4593 continue; 4594 4595 xa_unlock(&guc->context_lookup); 4596 4597 if (!intel_context_is_pinned(ce)) 4598 goto next; 4599 4600 if (intel_engine_is_virtual(ce->engine)) { 4601 if (!(ce->engine->mask & engine->mask)) 4602 goto next; 4603 } else { 4604 if (ce->engine != engine) 4605 goto next; 4606 } 4607 4608 list_for_each_entry(rq, &ce->guc_state.requests, sched.link) { 4609 if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE) 4610 continue; 4611 4612 intel_engine_set_hung_context(engine, ce); 4613 4614 /* Can only cope with one hang at a time... */ 4615 intel_context_put(ce); 4616 xa_lock(&guc->context_lookup); 4617 goto done; 4618 } 4619 next: 4620 intel_context_put(ce); 4621 xa_lock(&guc->context_lookup); 4622 } 4623 done: 4624 xa_unlock_irqrestore(&guc->context_lookup, flags); 4625 } 4626 4627 void intel_guc_dump_active_requests(struct intel_engine_cs *engine, 4628 struct i915_request *hung_rq, 4629 struct drm_printer *m) 4630 { 4631 struct intel_guc *guc = &engine->gt->uc.guc; 4632 struct intel_context *ce; 4633 unsigned long index; 4634 unsigned long flags; 4635 4636 /* Reset called during driver load? GuC not yet initialised! */ 4637 if (unlikely(!guc_submission_initialized(guc))) 4638 return; 4639 4640 xa_lock_irqsave(&guc->context_lookup, flags); 4641 xa_for_each(&guc->context_lookup, index, ce) { 4642 if (!kref_get_unless_zero(&ce->ref)) 4643 continue; 4644 4645 xa_unlock(&guc->context_lookup); 4646 4647 if (!intel_context_is_pinned(ce)) 4648 goto next; 4649 4650 if (intel_engine_is_virtual(ce->engine)) { 4651 if (!(ce->engine->mask & engine->mask)) 4652 goto next; 4653 } else { 4654 if (ce->engine != engine) 4655 goto next; 4656 } 4657 4658 spin_lock(&ce->guc_state.lock); 4659 intel_engine_dump_active_requests(&ce->guc_state.requests, 4660 hung_rq, m); 4661 spin_unlock(&ce->guc_state.lock); 4662 4663 next: 4664 intel_context_put(ce); 4665 xa_lock(&guc->context_lookup); 4666 } 4667 xa_unlock_irqrestore(&guc->context_lookup, flags); 4668 } 4669 4670 void intel_guc_submission_print_info(struct intel_guc *guc, 4671 struct drm_printer *p) 4672 { 4673 struct i915_sched_engine *sched_engine = guc->sched_engine; 4674 struct rb_node *rb; 4675 unsigned long flags; 4676 4677 if (!sched_engine) 4678 return; 4679 4680 drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n", 4681 atomic_read(&guc->outstanding_submission_g2h)); 4682 drm_printf(p, "GuC tasklet count: %u\n\n", 4683 atomic_read(&sched_engine->tasklet.count)); 4684 4685 spin_lock_irqsave(&sched_engine->lock, flags); 4686 drm_printf(p, "Requests in GuC submit tasklet:\n"); 4687 for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) { 4688 struct i915_priolist *pl = to_priolist(rb); 4689 struct i915_request *rq; 4690 4691 priolist_for_each_request(rq, pl) 4692 drm_printf(p, "guc_id=%u, seqno=%llu\n", 4693 rq->context->guc_id.id, 4694 rq->fence.seqno); 4695 } 4696 spin_unlock_irqrestore(&sched_engine->lock, flags); 4697 drm_printf(p, "\n"); 4698 } 4699 4700 static inline void guc_log_context_priority(struct drm_printer *p, 4701 struct intel_context *ce) 4702 { 4703 int i; 4704 4705 drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio); 4706 drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n"); 4707 for (i = GUC_CLIENT_PRIORITY_KMD_HIGH; 4708 i < GUC_CLIENT_PRIORITY_NUM; ++i) { 4709 drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n", 4710 i, ce->guc_state.prio_count[i]); 4711 } 4712 drm_printf(p, "\n"); 4713 } 4714 4715 static inline void guc_log_context(struct drm_printer *p, 4716 struct intel_context *ce) 4717 { 4718 drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id); 4719 drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca); 4720 drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n", 4721 ce->ring->head, 4722 ce->lrc_reg_state[CTX_RING_HEAD]); 4723 drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n", 4724 ce->ring->tail, 4725 ce->lrc_reg_state[CTX_RING_TAIL]); 4726 drm_printf(p, "\t\tContext Pin Count: %u\n", 4727 atomic_read(&ce->pin_count)); 4728 drm_printf(p, "\t\tGuC ID Ref Count: %u\n", 4729 atomic_read(&ce->guc_id.ref)); 4730 drm_printf(p, "\t\tSchedule State: 0x%x\n\n", 4731 ce->guc_state.sched_state); 4732 } 4733 4734 void intel_guc_submission_print_context_info(struct intel_guc *guc, 4735 struct drm_printer *p) 4736 { 4737 struct intel_context *ce; 4738 unsigned long index; 4739 unsigned long flags; 4740 4741 xa_lock_irqsave(&guc->context_lookup, flags); 4742 xa_for_each(&guc->context_lookup, index, ce) { 4743 GEM_BUG_ON(intel_context_is_child(ce)); 4744 4745 guc_log_context(p, ce); 4746 guc_log_context_priority(p, ce); 4747 4748 if (intel_context_is_parent(ce)) { 4749 struct intel_context *child; 4750 4751 drm_printf(p, "\t\tNumber children: %u\n", 4752 ce->parallel.number_children); 4753 4754 if (ce->parallel.guc.wq_status) { 4755 drm_printf(p, "\t\tWQI Head: %u\n", 4756 READ_ONCE(*ce->parallel.guc.wq_head)); 4757 drm_printf(p, "\t\tWQI Tail: %u\n", 4758 READ_ONCE(*ce->parallel.guc.wq_tail)); 4759 drm_printf(p, "\t\tWQI Status: %u\n\n", 4760 READ_ONCE(*ce->parallel.guc.wq_status)); 4761 } 4762 4763 if (ce->engine->emit_bb_start == 4764 emit_bb_start_parent_no_preempt_mid_batch) { 4765 u8 i; 4766 4767 drm_printf(p, "\t\tChildren Go: %u\n\n", 4768 get_children_go_value(ce)); 4769 for (i = 0; i < ce->parallel.number_children; ++i) 4770 drm_printf(p, "\t\tChildren Join: %u\n", 4771 get_children_join_value(ce, i)); 4772 } 4773 4774 for_each_child(ce, child) 4775 guc_log_context(p, child); 4776 } 4777 } 4778 xa_unlock_irqrestore(&guc->context_lookup, flags); 4779 } 4780 4781 static inline u32 get_children_go_addr(struct intel_context *ce) 4782 { 4783 GEM_BUG_ON(!intel_context_is_parent(ce)); 4784 4785 return i915_ggtt_offset(ce->state) + 4786 __get_parent_scratch_offset(ce) + 4787 offsetof(struct parent_scratch, go.semaphore); 4788 } 4789 4790 static inline u32 get_children_join_addr(struct intel_context *ce, 4791 u8 child_index) 4792 { 4793 GEM_BUG_ON(!intel_context_is_parent(ce)); 4794 4795 return i915_ggtt_offset(ce->state) + 4796 __get_parent_scratch_offset(ce) + 4797 offsetof(struct parent_scratch, join[child_index].semaphore); 4798 } 4799 4800 #define PARENT_GO_BB 1 4801 #define PARENT_GO_FINI_BREADCRUMB 0 4802 #define CHILD_GO_BB 1 4803 #define CHILD_GO_FINI_BREADCRUMB 0 4804 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq, 4805 u64 offset, u32 len, 4806 const unsigned int flags) 4807 { 4808 struct intel_context *ce = rq->context; 4809 u32 *cs; 4810 u8 i; 4811 4812 GEM_BUG_ON(!intel_context_is_parent(ce)); 4813 4814 cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children); 4815 if (IS_ERR(cs)) 4816 return PTR_ERR(cs); 4817 4818 /* Wait on children */ 4819 for (i = 0; i < ce->parallel.number_children; ++i) { 4820 *cs++ = (MI_SEMAPHORE_WAIT | 4821 MI_SEMAPHORE_GLOBAL_GTT | 4822 MI_SEMAPHORE_POLL | 4823 MI_SEMAPHORE_SAD_EQ_SDD); 4824 *cs++ = PARENT_GO_BB; 4825 *cs++ = get_children_join_addr(ce, i); 4826 *cs++ = 0; 4827 } 4828 4829 /* Turn off preemption */ 4830 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 4831 *cs++ = MI_NOOP; 4832 4833 /* Tell children go */ 4834 cs = gen8_emit_ggtt_write(cs, 4835 CHILD_GO_BB, 4836 get_children_go_addr(ce), 4837 0); 4838 4839 /* Jump to batch */ 4840 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 4841 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 4842 *cs++ = lower_32_bits(offset); 4843 *cs++ = upper_32_bits(offset); 4844 *cs++ = MI_NOOP; 4845 4846 intel_ring_advance(rq, cs); 4847 4848 return 0; 4849 } 4850 4851 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq, 4852 u64 offset, u32 len, 4853 const unsigned int flags) 4854 { 4855 struct intel_context *ce = rq->context; 4856 struct intel_context *parent = intel_context_to_parent(ce); 4857 u32 *cs; 4858 4859 GEM_BUG_ON(!intel_context_is_child(ce)); 4860 4861 cs = intel_ring_begin(rq, 12); 4862 if (IS_ERR(cs)) 4863 return PTR_ERR(cs); 4864 4865 /* Signal parent */ 4866 cs = gen8_emit_ggtt_write(cs, 4867 PARENT_GO_BB, 4868 get_children_join_addr(parent, 4869 ce->parallel.child_index), 4870 0); 4871 4872 /* Wait on parent for go */ 4873 *cs++ = (MI_SEMAPHORE_WAIT | 4874 MI_SEMAPHORE_GLOBAL_GTT | 4875 MI_SEMAPHORE_POLL | 4876 MI_SEMAPHORE_SAD_EQ_SDD); 4877 *cs++ = CHILD_GO_BB; 4878 *cs++ = get_children_go_addr(parent); 4879 *cs++ = 0; 4880 4881 /* Turn off preemption */ 4882 *cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE; 4883 4884 /* Jump to batch */ 4885 *cs++ = MI_BATCH_BUFFER_START_GEN8 | 4886 (flags & I915_DISPATCH_SECURE ? 0 : BIT(8)); 4887 *cs++ = lower_32_bits(offset); 4888 *cs++ = upper_32_bits(offset); 4889 4890 intel_ring_advance(rq, cs); 4891 4892 return 0; 4893 } 4894 4895 static u32 * 4896 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 4897 u32 *cs) 4898 { 4899 struct intel_context *ce = rq->context; 4900 u8 i; 4901 4902 GEM_BUG_ON(!intel_context_is_parent(ce)); 4903 4904 /* Wait on children */ 4905 for (i = 0; i < ce->parallel.number_children; ++i) { 4906 *cs++ = (MI_SEMAPHORE_WAIT | 4907 MI_SEMAPHORE_GLOBAL_GTT | 4908 MI_SEMAPHORE_POLL | 4909 MI_SEMAPHORE_SAD_EQ_SDD); 4910 *cs++ = PARENT_GO_FINI_BREADCRUMB; 4911 *cs++ = get_children_join_addr(ce, i); 4912 *cs++ = 0; 4913 } 4914 4915 /* Turn on preemption */ 4916 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 4917 *cs++ = MI_NOOP; 4918 4919 /* Tell children go */ 4920 cs = gen8_emit_ggtt_write(cs, 4921 CHILD_GO_FINI_BREADCRUMB, 4922 get_children_go_addr(ce), 4923 0); 4924 4925 return cs; 4926 } 4927 4928 /* 4929 * If this true, a submission of multi-lrc requests had an error and the 4930 * requests need to be skipped. The front end (execuf IOCTL) should've called 4931 * i915_request_skip which squashes the BB but we still need to emit the fini 4932 * breadrcrumbs seqno write. At this point we don't know how many of the 4933 * requests in the multi-lrc submission were generated so we can't do the 4934 * handshake between the parent and children (e.g. if 4 requests should be 4935 * generated but 2nd hit an error only 1 would be seen by the GuC backend). 4936 * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error 4937 * has occurred on any of the requests in submission / relationship. 4938 */ 4939 static inline bool skip_handshake(struct i915_request *rq) 4940 { 4941 return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags); 4942 } 4943 4944 #define NON_SKIP_LEN 6 4945 static u32 * 4946 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq, 4947 u32 *cs) 4948 { 4949 struct intel_context *ce = rq->context; 4950 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; 4951 __maybe_unused u32 *start_fini_breadcrumb_cs = cs; 4952 4953 GEM_BUG_ON(!intel_context_is_parent(ce)); 4954 4955 if (unlikely(skip_handshake(rq))) { 4956 /* 4957 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch, 4958 * the NON_SKIP_LEN comes from the length of the emits below. 4959 */ 4960 memset(cs, 0, sizeof(u32) * 4961 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); 4962 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; 4963 } else { 4964 cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs); 4965 } 4966 4967 /* Emit fini breadcrumb */ 4968 before_fini_breadcrumb_user_interrupt_cs = cs; 4969 cs = gen8_emit_ggtt_write(cs, 4970 rq->fence.seqno, 4971 i915_request_active_timeline(rq)->hwsp_offset, 4972 0); 4973 4974 /* User interrupt */ 4975 *cs++ = MI_USER_INTERRUPT; 4976 *cs++ = MI_NOOP; 4977 4978 /* Ensure our math for skip + emit is correct */ 4979 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != 4980 cs); 4981 GEM_BUG_ON(start_fini_breadcrumb_cs + 4982 ce->engine->emit_fini_breadcrumb_dw != cs); 4983 4984 rq->tail = intel_ring_offset(rq, cs); 4985 4986 return cs; 4987 } 4988 4989 static u32 * 4990 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 4991 u32 *cs) 4992 { 4993 struct intel_context *ce = rq->context; 4994 struct intel_context *parent = intel_context_to_parent(ce); 4995 4996 GEM_BUG_ON(!intel_context_is_child(ce)); 4997 4998 /* Turn on preemption */ 4999 *cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE; 5000 *cs++ = MI_NOOP; 5001 5002 /* Signal parent */ 5003 cs = gen8_emit_ggtt_write(cs, 5004 PARENT_GO_FINI_BREADCRUMB, 5005 get_children_join_addr(parent, 5006 ce->parallel.child_index), 5007 0); 5008 5009 /* Wait parent on for go */ 5010 *cs++ = (MI_SEMAPHORE_WAIT | 5011 MI_SEMAPHORE_GLOBAL_GTT | 5012 MI_SEMAPHORE_POLL | 5013 MI_SEMAPHORE_SAD_EQ_SDD); 5014 *cs++ = CHILD_GO_FINI_BREADCRUMB; 5015 *cs++ = get_children_go_addr(parent); 5016 *cs++ = 0; 5017 5018 return cs; 5019 } 5020 5021 static u32 * 5022 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq, 5023 u32 *cs) 5024 { 5025 struct intel_context *ce = rq->context; 5026 __maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs; 5027 __maybe_unused u32 *start_fini_breadcrumb_cs = cs; 5028 5029 GEM_BUG_ON(!intel_context_is_child(ce)); 5030 5031 if (unlikely(skip_handshake(rq))) { 5032 /* 5033 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch, 5034 * the NON_SKIP_LEN comes from the length of the emits below. 5035 */ 5036 memset(cs, 0, sizeof(u32) * 5037 (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN)); 5038 cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN; 5039 } else { 5040 cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs); 5041 } 5042 5043 /* Emit fini breadcrumb */ 5044 before_fini_breadcrumb_user_interrupt_cs = cs; 5045 cs = gen8_emit_ggtt_write(cs, 5046 rq->fence.seqno, 5047 i915_request_active_timeline(rq)->hwsp_offset, 5048 0); 5049 5050 /* User interrupt */ 5051 *cs++ = MI_USER_INTERRUPT; 5052 *cs++ = MI_NOOP; 5053 5054 /* Ensure our math for skip + emit is correct */ 5055 GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN != 5056 cs); 5057 GEM_BUG_ON(start_fini_breadcrumb_cs + 5058 ce->engine->emit_fini_breadcrumb_dw != cs); 5059 5060 rq->tail = intel_ring_offset(rq, cs); 5061 5062 return cs; 5063 } 5064 5065 #undef NON_SKIP_LEN 5066 5067 static struct intel_context * 5068 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count, 5069 unsigned long flags) 5070 { 5071 struct guc_virtual_engine *ve; 5072 struct intel_guc *guc; 5073 unsigned int n; 5074 int err; 5075 5076 ve = kzalloc(sizeof(*ve), GFP_KERNEL); 5077 if (!ve) 5078 return ERR_PTR(-ENOMEM); 5079 5080 guc = &siblings[0]->gt->uc.guc; 5081 5082 ve->base.i915 = siblings[0]->i915; 5083 ve->base.gt = siblings[0]->gt; 5084 ve->base.uncore = siblings[0]->uncore; 5085 ve->base.id = -1; 5086 5087 ve->base.uabi_class = I915_ENGINE_CLASS_INVALID; 5088 ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 5089 ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL; 5090 ve->base.saturated = ALL_ENGINES; 5091 5092 snprintf(ve->base.name, sizeof(ve->base.name), "virtual"); 5093 5094 ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine); 5095 5096 ve->base.cops = &virtual_guc_context_ops; 5097 ve->base.request_alloc = guc_request_alloc; 5098 ve->base.bump_serial = virtual_guc_bump_serial; 5099 5100 ve->base.submit_request = guc_submit_request; 5101 5102 ve->base.flags = I915_ENGINE_IS_VIRTUAL; 5103 5104 intel_context_init(&ve->context, &ve->base); 5105 5106 for (n = 0; n < count; n++) { 5107 struct intel_engine_cs *sibling = siblings[n]; 5108 5109 GEM_BUG_ON(!is_power_of_2(sibling->mask)); 5110 if (sibling->mask & ve->base.mask) { 5111 DRM_DEBUG("duplicate %s entry in load balancer\n", 5112 sibling->name); 5113 err = -EINVAL; 5114 goto err_put; 5115 } 5116 5117 ve->base.mask |= sibling->mask; 5118 ve->base.logical_mask |= sibling->logical_mask; 5119 5120 if (n != 0 && ve->base.class != sibling->class) { 5121 DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n", 5122 sibling->class, ve->base.class); 5123 err = -EINVAL; 5124 goto err_put; 5125 } else if (n == 0) { 5126 ve->base.class = sibling->class; 5127 ve->base.uabi_class = sibling->uabi_class; 5128 snprintf(ve->base.name, sizeof(ve->base.name), 5129 "v%dx%d", ve->base.class, count); 5130 ve->base.context_size = sibling->context_size; 5131 5132 ve->base.add_active_request = 5133 sibling->add_active_request; 5134 ve->base.remove_active_request = 5135 sibling->remove_active_request; 5136 ve->base.emit_bb_start = sibling->emit_bb_start; 5137 ve->base.emit_flush = sibling->emit_flush; 5138 ve->base.emit_init_breadcrumb = 5139 sibling->emit_init_breadcrumb; 5140 ve->base.emit_fini_breadcrumb = 5141 sibling->emit_fini_breadcrumb; 5142 ve->base.emit_fini_breadcrumb_dw = 5143 sibling->emit_fini_breadcrumb_dw; 5144 ve->base.breadcrumbs = 5145 intel_breadcrumbs_get(sibling->breadcrumbs); 5146 5147 ve->base.flags |= sibling->flags; 5148 5149 ve->base.props.timeslice_duration_ms = 5150 sibling->props.timeslice_duration_ms; 5151 ve->base.props.preempt_timeout_ms = 5152 sibling->props.preempt_timeout_ms; 5153 } 5154 } 5155 5156 return &ve->context; 5157 5158 err_put: 5159 intel_context_put(&ve->context); 5160 return ERR_PTR(err); 5161 } 5162 5163 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve) 5164 { 5165 struct intel_engine_cs *engine; 5166 intel_engine_mask_t tmp, mask = ve->mask; 5167 5168 for_each_engine_masked(engine, ve->gt, mask, tmp) 5169 if (READ_ONCE(engine->props.heartbeat_interval_ms)) 5170 return true; 5171 5172 return false; 5173 } 5174 5175 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 5176 #include "selftest_guc.c" 5177 #include "selftest_guc_multi_lrc.c" 5178 #endif 5179