1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include <linux/circ_buf.h>
7 
8 #include "gem/i915_gem_context.h"
9 #include "gt/gen8_engine_cs.h"
10 #include "gt/intel_breadcrumbs.h"
11 #include "gt/intel_context.h"
12 #include "gt/intel_engine_heartbeat.h"
13 #include "gt/intel_engine_pm.h"
14 #include "gt/intel_engine_regs.h"
15 #include "gt/intel_gpu_commands.h"
16 #include "gt/intel_gt.h"
17 #include "gt/intel_gt_clock_utils.h"
18 #include "gt/intel_gt_irq.h"
19 #include "gt/intel_gt_pm.h"
20 #include "gt/intel_gt_regs.h"
21 #include "gt/intel_gt_requests.h"
22 #include "gt/intel_lrc.h"
23 #include "gt/intel_lrc_reg.h"
24 #include "gt/intel_mocs.h"
25 #include "gt/intel_ring.h"
26 
27 #include "intel_guc_ads.h"
28 #include "intel_guc_capture.h"
29 #include "intel_guc_submission.h"
30 
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 
34 /**
35  * DOC: GuC-based command submission
36  *
37  * The Scratch registers:
38  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
39  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
40  * triggers an interrupt on the GuC via another register write (0xC4C8).
41  * Firmware writes a success/fail code back to the action register after
42  * processes the request. The kernel driver polls waiting for this update and
43  * then proceeds.
44  *
45  * Command Transport buffers (CTBs):
46  * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
47  * - G2H) are a message interface between the i915 and GuC.
48  *
49  * Context registration:
50  * Before a context can be submitted it must be registered with the GuC via a
51  * H2G. A unique guc_id is associated with each context. The context is either
52  * registered at request creation time (normal operation) or at submission time
53  * (abnormal operation, e.g. after a reset).
54  *
55  * Context submission:
56  * The i915 updates the LRC tail value in memory. The i915 must enable the
57  * scheduling of the context within the GuC for the GuC to actually consider it.
58  * Therefore, the first time a disabled context is submitted we use a schedule
59  * enable H2G, while follow up submissions are done via the context submit H2G,
60  * which informs the GuC that a previously enabled context has new work
61  * available.
62  *
63  * Context unpin:
64  * To unpin a context a H2G is used to disable scheduling. When the
65  * corresponding G2H returns indicating the scheduling disable operation has
66  * completed it is safe to unpin the context. While a disable is in flight it
67  * isn't safe to resubmit the context so a fence is used to stall all future
68  * requests of that context until the G2H is returned.
69  *
70  * Context deregistration:
71  * Before a context can be destroyed or if we steal its guc_id we must
72  * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
73  * safe to submit anything to this guc_id until the deregister completes so a
74  * fence is used to stall all requests associated with this guc_id until the
75  * corresponding G2H returns indicating the guc_id has been deregistered.
76  *
77  * submission_state.guc_ids:
78  * Unique number associated with private GuC context data passed in during
79  * context registration / submission / deregistration. 64k available. Simple ida
80  * is used for allocation.
81  *
82  * Stealing guc_ids:
83  * If no guc_ids are available they can be stolen from another context at
84  * request creation time if that context is unpinned. If a guc_id can't be found
85  * we punt this problem to the user as we believe this is near impossible to hit
86  * during normal use cases.
87  *
88  * Locking:
89  * In the GuC submission code we have 3 basic spin locks which protect
90  * everything. Details about each below.
91  *
92  * sched_engine->lock
93  * This is the submission lock for all contexts that share an i915 schedule
94  * engine (sched_engine), thus only one of the contexts which share a
95  * sched_engine can be submitting at a time. Currently only one sched_engine is
96  * used for all of GuC submission but that could change in the future.
97  *
98  * guc->submission_state.lock
99  * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
100  * list.
101  *
102  * ce->guc_state.lock
103  * Protects everything under ce->guc_state. Ensures that a context is in the
104  * correct state before issuing a H2G. e.g. We don't issue a schedule disable
105  * on a disabled context (bad idea), we don't issue a schedule enable when a
106  * schedule disable is in flight, etc... Also protects list of inflight requests
107  * on the context and the priority management state. Lock is individual to each
108  * context.
109  *
110  * Lock ordering rules:
111  * sched_engine->lock -> ce->guc_state.lock
112  * guc->submission_state.lock -> ce->guc_state.lock
113  *
114  * Reset races:
115  * When a full GT reset is triggered it is assumed that some G2H responses to
116  * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
117  * fatal as we do certain operations upon receiving a G2H (e.g. destroy
118  * contexts, release guc_ids, etc...). When this occurs we can scrub the
119  * context state and cleanup appropriately, however this is quite racey.
120  * To avoid races, the reset code must disable submission before scrubbing for
121  * the missing G2H, while the submission code must check for submission being
122  * disabled and skip sending H2Gs and updating context states when it is. Both
123  * sides must also make sure to hold the relevant locks.
124  */
125 
126 /* GuC Virtual Engine */
127 struct guc_virtual_engine {
128 	struct intel_engine_cs base;
129 	struct intel_context context;
130 };
131 
132 static struct intel_context *
133 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
134 		   unsigned long flags);
135 
136 static struct intel_context *
137 guc_create_parallel(struct intel_engine_cs **engines,
138 		    unsigned int num_siblings,
139 		    unsigned int width);
140 
141 #define GUC_REQUEST_SIZE 64 /* bytes */
142 
143 /*
144  * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
145  * per the GuC submission interface. A different allocation algorithm is used
146  * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
147  * partition the guc_id space. We believe the number of multi-lrc contexts in
148  * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
149  * multi-lrc.
150  */
151 #define NUMBER_MULTI_LRC_GUC_ID(guc)	\
152 	((guc)->submission_state.num_guc_ids / 16)
153 
154 /*
155  * Below is a set of functions which control the GuC scheduling state which
156  * require a lock.
157  */
158 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER	BIT(0)
159 #define SCHED_STATE_DESTROYED				BIT(1)
160 #define SCHED_STATE_PENDING_DISABLE			BIT(2)
161 #define SCHED_STATE_BANNED				BIT(3)
162 #define SCHED_STATE_ENABLED				BIT(4)
163 #define SCHED_STATE_PENDING_ENABLE			BIT(5)
164 #define SCHED_STATE_REGISTERED				BIT(6)
165 #define SCHED_STATE_POLICY_REQUIRED			BIT(7)
166 #define SCHED_STATE_BLOCKED_SHIFT			8
167 #define SCHED_STATE_BLOCKED		BIT(SCHED_STATE_BLOCKED_SHIFT)
168 #define SCHED_STATE_BLOCKED_MASK	(0xfff << SCHED_STATE_BLOCKED_SHIFT)
169 
170 static inline void init_sched_state(struct intel_context *ce)
171 {
172 	lockdep_assert_held(&ce->guc_state.lock);
173 	ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
174 }
175 
176 __maybe_unused
177 static bool sched_state_is_init(struct intel_context *ce)
178 {
179 	/* Kernel contexts can have SCHED_STATE_REGISTERED after suspend. */
180 	return !(ce->guc_state.sched_state &
181 		 ~(SCHED_STATE_BLOCKED_MASK | SCHED_STATE_REGISTERED));
182 }
183 
184 static inline bool
185 context_wait_for_deregister_to_register(struct intel_context *ce)
186 {
187 	return ce->guc_state.sched_state &
188 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
189 }
190 
191 static inline void
192 set_context_wait_for_deregister_to_register(struct intel_context *ce)
193 {
194 	lockdep_assert_held(&ce->guc_state.lock);
195 	ce->guc_state.sched_state |=
196 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
197 }
198 
199 static inline void
200 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
201 {
202 	lockdep_assert_held(&ce->guc_state.lock);
203 	ce->guc_state.sched_state &=
204 		~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
205 }
206 
207 static inline bool
208 context_destroyed(struct intel_context *ce)
209 {
210 	return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
211 }
212 
213 static inline void
214 set_context_destroyed(struct intel_context *ce)
215 {
216 	lockdep_assert_held(&ce->guc_state.lock);
217 	ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
218 }
219 
220 static inline bool context_pending_disable(struct intel_context *ce)
221 {
222 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
223 }
224 
225 static inline void set_context_pending_disable(struct intel_context *ce)
226 {
227 	lockdep_assert_held(&ce->guc_state.lock);
228 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
229 }
230 
231 static inline void clr_context_pending_disable(struct intel_context *ce)
232 {
233 	lockdep_assert_held(&ce->guc_state.lock);
234 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
235 }
236 
237 static inline bool context_banned(struct intel_context *ce)
238 {
239 	return ce->guc_state.sched_state & SCHED_STATE_BANNED;
240 }
241 
242 static inline void set_context_banned(struct intel_context *ce)
243 {
244 	lockdep_assert_held(&ce->guc_state.lock);
245 	ce->guc_state.sched_state |= SCHED_STATE_BANNED;
246 }
247 
248 static inline void clr_context_banned(struct intel_context *ce)
249 {
250 	lockdep_assert_held(&ce->guc_state.lock);
251 	ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
252 }
253 
254 static inline bool context_enabled(struct intel_context *ce)
255 {
256 	return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
257 }
258 
259 static inline void set_context_enabled(struct intel_context *ce)
260 {
261 	lockdep_assert_held(&ce->guc_state.lock);
262 	ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
263 }
264 
265 static inline void clr_context_enabled(struct intel_context *ce)
266 {
267 	lockdep_assert_held(&ce->guc_state.lock);
268 	ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
269 }
270 
271 static inline bool context_pending_enable(struct intel_context *ce)
272 {
273 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
274 }
275 
276 static inline void set_context_pending_enable(struct intel_context *ce)
277 {
278 	lockdep_assert_held(&ce->guc_state.lock);
279 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
280 }
281 
282 static inline void clr_context_pending_enable(struct intel_context *ce)
283 {
284 	lockdep_assert_held(&ce->guc_state.lock);
285 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
286 }
287 
288 static inline bool context_registered(struct intel_context *ce)
289 {
290 	return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
291 }
292 
293 static inline void set_context_registered(struct intel_context *ce)
294 {
295 	lockdep_assert_held(&ce->guc_state.lock);
296 	ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
297 }
298 
299 static inline void clr_context_registered(struct intel_context *ce)
300 {
301 	lockdep_assert_held(&ce->guc_state.lock);
302 	ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
303 }
304 
305 static inline bool context_policy_required(struct intel_context *ce)
306 {
307 	return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
308 }
309 
310 static inline void set_context_policy_required(struct intel_context *ce)
311 {
312 	lockdep_assert_held(&ce->guc_state.lock);
313 	ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
314 }
315 
316 static inline void clr_context_policy_required(struct intel_context *ce)
317 {
318 	lockdep_assert_held(&ce->guc_state.lock);
319 	ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
320 }
321 
322 static inline u32 context_blocked(struct intel_context *ce)
323 {
324 	return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
325 		SCHED_STATE_BLOCKED_SHIFT;
326 }
327 
328 static inline void incr_context_blocked(struct intel_context *ce)
329 {
330 	lockdep_assert_held(&ce->guc_state.lock);
331 
332 	ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
333 
334 	GEM_BUG_ON(!context_blocked(ce));	/* Overflow check */
335 }
336 
337 static inline void decr_context_blocked(struct intel_context *ce)
338 {
339 	lockdep_assert_held(&ce->guc_state.lock);
340 
341 	GEM_BUG_ON(!context_blocked(ce));	/* Underflow check */
342 
343 	ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
344 }
345 
346 static inline bool context_has_committed_requests(struct intel_context *ce)
347 {
348 	return !!ce->guc_state.number_committed_requests;
349 }
350 
351 static inline void incr_context_committed_requests(struct intel_context *ce)
352 {
353 	lockdep_assert_held(&ce->guc_state.lock);
354 	++ce->guc_state.number_committed_requests;
355 	GEM_BUG_ON(ce->guc_state.number_committed_requests < 0);
356 }
357 
358 static inline void decr_context_committed_requests(struct intel_context *ce)
359 {
360 	lockdep_assert_held(&ce->guc_state.lock);
361 	--ce->guc_state.number_committed_requests;
362 	GEM_BUG_ON(ce->guc_state.number_committed_requests < 0);
363 }
364 
365 static struct intel_context *
366 request_to_scheduling_context(struct i915_request *rq)
367 {
368 	return intel_context_to_parent(rq->context);
369 }
370 
371 static inline bool context_guc_id_invalid(struct intel_context *ce)
372 {
373 	return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
374 }
375 
376 static inline void set_context_guc_id_invalid(struct intel_context *ce)
377 {
378 	ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
379 }
380 
381 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
382 {
383 	return &ce->engine->gt->uc.guc;
384 }
385 
386 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
387 {
388 	return rb_entry(rb, struct i915_priolist, node);
389 }
390 
391 /*
392  * When using multi-lrc submission a scratch memory area is reserved in the
393  * parent's context state for the process descriptor, work queue, and handshake
394  * between the parent + children contexts to insert safe preemption points
395  * between each of the BBs. Currently the scratch area is sized to a page.
396  *
397  * The layout of this scratch area is below:
398  * 0						guc_process_desc
399  * + sizeof(struct guc_process_desc)		child go
400  * + CACHELINE_BYTES				child join[0]
401  * ...
402  * + CACHELINE_BYTES				child join[n - 1]
403  * ...						unused
404  * PARENT_SCRATCH_SIZE / 2			work queue start
405  * ...						work queue
406  * PARENT_SCRATCH_SIZE - 1			work queue end
407  */
408 #define WQ_SIZE			(PARENT_SCRATCH_SIZE / 2)
409 #define WQ_OFFSET		(PARENT_SCRATCH_SIZE - WQ_SIZE)
410 
411 struct sync_semaphore {
412 	u32 semaphore;
413 	u8 unused[CACHELINE_BYTES - sizeof(u32)];
414 };
415 
416 struct parent_scratch {
417 	union guc_descs {
418 		struct guc_sched_wq_desc wq_desc;
419 		struct guc_process_desc_v69 pdesc;
420 	} descs;
421 
422 	struct sync_semaphore go;
423 	struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
424 
425 	u8 unused[WQ_OFFSET - sizeof(union guc_descs) -
426 		sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
427 
428 	u32 wq[WQ_SIZE / sizeof(u32)];
429 };
430 
431 static u32 __get_parent_scratch_offset(struct intel_context *ce)
432 {
433 	GEM_BUG_ON(!ce->parallel.guc.parent_page);
434 
435 	return ce->parallel.guc.parent_page * PAGE_SIZE;
436 }
437 
438 static u32 __get_wq_offset(struct intel_context *ce)
439 {
440 	BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
441 
442 	return __get_parent_scratch_offset(ce) + WQ_OFFSET;
443 }
444 
445 static struct parent_scratch *
446 __get_parent_scratch(struct intel_context *ce)
447 {
448 	BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
449 	BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
450 
451 	/*
452 	 * Need to subtract LRC_STATE_OFFSET here as the
453 	 * parallel.guc.parent_page is the offset into ce->state while
454 	 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
455 	 */
456 	return (struct parent_scratch *)
457 		(ce->lrc_reg_state +
458 		 ((__get_parent_scratch_offset(ce) -
459 		   LRC_STATE_OFFSET) / sizeof(u32)));
460 }
461 
462 static struct guc_process_desc_v69 *
463 __get_process_desc_v69(struct intel_context *ce)
464 {
465 	struct parent_scratch *ps = __get_parent_scratch(ce);
466 
467 	return &ps->descs.pdesc;
468 }
469 
470 static struct guc_sched_wq_desc *
471 __get_wq_desc_v70(struct intel_context *ce)
472 {
473 	struct parent_scratch *ps = __get_parent_scratch(ce);
474 
475 	return &ps->descs.wq_desc;
476 }
477 
478 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size)
479 {
480 	/*
481 	 * Check for space in work queue. Caching a value of head pointer in
482 	 * intel_context structure in order reduce the number accesses to shared
483 	 * GPU memory which may be across a PCIe bus.
484 	 */
485 #define AVAILABLE_SPACE	\
486 	CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
487 	if (wqi_size > AVAILABLE_SPACE) {
488 		ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head);
489 
490 		if (wqi_size > AVAILABLE_SPACE)
491 			return NULL;
492 	}
493 #undef AVAILABLE_SPACE
494 
495 	return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
496 }
497 
498 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
499 {
500 	struct intel_context *ce = xa_load(&guc->context_lookup, id);
501 
502 	GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
503 
504 	return ce;
505 }
506 
507 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index)
508 {
509 	struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69;
510 
511 	if (!base)
512 		return NULL;
513 
514 	GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID);
515 
516 	return &base[index];
517 }
518 
519 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc)
520 {
521 	u32 size;
522 	int ret;
523 
524 	size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) *
525 			  GUC_MAX_CONTEXT_ID);
526 	ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69,
527 					     (void **)&guc->lrc_desc_pool_vaddr_v69);
528 	if (ret)
529 		return ret;
530 
531 	return 0;
532 }
533 
534 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc)
535 {
536 	if (!guc->lrc_desc_pool_vaddr_v69)
537 		return;
538 
539 	guc->lrc_desc_pool_vaddr_v69 = NULL;
540 	i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP);
541 }
542 
543 static inline bool guc_submission_initialized(struct intel_guc *guc)
544 {
545 	return guc->submission_initialized;
546 }
547 
548 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id)
549 {
550 	struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id);
551 
552 	if (desc)
553 		memset(desc, 0, sizeof(*desc));
554 }
555 
556 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
557 {
558 	return __get_context(guc, id);
559 }
560 
561 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
562 				      struct intel_context *ce)
563 {
564 	unsigned long flags;
565 
566 	/*
567 	 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
568 	 * lower level functions directly.
569 	 */
570 	xa_lock_irqsave(&guc->context_lookup, flags);
571 	__xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
572 	xa_unlock_irqrestore(&guc->context_lookup, flags);
573 }
574 
575 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
576 {
577 	unsigned long flags;
578 
579 	if (unlikely(!guc_submission_initialized(guc)))
580 		return;
581 
582 	_reset_lrc_desc_v69(guc, id);
583 
584 	/*
585 	 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
586 	 * the lower level functions directly.
587 	 */
588 	xa_lock_irqsave(&guc->context_lookup, flags);
589 	__xa_erase(&guc->context_lookup, id);
590 	xa_unlock_irqrestore(&guc->context_lookup, flags);
591 }
592 
593 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
594 {
595 	if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
596 		wake_up_all(&guc->ct.wq);
597 }
598 
599 static int guc_submission_send_busy_loop(struct intel_guc *guc,
600 					 const u32 *action,
601 					 u32 len,
602 					 u32 g2h_len_dw,
603 					 bool loop)
604 {
605 	/*
606 	 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
607 	 * so we don't handle the case where we don't get a reply because we
608 	 * aborted the send due to the channel being busy.
609 	 */
610 	GEM_BUG_ON(g2h_len_dw && !loop);
611 
612 	if (g2h_len_dw)
613 		atomic_inc(&guc->outstanding_submission_g2h);
614 
615 	return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
616 }
617 
618 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
619 				   atomic_t *wait_var,
620 				   bool interruptible,
621 				   long timeout)
622 {
623 	const int state = interruptible ?
624 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
625 	DEFINE_WAIT(wait);
626 
627 	might_sleep();
628 	GEM_BUG_ON(timeout < 0);
629 
630 	if (!atomic_read(wait_var))
631 		return 0;
632 
633 	if (!timeout)
634 		return -ETIME;
635 
636 	for (;;) {
637 		prepare_to_wait(&guc->ct.wq, &wait, state);
638 
639 		if (!atomic_read(wait_var))
640 			break;
641 
642 		if (signal_pending_state(state, current)) {
643 			timeout = -EINTR;
644 			break;
645 		}
646 
647 		if (!timeout) {
648 			timeout = -ETIME;
649 			break;
650 		}
651 
652 		timeout = io_schedule_timeout(timeout);
653 	}
654 	finish_wait(&guc->ct.wq, &wait);
655 
656 	return (timeout < 0) ? timeout : 0;
657 }
658 
659 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
660 {
661 	if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
662 		return 0;
663 
664 	return intel_guc_wait_for_pending_msg(guc,
665 					      &guc->outstanding_submission_g2h,
666 					      true, timeout);
667 }
668 
669 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop);
670 static int try_context_registration(struct intel_context *ce, bool loop);
671 
672 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
673 {
674 	int err = 0;
675 	struct intel_context *ce = request_to_scheduling_context(rq);
676 	u32 action[3];
677 	int len = 0;
678 	u32 g2h_len_dw = 0;
679 	bool enabled;
680 
681 	lockdep_assert_held(&rq->engine->sched_engine->lock);
682 
683 	/*
684 	 * Corner case where requests were sitting in the priority list or a
685 	 * request resubmitted after the context was banned.
686 	 */
687 	if (unlikely(intel_context_is_banned(ce))) {
688 		i915_request_put(i915_request_mark_eio(rq));
689 		intel_engine_signal_breadcrumbs(ce->engine);
690 		return 0;
691 	}
692 
693 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
694 	GEM_BUG_ON(context_guc_id_invalid(ce));
695 
696 	if (context_policy_required(ce)) {
697 		err = guc_context_policy_init_v70(ce, false);
698 		if (err)
699 			return err;
700 	}
701 
702 	spin_lock(&ce->guc_state.lock);
703 
704 	/*
705 	 * The request / context will be run on the hardware when scheduling
706 	 * gets enabled in the unblock. For multi-lrc we still submit the
707 	 * context to move the LRC tails.
708 	 */
709 	if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
710 		goto out;
711 
712 	enabled = context_enabled(ce) || context_blocked(ce);
713 
714 	if (!enabled) {
715 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
716 		action[len++] = ce->guc_id.id;
717 		action[len++] = GUC_CONTEXT_ENABLE;
718 		set_context_pending_enable(ce);
719 		intel_context_get(ce);
720 		g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
721 	} else {
722 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
723 		action[len++] = ce->guc_id.id;
724 	}
725 
726 	err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
727 	if (!enabled && !err) {
728 		trace_intel_context_sched_enable(ce);
729 		atomic_inc(&guc->outstanding_submission_g2h);
730 		set_context_enabled(ce);
731 
732 		/*
733 		 * Without multi-lrc KMD does the submission step (moving the
734 		 * lrc tail) so enabling scheduling is sufficient to submit the
735 		 * context. This isn't the case in multi-lrc submission as the
736 		 * GuC needs to move the tails, hence the need for another H2G
737 		 * to submit a multi-lrc context after enabling scheduling.
738 		 */
739 		if (intel_context_is_parent(ce)) {
740 			action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
741 			err = intel_guc_send_nb(guc, action, len - 1, 0);
742 		}
743 	} else if (!enabled) {
744 		clr_context_pending_enable(ce);
745 		intel_context_put(ce);
746 	}
747 	if (likely(!err))
748 		trace_i915_request_guc_submit(rq);
749 
750 out:
751 	spin_unlock(&ce->guc_state.lock);
752 	return err;
753 }
754 
755 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
756 {
757 	int ret = __guc_add_request(guc, rq);
758 
759 	if (unlikely(ret == -EBUSY)) {
760 		guc->stalled_request = rq;
761 		guc->submission_stall_reason = STALL_ADD_REQUEST;
762 	}
763 
764 	return ret;
765 }
766 
767 static inline void guc_set_lrc_tail(struct i915_request *rq)
768 {
769 	rq->context->lrc_reg_state[CTX_RING_TAIL] =
770 		intel_ring_set_tail(rq->ring, rq->tail);
771 }
772 
773 static inline int rq_prio(const struct i915_request *rq)
774 {
775 	return rq->sched.attr.priority;
776 }
777 
778 static bool is_multi_lrc_rq(struct i915_request *rq)
779 {
780 	return intel_context_is_parallel(rq->context);
781 }
782 
783 static bool can_merge_rq(struct i915_request *rq,
784 			 struct i915_request *last)
785 {
786 	return request_to_scheduling_context(rq) ==
787 		request_to_scheduling_context(last);
788 }
789 
790 static u32 wq_space_until_wrap(struct intel_context *ce)
791 {
792 	return (WQ_SIZE - ce->parallel.guc.wqi_tail);
793 }
794 
795 static void write_wqi(struct intel_context *ce, u32 wqi_size)
796 {
797 	BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
798 
799 	/*
800 	 * Ensure WQI are visible before updating tail
801 	 */
802 	intel_guc_write_barrier(ce_to_guc(ce));
803 
804 	ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
805 		(WQ_SIZE - 1);
806 	WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail);
807 }
808 
809 static int guc_wq_noop_append(struct intel_context *ce)
810 {
811 	u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce));
812 	u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
813 
814 	if (!wqi)
815 		return -EBUSY;
816 
817 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
818 
819 	*wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
820 		FIELD_PREP(WQ_LEN_MASK, len_dw);
821 	ce->parallel.guc.wqi_tail = 0;
822 
823 	return 0;
824 }
825 
826 static int __guc_wq_item_append(struct i915_request *rq)
827 {
828 	struct intel_context *ce = request_to_scheduling_context(rq);
829 	struct intel_context *child;
830 	unsigned int wqi_size = (ce->parallel.number_children + 4) *
831 		sizeof(u32);
832 	u32 *wqi;
833 	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
834 	int ret;
835 
836 	/* Ensure context is in correct state updating work queue */
837 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
838 	GEM_BUG_ON(context_guc_id_invalid(ce));
839 	GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
840 	GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
841 
842 	/* Insert NOOP if this work queue item will wrap the tail pointer. */
843 	if (wqi_size > wq_space_until_wrap(ce)) {
844 		ret = guc_wq_noop_append(ce);
845 		if (ret)
846 			return ret;
847 	}
848 
849 	wqi = get_wq_pointer(ce, wqi_size);
850 	if (!wqi)
851 		return -EBUSY;
852 
853 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
854 
855 	*wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
856 		FIELD_PREP(WQ_LEN_MASK, len_dw);
857 	*wqi++ = ce->lrc.lrca;
858 	*wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
859 	       FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
860 	*wqi++ = 0;	/* fence_id */
861 	for_each_child(ce, child)
862 		*wqi++ = child->ring->tail / sizeof(u64);
863 
864 	write_wqi(ce, wqi_size);
865 
866 	return 0;
867 }
868 
869 static int guc_wq_item_append(struct intel_guc *guc,
870 			      struct i915_request *rq)
871 {
872 	struct intel_context *ce = request_to_scheduling_context(rq);
873 	int ret = 0;
874 
875 	if (likely(!intel_context_is_banned(ce))) {
876 		ret = __guc_wq_item_append(rq);
877 
878 		if (unlikely(ret == -EBUSY)) {
879 			guc->stalled_request = rq;
880 			guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
881 		}
882 	}
883 
884 	return ret;
885 }
886 
887 static bool multi_lrc_submit(struct i915_request *rq)
888 {
889 	struct intel_context *ce = request_to_scheduling_context(rq);
890 
891 	intel_ring_set_tail(rq->ring, rq->tail);
892 
893 	/*
894 	 * We expect the front end (execbuf IOCTL) to set this flag on the last
895 	 * request generated from a multi-BB submission. This indicates to the
896 	 * backend (GuC interface) that we should submit this context thus
897 	 * submitting all the requests generated in parallel.
898 	 */
899 	return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
900 		intel_context_is_banned(ce);
901 }
902 
903 static int guc_dequeue_one_context(struct intel_guc *guc)
904 {
905 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
906 	struct i915_request *last = NULL;
907 	bool submit = false;
908 	struct rb_node *rb;
909 	int ret;
910 
911 	lockdep_assert_held(&sched_engine->lock);
912 
913 	if (guc->stalled_request) {
914 		submit = true;
915 		last = guc->stalled_request;
916 
917 		switch (guc->submission_stall_reason) {
918 		case STALL_REGISTER_CONTEXT:
919 			goto register_context;
920 		case STALL_MOVE_LRC_TAIL:
921 			goto move_lrc_tail;
922 		case STALL_ADD_REQUEST:
923 			goto add_request;
924 		default:
925 			MISSING_CASE(guc->submission_stall_reason);
926 		}
927 	}
928 
929 	while ((rb = rb_first_cached(&sched_engine->queue))) {
930 		struct i915_priolist *p = to_priolist(rb);
931 		struct i915_request *rq, *rn;
932 
933 		priolist_for_each_request_consume(rq, rn, p) {
934 			if (last && !can_merge_rq(rq, last))
935 				goto register_context;
936 
937 			list_del_init(&rq->sched.link);
938 
939 			__i915_request_submit(rq);
940 
941 			trace_i915_request_in(rq, 0);
942 			last = rq;
943 
944 			if (is_multi_lrc_rq(rq)) {
945 				/*
946 				 * We need to coalesce all multi-lrc requests in
947 				 * a relationship into a single H2G. We are
948 				 * guaranteed that all of these requests will be
949 				 * submitted sequentially.
950 				 */
951 				if (multi_lrc_submit(rq)) {
952 					submit = true;
953 					goto register_context;
954 				}
955 			} else {
956 				submit = true;
957 			}
958 		}
959 
960 		rb_erase_cached(&p->node, &sched_engine->queue);
961 		i915_priolist_free(p);
962 	}
963 
964 register_context:
965 	if (submit) {
966 		struct intel_context *ce = request_to_scheduling_context(last);
967 
968 		if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
969 			     !intel_context_is_banned(ce))) {
970 			ret = try_context_registration(ce, false);
971 			if (unlikely(ret == -EPIPE)) {
972 				goto deadlk;
973 			} else if (ret == -EBUSY) {
974 				guc->stalled_request = last;
975 				guc->submission_stall_reason =
976 					STALL_REGISTER_CONTEXT;
977 				goto schedule_tasklet;
978 			} else if (ret != 0) {
979 				GEM_WARN_ON(ret);	/* Unexpected */
980 				goto deadlk;
981 			}
982 		}
983 
984 move_lrc_tail:
985 		if (is_multi_lrc_rq(last)) {
986 			ret = guc_wq_item_append(guc, last);
987 			if (ret == -EBUSY) {
988 				goto schedule_tasklet;
989 			} else if (ret != 0) {
990 				GEM_WARN_ON(ret);	/* Unexpected */
991 				goto deadlk;
992 			}
993 		} else {
994 			guc_set_lrc_tail(last);
995 		}
996 
997 add_request:
998 		ret = guc_add_request(guc, last);
999 		if (unlikely(ret == -EPIPE)) {
1000 			goto deadlk;
1001 		} else if (ret == -EBUSY) {
1002 			goto schedule_tasklet;
1003 		} else if (ret != 0) {
1004 			GEM_WARN_ON(ret);	/* Unexpected */
1005 			goto deadlk;
1006 		}
1007 	}
1008 
1009 	guc->stalled_request = NULL;
1010 	guc->submission_stall_reason = STALL_NONE;
1011 	return submit;
1012 
1013 deadlk:
1014 	sched_engine->tasklet.callback = NULL;
1015 	tasklet_disable_nosync(&sched_engine->tasklet);
1016 	return false;
1017 
1018 schedule_tasklet:
1019 	tasklet_schedule(&sched_engine->tasklet);
1020 	return false;
1021 }
1022 
1023 static void guc_submission_tasklet(struct tasklet_struct *t)
1024 {
1025 	struct i915_sched_engine *sched_engine =
1026 		from_tasklet(sched_engine, t, tasklet);
1027 	unsigned long flags;
1028 	bool loop;
1029 
1030 	spin_lock_irqsave(&sched_engine->lock, flags);
1031 
1032 	do {
1033 		loop = guc_dequeue_one_context(sched_engine->private_data);
1034 	} while (loop);
1035 
1036 	i915_sched_engine_reset_on_empty(sched_engine);
1037 
1038 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1039 }
1040 
1041 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
1042 {
1043 	if (iir & GT_RENDER_USER_INTERRUPT)
1044 		intel_engine_signal_breadcrumbs(engine);
1045 }
1046 
1047 static void __guc_context_destroy(struct intel_context *ce);
1048 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
1049 static void guc_signal_context_fence(struct intel_context *ce);
1050 static void guc_cancel_context_requests(struct intel_context *ce);
1051 static void guc_blocked_fence_complete(struct intel_context *ce);
1052 
1053 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1054 {
1055 	struct intel_context *ce;
1056 	unsigned long index, flags;
1057 	bool pending_disable, pending_enable, deregister, destroyed, banned;
1058 
1059 	xa_lock_irqsave(&guc->context_lookup, flags);
1060 	xa_for_each(&guc->context_lookup, index, ce) {
1061 		/*
1062 		 * Corner case where the ref count on the object is zero but and
1063 		 * deregister G2H was lost. In this case we don't touch the ref
1064 		 * count and finish the destroy of the context.
1065 		 */
1066 		bool do_put = kref_get_unless_zero(&ce->ref);
1067 
1068 		xa_unlock(&guc->context_lookup);
1069 
1070 		spin_lock(&ce->guc_state.lock);
1071 
1072 		/*
1073 		 * Once we are at this point submission_disabled() is guaranteed
1074 		 * to be visible to all callers who set the below flags (see above
1075 		 * flush and flushes in reset_prepare). If submission_disabled()
1076 		 * is set, the caller shouldn't set these flags.
1077 		 */
1078 
1079 		destroyed = context_destroyed(ce);
1080 		pending_enable = context_pending_enable(ce);
1081 		pending_disable = context_pending_disable(ce);
1082 		deregister = context_wait_for_deregister_to_register(ce);
1083 		banned = context_banned(ce);
1084 		init_sched_state(ce);
1085 
1086 		spin_unlock(&ce->guc_state.lock);
1087 
1088 		if (pending_enable || destroyed || deregister) {
1089 			decr_outstanding_submission_g2h(guc);
1090 			if (deregister)
1091 				guc_signal_context_fence(ce);
1092 			if (destroyed) {
1093 				intel_gt_pm_put_async(guc_to_gt(guc));
1094 				release_guc_id(guc, ce);
1095 				__guc_context_destroy(ce);
1096 			}
1097 			if (pending_enable || deregister)
1098 				intel_context_put(ce);
1099 		}
1100 
1101 		/* Not mutualy exclusive with above if statement. */
1102 		if (pending_disable) {
1103 			guc_signal_context_fence(ce);
1104 			if (banned) {
1105 				guc_cancel_context_requests(ce);
1106 				intel_engine_signal_breadcrumbs(ce->engine);
1107 			}
1108 			intel_context_sched_disable_unpin(ce);
1109 			decr_outstanding_submission_g2h(guc);
1110 
1111 			spin_lock(&ce->guc_state.lock);
1112 			guc_blocked_fence_complete(ce);
1113 			spin_unlock(&ce->guc_state.lock);
1114 
1115 			intel_context_put(ce);
1116 		}
1117 
1118 		if (do_put)
1119 			intel_context_put(ce);
1120 		xa_lock(&guc->context_lookup);
1121 	}
1122 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1123 }
1124 
1125 /*
1126  * GuC stores busyness stats for each engine at context in/out boundaries. A
1127  * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1128  * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1129  * GuC.
1130  *
1131  * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1132  * is valid (!= ~0) and start is non-zero, the engine is considered to be
1133  * active. For an active engine total busyness = total + (now - start), where
1134  * 'now' is the time at which the busyness is sampled. For inactive engine,
1135  * total busyness = total.
1136  *
1137  * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1138  *
1139  * The start and total values provided by GuC are 32 bits and wrap around in a
1140  * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1141  * increasing ns values, there is a need for this implementation to account for
1142  * overflows and extend the GuC provided values to 64 bits before returning
1143  * busyness to the user. In order to do that, a worker runs periodically at
1144  * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1145  * 27 seconds for a gt clock frequency of 19.2 MHz).
1146  */
1147 
1148 #define WRAP_TIME_CLKS U32_MAX
1149 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1150 
1151 static void
1152 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1153 {
1154 	u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1155 	u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1156 
1157 	if (new_start == lower_32_bits(*prev_start))
1158 		return;
1159 
1160 	/*
1161 	 * When gt is unparked, we update the gt timestamp and start the ping
1162 	 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1163 	 * is unparked, all switched in contexts will have a start time that is
1164 	 * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1165 	 *
1166 	 * If neither gt_stamp nor new_start has rolled over, then the
1167 	 * gt_stamp_hi does not need to be adjusted, however if one of them has
1168 	 * rolled over, we need to adjust gt_stamp_hi accordingly.
1169 	 *
1170 	 * The below conditions address the cases of new_start rollover and
1171 	 * gt_stamp_last rollover respectively.
1172 	 */
1173 	if (new_start < gt_stamp_last &&
1174 	    (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1175 		gt_stamp_hi++;
1176 
1177 	if (new_start > gt_stamp_last &&
1178 	    (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1179 		gt_stamp_hi--;
1180 
1181 	*prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1182 }
1183 
1184 #define record_read(map_, field_) \
1185 	iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1186 
1187 /*
1188  * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1189  * we run into a race where the value read is inconsistent. Sometimes the
1190  * inconsistency is in reading the upper MSB bytes of the last_in value when
1191  * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1192  * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1193  * determine validity of these values. Instead we read the values multiple times
1194  * until they are consistent. In test runs, 3 attempts results in consistent
1195  * values. The upper bound is set to 6 attempts and may need to be tuned as per
1196  * any new occurences.
1197  */
1198 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1199 				      u32 *last_in, u32 *id, u32 *total)
1200 {
1201 	struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1202 	int i = 0;
1203 
1204 	do {
1205 		*last_in = record_read(&rec_map, last_switch_in_stamp);
1206 		*id = record_read(&rec_map, current_context_index);
1207 		*total = record_read(&rec_map, total_runtime);
1208 
1209 		if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1210 		    record_read(&rec_map, current_context_index) == *id &&
1211 		    record_read(&rec_map, total_runtime) == *total)
1212 			break;
1213 	} while (++i < 6);
1214 }
1215 
1216 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1217 {
1218 	struct intel_engine_guc_stats *stats = &engine->stats.guc;
1219 	struct intel_guc *guc = &engine->gt->uc.guc;
1220 	u32 last_switch, ctx_id, total;
1221 
1222 	lockdep_assert_held(&guc->timestamp.lock);
1223 
1224 	__get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1225 
1226 	stats->running = ctx_id != ~0U && last_switch;
1227 	if (stats->running)
1228 		__extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1229 
1230 	/*
1231 	 * Instead of adjusting the total for overflow, just add the
1232 	 * difference from previous sample stats->total_gt_clks
1233 	 */
1234 	if (total && total != ~0U) {
1235 		stats->total_gt_clks += (u32)(total - stats->prev_total);
1236 		stats->prev_total = total;
1237 	}
1238 }
1239 
1240 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1241 {
1242 	intel_wakeref_t wakeref;
1243 	u32 reg, shift;
1244 
1245 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1246 		reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1247 
1248 	shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
1249 		GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;
1250 
1251 	return 3 - shift;
1252 }
1253 
1254 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1255 {
1256 	struct intel_gt *gt = guc_to_gt(guc);
1257 	u32 gt_stamp_lo, gt_stamp_hi;
1258 	u64 gpm_ts;
1259 
1260 	lockdep_assert_held(&guc->timestamp.lock);
1261 
1262 	gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1263 	gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1264 					  MISC_STATUS1) >> guc->timestamp.shift;
1265 	gt_stamp_lo = lower_32_bits(gpm_ts);
1266 	*now = ktime_get();
1267 
1268 	if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1269 		gt_stamp_hi++;
1270 
1271 	guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1272 }
1273 
1274 /*
1275  * Unlike the execlist mode of submission total and active times are in terms of
1276  * gt clocks. The *now parameter is retained to return the cpu time at which the
1277  * busyness was sampled.
1278  */
1279 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1280 {
1281 	struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1282 	struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1283 	struct intel_gt *gt = engine->gt;
1284 	struct intel_guc *guc = &gt->uc.guc;
1285 	u64 total, gt_stamp_saved;
1286 	unsigned long flags;
1287 	u32 reset_count;
1288 	bool in_reset;
1289 
1290 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1291 
1292 	/*
1293 	 * If a reset happened, we risk reading partially updated engine
1294 	 * busyness from GuC, so we just use the driver stored copy of busyness.
1295 	 * Synchronize with gt reset using reset_count and the
1296 	 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1297 	 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1298 	 * usable by checking the flag afterwards.
1299 	 */
1300 	reset_count = i915_reset_count(gpu_error);
1301 	in_reset = test_bit(I915_RESET_BACKOFF, &gt->reset.flags);
1302 
1303 	*now = ktime_get();
1304 
1305 	/*
1306 	 * The active busyness depends on start_gt_clk and gt_stamp.
1307 	 * gt_stamp is updated by i915 only when gt is awake and the
1308 	 * start_gt_clk is derived from GuC state. To get a consistent
1309 	 * view of activity, we query the GuC state only if gt is awake.
1310 	 */
1311 	if (!in_reset && intel_gt_pm_get_if_awake(gt)) {
1312 		stats_saved = *stats;
1313 		gt_stamp_saved = guc->timestamp.gt_stamp;
1314 		/*
1315 		 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1316 		 * start_gt_clk' calculation below for active engines.
1317 		 */
1318 		guc_update_engine_gt_clks(engine);
1319 		guc_update_pm_timestamp(guc, now);
1320 		intel_gt_pm_put_async(gt);
1321 		if (i915_reset_count(gpu_error) != reset_count) {
1322 			*stats = stats_saved;
1323 			guc->timestamp.gt_stamp = gt_stamp_saved;
1324 		}
1325 	}
1326 
1327 	total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1328 	if (stats->running) {
1329 		u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1330 
1331 		total += intel_gt_clock_interval_to_ns(gt, clk);
1332 	}
1333 
1334 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1335 
1336 	return ns_to_ktime(total);
1337 }
1338 
1339 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1340 {
1341 	struct intel_gt *gt = guc_to_gt(guc);
1342 	struct intel_engine_cs *engine;
1343 	enum intel_engine_id id;
1344 	unsigned long flags;
1345 	ktime_t unused;
1346 
1347 	cancel_delayed_work_sync(&guc->timestamp.work);
1348 
1349 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1350 
1351 	guc_update_pm_timestamp(guc, &unused);
1352 	for_each_engine(engine, gt, id) {
1353 		guc_update_engine_gt_clks(engine);
1354 		engine->stats.guc.prev_total = 0;
1355 	}
1356 
1357 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1358 }
1359 
1360 static void __update_guc_busyness_stats(struct intel_guc *guc)
1361 {
1362 	struct intel_gt *gt = guc_to_gt(guc);
1363 	struct intel_engine_cs *engine;
1364 	enum intel_engine_id id;
1365 	unsigned long flags;
1366 	ktime_t unused;
1367 
1368 	guc->timestamp.last_stat_jiffies = jiffies;
1369 
1370 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1371 
1372 	guc_update_pm_timestamp(guc, &unused);
1373 	for_each_engine(engine, gt, id)
1374 		guc_update_engine_gt_clks(engine);
1375 
1376 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1377 }
1378 
1379 static void guc_timestamp_ping(struct work_struct *wrk)
1380 {
1381 	struct intel_guc *guc = container_of(wrk, typeof(*guc),
1382 					     timestamp.work.work);
1383 	struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1384 	struct intel_gt *gt = guc_to_gt(guc);
1385 	intel_wakeref_t wakeref;
1386 	int srcu, ret;
1387 
1388 	/*
1389 	 * Synchronize with gt reset to make sure the worker does not
1390 	 * corrupt the engine/guc stats.
1391 	 */
1392 	ret = intel_gt_reset_trylock(gt, &srcu);
1393 	if (ret)
1394 		return;
1395 
1396 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
1397 		__update_guc_busyness_stats(guc);
1398 
1399 	intel_gt_reset_unlock(gt, srcu);
1400 
1401 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
1402 			 guc->timestamp.ping_delay);
1403 }
1404 
1405 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1406 {
1407 	u32 offset = intel_guc_engine_usage_offset(guc);
1408 	u32 action[] = {
1409 		INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1410 		offset,
1411 		0,
1412 	};
1413 
1414 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
1415 }
1416 
1417 static void guc_init_engine_stats(struct intel_guc *guc)
1418 {
1419 	struct intel_gt *gt = guc_to_gt(guc);
1420 	intel_wakeref_t wakeref;
1421 
1422 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
1423 			 guc->timestamp.ping_delay);
1424 
1425 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
1426 		int ret = guc_action_enable_usage_stats(guc);
1427 
1428 		if (ret)
1429 			drm_err(&gt->i915->drm,
1430 				"Failed to enable usage stats: %d!\n", ret);
1431 	}
1432 }
1433 
1434 void intel_guc_busyness_park(struct intel_gt *gt)
1435 {
1436 	struct intel_guc *guc = &gt->uc.guc;
1437 
1438 	if (!guc_submission_initialized(guc))
1439 		return;
1440 
1441 	/*
1442 	 * There is a race with suspend flow where the worker runs after suspend
1443 	 * and causes an unclaimed register access warning. Cancel the worker
1444 	 * synchronously here.
1445 	 */
1446 	cancel_delayed_work_sync(&guc->timestamp.work);
1447 
1448 	/*
1449 	 * Before parking, we should sample engine busyness stats if we need to.
1450 	 * We can skip it if we are less than half a ping from the last time we
1451 	 * sampled the busyness stats.
1452 	 */
1453 	if (guc->timestamp.last_stat_jiffies &&
1454 	    !time_after(jiffies, guc->timestamp.last_stat_jiffies +
1455 			(guc->timestamp.ping_delay / 2)))
1456 		return;
1457 
1458 	__update_guc_busyness_stats(guc);
1459 }
1460 
1461 void intel_guc_busyness_unpark(struct intel_gt *gt)
1462 {
1463 	struct intel_guc *guc = &gt->uc.guc;
1464 	unsigned long flags;
1465 	ktime_t unused;
1466 
1467 	if (!guc_submission_initialized(guc))
1468 		return;
1469 
1470 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1471 	guc_update_pm_timestamp(guc, &unused);
1472 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1473 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work,
1474 			 guc->timestamp.ping_delay);
1475 }
1476 
1477 static inline bool
1478 submission_disabled(struct intel_guc *guc)
1479 {
1480 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1481 
1482 	return unlikely(!sched_engine ||
1483 			!__tasklet_is_enabled(&sched_engine->tasklet) ||
1484 			intel_gt_is_wedged(guc_to_gt(guc)));
1485 }
1486 
1487 static void disable_submission(struct intel_guc *guc)
1488 {
1489 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1490 
1491 	if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1492 		GEM_BUG_ON(!guc->ct.enabled);
1493 		__tasklet_disable_sync_once(&sched_engine->tasklet);
1494 		sched_engine->tasklet.callback = NULL;
1495 	}
1496 }
1497 
1498 static void enable_submission(struct intel_guc *guc)
1499 {
1500 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1501 	unsigned long flags;
1502 
1503 	spin_lock_irqsave(&guc->sched_engine->lock, flags);
1504 	sched_engine->tasklet.callback = guc_submission_tasklet;
1505 	wmb();	/* Make sure callback visible */
1506 	if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1507 	    __tasklet_enable(&sched_engine->tasklet)) {
1508 		GEM_BUG_ON(!guc->ct.enabled);
1509 
1510 		/* And kick in case we missed a new request submission. */
1511 		tasklet_hi_schedule(&sched_engine->tasklet);
1512 	}
1513 	spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1514 }
1515 
1516 static void guc_flush_submissions(struct intel_guc *guc)
1517 {
1518 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1519 	unsigned long flags;
1520 
1521 	spin_lock_irqsave(&sched_engine->lock, flags);
1522 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1523 }
1524 
1525 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1526 
1527 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1528 {
1529 	if (unlikely(!guc_submission_initialized(guc))) {
1530 		/* Reset called during driver load? GuC not yet initialised! */
1531 		return;
1532 	}
1533 
1534 	intel_gt_park_heartbeats(guc_to_gt(guc));
1535 	disable_submission(guc);
1536 	guc->interrupts.disable(guc);
1537 	__reset_guc_busyness_stats(guc);
1538 
1539 	/* Flush IRQ handler */
1540 	spin_lock_irq(&guc_to_gt(guc)->irq_lock);
1541 	spin_unlock_irq(&guc_to_gt(guc)->irq_lock);
1542 
1543 	guc_flush_submissions(guc);
1544 	guc_flush_destroyed_contexts(guc);
1545 	flush_work(&guc->ct.requests.worker);
1546 
1547 	scrub_guc_desc_for_outstanding_g2h(guc);
1548 }
1549 
1550 static struct intel_engine_cs *
1551 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1552 {
1553 	struct intel_engine_cs *engine;
1554 	intel_engine_mask_t tmp, mask = ve->mask;
1555 	unsigned int num_siblings = 0;
1556 
1557 	for_each_engine_masked(engine, ve->gt, mask, tmp)
1558 		if (num_siblings++ == sibling)
1559 			return engine;
1560 
1561 	return NULL;
1562 }
1563 
1564 static inline struct intel_engine_cs *
1565 __context_to_physical_engine(struct intel_context *ce)
1566 {
1567 	struct intel_engine_cs *engine = ce->engine;
1568 
1569 	if (intel_engine_is_virtual(engine))
1570 		engine = guc_virtual_get_sibling(engine, 0);
1571 
1572 	return engine;
1573 }
1574 
1575 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1576 {
1577 	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1578 
1579 	if (intel_context_is_banned(ce))
1580 		return;
1581 
1582 	GEM_BUG_ON(!intel_context_is_pinned(ce));
1583 
1584 	/*
1585 	 * We want a simple context + ring to execute the breadcrumb update.
1586 	 * We cannot rely on the context being intact across the GPU hang,
1587 	 * so clear it and rebuild just what we need for the breadcrumb.
1588 	 * All pending requests for this context will be zapped, and any
1589 	 * future request will be after userspace has had the opportunity
1590 	 * to recreate its own state.
1591 	 */
1592 	if (scrub)
1593 		lrc_init_regs(ce, engine, true);
1594 
1595 	/* Rerun the request; its payload has been neutered (if guilty). */
1596 	lrc_update_regs(ce, engine, head);
1597 }
1598 
1599 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1600 {
1601 	if (!IS_GRAPHICS_VER(engine->i915, 11, 12))
1602 		return;
1603 
1604 	intel_engine_stop_cs(engine);
1605 
1606 	/*
1607 	 * Wa_22011802037:gen11/gen12: In addition to stopping the cs, we need
1608 	 * to wait for any pending mi force wakeups
1609 	 */
1610 	intel_engine_wait_for_pending_mi_fw(engine);
1611 }
1612 
1613 static void guc_reset_nop(struct intel_engine_cs *engine)
1614 {
1615 }
1616 
1617 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1618 {
1619 }
1620 
1621 static void
1622 __unwind_incomplete_requests(struct intel_context *ce)
1623 {
1624 	struct i915_request *rq, *rn;
1625 	struct list_head *pl;
1626 	int prio = I915_PRIORITY_INVALID;
1627 	struct i915_sched_engine * const sched_engine =
1628 		ce->engine->sched_engine;
1629 	unsigned long flags;
1630 
1631 	spin_lock_irqsave(&sched_engine->lock, flags);
1632 	spin_lock(&ce->guc_state.lock);
1633 	list_for_each_entry_safe_reverse(rq, rn,
1634 					 &ce->guc_state.requests,
1635 					 sched.link) {
1636 		if (i915_request_completed(rq))
1637 			continue;
1638 
1639 		list_del_init(&rq->sched.link);
1640 		__i915_request_unsubmit(rq);
1641 
1642 		/* Push the request back into the queue for later resubmission. */
1643 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1644 		if (rq_prio(rq) != prio) {
1645 			prio = rq_prio(rq);
1646 			pl = i915_sched_lookup_priolist(sched_engine, prio);
1647 		}
1648 		GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1649 
1650 		list_add(&rq->sched.link, pl);
1651 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1652 	}
1653 	spin_unlock(&ce->guc_state.lock);
1654 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1655 }
1656 
1657 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1658 {
1659 	bool guilty;
1660 	struct i915_request *rq;
1661 	unsigned long flags;
1662 	u32 head;
1663 	int i, number_children = ce->parallel.number_children;
1664 	struct intel_context *parent = ce;
1665 
1666 	GEM_BUG_ON(intel_context_is_child(ce));
1667 
1668 	intel_context_get(ce);
1669 
1670 	/*
1671 	 * GuC will implicitly mark the context as non-schedulable when it sends
1672 	 * the reset notification. Make sure our state reflects this change. The
1673 	 * context will be marked enabled on resubmission.
1674 	 */
1675 	spin_lock_irqsave(&ce->guc_state.lock, flags);
1676 	clr_context_enabled(ce);
1677 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1678 
1679 	/*
1680 	 * For each context in the relationship find the hanging request
1681 	 * resetting each context / request as needed
1682 	 */
1683 	for (i = 0; i < number_children + 1; ++i) {
1684 		if (!intel_context_is_pinned(ce))
1685 			goto next_context;
1686 
1687 		guilty = false;
1688 		rq = intel_context_find_active_request(ce);
1689 		if (!rq) {
1690 			head = ce->ring->tail;
1691 			goto out_replay;
1692 		}
1693 
1694 		if (i915_request_started(rq))
1695 			guilty = stalled & ce->engine->mask;
1696 
1697 		GEM_BUG_ON(i915_active_is_idle(&ce->active));
1698 		head = intel_ring_wrap(ce->ring, rq->head);
1699 
1700 		__i915_request_reset(rq, guilty);
1701 out_replay:
1702 		guc_reset_state(ce, head, guilty);
1703 next_context:
1704 		if (i != number_children)
1705 			ce = list_next_entry(ce, parallel.child_link);
1706 	}
1707 
1708 	__unwind_incomplete_requests(parent);
1709 	intel_context_put(parent);
1710 }
1711 
1712 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1713 {
1714 	struct intel_context *ce;
1715 	unsigned long index;
1716 	unsigned long flags;
1717 
1718 	if (unlikely(!guc_submission_initialized(guc))) {
1719 		/* Reset called during driver load? GuC not yet initialised! */
1720 		return;
1721 	}
1722 
1723 	xa_lock_irqsave(&guc->context_lookup, flags);
1724 	xa_for_each(&guc->context_lookup, index, ce) {
1725 		if (!kref_get_unless_zero(&ce->ref))
1726 			continue;
1727 
1728 		xa_unlock(&guc->context_lookup);
1729 
1730 		if (intel_context_is_pinned(ce) &&
1731 		    !intel_context_is_child(ce))
1732 			__guc_reset_context(ce, stalled);
1733 
1734 		intel_context_put(ce);
1735 
1736 		xa_lock(&guc->context_lookup);
1737 	}
1738 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1739 
1740 	/* GuC is blown away, drop all references to contexts */
1741 	xa_destroy(&guc->context_lookup);
1742 }
1743 
1744 static void guc_cancel_context_requests(struct intel_context *ce)
1745 {
1746 	struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1747 	struct i915_request *rq;
1748 	unsigned long flags;
1749 
1750 	/* Mark all executing requests as skipped. */
1751 	spin_lock_irqsave(&sched_engine->lock, flags);
1752 	spin_lock(&ce->guc_state.lock);
1753 	list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1754 		i915_request_put(i915_request_mark_eio(rq));
1755 	spin_unlock(&ce->guc_state.lock);
1756 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1757 }
1758 
1759 static void
1760 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1761 {
1762 	struct i915_request *rq, *rn;
1763 	struct rb_node *rb;
1764 	unsigned long flags;
1765 
1766 	/* Can be called during boot if GuC fails to load */
1767 	if (!sched_engine)
1768 		return;
1769 
1770 	/*
1771 	 * Before we call engine->cancel_requests(), we should have exclusive
1772 	 * access to the submission state. This is arranged for us by the
1773 	 * caller disabling the interrupt generation, the tasklet and other
1774 	 * threads that may then access the same state, giving us a free hand
1775 	 * to reset state. However, we still need to let lockdep be aware that
1776 	 * we know this state may be accessed in hardirq context, so we
1777 	 * disable the irq around this manipulation and we want to keep
1778 	 * the spinlock focused on its duties and not accidentally conflate
1779 	 * coverage to the submission's irq state. (Similarly, although we
1780 	 * shouldn't need to disable irq around the manipulation of the
1781 	 * submission's irq state, we also wish to remind ourselves that
1782 	 * it is irq state.)
1783 	 */
1784 	spin_lock_irqsave(&sched_engine->lock, flags);
1785 
1786 	/* Flush the queued requests to the timeline list (for retiring). */
1787 	while ((rb = rb_first_cached(&sched_engine->queue))) {
1788 		struct i915_priolist *p = to_priolist(rb);
1789 
1790 		priolist_for_each_request_consume(rq, rn, p) {
1791 			list_del_init(&rq->sched.link);
1792 
1793 			__i915_request_submit(rq);
1794 
1795 			i915_request_put(i915_request_mark_eio(rq));
1796 		}
1797 
1798 		rb_erase_cached(&p->node, &sched_engine->queue);
1799 		i915_priolist_free(p);
1800 	}
1801 
1802 	/* Remaining _unready_ requests will be nop'ed when submitted */
1803 
1804 	sched_engine->queue_priority_hint = INT_MIN;
1805 	sched_engine->queue = RB_ROOT_CACHED;
1806 
1807 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1808 }
1809 
1810 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
1811 {
1812 	struct intel_context *ce;
1813 	unsigned long index;
1814 	unsigned long flags;
1815 
1816 	xa_lock_irqsave(&guc->context_lookup, flags);
1817 	xa_for_each(&guc->context_lookup, index, ce) {
1818 		if (!kref_get_unless_zero(&ce->ref))
1819 			continue;
1820 
1821 		xa_unlock(&guc->context_lookup);
1822 
1823 		if (intel_context_is_pinned(ce) &&
1824 		    !intel_context_is_child(ce))
1825 			guc_cancel_context_requests(ce);
1826 
1827 		intel_context_put(ce);
1828 
1829 		xa_lock(&guc->context_lookup);
1830 	}
1831 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1832 
1833 	guc_cancel_sched_engine_requests(guc->sched_engine);
1834 
1835 	/* GuC is blown away, drop all references to contexts */
1836 	xa_destroy(&guc->context_lookup);
1837 }
1838 
1839 void intel_guc_submission_reset_finish(struct intel_guc *guc)
1840 {
1841 	/* Reset called during driver load or during wedge? */
1842 	if (unlikely(!guc_submission_initialized(guc) ||
1843 		     intel_gt_is_wedged(guc_to_gt(guc)))) {
1844 		return;
1845 	}
1846 
1847 	/*
1848 	 * Technically possible for either of these values to be non-zero here,
1849 	 * but very unlikely + harmless. Regardless let's add a warn so we can
1850 	 * see in CI if this happens frequently / a precursor to taking down the
1851 	 * machine.
1852 	 */
1853 	GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h));
1854 	atomic_set(&guc->outstanding_submission_g2h, 0);
1855 
1856 	intel_guc_global_policies_update(guc);
1857 	enable_submission(guc);
1858 	intel_gt_unpark_heartbeats(guc_to_gt(guc));
1859 }
1860 
1861 static void destroyed_worker_func(struct work_struct *w);
1862 static void reset_fail_worker_func(struct work_struct *w);
1863 
1864 /*
1865  * Set up the memory resources to be shared with the GuC (via the GGTT)
1866  * at firmware loading time.
1867  */
1868 int intel_guc_submission_init(struct intel_guc *guc)
1869 {
1870 	struct intel_gt *gt = guc_to_gt(guc);
1871 	int ret;
1872 
1873 	if (guc->submission_initialized)
1874 		return 0;
1875 
1876 	if (guc->fw.major_ver_found < 70) {
1877 		ret = guc_lrc_desc_pool_create_v69(guc);
1878 		if (ret)
1879 			return ret;
1880 	}
1881 
1882 	guc->submission_state.guc_ids_bitmap =
1883 		bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
1884 	if (!guc->submission_state.guc_ids_bitmap) {
1885 		ret = -ENOMEM;
1886 		goto destroy_pool;
1887 	}
1888 
1889 	guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
1890 	guc->timestamp.shift = gpm_timestamp_shift(gt);
1891 	guc->submission_initialized = true;
1892 
1893 	return 0;
1894 
1895 destroy_pool:
1896 	guc_lrc_desc_pool_destroy_v69(guc);
1897 
1898 	return ret;
1899 }
1900 
1901 void intel_guc_submission_fini(struct intel_guc *guc)
1902 {
1903 	if (!guc->submission_initialized)
1904 		return;
1905 
1906 	guc_flush_destroyed_contexts(guc);
1907 	guc_lrc_desc_pool_destroy_v69(guc);
1908 	i915_sched_engine_put(guc->sched_engine);
1909 	bitmap_free(guc->submission_state.guc_ids_bitmap);
1910 	guc->submission_initialized = false;
1911 }
1912 
1913 static inline void queue_request(struct i915_sched_engine *sched_engine,
1914 				 struct i915_request *rq,
1915 				 int prio)
1916 {
1917 	GEM_BUG_ON(!list_empty(&rq->sched.link));
1918 	list_add_tail(&rq->sched.link,
1919 		      i915_sched_lookup_priolist(sched_engine, prio));
1920 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1921 	tasklet_hi_schedule(&sched_engine->tasklet);
1922 }
1923 
1924 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
1925 				     struct i915_request *rq)
1926 {
1927 	int ret = 0;
1928 
1929 	__i915_request_submit(rq);
1930 
1931 	trace_i915_request_in(rq, 0);
1932 
1933 	if (is_multi_lrc_rq(rq)) {
1934 		if (multi_lrc_submit(rq)) {
1935 			ret = guc_wq_item_append(guc, rq);
1936 			if (!ret)
1937 				ret = guc_add_request(guc, rq);
1938 		}
1939 	} else {
1940 		guc_set_lrc_tail(rq);
1941 		ret = guc_add_request(guc, rq);
1942 	}
1943 
1944 	if (unlikely(ret == -EPIPE))
1945 		disable_submission(guc);
1946 
1947 	return ret;
1948 }
1949 
1950 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
1951 {
1952 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
1953 	struct intel_context *ce = request_to_scheduling_context(rq);
1954 
1955 	return submission_disabled(guc) || guc->stalled_request ||
1956 		!i915_sched_engine_is_empty(sched_engine) ||
1957 		!ctx_id_mapped(guc, ce->guc_id.id);
1958 }
1959 
1960 static void guc_submit_request(struct i915_request *rq)
1961 {
1962 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
1963 	struct intel_guc *guc = &rq->engine->gt->uc.guc;
1964 	unsigned long flags;
1965 
1966 	/* Will be called from irq-context when using foreign fences. */
1967 	spin_lock_irqsave(&sched_engine->lock, flags);
1968 
1969 	if (need_tasklet(guc, rq))
1970 		queue_request(sched_engine, rq, rq_prio(rq));
1971 	else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
1972 		tasklet_hi_schedule(&sched_engine->tasklet);
1973 
1974 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1975 }
1976 
1977 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
1978 {
1979 	int ret;
1980 
1981 	GEM_BUG_ON(intel_context_is_child(ce));
1982 
1983 	if (intel_context_is_parent(ce))
1984 		ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
1985 					      NUMBER_MULTI_LRC_GUC_ID(guc),
1986 					      order_base_2(ce->parallel.number_children
1987 							   + 1));
1988 	else
1989 		ret = ida_simple_get(&guc->submission_state.guc_ids,
1990 				     NUMBER_MULTI_LRC_GUC_ID(guc),
1991 				     guc->submission_state.num_guc_ids,
1992 				     GFP_KERNEL | __GFP_RETRY_MAYFAIL |
1993 				     __GFP_NOWARN);
1994 	if (unlikely(ret < 0))
1995 		return ret;
1996 
1997 	ce->guc_id.id = ret;
1998 	return 0;
1999 }
2000 
2001 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2002 {
2003 	GEM_BUG_ON(intel_context_is_child(ce));
2004 
2005 	if (!context_guc_id_invalid(ce)) {
2006 		if (intel_context_is_parent(ce))
2007 			bitmap_release_region(guc->submission_state.guc_ids_bitmap,
2008 					      ce->guc_id.id,
2009 					      order_base_2(ce->parallel.number_children
2010 							   + 1));
2011 		else
2012 			ida_simple_remove(&guc->submission_state.guc_ids,
2013 					  ce->guc_id.id);
2014 		clr_ctx_id_mapping(guc, ce->guc_id.id);
2015 		set_context_guc_id_invalid(ce);
2016 	}
2017 	if (!list_empty(&ce->guc_id.link))
2018 		list_del_init(&ce->guc_id.link);
2019 }
2020 
2021 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2022 {
2023 	unsigned long flags;
2024 
2025 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2026 	__release_guc_id(guc, ce);
2027 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2028 }
2029 
2030 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
2031 {
2032 	struct intel_context *cn;
2033 
2034 	lockdep_assert_held(&guc->submission_state.lock);
2035 	GEM_BUG_ON(intel_context_is_child(ce));
2036 	GEM_BUG_ON(intel_context_is_parent(ce));
2037 
2038 	if (!list_empty(&guc->submission_state.guc_id_list)) {
2039 		cn = list_first_entry(&guc->submission_state.guc_id_list,
2040 				      struct intel_context,
2041 				      guc_id.link);
2042 
2043 		GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
2044 		GEM_BUG_ON(context_guc_id_invalid(cn));
2045 		GEM_BUG_ON(intel_context_is_child(cn));
2046 		GEM_BUG_ON(intel_context_is_parent(cn));
2047 
2048 		list_del_init(&cn->guc_id.link);
2049 		ce->guc_id.id = cn->guc_id.id;
2050 
2051 		spin_lock(&cn->guc_state.lock);
2052 		clr_context_registered(cn);
2053 		spin_unlock(&cn->guc_state.lock);
2054 
2055 		set_context_guc_id_invalid(cn);
2056 
2057 #ifdef CONFIG_DRM_I915_SELFTEST
2058 		guc->number_guc_id_stolen++;
2059 #endif
2060 
2061 		return 0;
2062 	} else {
2063 		return -EAGAIN;
2064 	}
2065 }
2066 
2067 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2068 {
2069 	int ret;
2070 
2071 	lockdep_assert_held(&guc->submission_state.lock);
2072 	GEM_BUG_ON(intel_context_is_child(ce));
2073 
2074 	ret = new_guc_id(guc, ce);
2075 	if (unlikely(ret < 0)) {
2076 		if (intel_context_is_parent(ce))
2077 			return -ENOSPC;
2078 
2079 		ret = steal_guc_id(guc, ce);
2080 		if (ret < 0)
2081 			return ret;
2082 	}
2083 
2084 	if (intel_context_is_parent(ce)) {
2085 		struct intel_context *child;
2086 		int i = 1;
2087 
2088 		for_each_child(ce, child)
2089 			child->guc_id.id = ce->guc_id.id + i++;
2090 	}
2091 
2092 	return 0;
2093 }
2094 
2095 #define PIN_GUC_ID_TRIES	4
2096 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2097 {
2098 	int ret = 0;
2099 	unsigned long flags, tries = PIN_GUC_ID_TRIES;
2100 
2101 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2102 
2103 try_again:
2104 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2105 
2106 	might_lock(&ce->guc_state.lock);
2107 
2108 	if (context_guc_id_invalid(ce)) {
2109 		ret = assign_guc_id(guc, ce);
2110 		if (ret)
2111 			goto out_unlock;
2112 		ret = 1;	/* Indidcates newly assigned guc_id */
2113 	}
2114 	if (!list_empty(&ce->guc_id.link))
2115 		list_del_init(&ce->guc_id.link);
2116 	atomic_inc(&ce->guc_id.ref);
2117 
2118 out_unlock:
2119 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2120 
2121 	/*
2122 	 * -EAGAIN indicates no guc_id are available, let's retire any
2123 	 * outstanding requests to see if that frees up a guc_id. If the first
2124 	 * retire didn't help, insert a sleep with the timeslice duration before
2125 	 * attempting to retire more requests. Double the sleep period each
2126 	 * subsequent pass before finally giving up. The sleep period has max of
2127 	 * 100ms and minimum of 1ms.
2128 	 */
2129 	if (ret == -EAGAIN && --tries) {
2130 		if (PIN_GUC_ID_TRIES - tries > 1) {
2131 			unsigned int timeslice_shifted =
2132 				ce->engine->props.timeslice_duration_ms <<
2133 				(PIN_GUC_ID_TRIES - tries - 2);
2134 			unsigned int max = min_t(unsigned int, 100,
2135 						 timeslice_shifted);
2136 
2137 			msleep(max_t(unsigned int, max, 1));
2138 		}
2139 		intel_gt_retire_requests(guc_to_gt(guc));
2140 		goto try_again;
2141 	}
2142 
2143 	return ret;
2144 }
2145 
2146 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2147 {
2148 	unsigned long flags;
2149 
2150 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2151 	GEM_BUG_ON(intel_context_is_child(ce));
2152 
2153 	if (unlikely(context_guc_id_invalid(ce) ||
2154 		     intel_context_is_parent(ce)))
2155 		return;
2156 
2157 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2158 	if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2159 	    !atomic_read(&ce->guc_id.ref))
2160 		list_add_tail(&ce->guc_id.link,
2161 			      &guc->submission_state.guc_id_list);
2162 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2163 }
2164 
2165 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc,
2166 					       struct intel_context *ce,
2167 					       u32 guc_id,
2168 					       u32 offset,
2169 					       bool loop)
2170 {
2171 	struct intel_context *child;
2172 	u32 action[4 + MAX_ENGINE_INSTANCE];
2173 	int len = 0;
2174 
2175 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2176 
2177 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2178 	action[len++] = guc_id;
2179 	action[len++] = ce->parallel.number_children + 1;
2180 	action[len++] = offset;
2181 	for_each_child(ce, child) {
2182 		offset += sizeof(struct guc_lrc_desc_v69);
2183 		action[len++] = offset;
2184 	}
2185 
2186 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2187 }
2188 
2189 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc,
2190 					       struct intel_context *ce,
2191 					       struct guc_ctxt_registration_info *info,
2192 					       bool loop)
2193 {
2194 	struct intel_context *child;
2195 	u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2196 	int len = 0;
2197 	u32 next_id;
2198 
2199 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2200 
2201 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2202 	action[len++] = info->flags;
2203 	action[len++] = info->context_idx;
2204 	action[len++] = info->engine_class;
2205 	action[len++] = info->engine_submit_mask;
2206 	action[len++] = info->wq_desc_lo;
2207 	action[len++] = info->wq_desc_hi;
2208 	action[len++] = info->wq_base_lo;
2209 	action[len++] = info->wq_base_hi;
2210 	action[len++] = info->wq_size;
2211 	action[len++] = ce->parallel.number_children + 1;
2212 	action[len++] = info->hwlrca_lo;
2213 	action[len++] = info->hwlrca_hi;
2214 
2215 	next_id = info->context_idx + 1;
2216 	for_each_child(ce, child) {
2217 		GEM_BUG_ON(next_id++ != child->guc_id.id);
2218 
2219 		/*
2220 		 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2221 		 * only supports 32 bit currently.
2222 		 */
2223 		action[len++] = lower_32_bits(child->lrc.lrca);
2224 		action[len++] = upper_32_bits(child->lrc.lrca);
2225 	}
2226 
2227 	GEM_BUG_ON(len > ARRAY_SIZE(action));
2228 
2229 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2230 }
2231 
2232 static int __guc_action_register_context_v69(struct intel_guc *guc,
2233 					     u32 guc_id,
2234 					     u32 offset,
2235 					     bool loop)
2236 {
2237 	u32 action[] = {
2238 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2239 		guc_id,
2240 		offset,
2241 	};
2242 
2243 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2244 					     0, loop);
2245 }
2246 
2247 static int __guc_action_register_context_v70(struct intel_guc *guc,
2248 					     struct guc_ctxt_registration_info *info,
2249 					     bool loop)
2250 {
2251 	u32 action[] = {
2252 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2253 		info->flags,
2254 		info->context_idx,
2255 		info->engine_class,
2256 		info->engine_submit_mask,
2257 		info->wq_desc_lo,
2258 		info->wq_desc_hi,
2259 		info->wq_base_lo,
2260 		info->wq_base_hi,
2261 		info->wq_size,
2262 		info->hwlrca_lo,
2263 		info->hwlrca_hi,
2264 	};
2265 
2266 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2267 					     0, loop);
2268 }
2269 
2270 static void prepare_context_registration_info_v69(struct intel_context *ce);
2271 static void prepare_context_registration_info_v70(struct intel_context *ce,
2272 						  struct guc_ctxt_registration_info *info);
2273 
2274 static int
2275 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop)
2276 {
2277 	u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) +
2278 		ce->guc_id.id * sizeof(struct guc_lrc_desc_v69);
2279 
2280 	prepare_context_registration_info_v69(ce);
2281 
2282 	if (intel_context_is_parent(ce))
2283 		return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id,
2284 							   offset, loop);
2285 	else
2286 		return __guc_action_register_context_v69(guc, ce->guc_id.id,
2287 							 offset, loop);
2288 }
2289 
2290 static int
2291 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop)
2292 {
2293 	struct guc_ctxt_registration_info info;
2294 
2295 	prepare_context_registration_info_v70(ce, &info);
2296 
2297 	if (intel_context_is_parent(ce))
2298 		return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop);
2299 	else
2300 		return __guc_action_register_context_v70(guc, &info, loop);
2301 }
2302 
2303 static int register_context(struct intel_context *ce, bool loop)
2304 {
2305 	struct intel_guc *guc = ce_to_guc(ce);
2306 	int ret;
2307 
2308 	GEM_BUG_ON(intel_context_is_child(ce));
2309 	trace_intel_context_register(ce);
2310 
2311 	if (guc->fw.major_ver_found >= 70)
2312 		ret = register_context_v70(guc, ce, loop);
2313 	else
2314 		ret = register_context_v69(guc, ce, loop);
2315 
2316 	if (likely(!ret)) {
2317 		unsigned long flags;
2318 
2319 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2320 		set_context_registered(ce);
2321 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2322 
2323 		if (guc->fw.major_ver_found >= 70)
2324 			guc_context_policy_init_v70(ce, loop);
2325 	}
2326 
2327 	return ret;
2328 }
2329 
2330 static int __guc_action_deregister_context(struct intel_guc *guc,
2331 					   u32 guc_id)
2332 {
2333 	u32 action[] = {
2334 		INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2335 		guc_id,
2336 	};
2337 
2338 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2339 					     G2H_LEN_DW_DEREGISTER_CONTEXT,
2340 					     true);
2341 }
2342 
2343 static int deregister_context(struct intel_context *ce, u32 guc_id)
2344 {
2345 	struct intel_guc *guc = ce_to_guc(ce);
2346 
2347 	GEM_BUG_ON(intel_context_is_child(ce));
2348 	trace_intel_context_deregister(ce);
2349 
2350 	return __guc_action_deregister_context(guc, guc_id);
2351 }
2352 
2353 static inline void clear_children_join_go_memory(struct intel_context *ce)
2354 {
2355 	struct parent_scratch *ps = __get_parent_scratch(ce);
2356 	int i;
2357 
2358 	ps->go.semaphore = 0;
2359 	for (i = 0; i < ce->parallel.number_children + 1; ++i)
2360 		ps->join[i].semaphore = 0;
2361 }
2362 
2363 static inline u32 get_children_go_value(struct intel_context *ce)
2364 {
2365 	return __get_parent_scratch(ce)->go.semaphore;
2366 }
2367 
2368 static inline u32 get_children_join_value(struct intel_context *ce,
2369 					  u8 child_index)
2370 {
2371 	return __get_parent_scratch(ce)->join[child_index].semaphore;
2372 }
2373 
2374 struct context_policy {
2375 	u32 count;
2376 	struct guc_update_context_policy h2g;
2377 };
2378 
2379 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2380 {
2381 	size_t bytes = sizeof(policy->h2g.header) +
2382 		       (sizeof(policy->h2g.klv[0]) * policy->count);
2383 
2384 	return bytes / sizeof(u32);
2385 }
2386 
2387 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2388 {
2389 	policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2390 	policy->h2g.header.ctx_id = guc_id;
2391 	policy->count = 0;
2392 }
2393 
2394 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2395 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2396 { \
2397 	GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2398 	policy->h2g.klv[policy->count].kl = \
2399 		FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2400 		FIELD_PREP(GUC_KLV_0_LEN, 1); \
2401 	policy->h2g.klv[policy->count].value = data; \
2402 	policy->count++; \
2403 }
2404 
2405 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2406 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2407 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2408 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2409 
2410 #undef MAKE_CONTEXT_POLICY_ADD
2411 
2412 static int __guc_context_set_context_policies(struct intel_guc *guc,
2413 					      struct context_policy *policy,
2414 					      bool loop)
2415 {
2416 	return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2417 					__guc_context_policy_action_size(policy),
2418 					0, loop);
2419 }
2420 
2421 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop)
2422 {
2423 	struct intel_engine_cs *engine = ce->engine;
2424 	struct intel_guc *guc = &engine->gt->uc.guc;
2425 	struct context_policy policy;
2426 	u32 execution_quantum;
2427 	u32 preemption_timeout;
2428 	bool missing = false;
2429 	unsigned long flags;
2430 	int ret;
2431 
2432 	/* NB: For both of these, zero means disabled. */
2433 	execution_quantum = engine->props.timeslice_duration_ms * 1000;
2434 	preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2435 
2436 	__guc_context_policy_start_klv(&policy, ce->guc_id.id);
2437 
2438 	__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2439 	__guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2440 	__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2441 
2442 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2443 		__guc_context_policy_add_preempt_to_idle(&policy, 1);
2444 
2445 	ret = __guc_context_set_context_policies(guc, &policy, loop);
2446 	missing = ret != 0;
2447 
2448 	if (!missing && intel_context_is_parent(ce)) {
2449 		struct intel_context *child;
2450 
2451 		for_each_child(ce, child) {
2452 			__guc_context_policy_start_klv(&policy, child->guc_id.id);
2453 
2454 			if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2455 				__guc_context_policy_add_preempt_to_idle(&policy, 1);
2456 
2457 			child->guc_state.prio = ce->guc_state.prio;
2458 			__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2459 			__guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2460 			__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2461 
2462 			ret = __guc_context_set_context_policies(guc, &policy, loop);
2463 			if (ret) {
2464 				missing = true;
2465 				break;
2466 			}
2467 		}
2468 	}
2469 
2470 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2471 	if (missing)
2472 		set_context_policy_required(ce);
2473 	else
2474 		clr_context_policy_required(ce);
2475 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2476 
2477 	return ret;
2478 }
2479 
2480 static void guc_context_policy_init_v69(struct intel_engine_cs *engine,
2481 					struct guc_lrc_desc_v69 *desc)
2482 {
2483 	desc->policy_flags = 0;
2484 
2485 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2486 		desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69;
2487 
2488 	/* NB: For both of these, zero means disabled. */
2489 	desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
2490 	desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2491 }
2492 
2493 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio)
2494 {
2495 	/*
2496 	 * this matches the mapping we do in map_i915_prio_to_guc_prio()
2497 	 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL)
2498 	 */
2499 	switch (prio) {
2500 	default:
2501 		MISSING_CASE(prio);
2502 		fallthrough;
2503 	case GUC_CLIENT_PRIORITY_KMD_NORMAL:
2504 		return GEN12_CTX_PRIORITY_NORMAL;
2505 	case GUC_CLIENT_PRIORITY_NORMAL:
2506 		return GEN12_CTX_PRIORITY_LOW;
2507 	case GUC_CLIENT_PRIORITY_HIGH:
2508 	case GUC_CLIENT_PRIORITY_KMD_HIGH:
2509 		return GEN12_CTX_PRIORITY_HIGH;
2510 	}
2511 }
2512 
2513 static void prepare_context_registration_info_v69(struct intel_context *ce)
2514 {
2515 	struct intel_engine_cs *engine = ce->engine;
2516 	struct intel_guc *guc = &engine->gt->uc.guc;
2517 	u32 ctx_id = ce->guc_id.id;
2518 	struct guc_lrc_desc_v69 *desc;
2519 	struct intel_context *child;
2520 
2521 	GEM_BUG_ON(!engine->mask);
2522 
2523 	/*
2524 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2525 	 * based on CT vma region.
2526 	 */
2527 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2528 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2529 
2530 	desc = __get_lrc_desc_v69(guc, ctx_id);
2531 	desc->engine_class = engine_class_to_guc_class(engine->class);
2532 	desc->engine_submit_mask = engine->logical_mask;
2533 	desc->hw_context_desc = ce->lrc.lrca;
2534 	desc->priority = ce->guc_state.prio;
2535 	desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2536 	guc_context_policy_init_v69(engine, desc);
2537 
2538 	/*
2539 	 * If context is a parent, we need to register a process descriptor
2540 	 * describing a work queue and register all child contexts.
2541 	 */
2542 	if (intel_context_is_parent(ce)) {
2543 		struct guc_process_desc_v69 *pdesc;
2544 
2545 		ce->parallel.guc.wqi_tail = 0;
2546 		ce->parallel.guc.wqi_head = 0;
2547 
2548 		desc->process_desc = i915_ggtt_offset(ce->state) +
2549 			__get_parent_scratch_offset(ce);
2550 		desc->wq_addr = i915_ggtt_offset(ce->state) +
2551 			__get_wq_offset(ce);
2552 		desc->wq_size = WQ_SIZE;
2553 
2554 		pdesc = __get_process_desc_v69(ce);
2555 		memset(pdesc, 0, sizeof(*(pdesc)));
2556 		pdesc->stage_id = ce->guc_id.id;
2557 		pdesc->wq_base_addr = desc->wq_addr;
2558 		pdesc->wq_size_bytes = desc->wq_size;
2559 		pdesc->wq_status = WQ_STATUS_ACTIVE;
2560 
2561 		ce->parallel.guc.wq_head = &pdesc->head;
2562 		ce->parallel.guc.wq_tail = &pdesc->tail;
2563 		ce->parallel.guc.wq_status = &pdesc->wq_status;
2564 
2565 		for_each_child(ce, child) {
2566 			desc = __get_lrc_desc_v69(guc, child->guc_id.id);
2567 
2568 			desc->engine_class =
2569 				engine_class_to_guc_class(engine->class);
2570 			desc->hw_context_desc = child->lrc.lrca;
2571 			desc->priority = ce->guc_state.prio;
2572 			desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2573 			guc_context_policy_init_v69(engine, desc);
2574 		}
2575 
2576 		clear_children_join_go_memory(ce);
2577 	}
2578 }
2579 
2580 static void prepare_context_registration_info_v70(struct intel_context *ce,
2581 						  struct guc_ctxt_registration_info *info)
2582 {
2583 	struct intel_engine_cs *engine = ce->engine;
2584 	struct intel_guc *guc = &engine->gt->uc.guc;
2585 	u32 ctx_id = ce->guc_id.id;
2586 
2587 	GEM_BUG_ON(!engine->mask);
2588 
2589 	/*
2590 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2591 	 * based on CT vma region.
2592 	 */
2593 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2594 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2595 
2596 	memset(info, 0, sizeof(*info));
2597 	info->context_idx = ctx_id;
2598 	info->engine_class = engine_class_to_guc_class(engine->class);
2599 	info->engine_submit_mask = engine->logical_mask;
2600 	/*
2601 	 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2602 	 * only supports 32 bit currently.
2603 	 */
2604 	info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2605 	info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2606 	if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
2607 		info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio);
2608 	info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2609 
2610 	/*
2611 	 * If context is a parent, we need to register a process descriptor
2612 	 * describing a work queue and register all child contexts.
2613 	 */
2614 	if (intel_context_is_parent(ce)) {
2615 		struct guc_sched_wq_desc *wq_desc;
2616 		u64 wq_desc_offset, wq_base_offset;
2617 
2618 		ce->parallel.guc.wqi_tail = 0;
2619 		ce->parallel.guc.wqi_head = 0;
2620 
2621 		wq_desc_offset = i915_ggtt_offset(ce->state) +
2622 				 __get_parent_scratch_offset(ce);
2623 		wq_base_offset = i915_ggtt_offset(ce->state) +
2624 				 __get_wq_offset(ce);
2625 		info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2626 		info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2627 		info->wq_base_lo = lower_32_bits(wq_base_offset);
2628 		info->wq_base_hi = upper_32_bits(wq_base_offset);
2629 		info->wq_size = WQ_SIZE;
2630 
2631 		wq_desc = __get_wq_desc_v70(ce);
2632 		memset(wq_desc, 0, sizeof(*wq_desc));
2633 		wq_desc->wq_status = WQ_STATUS_ACTIVE;
2634 
2635 		ce->parallel.guc.wq_head = &wq_desc->head;
2636 		ce->parallel.guc.wq_tail = &wq_desc->tail;
2637 		ce->parallel.guc.wq_status = &wq_desc->wq_status;
2638 
2639 		clear_children_join_go_memory(ce);
2640 	}
2641 }
2642 
2643 static int try_context_registration(struct intel_context *ce, bool loop)
2644 {
2645 	struct intel_engine_cs *engine = ce->engine;
2646 	struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2647 	struct intel_guc *guc = &engine->gt->uc.guc;
2648 	intel_wakeref_t wakeref;
2649 	u32 ctx_id = ce->guc_id.id;
2650 	bool context_registered;
2651 	int ret = 0;
2652 
2653 	GEM_BUG_ON(!sched_state_is_init(ce));
2654 
2655 	context_registered = ctx_id_mapped(guc, ctx_id);
2656 
2657 	clr_ctx_id_mapping(guc, ctx_id);
2658 	set_ctx_id_mapping(guc, ctx_id, ce);
2659 
2660 	/*
2661 	 * The context_lookup xarray is used to determine if the hardware
2662 	 * context is currently registered. There are two cases in which it
2663 	 * could be registered either the guc_id has been stolen from another
2664 	 * context or the lrc descriptor address of this context has changed. In
2665 	 * either case the context needs to be deregistered with the GuC before
2666 	 * registering this context.
2667 	 */
2668 	if (context_registered) {
2669 		bool disabled;
2670 		unsigned long flags;
2671 
2672 		trace_intel_context_steal_guc_id(ce);
2673 		GEM_BUG_ON(!loop);
2674 
2675 		/* Seal race with Reset */
2676 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2677 		disabled = submission_disabled(guc);
2678 		if (likely(!disabled)) {
2679 			set_context_wait_for_deregister_to_register(ce);
2680 			intel_context_get(ce);
2681 		}
2682 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2683 		if (unlikely(disabled)) {
2684 			clr_ctx_id_mapping(guc, ctx_id);
2685 			return 0;	/* Will get registered later */
2686 		}
2687 
2688 		/*
2689 		 * If stealing the guc_id, this ce has the same guc_id as the
2690 		 * context whose guc_id was stolen.
2691 		 */
2692 		with_intel_runtime_pm(runtime_pm, wakeref)
2693 			ret = deregister_context(ce, ce->guc_id.id);
2694 		if (unlikely(ret == -ENODEV))
2695 			ret = 0;	/* Will get registered later */
2696 	} else {
2697 		with_intel_runtime_pm(runtime_pm, wakeref)
2698 			ret = register_context(ce, loop);
2699 		if (unlikely(ret == -EBUSY)) {
2700 			clr_ctx_id_mapping(guc, ctx_id);
2701 		} else if (unlikely(ret == -ENODEV)) {
2702 			clr_ctx_id_mapping(guc, ctx_id);
2703 			ret = 0;	/* Will get registered later */
2704 		}
2705 	}
2706 
2707 	return ret;
2708 }
2709 
2710 static int __guc_context_pre_pin(struct intel_context *ce,
2711 				 struct intel_engine_cs *engine,
2712 				 struct i915_gem_ww_ctx *ww,
2713 				 void **vaddr)
2714 {
2715 	return lrc_pre_pin(ce, engine, ww, vaddr);
2716 }
2717 
2718 static int __guc_context_pin(struct intel_context *ce,
2719 			     struct intel_engine_cs *engine,
2720 			     void *vaddr)
2721 {
2722 	if (i915_ggtt_offset(ce->state) !=
2723 	    (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
2724 		set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
2725 
2726 	/*
2727 	 * GuC context gets pinned in guc_request_alloc. See that function for
2728 	 * explaination of why.
2729 	 */
2730 
2731 	return lrc_pin(ce, engine, vaddr);
2732 }
2733 
2734 static int guc_context_pre_pin(struct intel_context *ce,
2735 			       struct i915_gem_ww_ctx *ww,
2736 			       void **vaddr)
2737 {
2738 	return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
2739 }
2740 
2741 static int guc_context_pin(struct intel_context *ce, void *vaddr)
2742 {
2743 	int ret = __guc_context_pin(ce, ce->engine, vaddr);
2744 
2745 	if (likely(!ret && !intel_context_is_barrier(ce)))
2746 		intel_engine_pm_get(ce->engine);
2747 
2748 	return ret;
2749 }
2750 
2751 static void guc_context_unpin(struct intel_context *ce)
2752 {
2753 	struct intel_guc *guc = ce_to_guc(ce);
2754 
2755 	unpin_guc_id(guc, ce);
2756 	lrc_unpin(ce);
2757 
2758 	if (likely(!intel_context_is_barrier(ce)))
2759 		intel_engine_pm_put_async(ce->engine);
2760 }
2761 
2762 static void guc_context_post_unpin(struct intel_context *ce)
2763 {
2764 	lrc_post_unpin(ce);
2765 }
2766 
2767 static void __guc_context_sched_enable(struct intel_guc *guc,
2768 				       struct intel_context *ce)
2769 {
2770 	u32 action[] = {
2771 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2772 		ce->guc_id.id,
2773 		GUC_CONTEXT_ENABLE
2774 	};
2775 
2776 	trace_intel_context_sched_enable(ce);
2777 
2778 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2779 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2780 }
2781 
2782 static void __guc_context_sched_disable(struct intel_guc *guc,
2783 					struct intel_context *ce,
2784 					u16 guc_id)
2785 {
2786 	u32 action[] = {
2787 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2788 		guc_id,	/* ce->guc_id.id not stable */
2789 		GUC_CONTEXT_DISABLE
2790 	};
2791 
2792 	GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
2793 
2794 	GEM_BUG_ON(intel_context_is_child(ce));
2795 	trace_intel_context_sched_disable(ce);
2796 
2797 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2798 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2799 }
2800 
2801 static void guc_blocked_fence_complete(struct intel_context *ce)
2802 {
2803 	lockdep_assert_held(&ce->guc_state.lock);
2804 
2805 	if (!i915_sw_fence_done(&ce->guc_state.blocked))
2806 		i915_sw_fence_complete(&ce->guc_state.blocked);
2807 }
2808 
2809 static void guc_blocked_fence_reinit(struct intel_context *ce)
2810 {
2811 	lockdep_assert_held(&ce->guc_state.lock);
2812 	GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
2813 
2814 	/*
2815 	 * This fence is always complete unless a pending schedule disable is
2816 	 * outstanding. We arm the fence here and complete it when we receive
2817 	 * the pending schedule disable complete message.
2818 	 */
2819 	i915_sw_fence_fini(&ce->guc_state.blocked);
2820 	i915_sw_fence_reinit(&ce->guc_state.blocked);
2821 	i915_sw_fence_await(&ce->guc_state.blocked);
2822 	i915_sw_fence_commit(&ce->guc_state.blocked);
2823 }
2824 
2825 static u16 prep_context_pending_disable(struct intel_context *ce)
2826 {
2827 	lockdep_assert_held(&ce->guc_state.lock);
2828 
2829 	set_context_pending_disable(ce);
2830 	clr_context_enabled(ce);
2831 	guc_blocked_fence_reinit(ce);
2832 	intel_context_get(ce);
2833 
2834 	return ce->guc_id.id;
2835 }
2836 
2837 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
2838 {
2839 	struct intel_guc *guc = ce_to_guc(ce);
2840 	unsigned long flags;
2841 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
2842 	intel_wakeref_t wakeref;
2843 	u16 guc_id;
2844 	bool enabled;
2845 
2846 	GEM_BUG_ON(intel_context_is_child(ce));
2847 
2848 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2849 
2850 	incr_context_blocked(ce);
2851 
2852 	enabled = context_enabled(ce);
2853 	if (unlikely(!enabled || submission_disabled(guc))) {
2854 		if (enabled)
2855 			clr_context_enabled(ce);
2856 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2857 		return &ce->guc_state.blocked;
2858 	}
2859 
2860 	/*
2861 	 * We add +2 here as the schedule disable complete CTB handler calls
2862 	 * intel_context_sched_disable_unpin (-2 to pin_count).
2863 	 */
2864 	atomic_add(2, &ce->pin_count);
2865 
2866 	guc_id = prep_context_pending_disable(ce);
2867 
2868 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2869 
2870 	with_intel_runtime_pm(runtime_pm, wakeref)
2871 		__guc_context_sched_disable(guc, ce, guc_id);
2872 
2873 	return &ce->guc_state.blocked;
2874 }
2875 
2876 #define SCHED_STATE_MULTI_BLOCKED_MASK \
2877 	(SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
2878 #define SCHED_STATE_NO_UNBLOCK \
2879 	(SCHED_STATE_MULTI_BLOCKED_MASK | \
2880 	 SCHED_STATE_PENDING_DISABLE | \
2881 	 SCHED_STATE_BANNED)
2882 
2883 static bool context_cant_unblock(struct intel_context *ce)
2884 {
2885 	lockdep_assert_held(&ce->guc_state.lock);
2886 
2887 	return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
2888 		context_guc_id_invalid(ce) ||
2889 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
2890 		!intel_context_is_pinned(ce);
2891 }
2892 
2893 static void guc_context_unblock(struct intel_context *ce)
2894 {
2895 	struct intel_guc *guc = ce_to_guc(ce);
2896 	unsigned long flags;
2897 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
2898 	intel_wakeref_t wakeref;
2899 	bool enable;
2900 
2901 	GEM_BUG_ON(context_enabled(ce));
2902 	GEM_BUG_ON(intel_context_is_child(ce));
2903 
2904 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2905 
2906 	if (unlikely(submission_disabled(guc) ||
2907 		     context_cant_unblock(ce))) {
2908 		enable = false;
2909 	} else {
2910 		enable = true;
2911 		set_context_pending_enable(ce);
2912 		set_context_enabled(ce);
2913 		intel_context_get(ce);
2914 	}
2915 
2916 	decr_context_blocked(ce);
2917 
2918 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2919 
2920 	if (enable) {
2921 		with_intel_runtime_pm(runtime_pm, wakeref)
2922 			__guc_context_sched_enable(guc, ce);
2923 	}
2924 }
2925 
2926 static void guc_context_cancel_request(struct intel_context *ce,
2927 				       struct i915_request *rq)
2928 {
2929 	struct intel_context *block_context =
2930 		request_to_scheduling_context(rq);
2931 
2932 	if (i915_sw_fence_signaled(&rq->submit)) {
2933 		struct i915_sw_fence *fence;
2934 
2935 		intel_context_get(ce);
2936 		fence = guc_context_block(block_context);
2937 		i915_sw_fence_wait(fence);
2938 		if (!i915_request_completed(rq)) {
2939 			__i915_request_skip(rq);
2940 			guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
2941 					true);
2942 		}
2943 
2944 		guc_context_unblock(block_context);
2945 		intel_context_put(ce);
2946 	}
2947 }
2948 
2949 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
2950 						 u16 guc_id,
2951 						 u32 preemption_timeout)
2952 {
2953 	if (guc->fw.major_ver_found >= 70) {
2954 		struct context_policy policy;
2955 
2956 		__guc_context_policy_start_klv(&policy, guc_id);
2957 		__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2958 		__guc_context_set_context_policies(guc, &policy, true);
2959 	} else {
2960 		u32 action[] = {
2961 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT,
2962 			guc_id,
2963 			preemption_timeout
2964 		};
2965 
2966 		intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
2967 	}
2968 }
2969 
2970 static void
2971 guc_context_revoke(struct intel_context *ce, struct i915_request *rq,
2972 		   unsigned int preempt_timeout_ms)
2973 {
2974 	struct intel_guc *guc = ce_to_guc(ce);
2975 	struct intel_runtime_pm *runtime_pm =
2976 		&ce->engine->gt->i915->runtime_pm;
2977 	intel_wakeref_t wakeref;
2978 	unsigned long flags;
2979 
2980 	GEM_BUG_ON(intel_context_is_child(ce));
2981 
2982 	guc_flush_submissions(guc);
2983 
2984 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2985 	set_context_banned(ce);
2986 
2987 	if (submission_disabled(guc) ||
2988 	    (!context_enabled(ce) && !context_pending_disable(ce))) {
2989 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2990 
2991 		guc_cancel_context_requests(ce);
2992 		intel_engine_signal_breadcrumbs(ce->engine);
2993 	} else if (!context_pending_disable(ce)) {
2994 		u16 guc_id;
2995 
2996 		/*
2997 		 * We add +2 here as the schedule disable complete CTB handler
2998 		 * calls intel_context_sched_disable_unpin (-2 to pin_count).
2999 		 */
3000 		atomic_add(2, &ce->pin_count);
3001 
3002 		guc_id = prep_context_pending_disable(ce);
3003 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3004 
3005 		/*
3006 		 * In addition to disabling scheduling, set the preemption
3007 		 * timeout to the minimum value (1 us) so the banned context
3008 		 * gets kicked off the HW ASAP.
3009 		 */
3010 		with_intel_runtime_pm(runtime_pm, wakeref) {
3011 			__guc_context_set_preemption_timeout(guc, guc_id,
3012 							     preempt_timeout_ms);
3013 			__guc_context_sched_disable(guc, ce, guc_id);
3014 		}
3015 	} else {
3016 		if (!context_guc_id_invalid(ce))
3017 			with_intel_runtime_pm(runtime_pm, wakeref)
3018 				__guc_context_set_preemption_timeout(guc,
3019 								     ce->guc_id.id,
3020 								     preempt_timeout_ms);
3021 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3022 	}
3023 }
3024 
3025 static void guc_context_sched_disable(struct intel_context *ce)
3026 {
3027 	struct intel_guc *guc = ce_to_guc(ce);
3028 	unsigned long flags;
3029 	struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
3030 	intel_wakeref_t wakeref;
3031 	u16 guc_id;
3032 
3033 	GEM_BUG_ON(intel_context_is_child(ce));
3034 
3035 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3036 
3037 	/*
3038 	 * We have to check if the context has been disabled by another thread,
3039 	 * check if submssion has been disabled to seal a race with reset and
3040 	 * finally check if any more requests have been committed to the
3041 	 * context ensursing that a request doesn't slip through the
3042 	 * 'context_pending_disable' fence.
3043 	 */
3044 	if (unlikely(!context_enabled(ce) || submission_disabled(guc) ||
3045 		     context_has_committed_requests(ce))) {
3046 		clr_context_enabled(ce);
3047 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3048 		goto unpin;
3049 	}
3050 	guc_id = prep_context_pending_disable(ce);
3051 
3052 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3053 
3054 	with_intel_runtime_pm(runtime_pm, wakeref)
3055 		__guc_context_sched_disable(guc, ce, guc_id);
3056 
3057 	return;
3058 unpin:
3059 	intel_context_sched_disable_unpin(ce);
3060 }
3061 
3062 static inline void guc_lrc_desc_unpin(struct intel_context *ce)
3063 {
3064 	struct intel_guc *guc = ce_to_guc(ce);
3065 	struct intel_gt *gt = guc_to_gt(guc);
3066 	unsigned long flags;
3067 	bool disabled;
3068 
3069 	GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
3070 	GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
3071 	GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
3072 	GEM_BUG_ON(context_enabled(ce));
3073 
3074 	/* Seal race with Reset */
3075 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3076 	disabled = submission_disabled(guc);
3077 	if (likely(!disabled)) {
3078 		__intel_gt_pm_get(gt);
3079 		set_context_destroyed(ce);
3080 		clr_context_registered(ce);
3081 	}
3082 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3083 	if (unlikely(disabled)) {
3084 		release_guc_id(guc, ce);
3085 		__guc_context_destroy(ce);
3086 		return;
3087 	}
3088 
3089 	deregister_context(ce, ce->guc_id.id);
3090 }
3091 
3092 static void __guc_context_destroy(struct intel_context *ce)
3093 {
3094 	GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
3095 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
3096 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
3097 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
3098 	GEM_BUG_ON(ce->guc_state.number_committed_requests);
3099 
3100 	lrc_fini(ce);
3101 	intel_context_fini(ce);
3102 
3103 	if (intel_engine_is_virtual(ce->engine)) {
3104 		struct guc_virtual_engine *ve =
3105 			container_of(ce, typeof(*ve), context);
3106 
3107 		if (ve->base.breadcrumbs)
3108 			intel_breadcrumbs_put(ve->base.breadcrumbs);
3109 
3110 		kfree(ve);
3111 	} else {
3112 		intel_context_free(ce);
3113 	}
3114 }
3115 
3116 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
3117 {
3118 	struct intel_context *ce;
3119 	unsigned long flags;
3120 
3121 	GEM_BUG_ON(!submission_disabled(guc) &&
3122 		   guc_submission_initialized(guc));
3123 
3124 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3125 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3126 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3127 					      struct intel_context,
3128 					      destroyed_link);
3129 		if (ce)
3130 			list_del_init(&ce->destroyed_link);
3131 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3132 
3133 		if (!ce)
3134 			break;
3135 
3136 		release_guc_id(guc, ce);
3137 		__guc_context_destroy(ce);
3138 	}
3139 }
3140 
3141 static void deregister_destroyed_contexts(struct intel_guc *guc)
3142 {
3143 	struct intel_context *ce;
3144 	unsigned long flags;
3145 
3146 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3147 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3148 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3149 					      struct intel_context,
3150 					      destroyed_link);
3151 		if (ce)
3152 			list_del_init(&ce->destroyed_link);
3153 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3154 
3155 		if (!ce)
3156 			break;
3157 
3158 		guc_lrc_desc_unpin(ce);
3159 	}
3160 }
3161 
3162 static void destroyed_worker_func(struct work_struct *w)
3163 {
3164 	struct intel_guc *guc = container_of(w, struct intel_guc,
3165 					     submission_state.destroyed_worker);
3166 	struct intel_gt *gt = guc_to_gt(guc);
3167 	int tmp;
3168 
3169 	with_intel_gt_pm(gt, tmp)
3170 		deregister_destroyed_contexts(guc);
3171 }
3172 
3173 static void guc_context_destroy(struct kref *kref)
3174 {
3175 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3176 	struct intel_guc *guc = ce_to_guc(ce);
3177 	unsigned long flags;
3178 	bool destroy;
3179 
3180 	/*
3181 	 * If the guc_id is invalid this context has been stolen and we can free
3182 	 * it immediately. Also can be freed immediately if the context is not
3183 	 * registered with the GuC or the GuC is in the middle of a reset.
3184 	 */
3185 	spin_lock_irqsave(&guc->submission_state.lock, flags);
3186 	destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
3187 		!ctx_id_mapped(guc, ce->guc_id.id);
3188 	if (likely(!destroy)) {
3189 		if (!list_empty(&ce->guc_id.link))
3190 			list_del_init(&ce->guc_id.link);
3191 		list_add_tail(&ce->destroyed_link,
3192 			      &guc->submission_state.destroyed_contexts);
3193 	} else {
3194 		__release_guc_id(guc, ce);
3195 	}
3196 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3197 	if (unlikely(destroy)) {
3198 		__guc_context_destroy(ce);
3199 		return;
3200 	}
3201 
3202 	/*
3203 	 * We use a worker to issue the H2G to deregister the context as we can
3204 	 * take the GT PM for the first time which isn't allowed from an atomic
3205 	 * context.
3206 	 */
3207 	queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
3208 }
3209 
3210 static int guc_context_alloc(struct intel_context *ce)
3211 {
3212 	return lrc_alloc(ce, ce->engine);
3213 }
3214 
3215 static void __guc_context_set_prio(struct intel_guc *guc,
3216 				   struct intel_context *ce)
3217 {
3218 	if (guc->fw.major_ver_found >= 70) {
3219 		struct context_policy policy;
3220 
3221 		__guc_context_policy_start_klv(&policy, ce->guc_id.id);
3222 		__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
3223 		__guc_context_set_context_policies(guc, &policy, true);
3224 	} else {
3225 		u32 action[] = {
3226 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY,
3227 			ce->guc_id.id,
3228 			ce->guc_state.prio,
3229 		};
3230 
3231 		guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3232 	}
3233 }
3234 
3235 static void guc_context_set_prio(struct intel_guc *guc,
3236 				 struct intel_context *ce,
3237 				 u8 prio)
3238 {
3239 	GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
3240 		   prio > GUC_CLIENT_PRIORITY_NORMAL);
3241 	lockdep_assert_held(&ce->guc_state.lock);
3242 
3243 	if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3244 	    !context_registered(ce)) {
3245 		ce->guc_state.prio = prio;
3246 		return;
3247 	}
3248 
3249 	ce->guc_state.prio = prio;
3250 	__guc_context_set_prio(guc, ce);
3251 
3252 	trace_intel_context_set_prio(ce);
3253 }
3254 
3255 static inline u8 map_i915_prio_to_guc_prio(int prio)
3256 {
3257 	if (prio == I915_PRIORITY_NORMAL)
3258 		return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3259 	else if (prio < I915_PRIORITY_NORMAL)
3260 		return GUC_CLIENT_PRIORITY_NORMAL;
3261 	else if (prio < I915_PRIORITY_DISPLAY)
3262 		return GUC_CLIENT_PRIORITY_HIGH;
3263 	else
3264 		return GUC_CLIENT_PRIORITY_KMD_HIGH;
3265 }
3266 
3267 static inline void add_context_inflight_prio(struct intel_context *ce,
3268 					     u8 guc_prio)
3269 {
3270 	lockdep_assert_held(&ce->guc_state.lock);
3271 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3272 
3273 	++ce->guc_state.prio_count[guc_prio];
3274 
3275 	/* Overflow protection */
3276 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3277 }
3278 
3279 static inline void sub_context_inflight_prio(struct intel_context *ce,
3280 					     u8 guc_prio)
3281 {
3282 	lockdep_assert_held(&ce->guc_state.lock);
3283 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3284 
3285 	/* Underflow protection */
3286 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3287 
3288 	--ce->guc_state.prio_count[guc_prio];
3289 }
3290 
3291 static inline void update_context_prio(struct intel_context *ce)
3292 {
3293 	struct intel_guc *guc = &ce->engine->gt->uc.guc;
3294 	int i;
3295 
3296 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3297 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3298 
3299 	lockdep_assert_held(&ce->guc_state.lock);
3300 
3301 	for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3302 		if (ce->guc_state.prio_count[i]) {
3303 			guc_context_set_prio(guc, ce, i);
3304 			break;
3305 		}
3306 	}
3307 }
3308 
3309 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3310 {
3311 	/* Lower value is higher priority */
3312 	return new_guc_prio < old_guc_prio;
3313 }
3314 
3315 static void add_to_context(struct i915_request *rq)
3316 {
3317 	struct intel_context *ce = request_to_scheduling_context(rq);
3318 	u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3319 
3320 	GEM_BUG_ON(intel_context_is_child(ce));
3321 	GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3322 
3323 	spin_lock(&ce->guc_state.lock);
3324 	list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3325 
3326 	if (rq->guc_prio == GUC_PRIO_INIT) {
3327 		rq->guc_prio = new_guc_prio;
3328 		add_context_inflight_prio(ce, rq->guc_prio);
3329 	} else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3330 		sub_context_inflight_prio(ce, rq->guc_prio);
3331 		rq->guc_prio = new_guc_prio;
3332 		add_context_inflight_prio(ce, rq->guc_prio);
3333 	}
3334 	update_context_prio(ce);
3335 
3336 	spin_unlock(&ce->guc_state.lock);
3337 }
3338 
3339 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3340 {
3341 	lockdep_assert_held(&ce->guc_state.lock);
3342 
3343 	if (rq->guc_prio != GUC_PRIO_INIT &&
3344 	    rq->guc_prio != GUC_PRIO_FINI) {
3345 		sub_context_inflight_prio(ce, rq->guc_prio);
3346 		update_context_prio(ce);
3347 	}
3348 	rq->guc_prio = GUC_PRIO_FINI;
3349 }
3350 
3351 static void remove_from_context(struct i915_request *rq)
3352 {
3353 	struct intel_context *ce = request_to_scheduling_context(rq);
3354 
3355 	GEM_BUG_ON(intel_context_is_child(ce));
3356 
3357 	spin_lock_irq(&ce->guc_state.lock);
3358 
3359 	list_del_init(&rq->sched.link);
3360 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3361 
3362 	/* Prevent further __await_execution() registering a cb, then flush */
3363 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3364 
3365 	guc_prio_fini(rq, ce);
3366 
3367 	decr_context_committed_requests(ce);
3368 
3369 	spin_unlock_irq(&ce->guc_state.lock);
3370 
3371 	atomic_dec(&ce->guc_id.ref);
3372 	i915_request_notify_execute_cb_imm(rq);
3373 }
3374 
3375 static const struct intel_context_ops guc_context_ops = {
3376 	.alloc = guc_context_alloc,
3377 
3378 	.pre_pin = guc_context_pre_pin,
3379 	.pin = guc_context_pin,
3380 	.unpin = guc_context_unpin,
3381 	.post_unpin = guc_context_post_unpin,
3382 
3383 	.revoke = guc_context_revoke,
3384 
3385 	.cancel_request = guc_context_cancel_request,
3386 
3387 	.enter = intel_context_enter_engine,
3388 	.exit = intel_context_exit_engine,
3389 
3390 	.sched_disable = guc_context_sched_disable,
3391 
3392 	.reset = lrc_reset,
3393 	.destroy = guc_context_destroy,
3394 
3395 	.create_virtual = guc_create_virtual,
3396 	.create_parallel = guc_create_parallel,
3397 };
3398 
3399 static void submit_work_cb(struct irq_work *wrk)
3400 {
3401 	struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3402 
3403 	might_lock(&rq->engine->sched_engine->lock);
3404 	i915_sw_fence_complete(&rq->submit);
3405 }
3406 
3407 static void __guc_signal_context_fence(struct intel_context *ce)
3408 {
3409 	struct i915_request *rq, *rn;
3410 
3411 	lockdep_assert_held(&ce->guc_state.lock);
3412 
3413 	if (!list_empty(&ce->guc_state.fences))
3414 		trace_intel_context_fence_release(ce);
3415 
3416 	/*
3417 	 * Use an IRQ to ensure locking order of sched_engine->lock ->
3418 	 * ce->guc_state.lock is preserved.
3419 	 */
3420 	list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3421 				 guc_fence_link) {
3422 		list_del(&rq->guc_fence_link);
3423 		irq_work_queue(&rq->submit_work);
3424 	}
3425 
3426 	INIT_LIST_HEAD(&ce->guc_state.fences);
3427 }
3428 
3429 static void guc_signal_context_fence(struct intel_context *ce)
3430 {
3431 	unsigned long flags;
3432 
3433 	GEM_BUG_ON(intel_context_is_child(ce));
3434 
3435 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3436 	clr_context_wait_for_deregister_to_register(ce);
3437 	__guc_signal_context_fence(ce);
3438 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3439 }
3440 
3441 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3442 {
3443 	return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3444 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3445 		!submission_disabled(ce_to_guc(ce));
3446 }
3447 
3448 static void guc_context_init(struct intel_context *ce)
3449 {
3450 	const struct i915_gem_context *ctx;
3451 	int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3452 
3453 	rcu_read_lock();
3454 	ctx = rcu_dereference(ce->gem_context);
3455 	if (ctx)
3456 		prio = ctx->sched.priority;
3457 	rcu_read_unlock();
3458 
3459 	ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3460 	set_bit(CONTEXT_GUC_INIT, &ce->flags);
3461 }
3462 
3463 static int guc_request_alloc(struct i915_request *rq)
3464 {
3465 	struct intel_context *ce = request_to_scheduling_context(rq);
3466 	struct intel_guc *guc = ce_to_guc(ce);
3467 	unsigned long flags;
3468 	int ret;
3469 
3470 	GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3471 
3472 	/*
3473 	 * Flush enough space to reduce the likelihood of waiting after
3474 	 * we start building the request - in which case we will just
3475 	 * have to repeat work.
3476 	 */
3477 	rq->reserved_space += GUC_REQUEST_SIZE;
3478 
3479 	/*
3480 	 * Note that after this point, we have committed to using
3481 	 * this request as it is being used to both track the
3482 	 * state of engine initialisation and liveness of the
3483 	 * golden renderstate above. Think twice before you try
3484 	 * to cancel/unwind this request now.
3485 	 */
3486 
3487 	/* Unconditionally invalidate GPU caches and TLBs. */
3488 	ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3489 	if (ret)
3490 		return ret;
3491 
3492 	rq->reserved_space -= GUC_REQUEST_SIZE;
3493 
3494 	if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3495 		guc_context_init(ce);
3496 
3497 	/*
3498 	 * Call pin_guc_id here rather than in the pinning step as with
3499 	 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3500 	 * guc_id and creating horrible race conditions. This is especially bad
3501 	 * when guc_id are being stolen due to over subscription. By the time
3502 	 * this function is reached, it is guaranteed that the guc_id will be
3503 	 * persistent until the generated request is retired. Thus, sealing these
3504 	 * race conditions. It is still safe to fail here if guc_id are
3505 	 * exhausted and return -EAGAIN to the user indicating that they can try
3506 	 * again in the future.
3507 	 *
3508 	 * There is no need for a lock here as the timeline mutex ensures at
3509 	 * most one context can be executing this code path at once. The
3510 	 * guc_id_ref is incremented once for every request in flight and
3511 	 * decremented on each retire. When it is zero, a lock around the
3512 	 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3513 	 */
3514 	if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3515 		goto out;
3516 
3517 	ret = pin_guc_id(guc, ce);	/* returns 1 if new guc_id assigned */
3518 	if (unlikely(ret < 0))
3519 		return ret;
3520 	if (context_needs_register(ce, !!ret)) {
3521 		ret = try_context_registration(ce, true);
3522 		if (unlikely(ret)) {	/* unwind */
3523 			if (ret == -EPIPE) {
3524 				disable_submission(guc);
3525 				goto out;	/* GPU will be reset */
3526 			}
3527 			atomic_dec(&ce->guc_id.ref);
3528 			unpin_guc_id(guc, ce);
3529 			return ret;
3530 		}
3531 	}
3532 
3533 	clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3534 
3535 out:
3536 	/*
3537 	 * We block all requests on this context if a G2H is pending for a
3538 	 * schedule disable or context deregistration as the GuC will fail a
3539 	 * schedule enable or context registration if either G2H is pending
3540 	 * respectfully. Once a G2H returns, the fence is released that is
3541 	 * blocking these requests (see guc_signal_context_fence).
3542 	 */
3543 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3544 	if (context_wait_for_deregister_to_register(ce) ||
3545 	    context_pending_disable(ce)) {
3546 		init_irq_work(&rq->submit_work, submit_work_cb);
3547 		i915_sw_fence_await(&rq->submit);
3548 
3549 		list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3550 	}
3551 	incr_context_committed_requests(ce);
3552 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3553 
3554 	return 0;
3555 }
3556 
3557 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3558 				       struct i915_gem_ww_ctx *ww,
3559 				       void **vaddr)
3560 {
3561 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3562 
3563 	return __guc_context_pre_pin(ce, engine, ww, vaddr);
3564 }
3565 
3566 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3567 {
3568 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3569 	int ret = __guc_context_pin(ce, engine, vaddr);
3570 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3571 
3572 	if (likely(!ret))
3573 		for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3574 			intel_engine_pm_get(engine);
3575 
3576 	return ret;
3577 }
3578 
3579 static void guc_virtual_context_unpin(struct intel_context *ce)
3580 {
3581 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3582 	struct intel_engine_cs *engine;
3583 	struct intel_guc *guc = ce_to_guc(ce);
3584 
3585 	GEM_BUG_ON(context_enabled(ce));
3586 	GEM_BUG_ON(intel_context_is_barrier(ce));
3587 
3588 	unpin_guc_id(guc, ce);
3589 	lrc_unpin(ce);
3590 
3591 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3592 		intel_engine_pm_put_async(engine);
3593 }
3594 
3595 static void guc_virtual_context_enter(struct intel_context *ce)
3596 {
3597 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3598 	struct intel_engine_cs *engine;
3599 
3600 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3601 		intel_engine_pm_get(engine);
3602 
3603 	intel_timeline_enter(ce->timeline);
3604 }
3605 
3606 static void guc_virtual_context_exit(struct intel_context *ce)
3607 {
3608 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3609 	struct intel_engine_cs *engine;
3610 
3611 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3612 		intel_engine_pm_put(engine);
3613 
3614 	intel_timeline_exit(ce->timeline);
3615 }
3616 
3617 static int guc_virtual_context_alloc(struct intel_context *ce)
3618 {
3619 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3620 
3621 	return lrc_alloc(ce, engine);
3622 }
3623 
3624 static const struct intel_context_ops virtual_guc_context_ops = {
3625 	.alloc = guc_virtual_context_alloc,
3626 
3627 	.pre_pin = guc_virtual_context_pre_pin,
3628 	.pin = guc_virtual_context_pin,
3629 	.unpin = guc_virtual_context_unpin,
3630 	.post_unpin = guc_context_post_unpin,
3631 
3632 	.revoke = guc_context_revoke,
3633 
3634 	.cancel_request = guc_context_cancel_request,
3635 
3636 	.enter = guc_virtual_context_enter,
3637 	.exit = guc_virtual_context_exit,
3638 
3639 	.sched_disable = guc_context_sched_disable,
3640 
3641 	.destroy = guc_context_destroy,
3642 
3643 	.get_sibling = guc_virtual_get_sibling,
3644 };
3645 
3646 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
3647 {
3648 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3649 	struct intel_guc *guc = ce_to_guc(ce);
3650 	int ret;
3651 
3652 	GEM_BUG_ON(!intel_context_is_parent(ce));
3653 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3654 
3655 	ret = pin_guc_id(guc, ce);
3656 	if (unlikely(ret < 0))
3657 		return ret;
3658 
3659 	return __guc_context_pin(ce, engine, vaddr);
3660 }
3661 
3662 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
3663 {
3664 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3665 
3666 	GEM_BUG_ON(!intel_context_is_child(ce));
3667 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3668 
3669 	__intel_context_pin(ce->parallel.parent);
3670 	return __guc_context_pin(ce, engine, vaddr);
3671 }
3672 
3673 static void guc_parent_context_unpin(struct intel_context *ce)
3674 {
3675 	struct intel_guc *guc = ce_to_guc(ce);
3676 
3677 	GEM_BUG_ON(context_enabled(ce));
3678 	GEM_BUG_ON(intel_context_is_barrier(ce));
3679 	GEM_BUG_ON(!intel_context_is_parent(ce));
3680 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3681 
3682 	unpin_guc_id(guc, ce);
3683 	lrc_unpin(ce);
3684 }
3685 
3686 static void guc_child_context_unpin(struct intel_context *ce)
3687 {
3688 	GEM_BUG_ON(context_enabled(ce));
3689 	GEM_BUG_ON(intel_context_is_barrier(ce));
3690 	GEM_BUG_ON(!intel_context_is_child(ce));
3691 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3692 
3693 	lrc_unpin(ce);
3694 }
3695 
3696 static void guc_child_context_post_unpin(struct intel_context *ce)
3697 {
3698 	GEM_BUG_ON(!intel_context_is_child(ce));
3699 	GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
3700 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3701 
3702 	lrc_post_unpin(ce);
3703 	intel_context_unpin(ce->parallel.parent);
3704 }
3705 
3706 static void guc_child_context_destroy(struct kref *kref)
3707 {
3708 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3709 
3710 	__guc_context_destroy(ce);
3711 }
3712 
3713 static const struct intel_context_ops virtual_parent_context_ops = {
3714 	.alloc = guc_virtual_context_alloc,
3715 
3716 	.pre_pin = guc_context_pre_pin,
3717 	.pin = guc_parent_context_pin,
3718 	.unpin = guc_parent_context_unpin,
3719 	.post_unpin = guc_context_post_unpin,
3720 
3721 	.revoke = guc_context_revoke,
3722 
3723 	.cancel_request = guc_context_cancel_request,
3724 
3725 	.enter = guc_virtual_context_enter,
3726 	.exit = guc_virtual_context_exit,
3727 
3728 	.sched_disable = guc_context_sched_disable,
3729 
3730 	.destroy = guc_context_destroy,
3731 
3732 	.get_sibling = guc_virtual_get_sibling,
3733 };
3734 
3735 static const struct intel_context_ops virtual_child_context_ops = {
3736 	.alloc = guc_virtual_context_alloc,
3737 
3738 	.pre_pin = guc_context_pre_pin,
3739 	.pin = guc_child_context_pin,
3740 	.unpin = guc_child_context_unpin,
3741 	.post_unpin = guc_child_context_post_unpin,
3742 
3743 	.cancel_request = guc_context_cancel_request,
3744 
3745 	.enter = guc_virtual_context_enter,
3746 	.exit = guc_virtual_context_exit,
3747 
3748 	.destroy = guc_child_context_destroy,
3749 
3750 	.get_sibling = guc_virtual_get_sibling,
3751 };
3752 
3753 /*
3754  * The below override of the breadcrumbs is enabled when the user configures a
3755  * context for parallel submission (multi-lrc, parent-child).
3756  *
3757  * The overridden breadcrumbs implements an algorithm which allows the GuC to
3758  * safely preempt all the hw contexts configured for parallel submission
3759  * between each BB. The contract between the i915 and GuC is if the parent
3760  * context can be preempted, all the children can be preempted, and the GuC will
3761  * always try to preempt the parent before the children. A handshake between the
3762  * parent / children breadcrumbs ensures the i915 holds up its end of the deal
3763  * creating a window to preempt between each set of BBs.
3764  */
3765 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
3766 						     u64 offset, u32 len,
3767 						     const unsigned int flags);
3768 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
3769 						    u64 offset, u32 len,
3770 						    const unsigned int flags);
3771 static u32 *
3772 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
3773 						 u32 *cs);
3774 static u32 *
3775 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
3776 						u32 *cs);
3777 
3778 static struct intel_context *
3779 guc_create_parallel(struct intel_engine_cs **engines,
3780 		    unsigned int num_siblings,
3781 		    unsigned int width)
3782 {
3783 	struct intel_engine_cs **siblings = NULL;
3784 	struct intel_context *parent = NULL, *ce, *err;
3785 	int i, j;
3786 
3787 	siblings = kmalloc_array(num_siblings,
3788 				 sizeof(*siblings),
3789 				 GFP_KERNEL);
3790 	if (!siblings)
3791 		return ERR_PTR(-ENOMEM);
3792 
3793 	for (i = 0; i < width; ++i) {
3794 		for (j = 0; j < num_siblings; ++j)
3795 			siblings[j] = engines[i * num_siblings + j];
3796 
3797 		ce = intel_engine_create_virtual(siblings, num_siblings,
3798 						 FORCE_VIRTUAL);
3799 		if (IS_ERR(ce)) {
3800 			err = ERR_CAST(ce);
3801 			goto unwind;
3802 		}
3803 
3804 		if (i == 0) {
3805 			parent = ce;
3806 			parent->ops = &virtual_parent_context_ops;
3807 		} else {
3808 			ce->ops = &virtual_child_context_ops;
3809 			intel_context_bind_parent_child(parent, ce);
3810 		}
3811 	}
3812 
3813 	parent->parallel.fence_context = dma_fence_context_alloc(1);
3814 
3815 	parent->engine->emit_bb_start =
3816 		emit_bb_start_parent_no_preempt_mid_batch;
3817 	parent->engine->emit_fini_breadcrumb =
3818 		emit_fini_breadcrumb_parent_no_preempt_mid_batch;
3819 	parent->engine->emit_fini_breadcrumb_dw =
3820 		12 + 4 * parent->parallel.number_children;
3821 	for_each_child(parent, ce) {
3822 		ce->engine->emit_bb_start =
3823 			emit_bb_start_child_no_preempt_mid_batch;
3824 		ce->engine->emit_fini_breadcrumb =
3825 			emit_fini_breadcrumb_child_no_preempt_mid_batch;
3826 		ce->engine->emit_fini_breadcrumb_dw = 16;
3827 	}
3828 
3829 	kfree(siblings);
3830 	return parent;
3831 
3832 unwind:
3833 	if (parent)
3834 		intel_context_put(parent);
3835 	kfree(siblings);
3836 	return err;
3837 }
3838 
3839 static bool
3840 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
3841 {
3842 	struct intel_engine_cs *sibling;
3843 	intel_engine_mask_t tmp, mask = b->engine_mask;
3844 	bool result = false;
3845 
3846 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
3847 		result |= intel_engine_irq_enable(sibling);
3848 
3849 	return result;
3850 }
3851 
3852 static void
3853 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
3854 {
3855 	struct intel_engine_cs *sibling;
3856 	intel_engine_mask_t tmp, mask = b->engine_mask;
3857 
3858 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
3859 		intel_engine_irq_disable(sibling);
3860 }
3861 
3862 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
3863 {
3864 	int i;
3865 
3866 	/*
3867 	 * In GuC submission mode we do not know which physical engine a request
3868 	 * will be scheduled on, this creates a problem because the breadcrumb
3869 	 * interrupt is per physical engine. To work around this we attach
3870 	 * requests and direct all breadcrumb interrupts to the first instance
3871 	 * of an engine per class. In addition all breadcrumb interrupts are
3872 	 * enabled / disabled across an engine class in unison.
3873 	 */
3874 	for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
3875 		struct intel_engine_cs *sibling =
3876 			engine->gt->engine_class[engine->class][i];
3877 
3878 		if (sibling) {
3879 			if (engine->breadcrumbs != sibling->breadcrumbs) {
3880 				intel_breadcrumbs_put(engine->breadcrumbs);
3881 				engine->breadcrumbs =
3882 					intel_breadcrumbs_get(sibling->breadcrumbs);
3883 			}
3884 			break;
3885 		}
3886 	}
3887 
3888 	if (engine->breadcrumbs) {
3889 		engine->breadcrumbs->engine_mask |= engine->mask;
3890 		engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
3891 		engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
3892 	}
3893 }
3894 
3895 static void guc_bump_inflight_request_prio(struct i915_request *rq,
3896 					   int prio)
3897 {
3898 	struct intel_context *ce = request_to_scheduling_context(rq);
3899 	u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
3900 
3901 	/* Short circuit function */
3902 	if (prio < I915_PRIORITY_NORMAL ||
3903 	    rq->guc_prio == GUC_PRIO_FINI ||
3904 	    (rq->guc_prio != GUC_PRIO_INIT &&
3905 	     !new_guc_prio_higher(rq->guc_prio, new_guc_prio)))
3906 		return;
3907 
3908 	spin_lock(&ce->guc_state.lock);
3909 	if (rq->guc_prio != GUC_PRIO_FINI) {
3910 		if (rq->guc_prio != GUC_PRIO_INIT)
3911 			sub_context_inflight_prio(ce, rq->guc_prio);
3912 		rq->guc_prio = new_guc_prio;
3913 		add_context_inflight_prio(ce, rq->guc_prio);
3914 		update_context_prio(ce);
3915 	}
3916 	spin_unlock(&ce->guc_state.lock);
3917 }
3918 
3919 static void guc_retire_inflight_request_prio(struct i915_request *rq)
3920 {
3921 	struct intel_context *ce = request_to_scheduling_context(rq);
3922 
3923 	spin_lock(&ce->guc_state.lock);
3924 	guc_prio_fini(rq, ce);
3925 	spin_unlock(&ce->guc_state.lock);
3926 }
3927 
3928 static void sanitize_hwsp(struct intel_engine_cs *engine)
3929 {
3930 	struct intel_timeline *tl;
3931 
3932 	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
3933 		intel_timeline_reset_seqno(tl);
3934 }
3935 
3936 static void guc_sanitize(struct intel_engine_cs *engine)
3937 {
3938 	/*
3939 	 * Poison residual state on resume, in case the suspend didn't!
3940 	 *
3941 	 * We have to assume that across suspend/resume (or other loss
3942 	 * of control) that the contents of our pinned buffers has been
3943 	 * lost, replaced by garbage. Since this doesn't always happen,
3944 	 * let's poison such state so that we more quickly spot when
3945 	 * we falsely assume it has been preserved.
3946 	 */
3947 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
3948 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
3949 
3950 	/*
3951 	 * The kernel_context HWSP is stored in the status_page. As above,
3952 	 * that may be lost on resume/initialisation, and so we need to
3953 	 * reset the value in the HWSP.
3954 	 */
3955 	sanitize_hwsp(engine);
3956 
3957 	/* And scrub the dirty cachelines for the HWSP */
3958 	drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
3959 
3960 	intel_engine_reset_pinned_contexts(engine);
3961 }
3962 
3963 static void setup_hwsp(struct intel_engine_cs *engine)
3964 {
3965 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
3966 
3967 	ENGINE_WRITE_FW(engine,
3968 			RING_HWS_PGA,
3969 			i915_ggtt_offset(engine->status_page.vma));
3970 }
3971 
3972 static void start_engine(struct intel_engine_cs *engine)
3973 {
3974 	ENGINE_WRITE_FW(engine,
3975 			RING_MODE_GEN7,
3976 			_MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
3977 
3978 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
3979 	ENGINE_POSTING_READ(engine, RING_MI_MODE);
3980 }
3981 
3982 static int guc_resume(struct intel_engine_cs *engine)
3983 {
3984 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
3985 
3986 	intel_mocs_init_engine(engine);
3987 
3988 	intel_breadcrumbs_reset(engine->breadcrumbs);
3989 
3990 	setup_hwsp(engine);
3991 	start_engine(engine);
3992 
3993 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
3994 		xehp_enable_ccs_engines(engine);
3995 
3996 	return 0;
3997 }
3998 
3999 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
4000 {
4001 	return !sched_engine->tasklet.callback;
4002 }
4003 
4004 static void guc_set_default_submission(struct intel_engine_cs *engine)
4005 {
4006 	engine->submit_request = guc_submit_request;
4007 }
4008 
4009 static inline void guc_kernel_context_pin(struct intel_guc *guc,
4010 					  struct intel_context *ce)
4011 {
4012 	/*
4013 	 * Note: we purposefully do not check the returns below because
4014 	 * the registration can only fail if a reset is just starting.
4015 	 * This is called at the end of reset so presumably another reset
4016 	 * isn't happening and even it did this code would be run again.
4017 	 */
4018 
4019 	if (context_guc_id_invalid(ce))
4020 		pin_guc_id(guc, ce);
4021 
4022 	try_context_registration(ce, true);
4023 }
4024 
4025 static inline void guc_init_lrc_mapping(struct intel_guc *guc)
4026 {
4027 	struct intel_gt *gt = guc_to_gt(guc);
4028 	struct intel_engine_cs *engine;
4029 	enum intel_engine_id id;
4030 
4031 	/* make sure all descriptors are clean... */
4032 	xa_destroy(&guc->context_lookup);
4033 
4034 	/*
4035 	 * A reset might have occurred while we had a pending stalled request,
4036 	 * so make sure we clean that up.
4037 	 */
4038 	guc->stalled_request = NULL;
4039 	guc->submission_stall_reason = STALL_NONE;
4040 
4041 	/*
4042 	 * Some contexts might have been pinned before we enabled GuC
4043 	 * submission, so we need to add them to the GuC bookeeping.
4044 	 * Also, after a reset the of the GuC we want to make sure that the
4045 	 * information shared with GuC is properly reset. The kernel LRCs are
4046 	 * not attached to the gem_context, so they need to be added separately.
4047 	 */
4048 	for_each_engine(engine, gt, id) {
4049 		struct intel_context *ce;
4050 
4051 		list_for_each_entry(ce, &engine->pinned_contexts_list,
4052 				    pinned_contexts_link)
4053 			guc_kernel_context_pin(guc, ce);
4054 	}
4055 }
4056 
4057 static void guc_release(struct intel_engine_cs *engine)
4058 {
4059 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
4060 
4061 	intel_engine_cleanup_common(engine);
4062 	lrc_fini_wa_ctx(engine);
4063 }
4064 
4065 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
4066 {
4067 	struct intel_engine_cs *e;
4068 	intel_engine_mask_t tmp, mask = engine->mask;
4069 
4070 	for_each_engine_masked(e, engine->gt, mask, tmp)
4071 		e->serial++;
4072 }
4073 
4074 static void guc_default_vfuncs(struct intel_engine_cs *engine)
4075 {
4076 	/* Default vfuncs which can be overridden by each engine. */
4077 
4078 	engine->resume = guc_resume;
4079 
4080 	engine->cops = &guc_context_ops;
4081 	engine->request_alloc = guc_request_alloc;
4082 	engine->add_active_request = add_to_context;
4083 	engine->remove_active_request = remove_from_context;
4084 
4085 	engine->sched_engine->schedule = i915_schedule;
4086 
4087 	engine->reset.prepare = guc_engine_reset_prepare;
4088 	engine->reset.rewind = guc_rewind_nop;
4089 	engine->reset.cancel = guc_reset_nop;
4090 	engine->reset.finish = guc_reset_nop;
4091 
4092 	engine->emit_flush = gen8_emit_flush_xcs;
4093 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
4094 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
4095 	if (GRAPHICS_VER(engine->i915) >= 12) {
4096 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
4097 		engine->emit_flush = gen12_emit_flush_xcs;
4098 	}
4099 	engine->set_default_submission = guc_set_default_submission;
4100 	engine->busyness = guc_engine_busyness;
4101 
4102 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4103 	engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4104 	engine->flags |= I915_ENGINE_HAS_TIMESLICES;
4105 
4106 	/* Wa_14014475959:dg2 */
4107 	if (IS_DG2(engine->i915) && engine->class == COMPUTE_CLASS)
4108 		engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT;
4109 
4110 	/*
4111 	 * TODO: GuC supports timeslicing and semaphores as well, but they're
4112 	 * handled by the firmware so some minor tweaks are required before
4113 	 * enabling.
4114 	 *
4115 	 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4116 	 */
4117 
4118 	engine->emit_bb_start = gen8_emit_bb_start;
4119 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
4120 		engine->emit_bb_start = gen125_emit_bb_start;
4121 }
4122 
4123 static void rcs_submission_override(struct intel_engine_cs *engine)
4124 {
4125 	switch (GRAPHICS_VER(engine->i915)) {
4126 	case 12:
4127 		engine->emit_flush = gen12_emit_flush_rcs;
4128 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
4129 		break;
4130 	case 11:
4131 		engine->emit_flush = gen11_emit_flush_rcs;
4132 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
4133 		break;
4134 	default:
4135 		engine->emit_flush = gen8_emit_flush_rcs;
4136 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
4137 		break;
4138 	}
4139 }
4140 
4141 static inline void guc_default_irqs(struct intel_engine_cs *engine)
4142 {
4143 	engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
4144 	intel_engine_set_irq_handler(engine, cs_irq_handler);
4145 }
4146 
4147 static void guc_sched_engine_destroy(struct kref *kref)
4148 {
4149 	struct i915_sched_engine *sched_engine =
4150 		container_of(kref, typeof(*sched_engine), ref);
4151 	struct intel_guc *guc = sched_engine->private_data;
4152 
4153 	guc->sched_engine = NULL;
4154 	tasklet_kill(&sched_engine->tasklet); /* flush the callback */
4155 	kfree(sched_engine);
4156 }
4157 
4158 int intel_guc_submission_setup(struct intel_engine_cs *engine)
4159 {
4160 	struct drm_i915_private *i915 = engine->i915;
4161 	struct intel_guc *guc = &engine->gt->uc.guc;
4162 
4163 	/*
4164 	 * The setup relies on several assumptions (e.g. irqs always enabled)
4165 	 * that are only valid on gen11+
4166 	 */
4167 	GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
4168 
4169 	if (!guc->sched_engine) {
4170 		guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
4171 		if (!guc->sched_engine)
4172 			return -ENOMEM;
4173 
4174 		guc->sched_engine->schedule = i915_schedule;
4175 		guc->sched_engine->disabled = guc_sched_engine_disabled;
4176 		guc->sched_engine->private_data = guc;
4177 		guc->sched_engine->destroy = guc_sched_engine_destroy;
4178 		guc->sched_engine->bump_inflight_request_prio =
4179 			guc_bump_inflight_request_prio;
4180 		guc->sched_engine->retire_inflight_request_prio =
4181 			guc_retire_inflight_request_prio;
4182 		tasklet_setup(&guc->sched_engine->tasklet,
4183 			      guc_submission_tasklet);
4184 	}
4185 	i915_sched_engine_put(engine->sched_engine);
4186 	engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
4187 
4188 	guc_default_vfuncs(engine);
4189 	guc_default_irqs(engine);
4190 	guc_init_breadcrumbs(engine);
4191 
4192 	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
4193 		rcs_submission_override(engine);
4194 
4195 	lrc_init_wa_ctx(engine);
4196 
4197 	/* Finally, take ownership and responsibility for cleanup! */
4198 	engine->sanitize = guc_sanitize;
4199 	engine->release = guc_release;
4200 
4201 	return 0;
4202 }
4203 
4204 void intel_guc_submission_enable(struct intel_guc *guc)
4205 {
4206 	guc_init_lrc_mapping(guc);
4207 	guc_init_engine_stats(guc);
4208 }
4209 
4210 void intel_guc_submission_disable(struct intel_guc *guc)
4211 {
4212 	/* Note: By the time we're here, GuC may have already been reset */
4213 }
4214 
4215 static bool __guc_submission_supported(struct intel_guc *guc)
4216 {
4217 	/* GuC submission is unavailable for pre-Gen11 */
4218 	return intel_guc_is_supported(guc) &&
4219 	       GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11;
4220 }
4221 
4222 static bool __guc_submission_selected(struct intel_guc *guc)
4223 {
4224 	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
4225 
4226 	if (!intel_guc_submission_is_supported(guc))
4227 		return false;
4228 
4229 	return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
4230 }
4231 
4232 void intel_guc_submission_init_early(struct intel_guc *guc)
4233 {
4234 	xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
4235 
4236 	spin_lock_init(&guc->submission_state.lock);
4237 	INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
4238 	ida_init(&guc->submission_state.guc_ids);
4239 	INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
4240 	INIT_WORK(&guc->submission_state.destroyed_worker,
4241 		  destroyed_worker_func);
4242 	INIT_WORK(&guc->submission_state.reset_fail_worker,
4243 		  reset_fail_worker_func);
4244 
4245 	spin_lock_init(&guc->timestamp.lock);
4246 	INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
4247 
4248 	guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
4249 	guc->submission_supported = __guc_submission_supported(guc);
4250 	guc->submission_selected = __guc_submission_selected(guc);
4251 }
4252 
4253 static inline struct intel_context *
4254 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4255 {
4256 	struct intel_context *ce;
4257 
4258 	if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4259 		drm_err(&guc_to_gt(guc)->i915->drm,
4260 			"Invalid ctx_id %u\n", ctx_id);
4261 		return NULL;
4262 	}
4263 
4264 	ce = __get_context(guc, ctx_id);
4265 	if (unlikely(!ce)) {
4266 		drm_err(&guc_to_gt(guc)->i915->drm,
4267 			"Context is NULL, ctx_id %u\n", ctx_id);
4268 		return NULL;
4269 	}
4270 
4271 	if (unlikely(intel_context_is_child(ce))) {
4272 		drm_err(&guc_to_gt(guc)->i915->drm,
4273 			"Context is child, ctx_id %u\n", ctx_id);
4274 		return NULL;
4275 	}
4276 
4277 	return ce;
4278 }
4279 
4280 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
4281 					  const u32 *msg,
4282 					  u32 len)
4283 {
4284 	struct intel_context *ce;
4285 	u32 ctx_id;
4286 
4287 	if (unlikely(len < 1)) {
4288 		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len);
4289 		return -EPROTO;
4290 	}
4291 	ctx_id = msg[0];
4292 
4293 	ce = g2h_context_lookup(guc, ctx_id);
4294 	if (unlikely(!ce))
4295 		return -EPROTO;
4296 
4297 	trace_intel_context_deregister_done(ce);
4298 
4299 #ifdef CONFIG_DRM_I915_SELFTEST
4300 	if (unlikely(ce->drop_deregister)) {
4301 		ce->drop_deregister = false;
4302 		return 0;
4303 	}
4304 #endif
4305 
4306 	if (context_wait_for_deregister_to_register(ce)) {
4307 		struct intel_runtime_pm *runtime_pm =
4308 			&ce->engine->gt->i915->runtime_pm;
4309 		intel_wakeref_t wakeref;
4310 
4311 		/*
4312 		 * Previous owner of this guc_id has been deregistered, now safe
4313 		 * register this context.
4314 		 */
4315 		with_intel_runtime_pm(runtime_pm, wakeref)
4316 			register_context(ce, true);
4317 		guc_signal_context_fence(ce);
4318 		intel_context_put(ce);
4319 	} else if (context_destroyed(ce)) {
4320 		/* Context has been destroyed */
4321 		intel_gt_pm_put_async(guc_to_gt(guc));
4322 		release_guc_id(guc, ce);
4323 		__guc_context_destroy(ce);
4324 	}
4325 
4326 	decr_outstanding_submission_g2h(guc);
4327 
4328 	return 0;
4329 }
4330 
4331 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
4332 				     const u32 *msg,
4333 				     u32 len)
4334 {
4335 	struct intel_context *ce;
4336 	unsigned long flags;
4337 	u32 ctx_id;
4338 
4339 	if (unlikely(len < 2)) {
4340 		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u\n", len);
4341 		return -EPROTO;
4342 	}
4343 	ctx_id = msg[0];
4344 
4345 	ce = g2h_context_lookup(guc, ctx_id);
4346 	if (unlikely(!ce))
4347 		return -EPROTO;
4348 
4349 	if (unlikely(context_destroyed(ce) ||
4350 		     (!context_pending_enable(ce) &&
4351 		     !context_pending_disable(ce)))) {
4352 		drm_err(&guc_to_gt(guc)->i915->drm,
4353 			"Bad context sched_state 0x%x, ctx_id %u\n",
4354 			ce->guc_state.sched_state, ctx_id);
4355 		return -EPROTO;
4356 	}
4357 
4358 	trace_intel_context_sched_done(ce);
4359 
4360 	if (context_pending_enable(ce)) {
4361 #ifdef CONFIG_DRM_I915_SELFTEST
4362 		if (unlikely(ce->drop_schedule_enable)) {
4363 			ce->drop_schedule_enable = false;
4364 			return 0;
4365 		}
4366 #endif
4367 
4368 		spin_lock_irqsave(&ce->guc_state.lock, flags);
4369 		clr_context_pending_enable(ce);
4370 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4371 	} else if (context_pending_disable(ce)) {
4372 		bool banned;
4373 
4374 #ifdef CONFIG_DRM_I915_SELFTEST
4375 		if (unlikely(ce->drop_schedule_disable)) {
4376 			ce->drop_schedule_disable = false;
4377 			return 0;
4378 		}
4379 #endif
4380 
4381 		/*
4382 		 * Unpin must be done before __guc_signal_context_fence,
4383 		 * otherwise a race exists between the requests getting
4384 		 * submitted + retired before this unpin completes resulting in
4385 		 * the pin_count going to zero and the context still being
4386 		 * enabled.
4387 		 */
4388 		intel_context_sched_disable_unpin(ce);
4389 
4390 		spin_lock_irqsave(&ce->guc_state.lock, flags);
4391 		banned = context_banned(ce);
4392 		clr_context_banned(ce);
4393 		clr_context_pending_disable(ce);
4394 		__guc_signal_context_fence(ce);
4395 		guc_blocked_fence_complete(ce);
4396 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4397 
4398 		if (banned) {
4399 			guc_cancel_context_requests(ce);
4400 			intel_engine_signal_breadcrumbs(ce->engine);
4401 		}
4402 	}
4403 
4404 	decr_outstanding_submission_g2h(guc);
4405 	intel_context_put(ce);
4406 
4407 	return 0;
4408 }
4409 
4410 static void capture_error_state(struct intel_guc *guc,
4411 				struct intel_context *ce)
4412 {
4413 	struct intel_gt *gt = guc_to_gt(guc);
4414 	struct drm_i915_private *i915 = gt->i915;
4415 	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
4416 	intel_wakeref_t wakeref;
4417 
4418 	intel_engine_set_hung_context(engine, ce);
4419 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
4420 		i915_capture_error_state(gt, engine->mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
4421 	atomic_inc(&i915->gpu_error.reset_engine_count[engine->uabi_class]);
4422 }
4423 
4424 static void guc_context_replay(struct intel_context *ce)
4425 {
4426 	struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
4427 
4428 	__guc_reset_context(ce, ce->engine->mask);
4429 	tasklet_hi_schedule(&sched_engine->tasklet);
4430 }
4431 
4432 static void guc_handle_context_reset(struct intel_guc *guc,
4433 				     struct intel_context *ce)
4434 {
4435 	trace_intel_context_reset(ce);
4436 
4437 	if (likely(!intel_context_is_banned(ce))) {
4438 		capture_error_state(guc, ce);
4439 		guc_context_replay(ce);
4440 	} else {
4441 		drm_info(&guc_to_gt(guc)->i915->drm,
4442 			 "Ignoring context reset notification of banned context 0x%04X on %s",
4443 			 ce->guc_id.id, ce->engine->name);
4444 	}
4445 }
4446 
4447 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
4448 					const u32 *msg, u32 len)
4449 {
4450 	struct intel_context *ce;
4451 	unsigned long flags;
4452 	int ctx_id;
4453 
4454 	if (unlikely(len != 1)) {
4455 		drm_err(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
4456 		return -EPROTO;
4457 	}
4458 
4459 	ctx_id = msg[0];
4460 
4461 	/*
4462 	 * The context lookup uses the xarray but lookups only require an RCU lock
4463 	 * not the full spinlock. So take the lock explicitly and keep it until the
4464 	 * context has been reference count locked to ensure it can't be destroyed
4465 	 * asynchronously until the reset is done.
4466 	 */
4467 	xa_lock_irqsave(&guc->context_lookup, flags);
4468 	ce = g2h_context_lookup(guc, ctx_id);
4469 	if (ce)
4470 		intel_context_get(ce);
4471 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4472 
4473 	if (unlikely(!ce))
4474 		return -EPROTO;
4475 
4476 	guc_handle_context_reset(guc, ce);
4477 	intel_context_put(ce);
4478 
4479 	return 0;
4480 }
4481 
4482 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
4483 					const u32 *msg, u32 len)
4484 {
4485 	u32 status;
4486 
4487 	if (unlikely(len != 1)) {
4488 		drm_dbg(&guc_to_gt(guc)->i915->drm, "Invalid length %u", len);
4489 		return -EPROTO;
4490 	}
4491 
4492 	status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
4493 	if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
4494 		drm_warn(&guc_to_gt(guc)->i915->drm, "G2H-Error capture no space");
4495 
4496 	intel_guc_capture_process(guc);
4497 
4498 	return 0;
4499 }
4500 
4501 struct intel_engine_cs *
4502 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
4503 {
4504 	struct intel_gt *gt = guc_to_gt(guc);
4505 	u8 engine_class = guc_class_to_engine_class(guc_class);
4506 
4507 	/* Class index is checked in class converter */
4508 	GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
4509 
4510 	return gt->engine_class[engine_class][instance];
4511 }
4512 
4513 static void reset_fail_worker_func(struct work_struct *w)
4514 {
4515 	struct intel_guc *guc = container_of(w, struct intel_guc,
4516 					     submission_state.reset_fail_worker);
4517 	struct intel_gt *gt = guc_to_gt(guc);
4518 	intel_engine_mask_t reset_fail_mask;
4519 	unsigned long flags;
4520 
4521 	spin_lock_irqsave(&guc->submission_state.lock, flags);
4522 	reset_fail_mask = guc->submission_state.reset_fail_mask;
4523 	guc->submission_state.reset_fail_mask = 0;
4524 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
4525 
4526 	if (likely(reset_fail_mask))
4527 		intel_gt_handle_error(gt, reset_fail_mask,
4528 				      I915_ERROR_CAPTURE,
4529 				      "GuC failed to reset engine mask=0x%x\n",
4530 				      reset_fail_mask);
4531 }
4532 
4533 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
4534 					 const u32 *msg, u32 len)
4535 {
4536 	struct intel_engine_cs *engine;
4537 	struct intel_gt *gt = guc_to_gt(guc);
4538 	u8 guc_class, instance;
4539 	u32 reason;
4540 	unsigned long flags;
4541 
4542 	if (unlikely(len != 3)) {
4543 		drm_err(&gt->i915->drm, "Invalid length %u", len);
4544 		return -EPROTO;
4545 	}
4546 
4547 	guc_class = msg[0];
4548 	instance = msg[1];
4549 	reason = msg[2];
4550 
4551 	engine = intel_guc_lookup_engine(guc, guc_class, instance);
4552 	if (unlikely(!engine)) {
4553 		drm_err(&gt->i915->drm,
4554 			"Invalid engine %d:%d", guc_class, instance);
4555 		return -EPROTO;
4556 	}
4557 
4558 	/*
4559 	 * This is an unexpected failure of a hardware feature. So, log a real
4560 	 * error message not just the informational that comes with the reset.
4561 	 */
4562 	drm_err(&gt->i915->drm, "GuC engine reset request failed on %d:%d (%s) because 0x%08X",
4563 		guc_class, instance, engine->name, reason);
4564 
4565 	spin_lock_irqsave(&guc->submission_state.lock, flags);
4566 	guc->submission_state.reset_fail_mask |= engine->mask;
4567 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
4568 
4569 	/*
4570 	 * A GT reset flushes this worker queue (G2H handler) so we must use
4571 	 * another worker to trigger a GT reset.
4572 	 */
4573 	queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
4574 
4575 	return 0;
4576 }
4577 
4578 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
4579 {
4580 	struct intel_guc *guc = &engine->gt->uc.guc;
4581 	struct intel_context *ce;
4582 	struct i915_request *rq;
4583 	unsigned long index;
4584 	unsigned long flags;
4585 
4586 	/* Reset called during driver load? GuC not yet initialised! */
4587 	if (unlikely(!guc_submission_initialized(guc)))
4588 		return;
4589 
4590 	xa_lock_irqsave(&guc->context_lookup, flags);
4591 	xa_for_each(&guc->context_lookup, index, ce) {
4592 		if (!kref_get_unless_zero(&ce->ref))
4593 			continue;
4594 
4595 		xa_unlock(&guc->context_lookup);
4596 
4597 		if (!intel_context_is_pinned(ce))
4598 			goto next;
4599 
4600 		if (intel_engine_is_virtual(ce->engine)) {
4601 			if (!(ce->engine->mask & engine->mask))
4602 				goto next;
4603 		} else {
4604 			if (ce->engine != engine)
4605 				goto next;
4606 		}
4607 
4608 		list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
4609 			if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
4610 				continue;
4611 
4612 			intel_engine_set_hung_context(engine, ce);
4613 
4614 			/* Can only cope with one hang at a time... */
4615 			intel_context_put(ce);
4616 			xa_lock(&guc->context_lookup);
4617 			goto done;
4618 		}
4619 next:
4620 		intel_context_put(ce);
4621 		xa_lock(&guc->context_lookup);
4622 	}
4623 done:
4624 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4625 }
4626 
4627 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
4628 				    struct i915_request *hung_rq,
4629 				    struct drm_printer *m)
4630 {
4631 	struct intel_guc *guc = &engine->gt->uc.guc;
4632 	struct intel_context *ce;
4633 	unsigned long index;
4634 	unsigned long flags;
4635 
4636 	/* Reset called during driver load? GuC not yet initialised! */
4637 	if (unlikely(!guc_submission_initialized(guc)))
4638 		return;
4639 
4640 	xa_lock_irqsave(&guc->context_lookup, flags);
4641 	xa_for_each(&guc->context_lookup, index, ce) {
4642 		if (!kref_get_unless_zero(&ce->ref))
4643 			continue;
4644 
4645 		xa_unlock(&guc->context_lookup);
4646 
4647 		if (!intel_context_is_pinned(ce))
4648 			goto next;
4649 
4650 		if (intel_engine_is_virtual(ce->engine)) {
4651 			if (!(ce->engine->mask & engine->mask))
4652 				goto next;
4653 		} else {
4654 			if (ce->engine != engine)
4655 				goto next;
4656 		}
4657 
4658 		spin_lock(&ce->guc_state.lock);
4659 		intel_engine_dump_active_requests(&ce->guc_state.requests,
4660 						  hung_rq, m);
4661 		spin_unlock(&ce->guc_state.lock);
4662 
4663 next:
4664 		intel_context_put(ce);
4665 		xa_lock(&guc->context_lookup);
4666 	}
4667 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4668 }
4669 
4670 void intel_guc_submission_print_info(struct intel_guc *guc,
4671 				     struct drm_printer *p)
4672 {
4673 	struct i915_sched_engine *sched_engine = guc->sched_engine;
4674 	struct rb_node *rb;
4675 	unsigned long flags;
4676 
4677 	if (!sched_engine)
4678 		return;
4679 
4680 	drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
4681 		   atomic_read(&guc->outstanding_submission_g2h));
4682 	drm_printf(p, "GuC tasklet count: %u\n\n",
4683 		   atomic_read(&sched_engine->tasklet.count));
4684 
4685 	spin_lock_irqsave(&sched_engine->lock, flags);
4686 	drm_printf(p, "Requests in GuC submit tasklet:\n");
4687 	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
4688 		struct i915_priolist *pl = to_priolist(rb);
4689 		struct i915_request *rq;
4690 
4691 		priolist_for_each_request(rq, pl)
4692 			drm_printf(p, "guc_id=%u, seqno=%llu\n",
4693 				   rq->context->guc_id.id,
4694 				   rq->fence.seqno);
4695 	}
4696 	spin_unlock_irqrestore(&sched_engine->lock, flags);
4697 	drm_printf(p, "\n");
4698 }
4699 
4700 static inline void guc_log_context_priority(struct drm_printer *p,
4701 					    struct intel_context *ce)
4702 {
4703 	int i;
4704 
4705 	drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
4706 	drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
4707 	for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
4708 	     i < GUC_CLIENT_PRIORITY_NUM; ++i) {
4709 		drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
4710 			   i, ce->guc_state.prio_count[i]);
4711 	}
4712 	drm_printf(p, "\n");
4713 }
4714 
4715 static inline void guc_log_context(struct drm_printer *p,
4716 				   struct intel_context *ce)
4717 {
4718 	drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
4719 	drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
4720 	drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
4721 		   ce->ring->head,
4722 		   ce->lrc_reg_state[CTX_RING_HEAD]);
4723 	drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
4724 		   ce->ring->tail,
4725 		   ce->lrc_reg_state[CTX_RING_TAIL]);
4726 	drm_printf(p, "\t\tContext Pin Count: %u\n",
4727 		   atomic_read(&ce->pin_count));
4728 	drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
4729 		   atomic_read(&ce->guc_id.ref));
4730 	drm_printf(p, "\t\tSchedule State: 0x%x\n\n",
4731 		   ce->guc_state.sched_state);
4732 }
4733 
4734 void intel_guc_submission_print_context_info(struct intel_guc *guc,
4735 					     struct drm_printer *p)
4736 {
4737 	struct intel_context *ce;
4738 	unsigned long index;
4739 	unsigned long flags;
4740 
4741 	xa_lock_irqsave(&guc->context_lookup, flags);
4742 	xa_for_each(&guc->context_lookup, index, ce) {
4743 		GEM_BUG_ON(intel_context_is_child(ce));
4744 
4745 		guc_log_context(p, ce);
4746 		guc_log_context_priority(p, ce);
4747 
4748 		if (intel_context_is_parent(ce)) {
4749 			struct intel_context *child;
4750 
4751 			drm_printf(p, "\t\tNumber children: %u\n",
4752 				   ce->parallel.number_children);
4753 
4754 			if (ce->parallel.guc.wq_status) {
4755 				drm_printf(p, "\t\tWQI Head: %u\n",
4756 					   READ_ONCE(*ce->parallel.guc.wq_head));
4757 				drm_printf(p, "\t\tWQI Tail: %u\n",
4758 					   READ_ONCE(*ce->parallel.guc.wq_tail));
4759 				drm_printf(p, "\t\tWQI Status: %u\n\n",
4760 					   READ_ONCE(*ce->parallel.guc.wq_status));
4761 			}
4762 
4763 			if (ce->engine->emit_bb_start ==
4764 			    emit_bb_start_parent_no_preempt_mid_batch) {
4765 				u8 i;
4766 
4767 				drm_printf(p, "\t\tChildren Go: %u\n\n",
4768 					   get_children_go_value(ce));
4769 				for (i = 0; i < ce->parallel.number_children; ++i)
4770 					drm_printf(p, "\t\tChildren Join: %u\n",
4771 						   get_children_join_value(ce, i));
4772 			}
4773 
4774 			for_each_child(ce, child)
4775 				guc_log_context(p, child);
4776 		}
4777 	}
4778 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4779 }
4780 
4781 static inline u32 get_children_go_addr(struct intel_context *ce)
4782 {
4783 	GEM_BUG_ON(!intel_context_is_parent(ce));
4784 
4785 	return i915_ggtt_offset(ce->state) +
4786 		__get_parent_scratch_offset(ce) +
4787 		offsetof(struct parent_scratch, go.semaphore);
4788 }
4789 
4790 static inline u32 get_children_join_addr(struct intel_context *ce,
4791 					 u8 child_index)
4792 {
4793 	GEM_BUG_ON(!intel_context_is_parent(ce));
4794 
4795 	return i915_ggtt_offset(ce->state) +
4796 		__get_parent_scratch_offset(ce) +
4797 		offsetof(struct parent_scratch, join[child_index].semaphore);
4798 }
4799 
4800 #define PARENT_GO_BB			1
4801 #define PARENT_GO_FINI_BREADCRUMB	0
4802 #define CHILD_GO_BB			1
4803 #define CHILD_GO_FINI_BREADCRUMB	0
4804 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
4805 						     u64 offset, u32 len,
4806 						     const unsigned int flags)
4807 {
4808 	struct intel_context *ce = rq->context;
4809 	u32 *cs;
4810 	u8 i;
4811 
4812 	GEM_BUG_ON(!intel_context_is_parent(ce));
4813 
4814 	cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
4815 	if (IS_ERR(cs))
4816 		return PTR_ERR(cs);
4817 
4818 	/* Wait on children */
4819 	for (i = 0; i < ce->parallel.number_children; ++i) {
4820 		*cs++ = (MI_SEMAPHORE_WAIT |
4821 			 MI_SEMAPHORE_GLOBAL_GTT |
4822 			 MI_SEMAPHORE_POLL |
4823 			 MI_SEMAPHORE_SAD_EQ_SDD);
4824 		*cs++ = PARENT_GO_BB;
4825 		*cs++ = get_children_join_addr(ce, i);
4826 		*cs++ = 0;
4827 	}
4828 
4829 	/* Turn off preemption */
4830 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
4831 	*cs++ = MI_NOOP;
4832 
4833 	/* Tell children go */
4834 	cs = gen8_emit_ggtt_write(cs,
4835 				  CHILD_GO_BB,
4836 				  get_children_go_addr(ce),
4837 				  0);
4838 
4839 	/* Jump to batch */
4840 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
4841 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
4842 	*cs++ = lower_32_bits(offset);
4843 	*cs++ = upper_32_bits(offset);
4844 	*cs++ = MI_NOOP;
4845 
4846 	intel_ring_advance(rq, cs);
4847 
4848 	return 0;
4849 }
4850 
4851 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
4852 						    u64 offset, u32 len,
4853 						    const unsigned int flags)
4854 {
4855 	struct intel_context *ce = rq->context;
4856 	struct intel_context *parent = intel_context_to_parent(ce);
4857 	u32 *cs;
4858 
4859 	GEM_BUG_ON(!intel_context_is_child(ce));
4860 
4861 	cs = intel_ring_begin(rq, 12);
4862 	if (IS_ERR(cs))
4863 		return PTR_ERR(cs);
4864 
4865 	/* Signal parent */
4866 	cs = gen8_emit_ggtt_write(cs,
4867 				  PARENT_GO_BB,
4868 				  get_children_join_addr(parent,
4869 							 ce->parallel.child_index),
4870 				  0);
4871 
4872 	/* Wait on parent for go */
4873 	*cs++ = (MI_SEMAPHORE_WAIT |
4874 		 MI_SEMAPHORE_GLOBAL_GTT |
4875 		 MI_SEMAPHORE_POLL |
4876 		 MI_SEMAPHORE_SAD_EQ_SDD);
4877 	*cs++ = CHILD_GO_BB;
4878 	*cs++ = get_children_go_addr(parent);
4879 	*cs++ = 0;
4880 
4881 	/* Turn off preemption */
4882 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
4883 
4884 	/* Jump to batch */
4885 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
4886 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
4887 	*cs++ = lower_32_bits(offset);
4888 	*cs++ = upper_32_bits(offset);
4889 
4890 	intel_ring_advance(rq, cs);
4891 
4892 	return 0;
4893 }
4894 
4895 static u32 *
4896 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4897 						   u32 *cs)
4898 {
4899 	struct intel_context *ce = rq->context;
4900 	u8 i;
4901 
4902 	GEM_BUG_ON(!intel_context_is_parent(ce));
4903 
4904 	/* Wait on children */
4905 	for (i = 0; i < ce->parallel.number_children; ++i) {
4906 		*cs++ = (MI_SEMAPHORE_WAIT |
4907 			 MI_SEMAPHORE_GLOBAL_GTT |
4908 			 MI_SEMAPHORE_POLL |
4909 			 MI_SEMAPHORE_SAD_EQ_SDD);
4910 		*cs++ = PARENT_GO_FINI_BREADCRUMB;
4911 		*cs++ = get_children_join_addr(ce, i);
4912 		*cs++ = 0;
4913 	}
4914 
4915 	/* Turn on preemption */
4916 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
4917 	*cs++ = MI_NOOP;
4918 
4919 	/* Tell children go */
4920 	cs = gen8_emit_ggtt_write(cs,
4921 				  CHILD_GO_FINI_BREADCRUMB,
4922 				  get_children_go_addr(ce),
4923 				  0);
4924 
4925 	return cs;
4926 }
4927 
4928 /*
4929  * If this true, a submission of multi-lrc requests had an error and the
4930  * requests need to be skipped. The front end (execuf IOCTL) should've called
4931  * i915_request_skip which squashes the BB but we still need to emit the fini
4932  * breadrcrumbs seqno write. At this point we don't know how many of the
4933  * requests in the multi-lrc submission were generated so we can't do the
4934  * handshake between the parent and children (e.g. if 4 requests should be
4935  * generated but 2nd hit an error only 1 would be seen by the GuC backend).
4936  * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
4937  * has occurred on any of the requests in submission / relationship.
4938  */
4939 static inline bool skip_handshake(struct i915_request *rq)
4940 {
4941 	return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
4942 }
4943 
4944 #define NON_SKIP_LEN	6
4945 static u32 *
4946 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
4947 						 u32 *cs)
4948 {
4949 	struct intel_context *ce = rq->context;
4950 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
4951 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
4952 
4953 	GEM_BUG_ON(!intel_context_is_parent(ce));
4954 
4955 	if (unlikely(skip_handshake(rq))) {
4956 		/*
4957 		 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
4958 		 * the NON_SKIP_LEN comes from the length of the emits below.
4959 		 */
4960 		memset(cs, 0, sizeof(u32) *
4961 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
4962 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
4963 	} else {
4964 		cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
4965 	}
4966 
4967 	/* Emit fini breadcrumb */
4968 	before_fini_breadcrumb_user_interrupt_cs = cs;
4969 	cs = gen8_emit_ggtt_write(cs,
4970 				  rq->fence.seqno,
4971 				  i915_request_active_timeline(rq)->hwsp_offset,
4972 				  0);
4973 
4974 	/* User interrupt */
4975 	*cs++ = MI_USER_INTERRUPT;
4976 	*cs++ = MI_NOOP;
4977 
4978 	/* Ensure our math for skip + emit is correct */
4979 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
4980 		   cs);
4981 	GEM_BUG_ON(start_fini_breadcrumb_cs +
4982 		   ce->engine->emit_fini_breadcrumb_dw != cs);
4983 
4984 	rq->tail = intel_ring_offset(rq, cs);
4985 
4986 	return cs;
4987 }
4988 
4989 static u32 *
4990 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
4991 						  u32 *cs)
4992 {
4993 	struct intel_context *ce = rq->context;
4994 	struct intel_context *parent = intel_context_to_parent(ce);
4995 
4996 	GEM_BUG_ON(!intel_context_is_child(ce));
4997 
4998 	/* Turn on preemption */
4999 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5000 	*cs++ = MI_NOOP;
5001 
5002 	/* Signal parent */
5003 	cs = gen8_emit_ggtt_write(cs,
5004 				  PARENT_GO_FINI_BREADCRUMB,
5005 				  get_children_join_addr(parent,
5006 							 ce->parallel.child_index),
5007 				  0);
5008 
5009 	/* Wait parent on for go */
5010 	*cs++ = (MI_SEMAPHORE_WAIT |
5011 		 MI_SEMAPHORE_GLOBAL_GTT |
5012 		 MI_SEMAPHORE_POLL |
5013 		 MI_SEMAPHORE_SAD_EQ_SDD);
5014 	*cs++ = CHILD_GO_FINI_BREADCRUMB;
5015 	*cs++ = get_children_go_addr(parent);
5016 	*cs++ = 0;
5017 
5018 	return cs;
5019 }
5020 
5021 static u32 *
5022 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5023 						u32 *cs)
5024 {
5025 	struct intel_context *ce = rq->context;
5026 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5027 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5028 
5029 	GEM_BUG_ON(!intel_context_is_child(ce));
5030 
5031 	if (unlikely(skip_handshake(rq))) {
5032 		/*
5033 		 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
5034 		 * the NON_SKIP_LEN comes from the length of the emits below.
5035 		 */
5036 		memset(cs, 0, sizeof(u32) *
5037 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5038 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5039 	} else {
5040 		cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
5041 	}
5042 
5043 	/* Emit fini breadcrumb */
5044 	before_fini_breadcrumb_user_interrupt_cs = cs;
5045 	cs = gen8_emit_ggtt_write(cs,
5046 				  rq->fence.seqno,
5047 				  i915_request_active_timeline(rq)->hwsp_offset,
5048 				  0);
5049 
5050 	/* User interrupt */
5051 	*cs++ = MI_USER_INTERRUPT;
5052 	*cs++ = MI_NOOP;
5053 
5054 	/* Ensure our math for skip + emit is correct */
5055 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5056 		   cs);
5057 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5058 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5059 
5060 	rq->tail = intel_ring_offset(rq, cs);
5061 
5062 	return cs;
5063 }
5064 
5065 #undef NON_SKIP_LEN
5066 
5067 static struct intel_context *
5068 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
5069 		   unsigned long flags)
5070 {
5071 	struct guc_virtual_engine *ve;
5072 	struct intel_guc *guc;
5073 	unsigned int n;
5074 	int err;
5075 
5076 	ve = kzalloc(sizeof(*ve), GFP_KERNEL);
5077 	if (!ve)
5078 		return ERR_PTR(-ENOMEM);
5079 
5080 	guc = &siblings[0]->gt->uc.guc;
5081 
5082 	ve->base.i915 = siblings[0]->i915;
5083 	ve->base.gt = siblings[0]->gt;
5084 	ve->base.uncore = siblings[0]->uncore;
5085 	ve->base.id = -1;
5086 
5087 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5088 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5089 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5090 	ve->base.saturated = ALL_ENGINES;
5091 
5092 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5093 
5094 	ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
5095 
5096 	ve->base.cops = &virtual_guc_context_ops;
5097 	ve->base.request_alloc = guc_request_alloc;
5098 	ve->base.bump_serial = virtual_guc_bump_serial;
5099 
5100 	ve->base.submit_request = guc_submit_request;
5101 
5102 	ve->base.flags = I915_ENGINE_IS_VIRTUAL;
5103 
5104 	intel_context_init(&ve->context, &ve->base);
5105 
5106 	for (n = 0; n < count; n++) {
5107 		struct intel_engine_cs *sibling = siblings[n];
5108 
5109 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
5110 		if (sibling->mask & ve->base.mask) {
5111 			DRM_DEBUG("duplicate %s entry in load balancer\n",
5112 				  sibling->name);
5113 			err = -EINVAL;
5114 			goto err_put;
5115 		}
5116 
5117 		ve->base.mask |= sibling->mask;
5118 		ve->base.logical_mask |= sibling->logical_mask;
5119 
5120 		if (n != 0 && ve->base.class != sibling->class) {
5121 			DRM_DEBUG("invalid mixing of engine class, sibling %d, already %d\n",
5122 				  sibling->class, ve->base.class);
5123 			err = -EINVAL;
5124 			goto err_put;
5125 		} else if (n == 0) {
5126 			ve->base.class = sibling->class;
5127 			ve->base.uabi_class = sibling->uabi_class;
5128 			snprintf(ve->base.name, sizeof(ve->base.name),
5129 				 "v%dx%d", ve->base.class, count);
5130 			ve->base.context_size = sibling->context_size;
5131 
5132 			ve->base.add_active_request =
5133 				sibling->add_active_request;
5134 			ve->base.remove_active_request =
5135 				sibling->remove_active_request;
5136 			ve->base.emit_bb_start = sibling->emit_bb_start;
5137 			ve->base.emit_flush = sibling->emit_flush;
5138 			ve->base.emit_init_breadcrumb =
5139 				sibling->emit_init_breadcrumb;
5140 			ve->base.emit_fini_breadcrumb =
5141 				sibling->emit_fini_breadcrumb;
5142 			ve->base.emit_fini_breadcrumb_dw =
5143 				sibling->emit_fini_breadcrumb_dw;
5144 			ve->base.breadcrumbs =
5145 				intel_breadcrumbs_get(sibling->breadcrumbs);
5146 
5147 			ve->base.flags |= sibling->flags;
5148 
5149 			ve->base.props.timeslice_duration_ms =
5150 				sibling->props.timeslice_duration_ms;
5151 			ve->base.props.preempt_timeout_ms =
5152 				sibling->props.preempt_timeout_ms;
5153 		}
5154 	}
5155 
5156 	return &ve->context;
5157 
5158 err_put:
5159 	intel_context_put(&ve->context);
5160 	return ERR_PTR(err);
5161 }
5162 
5163 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
5164 {
5165 	struct intel_engine_cs *engine;
5166 	intel_engine_mask_t tmp, mask = ve->mask;
5167 
5168 	for_each_engine_masked(engine, ve->gt, mask, tmp)
5169 		if (READ_ONCE(engine->props.heartbeat_interval_ms))
5170 			return true;
5171 
5172 	return false;
5173 }
5174 
5175 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5176 #include "selftest_guc.c"
5177 #include "selftest_guc_multi_lrc.c"
5178 #endif
5179