1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014 Intel Corporation
4  */
5 
6 #include <linux/circ_buf.h>
7 
8 #include "gem/i915_gem_context.h"
9 #include "gem/i915_gem_lmem.h"
10 #include "gt/gen8_engine_cs.h"
11 #include "gt/intel_breadcrumbs.h"
12 #include "gt/intel_context.h"
13 #include "gt/intel_engine_heartbeat.h"
14 #include "gt/intel_engine_pm.h"
15 #include "gt/intel_engine_regs.h"
16 #include "gt/intel_gpu_commands.h"
17 #include "gt/intel_gt.h"
18 #include "gt/intel_gt_clock_utils.h"
19 #include "gt/intel_gt_irq.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_gt_regs.h"
22 #include "gt/intel_gt_requests.h"
23 #include "gt/intel_lrc.h"
24 #include "gt/intel_lrc_reg.h"
25 #include "gt/intel_mocs.h"
26 #include "gt/intel_ring.h"
27 
28 #include "intel_guc_ads.h"
29 #include "intel_guc_capture.h"
30 #include "intel_guc_print.h"
31 #include "intel_guc_submission.h"
32 
33 #include "i915_drv.h"
34 #include "i915_reg.h"
35 #include "i915_trace.h"
36 
37 /**
38  * DOC: GuC-based command submission
39  *
40  * The Scratch registers:
41  * There are 16 MMIO-based registers start from 0xC180. The kernel driver writes
42  * a value to the action register (SOFT_SCRATCH_0) along with any data. It then
43  * triggers an interrupt on the GuC via another register write (0xC4C8).
44  * Firmware writes a success/fail code back to the action register after
45  * processes the request. The kernel driver polls waiting for this update and
46  * then proceeds.
47  *
48  * Command Transport buffers (CTBs):
49  * Covered in detail in other sections but CTBs (Host to GuC - H2G, GuC to Host
50  * - G2H) are a message interface between the i915 and GuC.
51  *
52  * Context registration:
53  * Before a context can be submitted it must be registered with the GuC via a
54  * H2G. A unique guc_id is associated with each context. The context is either
55  * registered at request creation time (normal operation) or at submission time
56  * (abnormal operation, e.g. after a reset).
57  *
58  * Context submission:
59  * The i915 updates the LRC tail value in memory. The i915 must enable the
60  * scheduling of the context within the GuC for the GuC to actually consider it.
61  * Therefore, the first time a disabled context is submitted we use a schedule
62  * enable H2G, while follow up submissions are done via the context submit H2G,
63  * which informs the GuC that a previously enabled context has new work
64  * available.
65  *
66  * Context unpin:
67  * To unpin a context a H2G is used to disable scheduling. When the
68  * corresponding G2H returns indicating the scheduling disable operation has
69  * completed it is safe to unpin the context. While a disable is in flight it
70  * isn't safe to resubmit the context so a fence is used to stall all future
71  * requests of that context until the G2H is returned. Because this interaction
72  * with the GuC takes a non-zero amount of time we delay the disabling of
73  * scheduling after the pin count goes to zero by a configurable period of time
74  * (see SCHED_DISABLE_DELAY_MS). The thought is this gives the user a window of
75  * time to resubmit something on the context before doing this costly operation.
76  * This delay is only done if the context isn't closed and the guc_id usage is
77  * less than a threshold (see NUM_SCHED_DISABLE_GUC_IDS_THRESHOLD).
78  *
79  * Context deregistration:
80  * Before a context can be destroyed or if we steal its guc_id we must
81  * deregister the context with the GuC via H2G. If stealing the guc_id it isn't
82  * safe to submit anything to this guc_id until the deregister completes so a
83  * fence is used to stall all requests associated with this guc_id until the
84  * corresponding G2H returns indicating the guc_id has been deregistered.
85  *
86  * submission_state.guc_ids:
87  * Unique number associated with private GuC context data passed in during
88  * context registration / submission / deregistration. 64k available. Simple ida
89  * is used for allocation.
90  *
91  * Stealing guc_ids:
92  * If no guc_ids are available they can be stolen from another context at
93  * request creation time if that context is unpinned. If a guc_id can't be found
94  * we punt this problem to the user as we believe this is near impossible to hit
95  * during normal use cases.
96  *
97  * Locking:
98  * In the GuC submission code we have 3 basic spin locks which protect
99  * everything. Details about each below.
100  *
101  * sched_engine->lock
102  * This is the submission lock for all contexts that share an i915 schedule
103  * engine (sched_engine), thus only one of the contexts which share a
104  * sched_engine can be submitting at a time. Currently only one sched_engine is
105  * used for all of GuC submission but that could change in the future.
106  *
107  * guc->submission_state.lock
108  * Global lock for GuC submission state. Protects guc_ids and destroyed contexts
109  * list.
110  *
111  * ce->guc_state.lock
112  * Protects everything under ce->guc_state. Ensures that a context is in the
113  * correct state before issuing a H2G. e.g. We don't issue a schedule disable
114  * on a disabled context (bad idea), we don't issue a schedule enable when a
115  * schedule disable is in flight, etc... Also protects list of inflight requests
116  * on the context and the priority management state. Lock is individual to each
117  * context.
118  *
119  * Lock ordering rules:
120  * sched_engine->lock -> ce->guc_state.lock
121  * guc->submission_state.lock -> ce->guc_state.lock
122  *
123  * Reset races:
124  * When a full GT reset is triggered it is assumed that some G2H responses to
125  * H2Gs can be lost as the GuC is also reset. Losing these G2H can prove to be
126  * fatal as we do certain operations upon receiving a G2H (e.g. destroy
127  * contexts, release guc_ids, etc...). When this occurs we can scrub the
128  * context state and cleanup appropriately, however this is quite racey.
129  * To avoid races, the reset code must disable submission before scrubbing for
130  * the missing G2H, while the submission code must check for submission being
131  * disabled and skip sending H2Gs and updating context states when it is. Both
132  * sides must also make sure to hold the relevant locks.
133  */
134 
135 /* GuC Virtual Engine */
136 struct guc_virtual_engine {
137 	struct intel_engine_cs base;
138 	struct intel_context context;
139 };
140 
141 static struct intel_context *
142 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
143 		   unsigned long flags);
144 
145 static struct intel_context *
146 guc_create_parallel(struct intel_engine_cs **engines,
147 		    unsigned int num_siblings,
148 		    unsigned int width);
149 
150 #define GUC_REQUEST_SIZE 64 /* bytes */
151 
152 /*
153  * We reserve 1/16 of the guc_ids for multi-lrc as these need to be contiguous
154  * per the GuC submission interface. A different allocation algorithm is used
155  * (bitmap vs. ida) between multi-lrc and single-lrc hence the reason to
156  * partition the guc_id space. We believe the number of multi-lrc contexts in
157  * use should be low and 1/16 should be sufficient. Minimum of 32 guc_ids for
158  * multi-lrc.
159  */
160 #define NUMBER_MULTI_LRC_GUC_ID(guc)	\
161 	((guc)->submission_state.num_guc_ids / 16)
162 
163 /*
164  * Below is a set of functions which control the GuC scheduling state which
165  * require a lock.
166  */
167 #define SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER	BIT(0)
168 #define SCHED_STATE_DESTROYED				BIT(1)
169 #define SCHED_STATE_PENDING_DISABLE			BIT(2)
170 #define SCHED_STATE_BANNED				BIT(3)
171 #define SCHED_STATE_ENABLED				BIT(4)
172 #define SCHED_STATE_PENDING_ENABLE			BIT(5)
173 #define SCHED_STATE_REGISTERED				BIT(6)
174 #define SCHED_STATE_POLICY_REQUIRED			BIT(7)
175 #define SCHED_STATE_CLOSED				BIT(8)
176 #define SCHED_STATE_BLOCKED_SHIFT			9
177 #define SCHED_STATE_BLOCKED		BIT(SCHED_STATE_BLOCKED_SHIFT)
178 #define SCHED_STATE_BLOCKED_MASK	(0xfff << SCHED_STATE_BLOCKED_SHIFT)
179 
180 static inline void init_sched_state(struct intel_context *ce)
181 {
182 	lockdep_assert_held(&ce->guc_state.lock);
183 	ce->guc_state.sched_state &= SCHED_STATE_BLOCKED_MASK;
184 }
185 
186 /*
187  * Kernel contexts can have SCHED_STATE_REGISTERED after suspend.
188  * A context close can race with the submission path, so SCHED_STATE_CLOSED
189  * can be set immediately before we try to register.
190  */
191 #define SCHED_STATE_VALID_INIT \
192 	(SCHED_STATE_BLOCKED_MASK | \
193 	 SCHED_STATE_CLOSED | \
194 	 SCHED_STATE_REGISTERED)
195 
196 __maybe_unused
197 static bool sched_state_is_init(struct intel_context *ce)
198 {
199 	return !(ce->guc_state.sched_state & ~SCHED_STATE_VALID_INIT);
200 }
201 
202 static inline bool
203 context_wait_for_deregister_to_register(struct intel_context *ce)
204 {
205 	return ce->guc_state.sched_state &
206 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
207 }
208 
209 static inline void
210 set_context_wait_for_deregister_to_register(struct intel_context *ce)
211 {
212 	lockdep_assert_held(&ce->guc_state.lock);
213 	ce->guc_state.sched_state |=
214 		SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
215 }
216 
217 static inline void
218 clr_context_wait_for_deregister_to_register(struct intel_context *ce)
219 {
220 	lockdep_assert_held(&ce->guc_state.lock);
221 	ce->guc_state.sched_state &=
222 		~SCHED_STATE_WAIT_FOR_DEREGISTER_TO_REGISTER;
223 }
224 
225 static inline bool
226 context_destroyed(struct intel_context *ce)
227 {
228 	return ce->guc_state.sched_state & SCHED_STATE_DESTROYED;
229 }
230 
231 static inline void
232 set_context_destroyed(struct intel_context *ce)
233 {
234 	lockdep_assert_held(&ce->guc_state.lock);
235 	ce->guc_state.sched_state |= SCHED_STATE_DESTROYED;
236 }
237 
238 static inline bool context_pending_disable(struct intel_context *ce)
239 {
240 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_DISABLE;
241 }
242 
243 static inline void set_context_pending_disable(struct intel_context *ce)
244 {
245 	lockdep_assert_held(&ce->guc_state.lock);
246 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_DISABLE;
247 }
248 
249 static inline void clr_context_pending_disable(struct intel_context *ce)
250 {
251 	lockdep_assert_held(&ce->guc_state.lock);
252 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_DISABLE;
253 }
254 
255 static inline bool context_banned(struct intel_context *ce)
256 {
257 	return ce->guc_state.sched_state & SCHED_STATE_BANNED;
258 }
259 
260 static inline void set_context_banned(struct intel_context *ce)
261 {
262 	lockdep_assert_held(&ce->guc_state.lock);
263 	ce->guc_state.sched_state |= SCHED_STATE_BANNED;
264 }
265 
266 static inline void clr_context_banned(struct intel_context *ce)
267 {
268 	lockdep_assert_held(&ce->guc_state.lock);
269 	ce->guc_state.sched_state &= ~SCHED_STATE_BANNED;
270 }
271 
272 static inline bool context_enabled(struct intel_context *ce)
273 {
274 	return ce->guc_state.sched_state & SCHED_STATE_ENABLED;
275 }
276 
277 static inline void set_context_enabled(struct intel_context *ce)
278 {
279 	lockdep_assert_held(&ce->guc_state.lock);
280 	ce->guc_state.sched_state |= SCHED_STATE_ENABLED;
281 }
282 
283 static inline void clr_context_enabled(struct intel_context *ce)
284 {
285 	lockdep_assert_held(&ce->guc_state.lock);
286 	ce->guc_state.sched_state &= ~SCHED_STATE_ENABLED;
287 }
288 
289 static inline bool context_pending_enable(struct intel_context *ce)
290 {
291 	return ce->guc_state.sched_state & SCHED_STATE_PENDING_ENABLE;
292 }
293 
294 static inline void set_context_pending_enable(struct intel_context *ce)
295 {
296 	lockdep_assert_held(&ce->guc_state.lock);
297 	ce->guc_state.sched_state |= SCHED_STATE_PENDING_ENABLE;
298 }
299 
300 static inline void clr_context_pending_enable(struct intel_context *ce)
301 {
302 	lockdep_assert_held(&ce->guc_state.lock);
303 	ce->guc_state.sched_state &= ~SCHED_STATE_PENDING_ENABLE;
304 }
305 
306 static inline bool context_registered(struct intel_context *ce)
307 {
308 	return ce->guc_state.sched_state & SCHED_STATE_REGISTERED;
309 }
310 
311 static inline void set_context_registered(struct intel_context *ce)
312 {
313 	lockdep_assert_held(&ce->guc_state.lock);
314 	ce->guc_state.sched_state |= SCHED_STATE_REGISTERED;
315 }
316 
317 static inline void clr_context_registered(struct intel_context *ce)
318 {
319 	lockdep_assert_held(&ce->guc_state.lock);
320 	ce->guc_state.sched_state &= ~SCHED_STATE_REGISTERED;
321 }
322 
323 static inline bool context_policy_required(struct intel_context *ce)
324 {
325 	return ce->guc_state.sched_state & SCHED_STATE_POLICY_REQUIRED;
326 }
327 
328 static inline void set_context_policy_required(struct intel_context *ce)
329 {
330 	lockdep_assert_held(&ce->guc_state.lock);
331 	ce->guc_state.sched_state |= SCHED_STATE_POLICY_REQUIRED;
332 }
333 
334 static inline void clr_context_policy_required(struct intel_context *ce)
335 {
336 	lockdep_assert_held(&ce->guc_state.lock);
337 	ce->guc_state.sched_state &= ~SCHED_STATE_POLICY_REQUIRED;
338 }
339 
340 static inline bool context_close_done(struct intel_context *ce)
341 {
342 	return ce->guc_state.sched_state & SCHED_STATE_CLOSED;
343 }
344 
345 static inline void set_context_close_done(struct intel_context *ce)
346 {
347 	lockdep_assert_held(&ce->guc_state.lock);
348 	ce->guc_state.sched_state |= SCHED_STATE_CLOSED;
349 }
350 
351 static inline u32 context_blocked(struct intel_context *ce)
352 {
353 	return (ce->guc_state.sched_state & SCHED_STATE_BLOCKED_MASK) >>
354 		SCHED_STATE_BLOCKED_SHIFT;
355 }
356 
357 static inline void incr_context_blocked(struct intel_context *ce)
358 {
359 	lockdep_assert_held(&ce->guc_state.lock);
360 
361 	ce->guc_state.sched_state += SCHED_STATE_BLOCKED;
362 
363 	GEM_BUG_ON(!context_blocked(ce));	/* Overflow check */
364 }
365 
366 static inline void decr_context_blocked(struct intel_context *ce)
367 {
368 	lockdep_assert_held(&ce->guc_state.lock);
369 
370 	GEM_BUG_ON(!context_blocked(ce));	/* Underflow check */
371 
372 	ce->guc_state.sched_state -= SCHED_STATE_BLOCKED;
373 }
374 
375 static struct intel_context *
376 request_to_scheduling_context(struct i915_request *rq)
377 {
378 	return intel_context_to_parent(rq->context);
379 }
380 
381 static inline bool context_guc_id_invalid(struct intel_context *ce)
382 {
383 	return ce->guc_id.id == GUC_INVALID_CONTEXT_ID;
384 }
385 
386 static inline void set_context_guc_id_invalid(struct intel_context *ce)
387 {
388 	ce->guc_id.id = GUC_INVALID_CONTEXT_ID;
389 }
390 
391 static inline struct intel_guc *ce_to_guc(struct intel_context *ce)
392 {
393 	return &ce->engine->gt->uc.guc;
394 }
395 
396 static inline struct i915_priolist *to_priolist(struct rb_node *rb)
397 {
398 	return rb_entry(rb, struct i915_priolist, node);
399 }
400 
401 /*
402  * When using multi-lrc submission a scratch memory area is reserved in the
403  * parent's context state for the process descriptor, work queue, and handshake
404  * between the parent + children contexts to insert safe preemption points
405  * between each of the BBs. Currently the scratch area is sized to a page.
406  *
407  * The layout of this scratch area is below:
408  * 0						guc_process_desc
409  * + sizeof(struct guc_process_desc)		child go
410  * + CACHELINE_BYTES				child join[0]
411  * ...
412  * + CACHELINE_BYTES				child join[n - 1]
413  * ...						unused
414  * PARENT_SCRATCH_SIZE / 2			work queue start
415  * ...						work queue
416  * PARENT_SCRATCH_SIZE - 1			work queue end
417  */
418 #define WQ_SIZE			(PARENT_SCRATCH_SIZE / 2)
419 #define WQ_OFFSET		(PARENT_SCRATCH_SIZE - WQ_SIZE)
420 
421 struct sync_semaphore {
422 	u32 semaphore;
423 	u8 unused[CACHELINE_BYTES - sizeof(u32)];
424 };
425 
426 struct parent_scratch {
427 	union guc_descs {
428 		struct guc_sched_wq_desc wq_desc;
429 		struct guc_process_desc_v69 pdesc;
430 	} descs;
431 
432 	struct sync_semaphore go;
433 	struct sync_semaphore join[MAX_ENGINE_INSTANCE + 1];
434 
435 	u8 unused[WQ_OFFSET - sizeof(union guc_descs) -
436 		sizeof(struct sync_semaphore) * (MAX_ENGINE_INSTANCE + 2)];
437 
438 	u32 wq[WQ_SIZE / sizeof(u32)];
439 };
440 
441 static u32 __get_parent_scratch_offset(struct intel_context *ce)
442 {
443 	GEM_BUG_ON(!ce->parallel.guc.parent_page);
444 
445 	return ce->parallel.guc.parent_page * PAGE_SIZE;
446 }
447 
448 static u32 __get_wq_offset(struct intel_context *ce)
449 {
450 	BUILD_BUG_ON(offsetof(struct parent_scratch, wq) != WQ_OFFSET);
451 
452 	return __get_parent_scratch_offset(ce) + WQ_OFFSET;
453 }
454 
455 static struct parent_scratch *
456 __get_parent_scratch(struct intel_context *ce)
457 {
458 	BUILD_BUG_ON(sizeof(struct parent_scratch) != PARENT_SCRATCH_SIZE);
459 	BUILD_BUG_ON(sizeof(struct sync_semaphore) != CACHELINE_BYTES);
460 
461 	/*
462 	 * Need to subtract LRC_STATE_OFFSET here as the
463 	 * parallel.guc.parent_page is the offset into ce->state while
464 	 * ce->lrc_reg_reg is ce->state + LRC_STATE_OFFSET.
465 	 */
466 	return (struct parent_scratch *)
467 		(ce->lrc_reg_state +
468 		 ((__get_parent_scratch_offset(ce) -
469 		   LRC_STATE_OFFSET) / sizeof(u32)));
470 }
471 
472 static struct guc_process_desc_v69 *
473 __get_process_desc_v69(struct intel_context *ce)
474 {
475 	struct parent_scratch *ps = __get_parent_scratch(ce);
476 
477 	return &ps->descs.pdesc;
478 }
479 
480 static struct guc_sched_wq_desc *
481 __get_wq_desc_v70(struct intel_context *ce)
482 {
483 	struct parent_scratch *ps = __get_parent_scratch(ce);
484 
485 	return &ps->descs.wq_desc;
486 }
487 
488 static u32 *get_wq_pointer(struct intel_context *ce, u32 wqi_size)
489 {
490 	/*
491 	 * Check for space in work queue. Caching a value of head pointer in
492 	 * intel_context structure in order reduce the number accesses to shared
493 	 * GPU memory which may be across a PCIe bus.
494 	 */
495 #define AVAILABLE_SPACE	\
496 	CIRC_SPACE(ce->parallel.guc.wqi_tail, ce->parallel.guc.wqi_head, WQ_SIZE)
497 	if (wqi_size > AVAILABLE_SPACE) {
498 		ce->parallel.guc.wqi_head = READ_ONCE(*ce->parallel.guc.wq_head);
499 
500 		if (wqi_size > AVAILABLE_SPACE)
501 			return NULL;
502 	}
503 #undef AVAILABLE_SPACE
504 
505 	return &__get_parent_scratch(ce)->wq[ce->parallel.guc.wqi_tail / sizeof(u32)];
506 }
507 
508 static inline struct intel_context *__get_context(struct intel_guc *guc, u32 id)
509 {
510 	struct intel_context *ce = xa_load(&guc->context_lookup, id);
511 
512 	GEM_BUG_ON(id >= GUC_MAX_CONTEXT_ID);
513 
514 	return ce;
515 }
516 
517 static struct guc_lrc_desc_v69 *__get_lrc_desc_v69(struct intel_guc *guc, u32 index)
518 {
519 	struct guc_lrc_desc_v69 *base = guc->lrc_desc_pool_vaddr_v69;
520 
521 	if (!base)
522 		return NULL;
523 
524 	GEM_BUG_ON(index >= GUC_MAX_CONTEXT_ID);
525 
526 	return &base[index];
527 }
528 
529 static int guc_lrc_desc_pool_create_v69(struct intel_guc *guc)
530 {
531 	u32 size;
532 	int ret;
533 
534 	size = PAGE_ALIGN(sizeof(struct guc_lrc_desc_v69) *
535 			  GUC_MAX_CONTEXT_ID);
536 	ret = intel_guc_allocate_and_map_vma(guc, size, &guc->lrc_desc_pool_v69,
537 					     (void **)&guc->lrc_desc_pool_vaddr_v69);
538 	if (ret)
539 		return ret;
540 
541 	return 0;
542 }
543 
544 static void guc_lrc_desc_pool_destroy_v69(struct intel_guc *guc)
545 {
546 	if (!guc->lrc_desc_pool_vaddr_v69)
547 		return;
548 
549 	guc->lrc_desc_pool_vaddr_v69 = NULL;
550 	i915_vma_unpin_and_release(&guc->lrc_desc_pool_v69, I915_VMA_RELEASE_MAP);
551 }
552 
553 static inline bool guc_submission_initialized(struct intel_guc *guc)
554 {
555 	return guc->submission_initialized;
556 }
557 
558 static inline void _reset_lrc_desc_v69(struct intel_guc *guc, u32 id)
559 {
560 	struct guc_lrc_desc_v69 *desc = __get_lrc_desc_v69(guc, id);
561 
562 	if (desc)
563 		memset(desc, 0, sizeof(*desc));
564 }
565 
566 static inline bool ctx_id_mapped(struct intel_guc *guc, u32 id)
567 {
568 	return __get_context(guc, id);
569 }
570 
571 static inline void set_ctx_id_mapping(struct intel_guc *guc, u32 id,
572 				      struct intel_context *ce)
573 {
574 	unsigned long flags;
575 
576 	/*
577 	 * xarray API doesn't have xa_save_irqsave wrapper, so calling the
578 	 * lower level functions directly.
579 	 */
580 	xa_lock_irqsave(&guc->context_lookup, flags);
581 	__xa_store(&guc->context_lookup, id, ce, GFP_ATOMIC);
582 	xa_unlock_irqrestore(&guc->context_lookup, flags);
583 }
584 
585 static inline void clr_ctx_id_mapping(struct intel_guc *guc, u32 id)
586 {
587 	unsigned long flags;
588 
589 	if (unlikely(!guc_submission_initialized(guc)))
590 		return;
591 
592 	_reset_lrc_desc_v69(guc, id);
593 
594 	/*
595 	 * xarray API doesn't have xa_erase_irqsave wrapper, so calling
596 	 * the lower level functions directly.
597 	 */
598 	xa_lock_irqsave(&guc->context_lookup, flags);
599 	__xa_erase(&guc->context_lookup, id);
600 	xa_unlock_irqrestore(&guc->context_lookup, flags);
601 }
602 
603 static void decr_outstanding_submission_g2h(struct intel_guc *guc)
604 {
605 	if (atomic_dec_and_test(&guc->outstanding_submission_g2h))
606 		wake_up_all(&guc->ct.wq);
607 }
608 
609 static int guc_submission_send_busy_loop(struct intel_guc *guc,
610 					 const u32 *action,
611 					 u32 len,
612 					 u32 g2h_len_dw,
613 					 bool loop)
614 {
615 	/*
616 	 * We always loop when a send requires a reply (i.e. g2h_len_dw > 0),
617 	 * so we don't handle the case where we don't get a reply because we
618 	 * aborted the send due to the channel being busy.
619 	 */
620 	GEM_BUG_ON(g2h_len_dw && !loop);
621 
622 	if (g2h_len_dw)
623 		atomic_inc(&guc->outstanding_submission_g2h);
624 
625 	return intel_guc_send_busy_loop(guc, action, len, g2h_len_dw, loop);
626 }
627 
628 int intel_guc_wait_for_pending_msg(struct intel_guc *guc,
629 				   atomic_t *wait_var,
630 				   bool interruptible,
631 				   long timeout)
632 {
633 	const int state = interruptible ?
634 		TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
635 	DEFINE_WAIT(wait);
636 
637 	might_sleep();
638 	GEM_BUG_ON(timeout < 0);
639 
640 	if (!atomic_read(wait_var))
641 		return 0;
642 
643 	if (!timeout)
644 		return -ETIME;
645 
646 	for (;;) {
647 		prepare_to_wait(&guc->ct.wq, &wait, state);
648 
649 		if (!atomic_read(wait_var))
650 			break;
651 
652 		if (signal_pending_state(state, current)) {
653 			timeout = -EINTR;
654 			break;
655 		}
656 
657 		if (!timeout) {
658 			timeout = -ETIME;
659 			break;
660 		}
661 
662 		timeout = io_schedule_timeout(timeout);
663 	}
664 	finish_wait(&guc->ct.wq, &wait);
665 
666 	return (timeout < 0) ? timeout : 0;
667 }
668 
669 int intel_guc_wait_for_idle(struct intel_guc *guc, long timeout)
670 {
671 	if (!intel_uc_uses_guc_submission(&guc_to_gt(guc)->uc))
672 		return 0;
673 
674 	return intel_guc_wait_for_pending_msg(guc,
675 					      &guc->outstanding_submission_g2h,
676 					      true, timeout);
677 }
678 
679 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop);
680 static int try_context_registration(struct intel_context *ce, bool loop);
681 
682 static int __guc_add_request(struct intel_guc *guc, struct i915_request *rq)
683 {
684 	int err = 0;
685 	struct intel_context *ce = request_to_scheduling_context(rq);
686 	u32 action[3];
687 	int len = 0;
688 	u32 g2h_len_dw = 0;
689 	bool enabled;
690 
691 	lockdep_assert_held(&rq->engine->sched_engine->lock);
692 
693 	/*
694 	 * Corner case where requests were sitting in the priority list or a
695 	 * request resubmitted after the context was banned.
696 	 */
697 	if (unlikely(!intel_context_is_schedulable(ce))) {
698 		i915_request_put(i915_request_mark_eio(rq));
699 		intel_engine_signal_breadcrumbs(ce->engine);
700 		return 0;
701 	}
702 
703 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
704 	GEM_BUG_ON(context_guc_id_invalid(ce));
705 
706 	if (context_policy_required(ce)) {
707 		err = guc_context_policy_init_v70(ce, false);
708 		if (err)
709 			return err;
710 	}
711 
712 	spin_lock(&ce->guc_state.lock);
713 
714 	/*
715 	 * The request / context will be run on the hardware when scheduling
716 	 * gets enabled in the unblock. For multi-lrc we still submit the
717 	 * context to move the LRC tails.
718 	 */
719 	if (unlikely(context_blocked(ce) && !intel_context_is_parent(ce)))
720 		goto out;
721 
722 	enabled = context_enabled(ce) || context_blocked(ce);
723 
724 	if (!enabled) {
725 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET;
726 		action[len++] = ce->guc_id.id;
727 		action[len++] = GUC_CONTEXT_ENABLE;
728 		set_context_pending_enable(ce);
729 		intel_context_get(ce);
730 		g2h_len_dw = G2H_LEN_DW_SCHED_CONTEXT_MODE_SET;
731 	} else {
732 		action[len++] = INTEL_GUC_ACTION_SCHED_CONTEXT;
733 		action[len++] = ce->guc_id.id;
734 	}
735 
736 	err = intel_guc_send_nb(guc, action, len, g2h_len_dw);
737 	if (!enabled && !err) {
738 		trace_intel_context_sched_enable(ce);
739 		atomic_inc(&guc->outstanding_submission_g2h);
740 		set_context_enabled(ce);
741 
742 		/*
743 		 * Without multi-lrc KMD does the submission step (moving the
744 		 * lrc tail) so enabling scheduling is sufficient to submit the
745 		 * context. This isn't the case in multi-lrc submission as the
746 		 * GuC needs to move the tails, hence the need for another H2G
747 		 * to submit a multi-lrc context after enabling scheduling.
748 		 */
749 		if (intel_context_is_parent(ce)) {
750 			action[0] = INTEL_GUC_ACTION_SCHED_CONTEXT;
751 			err = intel_guc_send_nb(guc, action, len - 1, 0);
752 		}
753 	} else if (!enabled) {
754 		clr_context_pending_enable(ce);
755 		intel_context_put(ce);
756 	}
757 	if (likely(!err))
758 		trace_i915_request_guc_submit(rq);
759 
760 out:
761 	spin_unlock(&ce->guc_state.lock);
762 	return err;
763 }
764 
765 static int guc_add_request(struct intel_guc *guc, struct i915_request *rq)
766 {
767 	int ret = __guc_add_request(guc, rq);
768 
769 	if (unlikely(ret == -EBUSY)) {
770 		guc->stalled_request = rq;
771 		guc->submission_stall_reason = STALL_ADD_REQUEST;
772 	}
773 
774 	return ret;
775 }
776 
777 static inline void guc_set_lrc_tail(struct i915_request *rq)
778 {
779 	rq->context->lrc_reg_state[CTX_RING_TAIL] =
780 		intel_ring_set_tail(rq->ring, rq->tail);
781 }
782 
783 static inline int rq_prio(const struct i915_request *rq)
784 {
785 	return rq->sched.attr.priority;
786 }
787 
788 static bool is_multi_lrc_rq(struct i915_request *rq)
789 {
790 	return intel_context_is_parallel(rq->context);
791 }
792 
793 static bool can_merge_rq(struct i915_request *rq,
794 			 struct i915_request *last)
795 {
796 	return request_to_scheduling_context(rq) ==
797 		request_to_scheduling_context(last);
798 }
799 
800 static u32 wq_space_until_wrap(struct intel_context *ce)
801 {
802 	return (WQ_SIZE - ce->parallel.guc.wqi_tail);
803 }
804 
805 static void write_wqi(struct intel_context *ce, u32 wqi_size)
806 {
807 	BUILD_BUG_ON(!is_power_of_2(WQ_SIZE));
808 
809 	/*
810 	 * Ensure WQI are visible before updating tail
811 	 */
812 	intel_guc_write_barrier(ce_to_guc(ce));
813 
814 	ce->parallel.guc.wqi_tail = (ce->parallel.guc.wqi_tail + wqi_size) &
815 		(WQ_SIZE - 1);
816 	WRITE_ONCE(*ce->parallel.guc.wq_tail, ce->parallel.guc.wqi_tail);
817 }
818 
819 static int guc_wq_noop_append(struct intel_context *ce)
820 {
821 	u32 *wqi = get_wq_pointer(ce, wq_space_until_wrap(ce));
822 	u32 len_dw = wq_space_until_wrap(ce) / sizeof(u32) - 1;
823 
824 	if (!wqi)
825 		return -EBUSY;
826 
827 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
828 
829 	*wqi = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_NOOP) |
830 		FIELD_PREP(WQ_LEN_MASK, len_dw);
831 	ce->parallel.guc.wqi_tail = 0;
832 
833 	return 0;
834 }
835 
836 static int __guc_wq_item_append(struct i915_request *rq)
837 {
838 	struct intel_context *ce = request_to_scheduling_context(rq);
839 	struct intel_context *child;
840 	unsigned int wqi_size = (ce->parallel.number_children + 4) *
841 		sizeof(u32);
842 	u32 *wqi;
843 	u32 len_dw = (wqi_size / sizeof(u32)) - 1;
844 	int ret;
845 
846 	/* Ensure context is in correct state updating work queue */
847 	GEM_BUG_ON(!atomic_read(&ce->guc_id.ref));
848 	GEM_BUG_ON(context_guc_id_invalid(ce));
849 	GEM_BUG_ON(context_wait_for_deregister_to_register(ce));
850 	GEM_BUG_ON(!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id));
851 
852 	/* Insert NOOP if this work queue item will wrap the tail pointer. */
853 	if (wqi_size > wq_space_until_wrap(ce)) {
854 		ret = guc_wq_noop_append(ce);
855 		if (ret)
856 			return ret;
857 	}
858 
859 	wqi = get_wq_pointer(ce, wqi_size);
860 	if (!wqi)
861 		return -EBUSY;
862 
863 	GEM_BUG_ON(!FIELD_FIT(WQ_LEN_MASK, len_dw));
864 
865 	*wqi++ = FIELD_PREP(WQ_TYPE_MASK, WQ_TYPE_MULTI_LRC) |
866 		FIELD_PREP(WQ_LEN_MASK, len_dw);
867 	*wqi++ = ce->lrc.lrca;
868 	*wqi++ = FIELD_PREP(WQ_GUC_ID_MASK, ce->guc_id.id) |
869 	       FIELD_PREP(WQ_RING_TAIL_MASK, ce->ring->tail / sizeof(u64));
870 	*wqi++ = 0;	/* fence_id */
871 	for_each_child(ce, child)
872 		*wqi++ = child->ring->tail / sizeof(u64);
873 
874 	write_wqi(ce, wqi_size);
875 
876 	return 0;
877 }
878 
879 static int guc_wq_item_append(struct intel_guc *guc,
880 			      struct i915_request *rq)
881 {
882 	struct intel_context *ce = request_to_scheduling_context(rq);
883 	int ret;
884 
885 	if (unlikely(!intel_context_is_schedulable(ce)))
886 		return 0;
887 
888 	ret = __guc_wq_item_append(rq);
889 	if (unlikely(ret == -EBUSY)) {
890 		guc->stalled_request = rq;
891 		guc->submission_stall_reason = STALL_MOVE_LRC_TAIL;
892 	}
893 
894 	return ret;
895 }
896 
897 static bool multi_lrc_submit(struct i915_request *rq)
898 {
899 	struct intel_context *ce = request_to_scheduling_context(rq);
900 
901 	intel_ring_set_tail(rq->ring, rq->tail);
902 
903 	/*
904 	 * We expect the front end (execbuf IOCTL) to set this flag on the last
905 	 * request generated from a multi-BB submission. This indicates to the
906 	 * backend (GuC interface) that we should submit this context thus
907 	 * submitting all the requests generated in parallel.
908 	 */
909 	return test_bit(I915_FENCE_FLAG_SUBMIT_PARALLEL, &rq->fence.flags) ||
910 	       !intel_context_is_schedulable(ce);
911 }
912 
913 static int guc_dequeue_one_context(struct intel_guc *guc)
914 {
915 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
916 	struct i915_request *last = NULL;
917 	bool submit = false;
918 	struct rb_node *rb;
919 	int ret;
920 
921 	lockdep_assert_held(&sched_engine->lock);
922 
923 	if (guc->stalled_request) {
924 		submit = true;
925 		last = guc->stalled_request;
926 
927 		switch (guc->submission_stall_reason) {
928 		case STALL_REGISTER_CONTEXT:
929 			goto register_context;
930 		case STALL_MOVE_LRC_TAIL:
931 			goto move_lrc_tail;
932 		case STALL_ADD_REQUEST:
933 			goto add_request;
934 		default:
935 			MISSING_CASE(guc->submission_stall_reason);
936 		}
937 	}
938 
939 	while ((rb = rb_first_cached(&sched_engine->queue))) {
940 		struct i915_priolist *p = to_priolist(rb);
941 		struct i915_request *rq, *rn;
942 
943 		priolist_for_each_request_consume(rq, rn, p) {
944 			if (last && !can_merge_rq(rq, last))
945 				goto register_context;
946 
947 			list_del_init(&rq->sched.link);
948 
949 			__i915_request_submit(rq);
950 
951 			trace_i915_request_in(rq, 0);
952 			last = rq;
953 
954 			if (is_multi_lrc_rq(rq)) {
955 				/*
956 				 * We need to coalesce all multi-lrc requests in
957 				 * a relationship into a single H2G. We are
958 				 * guaranteed that all of these requests will be
959 				 * submitted sequentially.
960 				 */
961 				if (multi_lrc_submit(rq)) {
962 					submit = true;
963 					goto register_context;
964 				}
965 			} else {
966 				submit = true;
967 			}
968 		}
969 
970 		rb_erase_cached(&p->node, &sched_engine->queue);
971 		i915_priolist_free(p);
972 	}
973 
974 register_context:
975 	if (submit) {
976 		struct intel_context *ce = request_to_scheduling_context(last);
977 
978 		if (unlikely(!ctx_id_mapped(guc, ce->guc_id.id) &&
979 			     intel_context_is_schedulable(ce))) {
980 			ret = try_context_registration(ce, false);
981 			if (unlikely(ret == -EPIPE)) {
982 				goto deadlk;
983 			} else if (ret == -EBUSY) {
984 				guc->stalled_request = last;
985 				guc->submission_stall_reason =
986 					STALL_REGISTER_CONTEXT;
987 				goto schedule_tasklet;
988 			} else if (ret != 0) {
989 				GEM_WARN_ON(ret);	/* Unexpected */
990 				goto deadlk;
991 			}
992 		}
993 
994 move_lrc_tail:
995 		if (is_multi_lrc_rq(last)) {
996 			ret = guc_wq_item_append(guc, last);
997 			if (ret == -EBUSY) {
998 				goto schedule_tasklet;
999 			} else if (ret != 0) {
1000 				GEM_WARN_ON(ret);	/* Unexpected */
1001 				goto deadlk;
1002 			}
1003 		} else {
1004 			guc_set_lrc_tail(last);
1005 		}
1006 
1007 add_request:
1008 		ret = guc_add_request(guc, last);
1009 		if (unlikely(ret == -EPIPE)) {
1010 			goto deadlk;
1011 		} else if (ret == -EBUSY) {
1012 			goto schedule_tasklet;
1013 		} else if (ret != 0) {
1014 			GEM_WARN_ON(ret);	/* Unexpected */
1015 			goto deadlk;
1016 		}
1017 	}
1018 
1019 	guc->stalled_request = NULL;
1020 	guc->submission_stall_reason = STALL_NONE;
1021 	return submit;
1022 
1023 deadlk:
1024 	sched_engine->tasklet.callback = NULL;
1025 	tasklet_disable_nosync(&sched_engine->tasklet);
1026 	return false;
1027 
1028 schedule_tasklet:
1029 	tasklet_schedule(&sched_engine->tasklet);
1030 	return false;
1031 }
1032 
1033 static void guc_submission_tasklet(struct tasklet_struct *t)
1034 {
1035 	struct i915_sched_engine *sched_engine =
1036 		from_tasklet(sched_engine, t, tasklet);
1037 	unsigned long flags;
1038 	bool loop;
1039 
1040 	spin_lock_irqsave(&sched_engine->lock, flags);
1041 
1042 	do {
1043 		loop = guc_dequeue_one_context(sched_engine->private_data);
1044 	} while (loop);
1045 
1046 	i915_sched_engine_reset_on_empty(sched_engine);
1047 
1048 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1049 }
1050 
1051 static void cs_irq_handler(struct intel_engine_cs *engine, u16 iir)
1052 {
1053 	if (iir & GT_RENDER_USER_INTERRUPT)
1054 		intel_engine_signal_breadcrumbs(engine);
1055 }
1056 
1057 static void __guc_context_destroy(struct intel_context *ce);
1058 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce);
1059 static void guc_signal_context_fence(struct intel_context *ce);
1060 static void guc_cancel_context_requests(struct intel_context *ce);
1061 static void guc_blocked_fence_complete(struct intel_context *ce);
1062 
1063 static void scrub_guc_desc_for_outstanding_g2h(struct intel_guc *guc)
1064 {
1065 	struct intel_context *ce;
1066 	unsigned long index, flags;
1067 	bool pending_disable, pending_enable, deregister, destroyed, banned;
1068 
1069 	xa_lock_irqsave(&guc->context_lookup, flags);
1070 	xa_for_each(&guc->context_lookup, index, ce) {
1071 		/*
1072 		 * Corner case where the ref count on the object is zero but and
1073 		 * deregister G2H was lost. In this case we don't touch the ref
1074 		 * count and finish the destroy of the context.
1075 		 */
1076 		bool do_put = kref_get_unless_zero(&ce->ref);
1077 
1078 		xa_unlock(&guc->context_lookup);
1079 
1080 		if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
1081 		    (cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))) {
1082 			/* successful cancel so jump straight to close it */
1083 			intel_context_sched_disable_unpin(ce);
1084 		}
1085 
1086 		spin_lock(&ce->guc_state.lock);
1087 
1088 		/*
1089 		 * Once we are at this point submission_disabled() is guaranteed
1090 		 * to be visible to all callers who set the below flags (see above
1091 		 * flush and flushes in reset_prepare). If submission_disabled()
1092 		 * is set, the caller shouldn't set these flags.
1093 		 */
1094 
1095 		destroyed = context_destroyed(ce);
1096 		pending_enable = context_pending_enable(ce);
1097 		pending_disable = context_pending_disable(ce);
1098 		deregister = context_wait_for_deregister_to_register(ce);
1099 		banned = context_banned(ce);
1100 		init_sched_state(ce);
1101 
1102 		spin_unlock(&ce->guc_state.lock);
1103 
1104 		if (pending_enable || destroyed || deregister) {
1105 			decr_outstanding_submission_g2h(guc);
1106 			if (deregister)
1107 				guc_signal_context_fence(ce);
1108 			if (destroyed) {
1109 				intel_gt_pm_put_async(guc_to_gt(guc));
1110 				release_guc_id(guc, ce);
1111 				__guc_context_destroy(ce);
1112 			}
1113 			if (pending_enable || deregister)
1114 				intel_context_put(ce);
1115 		}
1116 
1117 		/* Not mutualy exclusive with above if statement. */
1118 		if (pending_disable) {
1119 			guc_signal_context_fence(ce);
1120 			if (banned) {
1121 				guc_cancel_context_requests(ce);
1122 				intel_engine_signal_breadcrumbs(ce->engine);
1123 			}
1124 			intel_context_sched_disable_unpin(ce);
1125 			decr_outstanding_submission_g2h(guc);
1126 
1127 			spin_lock(&ce->guc_state.lock);
1128 			guc_blocked_fence_complete(ce);
1129 			spin_unlock(&ce->guc_state.lock);
1130 
1131 			intel_context_put(ce);
1132 		}
1133 
1134 		if (do_put)
1135 			intel_context_put(ce);
1136 		xa_lock(&guc->context_lookup);
1137 	}
1138 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1139 }
1140 
1141 /*
1142  * GuC stores busyness stats for each engine at context in/out boundaries. A
1143  * context 'in' logs execution start time, 'out' adds in -> out delta to total.
1144  * i915/kmd accesses 'start', 'total' and 'context id' from memory shared with
1145  * GuC.
1146  *
1147  * __i915_pmu_event_read samples engine busyness. When sampling, if context id
1148  * is valid (!= ~0) and start is non-zero, the engine is considered to be
1149  * active. For an active engine total busyness = total + (now - start), where
1150  * 'now' is the time at which the busyness is sampled. For inactive engine,
1151  * total busyness = total.
1152  *
1153  * All times are captured from GUCPMTIMESTAMP reg and are in gt clock domain.
1154  *
1155  * The start and total values provided by GuC are 32 bits and wrap around in a
1156  * few minutes. Since perf pmu provides busyness as 64 bit monotonically
1157  * increasing ns values, there is a need for this implementation to account for
1158  * overflows and extend the GuC provided values to 64 bits before returning
1159  * busyness to the user. In order to do that, a worker runs periodically at
1160  * frequency = 1/8th the time it takes for the timestamp to wrap (i.e. once in
1161  * 27 seconds for a gt clock frequency of 19.2 MHz).
1162  */
1163 
1164 #define WRAP_TIME_CLKS U32_MAX
1165 #define POLL_TIME_CLKS (WRAP_TIME_CLKS >> 3)
1166 
1167 static void
1168 __extend_last_switch(struct intel_guc *guc, u64 *prev_start, u32 new_start)
1169 {
1170 	u32 gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1171 	u32 gt_stamp_last = lower_32_bits(guc->timestamp.gt_stamp);
1172 
1173 	if (new_start == lower_32_bits(*prev_start))
1174 		return;
1175 
1176 	/*
1177 	 * When gt is unparked, we update the gt timestamp and start the ping
1178 	 * worker that updates the gt_stamp every POLL_TIME_CLKS. As long as gt
1179 	 * is unparked, all switched in contexts will have a start time that is
1180 	 * within +/- POLL_TIME_CLKS of the most recent gt_stamp.
1181 	 *
1182 	 * If neither gt_stamp nor new_start has rolled over, then the
1183 	 * gt_stamp_hi does not need to be adjusted, however if one of them has
1184 	 * rolled over, we need to adjust gt_stamp_hi accordingly.
1185 	 *
1186 	 * The below conditions address the cases of new_start rollover and
1187 	 * gt_stamp_last rollover respectively.
1188 	 */
1189 	if (new_start < gt_stamp_last &&
1190 	    (new_start - gt_stamp_last) <= POLL_TIME_CLKS)
1191 		gt_stamp_hi++;
1192 
1193 	if (new_start > gt_stamp_last &&
1194 	    (gt_stamp_last - new_start) <= POLL_TIME_CLKS && gt_stamp_hi)
1195 		gt_stamp_hi--;
1196 
1197 	*prev_start = ((u64)gt_stamp_hi << 32) | new_start;
1198 }
1199 
1200 #define record_read(map_, field_) \
1201 	iosys_map_rd_field(map_, 0, struct guc_engine_usage_record, field_)
1202 
1203 /*
1204  * GuC updates shared memory and KMD reads it. Since this is not synchronized,
1205  * we run into a race where the value read is inconsistent. Sometimes the
1206  * inconsistency is in reading the upper MSB bytes of the last_in value when
1207  * this race occurs. 2 types of cases are seen - upper 8 bits are zero and upper
1208  * 24 bits are zero. Since these are non-zero values, it is non-trivial to
1209  * determine validity of these values. Instead we read the values multiple times
1210  * until they are consistent. In test runs, 3 attempts results in consistent
1211  * values. The upper bound is set to 6 attempts and may need to be tuned as per
1212  * any new occurences.
1213  */
1214 static void __get_engine_usage_record(struct intel_engine_cs *engine,
1215 				      u32 *last_in, u32 *id, u32 *total)
1216 {
1217 	struct iosys_map rec_map = intel_guc_engine_usage_record_map(engine);
1218 	int i = 0;
1219 
1220 	do {
1221 		*last_in = record_read(&rec_map, last_switch_in_stamp);
1222 		*id = record_read(&rec_map, current_context_index);
1223 		*total = record_read(&rec_map, total_runtime);
1224 
1225 		if (record_read(&rec_map, last_switch_in_stamp) == *last_in &&
1226 		    record_read(&rec_map, current_context_index) == *id &&
1227 		    record_read(&rec_map, total_runtime) == *total)
1228 			break;
1229 	} while (++i < 6);
1230 }
1231 
1232 static void guc_update_engine_gt_clks(struct intel_engine_cs *engine)
1233 {
1234 	struct intel_engine_guc_stats *stats = &engine->stats.guc;
1235 	struct intel_guc *guc = &engine->gt->uc.guc;
1236 	u32 last_switch, ctx_id, total;
1237 
1238 	lockdep_assert_held(&guc->timestamp.lock);
1239 
1240 	__get_engine_usage_record(engine, &last_switch, &ctx_id, &total);
1241 
1242 	stats->running = ctx_id != ~0U && last_switch;
1243 	if (stats->running)
1244 		__extend_last_switch(guc, &stats->start_gt_clk, last_switch);
1245 
1246 	/*
1247 	 * Instead of adjusting the total for overflow, just add the
1248 	 * difference from previous sample stats->total_gt_clks
1249 	 */
1250 	if (total && total != ~0U) {
1251 		stats->total_gt_clks += (u32)(total - stats->prev_total);
1252 		stats->prev_total = total;
1253 	}
1254 }
1255 
1256 static u32 gpm_timestamp_shift(struct intel_gt *gt)
1257 {
1258 	intel_wakeref_t wakeref;
1259 	u32 reg, shift;
1260 
1261 	with_intel_runtime_pm(gt->uncore->rpm, wakeref)
1262 		reg = intel_uncore_read(gt->uncore, RPM_CONFIG0);
1263 
1264 	shift = (reg & GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_MASK) >>
1265 		GEN10_RPM_CONFIG0_CTC_SHIFT_PARAMETER_SHIFT;
1266 
1267 	return 3 - shift;
1268 }
1269 
1270 static void guc_update_pm_timestamp(struct intel_guc *guc, ktime_t *now)
1271 {
1272 	struct intel_gt *gt = guc_to_gt(guc);
1273 	u32 gt_stamp_lo, gt_stamp_hi;
1274 	u64 gpm_ts;
1275 
1276 	lockdep_assert_held(&guc->timestamp.lock);
1277 
1278 	gt_stamp_hi = upper_32_bits(guc->timestamp.gt_stamp);
1279 	gpm_ts = intel_uncore_read64_2x32(gt->uncore, MISC_STATUS0,
1280 					  MISC_STATUS1) >> guc->timestamp.shift;
1281 	gt_stamp_lo = lower_32_bits(gpm_ts);
1282 	*now = ktime_get();
1283 
1284 	if (gt_stamp_lo < lower_32_bits(guc->timestamp.gt_stamp))
1285 		gt_stamp_hi++;
1286 
1287 	guc->timestamp.gt_stamp = ((u64)gt_stamp_hi << 32) | gt_stamp_lo;
1288 }
1289 
1290 /*
1291  * Unlike the execlist mode of submission total and active times are in terms of
1292  * gt clocks. The *now parameter is retained to return the cpu time at which the
1293  * busyness was sampled.
1294  */
1295 static ktime_t guc_engine_busyness(struct intel_engine_cs *engine, ktime_t *now)
1296 {
1297 	struct intel_engine_guc_stats stats_saved, *stats = &engine->stats.guc;
1298 	struct i915_gpu_error *gpu_error = &engine->i915->gpu_error;
1299 	struct intel_gt *gt = engine->gt;
1300 	struct intel_guc *guc = &gt->uc.guc;
1301 	u64 total, gt_stamp_saved;
1302 	unsigned long flags;
1303 	u32 reset_count;
1304 	bool in_reset;
1305 
1306 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1307 
1308 	/*
1309 	 * If a reset happened, we risk reading partially updated engine
1310 	 * busyness from GuC, so we just use the driver stored copy of busyness.
1311 	 * Synchronize with gt reset using reset_count and the
1312 	 * I915_RESET_BACKOFF flag. Note that reset flow updates the reset_count
1313 	 * after I915_RESET_BACKOFF flag, so ensure that the reset_count is
1314 	 * usable by checking the flag afterwards.
1315 	 */
1316 	reset_count = i915_reset_count(gpu_error);
1317 	in_reset = test_bit(I915_RESET_BACKOFF, &gt->reset.flags);
1318 
1319 	*now = ktime_get();
1320 
1321 	/*
1322 	 * The active busyness depends on start_gt_clk and gt_stamp.
1323 	 * gt_stamp is updated by i915 only when gt is awake and the
1324 	 * start_gt_clk is derived from GuC state. To get a consistent
1325 	 * view of activity, we query the GuC state only if gt is awake.
1326 	 */
1327 	if (!in_reset && intel_gt_pm_get_if_awake(gt)) {
1328 		stats_saved = *stats;
1329 		gt_stamp_saved = guc->timestamp.gt_stamp;
1330 		/*
1331 		 * Update gt_clks, then gt timestamp to simplify the 'gt_stamp -
1332 		 * start_gt_clk' calculation below for active engines.
1333 		 */
1334 		guc_update_engine_gt_clks(engine);
1335 		guc_update_pm_timestamp(guc, now);
1336 		intel_gt_pm_put_async(gt);
1337 		if (i915_reset_count(gpu_error) != reset_count) {
1338 			*stats = stats_saved;
1339 			guc->timestamp.gt_stamp = gt_stamp_saved;
1340 		}
1341 	}
1342 
1343 	total = intel_gt_clock_interval_to_ns(gt, stats->total_gt_clks);
1344 	if (stats->running) {
1345 		u64 clk = guc->timestamp.gt_stamp - stats->start_gt_clk;
1346 
1347 		total += intel_gt_clock_interval_to_ns(gt, clk);
1348 	}
1349 
1350 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1351 
1352 	return ns_to_ktime(total);
1353 }
1354 
1355 static void guc_enable_busyness_worker(struct intel_guc *guc)
1356 {
1357 	mod_delayed_work(system_highpri_wq, &guc->timestamp.work, guc->timestamp.ping_delay);
1358 }
1359 
1360 static void guc_cancel_busyness_worker(struct intel_guc *guc)
1361 {
1362 	cancel_delayed_work_sync(&guc->timestamp.work);
1363 }
1364 
1365 static void __reset_guc_busyness_stats(struct intel_guc *guc)
1366 {
1367 	struct intel_gt *gt = guc_to_gt(guc);
1368 	struct intel_engine_cs *engine;
1369 	enum intel_engine_id id;
1370 	unsigned long flags;
1371 	ktime_t unused;
1372 
1373 	guc_cancel_busyness_worker(guc);
1374 
1375 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1376 
1377 	guc_update_pm_timestamp(guc, &unused);
1378 	for_each_engine(engine, gt, id) {
1379 		guc_update_engine_gt_clks(engine);
1380 		engine->stats.guc.prev_total = 0;
1381 	}
1382 
1383 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1384 }
1385 
1386 static void __update_guc_busyness_stats(struct intel_guc *guc)
1387 {
1388 	struct intel_gt *gt = guc_to_gt(guc);
1389 	struct intel_engine_cs *engine;
1390 	enum intel_engine_id id;
1391 	unsigned long flags;
1392 	ktime_t unused;
1393 
1394 	guc->timestamp.last_stat_jiffies = jiffies;
1395 
1396 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1397 
1398 	guc_update_pm_timestamp(guc, &unused);
1399 	for_each_engine(engine, gt, id)
1400 		guc_update_engine_gt_clks(engine);
1401 
1402 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1403 }
1404 
1405 static void __guc_context_update_stats(struct intel_context *ce)
1406 {
1407 	struct intel_guc *guc = ce_to_guc(ce);
1408 	unsigned long flags;
1409 
1410 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1411 	lrc_update_runtime(ce);
1412 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1413 }
1414 
1415 static void guc_context_update_stats(struct intel_context *ce)
1416 {
1417 	if (!intel_context_pin_if_active(ce))
1418 		return;
1419 
1420 	__guc_context_update_stats(ce);
1421 	intel_context_unpin(ce);
1422 }
1423 
1424 static void guc_timestamp_ping(struct work_struct *wrk)
1425 {
1426 	struct intel_guc *guc = container_of(wrk, typeof(*guc),
1427 					     timestamp.work.work);
1428 	struct intel_uc *uc = container_of(guc, typeof(*uc), guc);
1429 	struct intel_gt *gt = guc_to_gt(guc);
1430 	struct intel_context *ce;
1431 	intel_wakeref_t wakeref;
1432 	unsigned long index;
1433 	int srcu, ret;
1434 
1435 	/*
1436 	 * Ideally the busyness worker should take a gt pm wakeref because the
1437 	 * worker only needs to be active while gt is awake. However, the
1438 	 * gt_park path cancels the worker synchronously and this complicates
1439 	 * the flow if the worker is also running at the same time. The cancel
1440 	 * waits for the worker and when the worker releases the wakeref, that
1441 	 * would call gt_park and would lead to a deadlock.
1442 	 *
1443 	 * The resolution is to take the global pm wakeref if runtime pm is
1444 	 * already active. If not, we don't need to update the busyness stats as
1445 	 * the stats would already be updated when the gt was parked.
1446 	 *
1447 	 * Note:
1448 	 * - We do not requeue the worker if we cannot take a reference to runtime
1449 	 *   pm since intel_guc_busyness_unpark would requeue the worker in the
1450 	 *   resume path.
1451 	 *
1452 	 * - If the gt was parked longer than time taken for GT timestamp to roll
1453 	 *   over, we ignore those rollovers since we don't care about tracking
1454 	 *   the exact GT time. We only care about roll overs when the gt is
1455 	 *   active and running workloads.
1456 	 *
1457 	 * - There is a window of time between gt_park and runtime suspend,
1458 	 *   where the worker may run. This is acceptable since the worker will
1459 	 *   not find any new data to update busyness.
1460 	 */
1461 	wakeref = intel_runtime_pm_get_if_active(&gt->i915->runtime_pm);
1462 	if (!wakeref)
1463 		return;
1464 
1465 	/*
1466 	 * Synchronize with gt reset to make sure the worker does not
1467 	 * corrupt the engine/guc stats. NB: can't actually block waiting
1468 	 * for a reset to complete as the reset requires flushing out
1469 	 * this worker thread if started. So waiting would deadlock.
1470 	 */
1471 	ret = intel_gt_reset_trylock(gt, &srcu);
1472 	if (ret)
1473 		goto err_trylock;
1474 
1475 	__update_guc_busyness_stats(guc);
1476 
1477 	/* adjust context stats for overflow */
1478 	xa_for_each(&guc->context_lookup, index, ce)
1479 		guc_context_update_stats(ce);
1480 
1481 	intel_gt_reset_unlock(gt, srcu);
1482 
1483 	guc_enable_busyness_worker(guc);
1484 
1485 err_trylock:
1486 	intel_runtime_pm_put(&gt->i915->runtime_pm, wakeref);
1487 }
1488 
1489 static int guc_action_enable_usage_stats(struct intel_guc *guc)
1490 {
1491 	u32 offset = intel_guc_engine_usage_offset(guc);
1492 	u32 action[] = {
1493 		INTEL_GUC_ACTION_SET_ENG_UTIL_BUFF,
1494 		offset,
1495 		0,
1496 	};
1497 
1498 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
1499 }
1500 
1501 static int guc_init_engine_stats(struct intel_guc *guc)
1502 {
1503 	struct intel_gt *gt = guc_to_gt(guc);
1504 	intel_wakeref_t wakeref;
1505 	int ret;
1506 
1507 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
1508 		ret = guc_action_enable_usage_stats(guc);
1509 
1510 	if (ret)
1511 		guc_err(guc, "Failed to enable usage stats: %pe\n", ERR_PTR(ret));
1512 	else
1513 		guc_enable_busyness_worker(guc);
1514 
1515 	return ret;
1516 }
1517 
1518 static void guc_fini_engine_stats(struct intel_guc *guc)
1519 {
1520 	guc_cancel_busyness_worker(guc);
1521 }
1522 
1523 void intel_guc_busyness_park(struct intel_gt *gt)
1524 {
1525 	struct intel_guc *guc = &gt->uc.guc;
1526 
1527 	if (!guc_submission_initialized(guc))
1528 		return;
1529 
1530 	/*
1531 	 * There is a race with suspend flow where the worker runs after suspend
1532 	 * and causes an unclaimed register access warning. Cancel the worker
1533 	 * synchronously here.
1534 	 */
1535 	guc_cancel_busyness_worker(guc);
1536 
1537 	/*
1538 	 * Before parking, we should sample engine busyness stats if we need to.
1539 	 * We can skip it if we are less than half a ping from the last time we
1540 	 * sampled the busyness stats.
1541 	 */
1542 	if (guc->timestamp.last_stat_jiffies &&
1543 	    !time_after(jiffies, guc->timestamp.last_stat_jiffies +
1544 			(guc->timestamp.ping_delay / 2)))
1545 		return;
1546 
1547 	__update_guc_busyness_stats(guc);
1548 }
1549 
1550 void intel_guc_busyness_unpark(struct intel_gt *gt)
1551 {
1552 	struct intel_guc *guc = &gt->uc.guc;
1553 	unsigned long flags;
1554 	ktime_t unused;
1555 
1556 	if (!guc_submission_initialized(guc))
1557 		return;
1558 
1559 	spin_lock_irqsave(&guc->timestamp.lock, flags);
1560 	guc_update_pm_timestamp(guc, &unused);
1561 	spin_unlock_irqrestore(&guc->timestamp.lock, flags);
1562 	guc_enable_busyness_worker(guc);
1563 }
1564 
1565 static inline bool
1566 submission_disabled(struct intel_guc *guc)
1567 {
1568 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1569 
1570 	return unlikely(!sched_engine ||
1571 			!__tasklet_is_enabled(&sched_engine->tasklet) ||
1572 			intel_gt_is_wedged(guc_to_gt(guc)));
1573 }
1574 
1575 static void disable_submission(struct intel_guc *guc)
1576 {
1577 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1578 
1579 	if (__tasklet_is_enabled(&sched_engine->tasklet)) {
1580 		GEM_BUG_ON(!guc->ct.enabled);
1581 		__tasklet_disable_sync_once(&sched_engine->tasklet);
1582 		sched_engine->tasklet.callback = NULL;
1583 	}
1584 }
1585 
1586 static void enable_submission(struct intel_guc *guc)
1587 {
1588 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1589 	unsigned long flags;
1590 
1591 	spin_lock_irqsave(&guc->sched_engine->lock, flags);
1592 	sched_engine->tasklet.callback = guc_submission_tasklet;
1593 	wmb();	/* Make sure callback visible */
1594 	if (!__tasklet_is_enabled(&sched_engine->tasklet) &&
1595 	    __tasklet_enable(&sched_engine->tasklet)) {
1596 		GEM_BUG_ON(!guc->ct.enabled);
1597 
1598 		/* And kick in case we missed a new request submission. */
1599 		tasklet_hi_schedule(&sched_engine->tasklet);
1600 	}
1601 	spin_unlock_irqrestore(&guc->sched_engine->lock, flags);
1602 }
1603 
1604 static void guc_flush_submissions(struct intel_guc *guc)
1605 {
1606 	struct i915_sched_engine * const sched_engine = guc->sched_engine;
1607 	unsigned long flags;
1608 
1609 	spin_lock_irqsave(&sched_engine->lock, flags);
1610 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1611 }
1612 
1613 static void guc_flush_destroyed_contexts(struct intel_guc *guc);
1614 
1615 void intel_guc_submission_reset_prepare(struct intel_guc *guc)
1616 {
1617 	if (unlikely(!guc_submission_initialized(guc))) {
1618 		/* Reset called during driver load? GuC not yet initialised! */
1619 		return;
1620 	}
1621 
1622 	intel_gt_park_heartbeats(guc_to_gt(guc));
1623 	disable_submission(guc);
1624 	guc->interrupts.disable(guc);
1625 	__reset_guc_busyness_stats(guc);
1626 
1627 	/* Flush IRQ handler */
1628 	spin_lock_irq(guc_to_gt(guc)->irq_lock);
1629 	spin_unlock_irq(guc_to_gt(guc)->irq_lock);
1630 
1631 	guc_flush_submissions(guc);
1632 	guc_flush_destroyed_contexts(guc);
1633 	flush_work(&guc->ct.requests.worker);
1634 
1635 	scrub_guc_desc_for_outstanding_g2h(guc);
1636 }
1637 
1638 static struct intel_engine_cs *
1639 guc_virtual_get_sibling(struct intel_engine_cs *ve, unsigned int sibling)
1640 {
1641 	struct intel_engine_cs *engine;
1642 	intel_engine_mask_t tmp, mask = ve->mask;
1643 	unsigned int num_siblings = 0;
1644 
1645 	for_each_engine_masked(engine, ve->gt, mask, tmp)
1646 		if (num_siblings++ == sibling)
1647 			return engine;
1648 
1649 	return NULL;
1650 }
1651 
1652 static inline struct intel_engine_cs *
1653 __context_to_physical_engine(struct intel_context *ce)
1654 {
1655 	struct intel_engine_cs *engine = ce->engine;
1656 
1657 	if (intel_engine_is_virtual(engine))
1658 		engine = guc_virtual_get_sibling(engine, 0);
1659 
1660 	return engine;
1661 }
1662 
1663 static void guc_reset_state(struct intel_context *ce, u32 head, bool scrub)
1664 {
1665 	struct intel_engine_cs *engine = __context_to_physical_engine(ce);
1666 
1667 	if (!intel_context_is_schedulable(ce))
1668 		return;
1669 
1670 	GEM_BUG_ON(!intel_context_is_pinned(ce));
1671 
1672 	/*
1673 	 * We want a simple context + ring to execute the breadcrumb update.
1674 	 * We cannot rely on the context being intact across the GPU hang,
1675 	 * so clear it and rebuild just what we need for the breadcrumb.
1676 	 * All pending requests for this context will be zapped, and any
1677 	 * future request will be after userspace has had the opportunity
1678 	 * to recreate its own state.
1679 	 */
1680 	if (scrub)
1681 		lrc_init_regs(ce, engine, true);
1682 
1683 	/* Rerun the request; its payload has been neutered (if guilty). */
1684 	lrc_update_regs(ce, engine, head);
1685 }
1686 
1687 static void guc_engine_reset_prepare(struct intel_engine_cs *engine)
1688 {
1689 	/*
1690 	 * Wa_22011802037: In addition to stopping the cs, we need
1691 	 * to wait for any pending mi force wakeups
1692 	 */
1693 	if (intel_engine_reset_needs_wa_22011802037(engine->gt)) {
1694 		intel_engine_stop_cs(engine);
1695 		intel_engine_wait_for_pending_mi_fw(engine);
1696 	}
1697 }
1698 
1699 static void guc_reset_nop(struct intel_engine_cs *engine)
1700 {
1701 }
1702 
1703 static void guc_rewind_nop(struct intel_engine_cs *engine, bool stalled)
1704 {
1705 }
1706 
1707 static void
1708 __unwind_incomplete_requests(struct intel_context *ce)
1709 {
1710 	struct i915_request *rq, *rn;
1711 	struct list_head *pl;
1712 	int prio = I915_PRIORITY_INVALID;
1713 	struct i915_sched_engine * const sched_engine =
1714 		ce->engine->sched_engine;
1715 	unsigned long flags;
1716 
1717 	spin_lock_irqsave(&sched_engine->lock, flags);
1718 	spin_lock(&ce->guc_state.lock);
1719 	list_for_each_entry_safe_reverse(rq, rn,
1720 					 &ce->guc_state.requests,
1721 					 sched.link) {
1722 		if (i915_request_completed(rq))
1723 			continue;
1724 
1725 		list_del_init(&rq->sched.link);
1726 		__i915_request_unsubmit(rq);
1727 
1728 		/* Push the request back into the queue for later resubmission. */
1729 		GEM_BUG_ON(rq_prio(rq) == I915_PRIORITY_INVALID);
1730 		if (rq_prio(rq) != prio) {
1731 			prio = rq_prio(rq);
1732 			pl = i915_sched_lookup_priolist(sched_engine, prio);
1733 		}
1734 		GEM_BUG_ON(i915_sched_engine_is_empty(sched_engine));
1735 
1736 		list_add(&rq->sched.link, pl);
1737 		set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
1738 	}
1739 	spin_unlock(&ce->guc_state.lock);
1740 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1741 }
1742 
1743 static void __guc_reset_context(struct intel_context *ce, intel_engine_mask_t stalled)
1744 {
1745 	bool guilty;
1746 	struct i915_request *rq;
1747 	unsigned long flags;
1748 	u32 head;
1749 	int i, number_children = ce->parallel.number_children;
1750 	struct intel_context *parent = ce;
1751 
1752 	GEM_BUG_ON(intel_context_is_child(ce));
1753 
1754 	intel_context_get(ce);
1755 
1756 	/*
1757 	 * GuC will implicitly mark the context as non-schedulable when it sends
1758 	 * the reset notification. Make sure our state reflects this change. The
1759 	 * context will be marked enabled on resubmission.
1760 	 */
1761 	spin_lock_irqsave(&ce->guc_state.lock, flags);
1762 	clr_context_enabled(ce);
1763 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
1764 
1765 	/*
1766 	 * For each context in the relationship find the hanging request
1767 	 * resetting each context / request as needed
1768 	 */
1769 	for (i = 0; i < number_children + 1; ++i) {
1770 		if (!intel_context_is_pinned(ce))
1771 			goto next_context;
1772 
1773 		guilty = false;
1774 		rq = intel_context_get_active_request(ce);
1775 		if (!rq) {
1776 			head = ce->ring->tail;
1777 			goto out_replay;
1778 		}
1779 
1780 		if (i915_request_started(rq))
1781 			guilty = stalled & ce->engine->mask;
1782 
1783 		GEM_BUG_ON(i915_active_is_idle(&ce->active));
1784 		head = intel_ring_wrap(ce->ring, rq->head);
1785 
1786 		__i915_request_reset(rq, guilty);
1787 		i915_request_put(rq);
1788 out_replay:
1789 		guc_reset_state(ce, head, guilty);
1790 next_context:
1791 		if (i != number_children)
1792 			ce = list_next_entry(ce, parallel.child_link);
1793 	}
1794 
1795 	__unwind_incomplete_requests(parent);
1796 	intel_context_put(parent);
1797 }
1798 
1799 void intel_guc_submission_reset(struct intel_guc *guc, intel_engine_mask_t stalled)
1800 {
1801 	struct intel_context *ce;
1802 	unsigned long index;
1803 	unsigned long flags;
1804 
1805 	if (unlikely(!guc_submission_initialized(guc))) {
1806 		/* Reset called during driver load? GuC not yet initialised! */
1807 		return;
1808 	}
1809 
1810 	xa_lock_irqsave(&guc->context_lookup, flags);
1811 	xa_for_each(&guc->context_lookup, index, ce) {
1812 		if (!kref_get_unless_zero(&ce->ref))
1813 			continue;
1814 
1815 		xa_unlock(&guc->context_lookup);
1816 
1817 		if (intel_context_is_pinned(ce) &&
1818 		    !intel_context_is_child(ce))
1819 			__guc_reset_context(ce, stalled);
1820 
1821 		intel_context_put(ce);
1822 
1823 		xa_lock(&guc->context_lookup);
1824 	}
1825 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1826 
1827 	/* GuC is blown away, drop all references to contexts */
1828 	xa_destroy(&guc->context_lookup);
1829 }
1830 
1831 static void guc_cancel_context_requests(struct intel_context *ce)
1832 {
1833 	struct i915_sched_engine *sched_engine = ce_to_guc(ce)->sched_engine;
1834 	struct i915_request *rq;
1835 	unsigned long flags;
1836 
1837 	/* Mark all executing requests as skipped. */
1838 	spin_lock_irqsave(&sched_engine->lock, flags);
1839 	spin_lock(&ce->guc_state.lock);
1840 	list_for_each_entry(rq, &ce->guc_state.requests, sched.link)
1841 		i915_request_put(i915_request_mark_eio(rq));
1842 	spin_unlock(&ce->guc_state.lock);
1843 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1844 }
1845 
1846 static void
1847 guc_cancel_sched_engine_requests(struct i915_sched_engine *sched_engine)
1848 {
1849 	struct i915_request *rq, *rn;
1850 	struct rb_node *rb;
1851 	unsigned long flags;
1852 
1853 	/* Can be called during boot if GuC fails to load */
1854 	if (!sched_engine)
1855 		return;
1856 
1857 	/*
1858 	 * Before we call engine->cancel_requests(), we should have exclusive
1859 	 * access to the submission state. This is arranged for us by the
1860 	 * caller disabling the interrupt generation, the tasklet and other
1861 	 * threads that may then access the same state, giving us a free hand
1862 	 * to reset state. However, we still need to let lockdep be aware that
1863 	 * we know this state may be accessed in hardirq context, so we
1864 	 * disable the irq around this manipulation and we want to keep
1865 	 * the spinlock focused on its duties and not accidentally conflate
1866 	 * coverage to the submission's irq state. (Similarly, although we
1867 	 * shouldn't need to disable irq around the manipulation of the
1868 	 * submission's irq state, we also wish to remind ourselves that
1869 	 * it is irq state.)
1870 	 */
1871 	spin_lock_irqsave(&sched_engine->lock, flags);
1872 
1873 	/* Flush the queued requests to the timeline list (for retiring). */
1874 	while ((rb = rb_first_cached(&sched_engine->queue))) {
1875 		struct i915_priolist *p = to_priolist(rb);
1876 
1877 		priolist_for_each_request_consume(rq, rn, p) {
1878 			list_del_init(&rq->sched.link);
1879 
1880 			__i915_request_submit(rq);
1881 
1882 			i915_request_put(i915_request_mark_eio(rq));
1883 		}
1884 
1885 		rb_erase_cached(&p->node, &sched_engine->queue);
1886 		i915_priolist_free(p);
1887 	}
1888 
1889 	/* Remaining _unready_ requests will be nop'ed when submitted */
1890 
1891 	sched_engine->queue_priority_hint = INT_MIN;
1892 	sched_engine->queue = RB_ROOT_CACHED;
1893 
1894 	spin_unlock_irqrestore(&sched_engine->lock, flags);
1895 }
1896 
1897 void intel_guc_submission_cancel_requests(struct intel_guc *guc)
1898 {
1899 	struct intel_context *ce;
1900 	unsigned long index;
1901 	unsigned long flags;
1902 
1903 	xa_lock_irqsave(&guc->context_lookup, flags);
1904 	xa_for_each(&guc->context_lookup, index, ce) {
1905 		if (!kref_get_unless_zero(&ce->ref))
1906 			continue;
1907 
1908 		xa_unlock(&guc->context_lookup);
1909 
1910 		if (intel_context_is_pinned(ce) &&
1911 		    !intel_context_is_child(ce))
1912 			guc_cancel_context_requests(ce);
1913 
1914 		intel_context_put(ce);
1915 
1916 		xa_lock(&guc->context_lookup);
1917 	}
1918 	xa_unlock_irqrestore(&guc->context_lookup, flags);
1919 
1920 	guc_cancel_sched_engine_requests(guc->sched_engine);
1921 
1922 	/* GuC is blown away, drop all references to contexts */
1923 	xa_destroy(&guc->context_lookup);
1924 }
1925 
1926 void intel_guc_submission_reset_finish(struct intel_guc *guc)
1927 {
1928 	/* Reset called during driver load or during wedge? */
1929 	if (unlikely(!guc_submission_initialized(guc) ||
1930 		     intel_gt_is_wedged(guc_to_gt(guc)))) {
1931 		return;
1932 	}
1933 
1934 	/*
1935 	 * Technically possible for either of these values to be non-zero here,
1936 	 * but very unlikely + harmless. Regardless let's add a warn so we can
1937 	 * see in CI if this happens frequently / a precursor to taking down the
1938 	 * machine.
1939 	 */
1940 	GEM_WARN_ON(atomic_read(&guc->outstanding_submission_g2h));
1941 	atomic_set(&guc->outstanding_submission_g2h, 0);
1942 
1943 	intel_guc_global_policies_update(guc);
1944 	enable_submission(guc);
1945 	intel_gt_unpark_heartbeats(guc_to_gt(guc));
1946 }
1947 
1948 static void destroyed_worker_func(struct work_struct *w);
1949 static void reset_fail_worker_func(struct work_struct *w);
1950 
1951 /*
1952  * Set up the memory resources to be shared with the GuC (via the GGTT)
1953  * at firmware loading time.
1954  */
1955 int intel_guc_submission_init(struct intel_guc *guc)
1956 {
1957 	struct intel_gt *gt = guc_to_gt(guc);
1958 	int ret;
1959 
1960 	if (guc->submission_initialized)
1961 		return 0;
1962 
1963 	if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 0, 0)) {
1964 		ret = guc_lrc_desc_pool_create_v69(guc);
1965 		if (ret)
1966 			return ret;
1967 	}
1968 
1969 	guc->submission_state.guc_ids_bitmap =
1970 		bitmap_zalloc(NUMBER_MULTI_LRC_GUC_ID(guc), GFP_KERNEL);
1971 	if (!guc->submission_state.guc_ids_bitmap) {
1972 		ret = -ENOMEM;
1973 		goto destroy_pool;
1974 	}
1975 
1976 	guc->timestamp.ping_delay = (POLL_TIME_CLKS / gt->clock_frequency + 1) * HZ;
1977 	guc->timestamp.shift = gpm_timestamp_shift(gt);
1978 	guc->submission_initialized = true;
1979 
1980 	return 0;
1981 
1982 destroy_pool:
1983 	guc_lrc_desc_pool_destroy_v69(guc);
1984 
1985 	return ret;
1986 }
1987 
1988 void intel_guc_submission_fini(struct intel_guc *guc)
1989 {
1990 	if (!guc->submission_initialized)
1991 		return;
1992 
1993 	guc_flush_destroyed_contexts(guc);
1994 	guc_lrc_desc_pool_destroy_v69(guc);
1995 	i915_sched_engine_put(guc->sched_engine);
1996 	bitmap_free(guc->submission_state.guc_ids_bitmap);
1997 	guc->submission_initialized = false;
1998 }
1999 
2000 static inline void queue_request(struct i915_sched_engine *sched_engine,
2001 				 struct i915_request *rq,
2002 				 int prio)
2003 {
2004 	GEM_BUG_ON(!list_empty(&rq->sched.link));
2005 	list_add_tail(&rq->sched.link,
2006 		      i915_sched_lookup_priolist(sched_engine, prio));
2007 	set_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
2008 	tasklet_hi_schedule(&sched_engine->tasklet);
2009 }
2010 
2011 static int guc_bypass_tasklet_submit(struct intel_guc *guc,
2012 				     struct i915_request *rq)
2013 {
2014 	int ret = 0;
2015 
2016 	__i915_request_submit(rq);
2017 
2018 	trace_i915_request_in(rq, 0);
2019 
2020 	if (is_multi_lrc_rq(rq)) {
2021 		if (multi_lrc_submit(rq)) {
2022 			ret = guc_wq_item_append(guc, rq);
2023 			if (!ret)
2024 				ret = guc_add_request(guc, rq);
2025 		}
2026 	} else {
2027 		guc_set_lrc_tail(rq);
2028 		ret = guc_add_request(guc, rq);
2029 	}
2030 
2031 	if (unlikely(ret == -EPIPE))
2032 		disable_submission(guc);
2033 
2034 	return ret;
2035 }
2036 
2037 static bool need_tasklet(struct intel_guc *guc, struct i915_request *rq)
2038 {
2039 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2040 	struct intel_context *ce = request_to_scheduling_context(rq);
2041 
2042 	return submission_disabled(guc) || guc->stalled_request ||
2043 		!i915_sched_engine_is_empty(sched_engine) ||
2044 		!ctx_id_mapped(guc, ce->guc_id.id);
2045 }
2046 
2047 static void guc_submit_request(struct i915_request *rq)
2048 {
2049 	struct i915_sched_engine *sched_engine = rq->engine->sched_engine;
2050 	struct intel_guc *guc = &rq->engine->gt->uc.guc;
2051 	unsigned long flags;
2052 
2053 	/* Will be called from irq-context when using foreign fences. */
2054 	spin_lock_irqsave(&sched_engine->lock, flags);
2055 
2056 	if (need_tasklet(guc, rq))
2057 		queue_request(sched_engine, rq, rq_prio(rq));
2058 	else if (guc_bypass_tasklet_submit(guc, rq) == -EBUSY)
2059 		tasklet_hi_schedule(&sched_engine->tasklet);
2060 
2061 	spin_unlock_irqrestore(&sched_engine->lock, flags);
2062 }
2063 
2064 static int new_guc_id(struct intel_guc *guc, struct intel_context *ce)
2065 {
2066 	int ret;
2067 
2068 	GEM_BUG_ON(intel_context_is_child(ce));
2069 
2070 	if (intel_context_is_parent(ce))
2071 		ret = bitmap_find_free_region(guc->submission_state.guc_ids_bitmap,
2072 					      NUMBER_MULTI_LRC_GUC_ID(guc),
2073 					      order_base_2(ce->parallel.number_children
2074 							   + 1));
2075 	else
2076 		ret = ida_simple_get(&guc->submission_state.guc_ids,
2077 				     NUMBER_MULTI_LRC_GUC_ID(guc),
2078 				     guc->submission_state.num_guc_ids,
2079 				     GFP_KERNEL | __GFP_RETRY_MAYFAIL |
2080 				     __GFP_NOWARN);
2081 	if (unlikely(ret < 0))
2082 		return ret;
2083 
2084 	if (!intel_context_is_parent(ce))
2085 		++guc->submission_state.guc_ids_in_use;
2086 
2087 	ce->guc_id.id = ret;
2088 	return 0;
2089 }
2090 
2091 static void __release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2092 {
2093 	GEM_BUG_ON(intel_context_is_child(ce));
2094 
2095 	if (!context_guc_id_invalid(ce)) {
2096 		if (intel_context_is_parent(ce)) {
2097 			bitmap_release_region(guc->submission_state.guc_ids_bitmap,
2098 					      ce->guc_id.id,
2099 					      order_base_2(ce->parallel.number_children
2100 							   + 1));
2101 		} else {
2102 			--guc->submission_state.guc_ids_in_use;
2103 			ida_simple_remove(&guc->submission_state.guc_ids,
2104 					  ce->guc_id.id);
2105 		}
2106 		clr_ctx_id_mapping(guc, ce->guc_id.id);
2107 		set_context_guc_id_invalid(ce);
2108 	}
2109 	if (!list_empty(&ce->guc_id.link))
2110 		list_del_init(&ce->guc_id.link);
2111 }
2112 
2113 static void release_guc_id(struct intel_guc *guc, struct intel_context *ce)
2114 {
2115 	unsigned long flags;
2116 
2117 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2118 	__release_guc_id(guc, ce);
2119 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2120 }
2121 
2122 static int steal_guc_id(struct intel_guc *guc, struct intel_context *ce)
2123 {
2124 	struct intel_context *cn;
2125 
2126 	lockdep_assert_held(&guc->submission_state.lock);
2127 	GEM_BUG_ON(intel_context_is_child(ce));
2128 	GEM_BUG_ON(intel_context_is_parent(ce));
2129 
2130 	if (!list_empty(&guc->submission_state.guc_id_list)) {
2131 		cn = list_first_entry(&guc->submission_state.guc_id_list,
2132 				      struct intel_context,
2133 				      guc_id.link);
2134 
2135 		GEM_BUG_ON(atomic_read(&cn->guc_id.ref));
2136 		GEM_BUG_ON(context_guc_id_invalid(cn));
2137 		GEM_BUG_ON(intel_context_is_child(cn));
2138 		GEM_BUG_ON(intel_context_is_parent(cn));
2139 
2140 		list_del_init(&cn->guc_id.link);
2141 		ce->guc_id.id = cn->guc_id.id;
2142 
2143 		spin_lock(&cn->guc_state.lock);
2144 		clr_context_registered(cn);
2145 		spin_unlock(&cn->guc_state.lock);
2146 
2147 		set_context_guc_id_invalid(cn);
2148 
2149 #ifdef CONFIG_DRM_I915_SELFTEST
2150 		guc->number_guc_id_stolen++;
2151 #endif
2152 
2153 		return 0;
2154 	} else {
2155 		return -EAGAIN;
2156 	}
2157 }
2158 
2159 static int assign_guc_id(struct intel_guc *guc, struct intel_context *ce)
2160 {
2161 	int ret;
2162 
2163 	lockdep_assert_held(&guc->submission_state.lock);
2164 	GEM_BUG_ON(intel_context_is_child(ce));
2165 
2166 	ret = new_guc_id(guc, ce);
2167 	if (unlikely(ret < 0)) {
2168 		if (intel_context_is_parent(ce))
2169 			return -ENOSPC;
2170 
2171 		ret = steal_guc_id(guc, ce);
2172 		if (ret < 0)
2173 			return ret;
2174 	}
2175 
2176 	if (intel_context_is_parent(ce)) {
2177 		struct intel_context *child;
2178 		int i = 1;
2179 
2180 		for_each_child(ce, child)
2181 			child->guc_id.id = ce->guc_id.id + i++;
2182 	}
2183 
2184 	return 0;
2185 }
2186 
2187 #define PIN_GUC_ID_TRIES	4
2188 static int pin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2189 {
2190 	int ret = 0;
2191 	unsigned long flags, tries = PIN_GUC_ID_TRIES;
2192 
2193 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref));
2194 
2195 try_again:
2196 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2197 
2198 	might_lock(&ce->guc_state.lock);
2199 
2200 	if (context_guc_id_invalid(ce)) {
2201 		ret = assign_guc_id(guc, ce);
2202 		if (ret)
2203 			goto out_unlock;
2204 		ret = 1;	/* Indidcates newly assigned guc_id */
2205 	}
2206 	if (!list_empty(&ce->guc_id.link))
2207 		list_del_init(&ce->guc_id.link);
2208 	atomic_inc(&ce->guc_id.ref);
2209 
2210 out_unlock:
2211 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2212 
2213 	/*
2214 	 * -EAGAIN indicates no guc_id are available, let's retire any
2215 	 * outstanding requests to see if that frees up a guc_id. If the first
2216 	 * retire didn't help, insert a sleep with the timeslice duration before
2217 	 * attempting to retire more requests. Double the sleep period each
2218 	 * subsequent pass before finally giving up. The sleep period has max of
2219 	 * 100ms and minimum of 1ms.
2220 	 */
2221 	if (ret == -EAGAIN && --tries) {
2222 		if (PIN_GUC_ID_TRIES - tries > 1) {
2223 			unsigned int timeslice_shifted =
2224 				ce->engine->props.timeslice_duration_ms <<
2225 				(PIN_GUC_ID_TRIES - tries - 2);
2226 			unsigned int max = min_t(unsigned int, 100,
2227 						 timeslice_shifted);
2228 
2229 			msleep(max_t(unsigned int, max, 1));
2230 		}
2231 		intel_gt_retire_requests(guc_to_gt(guc));
2232 		goto try_again;
2233 	}
2234 
2235 	return ret;
2236 }
2237 
2238 static void unpin_guc_id(struct intel_guc *guc, struct intel_context *ce)
2239 {
2240 	unsigned long flags;
2241 
2242 	GEM_BUG_ON(atomic_read(&ce->guc_id.ref) < 0);
2243 	GEM_BUG_ON(intel_context_is_child(ce));
2244 
2245 	if (unlikely(context_guc_id_invalid(ce) ||
2246 		     intel_context_is_parent(ce)))
2247 		return;
2248 
2249 	spin_lock_irqsave(&guc->submission_state.lock, flags);
2250 	if (!context_guc_id_invalid(ce) && list_empty(&ce->guc_id.link) &&
2251 	    !atomic_read(&ce->guc_id.ref))
2252 		list_add_tail(&ce->guc_id.link,
2253 			      &guc->submission_state.guc_id_list);
2254 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
2255 }
2256 
2257 static int __guc_action_register_multi_lrc_v69(struct intel_guc *guc,
2258 					       struct intel_context *ce,
2259 					       u32 guc_id,
2260 					       u32 offset,
2261 					       bool loop)
2262 {
2263 	struct intel_context *child;
2264 	u32 action[4 + MAX_ENGINE_INSTANCE];
2265 	int len = 0;
2266 
2267 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2268 
2269 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2270 	action[len++] = guc_id;
2271 	action[len++] = ce->parallel.number_children + 1;
2272 	action[len++] = offset;
2273 	for_each_child(ce, child) {
2274 		offset += sizeof(struct guc_lrc_desc_v69);
2275 		action[len++] = offset;
2276 	}
2277 
2278 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2279 }
2280 
2281 static int __guc_action_register_multi_lrc_v70(struct intel_guc *guc,
2282 					       struct intel_context *ce,
2283 					       struct guc_ctxt_registration_info *info,
2284 					       bool loop)
2285 {
2286 	struct intel_context *child;
2287 	u32 action[13 + (MAX_ENGINE_INSTANCE * 2)];
2288 	int len = 0;
2289 	u32 next_id;
2290 
2291 	GEM_BUG_ON(ce->parallel.number_children > MAX_ENGINE_INSTANCE);
2292 
2293 	action[len++] = INTEL_GUC_ACTION_REGISTER_CONTEXT_MULTI_LRC;
2294 	action[len++] = info->flags;
2295 	action[len++] = info->context_idx;
2296 	action[len++] = info->engine_class;
2297 	action[len++] = info->engine_submit_mask;
2298 	action[len++] = info->wq_desc_lo;
2299 	action[len++] = info->wq_desc_hi;
2300 	action[len++] = info->wq_base_lo;
2301 	action[len++] = info->wq_base_hi;
2302 	action[len++] = info->wq_size;
2303 	action[len++] = ce->parallel.number_children + 1;
2304 	action[len++] = info->hwlrca_lo;
2305 	action[len++] = info->hwlrca_hi;
2306 
2307 	next_id = info->context_idx + 1;
2308 	for_each_child(ce, child) {
2309 		GEM_BUG_ON(next_id++ != child->guc_id.id);
2310 
2311 		/*
2312 		 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2313 		 * only supports 32 bit currently.
2314 		 */
2315 		action[len++] = lower_32_bits(child->lrc.lrca);
2316 		action[len++] = upper_32_bits(child->lrc.lrca);
2317 	}
2318 
2319 	GEM_BUG_ON(len > ARRAY_SIZE(action));
2320 
2321 	return guc_submission_send_busy_loop(guc, action, len, 0, loop);
2322 }
2323 
2324 static int __guc_action_register_context_v69(struct intel_guc *guc,
2325 					     u32 guc_id,
2326 					     u32 offset,
2327 					     bool loop)
2328 {
2329 	u32 action[] = {
2330 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2331 		guc_id,
2332 		offset,
2333 	};
2334 
2335 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2336 					     0, loop);
2337 }
2338 
2339 static int __guc_action_register_context_v70(struct intel_guc *guc,
2340 					     struct guc_ctxt_registration_info *info,
2341 					     bool loop)
2342 {
2343 	u32 action[] = {
2344 		INTEL_GUC_ACTION_REGISTER_CONTEXT,
2345 		info->flags,
2346 		info->context_idx,
2347 		info->engine_class,
2348 		info->engine_submit_mask,
2349 		info->wq_desc_lo,
2350 		info->wq_desc_hi,
2351 		info->wq_base_lo,
2352 		info->wq_base_hi,
2353 		info->wq_size,
2354 		info->hwlrca_lo,
2355 		info->hwlrca_hi,
2356 	};
2357 
2358 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2359 					     0, loop);
2360 }
2361 
2362 static void prepare_context_registration_info_v69(struct intel_context *ce);
2363 static void prepare_context_registration_info_v70(struct intel_context *ce,
2364 						  struct guc_ctxt_registration_info *info);
2365 
2366 static int
2367 register_context_v69(struct intel_guc *guc, struct intel_context *ce, bool loop)
2368 {
2369 	u32 offset = intel_guc_ggtt_offset(guc, guc->lrc_desc_pool_v69) +
2370 		ce->guc_id.id * sizeof(struct guc_lrc_desc_v69);
2371 
2372 	prepare_context_registration_info_v69(ce);
2373 
2374 	if (intel_context_is_parent(ce))
2375 		return __guc_action_register_multi_lrc_v69(guc, ce, ce->guc_id.id,
2376 							   offset, loop);
2377 	else
2378 		return __guc_action_register_context_v69(guc, ce->guc_id.id,
2379 							 offset, loop);
2380 }
2381 
2382 static int
2383 register_context_v70(struct intel_guc *guc, struct intel_context *ce, bool loop)
2384 {
2385 	struct guc_ctxt_registration_info info;
2386 
2387 	prepare_context_registration_info_v70(ce, &info);
2388 
2389 	if (intel_context_is_parent(ce))
2390 		return __guc_action_register_multi_lrc_v70(guc, ce, &info, loop);
2391 	else
2392 		return __guc_action_register_context_v70(guc, &info, loop);
2393 }
2394 
2395 static int register_context(struct intel_context *ce, bool loop)
2396 {
2397 	struct intel_guc *guc = ce_to_guc(ce);
2398 	int ret;
2399 
2400 	GEM_BUG_ON(intel_context_is_child(ce));
2401 	trace_intel_context_register(ce);
2402 
2403 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2404 		ret = register_context_v70(guc, ce, loop);
2405 	else
2406 		ret = register_context_v69(guc, ce, loop);
2407 
2408 	if (likely(!ret)) {
2409 		unsigned long flags;
2410 
2411 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2412 		set_context_registered(ce);
2413 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2414 
2415 		if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0))
2416 			guc_context_policy_init_v70(ce, loop);
2417 	}
2418 
2419 	return ret;
2420 }
2421 
2422 static int __guc_action_deregister_context(struct intel_guc *guc,
2423 					   u32 guc_id)
2424 {
2425 	u32 action[] = {
2426 		INTEL_GUC_ACTION_DEREGISTER_CONTEXT,
2427 		guc_id,
2428 	};
2429 
2430 	return guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2431 					     G2H_LEN_DW_DEREGISTER_CONTEXT,
2432 					     true);
2433 }
2434 
2435 static int deregister_context(struct intel_context *ce, u32 guc_id)
2436 {
2437 	struct intel_guc *guc = ce_to_guc(ce);
2438 
2439 	GEM_BUG_ON(intel_context_is_child(ce));
2440 	trace_intel_context_deregister(ce);
2441 
2442 	return __guc_action_deregister_context(guc, guc_id);
2443 }
2444 
2445 static inline void clear_children_join_go_memory(struct intel_context *ce)
2446 {
2447 	struct parent_scratch *ps = __get_parent_scratch(ce);
2448 	int i;
2449 
2450 	ps->go.semaphore = 0;
2451 	for (i = 0; i < ce->parallel.number_children + 1; ++i)
2452 		ps->join[i].semaphore = 0;
2453 }
2454 
2455 static inline u32 get_children_go_value(struct intel_context *ce)
2456 {
2457 	return __get_parent_scratch(ce)->go.semaphore;
2458 }
2459 
2460 static inline u32 get_children_join_value(struct intel_context *ce,
2461 					  u8 child_index)
2462 {
2463 	return __get_parent_scratch(ce)->join[child_index].semaphore;
2464 }
2465 
2466 struct context_policy {
2467 	u32 count;
2468 	struct guc_update_context_policy h2g;
2469 };
2470 
2471 static u32 __guc_context_policy_action_size(struct context_policy *policy)
2472 {
2473 	size_t bytes = sizeof(policy->h2g.header) +
2474 		       (sizeof(policy->h2g.klv[0]) * policy->count);
2475 
2476 	return bytes / sizeof(u32);
2477 }
2478 
2479 static void __guc_context_policy_start_klv(struct context_policy *policy, u16 guc_id)
2480 {
2481 	policy->h2g.header.action = INTEL_GUC_ACTION_HOST2GUC_UPDATE_CONTEXT_POLICIES;
2482 	policy->h2g.header.ctx_id = guc_id;
2483 	policy->count = 0;
2484 }
2485 
2486 #define MAKE_CONTEXT_POLICY_ADD(func, id) \
2487 static void __guc_context_policy_add_##func(struct context_policy *policy, u32 data) \
2488 { \
2489 	GEM_BUG_ON(policy->count >= GUC_CONTEXT_POLICIES_KLV_NUM_IDS); \
2490 	policy->h2g.klv[policy->count].kl = \
2491 		FIELD_PREP(GUC_KLV_0_KEY, GUC_CONTEXT_POLICIES_KLV_ID_##id) | \
2492 		FIELD_PREP(GUC_KLV_0_LEN, 1); \
2493 	policy->h2g.klv[policy->count].value = data; \
2494 	policy->count++; \
2495 }
2496 
2497 MAKE_CONTEXT_POLICY_ADD(execution_quantum, EXECUTION_QUANTUM)
2498 MAKE_CONTEXT_POLICY_ADD(preemption_timeout, PREEMPTION_TIMEOUT)
2499 MAKE_CONTEXT_POLICY_ADD(priority, SCHEDULING_PRIORITY)
2500 MAKE_CONTEXT_POLICY_ADD(preempt_to_idle, PREEMPT_TO_IDLE_ON_QUANTUM_EXPIRY)
2501 
2502 #undef MAKE_CONTEXT_POLICY_ADD
2503 
2504 static int __guc_context_set_context_policies(struct intel_guc *guc,
2505 					      struct context_policy *policy,
2506 					      bool loop)
2507 {
2508 	return guc_submission_send_busy_loop(guc, (u32 *)&policy->h2g,
2509 					__guc_context_policy_action_size(policy),
2510 					0, loop);
2511 }
2512 
2513 static int guc_context_policy_init_v70(struct intel_context *ce, bool loop)
2514 {
2515 	struct intel_engine_cs *engine = ce->engine;
2516 	struct intel_guc *guc = &engine->gt->uc.guc;
2517 	struct context_policy policy;
2518 	u32 execution_quantum;
2519 	u32 preemption_timeout;
2520 	unsigned long flags;
2521 	int ret;
2522 
2523 	/* NB: For both of these, zero means disabled. */
2524 	GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2525 				  execution_quantum));
2526 	GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2527 				  preemption_timeout));
2528 	execution_quantum = engine->props.timeslice_duration_ms * 1000;
2529 	preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2530 
2531 	__guc_context_policy_start_klv(&policy, ce->guc_id.id);
2532 
2533 	__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
2534 	__guc_context_policy_add_execution_quantum(&policy, execution_quantum);
2535 	__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
2536 
2537 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2538 		__guc_context_policy_add_preempt_to_idle(&policy, 1);
2539 
2540 	ret = __guc_context_set_context_policies(guc, &policy, loop);
2541 
2542 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2543 	if (ret != 0)
2544 		set_context_policy_required(ce);
2545 	else
2546 		clr_context_policy_required(ce);
2547 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2548 
2549 	return ret;
2550 }
2551 
2552 static void guc_context_policy_init_v69(struct intel_engine_cs *engine,
2553 					struct guc_lrc_desc_v69 *desc)
2554 {
2555 	desc->policy_flags = 0;
2556 
2557 	if (engine->flags & I915_ENGINE_WANT_FORCED_PREEMPTION)
2558 		desc->policy_flags |= CONTEXT_POLICY_FLAG_PREEMPT_TO_IDLE_V69;
2559 
2560 	/* NB: For both of these, zero means disabled. */
2561 	GEM_BUG_ON(overflows_type(engine->props.timeslice_duration_ms * 1000,
2562 				  desc->execution_quantum));
2563 	GEM_BUG_ON(overflows_type(engine->props.preempt_timeout_ms * 1000,
2564 				  desc->preemption_timeout));
2565 	desc->execution_quantum = engine->props.timeslice_duration_ms * 1000;
2566 	desc->preemption_timeout = engine->props.preempt_timeout_ms * 1000;
2567 }
2568 
2569 static u32 map_guc_prio_to_lrc_desc_prio(u8 prio)
2570 {
2571 	/*
2572 	 * this matches the mapping we do in map_i915_prio_to_guc_prio()
2573 	 * (e.g. prio < I915_PRIORITY_NORMAL maps to GUC_CLIENT_PRIORITY_NORMAL)
2574 	 */
2575 	switch (prio) {
2576 	default:
2577 		MISSING_CASE(prio);
2578 		fallthrough;
2579 	case GUC_CLIENT_PRIORITY_KMD_NORMAL:
2580 		return GEN12_CTX_PRIORITY_NORMAL;
2581 	case GUC_CLIENT_PRIORITY_NORMAL:
2582 		return GEN12_CTX_PRIORITY_LOW;
2583 	case GUC_CLIENT_PRIORITY_HIGH:
2584 	case GUC_CLIENT_PRIORITY_KMD_HIGH:
2585 		return GEN12_CTX_PRIORITY_HIGH;
2586 	}
2587 }
2588 
2589 static void prepare_context_registration_info_v69(struct intel_context *ce)
2590 {
2591 	struct intel_engine_cs *engine = ce->engine;
2592 	struct intel_guc *guc = &engine->gt->uc.guc;
2593 	u32 ctx_id = ce->guc_id.id;
2594 	struct guc_lrc_desc_v69 *desc;
2595 	struct intel_context *child;
2596 
2597 	GEM_BUG_ON(!engine->mask);
2598 
2599 	/*
2600 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2601 	 * based on CT vma region.
2602 	 */
2603 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2604 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2605 
2606 	desc = __get_lrc_desc_v69(guc, ctx_id);
2607 	GEM_BUG_ON(!desc);
2608 	desc->engine_class = engine_class_to_guc_class(engine->class);
2609 	desc->engine_submit_mask = engine->logical_mask;
2610 	desc->hw_context_desc = ce->lrc.lrca;
2611 	desc->priority = ce->guc_state.prio;
2612 	desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2613 	guc_context_policy_init_v69(engine, desc);
2614 
2615 	/*
2616 	 * If context is a parent, we need to register a process descriptor
2617 	 * describing a work queue and register all child contexts.
2618 	 */
2619 	if (intel_context_is_parent(ce)) {
2620 		struct guc_process_desc_v69 *pdesc;
2621 
2622 		ce->parallel.guc.wqi_tail = 0;
2623 		ce->parallel.guc.wqi_head = 0;
2624 
2625 		desc->process_desc = i915_ggtt_offset(ce->state) +
2626 			__get_parent_scratch_offset(ce);
2627 		desc->wq_addr = i915_ggtt_offset(ce->state) +
2628 			__get_wq_offset(ce);
2629 		desc->wq_size = WQ_SIZE;
2630 
2631 		pdesc = __get_process_desc_v69(ce);
2632 		memset(pdesc, 0, sizeof(*(pdesc)));
2633 		pdesc->stage_id = ce->guc_id.id;
2634 		pdesc->wq_base_addr = desc->wq_addr;
2635 		pdesc->wq_size_bytes = desc->wq_size;
2636 		pdesc->wq_status = WQ_STATUS_ACTIVE;
2637 
2638 		ce->parallel.guc.wq_head = &pdesc->head;
2639 		ce->parallel.guc.wq_tail = &pdesc->tail;
2640 		ce->parallel.guc.wq_status = &pdesc->wq_status;
2641 
2642 		for_each_child(ce, child) {
2643 			desc = __get_lrc_desc_v69(guc, child->guc_id.id);
2644 
2645 			desc->engine_class =
2646 				engine_class_to_guc_class(engine->class);
2647 			desc->hw_context_desc = child->lrc.lrca;
2648 			desc->priority = ce->guc_state.prio;
2649 			desc->context_flags = CONTEXT_REGISTRATION_FLAG_KMD;
2650 			guc_context_policy_init_v69(engine, desc);
2651 		}
2652 
2653 		clear_children_join_go_memory(ce);
2654 	}
2655 }
2656 
2657 static void prepare_context_registration_info_v70(struct intel_context *ce,
2658 						  struct guc_ctxt_registration_info *info)
2659 {
2660 	struct intel_engine_cs *engine = ce->engine;
2661 	struct intel_guc *guc = &engine->gt->uc.guc;
2662 	u32 ctx_id = ce->guc_id.id;
2663 
2664 	GEM_BUG_ON(!engine->mask);
2665 
2666 	/*
2667 	 * Ensure LRC + CT vmas are is same region as write barrier is done
2668 	 * based on CT vma region.
2669 	 */
2670 	GEM_BUG_ON(i915_gem_object_is_lmem(guc->ct.vma->obj) !=
2671 		   i915_gem_object_is_lmem(ce->ring->vma->obj));
2672 
2673 	memset(info, 0, sizeof(*info));
2674 	info->context_idx = ctx_id;
2675 	info->engine_class = engine_class_to_guc_class(engine->class);
2676 	info->engine_submit_mask = engine->logical_mask;
2677 	/*
2678 	 * NB: GuC interface supports 64 bit LRCA even though i915/HW
2679 	 * only supports 32 bit currently.
2680 	 */
2681 	info->hwlrca_lo = lower_32_bits(ce->lrc.lrca);
2682 	info->hwlrca_hi = upper_32_bits(ce->lrc.lrca);
2683 	if (engine->flags & I915_ENGINE_HAS_EU_PRIORITY)
2684 		info->hwlrca_lo |= map_guc_prio_to_lrc_desc_prio(ce->guc_state.prio);
2685 	info->flags = CONTEXT_REGISTRATION_FLAG_KMD;
2686 
2687 	/*
2688 	 * If context is a parent, we need to register a process descriptor
2689 	 * describing a work queue and register all child contexts.
2690 	 */
2691 	if (intel_context_is_parent(ce)) {
2692 		struct guc_sched_wq_desc *wq_desc;
2693 		u64 wq_desc_offset, wq_base_offset;
2694 
2695 		ce->parallel.guc.wqi_tail = 0;
2696 		ce->parallel.guc.wqi_head = 0;
2697 
2698 		wq_desc_offset = (u64)i915_ggtt_offset(ce->state) +
2699 				 __get_parent_scratch_offset(ce);
2700 		wq_base_offset = (u64)i915_ggtt_offset(ce->state) +
2701 				 __get_wq_offset(ce);
2702 		info->wq_desc_lo = lower_32_bits(wq_desc_offset);
2703 		info->wq_desc_hi = upper_32_bits(wq_desc_offset);
2704 		info->wq_base_lo = lower_32_bits(wq_base_offset);
2705 		info->wq_base_hi = upper_32_bits(wq_base_offset);
2706 		info->wq_size = WQ_SIZE;
2707 
2708 		wq_desc = __get_wq_desc_v70(ce);
2709 		memset(wq_desc, 0, sizeof(*wq_desc));
2710 		wq_desc->wq_status = WQ_STATUS_ACTIVE;
2711 
2712 		ce->parallel.guc.wq_head = &wq_desc->head;
2713 		ce->parallel.guc.wq_tail = &wq_desc->tail;
2714 		ce->parallel.guc.wq_status = &wq_desc->wq_status;
2715 
2716 		clear_children_join_go_memory(ce);
2717 	}
2718 }
2719 
2720 static int try_context_registration(struct intel_context *ce, bool loop)
2721 {
2722 	struct intel_engine_cs *engine = ce->engine;
2723 	struct intel_runtime_pm *runtime_pm = engine->uncore->rpm;
2724 	struct intel_guc *guc = &engine->gt->uc.guc;
2725 	intel_wakeref_t wakeref;
2726 	u32 ctx_id = ce->guc_id.id;
2727 	bool context_registered;
2728 	int ret = 0;
2729 
2730 	GEM_BUG_ON(!sched_state_is_init(ce));
2731 
2732 	context_registered = ctx_id_mapped(guc, ctx_id);
2733 
2734 	clr_ctx_id_mapping(guc, ctx_id);
2735 	set_ctx_id_mapping(guc, ctx_id, ce);
2736 
2737 	/*
2738 	 * The context_lookup xarray is used to determine if the hardware
2739 	 * context is currently registered. There are two cases in which it
2740 	 * could be registered either the guc_id has been stolen from another
2741 	 * context or the lrc descriptor address of this context has changed. In
2742 	 * either case the context needs to be deregistered with the GuC before
2743 	 * registering this context.
2744 	 */
2745 	if (context_registered) {
2746 		bool disabled;
2747 		unsigned long flags;
2748 
2749 		trace_intel_context_steal_guc_id(ce);
2750 		GEM_BUG_ON(!loop);
2751 
2752 		/* Seal race with Reset */
2753 		spin_lock_irqsave(&ce->guc_state.lock, flags);
2754 		disabled = submission_disabled(guc);
2755 		if (likely(!disabled)) {
2756 			set_context_wait_for_deregister_to_register(ce);
2757 			intel_context_get(ce);
2758 		}
2759 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2760 		if (unlikely(disabled)) {
2761 			clr_ctx_id_mapping(guc, ctx_id);
2762 			return 0;	/* Will get registered later */
2763 		}
2764 
2765 		/*
2766 		 * If stealing the guc_id, this ce has the same guc_id as the
2767 		 * context whose guc_id was stolen.
2768 		 */
2769 		with_intel_runtime_pm(runtime_pm, wakeref)
2770 			ret = deregister_context(ce, ce->guc_id.id);
2771 		if (unlikely(ret == -ENODEV))
2772 			ret = 0;	/* Will get registered later */
2773 	} else {
2774 		with_intel_runtime_pm(runtime_pm, wakeref)
2775 			ret = register_context(ce, loop);
2776 		if (unlikely(ret == -EBUSY)) {
2777 			clr_ctx_id_mapping(guc, ctx_id);
2778 		} else if (unlikely(ret == -ENODEV)) {
2779 			clr_ctx_id_mapping(guc, ctx_id);
2780 			ret = 0;	/* Will get registered later */
2781 		}
2782 	}
2783 
2784 	return ret;
2785 }
2786 
2787 static int __guc_context_pre_pin(struct intel_context *ce,
2788 				 struct intel_engine_cs *engine,
2789 				 struct i915_gem_ww_ctx *ww,
2790 				 void **vaddr)
2791 {
2792 	return lrc_pre_pin(ce, engine, ww, vaddr);
2793 }
2794 
2795 static int __guc_context_pin(struct intel_context *ce,
2796 			     struct intel_engine_cs *engine,
2797 			     void *vaddr)
2798 {
2799 	if (i915_ggtt_offset(ce->state) !=
2800 	    (ce->lrc.lrca & CTX_GTT_ADDRESS_MASK))
2801 		set_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
2802 
2803 	/*
2804 	 * GuC context gets pinned in guc_request_alloc. See that function for
2805 	 * explaination of why.
2806 	 */
2807 
2808 	return lrc_pin(ce, engine, vaddr);
2809 }
2810 
2811 static int guc_context_pre_pin(struct intel_context *ce,
2812 			       struct i915_gem_ww_ctx *ww,
2813 			       void **vaddr)
2814 {
2815 	return __guc_context_pre_pin(ce, ce->engine, ww, vaddr);
2816 }
2817 
2818 static int guc_context_pin(struct intel_context *ce, void *vaddr)
2819 {
2820 	int ret = __guc_context_pin(ce, ce->engine, vaddr);
2821 
2822 	if (likely(!ret && !intel_context_is_barrier(ce)))
2823 		intel_engine_pm_get(ce->engine);
2824 
2825 	return ret;
2826 }
2827 
2828 static void guc_context_unpin(struct intel_context *ce)
2829 {
2830 	struct intel_guc *guc = ce_to_guc(ce);
2831 
2832 	__guc_context_update_stats(ce);
2833 	unpin_guc_id(guc, ce);
2834 	lrc_unpin(ce);
2835 
2836 	if (likely(!intel_context_is_barrier(ce)))
2837 		intel_engine_pm_put_async(ce->engine);
2838 }
2839 
2840 static void guc_context_post_unpin(struct intel_context *ce)
2841 {
2842 	lrc_post_unpin(ce);
2843 }
2844 
2845 static void __guc_context_sched_enable(struct intel_guc *guc,
2846 				       struct intel_context *ce)
2847 {
2848 	u32 action[] = {
2849 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2850 		ce->guc_id.id,
2851 		GUC_CONTEXT_ENABLE
2852 	};
2853 
2854 	trace_intel_context_sched_enable(ce);
2855 
2856 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2857 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2858 }
2859 
2860 static void __guc_context_sched_disable(struct intel_guc *guc,
2861 					struct intel_context *ce,
2862 					u16 guc_id)
2863 {
2864 	u32 action[] = {
2865 		INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_SET,
2866 		guc_id,	/* ce->guc_id.id not stable */
2867 		GUC_CONTEXT_DISABLE
2868 	};
2869 
2870 	GEM_BUG_ON(guc_id == GUC_INVALID_CONTEXT_ID);
2871 
2872 	GEM_BUG_ON(intel_context_is_child(ce));
2873 	trace_intel_context_sched_disable(ce);
2874 
2875 	guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action),
2876 				      G2H_LEN_DW_SCHED_CONTEXT_MODE_SET, true);
2877 }
2878 
2879 static void guc_blocked_fence_complete(struct intel_context *ce)
2880 {
2881 	lockdep_assert_held(&ce->guc_state.lock);
2882 
2883 	if (!i915_sw_fence_done(&ce->guc_state.blocked))
2884 		i915_sw_fence_complete(&ce->guc_state.blocked);
2885 }
2886 
2887 static void guc_blocked_fence_reinit(struct intel_context *ce)
2888 {
2889 	lockdep_assert_held(&ce->guc_state.lock);
2890 	GEM_BUG_ON(!i915_sw_fence_done(&ce->guc_state.blocked));
2891 
2892 	/*
2893 	 * This fence is always complete unless a pending schedule disable is
2894 	 * outstanding. We arm the fence here and complete it when we receive
2895 	 * the pending schedule disable complete message.
2896 	 */
2897 	i915_sw_fence_fini(&ce->guc_state.blocked);
2898 	i915_sw_fence_reinit(&ce->guc_state.blocked);
2899 	i915_sw_fence_await(&ce->guc_state.blocked);
2900 	i915_sw_fence_commit(&ce->guc_state.blocked);
2901 }
2902 
2903 static u16 prep_context_pending_disable(struct intel_context *ce)
2904 {
2905 	lockdep_assert_held(&ce->guc_state.lock);
2906 
2907 	set_context_pending_disable(ce);
2908 	clr_context_enabled(ce);
2909 	guc_blocked_fence_reinit(ce);
2910 	intel_context_get(ce);
2911 
2912 	return ce->guc_id.id;
2913 }
2914 
2915 static struct i915_sw_fence *guc_context_block(struct intel_context *ce)
2916 {
2917 	struct intel_guc *guc = ce_to_guc(ce);
2918 	unsigned long flags;
2919 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
2920 	intel_wakeref_t wakeref;
2921 	u16 guc_id;
2922 	bool enabled;
2923 
2924 	GEM_BUG_ON(intel_context_is_child(ce));
2925 
2926 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2927 
2928 	incr_context_blocked(ce);
2929 
2930 	enabled = context_enabled(ce);
2931 	if (unlikely(!enabled || submission_disabled(guc))) {
2932 		if (enabled)
2933 			clr_context_enabled(ce);
2934 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2935 		return &ce->guc_state.blocked;
2936 	}
2937 
2938 	/*
2939 	 * We add +2 here as the schedule disable complete CTB handler calls
2940 	 * intel_context_sched_disable_unpin (-2 to pin_count).
2941 	 */
2942 	atomic_add(2, &ce->pin_count);
2943 
2944 	guc_id = prep_context_pending_disable(ce);
2945 
2946 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2947 
2948 	with_intel_runtime_pm(runtime_pm, wakeref)
2949 		__guc_context_sched_disable(guc, ce, guc_id);
2950 
2951 	return &ce->guc_state.blocked;
2952 }
2953 
2954 #define SCHED_STATE_MULTI_BLOCKED_MASK \
2955 	(SCHED_STATE_BLOCKED_MASK & ~SCHED_STATE_BLOCKED)
2956 #define SCHED_STATE_NO_UNBLOCK \
2957 	(SCHED_STATE_MULTI_BLOCKED_MASK | \
2958 	 SCHED_STATE_PENDING_DISABLE | \
2959 	 SCHED_STATE_BANNED)
2960 
2961 static bool context_cant_unblock(struct intel_context *ce)
2962 {
2963 	lockdep_assert_held(&ce->guc_state.lock);
2964 
2965 	return (ce->guc_state.sched_state & SCHED_STATE_NO_UNBLOCK) ||
2966 		context_guc_id_invalid(ce) ||
2967 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id) ||
2968 		!intel_context_is_pinned(ce);
2969 }
2970 
2971 static void guc_context_unblock(struct intel_context *ce)
2972 {
2973 	struct intel_guc *guc = ce_to_guc(ce);
2974 	unsigned long flags;
2975 	struct intel_runtime_pm *runtime_pm = ce->engine->uncore->rpm;
2976 	intel_wakeref_t wakeref;
2977 	bool enable;
2978 
2979 	GEM_BUG_ON(context_enabled(ce));
2980 	GEM_BUG_ON(intel_context_is_child(ce));
2981 
2982 	spin_lock_irqsave(&ce->guc_state.lock, flags);
2983 
2984 	if (unlikely(submission_disabled(guc) ||
2985 		     context_cant_unblock(ce))) {
2986 		enable = false;
2987 	} else {
2988 		enable = true;
2989 		set_context_pending_enable(ce);
2990 		set_context_enabled(ce);
2991 		intel_context_get(ce);
2992 	}
2993 
2994 	decr_context_blocked(ce);
2995 
2996 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
2997 
2998 	if (enable) {
2999 		with_intel_runtime_pm(runtime_pm, wakeref)
3000 			__guc_context_sched_enable(guc, ce);
3001 	}
3002 }
3003 
3004 static void guc_context_cancel_request(struct intel_context *ce,
3005 				       struct i915_request *rq)
3006 {
3007 	struct intel_context *block_context =
3008 		request_to_scheduling_context(rq);
3009 
3010 	if (i915_sw_fence_signaled(&rq->submit)) {
3011 		struct i915_sw_fence *fence;
3012 
3013 		intel_context_get(ce);
3014 		fence = guc_context_block(block_context);
3015 		i915_sw_fence_wait(fence);
3016 		if (!i915_request_completed(rq)) {
3017 			__i915_request_skip(rq);
3018 			guc_reset_state(ce, intel_ring_wrap(ce->ring, rq->head),
3019 					true);
3020 		}
3021 
3022 		guc_context_unblock(block_context);
3023 		intel_context_put(ce);
3024 	}
3025 }
3026 
3027 static void __guc_context_set_preemption_timeout(struct intel_guc *guc,
3028 						 u16 guc_id,
3029 						 u32 preemption_timeout)
3030 {
3031 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3032 		struct context_policy policy;
3033 
3034 		__guc_context_policy_start_klv(&policy, guc_id);
3035 		__guc_context_policy_add_preemption_timeout(&policy, preemption_timeout);
3036 		__guc_context_set_context_policies(guc, &policy, true);
3037 	} else {
3038 		u32 action[] = {
3039 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PREEMPTION_TIMEOUT,
3040 			guc_id,
3041 			preemption_timeout
3042 		};
3043 
3044 		intel_guc_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3045 	}
3046 }
3047 
3048 static void
3049 guc_context_revoke(struct intel_context *ce, struct i915_request *rq,
3050 		   unsigned int preempt_timeout_ms)
3051 {
3052 	struct intel_guc *guc = ce_to_guc(ce);
3053 	struct intel_runtime_pm *runtime_pm =
3054 		&ce->engine->gt->i915->runtime_pm;
3055 	intel_wakeref_t wakeref;
3056 	unsigned long flags;
3057 
3058 	GEM_BUG_ON(intel_context_is_child(ce));
3059 
3060 	guc_flush_submissions(guc);
3061 
3062 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3063 	set_context_banned(ce);
3064 
3065 	if (submission_disabled(guc) ||
3066 	    (!context_enabled(ce) && !context_pending_disable(ce))) {
3067 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3068 
3069 		guc_cancel_context_requests(ce);
3070 		intel_engine_signal_breadcrumbs(ce->engine);
3071 	} else if (!context_pending_disable(ce)) {
3072 		u16 guc_id;
3073 
3074 		/*
3075 		 * We add +2 here as the schedule disable complete CTB handler
3076 		 * calls intel_context_sched_disable_unpin (-2 to pin_count).
3077 		 */
3078 		atomic_add(2, &ce->pin_count);
3079 
3080 		guc_id = prep_context_pending_disable(ce);
3081 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3082 
3083 		/*
3084 		 * In addition to disabling scheduling, set the preemption
3085 		 * timeout to the minimum value (1 us) so the banned context
3086 		 * gets kicked off the HW ASAP.
3087 		 */
3088 		with_intel_runtime_pm(runtime_pm, wakeref) {
3089 			__guc_context_set_preemption_timeout(guc, guc_id,
3090 							     preempt_timeout_ms);
3091 			__guc_context_sched_disable(guc, ce, guc_id);
3092 		}
3093 	} else {
3094 		if (!context_guc_id_invalid(ce))
3095 			with_intel_runtime_pm(runtime_pm, wakeref)
3096 				__guc_context_set_preemption_timeout(guc,
3097 								     ce->guc_id.id,
3098 								     preempt_timeout_ms);
3099 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3100 	}
3101 }
3102 
3103 static void do_sched_disable(struct intel_guc *guc, struct intel_context *ce,
3104 			     unsigned long flags)
3105 	__releases(ce->guc_state.lock)
3106 {
3107 	struct intel_runtime_pm *runtime_pm = &ce->engine->gt->i915->runtime_pm;
3108 	intel_wakeref_t wakeref;
3109 	u16 guc_id;
3110 
3111 	lockdep_assert_held(&ce->guc_state.lock);
3112 	guc_id = prep_context_pending_disable(ce);
3113 
3114 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3115 
3116 	with_intel_runtime_pm(runtime_pm, wakeref)
3117 		__guc_context_sched_disable(guc, ce, guc_id);
3118 }
3119 
3120 static bool bypass_sched_disable(struct intel_guc *guc,
3121 				 struct intel_context *ce)
3122 {
3123 	lockdep_assert_held(&ce->guc_state.lock);
3124 	GEM_BUG_ON(intel_context_is_child(ce));
3125 
3126 	if (submission_disabled(guc) || context_guc_id_invalid(ce) ||
3127 	    !ctx_id_mapped(guc, ce->guc_id.id)) {
3128 		clr_context_enabled(ce);
3129 		return true;
3130 	}
3131 
3132 	return !context_enabled(ce);
3133 }
3134 
3135 static void __delay_sched_disable(struct work_struct *wrk)
3136 {
3137 	struct intel_context *ce =
3138 		container_of(wrk, typeof(*ce), guc_state.sched_disable_delay_work.work);
3139 	struct intel_guc *guc = ce_to_guc(ce);
3140 	unsigned long flags;
3141 
3142 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3143 
3144 	if (bypass_sched_disable(guc, ce)) {
3145 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3146 		intel_context_sched_disable_unpin(ce);
3147 	} else {
3148 		do_sched_disable(guc, ce, flags);
3149 	}
3150 }
3151 
3152 static bool guc_id_pressure(struct intel_guc *guc, struct intel_context *ce)
3153 {
3154 	/*
3155 	 * parent contexts are perma-pinned, if we are unpinning do schedule
3156 	 * disable immediately.
3157 	 */
3158 	if (intel_context_is_parent(ce))
3159 		return true;
3160 
3161 	/*
3162 	 * If we are beyond the threshold for avail guc_ids, do schedule disable immediately.
3163 	 */
3164 	return guc->submission_state.guc_ids_in_use >
3165 		guc->submission_state.sched_disable_gucid_threshold;
3166 }
3167 
3168 static void guc_context_sched_disable(struct intel_context *ce)
3169 {
3170 	struct intel_guc *guc = ce_to_guc(ce);
3171 	u64 delay = guc->submission_state.sched_disable_delay_ms;
3172 	unsigned long flags;
3173 
3174 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3175 
3176 	if (bypass_sched_disable(guc, ce)) {
3177 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3178 		intel_context_sched_disable_unpin(ce);
3179 	} else if (!intel_context_is_closed(ce) && !guc_id_pressure(guc, ce) &&
3180 		   delay) {
3181 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3182 		mod_delayed_work(system_unbound_wq,
3183 				 &ce->guc_state.sched_disable_delay_work,
3184 				 msecs_to_jiffies(delay));
3185 	} else {
3186 		do_sched_disable(guc, ce, flags);
3187 	}
3188 }
3189 
3190 static void guc_context_close(struct intel_context *ce)
3191 {
3192 	unsigned long flags;
3193 
3194 	if (test_bit(CONTEXT_GUC_INIT, &ce->flags) &&
3195 	    cancel_delayed_work(&ce->guc_state.sched_disable_delay_work))
3196 		__delay_sched_disable(&ce->guc_state.sched_disable_delay_work.work);
3197 
3198 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3199 	set_context_close_done(ce);
3200 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3201 }
3202 
3203 static inline void guc_lrc_desc_unpin(struct intel_context *ce)
3204 {
3205 	struct intel_guc *guc = ce_to_guc(ce);
3206 	struct intel_gt *gt = guc_to_gt(guc);
3207 	unsigned long flags;
3208 	bool disabled;
3209 
3210 	GEM_BUG_ON(!intel_gt_pm_is_awake(gt));
3211 	GEM_BUG_ON(!ctx_id_mapped(guc, ce->guc_id.id));
3212 	GEM_BUG_ON(ce != __get_context(guc, ce->guc_id.id));
3213 	GEM_BUG_ON(context_enabled(ce));
3214 
3215 	/* Seal race with Reset */
3216 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3217 	disabled = submission_disabled(guc);
3218 	if (likely(!disabled)) {
3219 		__intel_gt_pm_get(gt);
3220 		set_context_destroyed(ce);
3221 		clr_context_registered(ce);
3222 	}
3223 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3224 	if (unlikely(disabled)) {
3225 		release_guc_id(guc, ce);
3226 		__guc_context_destroy(ce);
3227 		return;
3228 	}
3229 
3230 	deregister_context(ce, ce->guc_id.id);
3231 }
3232 
3233 static void __guc_context_destroy(struct intel_context *ce)
3234 {
3235 	GEM_BUG_ON(ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_HIGH] ||
3236 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_HIGH] ||
3237 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_KMD_NORMAL] ||
3238 		   ce->guc_state.prio_count[GUC_CLIENT_PRIORITY_NORMAL]);
3239 
3240 	lrc_fini(ce);
3241 	intel_context_fini(ce);
3242 
3243 	if (intel_engine_is_virtual(ce->engine)) {
3244 		struct guc_virtual_engine *ve =
3245 			container_of(ce, typeof(*ve), context);
3246 
3247 		if (ve->base.breadcrumbs)
3248 			intel_breadcrumbs_put(ve->base.breadcrumbs);
3249 
3250 		kfree(ve);
3251 	} else {
3252 		intel_context_free(ce);
3253 	}
3254 }
3255 
3256 static void guc_flush_destroyed_contexts(struct intel_guc *guc)
3257 {
3258 	struct intel_context *ce;
3259 	unsigned long flags;
3260 
3261 	GEM_BUG_ON(!submission_disabled(guc) &&
3262 		   guc_submission_initialized(guc));
3263 
3264 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3265 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3266 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3267 					      struct intel_context,
3268 					      destroyed_link);
3269 		if (ce)
3270 			list_del_init(&ce->destroyed_link);
3271 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3272 
3273 		if (!ce)
3274 			break;
3275 
3276 		release_guc_id(guc, ce);
3277 		__guc_context_destroy(ce);
3278 	}
3279 }
3280 
3281 static void deregister_destroyed_contexts(struct intel_guc *guc)
3282 {
3283 	struct intel_context *ce;
3284 	unsigned long flags;
3285 
3286 	while (!list_empty(&guc->submission_state.destroyed_contexts)) {
3287 		spin_lock_irqsave(&guc->submission_state.lock, flags);
3288 		ce = list_first_entry_or_null(&guc->submission_state.destroyed_contexts,
3289 					      struct intel_context,
3290 					      destroyed_link);
3291 		if (ce)
3292 			list_del_init(&ce->destroyed_link);
3293 		spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3294 
3295 		if (!ce)
3296 			break;
3297 
3298 		guc_lrc_desc_unpin(ce);
3299 	}
3300 }
3301 
3302 static void destroyed_worker_func(struct work_struct *w)
3303 {
3304 	struct intel_guc *guc = container_of(w, struct intel_guc,
3305 					     submission_state.destroyed_worker);
3306 	struct intel_gt *gt = guc_to_gt(guc);
3307 	int tmp;
3308 
3309 	with_intel_gt_pm(gt, tmp)
3310 		deregister_destroyed_contexts(guc);
3311 }
3312 
3313 static void guc_context_destroy(struct kref *kref)
3314 {
3315 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3316 	struct intel_guc *guc = ce_to_guc(ce);
3317 	unsigned long flags;
3318 	bool destroy;
3319 
3320 	/*
3321 	 * If the guc_id is invalid this context has been stolen and we can free
3322 	 * it immediately. Also can be freed immediately if the context is not
3323 	 * registered with the GuC or the GuC is in the middle of a reset.
3324 	 */
3325 	spin_lock_irqsave(&guc->submission_state.lock, flags);
3326 	destroy = submission_disabled(guc) || context_guc_id_invalid(ce) ||
3327 		!ctx_id_mapped(guc, ce->guc_id.id);
3328 	if (likely(!destroy)) {
3329 		if (!list_empty(&ce->guc_id.link))
3330 			list_del_init(&ce->guc_id.link);
3331 		list_add_tail(&ce->destroyed_link,
3332 			      &guc->submission_state.destroyed_contexts);
3333 	} else {
3334 		__release_guc_id(guc, ce);
3335 	}
3336 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
3337 	if (unlikely(destroy)) {
3338 		__guc_context_destroy(ce);
3339 		return;
3340 	}
3341 
3342 	/*
3343 	 * We use a worker to issue the H2G to deregister the context as we can
3344 	 * take the GT PM for the first time which isn't allowed from an atomic
3345 	 * context.
3346 	 */
3347 	queue_work(system_unbound_wq, &guc->submission_state.destroyed_worker);
3348 }
3349 
3350 static int guc_context_alloc(struct intel_context *ce)
3351 {
3352 	return lrc_alloc(ce, ce->engine);
3353 }
3354 
3355 static void __guc_context_set_prio(struct intel_guc *guc,
3356 				   struct intel_context *ce)
3357 {
3358 	if (GUC_SUBMIT_VER(guc) >= MAKE_GUC_VER(1, 0, 0)) {
3359 		struct context_policy policy;
3360 
3361 		__guc_context_policy_start_klv(&policy, ce->guc_id.id);
3362 		__guc_context_policy_add_priority(&policy, ce->guc_state.prio);
3363 		__guc_context_set_context_policies(guc, &policy, true);
3364 	} else {
3365 		u32 action[] = {
3366 			INTEL_GUC_ACTION_V69_SET_CONTEXT_PRIORITY,
3367 			ce->guc_id.id,
3368 			ce->guc_state.prio,
3369 		};
3370 
3371 		guc_submission_send_busy_loop(guc, action, ARRAY_SIZE(action), 0, true);
3372 	}
3373 }
3374 
3375 static void guc_context_set_prio(struct intel_guc *guc,
3376 				 struct intel_context *ce,
3377 				 u8 prio)
3378 {
3379 	GEM_BUG_ON(prio < GUC_CLIENT_PRIORITY_KMD_HIGH ||
3380 		   prio > GUC_CLIENT_PRIORITY_NORMAL);
3381 	lockdep_assert_held(&ce->guc_state.lock);
3382 
3383 	if (ce->guc_state.prio == prio || submission_disabled(guc) ||
3384 	    !context_registered(ce)) {
3385 		ce->guc_state.prio = prio;
3386 		return;
3387 	}
3388 
3389 	ce->guc_state.prio = prio;
3390 	__guc_context_set_prio(guc, ce);
3391 
3392 	trace_intel_context_set_prio(ce);
3393 }
3394 
3395 static inline u8 map_i915_prio_to_guc_prio(int prio)
3396 {
3397 	if (prio == I915_PRIORITY_NORMAL)
3398 		return GUC_CLIENT_PRIORITY_KMD_NORMAL;
3399 	else if (prio < I915_PRIORITY_NORMAL)
3400 		return GUC_CLIENT_PRIORITY_NORMAL;
3401 	else if (prio < I915_PRIORITY_DISPLAY)
3402 		return GUC_CLIENT_PRIORITY_HIGH;
3403 	else
3404 		return GUC_CLIENT_PRIORITY_KMD_HIGH;
3405 }
3406 
3407 static inline void add_context_inflight_prio(struct intel_context *ce,
3408 					     u8 guc_prio)
3409 {
3410 	lockdep_assert_held(&ce->guc_state.lock);
3411 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3412 
3413 	++ce->guc_state.prio_count[guc_prio];
3414 
3415 	/* Overflow protection */
3416 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3417 }
3418 
3419 static inline void sub_context_inflight_prio(struct intel_context *ce,
3420 					     u8 guc_prio)
3421 {
3422 	lockdep_assert_held(&ce->guc_state.lock);
3423 	GEM_BUG_ON(guc_prio >= ARRAY_SIZE(ce->guc_state.prio_count));
3424 
3425 	/* Underflow protection */
3426 	GEM_WARN_ON(!ce->guc_state.prio_count[guc_prio]);
3427 
3428 	--ce->guc_state.prio_count[guc_prio];
3429 }
3430 
3431 static inline void update_context_prio(struct intel_context *ce)
3432 {
3433 	struct intel_guc *guc = &ce->engine->gt->uc.guc;
3434 	int i;
3435 
3436 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH != 0);
3437 	BUILD_BUG_ON(GUC_CLIENT_PRIORITY_KMD_HIGH > GUC_CLIENT_PRIORITY_NORMAL);
3438 
3439 	lockdep_assert_held(&ce->guc_state.lock);
3440 
3441 	for (i = 0; i < ARRAY_SIZE(ce->guc_state.prio_count); ++i) {
3442 		if (ce->guc_state.prio_count[i]) {
3443 			guc_context_set_prio(guc, ce, i);
3444 			break;
3445 		}
3446 	}
3447 }
3448 
3449 static inline bool new_guc_prio_higher(u8 old_guc_prio, u8 new_guc_prio)
3450 {
3451 	/* Lower value is higher priority */
3452 	return new_guc_prio < old_guc_prio;
3453 }
3454 
3455 static void add_to_context(struct i915_request *rq)
3456 {
3457 	struct intel_context *ce = request_to_scheduling_context(rq);
3458 	u8 new_guc_prio = map_i915_prio_to_guc_prio(rq_prio(rq));
3459 
3460 	GEM_BUG_ON(intel_context_is_child(ce));
3461 	GEM_BUG_ON(rq->guc_prio == GUC_PRIO_FINI);
3462 
3463 	spin_lock(&ce->guc_state.lock);
3464 	list_move_tail(&rq->sched.link, &ce->guc_state.requests);
3465 
3466 	if (rq->guc_prio == GUC_PRIO_INIT) {
3467 		rq->guc_prio = new_guc_prio;
3468 		add_context_inflight_prio(ce, rq->guc_prio);
3469 	} else if (new_guc_prio_higher(rq->guc_prio, new_guc_prio)) {
3470 		sub_context_inflight_prio(ce, rq->guc_prio);
3471 		rq->guc_prio = new_guc_prio;
3472 		add_context_inflight_prio(ce, rq->guc_prio);
3473 	}
3474 	update_context_prio(ce);
3475 
3476 	spin_unlock(&ce->guc_state.lock);
3477 }
3478 
3479 static void guc_prio_fini(struct i915_request *rq, struct intel_context *ce)
3480 {
3481 	lockdep_assert_held(&ce->guc_state.lock);
3482 
3483 	if (rq->guc_prio != GUC_PRIO_INIT &&
3484 	    rq->guc_prio != GUC_PRIO_FINI) {
3485 		sub_context_inflight_prio(ce, rq->guc_prio);
3486 		update_context_prio(ce);
3487 	}
3488 	rq->guc_prio = GUC_PRIO_FINI;
3489 }
3490 
3491 static void remove_from_context(struct i915_request *rq)
3492 {
3493 	struct intel_context *ce = request_to_scheduling_context(rq);
3494 
3495 	GEM_BUG_ON(intel_context_is_child(ce));
3496 
3497 	spin_lock_irq(&ce->guc_state.lock);
3498 
3499 	list_del_init(&rq->sched.link);
3500 	clear_bit(I915_FENCE_FLAG_PQUEUE, &rq->fence.flags);
3501 
3502 	/* Prevent further __await_execution() registering a cb, then flush */
3503 	set_bit(I915_FENCE_FLAG_ACTIVE, &rq->fence.flags);
3504 
3505 	guc_prio_fini(rq, ce);
3506 
3507 	spin_unlock_irq(&ce->guc_state.lock);
3508 
3509 	atomic_dec(&ce->guc_id.ref);
3510 	i915_request_notify_execute_cb_imm(rq);
3511 }
3512 
3513 static const struct intel_context_ops guc_context_ops = {
3514 	.flags = COPS_RUNTIME_CYCLES,
3515 	.alloc = guc_context_alloc,
3516 
3517 	.close = guc_context_close,
3518 
3519 	.pre_pin = guc_context_pre_pin,
3520 	.pin = guc_context_pin,
3521 	.unpin = guc_context_unpin,
3522 	.post_unpin = guc_context_post_unpin,
3523 
3524 	.revoke = guc_context_revoke,
3525 
3526 	.cancel_request = guc_context_cancel_request,
3527 
3528 	.enter = intel_context_enter_engine,
3529 	.exit = intel_context_exit_engine,
3530 
3531 	.sched_disable = guc_context_sched_disable,
3532 
3533 	.update_stats = guc_context_update_stats,
3534 
3535 	.reset = lrc_reset,
3536 	.destroy = guc_context_destroy,
3537 
3538 	.create_virtual = guc_create_virtual,
3539 	.create_parallel = guc_create_parallel,
3540 };
3541 
3542 static void submit_work_cb(struct irq_work *wrk)
3543 {
3544 	struct i915_request *rq = container_of(wrk, typeof(*rq), submit_work);
3545 
3546 	might_lock(&rq->engine->sched_engine->lock);
3547 	i915_sw_fence_complete(&rq->submit);
3548 }
3549 
3550 static void __guc_signal_context_fence(struct intel_context *ce)
3551 {
3552 	struct i915_request *rq, *rn;
3553 
3554 	lockdep_assert_held(&ce->guc_state.lock);
3555 
3556 	if (!list_empty(&ce->guc_state.fences))
3557 		trace_intel_context_fence_release(ce);
3558 
3559 	/*
3560 	 * Use an IRQ to ensure locking order of sched_engine->lock ->
3561 	 * ce->guc_state.lock is preserved.
3562 	 */
3563 	list_for_each_entry_safe(rq, rn, &ce->guc_state.fences,
3564 				 guc_fence_link) {
3565 		list_del(&rq->guc_fence_link);
3566 		irq_work_queue(&rq->submit_work);
3567 	}
3568 
3569 	INIT_LIST_HEAD(&ce->guc_state.fences);
3570 }
3571 
3572 static void guc_signal_context_fence(struct intel_context *ce)
3573 {
3574 	unsigned long flags;
3575 
3576 	GEM_BUG_ON(intel_context_is_child(ce));
3577 
3578 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3579 	clr_context_wait_for_deregister_to_register(ce);
3580 	__guc_signal_context_fence(ce);
3581 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3582 }
3583 
3584 static bool context_needs_register(struct intel_context *ce, bool new_guc_id)
3585 {
3586 	return (new_guc_id || test_bit(CONTEXT_LRCA_DIRTY, &ce->flags) ||
3587 		!ctx_id_mapped(ce_to_guc(ce), ce->guc_id.id)) &&
3588 		!submission_disabled(ce_to_guc(ce));
3589 }
3590 
3591 static void guc_context_init(struct intel_context *ce)
3592 {
3593 	const struct i915_gem_context *ctx;
3594 	int prio = I915_CONTEXT_DEFAULT_PRIORITY;
3595 
3596 	rcu_read_lock();
3597 	ctx = rcu_dereference(ce->gem_context);
3598 	if (ctx)
3599 		prio = ctx->sched.priority;
3600 	rcu_read_unlock();
3601 
3602 	ce->guc_state.prio = map_i915_prio_to_guc_prio(prio);
3603 
3604 	INIT_DELAYED_WORK(&ce->guc_state.sched_disable_delay_work,
3605 			  __delay_sched_disable);
3606 
3607 	set_bit(CONTEXT_GUC_INIT, &ce->flags);
3608 }
3609 
3610 static int guc_request_alloc(struct i915_request *rq)
3611 {
3612 	struct intel_context *ce = request_to_scheduling_context(rq);
3613 	struct intel_guc *guc = ce_to_guc(ce);
3614 	unsigned long flags;
3615 	int ret;
3616 
3617 	GEM_BUG_ON(!intel_context_is_pinned(rq->context));
3618 
3619 	/*
3620 	 * Flush enough space to reduce the likelihood of waiting after
3621 	 * we start building the request - in which case we will just
3622 	 * have to repeat work.
3623 	 */
3624 	rq->reserved_space += GUC_REQUEST_SIZE;
3625 
3626 	/*
3627 	 * Note that after this point, we have committed to using
3628 	 * this request as it is being used to both track the
3629 	 * state of engine initialisation and liveness of the
3630 	 * golden renderstate above. Think twice before you try
3631 	 * to cancel/unwind this request now.
3632 	 */
3633 
3634 	/* Unconditionally invalidate GPU caches and TLBs. */
3635 	ret = rq->engine->emit_flush(rq, EMIT_INVALIDATE);
3636 	if (ret)
3637 		return ret;
3638 
3639 	rq->reserved_space -= GUC_REQUEST_SIZE;
3640 
3641 	if (unlikely(!test_bit(CONTEXT_GUC_INIT, &ce->flags)))
3642 		guc_context_init(ce);
3643 
3644 	/*
3645 	 * If the context gets closed while the execbuf is ongoing, the context
3646 	 * close code will race with the below code to cancel the delayed work.
3647 	 * If the context close wins the race and cancels the work, it will
3648 	 * immediately call the sched disable (see guc_context_close), so there
3649 	 * is a chance we can get past this check while the sched_disable code
3650 	 * is being executed. To make sure that code completes before we check
3651 	 * the status further down, we wait for the close process to complete.
3652 	 * Else, this code path could send a request down thinking that the
3653 	 * context is still in a schedule-enable mode while the GuC ends up
3654 	 * dropping the request completely because the disable did go from the
3655 	 * context_close path right to GuC just prior. In the event the CT is
3656 	 * full, we could potentially need to wait up to 1.5 seconds.
3657 	 */
3658 	if (cancel_delayed_work_sync(&ce->guc_state.sched_disable_delay_work))
3659 		intel_context_sched_disable_unpin(ce);
3660 	else if (intel_context_is_closed(ce))
3661 		if (wait_for(context_close_done(ce), 1500))
3662 			guc_warn(guc, "timed out waiting on context sched close before realloc\n");
3663 	/*
3664 	 * Call pin_guc_id here rather than in the pinning step as with
3665 	 * dma_resv, contexts can be repeatedly pinned / unpinned trashing the
3666 	 * guc_id and creating horrible race conditions. This is especially bad
3667 	 * when guc_id are being stolen due to over subscription. By the time
3668 	 * this function is reached, it is guaranteed that the guc_id will be
3669 	 * persistent until the generated request is retired. Thus, sealing these
3670 	 * race conditions. It is still safe to fail here if guc_id are
3671 	 * exhausted and return -EAGAIN to the user indicating that they can try
3672 	 * again in the future.
3673 	 *
3674 	 * There is no need for a lock here as the timeline mutex ensures at
3675 	 * most one context can be executing this code path at once. The
3676 	 * guc_id_ref is incremented once for every request in flight and
3677 	 * decremented on each retire. When it is zero, a lock around the
3678 	 * increment (in pin_guc_id) is needed to seal a race with unpin_guc_id.
3679 	 */
3680 	if (atomic_add_unless(&ce->guc_id.ref, 1, 0))
3681 		goto out;
3682 
3683 	ret = pin_guc_id(guc, ce);	/* returns 1 if new guc_id assigned */
3684 	if (unlikely(ret < 0))
3685 		return ret;
3686 	if (context_needs_register(ce, !!ret)) {
3687 		ret = try_context_registration(ce, true);
3688 		if (unlikely(ret)) {	/* unwind */
3689 			if (ret == -EPIPE) {
3690 				disable_submission(guc);
3691 				goto out;	/* GPU will be reset */
3692 			}
3693 			atomic_dec(&ce->guc_id.ref);
3694 			unpin_guc_id(guc, ce);
3695 			return ret;
3696 		}
3697 	}
3698 
3699 	clear_bit(CONTEXT_LRCA_DIRTY, &ce->flags);
3700 
3701 out:
3702 	/*
3703 	 * We block all requests on this context if a G2H is pending for a
3704 	 * schedule disable or context deregistration as the GuC will fail a
3705 	 * schedule enable or context registration if either G2H is pending
3706 	 * respectfully. Once a G2H returns, the fence is released that is
3707 	 * blocking these requests (see guc_signal_context_fence).
3708 	 */
3709 	spin_lock_irqsave(&ce->guc_state.lock, flags);
3710 	if (context_wait_for_deregister_to_register(ce) ||
3711 	    context_pending_disable(ce)) {
3712 		init_irq_work(&rq->submit_work, submit_work_cb);
3713 		i915_sw_fence_await(&rq->submit);
3714 
3715 		list_add_tail(&rq->guc_fence_link, &ce->guc_state.fences);
3716 	}
3717 	spin_unlock_irqrestore(&ce->guc_state.lock, flags);
3718 
3719 	return 0;
3720 }
3721 
3722 static int guc_virtual_context_pre_pin(struct intel_context *ce,
3723 				       struct i915_gem_ww_ctx *ww,
3724 				       void **vaddr)
3725 {
3726 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3727 
3728 	return __guc_context_pre_pin(ce, engine, ww, vaddr);
3729 }
3730 
3731 static int guc_virtual_context_pin(struct intel_context *ce, void *vaddr)
3732 {
3733 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3734 	int ret = __guc_context_pin(ce, engine, vaddr);
3735 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3736 
3737 	if (likely(!ret))
3738 		for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3739 			intel_engine_pm_get(engine);
3740 
3741 	return ret;
3742 }
3743 
3744 static void guc_virtual_context_unpin(struct intel_context *ce)
3745 {
3746 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3747 	struct intel_engine_cs *engine;
3748 	struct intel_guc *guc = ce_to_guc(ce);
3749 
3750 	GEM_BUG_ON(context_enabled(ce));
3751 	GEM_BUG_ON(intel_context_is_barrier(ce));
3752 
3753 	unpin_guc_id(guc, ce);
3754 	lrc_unpin(ce);
3755 
3756 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3757 		intel_engine_pm_put_async(engine);
3758 }
3759 
3760 static void guc_virtual_context_enter(struct intel_context *ce)
3761 {
3762 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3763 	struct intel_engine_cs *engine;
3764 
3765 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3766 		intel_engine_pm_get(engine);
3767 
3768 	intel_timeline_enter(ce->timeline);
3769 }
3770 
3771 static void guc_virtual_context_exit(struct intel_context *ce)
3772 {
3773 	intel_engine_mask_t tmp, mask = ce->engine->mask;
3774 	struct intel_engine_cs *engine;
3775 
3776 	for_each_engine_masked(engine, ce->engine->gt, mask, tmp)
3777 		intel_engine_pm_put(engine);
3778 
3779 	intel_timeline_exit(ce->timeline);
3780 }
3781 
3782 static int guc_virtual_context_alloc(struct intel_context *ce)
3783 {
3784 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3785 
3786 	return lrc_alloc(ce, engine);
3787 }
3788 
3789 static const struct intel_context_ops virtual_guc_context_ops = {
3790 	.flags = COPS_RUNTIME_CYCLES,
3791 	.alloc = guc_virtual_context_alloc,
3792 
3793 	.close = guc_context_close,
3794 
3795 	.pre_pin = guc_virtual_context_pre_pin,
3796 	.pin = guc_virtual_context_pin,
3797 	.unpin = guc_virtual_context_unpin,
3798 	.post_unpin = guc_context_post_unpin,
3799 
3800 	.revoke = guc_context_revoke,
3801 
3802 	.cancel_request = guc_context_cancel_request,
3803 
3804 	.enter = guc_virtual_context_enter,
3805 	.exit = guc_virtual_context_exit,
3806 
3807 	.sched_disable = guc_context_sched_disable,
3808 	.update_stats = guc_context_update_stats,
3809 
3810 	.destroy = guc_context_destroy,
3811 
3812 	.get_sibling = guc_virtual_get_sibling,
3813 };
3814 
3815 static int guc_parent_context_pin(struct intel_context *ce, void *vaddr)
3816 {
3817 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3818 	struct intel_guc *guc = ce_to_guc(ce);
3819 	int ret;
3820 
3821 	GEM_BUG_ON(!intel_context_is_parent(ce));
3822 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3823 
3824 	ret = pin_guc_id(guc, ce);
3825 	if (unlikely(ret < 0))
3826 		return ret;
3827 
3828 	return __guc_context_pin(ce, engine, vaddr);
3829 }
3830 
3831 static int guc_child_context_pin(struct intel_context *ce, void *vaddr)
3832 {
3833 	struct intel_engine_cs *engine = guc_virtual_get_sibling(ce->engine, 0);
3834 
3835 	GEM_BUG_ON(!intel_context_is_child(ce));
3836 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3837 
3838 	__intel_context_pin(ce->parallel.parent);
3839 	return __guc_context_pin(ce, engine, vaddr);
3840 }
3841 
3842 static void guc_parent_context_unpin(struct intel_context *ce)
3843 {
3844 	struct intel_guc *guc = ce_to_guc(ce);
3845 
3846 	GEM_BUG_ON(context_enabled(ce));
3847 	GEM_BUG_ON(intel_context_is_barrier(ce));
3848 	GEM_BUG_ON(!intel_context_is_parent(ce));
3849 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3850 
3851 	unpin_guc_id(guc, ce);
3852 	lrc_unpin(ce);
3853 }
3854 
3855 static void guc_child_context_unpin(struct intel_context *ce)
3856 {
3857 	GEM_BUG_ON(context_enabled(ce));
3858 	GEM_BUG_ON(intel_context_is_barrier(ce));
3859 	GEM_BUG_ON(!intel_context_is_child(ce));
3860 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3861 
3862 	lrc_unpin(ce);
3863 }
3864 
3865 static void guc_child_context_post_unpin(struct intel_context *ce)
3866 {
3867 	GEM_BUG_ON(!intel_context_is_child(ce));
3868 	GEM_BUG_ON(!intel_context_is_pinned(ce->parallel.parent));
3869 	GEM_BUG_ON(!intel_engine_is_virtual(ce->engine));
3870 
3871 	lrc_post_unpin(ce);
3872 	intel_context_unpin(ce->parallel.parent);
3873 }
3874 
3875 static void guc_child_context_destroy(struct kref *kref)
3876 {
3877 	struct intel_context *ce = container_of(kref, typeof(*ce), ref);
3878 
3879 	__guc_context_destroy(ce);
3880 }
3881 
3882 static const struct intel_context_ops virtual_parent_context_ops = {
3883 	.alloc = guc_virtual_context_alloc,
3884 
3885 	.close = guc_context_close,
3886 
3887 	.pre_pin = guc_context_pre_pin,
3888 	.pin = guc_parent_context_pin,
3889 	.unpin = guc_parent_context_unpin,
3890 	.post_unpin = guc_context_post_unpin,
3891 
3892 	.revoke = guc_context_revoke,
3893 
3894 	.cancel_request = guc_context_cancel_request,
3895 
3896 	.enter = guc_virtual_context_enter,
3897 	.exit = guc_virtual_context_exit,
3898 
3899 	.sched_disable = guc_context_sched_disable,
3900 
3901 	.destroy = guc_context_destroy,
3902 
3903 	.get_sibling = guc_virtual_get_sibling,
3904 };
3905 
3906 static const struct intel_context_ops virtual_child_context_ops = {
3907 	.alloc = guc_virtual_context_alloc,
3908 
3909 	.pre_pin = guc_context_pre_pin,
3910 	.pin = guc_child_context_pin,
3911 	.unpin = guc_child_context_unpin,
3912 	.post_unpin = guc_child_context_post_unpin,
3913 
3914 	.cancel_request = guc_context_cancel_request,
3915 
3916 	.enter = guc_virtual_context_enter,
3917 	.exit = guc_virtual_context_exit,
3918 
3919 	.destroy = guc_child_context_destroy,
3920 
3921 	.get_sibling = guc_virtual_get_sibling,
3922 };
3923 
3924 /*
3925  * The below override of the breadcrumbs is enabled when the user configures a
3926  * context for parallel submission (multi-lrc, parent-child).
3927  *
3928  * The overridden breadcrumbs implements an algorithm which allows the GuC to
3929  * safely preempt all the hw contexts configured for parallel submission
3930  * between each BB. The contract between the i915 and GuC is if the parent
3931  * context can be preempted, all the children can be preempted, and the GuC will
3932  * always try to preempt the parent before the children. A handshake between the
3933  * parent / children breadcrumbs ensures the i915 holds up its end of the deal
3934  * creating a window to preempt between each set of BBs.
3935  */
3936 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
3937 						     u64 offset, u32 len,
3938 						     const unsigned int flags);
3939 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
3940 						    u64 offset, u32 len,
3941 						    const unsigned int flags);
3942 static u32 *
3943 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
3944 						 u32 *cs);
3945 static u32 *
3946 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
3947 						u32 *cs);
3948 
3949 static struct intel_context *
3950 guc_create_parallel(struct intel_engine_cs **engines,
3951 		    unsigned int num_siblings,
3952 		    unsigned int width)
3953 {
3954 	struct intel_engine_cs **siblings = NULL;
3955 	struct intel_context *parent = NULL, *ce, *err;
3956 	int i, j;
3957 
3958 	siblings = kmalloc_array(num_siblings,
3959 				 sizeof(*siblings),
3960 				 GFP_KERNEL);
3961 	if (!siblings)
3962 		return ERR_PTR(-ENOMEM);
3963 
3964 	for (i = 0; i < width; ++i) {
3965 		for (j = 0; j < num_siblings; ++j)
3966 			siblings[j] = engines[i * num_siblings + j];
3967 
3968 		ce = intel_engine_create_virtual(siblings, num_siblings,
3969 						 FORCE_VIRTUAL);
3970 		if (IS_ERR(ce)) {
3971 			err = ERR_CAST(ce);
3972 			goto unwind;
3973 		}
3974 
3975 		if (i == 0) {
3976 			parent = ce;
3977 			parent->ops = &virtual_parent_context_ops;
3978 		} else {
3979 			ce->ops = &virtual_child_context_ops;
3980 			intel_context_bind_parent_child(parent, ce);
3981 		}
3982 	}
3983 
3984 	parent->parallel.fence_context = dma_fence_context_alloc(1);
3985 
3986 	parent->engine->emit_bb_start =
3987 		emit_bb_start_parent_no_preempt_mid_batch;
3988 	parent->engine->emit_fini_breadcrumb =
3989 		emit_fini_breadcrumb_parent_no_preempt_mid_batch;
3990 	parent->engine->emit_fini_breadcrumb_dw =
3991 		12 + 4 * parent->parallel.number_children;
3992 	for_each_child(parent, ce) {
3993 		ce->engine->emit_bb_start =
3994 			emit_bb_start_child_no_preempt_mid_batch;
3995 		ce->engine->emit_fini_breadcrumb =
3996 			emit_fini_breadcrumb_child_no_preempt_mid_batch;
3997 		ce->engine->emit_fini_breadcrumb_dw = 16;
3998 	}
3999 
4000 	kfree(siblings);
4001 	return parent;
4002 
4003 unwind:
4004 	if (parent)
4005 		intel_context_put(parent);
4006 	kfree(siblings);
4007 	return err;
4008 }
4009 
4010 static bool
4011 guc_irq_enable_breadcrumbs(struct intel_breadcrumbs *b)
4012 {
4013 	struct intel_engine_cs *sibling;
4014 	intel_engine_mask_t tmp, mask = b->engine_mask;
4015 	bool result = false;
4016 
4017 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4018 		result |= intel_engine_irq_enable(sibling);
4019 
4020 	return result;
4021 }
4022 
4023 static void
4024 guc_irq_disable_breadcrumbs(struct intel_breadcrumbs *b)
4025 {
4026 	struct intel_engine_cs *sibling;
4027 	intel_engine_mask_t tmp, mask = b->engine_mask;
4028 
4029 	for_each_engine_masked(sibling, b->irq_engine->gt, mask, tmp)
4030 		intel_engine_irq_disable(sibling);
4031 }
4032 
4033 static void guc_init_breadcrumbs(struct intel_engine_cs *engine)
4034 {
4035 	int i;
4036 
4037 	/*
4038 	 * In GuC submission mode we do not know which physical engine a request
4039 	 * will be scheduled on, this creates a problem because the breadcrumb
4040 	 * interrupt is per physical engine. To work around this we attach
4041 	 * requests and direct all breadcrumb interrupts to the first instance
4042 	 * of an engine per class. In addition all breadcrumb interrupts are
4043 	 * enabled / disabled across an engine class in unison.
4044 	 */
4045 	for (i = 0; i < MAX_ENGINE_INSTANCE; ++i) {
4046 		struct intel_engine_cs *sibling =
4047 			engine->gt->engine_class[engine->class][i];
4048 
4049 		if (sibling) {
4050 			if (engine->breadcrumbs != sibling->breadcrumbs) {
4051 				intel_breadcrumbs_put(engine->breadcrumbs);
4052 				engine->breadcrumbs =
4053 					intel_breadcrumbs_get(sibling->breadcrumbs);
4054 			}
4055 			break;
4056 		}
4057 	}
4058 
4059 	if (engine->breadcrumbs) {
4060 		engine->breadcrumbs->engine_mask |= engine->mask;
4061 		engine->breadcrumbs->irq_enable = guc_irq_enable_breadcrumbs;
4062 		engine->breadcrumbs->irq_disable = guc_irq_disable_breadcrumbs;
4063 	}
4064 }
4065 
4066 static void guc_bump_inflight_request_prio(struct i915_request *rq,
4067 					   int prio)
4068 {
4069 	struct intel_context *ce = request_to_scheduling_context(rq);
4070 	u8 new_guc_prio = map_i915_prio_to_guc_prio(prio);
4071 
4072 	/* Short circuit function */
4073 	if (prio < I915_PRIORITY_NORMAL ||
4074 	    rq->guc_prio == GUC_PRIO_FINI ||
4075 	    (rq->guc_prio != GUC_PRIO_INIT &&
4076 	     !new_guc_prio_higher(rq->guc_prio, new_guc_prio)))
4077 		return;
4078 
4079 	spin_lock(&ce->guc_state.lock);
4080 	if (rq->guc_prio != GUC_PRIO_FINI) {
4081 		if (rq->guc_prio != GUC_PRIO_INIT)
4082 			sub_context_inflight_prio(ce, rq->guc_prio);
4083 		rq->guc_prio = new_guc_prio;
4084 		add_context_inflight_prio(ce, rq->guc_prio);
4085 		update_context_prio(ce);
4086 	}
4087 	spin_unlock(&ce->guc_state.lock);
4088 }
4089 
4090 static void guc_retire_inflight_request_prio(struct i915_request *rq)
4091 {
4092 	struct intel_context *ce = request_to_scheduling_context(rq);
4093 
4094 	spin_lock(&ce->guc_state.lock);
4095 	guc_prio_fini(rq, ce);
4096 	spin_unlock(&ce->guc_state.lock);
4097 }
4098 
4099 static void sanitize_hwsp(struct intel_engine_cs *engine)
4100 {
4101 	struct intel_timeline *tl;
4102 
4103 	list_for_each_entry(tl, &engine->status_page.timelines, engine_link)
4104 		intel_timeline_reset_seqno(tl);
4105 }
4106 
4107 static void guc_sanitize(struct intel_engine_cs *engine)
4108 {
4109 	/*
4110 	 * Poison residual state on resume, in case the suspend didn't!
4111 	 *
4112 	 * We have to assume that across suspend/resume (or other loss
4113 	 * of control) that the contents of our pinned buffers has been
4114 	 * lost, replaced by garbage. Since this doesn't always happen,
4115 	 * let's poison such state so that we more quickly spot when
4116 	 * we falsely assume it has been preserved.
4117 	 */
4118 	if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM))
4119 		memset(engine->status_page.addr, POISON_INUSE, PAGE_SIZE);
4120 
4121 	/*
4122 	 * The kernel_context HWSP is stored in the status_page. As above,
4123 	 * that may be lost on resume/initialisation, and so we need to
4124 	 * reset the value in the HWSP.
4125 	 */
4126 	sanitize_hwsp(engine);
4127 
4128 	/* And scrub the dirty cachelines for the HWSP */
4129 	drm_clflush_virt_range(engine->status_page.addr, PAGE_SIZE);
4130 
4131 	intel_engine_reset_pinned_contexts(engine);
4132 }
4133 
4134 static void setup_hwsp(struct intel_engine_cs *engine)
4135 {
4136 	intel_engine_set_hwsp_writemask(engine, ~0u); /* HWSTAM */
4137 
4138 	ENGINE_WRITE_FW(engine,
4139 			RING_HWS_PGA,
4140 			i915_ggtt_offset(engine->status_page.vma));
4141 }
4142 
4143 static void start_engine(struct intel_engine_cs *engine)
4144 {
4145 	ENGINE_WRITE_FW(engine,
4146 			RING_MODE_GEN7,
4147 			_MASKED_BIT_ENABLE(GEN11_GFX_DISABLE_LEGACY_MODE));
4148 
4149 	ENGINE_WRITE_FW(engine, RING_MI_MODE, _MASKED_BIT_DISABLE(STOP_RING));
4150 	ENGINE_POSTING_READ(engine, RING_MI_MODE);
4151 }
4152 
4153 static int guc_resume(struct intel_engine_cs *engine)
4154 {
4155 	assert_forcewakes_active(engine->uncore, FORCEWAKE_ALL);
4156 
4157 	intel_mocs_init_engine(engine);
4158 
4159 	intel_breadcrumbs_reset(engine->breadcrumbs);
4160 
4161 	setup_hwsp(engine);
4162 	start_engine(engine);
4163 
4164 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
4165 		xehp_enable_ccs_engines(engine);
4166 
4167 	return 0;
4168 }
4169 
4170 static bool guc_sched_engine_disabled(struct i915_sched_engine *sched_engine)
4171 {
4172 	return !sched_engine->tasklet.callback;
4173 }
4174 
4175 static void guc_set_default_submission(struct intel_engine_cs *engine)
4176 {
4177 	engine->submit_request = guc_submit_request;
4178 }
4179 
4180 static inline int guc_kernel_context_pin(struct intel_guc *guc,
4181 					 struct intel_context *ce)
4182 {
4183 	int ret;
4184 
4185 	/*
4186 	 * Note: we purposefully do not check the returns below because
4187 	 * the registration can only fail if a reset is just starting.
4188 	 * This is called at the end of reset so presumably another reset
4189 	 * isn't happening and even it did this code would be run again.
4190 	 */
4191 
4192 	if (context_guc_id_invalid(ce)) {
4193 		ret = pin_guc_id(guc, ce);
4194 
4195 		if (ret < 0)
4196 			return ret;
4197 	}
4198 
4199 	if (!test_bit(CONTEXT_GUC_INIT, &ce->flags))
4200 		guc_context_init(ce);
4201 
4202 	ret = try_context_registration(ce, true);
4203 	if (ret)
4204 		unpin_guc_id(guc, ce);
4205 
4206 	return ret;
4207 }
4208 
4209 static inline int guc_init_submission(struct intel_guc *guc)
4210 {
4211 	struct intel_gt *gt = guc_to_gt(guc);
4212 	struct intel_engine_cs *engine;
4213 	enum intel_engine_id id;
4214 
4215 	/* make sure all descriptors are clean... */
4216 	xa_destroy(&guc->context_lookup);
4217 
4218 	/*
4219 	 * A reset might have occurred while we had a pending stalled request,
4220 	 * so make sure we clean that up.
4221 	 */
4222 	guc->stalled_request = NULL;
4223 	guc->submission_stall_reason = STALL_NONE;
4224 
4225 	/*
4226 	 * Some contexts might have been pinned before we enabled GuC
4227 	 * submission, so we need to add them to the GuC bookeeping.
4228 	 * Also, after a reset the of the GuC we want to make sure that the
4229 	 * information shared with GuC is properly reset. The kernel LRCs are
4230 	 * not attached to the gem_context, so they need to be added separately.
4231 	 */
4232 	for_each_engine(engine, gt, id) {
4233 		struct intel_context *ce;
4234 
4235 		list_for_each_entry(ce, &engine->pinned_contexts_list,
4236 				    pinned_contexts_link) {
4237 			int ret = guc_kernel_context_pin(guc, ce);
4238 
4239 			if (ret) {
4240 				/* No point in trying to clean up as i915 will wedge on failure */
4241 				return ret;
4242 			}
4243 		}
4244 	}
4245 
4246 	return 0;
4247 }
4248 
4249 static void guc_release(struct intel_engine_cs *engine)
4250 {
4251 	engine->sanitize = NULL; /* no longer in control, nothing to sanitize */
4252 
4253 	intel_engine_cleanup_common(engine);
4254 	lrc_fini_wa_ctx(engine);
4255 }
4256 
4257 static void virtual_guc_bump_serial(struct intel_engine_cs *engine)
4258 {
4259 	struct intel_engine_cs *e;
4260 	intel_engine_mask_t tmp, mask = engine->mask;
4261 
4262 	for_each_engine_masked(e, engine->gt, mask, tmp)
4263 		e->serial++;
4264 }
4265 
4266 static void guc_default_vfuncs(struct intel_engine_cs *engine)
4267 {
4268 	/* Default vfuncs which can be overridden by each engine. */
4269 
4270 	engine->resume = guc_resume;
4271 
4272 	engine->cops = &guc_context_ops;
4273 	engine->request_alloc = guc_request_alloc;
4274 	engine->add_active_request = add_to_context;
4275 	engine->remove_active_request = remove_from_context;
4276 
4277 	engine->sched_engine->schedule = i915_schedule;
4278 
4279 	engine->reset.prepare = guc_engine_reset_prepare;
4280 	engine->reset.rewind = guc_rewind_nop;
4281 	engine->reset.cancel = guc_reset_nop;
4282 	engine->reset.finish = guc_reset_nop;
4283 
4284 	engine->emit_flush = gen8_emit_flush_xcs;
4285 	engine->emit_init_breadcrumb = gen8_emit_init_breadcrumb;
4286 	engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_xcs;
4287 	if (GRAPHICS_VER(engine->i915) >= 12) {
4288 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_xcs;
4289 		engine->emit_flush = gen12_emit_flush_xcs;
4290 	}
4291 	engine->set_default_submission = guc_set_default_submission;
4292 	engine->busyness = guc_engine_busyness;
4293 
4294 	engine->flags |= I915_ENGINE_SUPPORTS_STATS;
4295 	engine->flags |= I915_ENGINE_HAS_PREEMPTION;
4296 	engine->flags |= I915_ENGINE_HAS_TIMESLICES;
4297 
4298 	/* Wa_14014475959:dg2 */
4299 	if (engine->class == COMPUTE_CLASS)
4300 		if (IS_GFX_GT_IP_STEP(engine->gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
4301 		    IS_DG2(engine->i915))
4302 			engine->flags |= I915_ENGINE_USES_WA_HOLD_CCS_SWITCHOUT;
4303 
4304 	/*
4305 	 * TODO: GuC supports timeslicing and semaphores as well, but they're
4306 	 * handled by the firmware so some minor tweaks are required before
4307 	 * enabling.
4308 	 *
4309 	 * engine->flags |= I915_ENGINE_HAS_SEMAPHORES;
4310 	 */
4311 
4312 	engine->emit_bb_start = gen8_emit_bb_start;
4313 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 50))
4314 		engine->emit_bb_start = xehp_emit_bb_start;
4315 }
4316 
4317 static void rcs_submission_override(struct intel_engine_cs *engine)
4318 {
4319 	switch (GRAPHICS_VER(engine->i915)) {
4320 	case 12:
4321 		engine->emit_flush = gen12_emit_flush_rcs;
4322 		engine->emit_fini_breadcrumb = gen12_emit_fini_breadcrumb_rcs;
4323 		break;
4324 	case 11:
4325 		engine->emit_flush = gen11_emit_flush_rcs;
4326 		engine->emit_fini_breadcrumb = gen11_emit_fini_breadcrumb_rcs;
4327 		break;
4328 	default:
4329 		engine->emit_flush = gen8_emit_flush_rcs;
4330 		engine->emit_fini_breadcrumb = gen8_emit_fini_breadcrumb_rcs;
4331 		break;
4332 	}
4333 }
4334 
4335 static inline void guc_default_irqs(struct intel_engine_cs *engine)
4336 {
4337 	engine->irq_keep_mask = GT_RENDER_USER_INTERRUPT;
4338 	intel_engine_set_irq_handler(engine, cs_irq_handler);
4339 }
4340 
4341 static void guc_sched_engine_destroy(struct kref *kref)
4342 {
4343 	struct i915_sched_engine *sched_engine =
4344 		container_of(kref, typeof(*sched_engine), ref);
4345 	struct intel_guc *guc = sched_engine->private_data;
4346 
4347 	guc->sched_engine = NULL;
4348 	tasklet_kill(&sched_engine->tasklet); /* flush the callback */
4349 	kfree(sched_engine);
4350 }
4351 
4352 int intel_guc_submission_setup(struct intel_engine_cs *engine)
4353 {
4354 	struct drm_i915_private *i915 = engine->i915;
4355 	struct intel_guc *guc = &engine->gt->uc.guc;
4356 
4357 	/*
4358 	 * The setup relies on several assumptions (e.g. irqs always enabled)
4359 	 * that are only valid on gen11+
4360 	 */
4361 	GEM_BUG_ON(GRAPHICS_VER(i915) < 11);
4362 
4363 	if (!guc->sched_engine) {
4364 		guc->sched_engine = i915_sched_engine_create(ENGINE_VIRTUAL);
4365 		if (!guc->sched_engine)
4366 			return -ENOMEM;
4367 
4368 		guc->sched_engine->schedule = i915_schedule;
4369 		guc->sched_engine->disabled = guc_sched_engine_disabled;
4370 		guc->sched_engine->private_data = guc;
4371 		guc->sched_engine->destroy = guc_sched_engine_destroy;
4372 		guc->sched_engine->bump_inflight_request_prio =
4373 			guc_bump_inflight_request_prio;
4374 		guc->sched_engine->retire_inflight_request_prio =
4375 			guc_retire_inflight_request_prio;
4376 		tasklet_setup(&guc->sched_engine->tasklet,
4377 			      guc_submission_tasklet);
4378 	}
4379 	i915_sched_engine_put(engine->sched_engine);
4380 	engine->sched_engine = i915_sched_engine_get(guc->sched_engine);
4381 
4382 	guc_default_vfuncs(engine);
4383 	guc_default_irqs(engine);
4384 	guc_init_breadcrumbs(engine);
4385 
4386 	if (engine->flags & I915_ENGINE_HAS_RCS_REG_STATE)
4387 		rcs_submission_override(engine);
4388 
4389 	lrc_init_wa_ctx(engine);
4390 
4391 	/* Finally, take ownership and responsibility for cleanup! */
4392 	engine->sanitize = guc_sanitize;
4393 	engine->release = guc_release;
4394 
4395 	return 0;
4396 }
4397 
4398 struct scheduling_policy {
4399 	/* internal data */
4400 	u32 max_words, num_words;
4401 	u32 count;
4402 	/* API data */
4403 	struct guc_update_scheduling_policy h2g;
4404 };
4405 
4406 static u32 __guc_scheduling_policy_action_size(struct scheduling_policy *policy)
4407 {
4408 	u32 *start = (void *)&policy->h2g;
4409 	u32 *end = policy->h2g.data + policy->num_words;
4410 	size_t delta = end - start;
4411 
4412 	return delta;
4413 }
4414 
4415 static struct scheduling_policy *__guc_scheduling_policy_start_klv(struct scheduling_policy *policy)
4416 {
4417 	policy->h2g.header.action = INTEL_GUC_ACTION_UPDATE_SCHEDULING_POLICIES_KLV;
4418 	policy->max_words = ARRAY_SIZE(policy->h2g.data);
4419 	policy->num_words = 0;
4420 	policy->count = 0;
4421 
4422 	return policy;
4423 }
4424 
4425 static void __guc_scheduling_policy_add_klv(struct scheduling_policy *policy,
4426 					    u32 action, u32 *data, u32 len)
4427 {
4428 	u32 *klv_ptr = policy->h2g.data + policy->num_words;
4429 
4430 	GEM_BUG_ON((policy->num_words + 1 + len) > policy->max_words);
4431 	*(klv_ptr++) = FIELD_PREP(GUC_KLV_0_KEY, action) |
4432 		       FIELD_PREP(GUC_KLV_0_LEN, len);
4433 	memcpy(klv_ptr, data, sizeof(u32) * len);
4434 	policy->num_words += 1 + len;
4435 	policy->count++;
4436 }
4437 
4438 static int __guc_action_set_scheduling_policies(struct intel_guc *guc,
4439 						struct scheduling_policy *policy)
4440 {
4441 	int ret;
4442 
4443 	ret = intel_guc_send(guc, (u32 *)&policy->h2g,
4444 			     __guc_scheduling_policy_action_size(policy));
4445 	if (ret < 0) {
4446 		guc_probe_error(guc, "Failed to configure global scheduling policies: %pe!\n",
4447 				ERR_PTR(ret));
4448 		return ret;
4449 	}
4450 
4451 	if (ret != policy->count) {
4452 		guc_warn(guc, "global scheduler policy processed %d of %d KLVs!",
4453 			 ret, policy->count);
4454 		if (ret > policy->count)
4455 			return -EPROTO;
4456 	}
4457 
4458 	return 0;
4459 }
4460 
4461 static int guc_init_global_schedule_policy(struct intel_guc *guc)
4462 {
4463 	struct scheduling_policy policy;
4464 	struct intel_gt *gt = guc_to_gt(guc);
4465 	intel_wakeref_t wakeref;
4466 	int ret;
4467 
4468 	if (GUC_SUBMIT_VER(guc) < MAKE_GUC_VER(1, 1, 0))
4469 		return 0;
4470 
4471 	__guc_scheduling_policy_start_klv(&policy);
4472 
4473 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref) {
4474 		u32 yield[] = {
4475 			GLOBAL_SCHEDULE_POLICY_RC_YIELD_DURATION,
4476 			GLOBAL_SCHEDULE_POLICY_RC_YIELD_RATIO,
4477 		};
4478 
4479 		__guc_scheduling_policy_add_klv(&policy,
4480 						GUC_SCHEDULING_POLICIES_KLV_ID_RENDER_COMPUTE_YIELD,
4481 						yield, ARRAY_SIZE(yield));
4482 
4483 		ret = __guc_action_set_scheduling_policies(guc, &policy);
4484 	}
4485 
4486 	return ret;
4487 }
4488 
4489 static void guc_route_semaphores(struct intel_guc *guc, bool to_guc)
4490 {
4491 	struct intel_gt *gt = guc_to_gt(guc);
4492 	u32 val;
4493 
4494 	if (GRAPHICS_VER(gt->i915) < 12)
4495 		return;
4496 
4497 	if (to_guc)
4498 		val = GUC_SEM_INTR_ROUTE_TO_GUC | GUC_SEM_INTR_ENABLE_ALL;
4499 	else
4500 		val = 0;
4501 
4502 	intel_uncore_write(gt->uncore, GEN12_GUC_SEM_INTR_ENABLES, val);
4503 }
4504 
4505 int intel_guc_submission_enable(struct intel_guc *guc)
4506 {
4507 	int ret;
4508 
4509 	/* Semaphore interrupt enable and route to GuC */
4510 	guc_route_semaphores(guc, true);
4511 
4512 	ret = guc_init_submission(guc);
4513 	if (ret)
4514 		goto fail_sem;
4515 
4516 	ret = guc_init_engine_stats(guc);
4517 	if (ret)
4518 		goto fail_sem;
4519 
4520 	ret = guc_init_global_schedule_policy(guc);
4521 	if (ret)
4522 		goto fail_stats;
4523 
4524 	return 0;
4525 
4526 fail_stats:
4527 	guc_fini_engine_stats(guc);
4528 fail_sem:
4529 	guc_route_semaphores(guc, false);
4530 	return ret;
4531 }
4532 
4533 /* Note: By the time we're here, GuC may have already been reset */
4534 void intel_guc_submission_disable(struct intel_guc *guc)
4535 {
4536 	guc_cancel_busyness_worker(guc);
4537 
4538 	/* Semaphore interrupt disable and route to host */
4539 	guc_route_semaphores(guc, false);
4540 }
4541 
4542 static bool __guc_submission_supported(struct intel_guc *guc)
4543 {
4544 	/* GuC submission is unavailable for pre-Gen11 */
4545 	return intel_guc_is_supported(guc) &&
4546 	       GRAPHICS_VER(guc_to_gt(guc)->i915) >= 11;
4547 }
4548 
4549 static bool __guc_submission_selected(struct intel_guc *guc)
4550 {
4551 	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
4552 
4553 	if (!intel_guc_submission_is_supported(guc))
4554 		return false;
4555 
4556 	return i915->params.enable_guc & ENABLE_GUC_SUBMISSION;
4557 }
4558 
4559 int intel_guc_sched_disable_gucid_threshold_max(struct intel_guc *guc)
4560 {
4561 	return guc->submission_state.num_guc_ids - NUMBER_MULTI_LRC_GUC_ID(guc);
4562 }
4563 
4564 /*
4565  * This default value of 33 milisecs (+1 milisec round up) ensures 30fps or higher
4566  * workloads are able to enjoy the latency reduction when delaying the schedule-disable
4567  * operation. This matches the 30fps game-render + encode (real world) workload this
4568  * knob was tested against.
4569  */
4570 #define SCHED_DISABLE_DELAY_MS	34
4571 
4572 /*
4573  * A threshold of 75% is a reasonable starting point considering that real world apps
4574  * generally don't get anywhere near this.
4575  */
4576 #define NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(__guc) \
4577 	(((intel_guc_sched_disable_gucid_threshold_max(guc)) * 3) / 4)
4578 
4579 void intel_guc_submission_init_early(struct intel_guc *guc)
4580 {
4581 	xa_init_flags(&guc->context_lookup, XA_FLAGS_LOCK_IRQ);
4582 
4583 	spin_lock_init(&guc->submission_state.lock);
4584 	INIT_LIST_HEAD(&guc->submission_state.guc_id_list);
4585 	ida_init(&guc->submission_state.guc_ids);
4586 	INIT_LIST_HEAD(&guc->submission_state.destroyed_contexts);
4587 	INIT_WORK(&guc->submission_state.destroyed_worker,
4588 		  destroyed_worker_func);
4589 	INIT_WORK(&guc->submission_state.reset_fail_worker,
4590 		  reset_fail_worker_func);
4591 
4592 	spin_lock_init(&guc->timestamp.lock);
4593 	INIT_DELAYED_WORK(&guc->timestamp.work, guc_timestamp_ping);
4594 
4595 	guc->submission_state.sched_disable_delay_ms = SCHED_DISABLE_DELAY_MS;
4596 	guc->submission_state.num_guc_ids = GUC_MAX_CONTEXT_ID;
4597 	guc->submission_state.sched_disable_gucid_threshold =
4598 		NUM_SCHED_DISABLE_GUCIDS_DEFAULT_THRESHOLD(guc);
4599 	guc->submission_supported = __guc_submission_supported(guc);
4600 	guc->submission_selected = __guc_submission_selected(guc);
4601 }
4602 
4603 static inline struct intel_context *
4604 g2h_context_lookup(struct intel_guc *guc, u32 ctx_id)
4605 {
4606 	struct intel_context *ce;
4607 
4608 	if (unlikely(ctx_id >= GUC_MAX_CONTEXT_ID)) {
4609 		guc_err(guc, "Invalid ctx_id %u\n", ctx_id);
4610 		return NULL;
4611 	}
4612 
4613 	ce = __get_context(guc, ctx_id);
4614 	if (unlikely(!ce)) {
4615 		guc_err(guc, "Context is NULL, ctx_id %u\n", ctx_id);
4616 		return NULL;
4617 	}
4618 
4619 	if (unlikely(intel_context_is_child(ce))) {
4620 		guc_err(guc, "Context is child, ctx_id %u\n", ctx_id);
4621 		return NULL;
4622 	}
4623 
4624 	return ce;
4625 }
4626 
4627 int intel_guc_deregister_done_process_msg(struct intel_guc *guc,
4628 					  const u32 *msg,
4629 					  u32 len)
4630 {
4631 	struct intel_context *ce;
4632 	u32 ctx_id;
4633 
4634 	if (unlikely(len < 1)) {
4635 		guc_err(guc, "Invalid length %u\n", len);
4636 		return -EPROTO;
4637 	}
4638 	ctx_id = msg[0];
4639 
4640 	ce = g2h_context_lookup(guc, ctx_id);
4641 	if (unlikely(!ce))
4642 		return -EPROTO;
4643 
4644 	trace_intel_context_deregister_done(ce);
4645 
4646 #ifdef CONFIG_DRM_I915_SELFTEST
4647 	if (unlikely(ce->drop_deregister)) {
4648 		ce->drop_deregister = false;
4649 		return 0;
4650 	}
4651 #endif
4652 
4653 	if (context_wait_for_deregister_to_register(ce)) {
4654 		struct intel_runtime_pm *runtime_pm =
4655 			&ce->engine->gt->i915->runtime_pm;
4656 		intel_wakeref_t wakeref;
4657 
4658 		/*
4659 		 * Previous owner of this guc_id has been deregistered, now safe
4660 		 * register this context.
4661 		 */
4662 		with_intel_runtime_pm(runtime_pm, wakeref)
4663 			register_context(ce, true);
4664 		guc_signal_context_fence(ce);
4665 		intel_context_put(ce);
4666 	} else if (context_destroyed(ce)) {
4667 		/* Context has been destroyed */
4668 		intel_gt_pm_put_async(guc_to_gt(guc));
4669 		release_guc_id(guc, ce);
4670 		__guc_context_destroy(ce);
4671 	}
4672 
4673 	decr_outstanding_submission_g2h(guc);
4674 
4675 	return 0;
4676 }
4677 
4678 int intel_guc_sched_done_process_msg(struct intel_guc *guc,
4679 				     const u32 *msg,
4680 				     u32 len)
4681 {
4682 	struct intel_context *ce;
4683 	unsigned long flags;
4684 	u32 ctx_id;
4685 
4686 	if (unlikely(len < 2)) {
4687 		guc_err(guc, "Invalid length %u\n", len);
4688 		return -EPROTO;
4689 	}
4690 	ctx_id = msg[0];
4691 
4692 	ce = g2h_context_lookup(guc, ctx_id);
4693 	if (unlikely(!ce))
4694 		return -EPROTO;
4695 
4696 	if (unlikely(context_destroyed(ce) ||
4697 		     (!context_pending_enable(ce) &&
4698 		     !context_pending_disable(ce)))) {
4699 		guc_err(guc, "Bad context sched_state 0x%x, ctx_id %u\n",
4700 			ce->guc_state.sched_state, ctx_id);
4701 		return -EPROTO;
4702 	}
4703 
4704 	trace_intel_context_sched_done(ce);
4705 
4706 	if (context_pending_enable(ce)) {
4707 #ifdef CONFIG_DRM_I915_SELFTEST
4708 		if (unlikely(ce->drop_schedule_enable)) {
4709 			ce->drop_schedule_enable = false;
4710 			return 0;
4711 		}
4712 #endif
4713 
4714 		spin_lock_irqsave(&ce->guc_state.lock, flags);
4715 		clr_context_pending_enable(ce);
4716 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4717 	} else if (context_pending_disable(ce)) {
4718 		bool banned;
4719 
4720 #ifdef CONFIG_DRM_I915_SELFTEST
4721 		if (unlikely(ce->drop_schedule_disable)) {
4722 			ce->drop_schedule_disable = false;
4723 			return 0;
4724 		}
4725 #endif
4726 
4727 		/*
4728 		 * Unpin must be done before __guc_signal_context_fence,
4729 		 * otherwise a race exists between the requests getting
4730 		 * submitted + retired before this unpin completes resulting in
4731 		 * the pin_count going to zero and the context still being
4732 		 * enabled.
4733 		 */
4734 		intel_context_sched_disable_unpin(ce);
4735 
4736 		spin_lock_irqsave(&ce->guc_state.lock, flags);
4737 		banned = context_banned(ce);
4738 		clr_context_banned(ce);
4739 		clr_context_pending_disable(ce);
4740 		__guc_signal_context_fence(ce);
4741 		guc_blocked_fence_complete(ce);
4742 		spin_unlock_irqrestore(&ce->guc_state.lock, flags);
4743 
4744 		if (banned) {
4745 			guc_cancel_context_requests(ce);
4746 			intel_engine_signal_breadcrumbs(ce->engine);
4747 		}
4748 	}
4749 
4750 	decr_outstanding_submission_g2h(guc);
4751 	intel_context_put(ce);
4752 
4753 	return 0;
4754 }
4755 
4756 static void capture_error_state(struct intel_guc *guc,
4757 				struct intel_context *ce)
4758 {
4759 	struct intel_gt *gt = guc_to_gt(guc);
4760 	struct drm_i915_private *i915 = gt->i915;
4761 	intel_wakeref_t wakeref;
4762 	intel_engine_mask_t engine_mask;
4763 
4764 	if (intel_engine_is_virtual(ce->engine)) {
4765 		struct intel_engine_cs *e;
4766 		intel_engine_mask_t tmp, virtual_mask = ce->engine->mask;
4767 
4768 		engine_mask = 0;
4769 		for_each_engine_masked(e, ce->engine->gt, virtual_mask, tmp) {
4770 			bool match = intel_guc_capture_is_matching_engine(gt, ce, e);
4771 
4772 			if (match) {
4773 				intel_engine_set_hung_context(e, ce);
4774 				engine_mask |= e->mask;
4775 				i915_increase_reset_engine_count(&i915->gpu_error,
4776 								 e);
4777 			}
4778 		}
4779 
4780 		if (!engine_mask) {
4781 			guc_warn(guc, "No matching physical engine capture for virtual engine context 0x%04X / %s",
4782 				 ce->guc_id.id, ce->engine->name);
4783 			engine_mask = ~0U;
4784 		}
4785 	} else {
4786 		intel_engine_set_hung_context(ce->engine, ce);
4787 		engine_mask = ce->engine->mask;
4788 		i915_increase_reset_engine_count(&i915->gpu_error, ce->engine);
4789 	}
4790 
4791 	with_intel_runtime_pm(&i915->runtime_pm, wakeref)
4792 		i915_capture_error_state(gt, engine_mask, CORE_DUMP_FLAG_IS_GUC_CAPTURE);
4793 }
4794 
4795 static void guc_context_replay(struct intel_context *ce)
4796 {
4797 	struct i915_sched_engine *sched_engine = ce->engine->sched_engine;
4798 
4799 	__guc_reset_context(ce, ce->engine->mask);
4800 	tasklet_hi_schedule(&sched_engine->tasklet);
4801 }
4802 
4803 static void guc_handle_context_reset(struct intel_guc *guc,
4804 				     struct intel_context *ce)
4805 {
4806 	trace_intel_context_reset(ce);
4807 
4808 	guc_dbg(guc, "Got context reset notification: 0x%04X on %s, exiting = %s, banned = %s\n",
4809 		ce->guc_id.id, ce->engine->name,
4810 		str_yes_no(intel_context_is_exiting(ce)),
4811 		str_yes_no(intel_context_is_banned(ce)));
4812 
4813 	if (likely(intel_context_is_schedulable(ce))) {
4814 		capture_error_state(guc, ce);
4815 		guc_context_replay(ce);
4816 	} else {
4817 		guc_info(guc, "Ignoring context reset notification of exiting context 0x%04X on %s",
4818 			 ce->guc_id.id, ce->engine->name);
4819 	}
4820 }
4821 
4822 int intel_guc_context_reset_process_msg(struct intel_guc *guc,
4823 					const u32 *msg, u32 len)
4824 {
4825 	struct intel_context *ce;
4826 	unsigned long flags;
4827 	int ctx_id;
4828 
4829 	if (unlikely(len != 1)) {
4830 		guc_err(guc, "Invalid length %u", len);
4831 		return -EPROTO;
4832 	}
4833 
4834 	ctx_id = msg[0];
4835 
4836 	/*
4837 	 * The context lookup uses the xarray but lookups only require an RCU lock
4838 	 * not the full spinlock. So take the lock explicitly and keep it until the
4839 	 * context has been reference count locked to ensure it can't be destroyed
4840 	 * asynchronously until the reset is done.
4841 	 */
4842 	xa_lock_irqsave(&guc->context_lookup, flags);
4843 	ce = g2h_context_lookup(guc, ctx_id);
4844 	if (ce)
4845 		intel_context_get(ce);
4846 	xa_unlock_irqrestore(&guc->context_lookup, flags);
4847 
4848 	if (unlikely(!ce))
4849 		return -EPROTO;
4850 
4851 	guc_handle_context_reset(guc, ce);
4852 	intel_context_put(ce);
4853 
4854 	return 0;
4855 }
4856 
4857 int intel_guc_error_capture_process_msg(struct intel_guc *guc,
4858 					const u32 *msg, u32 len)
4859 {
4860 	u32 status;
4861 
4862 	if (unlikely(len != 1)) {
4863 		guc_dbg(guc, "Invalid length %u", len);
4864 		return -EPROTO;
4865 	}
4866 
4867 	status = msg[0] & INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_MASK;
4868 	if (status == INTEL_GUC_STATE_CAPTURE_EVENT_STATUS_NOSPACE)
4869 		guc_warn(guc, "No space for error capture");
4870 
4871 	intel_guc_capture_process(guc);
4872 
4873 	return 0;
4874 }
4875 
4876 struct intel_engine_cs *
4877 intel_guc_lookup_engine(struct intel_guc *guc, u8 guc_class, u8 instance)
4878 {
4879 	struct intel_gt *gt = guc_to_gt(guc);
4880 	u8 engine_class = guc_class_to_engine_class(guc_class);
4881 
4882 	/* Class index is checked in class converter */
4883 	GEM_BUG_ON(instance > MAX_ENGINE_INSTANCE);
4884 
4885 	return gt->engine_class[engine_class][instance];
4886 }
4887 
4888 static void reset_fail_worker_func(struct work_struct *w)
4889 {
4890 	struct intel_guc *guc = container_of(w, struct intel_guc,
4891 					     submission_state.reset_fail_worker);
4892 	struct intel_gt *gt = guc_to_gt(guc);
4893 	intel_engine_mask_t reset_fail_mask;
4894 	unsigned long flags;
4895 
4896 	spin_lock_irqsave(&guc->submission_state.lock, flags);
4897 	reset_fail_mask = guc->submission_state.reset_fail_mask;
4898 	guc->submission_state.reset_fail_mask = 0;
4899 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
4900 
4901 	if (likely(reset_fail_mask)) {
4902 		struct intel_engine_cs *engine;
4903 		enum intel_engine_id id;
4904 
4905 		/*
4906 		 * GuC is toast at this point - it dead loops after sending the failed
4907 		 * reset notification. So need to manually determine the guilty context.
4908 		 * Note that it should be reliable to do this here because the GuC is
4909 		 * toast and will not be scheduling behind the KMD's back.
4910 		 */
4911 		for_each_engine_masked(engine, gt, reset_fail_mask, id)
4912 			intel_guc_find_hung_context(engine);
4913 
4914 		intel_gt_handle_error(gt, reset_fail_mask,
4915 				      I915_ERROR_CAPTURE,
4916 				      "GuC failed to reset engine mask=0x%x",
4917 				      reset_fail_mask);
4918 	}
4919 }
4920 
4921 int intel_guc_engine_failure_process_msg(struct intel_guc *guc,
4922 					 const u32 *msg, u32 len)
4923 {
4924 	struct intel_engine_cs *engine;
4925 	u8 guc_class, instance;
4926 	u32 reason;
4927 	unsigned long flags;
4928 
4929 	if (unlikely(len != 3)) {
4930 		guc_err(guc, "Invalid length %u", len);
4931 		return -EPROTO;
4932 	}
4933 
4934 	guc_class = msg[0];
4935 	instance = msg[1];
4936 	reason = msg[2];
4937 
4938 	engine = intel_guc_lookup_engine(guc, guc_class, instance);
4939 	if (unlikely(!engine)) {
4940 		guc_err(guc, "Invalid engine %d:%d", guc_class, instance);
4941 		return -EPROTO;
4942 	}
4943 
4944 	/*
4945 	 * This is an unexpected failure of a hardware feature. So, log a real
4946 	 * error message not just the informational that comes with the reset.
4947 	 */
4948 	guc_err(guc, "Engine reset failed on %d:%d (%s) because 0x%08X",
4949 		guc_class, instance, engine->name, reason);
4950 
4951 	spin_lock_irqsave(&guc->submission_state.lock, flags);
4952 	guc->submission_state.reset_fail_mask |= engine->mask;
4953 	spin_unlock_irqrestore(&guc->submission_state.lock, flags);
4954 
4955 	/*
4956 	 * A GT reset flushes this worker queue (G2H handler) so we must use
4957 	 * another worker to trigger a GT reset.
4958 	 */
4959 	queue_work(system_unbound_wq, &guc->submission_state.reset_fail_worker);
4960 
4961 	return 0;
4962 }
4963 
4964 void intel_guc_find_hung_context(struct intel_engine_cs *engine)
4965 {
4966 	struct intel_guc *guc = &engine->gt->uc.guc;
4967 	struct intel_context *ce;
4968 	struct i915_request *rq;
4969 	unsigned long index;
4970 	unsigned long flags;
4971 
4972 	/* Reset called during driver load? GuC not yet initialised! */
4973 	if (unlikely(!guc_submission_initialized(guc)))
4974 		return;
4975 
4976 	xa_lock_irqsave(&guc->context_lookup, flags);
4977 	xa_for_each(&guc->context_lookup, index, ce) {
4978 		bool found;
4979 
4980 		if (!kref_get_unless_zero(&ce->ref))
4981 			continue;
4982 
4983 		xa_unlock(&guc->context_lookup);
4984 
4985 		if (!intel_context_is_pinned(ce))
4986 			goto next;
4987 
4988 		if (intel_engine_is_virtual(ce->engine)) {
4989 			if (!(ce->engine->mask & engine->mask))
4990 				goto next;
4991 		} else {
4992 			if (ce->engine != engine)
4993 				goto next;
4994 		}
4995 
4996 		found = false;
4997 		spin_lock(&ce->guc_state.lock);
4998 		list_for_each_entry(rq, &ce->guc_state.requests, sched.link) {
4999 			if (i915_test_request_state(rq) != I915_REQUEST_ACTIVE)
5000 				continue;
5001 
5002 			found = true;
5003 			break;
5004 		}
5005 		spin_unlock(&ce->guc_state.lock);
5006 
5007 		if (found) {
5008 			intel_engine_set_hung_context(engine, ce);
5009 
5010 			/* Can only cope with one hang at a time... */
5011 			intel_context_put(ce);
5012 			xa_lock(&guc->context_lookup);
5013 			goto done;
5014 		}
5015 
5016 next:
5017 		intel_context_put(ce);
5018 		xa_lock(&guc->context_lookup);
5019 	}
5020 done:
5021 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5022 }
5023 
5024 void intel_guc_dump_active_requests(struct intel_engine_cs *engine,
5025 				    struct i915_request *hung_rq,
5026 				    struct drm_printer *m)
5027 {
5028 	struct intel_guc *guc = &engine->gt->uc.guc;
5029 	struct intel_context *ce;
5030 	unsigned long index;
5031 	unsigned long flags;
5032 
5033 	/* Reset called during driver load? GuC not yet initialised! */
5034 	if (unlikely(!guc_submission_initialized(guc)))
5035 		return;
5036 
5037 	xa_lock_irqsave(&guc->context_lookup, flags);
5038 	xa_for_each(&guc->context_lookup, index, ce) {
5039 		if (!kref_get_unless_zero(&ce->ref))
5040 			continue;
5041 
5042 		xa_unlock(&guc->context_lookup);
5043 
5044 		if (!intel_context_is_pinned(ce))
5045 			goto next;
5046 
5047 		if (intel_engine_is_virtual(ce->engine)) {
5048 			if (!(ce->engine->mask & engine->mask))
5049 				goto next;
5050 		} else {
5051 			if (ce->engine != engine)
5052 				goto next;
5053 		}
5054 
5055 		spin_lock(&ce->guc_state.lock);
5056 		intel_engine_dump_active_requests(&ce->guc_state.requests,
5057 						  hung_rq, m);
5058 		spin_unlock(&ce->guc_state.lock);
5059 
5060 next:
5061 		intel_context_put(ce);
5062 		xa_lock(&guc->context_lookup);
5063 	}
5064 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5065 }
5066 
5067 void intel_guc_submission_print_info(struct intel_guc *guc,
5068 				     struct drm_printer *p)
5069 {
5070 	struct i915_sched_engine *sched_engine = guc->sched_engine;
5071 	struct rb_node *rb;
5072 	unsigned long flags;
5073 
5074 	if (!sched_engine)
5075 		return;
5076 
5077 	drm_printf(p, "GuC Submission API Version: %d.%d.%d\n",
5078 		   guc->submission_version.major, guc->submission_version.minor,
5079 		   guc->submission_version.patch);
5080 	drm_printf(p, "GuC Number Outstanding Submission G2H: %u\n",
5081 		   atomic_read(&guc->outstanding_submission_g2h));
5082 	drm_printf(p, "GuC tasklet count: %u\n",
5083 		   atomic_read(&sched_engine->tasklet.count));
5084 
5085 	spin_lock_irqsave(&sched_engine->lock, flags);
5086 	drm_printf(p, "Requests in GuC submit tasklet:\n");
5087 	for (rb = rb_first_cached(&sched_engine->queue); rb; rb = rb_next(rb)) {
5088 		struct i915_priolist *pl = to_priolist(rb);
5089 		struct i915_request *rq;
5090 
5091 		priolist_for_each_request(rq, pl)
5092 			drm_printf(p, "guc_id=%u, seqno=%llu\n",
5093 				   rq->context->guc_id.id,
5094 				   rq->fence.seqno);
5095 	}
5096 	spin_unlock_irqrestore(&sched_engine->lock, flags);
5097 	drm_printf(p, "\n");
5098 }
5099 
5100 static inline void guc_log_context_priority(struct drm_printer *p,
5101 					    struct intel_context *ce)
5102 {
5103 	int i;
5104 
5105 	drm_printf(p, "\t\tPriority: %d\n", ce->guc_state.prio);
5106 	drm_printf(p, "\t\tNumber Requests (lower index == higher priority)\n");
5107 	for (i = GUC_CLIENT_PRIORITY_KMD_HIGH;
5108 	     i < GUC_CLIENT_PRIORITY_NUM; ++i) {
5109 		drm_printf(p, "\t\tNumber requests in priority band[%d]: %d\n",
5110 			   i, ce->guc_state.prio_count[i]);
5111 	}
5112 	drm_printf(p, "\n");
5113 }
5114 
5115 static inline void guc_log_context(struct drm_printer *p,
5116 				   struct intel_context *ce)
5117 {
5118 	drm_printf(p, "GuC lrc descriptor %u:\n", ce->guc_id.id);
5119 	drm_printf(p, "\tHW Context Desc: 0x%08x\n", ce->lrc.lrca);
5120 	drm_printf(p, "\t\tLRC Head: Internal %u, Memory %u\n",
5121 		   ce->ring->head,
5122 		   ce->lrc_reg_state[CTX_RING_HEAD]);
5123 	drm_printf(p, "\t\tLRC Tail: Internal %u, Memory %u\n",
5124 		   ce->ring->tail,
5125 		   ce->lrc_reg_state[CTX_RING_TAIL]);
5126 	drm_printf(p, "\t\tContext Pin Count: %u\n",
5127 		   atomic_read(&ce->pin_count));
5128 	drm_printf(p, "\t\tGuC ID Ref Count: %u\n",
5129 		   atomic_read(&ce->guc_id.ref));
5130 	drm_printf(p, "\t\tSchedule State: 0x%x\n",
5131 		   ce->guc_state.sched_state);
5132 }
5133 
5134 void intel_guc_submission_print_context_info(struct intel_guc *guc,
5135 					     struct drm_printer *p)
5136 {
5137 	struct intel_context *ce;
5138 	unsigned long index;
5139 	unsigned long flags;
5140 
5141 	xa_lock_irqsave(&guc->context_lookup, flags);
5142 	xa_for_each(&guc->context_lookup, index, ce) {
5143 		GEM_BUG_ON(intel_context_is_child(ce));
5144 
5145 		guc_log_context(p, ce);
5146 		guc_log_context_priority(p, ce);
5147 
5148 		if (intel_context_is_parent(ce)) {
5149 			struct intel_context *child;
5150 
5151 			drm_printf(p, "\t\tNumber children: %u\n",
5152 				   ce->parallel.number_children);
5153 
5154 			if (ce->parallel.guc.wq_status) {
5155 				drm_printf(p, "\t\tWQI Head: %u\n",
5156 					   READ_ONCE(*ce->parallel.guc.wq_head));
5157 				drm_printf(p, "\t\tWQI Tail: %u\n",
5158 					   READ_ONCE(*ce->parallel.guc.wq_tail));
5159 				drm_printf(p, "\t\tWQI Status: %u\n",
5160 					   READ_ONCE(*ce->parallel.guc.wq_status));
5161 			}
5162 
5163 			if (ce->engine->emit_bb_start ==
5164 			    emit_bb_start_parent_no_preempt_mid_batch) {
5165 				u8 i;
5166 
5167 				drm_printf(p, "\t\tChildren Go: %u\n",
5168 					   get_children_go_value(ce));
5169 				for (i = 0; i < ce->parallel.number_children; ++i)
5170 					drm_printf(p, "\t\tChildren Join: %u\n",
5171 						   get_children_join_value(ce, i));
5172 			}
5173 
5174 			for_each_child(ce, child)
5175 				guc_log_context(p, child);
5176 		}
5177 	}
5178 	xa_unlock_irqrestore(&guc->context_lookup, flags);
5179 }
5180 
5181 static inline u32 get_children_go_addr(struct intel_context *ce)
5182 {
5183 	GEM_BUG_ON(!intel_context_is_parent(ce));
5184 
5185 	return i915_ggtt_offset(ce->state) +
5186 		__get_parent_scratch_offset(ce) +
5187 		offsetof(struct parent_scratch, go.semaphore);
5188 }
5189 
5190 static inline u32 get_children_join_addr(struct intel_context *ce,
5191 					 u8 child_index)
5192 {
5193 	GEM_BUG_ON(!intel_context_is_parent(ce));
5194 
5195 	return i915_ggtt_offset(ce->state) +
5196 		__get_parent_scratch_offset(ce) +
5197 		offsetof(struct parent_scratch, join[child_index].semaphore);
5198 }
5199 
5200 #define PARENT_GO_BB			1
5201 #define PARENT_GO_FINI_BREADCRUMB	0
5202 #define CHILD_GO_BB			1
5203 #define CHILD_GO_FINI_BREADCRUMB	0
5204 static int emit_bb_start_parent_no_preempt_mid_batch(struct i915_request *rq,
5205 						     u64 offset, u32 len,
5206 						     const unsigned int flags)
5207 {
5208 	struct intel_context *ce = rq->context;
5209 	u32 *cs;
5210 	u8 i;
5211 
5212 	GEM_BUG_ON(!intel_context_is_parent(ce));
5213 
5214 	cs = intel_ring_begin(rq, 10 + 4 * ce->parallel.number_children);
5215 	if (IS_ERR(cs))
5216 		return PTR_ERR(cs);
5217 
5218 	/* Wait on children */
5219 	for (i = 0; i < ce->parallel.number_children; ++i) {
5220 		*cs++ = (MI_SEMAPHORE_WAIT |
5221 			 MI_SEMAPHORE_GLOBAL_GTT |
5222 			 MI_SEMAPHORE_POLL |
5223 			 MI_SEMAPHORE_SAD_EQ_SDD);
5224 		*cs++ = PARENT_GO_BB;
5225 		*cs++ = get_children_join_addr(ce, i);
5226 		*cs++ = 0;
5227 	}
5228 
5229 	/* Turn off preemption */
5230 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5231 	*cs++ = MI_NOOP;
5232 
5233 	/* Tell children go */
5234 	cs = gen8_emit_ggtt_write(cs,
5235 				  CHILD_GO_BB,
5236 				  get_children_go_addr(ce),
5237 				  0);
5238 
5239 	/* Jump to batch */
5240 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
5241 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5242 	*cs++ = lower_32_bits(offset);
5243 	*cs++ = upper_32_bits(offset);
5244 	*cs++ = MI_NOOP;
5245 
5246 	intel_ring_advance(rq, cs);
5247 
5248 	return 0;
5249 }
5250 
5251 static int emit_bb_start_child_no_preempt_mid_batch(struct i915_request *rq,
5252 						    u64 offset, u32 len,
5253 						    const unsigned int flags)
5254 {
5255 	struct intel_context *ce = rq->context;
5256 	struct intel_context *parent = intel_context_to_parent(ce);
5257 	u32 *cs;
5258 
5259 	GEM_BUG_ON(!intel_context_is_child(ce));
5260 
5261 	cs = intel_ring_begin(rq, 12);
5262 	if (IS_ERR(cs))
5263 		return PTR_ERR(cs);
5264 
5265 	/* Signal parent */
5266 	cs = gen8_emit_ggtt_write(cs,
5267 				  PARENT_GO_BB,
5268 				  get_children_join_addr(parent,
5269 							 ce->parallel.child_index),
5270 				  0);
5271 
5272 	/* Wait on parent for go */
5273 	*cs++ = (MI_SEMAPHORE_WAIT |
5274 		 MI_SEMAPHORE_GLOBAL_GTT |
5275 		 MI_SEMAPHORE_POLL |
5276 		 MI_SEMAPHORE_SAD_EQ_SDD);
5277 	*cs++ = CHILD_GO_BB;
5278 	*cs++ = get_children_go_addr(parent);
5279 	*cs++ = 0;
5280 
5281 	/* Turn off preemption */
5282 	*cs++ = MI_ARB_ON_OFF | MI_ARB_DISABLE;
5283 
5284 	/* Jump to batch */
5285 	*cs++ = MI_BATCH_BUFFER_START_GEN8 |
5286 		(flags & I915_DISPATCH_SECURE ? 0 : BIT(8));
5287 	*cs++ = lower_32_bits(offset);
5288 	*cs++ = upper_32_bits(offset);
5289 
5290 	intel_ring_advance(rq, cs);
5291 
5292 	return 0;
5293 }
5294 
5295 static u32 *
5296 __emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5297 						   u32 *cs)
5298 {
5299 	struct intel_context *ce = rq->context;
5300 	u8 i;
5301 
5302 	GEM_BUG_ON(!intel_context_is_parent(ce));
5303 
5304 	/* Wait on children */
5305 	for (i = 0; i < ce->parallel.number_children; ++i) {
5306 		*cs++ = (MI_SEMAPHORE_WAIT |
5307 			 MI_SEMAPHORE_GLOBAL_GTT |
5308 			 MI_SEMAPHORE_POLL |
5309 			 MI_SEMAPHORE_SAD_EQ_SDD);
5310 		*cs++ = PARENT_GO_FINI_BREADCRUMB;
5311 		*cs++ = get_children_join_addr(ce, i);
5312 		*cs++ = 0;
5313 	}
5314 
5315 	/* Turn on preemption */
5316 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5317 	*cs++ = MI_NOOP;
5318 
5319 	/* Tell children go */
5320 	cs = gen8_emit_ggtt_write(cs,
5321 				  CHILD_GO_FINI_BREADCRUMB,
5322 				  get_children_go_addr(ce),
5323 				  0);
5324 
5325 	return cs;
5326 }
5327 
5328 /*
5329  * If this true, a submission of multi-lrc requests had an error and the
5330  * requests need to be skipped. The front end (execuf IOCTL) should've called
5331  * i915_request_skip which squashes the BB but we still need to emit the fini
5332  * breadrcrumbs seqno write. At this point we don't know how many of the
5333  * requests in the multi-lrc submission were generated so we can't do the
5334  * handshake between the parent and children (e.g. if 4 requests should be
5335  * generated but 2nd hit an error only 1 would be seen by the GuC backend).
5336  * Simply skip the handshake, but still emit the breadcrumbd seqno, if an error
5337  * has occurred on any of the requests in submission / relationship.
5338  */
5339 static inline bool skip_handshake(struct i915_request *rq)
5340 {
5341 	return test_bit(I915_FENCE_FLAG_SKIP_PARALLEL, &rq->fence.flags);
5342 }
5343 
5344 #define NON_SKIP_LEN	6
5345 static u32 *
5346 emit_fini_breadcrumb_parent_no_preempt_mid_batch(struct i915_request *rq,
5347 						 u32 *cs)
5348 {
5349 	struct intel_context *ce = rq->context;
5350 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5351 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5352 
5353 	GEM_BUG_ON(!intel_context_is_parent(ce));
5354 
5355 	if (unlikely(skip_handshake(rq))) {
5356 		/*
5357 		 * NOP everything in __emit_fini_breadcrumb_parent_no_preempt_mid_batch,
5358 		 * the NON_SKIP_LEN comes from the length of the emits below.
5359 		 */
5360 		memset(cs, 0, sizeof(u32) *
5361 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5362 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5363 	} else {
5364 		cs = __emit_fini_breadcrumb_parent_no_preempt_mid_batch(rq, cs);
5365 	}
5366 
5367 	/* Emit fini breadcrumb */
5368 	before_fini_breadcrumb_user_interrupt_cs = cs;
5369 	cs = gen8_emit_ggtt_write(cs,
5370 				  rq->fence.seqno,
5371 				  i915_request_active_timeline(rq)->hwsp_offset,
5372 				  0);
5373 
5374 	/* User interrupt */
5375 	*cs++ = MI_USER_INTERRUPT;
5376 	*cs++ = MI_NOOP;
5377 
5378 	/* Ensure our math for skip + emit is correct */
5379 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5380 		   cs);
5381 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5382 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5383 
5384 	rq->tail = intel_ring_offset(rq, cs);
5385 
5386 	return cs;
5387 }
5388 
5389 static u32 *
5390 __emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5391 						  u32 *cs)
5392 {
5393 	struct intel_context *ce = rq->context;
5394 	struct intel_context *parent = intel_context_to_parent(ce);
5395 
5396 	GEM_BUG_ON(!intel_context_is_child(ce));
5397 
5398 	/* Turn on preemption */
5399 	*cs++ = MI_ARB_ON_OFF | MI_ARB_ENABLE;
5400 	*cs++ = MI_NOOP;
5401 
5402 	/* Signal parent */
5403 	cs = gen8_emit_ggtt_write(cs,
5404 				  PARENT_GO_FINI_BREADCRUMB,
5405 				  get_children_join_addr(parent,
5406 							 ce->parallel.child_index),
5407 				  0);
5408 
5409 	/* Wait parent on for go */
5410 	*cs++ = (MI_SEMAPHORE_WAIT |
5411 		 MI_SEMAPHORE_GLOBAL_GTT |
5412 		 MI_SEMAPHORE_POLL |
5413 		 MI_SEMAPHORE_SAD_EQ_SDD);
5414 	*cs++ = CHILD_GO_FINI_BREADCRUMB;
5415 	*cs++ = get_children_go_addr(parent);
5416 	*cs++ = 0;
5417 
5418 	return cs;
5419 }
5420 
5421 static u32 *
5422 emit_fini_breadcrumb_child_no_preempt_mid_batch(struct i915_request *rq,
5423 						u32 *cs)
5424 {
5425 	struct intel_context *ce = rq->context;
5426 	__maybe_unused u32 *before_fini_breadcrumb_user_interrupt_cs;
5427 	__maybe_unused u32 *start_fini_breadcrumb_cs = cs;
5428 
5429 	GEM_BUG_ON(!intel_context_is_child(ce));
5430 
5431 	if (unlikely(skip_handshake(rq))) {
5432 		/*
5433 		 * NOP everything in __emit_fini_breadcrumb_child_no_preempt_mid_batch,
5434 		 * the NON_SKIP_LEN comes from the length of the emits below.
5435 		 */
5436 		memset(cs, 0, sizeof(u32) *
5437 		       (ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN));
5438 		cs += ce->engine->emit_fini_breadcrumb_dw - NON_SKIP_LEN;
5439 	} else {
5440 		cs = __emit_fini_breadcrumb_child_no_preempt_mid_batch(rq, cs);
5441 	}
5442 
5443 	/* Emit fini breadcrumb */
5444 	before_fini_breadcrumb_user_interrupt_cs = cs;
5445 	cs = gen8_emit_ggtt_write(cs,
5446 				  rq->fence.seqno,
5447 				  i915_request_active_timeline(rq)->hwsp_offset,
5448 				  0);
5449 
5450 	/* User interrupt */
5451 	*cs++ = MI_USER_INTERRUPT;
5452 	*cs++ = MI_NOOP;
5453 
5454 	/* Ensure our math for skip + emit is correct */
5455 	GEM_BUG_ON(before_fini_breadcrumb_user_interrupt_cs + NON_SKIP_LEN !=
5456 		   cs);
5457 	GEM_BUG_ON(start_fini_breadcrumb_cs +
5458 		   ce->engine->emit_fini_breadcrumb_dw != cs);
5459 
5460 	rq->tail = intel_ring_offset(rq, cs);
5461 
5462 	return cs;
5463 }
5464 
5465 #undef NON_SKIP_LEN
5466 
5467 static struct intel_context *
5468 guc_create_virtual(struct intel_engine_cs **siblings, unsigned int count,
5469 		   unsigned long flags)
5470 {
5471 	struct guc_virtual_engine *ve;
5472 	struct intel_guc *guc;
5473 	unsigned int n;
5474 	int err;
5475 
5476 	ve = kzalloc(sizeof(*ve), GFP_KERNEL);
5477 	if (!ve)
5478 		return ERR_PTR(-ENOMEM);
5479 
5480 	guc = &siblings[0]->gt->uc.guc;
5481 
5482 	ve->base.i915 = siblings[0]->i915;
5483 	ve->base.gt = siblings[0]->gt;
5484 	ve->base.uncore = siblings[0]->uncore;
5485 	ve->base.id = -1;
5486 
5487 	ve->base.uabi_class = I915_ENGINE_CLASS_INVALID;
5488 	ve->base.instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5489 	ve->base.uabi_instance = I915_ENGINE_CLASS_INVALID_VIRTUAL;
5490 	ve->base.saturated = ALL_ENGINES;
5491 
5492 	snprintf(ve->base.name, sizeof(ve->base.name), "virtual");
5493 
5494 	ve->base.sched_engine = i915_sched_engine_get(guc->sched_engine);
5495 
5496 	ve->base.cops = &virtual_guc_context_ops;
5497 	ve->base.request_alloc = guc_request_alloc;
5498 	ve->base.bump_serial = virtual_guc_bump_serial;
5499 
5500 	ve->base.submit_request = guc_submit_request;
5501 
5502 	ve->base.flags = I915_ENGINE_IS_VIRTUAL;
5503 
5504 	BUILD_BUG_ON(ilog2(VIRTUAL_ENGINES) < I915_NUM_ENGINES);
5505 	ve->base.mask = VIRTUAL_ENGINES;
5506 
5507 	intel_context_init(&ve->context, &ve->base);
5508 
5509 	for (n = 0; n < count; n++) {
5510 		struct intel_engine_cs *sibling = siblings[n];
5511 
5512 		GEM_BUG_ON(!is_power_of_2(sibling->mask));
5513 		if (sibling->mask & ve->base.mask) {
5514 			guc_dbg(guc, "duplicate %s entry in load balancer\n",
5515 				sibling->name);
5516 			err = -EINVAL;
5517 			goto err_put;
5518 		}
5519 
5520 		ve->base.mask |= sibling->mask;
5521 		ve->base.logical_mask |= sibling->logical_mask;
5522 
5523 		if (n != 0 && ve->base.class != sibling->class) {
5524 			guc_dbg(guc, "invalid mixing of engine class, sibling %d, already %d\n",
5525 				sibling->class, ve->base.class);
5526 			err = -EINVAL;
5527 			goto err_put;
5528 		} else if (n == 0) {
5529 			ve->base.class = sibling->class;
5530 			ve->base.uabi_class = sibling->uabi_class;
5531 			snprintf(ve->base.name, sizeof(ve->base.name),
5532 				 "v%dx%d", ve->base.class, count);
5533 			ve->base.context_size = sibling->context_size;
5534 
5535 			ve->base.add_active_request =
5536 				sibling->add_active_request;
5537 			ve->base.remove_active_request =
5538 				sibling->remove_active_request;
5539 			ve->base.emit_bb_start = sibling->emit_bb_start;
5540 			ve->base.emit_flush = sibling->emit_flush;
5541 			ve->base.emit_init_breadcrumb =
5542 				sibling->emit_init_breadcrumb;
5543 			ve->base.emit_fini_breadcrumb =
5544 				sibling->emit_fini_breadcrumb;
5545 			ve->base.emit_fini_breadcrumb_dw =
5546 				sibling->emit_fini_breadcrumb_dw;
5547 			ve->base.breadcrumbs =
5548 				intel_breadcrumbs_get(sibling->breadcrumbs);
5549 
5550 			ve->base.flags |= sibling->flags;
5551 
5552 			ve->base.props.timeslice_duration_ms =
5553 				sibling->props.timeslice_duration_ms;
5554 			ve->base.props.preempt_timeout_ms =
5555 				sibling->props.preempt_timeout_ms;
5556 		}
5557 	}
5558 
5559 	return &ve->context;
5560 
5561 err_put:
5562 	intel_context_put(&ve->context);
5563 	return ERR_PTR(err);
5564 }
5565 
5566 bool intel_guc_virtual_engine_has_heartbeat(const struct intel_engine_cs *ve)
5567 {
5568 	struct intel_engine_cs *engine;
5569 	intel_engine_mask_t tmp, mask = ve->mask;
5570 
5571 	for_each_engine_masked(engine, ve->gt, mask, tmp)
5572 		if (READ_ONCE(engine->props.heartbeat_interval_ms))
5573 			return true;
5574 
5575 	return false;
5576 }
5577 
5578 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
5579 #include "selftest_guc.c"
5580 #include "selftest_guc_multi_lrc.c"
5581 #include "selftest_guc_hangcheck.c"
5582 #endif
5583