1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2019 Intel Corporation 4 */ 5 6 #include <linux/debugfs.h> 7 #include <linux/string_helpers.h> 8 9 #include "gt/intel_gt.h" 10 #include "i915_drv.h" 11 #include "i915_irq.h" 12 #include "i915_memcpy.h" 13 #include "intel_guc_capture.h" 14 #include "intel_guc_log.h" 15 16 static void guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log); 17 18 /** 19 * DOC: GuC firmware log 20 * 21 * Firmware log is enabled by setting i915.guc_log_level to the positive level. 22 * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from 23 * i915_guc_load_status will print out firmware loading status and scratch 24 * registers value. 25 */ 26 27 static int guc_action_flush_log_complete(struct intel_guc *guc) 28 { 29 u32 action[] = { 30 INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE, 31 GUC_DEBUG_LOG_BUFFER 32 }; 33 34 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 35 } 36 37 static int guc_action_flush_log(struct intel_guc *guc) 38 { 39 u32 action[] = { 40 INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH, 41 0 42 }; 43 44 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 45 } 46 47 static int guc_action_control_log(struct intel_guc *guc, bool enable, 48 bool default_logging, u32 verbosity) 49 { 50 u32 action[] = { 51 INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING, 52 (enable ? GUC_LOG_CONTROL_LOGGING_ENABLED : 0) | 53 (verbosity << GUC_LOG_CONTROL_VERBOSITY_SHIFT) | 54 (default_logging ? GUC_LOG_CONTROL_DEFAULT_LOGGING : 0) 55 }; 56 57 GEM_BUG_ON(verbosity > GUC_LOG_VERBOSITY_MAX); 58 59 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 60 } 61 62 /* 63 * Sub buffer switch callback. Called whenever relay has to switch to a new 64 * sub buffer, relay stays on the same sub buffer if 0 is returned. 65 */ 66 static int subbuf_start_callback(struct rchan_buf *buf, 67 void *subbuf, 68 void *prev_subbuf, 69 size_t prev_padding) 70 { 71 /* 72 * Use no-overwrite mode by default, where relay will stop accepting 73 * new data if there are no empty sub buffers left. 74 * There is no strict synchronization enforced by relay between Consumer 75 * and Producer. In overwrite mode, there is a possibility of getting 76 * inconsistent/garbled data, the producer could be writing on to the 77 * same sub buffer from which Consumer is reading. This can't be avoided 78 * unless Consumer is fast enough and can always run in tandem with 79 * Producer. 80 */ 81 if (relay_buf_full(buf)) 82 return 0; 83 84 return 1; 85 } 86 87 /* 88 * file_create() callback. Creates relay file in debugfs. 89 */ 90 static struct dentry *create_buf_file_callback(const char *filename, 91 struct dentry *parent, 92 umode_t mode, 93 struct rchan_buf *buf, 94 int *is_global) 95 { 96 struct dentry *buf_file; 97 98 /* 99 * This to enable the use of a single buffer for the relay channel and 100 * correspondingly have a single file exposed to User, through which 101 * it can collect the logs in order without any post-processing. 102 * Need to set 'is_global' even if parent is NULL for early logging. 103 */ 104 *is_global = 1; 105 106 if (!parent) 107 return NULL; 108 109 buf_file = debugfs_create_file(filename, mode, 110 parent, buf, &relay_file_operations); 111 if (IS_ERR(buf_file)) 112 return NULL; 113 114 return buf_file; 115 } 116 117 /* 118 * file_remove() default callback. Removes relay file in debugfs. 119 */ 120 static int remove_buf_file_callback(struct dentry *dentry) 121 { 122 debugfs_remove(dentry); 123 return 0; 124 } 125 126 /* relay channel callbacks */ 127 static const struct rchan_callbacks relay_callbacks = { 128 .subbuf_start = subbuf_start_callback, 129 .create_buf_file = create_buf_file_callback, 130 .remove_buf_file = remove_buf_file_callback, 131 }; 132 133 static void guc_move_to_next_buf(struct intel_guc_log *log) 134 { 135 /* 136 * Make sure the updates made in the sub buffer are visible when 137 * Consumer sees the following update to offset inside the sub buffer. 138 */ 139 smp_wmb(); 140 141 /* All data has been written, so now move the offset of sub buffer. */ 142 relay_reserve(log->relay.channel, log->vma->obj->base.size - CAPTURE_BUFFER_SIZE); 143 144 /* Switch to the next sub buffer */ 145 relay_flush(log->relay.channel); 146 } 147 148 static void *guc_get_write_buffer(struct intel_guc_log *log) 149 { 150 /* 151 * Just get the base address of a new sub buffer and copy data into it 152 * ourselves. NULL will be returned in no-overwrite mode, if all sub 153 * buffers are full. Could have used the relay_write() to indirectly 154 * copy the data, but that would have been bit convoluted, as we need to 155 * write to only certain locations inside a sub buffer which cannot be 156 * done without using relay_reserve() along with relay_write(). So its 157 * better to use relay_reserve() alone. 158 */ 159 return relay_reserve(log->relay.channel, 0); 160 } 161 162 bool intel_guc_check_log_buf_overflow(struct intel_guc_log *log, 163 enum guc_log_buffer_type type, 164 unsigned int full_cnt) 165 { 166 unsigned int prev_full_cnt = log->stats[type].sampled_overflow; 167 bool overflow = false; 168 169 if (full_cnt != prev_full_cnt) { 170 overflow = true; 171 172 log->stats[type].overflow = full_cnt; 173 log->stats[type].sampled_overflow += full_cnt - prev_full_cnt; 174 175 if (full_cnt < prev_full_cnt) { 176 /* buffer_full_cnt is a 4 bit counter */ 177 log->stats[type].sampled_overflow += 16; 178 } 179 180 dev_notice_ratelimited(guc_to_gt(log_to_guc(log))->i915->drm.dev, 181 "GuC log buffer overflow\n"); 182 } 183 184 return overflow; 185 } 186 187 unsigned int intel_guc_get_log_buffer_size(enum guc_log_buffer_type type) 188 { 189 switch (type) { 190 case GUC_DEBUG_LOG_BUFFER: 191 return DEBUG_BUFFER_SIZE; 192 case GUC_CRASH_DUMP_LOG_BUFFER: 193 return CRASH_BUFFER_SIZE; 194 case GUC_CAPTURE_LOG_BUFFER: 195 return CAPTURE_BUFFER_SIZE; 196 default: 197 MISSING_CASE(type); 198 } 199 200 return 0; 201 } 202 203 size_t intel_guc_get_log_buffer_offset(enum guc_log_buffer_type type) 204 { 205 enum guc_log_buffer_type i; 206 size_t offset = PAGE_SIZE;/* for the log_buffer_states */ 207 208 for (i = GUC_DEBUG_LOG_BUFFER; i < GUC_MAX_LOG_BUFFER; ++i) { 209 if (i == type) 210 break; 211 offset += intel_guc_get_log_buffer_size(i); 212 } 213 214 return offset; 215 } 216 217 static void _guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log) 218 { 219 unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt; 220 struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state; 221 struct guc_log_buffer_state log_buf_state_local; 222 enum guc_log_buffer_type type; 223 void *src_data, *dst_data; 224 bool new_overflow; 225 226 mutex_lock(&log->relay.lock); 227 228 if (WARN_ON(!intel_guc_log_relay_created(log))) 229 goto out_unlock; 230 231 /* Get the pointer to shared GuC log buffer */ 232 src_data = log->buf_addr; 233 log_buf_state = src_data; 234 235 /* Get the pointer to local buffer to store the logs */ 236 log_buf_snapshot_state = dst_data = guc_get_write_buffer(log); 237 238 if (unlikely(!log_buf_snapshot_state)) { 239 /* 240 * Used rate limited to avoid deluge of messages, logs might be 241 * getting consumed by User at a slow rate. 242 */ 243 DRM_ERROR_RATELIMITED("no sub-buffer to copy general logs\n"); 244 log->relay.full_count++; 245 246 goto out_unlock; 247 } 248 249 /* Actual logs are present from the 2nd page */ 250 src_data += PAGE_SIZE; 251 dst_data += PAGE_SIZE; 252 253 /* For relay logging, we exclude error state capture */ 254 for (type = GUC_DEBUG_LOG_BUFFER; type <= GUC_CRASH_DUMP_LOG_BUFFER; type++) { 255 /* 256 * Make a copy of the state structure, inside GuC log buffer 257 * (which is uncached mapped), on the stack to avoid reading 258 * from it multiple times. 259 */ 260 memcpy(&log_buf_state_local, log_buf_state, 261 sizeof(struct guc_log_buffer_state)); 262 buffer_size = intel_guc_get_log_buffer_size(type); 263 read_offset = log_buf_state_local.read_ptr; 264 write_offset = log_buf_state_local.sampled_write_ptr; 265 full_cnt = log_buf_state_local.buffer_full_cnt; 266 267 /* Bookkeeping stuff */ 268 log->stats[type].flush += log_buf_state_local.flush_to_file; 269 new_overflow = intel_guc_check_log_buf_overflow(log, type, full_cnt); 270 271 /* Update the state of shared log buffer */ 272 log_buf_state->read_ptr = write_offset; 273 log_buf_state->flush_to_file = 0; 274 log_buf_state++; 275 276 /* First copy the state structure in snapshot buffer */ 277 memcpy(log_buf_snapshot_state, &log_buf_state_local, 278 sizeof(struct guc_log_buffer_state)); 279 280 /* 281 * The write pointer could have been updated by GuC firmware, 282 * after sending the flush interrupt to Host, for consistency 283 * set write pointer value to same value of sampled_write_ptr 284 * in the snapshot buffer. 285 */ 286 log_buf_snapshot_state->write_ptr = write_offset; 287 log_buf_snapshot_state++; 288 289 /* Now copy the actual logs. */ 290 if (unlikely(new_overflow)) { 291 /* copy the whole buffer in case of overflow */ 292 read_offset = 0; 293 write_offset = buffer_size; 294 } else if (unlikely((read_offset > buffer_size) || 295 (write_offset > buffer_size))) { 296 DRM_ERROR("invalid log buffer state\n"); 297 /* copy whole buffer as offsets are unreliable */ 298 read_offset = 0; 299 write_offset = buffer_size; 300 } 301 302 /* Just copy the newly written data */ 303 if (read_offset > write_offset) { 304 i915_memcpy_from_wc(dst_data, src_data, write_offset); 305 bytes_to_copy = buffer_size - read_offset; 306 } else { 307 bytes_to_copy = write_offset - read_offset; 308 } 309 i915_memcpy_from_wc(dst_data + read_offset, 310 src_data + read_offset, bytes_to_copy); 311 312 src_data += buffer_size; 313 dst_data += buffer_size; 314 } 315 316 guc_move_to_next_buf(log); 317 318 out_unlock: 319 mutex_unlock(&log->relay.lock); 320 } 321 322 static void copy_debug_logs_work(struct work_struct *work) 323 { 324 struct intel_guc_log *log = 325 container_of(work, struct intel_guc_log, relay.flush_work); 326 327 guc_log_copy_debuglogs_for_relay(log); 328 } 329 330 static int guc_log_relay_map(struct intel_guc_log *log) 331 { 332 lockdep_assert_held(&log->relay.lock); 333 334 if (!log->vma || !log->buf_addr) 335 return -ENODEV; 336 337 /* 338 * WC vmalloc mapping of log buffer pages was done at 339 * GuC Log Init time, but lets keep a ref for book-keeping 340 */ 341 i915_gem_object_get(log->vma->obj); 342 log->relay.buf_in_use = true; 343 344 return 0; 345 } 346 347 static void guc_log_relay_unmap(struct intel_guc_log *log) 348 { 349 lockdep_assert_held(&log->relay.lock); 350 351 i915_gem_object_put(log->vma->obj); 352 log->relay.buf_in_use = false; 353 } 354 355 void intel_guc_log_init_early(struct intel_guc_log *log) 356 { 357 mutex_init(&log->relay.lock); 358 INIT_WORK(&log->relay.flush_work, copy_debug_logs_work); 359 log->relay.started = false; 360 } 361 362 static int guc_log_relay_create(struct intel_guc_log *log) 363 { 364 struct intel_guc *guc = log_to_guc(log); 365 struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915; 366 struct rchan *guc_log_relay_chan; 367 size_t n_subbufs, subbuf_size; 368 int ret; 369 370 lockdep_assert_held(&log->relay.lock); 371 GEM_BUG_ON(!log->vma); 372 373 /* 374 * Keep the size of sub buffers same as shared log buffer 375 * but GuC log-events excludes the error-state-capture logs 376 */ 377 subbuf_size = log->vma->size - CAPTURE_BUFFER_SIZE; 378 379 /* 380 * Store up to 8 snapshots, which is large enough to buffer sufficient 381 * boot time logs and provides enough leeway to User, in terms of 382 * latency, for consuming the logs from relay. Also doesn't take 383 * up too much memory. 384 */ 385 n_subbufs = 8; 386 387 guc_log_relay_chan = relay_open("guc_log", 388 dev_priv->drm.primary->debugfs_root, 389 subbuf_size, n_subbufs, 390 &relay_callbacks, dev_priv); 391 if (!guc_log_relay_chan) { 392 DRM_ERROR("Couldn't create relay chan for GuC logging\n"); 393 394 ret = -ENOMEM; 395 return ret; 396 } 397 398 GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size); 399 log->relay.channel = guc_log_relay_chan; 400 401 return 0; 402 } 403 404 static void guc_log_relay_destroy(struct intel_guc_log *log) 405 { 406 lockdep_assert_held(&log->relay.lock); 407 408 relay_close(log->relay.channel); 409 log->relay.channel = NULL; 410 } 411 412 static void guc_log_copy_debuglogs_for_relay(struct intel_guc_log *log) 413 { 414 struct intel_guc *guc = log_to_guc(log); 415 struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915; 416 intel_wakeref_t wakeref; 417 418 _guc_log_copy_debuglogs_for_relay(log); 419 420 /* 421 * Generally device is expected to be active only at this 422 * time, so get/put should be really quick. 423 */ 424 with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) 425 guc_action_flush_log_complete(guc); 426 } 427 428 static u32 __get_default_log_level(struct intel_guc_log *log) 429 { 430 struct intel_guc *guc = log_to_guc(log); 431 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 432 433 /* A negative value means "use platform/config default" */ 434 if (i915->params.guc_log_level < 0) { 435 return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) || 436 IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ? 437 GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_NON_VERBOSE; 438 } 439 440 if (i915->params.guc_log_level > GUC_LOG_LEVEL_MAX) { 441 DRM_WARN("Incompatible option detected: %s=%d, %s!\n", 442 "guc_log_level", i915->params.guc_log_level, 443 "verbosity too high"); 444 return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) || 445 IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ? 446 GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_DISABLED; 447 } 448 449 GEM_BUG_ON(i915->params.guc_log_level < GUC_LOG_LEVEL_DISABLED); 450 GEM_BUG_ON(i915->params.guc_log_level > GUC_LOG_LEVEL_MAX); 451 return i915->params.guc_log_level; 452 } 453 454 int intel_guc_log_create(struct intel_guc_log *log) 455 { 456 struct intel_guc *guc = log_to_guc(log); 457 struct i915_vma *vma; 458 void *vaddr; 459 u32 guc_log_size; 460 int ret; 461 462 GEM_BUG_ON(log->vma); 463 464 /* 465 * GuC Log buffer Layout 466 * (this ordering must follow "enum guc_log_buffer_type" definition) 467 * 468 * +===============================+ 00B 469 * | Debug state header | 470 * +-------------------------------+ 32B 471 * | Crash dump state header | 472 * +-------------------------------+ 64B 473 * | Capture state header | 474 * +-------------------------------+ 96B 475 * | | 476 * +===============================+ PAGE_SIZE (4KB) 477 * | Debug logs | 478 * +===============================+ + DEBUG_SIZE 479 * | Crash Dump logs | 480 * +===============================+ + CRASH_SIZE 481 * | Capture logs | 482 * +===============================+ + CAPTURE_SIZE 483 */ 484 if (intel_guc_capture_output_min_size_est(guc) > CAPTURE_BUFFER_SIZE) 485 DRM_WARN("GuC log buffer for state_capture maybe too small. %d < %d\n", 486 CAPTURE_BUFFER_SIZE, intel_guc_capture_output_min_size_est(guc)); 487 488 guc_log_size = PAGE_SIZE + CRASH_BUFFER_SIZE + DEBUG_BUFFER_SIZE + 489 CAPTURE_BUFFER_SIZE; 490 491 vma = intel_guc_allocate_vma(guc, guc_log_size); 492 if (IS_ERR(vma)) { 493 ret = PTR_ERR(vma); 494 goto err; 495 } 496 497 log->vma = vma; 498 /* 499 * Create a WC (Uncached for read) vmalloc mapping up front immediate access to 500 * data from memory during critical events such as error capture 501 */ 502 vaddr = i915_gem_object_pin_map_unlocked(log->vma->obj, I915_MAP_WC); 503 if (IS_ERR(vaddr)) { 504 ret = PTR_ERR(vaddr); 505 i915_vma_unpin_and_release(&log->vma, 0); 506 goto err; 507 } 508 log->buf_addr = vaddr; 509 510 log->level = __get_default_log_level(log); 511 DRM_DEBUG_DRIVER("guc_log_level=%d (%s, verbose:%s, verbosity:%d)\n", 512 log->level, str_enabled_disabled(log->level), 513 str_yes_no(GUC_LOG_LEVEL_IS_VERBOSE(log->level)), 514 GUC_LOG_LEVEL_TO_VERBOSITY(log->level)); 515 516 return 0; 517 518 err: 519 DRM_ERROR("Failed to allocate or map GuC log buffer. %d\n", ret); 520 return ret; 521 } 522 523 void intel_guc_log_destroy(struct intel_guc_log *log) 524 { 525 log->buf_addr = NULL; 526 i915_vma_unpin_and_release(&log->vma, I915_VMA_RELEASE_MAP); 527 } 528 529 int intel_guc_log_set_level(struct intel_guc_log *log, u32 level) 530 { 531 struct intel_guc *guc = log_to_guc(log); 532 struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915; 533 intel_wakeref_t wakeref; 534 int ret = 0; 535 536 BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0); 537 GEM_BUG_ON(!log->vma); 538 539 /* 540 * GuC is recognizing log levels starting from 0 to max, we're using 0 541 * as indication that logging should be disabled. 542 */ 543 if (level < GUC_LOG_LEVEL_DISABLED || level > GUC_LOG_LEVEL_MAX) 544 return -EINVAL; 545 546 mutex_lock(&dev_priv->drm.struct_mutex); 547 548 if (log->level == level) 549 goto out_unlock; 550 551 with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) 552 ret = guc_action_control_log(guc, 553 GUC_LOG_LEVEL_IS_VERBOSE(level), 554 GUC_LOG_LEVEL_IS_ENABLED(level), 555 GUC_LOG_LEVEL_TO_VERBOSITY(level)); 556 if (ret) { 557 DRM_DEBUG_DRIVER("guc_log_control action failed %d\n", ret); 558 goto out_unlock; 559 } 560 561 log->level = level; 562 563 out_unlock: 564 mutex_unlock(&dev_priv->drm.struct_mutex); 565 566 return ret; 567 } 568 569 bool intel_guc_log_relay_created(const struct intel_guc_log *log) 570 { 571 return log->buf_addr; 572 } 573 574 int intel_guc_log_relay_open(struct intel_guc_log *log) 575 { 576 int ret; 577 578 if (!log->vma) 579 return -ENODEV; 580 581 mutex_lock(&log->relay.lock); 582 583 if (intel_guc_log_relay_created(log)) { 584 ret = -EEXIST; 585 goto out_unlock; 586 } 587 588 /* 589 * We require SSE 4.1 for fast reads from the GuC log buffer and 590 * it should be present on the chipsets supporting GuC based 591 * submisssions. 592 */ 593 if (!i915_has_memcpy_from_wc()) { 594 ret = -ENXIO; 595 goto out_unlock; 596 } 597 598 ret = guc_log_relay_create(log); 599 if (ret) 600 goto out_unlock; 601 602 ret = guc_log_relay_map(log); 603 if (ret) 604 goto out_relay; 605 606 mutex_unlock(&log->relay.lock); 607 608 return 0; 609 610 out_relay: 611 guc_log_relay_destroy(log); 612 out_unlock: 613 mutex_unlock(&log->relay.lock); 614 615 return ret; 616 } 617 618 int intel_guc_log_relay_start(struct intel_guc_log *log) 619 { 620 if (log->relay.started) 621 return -EEXIST; 622 623 /* 624 * When GuC is logging without us relaying to userspace, we're ignoring 625 * the flush notification. This means that we need to unconditionally 626 * flush on relay enabling, since GuC only notifies us once. 627 */ 628 queue_work(system_highpri_wq, &log->relay.flush_work); 629 630 log->relay.started = true; 631 632 return 0; 633 } 634 635 void intel_guc_log_relay_flush(struct intel_guc_log *log) 636 { 637 struct intel_guc *guc = log_to_guc(log); 638 intel_wakeref_t wakeref; 639 640 if (!log->relay.started) 641 return; 642 643 /* 644 * Before initiating the forceful flush, wait for any pending/ongoing 645 * flush to complete otherwise forceful flush may not actually happen. 646 */ 647 flush_work(&log->relay.flush_work); 648 649 with_intel_runtime_pm(guc_to_gt(guc)->uncore->rpm, wakeref) 650 guc_action_flush_log(guc); 651 652 /* GuC would have updated log buffer by now, so copy it */ 653 guc_log_copy_debuglogs_for_relay(log); 654 } 655 656 /* 657 * Stops the relay log. Called from intel_guc_log_relay_close(), so no 658 * possibility of race with start/flush since relay_write cannot race 659 * relay_close. 660 */ 661 static void guc_log_relay_stop(struct intel_guc_log *log) 662 { 663 struct intel_guc *guc = log_to_guc(log); 664 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 665 666 if (!log->relay.started) 667 return; 668 669 intel_synchronize_irq(i915); 670 671 flush_work(&log->relay.flush_work); 672 673 log->relay.started = false; 674 } 675 676 void intel_guc_log_relay_close(struct intel_guc_log *log) 677 { 678 guc_log_relay_stop(log); 679 680 mutex_lock(&log->relay.lock); 681 GEM_BUG_ON(!intel_guc_log_relay_created(log)); 682 guc_log_relay_unmap(log); 683 guc_log_relay_destroy(log); 684 mutex_unlock(&log->relay.lock); 685 } 686 687 void intel_guc_log_handle_flush_event(struct intel_guc_log *log) 688 { 689 if (log->relay.started) 690 queue_work(system_highpri_wq, &log->relay.flush_work); 691 } 692 693 static const char * 694 stringify_guc_log_type(enum guc_log_buffer_type type) 695 { 696 switch (type) { 697 case GUC_DEBUG_LOG_BUFFER: 698 return "DEBUG"; 699 case GUC_CRASH_DUMP_LOG_BUFFER: 700 return "CRASH"; 701 case GUC_CAPTURE_LOG_BUFFER: 702 return "CAPTURE"; 703 default: 704 MISSING_CASE(type); 705 } 706 707 return ""; 708 } 709 710 /** 711 * intel_guc_log_info - dump information about GuC log relay 712 * @log: the GuC log 713 * @p: the &drm_printer 714 * 715 * Pretty printer for GuC log info 716 */ 717 void intel_guc_log_info(struct intel_guc_log *log, struct drm_printer *p) 718 { 719 enum guc_log_buffer_type type; 720 721 if (!intel_guc_log_relay_created(log)) { 722 drm_puts(p, "GuC log relay not created\n"); 723 return; 724 } 725 726 drm_puts(p, "GuC logging stats:\n"); 727 728 drm_printf(p, "\tRelay full count: %u\n", log->relay.full_count); 729 730 for (type = GUC_DEBUG_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) { 731 drm_printf(p, "\t%s:\tflush count %10u, overflow count %10u\n", 732 stringify_guc_log_type(type), 733 log->stats[type].flush, 734 log->stats[type].sampled_overflow); 735 } 736 } 737 738 /** 739 * intel_guc_log_dump - dump the contents of the GuC log 740 * @log: the GuC log 741 * @p: the &drm_printer 742 * @dump_load_err: dump the log saved on GuC load error 743 * 744 * Pretty printer for the GuC log 745 */ 746 int intel_guc_log_dump(struct intel_guc_log *log, struct drm_printer *p, 747 bool dump_load_err) 748 { 749 struct intel_guc *guc = log_to_guc(log); 750 struct intel_uc *uc = container_of(guc, struct intel_uc, guc); 751 struct drm_i915_gem_object *obj = NULL; 752 u32 *map; 753 int i = 0; 754 755 if (!intel_guc_is_supported(guc)) 756 return -ENODEV; 757 758 if (dump_load_err) 759 obj = uc->load_err_log; 760 else if (guc->log.vma) 761 obj = guc->log.vma->obj; 762 763 if (!obj) 764 return 0; 765 766 map = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC); 767 if (IS_ERR(map)) { 768 DRM_DEBUG("Failed to pin object\n"); 769 drm_puts(p, "(log data unaccessible)\n"); 770 return PTR_ERR(map); 771 } 772 773 for (i = 0; i < obj->base.size / sizeof(u32); i += 4) 774 drm_printf(p, "0x%08x 0x%08x 0x%08x 0x%08x\n", 775 *(map + i), *(map + i + 1), 776 *(map + i + 2), *(map + i + 3)); 777 778 drm_puts(p, "\n"); 779 780 i915_gem_object_unpin_map(obj); 781 782 return 0; 783 } 784