1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2019 Intel Corporation 4 */ 5 6 #include <linux/debugfs.h> 7 8 #include "gt/intel_gt.h" 9 #include "i915_drv.h" 10 #include "i915_memcpy.h" 11 #include "intel_guc_log.h" 12 13 static void guc_log_capture_logs(struct intel_guc_log *log); 14 15 /** 16 * DOC: GuC firmware log 17 * 18 * Firmware log is enabled by setting i915.guc_log_level to the positive level. 19 * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from 20 * i915_guc_load_status will print out firmware loading status and scratch 21 * registers value. 22 */ 23 24 static int guc_action_flush_log_complete(struct intel_guc *guc) 25 { 26 u32 action[] = { 27 INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE 28 }; 29 30 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 31 } 32 33 static int guc_action_flush_log(struct intel_guc *guc) 34 { 35 u32 action[] = { 36 INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH, 37 0 38 }; 39 40 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 41 } 42 43 static int guc_action_control_log(struct intel_guc *guc, bool enable, 44 bool default_logging, u32 verbosity) 45 { 46 u32 action[] = { 47 INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING, 48 (enable ? GUC_LOG_CONTROL_LOGGING_ENABLED : 0) | 49 (verbosity << GUC_LOG_CONTROL_VERBOSITY_SHIFT) | 50 (default_logging ? GUC_LOG_CONTROL_DEFAULT_LOGGING : 0) 51 }; 52 53 GEM_BUG_ON(verbosity > GUC_LOG_VERBOSITY_MAX); 54 55 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 56 } 57 58 static inline struct intel_guc *log_to_guc(struct intel_guc_log *log) 59 { 60 return container_of(log, struct intel_guc, log); 61 } 62 63 static void guc_log_enable_flush_events(struct intel_guc_log *log) 64 { 65 intel_guc_enable_msg(log_to_guc(log), 66 INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER | 67 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED); 68 } 69 70 static void guc_log_disable_flush_events(struct intel_guc_log *log) 71 { 72 intel_guc_disable_msg(log_to_guc(log), 73 INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER | 74 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED); 75 } 76 77 /* 78 * Sub buffer switch callback. Called whenever relay has to switch to a new 79 * sub buffer, relay stays on the same sub buffer if 0 is returned. 80 */ 81 static int subbuf_start_callback(struct rchan_buf *buf, 82 void *subbuf, 83 void *prev_subbuf, 84 size_t prev_padding) 85 { 86 /* 87 * Use no-overwrite mode by default, where relay will stop accepting 88 * new data if there are no empty sub buffers left. 89 * There is no strict synchronization enforced by relay between Consumer 90 * and Producer. In overwrite mode, there is a possibility of getting 91 * inconsistent/garbled data, the producer could be writing on to the 92 * same sub buffer from which Consumer is reading. This can't be avoided 93 * unless Consumer is fast enough and can always run in tandem with 94 * Producer. 95 */ 96 if (relay_buf_full(buf)) 97 return 0; 98 99 return 1; 100 } 101 102 /* 103 * file_create() callback. Creates relay file in debugfs. 104 */ 105 static struct dentry *create_buf_file_callback(const char *filename, 106 struct dentry *parent, 107 umode_t mode, 108 struct rchan_buf *buf, 109 int *is_global) 110 { 111 struct dentry *buf_file; 112 113 /* 114 * This to enable the use of a single buffer for the relay channel and 115 * correspondingly have a single file exposed to User, through which 116 * it can collect the logs in order without any post-processing. 117 * Need to set 'is_global' even if parent is NULL for early logging. 118 */ 119 *is_global = 1; 120 121 if (!parent) 122 return NULL; 123 124 buf_file = debugfs_create_file(filename, mode, 125 parent, buf, &relay_file_operations); 126 if (IS_ERR(buf_file)) 127 return NULL; 128 129 return buf_file; 130 } 131 132 /* 133 * file_remove() default callback. Removes relay file in debugfs. 134 */ 135 static int remove_buf_file_callback(struct dentry *dentry) 136 { 137 debugfs_remove(dentry); 138 return 0; 139 } 140 141 /* relay channel callbacks */ 142 static struct rchan_callbacks relay_callbacks = { 143 .subbuf_start = subbuf_start_callback, 144 .create_buf_file = create_buf_file_callback, 145 .remove_buf_file = remove_buf_file_callback, 146 }; 147 148 static void guc_move_to_next_buf(struct intel_guc_log *log) 149 { 150 /* 151 * Make sure the updates made in the sub buffer are visible when 152 * Consumer sees the following update to offset inside the sub buffer. 153 */ 154 smp_wmb(); 155 156 /* All data has been written, so now move the offset of sub buffer. */ 157 relay_reserve(log->relay.channel, log->vma->obj->base.size); 158 159 /* Switch to the next sub buffer */ 160 relay_flush(log->relay.channel); 161 } 162 163 static void *guc_get_write_buffer(struct intel_guc_log *log) 164 { 165 /* 166 * Just get the base address of a new sub buffer and copy data into it 167 * ourselves. NULL will be returned in no-overwrite mode, if all sub 168 * buffers are full. Could have used the relay_write() to indirectly 169 * copy the data, but that would have been bit convoluted, as we need to 170 * write to only certain locations inside a sub buffer which cannot be 171 * done without using relay_reserve() along with relay_write(). So its 172 * better to use relay_reserve() alone. 173 */ 174 return relay_reserve(log->relay.channel, 0); 175 } 176 177 static bool guc_check_log_buf_overflow(struct intel_guc_log *log, 178 enum guc_log_buffer_type type, 179 unsigned int full_cnt) 180 { 181 unsigned int prev_full_cnt = log->stats[type].sampled_overflow; 182 bool overflow = false; 183 184 if (full_cnt != prev_full_cnt) { 185 overflow = true; 186 187 log->stats[type].overflow = full_cnt; 188 log->stats[type].sampled_overflow += full_cnt - prev_full_cnt; 189 190 if (full_cnt < prev_full_cnt) { 191 /* buffer_full_cnt is a 4 bit counter */ 192 log->stats[type].sampled_overflow += 16; 193 } 194 195 dev_notice_ratelimited(guc_to_gt(log_to_guc(log))->i915->drm.dev, 196 "GuC log buffer overflow\n"); 197 } 198 199 return overflow; 200 } 201 202 static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type) 203 { 204 switch (type) { 205 case GUC_ISR_LOG_BUFFER: 206 return ISR_BUFFER_SIZE; 207 case GUC_DPC_LOG_BUFFER: 208 return DPC_BUFFER_SIZE; 209 case GUC_CRASH_DUMP_LOG_BUFFER: 210 return CRASH_BUFFER_SIZE; 211 default: 212 MISSING_CASE(type); 213 } 214 215 return 0; 216 } 217 218 static void guc_read_update_log_buffer(struct intel_guc_log *log) 219 { 220 unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt; 221 struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state; 222 struct guc_log_buffer_state log_buf_state_local; 223 enum guc_log_buffer_type type; 224 void *src_data, *dst_data; 225 bool new_overflow; 226 227 mutex_lock(&log->relay.lock); 228 229 if (WARN_ON(!intel_guc_log_relay_created(log))) 230 goto out_unlock; 231 232 /* Get the pointer to shared GuC log buffer */ 233 log_buf_state = src_data = log->relay.buf_addr; 234 235 /* Get the pointer to local buffer to store the logs */ 236 log_buf_snapshot_state = dst_data = guc_get_write_buffer(log); 237 238 if (unlikely(!log_buf_snapshot_state)) { 239 /* 240 * Used rate limited to avoid deluge of messages, logs might be 241 * getting consumed by User at a slow rate. 242 */ 243 DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n"); 244 log->relay.full_count++; 245 246 goto out_unlock; 247 } 248 249 /* Actual logs are present from the 2nd page */ 250 src_data += PAGE_SIZE; 251 dst_data += PAGE_SIZE; 252 253 for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) { 254 /* 255 * Make a copy of the state structure, inside GuC log buffer 256 * (which is uncached mapped), on the stack to avoid reading 257 * from it multiple times. 258 */ 259 memcpy(&log_buf_state_local, log_buf_state, 260 sizeof(struct guc_log_buffer_state)); 261 buffer_size = guc_get_log_buffer_size(type); 262 read_offset = log_buf_state_local.read_ptr; 263 write_offset = log_buf_state_local.sampled_write_ptr; 264 full_cnt = log_buf_state_local.buffer_full_cnt; 265 266 /* Bookkeeping stuff */ 267 log->stats[type].flush += log_buf_state_local.flush_to_file; 268 new_overflow = guc_check_log_buf_overflow(log, type, full_cnt); 269 270 /* Update the state of shared log buffer */ 271 log_buf_state->read_ptr = write_offset; 272 log_buf_state->flush_to_file = 0; 273 log_buf_state++; 274 275 /* First copy the state structure in snapshot buffer */ 276 memcpy(log_buf_snapshot_state, &log_buf_state_local, 277 sizeof(struct guc_log_buffer_state)); 278 279 /* 280 * The write pointer could have been updated by GuC firmware, 281 * after sending the flush interrupt to Host, for consistency 282 * set write pointer value to same value of sampled_write_ptr 283 * in the snapshot buffer. 284 */ 285 log_buf_snapshot_state->write_ptr = write_offset; 286 log_buf_snapshot_state++; 287 288 /* Now copy the actual logs. */ 289 if (unlikely(new_overflow)) { 290 /* copy the whole buffer in case of overflow */ 291 read_offset = 0; 292 write_offset = buffer_size; 293 } else if (unlikely((read_offset > buffer_size) || 294 (write_offset > buffer_size))) { 295 DRM_ERROR("invalid log buffer state\n"); 296 /* copy whole buffer as offsets are unreliable */ 297 read_offset = 0; 298 write_offset = buffer_size; 299 } 300 301 /* Just copy the newly written data */ 302 if (read_offset > write_offset) { 303 i915_memcpy_from_wc(dst_data, src_data, write_offset); 304 bytes_to_copy = buffer_size - read_offset; 305 } else { 306 bytes_to_copy = write_offset - read_offset; 307 } 308 i915_memcpy_from_wc(dst_data + read_offset, 309 src_data + read_offset, bytes_to_copy); 310 311 src_data += buffer_size; 312 dst_data += buffer_size; 313 } 314 315 guc_move_to_next_buf(log); 316 317 out_unlock: 318 mutex_unlock(&log->relay.lock); 319 } 320 321 static void capture_logs_work(struct work_struct *work) 322 { 323 struct intel_guc_log *log = 324 container_of(work, struct intel_guc_log, relay.flush_work); 325 326 guc_log_capture_logs(log); 327 } 328 329 static int guc_log_map(struct intel_guc_log *log) 330 { 331 void *vaddr; 332 333 lockdep_assert_held(&log->relay.lock); 334 335 if (!log->vma) 336 return -ENODEV; 337 338 /* 339 * Create a WC (Uncached for read) vmalloc mapping of log 340 * buffer pages, so that we can directly get the data 341 * (up-to-date) from memory. 342 */ 343 vaddr = i915_gem_object_pin_map(log->vma->obj, I915_MAP_WC); 344 if (IS_ERR(vaddr)) 345 return PTR_ERR(vaddr); 346 347 log->relay.buf_addr = vaddr; 348 349 return 0; 350 } 351 352 static void guc_log_unmap(struct intel_guc_log *log) 353 { 354 lockdep_assert_held(&log->relay.lock); 355 356 i915_gem_object_unpin_map(log->vma->obj); 357 log->relay.buf_addr = NULL; 358 } 359 360 void intel_guc_log_init_early(struct intel_guc_log *log) 361 { 362 mutex_init(&log->relay.lock); 363 INIT_WORK(&log->relay.flush_work, capture_logs_work); 364 log->relay.started = false; 365 } 366 367 static int guc_log_relay_create(struct intel_guc_log *log) 368 { 369 struct intel_guc *guc = log_to_guc(log); 370 struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915; 371 struct rchan *guc_log_relay_chan; 372 size_t n_subbufs, subbuf_size; 373 int ret; 374 375 lockdep_assert_held(&log->relay.lock); 376 GEM_BUG_ON(!log->vma); 377 378 /* Keep the size of sub buffers same as shared log buffer */ 379 subbuf_size = log->vma->size; 380 381 /* 382 * Store up to 8 snapshots, which is large enough to buffer sufficient 383 * boot time logs and provides enough leeway to User, in terms of 384 * latency, for consuming the logs from relay. Also doesn't take 385 * up too much memory. 386 */ 387 n_subbufs = 8; 388 389 guc_log_relay_chan = relay_open("guc_log", 390 dev_priv->drm.primary->debugfs_root, 391 subbuf_size, n_subbufs, 392 &relay_callbacks, dev_priv); 393 if (!guc_log_relay_chan) { 394 DRM_ERROR("Couldn't create relay chan for GuC logging\n"); 395 396 ret = -ENOMEM; 397 return ret; 398 } 399 400 GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size); 401 log->relay.channel = guc_log_relay_chan; 402 403 return 0; 404 } 405 406 static void guc_log_relay_destroy(struct intel_guc_log *log) 407 { 408 lockdep_assert_held(&log->relay.lock); 409 410 relay_close(log->relay.channel); 411 log->relay.channel = NULL; 412 } 413 414 static void guc_log_capture_logs(struct intel_guc_log *log) 415 { 416 struct intel_guc *guc = log_to_guc(log); 417 struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915; 418 intel_wakeref_t wakeref; 419 420 guc_read_update_log_buffer(log); 421 422 /* 423 * Generally device is expected to be active only at this 424 * time, so get/put should be really quick. 425 */ 426 with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) 427 guc_action_flush_log_complete(guc); 428 } 429 430 static u32 __get_default_log_level(struct intel_guc_log *log) 431 { 432 /* A negative value means "use platform/config default" */ 433 if (i915_modparams.guc_log_level < 0) { 434 return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) || 435 IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ? 436 GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_NON_VERBOSE; 437 } 438 439 if (i915_modparams.guc_log_level > GUC_LOG_LEVEL_MAX) { 440 DRM_WARN("Incompatible option detected: %s=%d, %s!\n", 441 "guc_log_level", i915_modparams.guc_log_level, 442 "verbosity too high"); 443 return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) || 444 IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ? 445 GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_DISABLED; 446 } 447 448 GEM_BUG_ON(i915_modparams.guc_log_level < GUC_LOG_LEVEL_DISABLED); 449 GEM_BUG_ON(i915_modparams.guc_log_level > GUC_LOG_LEVEL_MAX); 450 return i915_modparams.guc_log_level; 451 } 452 453 int intel_guc_log_create(struct intel_guc_log *log) 454 { 455 struct intel_guc *guc = log_to_guc(log); 456 struct i915_vma *vma; 457 u32 guc_log_size; 458 int ret; 459 460 GEM_BUG_ON(log->vma); 461 462 /* 463 * GuC Log buffer Layout 464 * 465 * +===============================+ 00B 466 * | Crash dump state header | 467 * +-------------------------------+ 32B 468 * | DPC state header | 469 * +-------------------------------+ 64B 470 * | ISR state header | 471 * +-------------------------------+ 96B 472 * | | 473 * +===============================+ PAGE_SIZE (4KB) 474 * | Crash Dump logs | 475 * +===============================+ + CRASH_SIZE 476 * | DPC logs | 477 * +===============================+ + DPC_SIZE 478 * | ISR logs | 479 * +===============================+ + ISR_SIZE 480 */ 481 guc_log_size = PAGE_SIZE + CRASH_BUFFER_SIZE + DPC_BUFFER_SIZE + 482 ISR_BUFFER_SIZE; 483 484 vma = intel_guc_allocate_vma(guc, guc_log_size); 485 if (IS_ERR(vma)) { 486 ret = PTR_ERR(vma); 487 goto err; 488 } 489 490 log->vma = vma; 491 492 log->level = __get_default_log_level(log); 493 DRM_DEBUG_DRIVER("guc_log_level=%d (%s, verbose:%s, verbosity:%d)\n", 494 log->level, enableddisabled(log->level), 495 yesno(GUC_LOG_LEVEL_IS_VERBOSE(log->level)), 496 GUC_LOG_LEVEL_TO_VERBOSITY(log->level)); 497 498 return 0; 499 500 err: 501 DRM_ERROR("Failed to allocate GuC log buffer. %d\n", ret); 502 return ret; 503 } 504 505 void intel_guc_log_destroy(struct intel_guc_log *log) 506 { 507 i915_vma_unpin_and_release(&log->vma, 0); 508 } 509 510 int intel_guc_log_set_level(struct intel_guc_log *log, u32 level) 511 { 512 struct intel_guc *guc = log_to_guc(log); 513 struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915; 514 intel_wakeref_t wakeref; 515 int ret = 0; 516 517 BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0); 518 GEM_BUG_ON(!log->vma); 519 520 /* 521 * GuC is recognizing log levels starting from 0 to max, we're using 0 522 * as indication that logging should be disabled. 523 */ 524 if (level < GUC_LOG_LEVEL_DISABLED || level > GUC_LOG_LEVEL_MAX) 525 return -EINVAL; 526 527 mutex_lock(&dev_priv->drm.struct_mutex); 528 529 if (log->level == level) 530 goto out_unlock; 531 532 with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) 533 ret = guc_action_control_log(guc, 534 GUC_LOG_LEVEL_IS_VERBOSE(level), 535 GUC_LOG_LEVEL_IS_ENABLED(level), 536 GUC_LOG_LEVEL_TO_VERBOSITY(level)); 537 if (ret) { 538 DRM_DEBUG_DRIVER("guc_log_control action failed %d\n", ret); 539 goto out_unlock; 540 } 541 542 log->level = level; 543 544 out_unlock: 545 mutex_unlock(&dev_priv->drm.struct_mutex); 546 547 return ret; 548 } 549 550 bool intel_guc_log_relay_created(const struct intel_guc_log *log) 551 { 552 return log->relay.buf_addr; 553 } 554 555 int intel_guc_log_relay_open(struct intel_guc_log *log) 556 { 557 int ret; 558 559 if (!log->vma) 560 return -ENODEV; 561 562 mutex_lock(&log->relay.lock); 563 564 if (intel_guc_log_relay_created(log)) { 565 ret = -EEXIST; 566 goto out_unlock; 567 } 568 569 /* 570 * We require SSE 4.1 for fast reads from the GuC log buffer and 571 * it should be present on the chipsets supporting GuC based 572 * submisssions. 573 */ 574 if (!i915_has_memcpy_from_wc()) { 575 ret = -ENXIO; 576 goto out_unlock; 577 } 578 579 ret = guc_log_relay_create(log); 580 if (ret) 581 goto out_unlock; 582 583 ret = guc_log_map(log); 584 if (ret) 585 goto out_relay; 586 587 mutex_unlock(&log->relay.lock); 588 589 return 0; 590 591 out_relay: 592 guc_log_relay_destroy(log); 593 out_unlock: 594 mutex_unlock(&log->relay.lock); 595 596 return ret; 597 } 598 599 int intel_guc_log_relay_start(struct intel_guc_log *log) 600 { 601 if (log->relay.started) 602 return -EEXIST; 603 604 guc_log_enable_flush_events(log); 605 606 /* 607 * When GuC is logging without us relaying to userspace, we're ignoring 608 * the flush notification. This means that we need to unconditionally 609 * flush on relay enabling, since GuC only notifies us once. 610 */ 611 queue_work(system_highpri_wq, &log->relay.flush_work); 612 613 log->relay.started = true; 614 615 return 0; 616 } 617 618 void intel_guc_log_relay_flush(struct intel_guc_log *log) 619 { 620 struct intel_guc *guc = log_to_guc(log); 621 intel_wakeref_t wakeref; 622 623 if (!log->relay.started) 624 return; 625 626 /* 627 * Before initiating the forceful flush, wait for any pending/ongoing 628 * flush to complete otherwise forceful flush may not actually happen. 629 */ 630 flush_work(&log->relay.flush_work); 631 632 with_intel_runtime_pm(guc_to_gt(guc)->uncore->rpm, wakeref) 633 guc_action_flush_log(guc); 634 635 /* GuC would have updated log buffer by now, so capture it */ 636 guc_log_capture_logs(log); 637 } 638 639 /* 640 * Stops the relay log. Called from intel_guc_log_relay_close(), so no 641 * possibility of race with start/flush since relay_write cannot race 642 * relay_close. 643 */ 644 static void guc_log_relay_stop(struct intel_guc_log *log) 645 { 646 struct intel_guc *guc = log_to_guc(log); 647 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 648 649 if (!log->relay.started) 650 return; 651 652 guc_log_disable_flush_events(log); 653 intel_synchronize_irq(i915); 654 655 flush_work(&log->relay.flush_work); 656 657 log->relay.started = false; 658 } 659 660 void intel_guc_log_relay_close(struct intel_guc_log *log) 661 { 662 guc_log_relay_stop(log); 663 664 mutex_lock(&log->relay.lock); 665 GEM_BUG_ON(!intel_guc_log_relay_created(log)); 666 guc_log_unmap(log); 667 guc_log_relay_destroy(log); 668 mutex_unlock(&log->relay.lock); 669 } 670 671 void intel_guc_log_handle_flush_event(struct intel_guc_log *log) 672 { 673 queue_work(system_highpri_wq, &log->relay.flush_work); 674 } 675