1 /* 2 * Copyright © 2014-2017 Intel Corporation 3 * 4 * Permission is hereby granted, free of charge, to any person obtaining a 5 * copy of this software and associated documentation files (the "Software"), 6 * to deal in the Software without restriction, including without limitation 7 * the rights to use, copy, modify, merge, publish, distribute, sublicense, 8 * and/or sell copies of the Software, and to permit persons to whom the 9 * Software is furnished to do so, subject to the following conditions: 10 * 11 * The above copyright notice and this permission notice (including the next 12 * paragraph) shall be included in all copies or substantial portions of the 13 * Software. 14 * 15 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL 18 * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING 20 * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS 21 * IN THE SOFTWARE. 22 * 23 */ 24 25 #include <linux/debugfs.h> 26 27 #include "gt/intel_gt.h" 28 #include "intel_guc_log.h" 29 #include "i915_drv.h" 30 31 static void guc_log_capture_logs(struct intel_guc_log *log); 32 33 /** 34 * DOC: GuC firmware log 35 * 36 * Firmware log is enabled by setting i915.guc_log_level to the positive level. 37 * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from 38 * i915_guc_load_status will print out firmware loading status and scratch 39 * registers value. 40 */ 41 42 static int guc_action_flush_log_complete(struct intel_guc *guc) 43 { 44 u32 action[] = { 45 INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE 46 }; 47 48 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 49 } 50 51 static int guc_action_flush_log(struct intel_guc *guc) 52 { 53 u32 action[] = { 54 INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH, 55 0 56 }; 57 58 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 59 } 60 61 static int guc_action_control_log(struct intel_guc *guc, bool enable, 62 bool default_logging, u32 verbosity) 63 { 64 u32 action[] = { 65 INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING, 66 (enable ? GUC_LOG_CONTROL_LOGGING_ENABLED : 0) | 67 (verbosity << GUC_LOG_CONTROL_VERBOSITY_SHIFT) | 68 (default_logging ? GUC_LOG_CONTROL_DEFAULT_LOGGING : 0) 69 }; 70 71 GEM_BUG_ON(verbosity > GUC_LOG_VERBOSITY_MAX); 72 73 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 74 } 75 76 static inline struct intel_guc *log_to_guc(struct intel_guc_log *log) 77 { 78 return container_of(log, struct intel_guc, log); 79 } 80 81 static void guc_log_enable_flush_events(struct intel_guc_log *log) 82 { 83 intel_guc_enable_msg(log_to_guc(log), 84 INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER | 85 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED); 86 } 87 88 static void guc_log_disable_flush_events(struct intel_guc_log *log) 89 { 90 intel_guc_disable_msg(log_to_guc(log), 91 INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER | 92 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED); 93 } 94 95 /* 96 * Sub buffer switch callback. Called whenever relay has to switch to a new 97 * sub buffer, relay stays on the same sub buffer if 0 is returned. 98 */ 99 static int subbuf_start_callback(struct rchan_buf *buf, 100 void *subbuf, 101 void *prev_subbuf, 102 size_t prev_padding) 103 { 104 /* 105 * Use no-overwrite mode by default, where relay will stop accepting 106 * new data if there are no empty sub buffers left. 107 * There is no strict synchronization enforced by relay between Consumer 108 * and Producer. In overwrite mode, there is a possibility of getting 109 * inconsistent/garbled data, the producer could be writing on to the 110 * same sub buffer from which Consumer is reading. This can't be avoided 111 * unless Consumer is fast enough and can always run in tandem with 112 * Producer. 113 */ 114 if (relay_buf_full(buf)) 115 return 0; 116 117 return 1; 118 } 119 120 /* 121 * file_create() callback. Creates relay file in debugfs. 122 */ 123 static struct dentry *create_buf_file_callback(const char *filename, 124 struct dentry *parent, 125 umode_t mode, 126 struct rchan_buf *buf, 127 int *is_global) 128 { 129 struct dentry *buf_file; 130 131 /* 132 * This to enable the use of a single buffer for the relay channel and 133 * correspondingly have a single file exposed to User, through which 134 * it can collect the logs in order without any post-processing. 135 * Need to set 'is_global' even if parent is NULL for early logging. 136 */ 137 *is_global = 1; 138 139 if (!parent) 140 return NULL; 141 142 buf_file = debugfs_create_file(filename, mode, 143 parent, buf, &relay_file_operations); 144 if (IS_ERR(buf_file)) 145 return NULL; 146 147 return buf_file; 148 } 149 150 /* 151 * file_remove() default callback. Removes relay file in debugfs. 152 */ 153 static int remove_buf_file_callback(struct dentry *dentry) 154 { 155 debugfs_remove(dentry); 156 return 0; 157 } 158 159 /* relay channel callbacks */ 160 static struct rchan_callbacks relay_callbacks = { 161 .subbuf_start = subbuf_start_callback, 162 .create_buf_file = create_buf_file_callback, 163 .remove_buf_file = remove_buf_file_callback, 164 }; 165 166 static void guc_move_to_next_buf(struct intel_guc_log *log) 167 { 168 /* 169 * Make sure the updates made in the sub buffer are visible when 170 * Consumer sees the following update to offset inside the sub buffer. 171 */ 172 smp_wmb(); 173 174 /* All data has been written, so now move the offset of sub buffer. */ 175 relay_reserve(log->relay.channel, log->vma->obj->base.size); 176 177 /* Switch to the next sub buffer */ 178 relay_flush(log->relay.channel); 179 } 180 181 static void *guc_get_write_buffer(struct intel_guc_log *log) 182 { 183 /* 184 * Just get the base address of a new sub buffer and copy data into it 185 * ourselves. NULL will be returned in no-overwrite mode, if all sub 186 * buffers are full. Could have used the relay_write() to indirectly 187 * copy the data, but that would have been bit convoluted, as we need to 188 * write to only certain locations inside a sub buffer which cannot be 189 * done without using relay_reserve() along with relay_write(). So its 190 * better to use relay_reserve() alone. 191 */ 192 return relay_reserve(log->relay.channel, 0); 193 } 194 195 static bool guc_check_log_buf_overflow(struct intel_guc_log *log, 196 enum guc_log_buffer_type type, 197 unsigned int full_cnt) 198 { 199 unsigned int prev_full_cnt = log->stats[type].sampled_overflow; 200 bool overflow = false; 201 202 if (full_cnt != prev_full_cnt) { 203 overflow = true; 204 205 log->stats[type].overflow = full_cnt; 206 log->stats[type].sampled_overflow += full_cnt - prev_full_cnt; 207 208 if (full_cnt < prev_full_cnt) { 209 /* buffer_full_cnt is a 4 bit counter */ 210 log->stats[type].sampled_overflow += 16; 211 } 212 213 dev_notice_ratelimited(guc_to_gt(log_to_guc(log))->i915->drm.dev, 214 "GuC log buffer overflow\n"); 215 } 216 217 return overflow; 218 } 219 220 static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type) 221 { 222 switch (type) { 223 case GUC_ISR_LOG_BUFFER: 224 return ISR_BUFFER_SIZE; 225 case GUC_DPC_LOG_BUFFER: 226 return DPC_BUFFER_SIZE; 227 case GUC_CRASH_DUMP_LOG_BUFFER: 228 return CRASH_BUFFER_SIZE; 229 default: 230 MISSING_CASE(type); 231 } 232 233 return 0; 234 } 235 236 static void guc_read_update_log_buffer(struct intel_guc_log *log) 237 { 238 unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt; 239 struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state; 240 struct guc_log_buffer_state log_buf_state_local; 241 enum guc_log_buffer_type type; 242 void *src_data, *dst_data; 243 bool new_overflow; 244 245 mutex_lock(&log->relay.lock); 246 247 if (WARN_ON(!intel_guc_log_relay_enabled(log))) 248 goto out_unlock; 249 250 /* Get the pointer to shared GuC log buffer */ 251 log_buf_state = src_data = log->relay.buf_addr; 252 253 /* Get the pointer to local buffer to store the logs */ 254 log_buf_snapshot_state = dst_data = guc_get_write_buffer(log); 255 256 if (unlikely(!log_buf_snapshot_state)) { 257 /* 258 * Used rate limited to avoid deluge of messages, logs might be 259 * getting consumed by User at a slow rate. 260 */ 261 DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n"); 262 log->relay.full_count++; 263 264 goto out_unlock; 265 } 266 267 /* Actual logs are present from the 2nd page */ 268 src_data += PAGE_SIZE; 269 dst_data += PAGE_SIZE; 270 271 for (type = GUC_ISR_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) { 272 /* 273 * Make a copy of the state structure, inside GuC log buffer 274 * (which is uncached mapped), on the stack to avoid reading 275 * from it multiple times. 276 */ 277 memcpy(&log_buf_state_local, log_buf_state, 278 sizeof(struct guc_log_buffer_state)); 279 buffer_size = guc_get_log_buffer_size(type); 280 read_offset = log_buf_state_local.read_ptr; 281 write_offset = log_buf_state_local.sampled_write_ptr; 282 full_cnt = log_buf_state_local.buffer_full_cnt; 283 284 /* Bookkeeping stuff */ 285 log->stats[type].flush += log_buf_state_local.flush_to_file; 286 new_overflow = guc_check_log_buf_overflow(log, type, full_cnt); 287 288 /* Update the state of shared log buffer */ 289 log_buf_state->read_ptr = write_offset; 290 log_buf_state->flush_to_file = 0; 291 log_buf_state++; 292 293 /* First copy the state structure in snapshot buffer */ 294 memcpy(log_buf_snapshot_state, &log_buf_state_local, 295 sizeof(struct guc_log_buffer_state)); 296 297 /* 298 * The write pointer could have been updated by GuC firmware, 299 * after sending the flush interrupt to Host, for consistency 300 * set write pointer value to same value of sampled_write_ptr 301 * in the snapshot buffer. 302 */ 303 log_buf_snapshot_state->write_ptr = write_offset; 304 log_buf_snapshot_state++; 305 306 /* Now copy the actual logs. */ 307 if (unlikely(new_overflow)) { 308 /* copy the whole buffer in case of overflow */ 309 read_offset = 0; 310 write_offset = buffer_size; 311 } else if (unlikely((read_offset > buffer_size) || 312 (write_offset > buffer_size))) { 313 DRM_ERROR("invalid log buffer state\n"); 314 /* copy whole buffer as offsets are unreliable */ 315 read_offset = 0; 316 write_offset = buffer_size; 317 } 318 319 /* Just copy the newly written data */ 320 if (read_offset > write_offset) { 321 i915_memcpy_from_wc(dst_data, src_data, write_offset); 322 bytes_to_copy = buffer_size - read_offset; 323 } else { 324 bytes_to_copy = write_offset - read_offset; 325 } 326 i915_memcpy_from_wc(dst_data + read_offset, 327 src_data + read_offset, bytes_to_copy); 328 329 src_data += buffer_size; 330 dst_data += buffer_size; 331 } 332 333 guc_move_to_next_buf(log); 334 335 out_unlock: 336 mutex_unlock(&log->relay.lock); 337 } 338 339 static void capture_logs_work(struct work_struct *work) 340 { 341 struct intel_guc_log *log = 342 container_of(work, struct intel_guc_log, relay.flush_work); 343 344 guc_log_capture_logs(log); 345 } 346 347 static int guc_log_map(struct intel_guc_log *log) 348 { 349 void *vaddr; 350 351 lockdep_assert_held(&log->relay.lock); 352 353 if (!log->vma) 354 return -ENODEV; 355 356 /* 357 * Create a WC (Uncached for read) vmalloc mapping of log 358 * buffer pages, so that we can directly get the data 359 * (up-to-date) from memory. 360 */ 361 vaddr = i915_gem_object_pin_map(log->vma->obj, I915_MAP_WC); 362 if (IS_ERR(vaddr)) 363 return PTR_ERR(vaddr); 364 365 log->relay.buf_addr = vaddr; 366 367 return 0; 368 } 369 370 static void guc_log_unmap(struct intel_guc_log *log) 371 { 372 lockdep_assert_held(&log->relay.lock); 373 374 i915_gem_object_unpin_map(log->vma->obj); 375 log->relay.buf_addr = NULL; 376 } 377 378 void intel_guc_log_init_early(struct intel_guc_log *log) 379 { 380 mutex_init(&log->relay.lock); 381 INIT_WORK(&log->relay.flush_work, capture_logs_work); 382 } 383 384 static int guc_log_relay_create(struct intel_guc_log *log) 385 { 386 struct intel_guc *guc = log_to_guc(log); 387 struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915; 388 struct rchan *guc_log_relay_chan; 389 size_t n_subbufs, subbuf_size; 390 int ret; 391 392 lockdep_assert_held(&log->relay.lock); 393 394 /* Keep the size of sub buffers same as shared log buffer */ 395 subbuf_size = log->vma->size; 396 397 /* 398 * Store up to 8 snapshots, which is large enough to buffer sufficient 399 * boot time logs and provides enough leeway to User, in terms of 400 * latency, for consuming the logs from relay. Also doesn't take 401 * up too much memory. 402 */ 403 n_subbufs = 8; 404 405 guc_log_relay_chan = relay_open("guc_log", 406 dev_priv->drm.primary->debugfs_root, 407 subbuf_size, n_subbufs, 408 &relay_callbacks, dev_priv); 409 if (!guc_log_relay_chan) { 410 DRM_ERROR("Couldn't create relay chan for GuC logging\n"); 411 412 ret = -ENOMEM; 413 return ret; 414 } 415 416 GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size); 417 log->relay.channel = guc_log_relay_chan; 418 419 return 0; 420 } 421 422 static void guc_log_relay_destroy(struct intel_guc_log *log) 423 { 424 lockdep_assert_held(&log->relay.lock); 425 426 relay_close(log->relay.channel); 427 log->relay.channel = NULL; 428 } 429 430 static void guc_log_capture_logs(struct intel_guc_log *log) 431 { 432 struct intel_guc *guc = log_to_guc(log); 433 struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915; 434 intel_wakeref_t wakeref; 435 436 guc_read_update_log_buffer(log); 437 438 /* 439 * Generally device is expected to be active only at this 440 * time, so get/put should be really quick. 441 */ 442 with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) 443 guc_action_flush_log_complete(guc); 444 } 445 446 static u32 __get_default_log_level(struct intel_guc_log *log) 447 { 448 /* A negative value means "use platform/config default" */ 449 if (i915_modparams.guc_log_level < 0) { 450 return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) || 451 IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ? 452 GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_NON_VERBOSE; 453 } 454 455 if (i915_modparams.guc_log_level > GUC_LOG_LEVEL_MAX) { 456 DRM_WARN("Incompatible option detected: %s=%d, %s!\n", 457 "guc_log_level", i915_modparams.guc_log_level, 458 "verbosity too high"); 459 return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) || 460 IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ? 461 GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_DISABLED; 462 } 463 464 GEM_BUG_ON(i915_modparams.guc_log_level < GUC_LOG_LEVEL_DISABLED); 465 GEM_BUG_ON(i915_modparams.guc_log_level > GUC_LOG_LEVEL_MAX); 466 return i915_modparams.guc_log_level; 467 } 468 469 int intel_guc_log_create(struct intel_guc_log *log) 470 { 471 struct intel_guc *guc = log_to_guc(log); 472 struct i915_vma *vma; 473 u32 guc_log_size; 474 int ret; 475 476 GEM_BUG_ON(log->vma); 477 478 /* 479 * GuC Log buffer Layout 480 * 481 * +===============================+ 00B 482 * | Crash dump state header | 483 * +-------------------------------+ 32B 484 * | DPC state header | 485 * +-------------------------------+ 64B 486 * | ISR state header | 487 * +-------------------------------+ 96B 488 * | | 489 * +===============================+ PAGE_SIZE (4KB) 490 * | Crash Dump logs | 491 * +===============================+ + CRASH_SIZE 492 * | DPC logs | 493 * +===============================+ + DPC_SIZE 494 * | ISR logs | 495 * +===============================+ + ISR_SIZE 496 */ 497 guc_log_size = PAGE_SIZE + CRASH_BUFFER_SIZE + DPC_BUFFER_SIZE + 498 ISR_BUFFER_SIZE; 499 500 vma = intel_guc_allocate_vma(guc, guc_log_size); 501 if (IS_ERR(vma)) { 502 ret = PTR_ERR(vma); 503 goto err; 504 } 505 506 log->vma = vma; 507 508 log->level = __get_default_log_level(log); 509 DRM_DEBUG_DRIVER("guc_log_level=%d (%s, verbose:%s, verbosity:%d)\n", 510 log->level, enableddisabled(log->level), 511 yesno(GUC_LOG_LEVEL_IS_VERBOSE(log->level)), 512 GUC_LOG_LEVEL_TO_VERBOSITY(log->level)); 513 514 return 0; 515 516 err: 517 DRM_ERROR("Failed to allocate GuC log buffer. %d\n", ret); 518 return ret; 519 } 520 521 void intel_guc_log_destroy(struct intel_guc_log *log) 522 { 523 i915_vma_unpin_and_release(&log->vma, 0); 524 } 525 526 int intel_guc_log_set_level(struct intel_guc_log *log, u32 level) 527 { 528 struct intel_guc *guc = log_to_guc(log); 529 struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915; 530 intel_wakeref_t wakeref; 531 int ret = 0; 532 533 BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0); 534 GEM_BUG_ON(!log->vma); 535 536 /* 537 * GuC is recognizing log levels starting from 0 to max, we're using 0 538 * as indication that logging should be disabled. 539 */ 540 if (level < GUC_LOG_LEVEL_DISABLED || level > GUC_LOG_LEVEL_MAX) 541 return -EINVAL; 542 543 mutex_lock(&dev_priv->drm.struct_mutex); 544 545 if (log->level == level) 546 goto out_unlock; 547 548 with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) 549 ret = guc_action_control_log(guc, 550 GUC_LOG_LEVEL_IS_VERBOSE(level), 551 GUC_LOG_LEVEL_IS_ENABLED(level), 552 GUC_LOG_LEVEL_TO_VERBOSITY(level)); 553 if (ret) { 554 DRM_DEBUG_DRIVER("guc_log_control action failed %d\n", ret); 555 goto out_unlock; 556 } 557 558 log->level = level; 559 560 out_unlock: 561 mutex_unlock(&dev_priv->drm.struct_mutex); 562 563 return ret; 564 } 565 566 bool intel_guc_log_relay_enabled(const struct intel_guc_log *log) 567 { 568 return log->relay.buf_addr; 569 } 570 571 int intel_guc_log_relay_open(struct intel_guc_log *log) 572 { 573 int ret; 574 575 mutex_lock(&log->relay.lock); 576 577 if (intel_guc_log_relay_enabled(log)) { 578 ret = -EEXIST; 579 goto out_unlock; 580 } 581 582 /* 583 * We require SSE 4.1 for fast reads from the GuC log buffer and 584 * it should be present on the chipsets supporting GuC based 585 * submisssions. 586 */ 587 if (!i915_has_memcpy_from_wc()) { 588 ret = -ENXIO; 589 goto out_unlock; 590 } 591 592 ret = guc_log_relay_create(log); 593 if (ret) 594 goto out_unlock; 595 596 ret = guc_log_map(log); 597 if (ret) 598 goto out_relay; 599 600 mutex_unlock(&log->relay.lock); 601 602 guc_log_enable_flush_events(log); 603 604 /* 605 * When GuC is logging without us relaying to userspace, we're ignoring 606 * the flush notification. This means that we need to unconditionally 607 * flush on relay enabling, since GuC only notifies us once. 608 */ 609 queue_work(system_highpri_wq, &log->relay.flush_work); 610 611 return 0; 612 613 out_relay: 614 guc_log_relay_destroy(log); 615 out_unlock: 616 mutex_unlock(&log->relay.lock); 617 618 return ret; 619 } 620 621 void intel_guc_log_relay_flush(struct intel_guc_log *log) 622 { 623 struct intel_guc *guc = log_to_guc(log); 624 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 625 intel_wakeref_t wakeref; 626 627 /* 628 * Before initiating the forceful flush, wait for any pending/ongoing 629 * flush to complete otherwise forceful flush may not actually happen. 630 */ 631 flush_work(&log->relay.flush_work); 632 633 with_intel_runtime_pm(&i915->runtime_pm, wakeref) 634 guc_action_flush_log(guc); 635 636 /* GuC would have updated log buffer by now, so capture it */ 637 guc_log_capture_logs(log); 638 } 639 640 void intel_guc_log_relay_close(struct intel_guc_log *log) 641 { 642 struct intel_guc *guc = log_to_guc(log); 643 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 644 645 guc_log_disable_flush_events(log); 646 intel_synchronize_irq(i915); 647 648 flush_work(&log->relay.flush_work); 649 650 mutex_lock(&log->relay.lock); 651 GEM_BUG_ON(!intel_guc_log_relay_enabled(log)); 652 guc_log_unmap(log); 653 guc_log_relay_destroy(log); 654 mutex_unlock(&log->relay.lock); 655 } 656 657 void intel_guc_log_handle_flush_event(struct intel_guc_log *log) 658 { 659 queue_work(system_highpri_wq, &log->relay.flush_work); 660 } 661