1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2019 Intel Corporation 4 */ 5 6 #include <linux/debugfs.h> 7 8 #include "gt/intel_gt.h" 9 #include "i915_drv.h" 10 #include "i915_memcpy.h" 11 #include "intel_guc_log.h" 12 13 static void guc_log_capture_logs(struct intel_guc_log *log); 14 15 /** 16 * DOC: GuC firmware log 17 * 18 * Firmware log is enabled by setting i915.guc_log_level to the positive level. 19 * Log data is printed out via reading debugfs i915_guc_log_dump. Reading from 20 * i915_guc_load_status will print out firmware loading status and scratch 21 * registers value. 22 */ 23 24 static int guc_action_flush_log_complete(struct intel_guc *guc) 25 { 26 u32 action[] = { 27 INTEL_GUC_ACTION_LOG_BUFFER_FILE_FLUSH_COMPLETE 28 }; 29 30 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 31 } 32 33 static int guc_action_flush_log(struct intel_guc *guc) 34 { 35 u32 action[] = { 36 INTEL_GUC_ACTION_FORCE_LOG_BUFFER_FLUSH, 37 0 38 }; 39 40 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 41 } 42 43 static int guc_action_control_log(struct intel_guc *guc, bool enable, 44 bool default_logging, u32 verbosity) 45 { 46 u32 action[] = { 47 INTEL_GUC_ACTION_UK_LOG_ENABLE_LOGGING, 48 (enable ? GUC_LOG_CONTROL_LOGGING_ENABLED : 0) | 49 (verbosity << GUC_LOG_CONTROL_VERBOSITY_SHIFT) | 50 (default_logging ? GUC_LOG_CONTROL_DEFAULT_LOGGING : 0) 51 }; 52 53 GEM_BUG_ON(verbosity > GUC_LOG_VERBOSITY_MAX); 54 55 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 56 } 57 58 static void guc_log_enable_flush_events(struct intel_guc_log *log) 59 { 60 intel_guc_enable_msg(log_to_guc(log), 61 INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER | 62 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED); 63 } 64 65 static void guc_log_disable_flush_events(struct intel_guc_log *log) 66 { 67 intel_guc_disable_msg(log_to_guc(log), 68 INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER | 69 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED); 70 } 71 72 /* 73 * Sub buffer switch callback. Called whenever relay has to switch to a new 74 * sub buffer, relay stays on the same sub buffer if 0 is returned. 75 */ 76 static int subbuf_start_callback(struct rchan_buf *buf, 77 void *subbuf, 78 void *prev_subbuf, 79 size_t prev_padding) 80 { 81 /* 82 * Use no-overwrite mode by default, where relay will stop accepting 83 * new data if there are no empty sub buffers left. 84 * There is no strict synchronization enforced by relay between Consumer 85 * and Producer. In overwrite mode, there is a possibility of getting 86 * inconsistent/garbled data, the producer could be writing on to the 87 * same sub buffer from which Consumer is reading. This can't be avoided 88 * unless Consumer is fast enough and can always run in tandem with 89 * Producer. 90 */ 91 if (relay_buf_full(buf)) 92 return 0; 93 94 return 1; 95 } 96 97 /* 98 * file_create() callback. Creates relay file in debugfs. 99 */ 100 static struct dentry *create_buf_file_callback(const char *filename, 101 struct dentry *parent, 102 umode_t mode, 103 struct rchan_buf *buf, 104 int *is_global) 105 { 106 struct dentry *buf_file; 107 108 /* 109 * This to enable the use of a single buffer for the relay channel and 110 * correspondingly have a single file exposed to User, through which 111 * it can collect the logs in order without any post-processing. 112 * Need to set 'is_global' even if parent is NULL for early logging. 113 */ 114 *is_global = 1; 115 116 if (!parent) 117 return NULL; 118 119 buf_file = debugfs_create_file(filename, mode, 120 parent, buf, &relay_file_operations); 121 if (IS_ERR(buf_file)) 122 return NULL; 123 124 return buf_file; 125 } 126 127 /* 128 * file_remove() default callback. Removes relay file in debugfs. 129 */ 130 static int remove_buf_file_callback(struct dentry *dentry) 131 { 132 debugfs_remove(dentry); 133 return 0; 134 } 135 136 /* relay channel callbacks */ 137 static const struct rchan_callbacks relay_callbacks = { 138 .subbuf_start = subbuf_start_callback, 139 .create_buf_file = create_buf_file_callback, 140 .remove_buf_file = remove_buf_file_callback, 141 }; 142 143 static void guc_move_to_next_buf(struct intel_guc_log *log) 144 { 145 /* 146 * Make sure the updates made in the sub buffer are visible when 147 * Consumer sees the following update to offset inside the sub buffer. 148 */ 149 smp_wmb(); 150 151 /* All data has been written, so now move the offset of sub buffer. */ 152 relay_reserve(log->relay.channel, log->vma->obj->base.size); 153 154 /* Switch to the next sub buffer */ 155 relay_flush(log->relay.channel); 156 } 157 158 static void *guc_get_write_buffer(struct intel_guc_log *log) 159 { 160 /* 161 * Just get the base address of a new sub buffer and copy data into it 162 * ourselves. NULL will be returned in no-overwrite mode, if all sub 163 * buffers are full. Could have used the relay_write() to indirectly 164 * copy the data, but that would have been bit convoluted, as we need to 165 * write to only certain locations inside a sub buffer which cannot be 166 * done without using relay_reserve() along with relay_write(). So its 167 * better to use relay_reserve() alone. 168 */ 169 return relay_reserve(log->relay.channel, 0); 170 } 171 172 static bool guc_check_log_buf_overflow(struct intel_guc_log *log, 173 enum guc_log_buffer_type type, 174 unsigned int full_cnt) 175 { 176 unsigned int prev_full_cnt = log->stats[type].sampled_overflow; 177 bool overflow = false; 178 179 if (full_cnt != prev_full_cnt) { 180 overflow = true; 181 182 log->stats[type].overflow = full_cnt; 183 log->stats[type].sampled_overflow += full_cnt - prev_full_cnt; 184 185 if (full_cnt < prev_full_cnt) { 186 /* buffer_full_cnt is a 4 bit counter */ 187 log->stats[type].sampled_overflow += 16; 188 } 189 190 dev_notice_ratelimited(guc_to_gt(log_to_guc(log))->i915->drm.dev, 191 "GuC log buffer overflow\n"); 192 } 193 194 return overflow; 195 } 196 197 static unsigned int guc_get_log_buffer_size(enum guc_log_buffer_type type) 198 { 199 switch (type) { 200 case GUC_DEBUG_LOG_BUFFER: 201 return DEBUG_BUFFER_SIZE; 202 case GUC_CRASH_DUMP_LOG_BUFFER: 203 return CRASH_BUFFER_SIZE; 204 default: 205 MISSING_CASE(type); 206 } 207 208 return 0; 209 } 210 211 static void guc_read_update_log_buffer(struct intel_guc_log *log) 212 { 213 unsigned int buffer_size, read_offset, write_offset, bytes_to_copy, full_cnt; 214 struct guc_log_buffer_state *log_buf_state, *log_buf_snapshot_state; 215 struct guc_log_buffer_state log_buf_state_local; 216 enum guc_log_buffer_type type; 217 void *src_data, *dst_data; 218 bool new_overflow; 219 220 mutex_lock(&log->relay.lock); 221 222 if (WARN_ON(!intel_guc_log_relay_created(log))) 223 goto out_unlock; 224 225 /* Get the pointer to shared GuC log buffer */ 226 log_buf_state = src_data = log->relay.buf_addr; 227 228 /* Get the pointer to local buffer to store the logs */ 229 log_buf_snapshot_state = dst_data = guc_get_write_buffer(log); 230 231 if (unlikely(!log_buf_snapshot_state)) { 232 /* 233 * Used rate limited to avoid deluge of messages, logs might be 234 * getting consumed by User at a slow rate. 235 */ 236 DRM_ERROR_RATELIMITED("no sub-buffer to capture logs\n"); 237 log->relay.full_count++; 238 239 goto out_unlock; 240 } 241 242 /* Actual logs are present from the 2nd page */ 243 src_data += PAGE_SIZE; 244 dst_data += PAGE_SIZE; 245 246 for (type = GUC_DEBUG_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) { 247 /* 248 * Make a copy of the state structure, inside GuC log buffer 249 * (which is uncached mapped), on the stack to avoid reading 250 * from it multiple times. 251 */ 252 memcpy(&log_buf_state_local, log_buf_state, 253 sizeof(struct guc_log_buffer_state)); 254 buffer_size = guc_get_log_buffer_size(type); 255 read_offset = log_buf_state_local.read_ptr; 256 write_offset = log_buf_state_local.sampled_write_ptr; 257 full_cnt = log_buf_state_local.buffer_full_cnt; 258 259 /* Bookkeeping stuff */ 260 log->stats[type].flush += log_buf_state_local.flush_to_file; 261 new_overflow = guc_check_log_buf_overflow(log, type, full_cnt); 262 263 /* Update the state of shared log buffer */ 264 log_buf_state->read_ptr = write_offset; 265 log_buf_state->flush_to_file = 0; 266 log_buf_state++; 267 268 /* First copy the state structure in snapshot buffer */ 269 memcpy(log_buf_snapshot_state, &log_buf_state_local, 270 sizeof(struct guc_log_buffer_state)); 271 272 /* 273 * The write pointer could have been updated by GuC firmware, 274 * after sending the flush interrupt to Host, for consistency 275 * set write pointer value to same value of sampled_write_ptr 276 * in the snapshot buffer. 277 */ 278 log_buf_snapshot_state->write_ptr = write_offset; 279 log_buf_snapshot_state++; 280 281 /* Now copy the actual logs. */ 282 if (unlikely(new_overflow)) { 283 /* copy the whole buffer in case of overflow */ 284 read_offset = 0; 285 write_offset = buffer_size; 286 } else if (unlikely((read_offset > buffer_size) || 287 (write_offset > buffer_size))) { 288 DRM_ERROR("invalid log buffer state\n"); 289 /* copy whole buffer as offsets are unreliable */ 290 read_offset = 0; 291 write_offset = buffer_size; 292 } 293 294 /* Just copy the newly written data */ 295 if (read_offset > write_offset) { 296 i915_memcpy_from_wc(dst_data, src_data, write_offset); 297 bytes_to_copy = buffer_size - read_offset; 298 } else { 299 bytes_to_copy = write_offset - read_offset; 300 } 301 i915_memcpy_from_wc(dst_data + read_offset, 302 src_data + read_offset, bytes_to_copy); 303 304 src_data += buffer_size; 305 dst_data += buffer_size; 306 } 307 308 guc_move_to_next_buf(log); 309 310 out_unlock: 311 mutex_unlock(&log->relay.lock); 312 } 313 314 static void capture_logs_work(struct work_struct *work) 315 { 316 struct intel_guc_log *log = 317 container_of(work, struct intel_guc_log, relay.flush_work); 318 319 guc_log_capture_logs(log); 320 } 321 322 static int guc_log_map(struct intel_guc_log *log) 323 { 324 void *vaddr; 325 326 lockdep_assert_held(&log->relay.lock); 327 328 if (!log->vma) 329 return -ENODEV; 330 331 /* 332 * Create a WC (Uncached for read) vmalloc mapping of log 333 * buffer pages, so that we can directly get the data 334 * (up-to-date) from memory. 335 */ 336 vaddr = i915_gem_object_pin_map_unlocked(log->vma->obj, I915_MAP_WC); 337 if (IS_ERR(vaddr)) 338 return PTR_ERR(vaddr); 339 340 log->relay.buf_addr = vaddr; 341 342 return 0; 343 } 344 345 static void guc_log_unmap(struct intel_guc_log *log) 346 { 347 lockdep_assert_held(&log->relay.lock); 348 349 i915_gem_object_unpin_map(log->vma->obj); 350 log->relay.buf_addr = NULL; 351 } 352 353 void intel_guc_log_init_early(struct intel_guc_log *log) 354 { 355 mutex_init(&log->relay.lock); 356 INIT_WORK(&log->relay.flush_work, capture_logs_work); 357 log->relay.started = false; 358 } 359 360 static int guc_log_relay_create(struct intel_guc_log *log) 361 { 362 struct intel_guc *guc = log_to_guc(log); 363 struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915; 364 struct rchan *guc_log_relay_chan; 365 size_t n_subbufs, subbuf_size; 366 int ret; 367 368 lockdep_assert_held(&log->relay.lock); 369 GEM_BUG_ON(!log->vma); 370 371 /* Keep the size of sub buffers same as shared log buffer */ 372 subbuf_size = log->vma->size; 373 374 /* 375 * Store up to 8 snapshots, which is large enough to buffer sufficient 376 * boot time logs and provides enough leeway to User, in terms of 377 * latency, for consuming the logs from relay. Also doesn't take 378 * up too much memory. 379 */ 380 n_subbufs = 8; 381 382 guc_log_relay_chan = relay_open("guc_log", 383 dev_priv->drm.primary->debugfs_root, 384 subbuf_size, n_subbufs, 385 &relay_callbacks, dev_priv); 386 if (!guc_log_relay_chan) { 387 DRM_ERROR("Couldn't create relay chan for GuC logging\n"); 388 389 ret = -ENOMEM; 390 return ret; 391 } 392 393 GEM_BUG_ON(guc_log_relay_chan->subbuf_size < subbuf_size); 394 log->relay.channel = guc_log_relay_chan; 395 396 return 0; 397 } 398 399 static void guc_log_relay_destroy(struct intel_guc_log *log) 400 { 401 lockdep_assert_held(&log->relay.lock); 402 403 relay_close(log->relay.channel); 404 log->relay.channel = NULL; 405 } 406 407 static void guc_log_capture_logs(struct intel_guc_log *log) 408 { 409 struct intel_guc *guc = log_to_guc(log); 410 struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915; 411 intel_wakeref_t wakeref; 412 413 guc_read_update_log_buffer(log); 414 415 /* 416 * Generally device is expected to be active only at this 417 * time, so get/put should be really quick. 418 */ 419 with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) 420 guc_action_flush_log_complete(guc); 421 } 422 423 static u32 __get_default_log_level(struct intel_guc_log *log) 424 { 425 struct intel_guc *guc = log_to_guc(log); 426 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 427 428 /* A negative value means "use platform/config default" */ 429 if (i915->params.guc_log_level < 0) { 430 return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) || 431 IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ? 432 GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_NON_VERBOSE; 433 } 434 435 if (i915->params.guc_log_level > GUC_LOG_LEVEL_MAX) { 436 DRM_WARN("Incompatible option detected: %s=%d, %s!\n", 437 "guc_log_level", i915->params.guc_log_level, 438 "verbosity too high"); 439 return (IS_ENABLED(CONFIG_DRM_I915_DEBUG) || 440 IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) ? 441 GUC_LOG_LEVEL_MAX : GUC_LOG_LEVEL_DISABLED; 442 } 443 444 GEM_BUG_ON(i915->params.guc_log_level < GUC_LOG_LEVEL_DISABLED); 445 GEM_BUG_ON(i915->params.guc_log_level > GUC_LOG_LEVEL_MAX); 446 return i915->params.guc_log_level; 447 } 448 449 int intel_guc_log_create(struct intel_guc_log *log) 450 { 451 struct intel_guc *guc = log_to_guc(log); 452 struct i915_vma *vma; 453 u32 guc_log_size; 454 int ret; 455 456 GEM_BUG_ON(log->vma); 457 458 /* 459 * GuC Log buffer Layout 460 * 461 * +===============================+ 00B 462 * | Crash dump state header | 463 * +-------------------------------+ 32B 464 * | Debug state header | 465 * +-------------------------------+ 64B 466 * | | 467 * +===============================+ PAGE_SIZE (4KB) 468 * | Crash Dump logs | 469 * +===============================+ + CRASH_SIZE 470 * | Debug logs | 471 * +===============================+ + DEBUG_SIZE 472 */ 473 guc_log_size = PAGE_SIZE + CRASH_BUFFER_SIZE + DEBUG_BUFFER_SIZE; 474 475 vma = intel_guc_allocate_vma(guc, guc_log_size); 476 if (IS_ERR(vma)) { 477 ret = PTR_ERR(vma); 478 goto err; 479 } 480 481 log->vma = vma; 482 483 log->level = __get_default_log_level(log); 484 DRM_DEBUG_DRIVER("guc_log_level=%d (%s, verbose:%s, verbosity:%d)\n", 485 log->level, enableddisabled(log->level), 486 yesno(GUC_LOG_LEVEL_IS_VERBOSE(log->level)), 487 GUC_LOG_LEVEL_TO_VERBOSITY(log->level)); 488 489 return 0; 490 491 err: 492 DRM_ERROR("Failed to allocate GuC log buffer. %d\n", ret); 493 return ret; 494 } 495 496 void intel_guc_log_destroy(struct intel_guc_log *log) 497 { 498 i915_vma_unpin_and_release(&log->vma, 0); 499 } 500 501 int intel_guc_log_set_level(struct intel_guc_log *log, u32 level) 502 { 503 struct intel_guc *guc = log_to_guc(log); 504 struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915; 505 intel_wakeref_t wakeref; 506 int ret = 0; 507 508 BUILD_BUG_ON(GUC_LOG_VERBOSITY_MIN != 0); 509 GEM_BUG_ON(!log->vma); 510 511 /* 512 * GuC is recognizing log levels starting from 0 to max, we're using 0 513 * as indication that logging should be disabled. 514 */ 515 if (level < GUC_LOG_LEVEL_DISABLED || level > GUC_LOG_LEVEL_MAX) 516 return -EINVAL; 517 518 mutex_lock(&dev_priv->drm.struct_mutex); 519 520 if (log->level == level) 521 goto out_unlock; 522 523 with_intel_runtime_pm(&dev_priv->runtime_pm, wakeref) 524 ret = guc_action_control_log(guc, 525 GUC_LOG_LEVEL_IS_VERBOSE(level), 526 GUC_LOG_LEVEL_IS_ENABLED(level), 527 GUC_LOG_LEVEL_TO_VERBOSITY(level)); 528 if (ret) { 529 DRM_DEBUG_DRIVER("guc_log_control action failed %d\n", ret); 530 goto out_unlock; 531 } 532 533 log->level = level; 534 535 out_unlock: 536 mutex_unlock(&dev_priv->drm.struct_mutex); 537 538 return ret; 539 } 540 541 bool intel_guc_log_relay_created(const struct intel_guc_log *log) 542 { 543 return log->relay.buf_addr; 544 } 545 546 int intel_guc_log_relay_open(struct intel_guc_log *log) 547 { 548 int ret; 549 550 if (!log->vma) 551 return -ENODEV; 552 553 mutex_lock(&log->relay.lock); 554 555 if (intel_guc_log_relay_created(log)) { 556 ret = -EEXIST; 557 goto out_unlock; 558 } 559 560 /* 561 * We require SSE 4.1 for fast reads from the GuC log buffer and 562 * it should be present on the chipsets supporting GuC based 563 * submisssions. 564 */ 565 if (!i915_has_memcpy_from_wc()) { 566 ret = -ENXIO; 567 goto out_unlock; 568 } 569 570 ret = guc_log_relay_create(log); 571 if (ret) 572 goto out_unlock; 573 574 ret = guc_log_map(log); 575 if (ret) 576 goto out_relay; 577 578 mutex_unlock(&log->relay.lock); 579 580 return 0; 581 582 out_relay: 583 guc_log_relay_destroy(log); 584 out_unlock: 585 mutex_unlock(&log->relay.lock); 586 587 return ret; 588 } 589 590 int intel_guc_log_relay_start(struct intel_guc_log *log) 591 { 592 if (log->relay.started) 593 return -EEXIST; 594 595 guc_log_enable_flush_events(log); 596 597 /* 598 * When GuC is logging without us relaying to userspace, we're ignoring 599 * the flush notification. This means that we need to unconditionally 600 * flush on relay enabling, since GuC only notifies us once. 601 */ 602 queue_work(system_highpri_wq, &log->relay.flush_work); 603 604 log->relay.started = true; 605 606 return 0; 607 } 608 609 void intel_guc_log_relay_flush(struct intel_guc_log *log) 610 { 611 struct intel_guc *guc = log_to_guc(log); 612 intel_wakeref_t wakeref; 613 614 if (!log->relay.started) 615 return; 616 617 /* 618 * Before initiating the forceful flush, wait for any pending/ongoing 619 * flush to complete otherwise forceful flush may not actually happen. 620 */ 621 flush_work(&log->relay.flush_work); 622 623 with_intel_runtime_pm(guc_to_gt(guc)->uncore->rpm, wakeref) 624 guc_action_flush_log(guc); 625 626 /* GuC would have updated log buffer by now, so capture it */ 627 guc_log_capture_logs(log); 628 } 629 630 /* 631 * Stops the relay log. Called from intel_guc_log_relay_close(), so no 632 * possibility of race with start/flush since relay_write cannot race 633 * relay_close. 634 */ 635 static void guc_log_relay_stop(struct intel_guc_log *log) 636 { 637 struct intel_guc *guc = log_to_guc(log); 638 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 639 640 if (!log->relay.started) 641 return; 642 643 guc_log_disable_flush_events(log); 644 intel_synchronize_irq(i915); 645 646 flush_work(&log->relay.flush_work); 647 648 log->relay.started = false; 649 } 650 651 void intel_guc_log_relay_close(struct intel_guc_log *log) 652 { 653 guc_log_relay_stop(log); 654 655 mutex_lock(&log->relay.lock); 656 GEM_BUG_ON(!intel_guc_log_relay_created(log)); 657 guc_log_unmap(log); 658 guc_log_relay_destroy(log); 659 mutex_unlock(&log->relay.lock); 660 } 661 662 void intel_guc_log_handle_flush_event(struct intel_guc_log *log) 663 { 664 queue_work(system_highpri_wq, &log->relay.flush_work); 665 } 666 667 static const char * 668 stringify_guc_log_type(enum guc_log_buffer_type type) 669 { 670 switch (type) { 671 case GUC_DEBUG_LOG_BUFFER: 672 return "DEBUG"; 673 case GUC_CRASH_DUMP_LOG_BUFFER: 674 return "CRASH"; 675 default: 676 MISSING_CASE(type); 677 } 678 679 return ""; 680 } 681 682 /** 683 * intel_guc_log_info - dump information about GuC log relay 684 * @log: the GuC log 685 * @p: the &drm_printer 686 * 687 * Pretty printer for GuC log info 688 */ 689 void intel_guc_log_info(struct intel_guc_log *log, struct drm_printer *p) 690 { 691 enum guc_log_buffer_type type; 692 693 if (!intel_guc_log_relay_created(log)) { 694 drm_puts(p, "GuC log relay not created\n"); 695 return; 696 } 697 698 drm_puts(p, "GuC logging stats:\n"); 699 700 drm_printf(p, "\tRelay full count: %u\n", log->relay.full_count); 701 702 for (type = GUC_DEBUG_LOG_BUFFER; type < GUC_MAX_LOG_BUFFER; type++) { 703 drm_printf(p, "\t%s:\tflush count %10u, overflow count %10u\n", 704 stringify_guc_log_type(type), 705 log->stats[type].flush, 706 log->stats[type].sampled_overflow); 707 } 708 } 709 710 /** 711 * intel_guc_log_dump - dump the contents of the GuC log 712 * @log: the GuC log 713 * @p: the &drm_printer 714 * @dump_load_err: dump the log saved on GuC load error 715 * 716 * Pretty printer for the GuC log 717 */ 718 int intel_guc_log_dump(struct intel_guc_log *log, struct drm_printer *p, 719 bool dump_load_err) 720 { 721 struct intel_guc *guc = log_to_guc(log); 722 struct intel_uc *uc = container_of(guc, struct intel_uc, guc); 723 struct drm_i915_gem_object *obj = NULL; 724 u32 *map; 725 int i = 0; 726 727 if (!intel_guc_is_supported(guc)) 728 return -ENODEV; 729 730 if (dump_load_err) 731 obj = uc->load_err_log; 732 else if (guc->log.vma) 733 obj = guc->log.vma->obj; 734 735 if (!obj) 736 return 0; 737 738 map = i915_gem_object_pin_map_unlocked(obj, I915_MAP_WC); 739 if (IS_ERR(map)) { 740 DRM_DEBUG("Failed to pin object\n"); 741 drm_puts(p, "(log data unaccessible)\n"); 742 return PTR_ERR(map); 743 } 744 745 for (i = 0; i < obj->base.size / sizeof(u32); i += 4) 746 drm_printf(p, "0x%08x 0x%08x 0x%08x 0x%08x\n", 747 *(map + i), *(map + i + 1), 748 *(map + i + 2), *(map + i + 3)); 749 750 drm_puts(p, "\n"); 751 752 i915_gem_object_unpin_map(obj); 753 754 return 0; 755 } 756