1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2016-2019 Intel Corporation
4  */
5 
6 #include <linux/circ_buf.h>
7 #include <linux/ktime.h>
8 #include <linux/time64.h>
9 #include <linux/timekeeping.h>
10 
11 #include "i915_drv.h"
12 #include "intel_guc_ct.h"
13 #include "gt/intel_gt.h"
14 
15 static inline struct intel_guc *ct_to_guc(struct intel_guc_ct *ct)
16 {
17 	return container_of(ct, struct intel_guc, ct);
18 }
19 
20 static inline struct intel_gt *ct_to_gt(struct intel_guc_ct *ct)
21 {
22 	return guc_to_gt(ct_to_guc(ct));
23 }
24 
25 static inline struct drm_i915_private *ct_to_i915(struct intel_guc_ct *ct)
26 {
27 	return ct_to_gt(ct)->i915;
28 }
29 
30 static inline struct drm_device *ct_to_drm(struct intel_guc_ct *ct)
31 {
32 	return &ct_to_i915(ct)->drm;
33 }
34 
35 #define CT_ERROR(_ct, _fmt, ...) \
36 	drm_err(ct_to_drm(_ct), "CT: " _fmt, ##__VA_ARGS__)
37 #ifdef CONFIG_DRM_I915_DEBUG_GUC
38 #define CT_DEBUG(_ct, _fmt, ...) \
39 	drm_dbg(ct_to_drm(_ct), "CT: " _fmt, ##__VA_ARGS__)
40 #else
41 #define CT_DEBUG(...)	do { } while (0)
42 #endif
43 #define CT_PROBE_ERROR(_ct, _fmt, ...) \
44 	i915_probe_error(ct_to_i915(ct), "CT: " _fmt, ##__VA_ARGS__)
45 
46 /**
47  * DOC: CTB Blob
48  *
49  * We allocate single blob to hold both CTB descriptors and buffers:
50  *
51  *      +--------+-----------------------------------------------+------+
52  *      | offset | contents                                      | size |
53  *      +========+===============================================+======+
54  *      | 0x0000 | H2G `CTB Descriptor`_ (send)                  |      |
55  *      +--------+-----------------------------------------------+  4K  |
56  *      | 0x0800 | G2H `CTB Descriptor`_ (recv)                  |      |
57  *      +--------+-----------------------------------------------+------+
58  *      | 0x1000 | H2G `CT Buffer`_ (send)                       | n*4K |
59  *      |        |                                               |      |
60  *      +--------+-----------------------------------------------+------+
61  *      | 0x1000 | G2H `CT Buffer`_ (recv)                       | m*4K |
62  *      | + n*4K |                                               |      |
63  *      +--------+-----------------------------------------------+------+
64  *
65  * Size of each `CT Buffer`_ must be multiple of 4K.
66  * We don't expect too many messages in flight at any time, unless we are
67  * using the GuC submission. In that case each request requires a minimum
68  * 2 dwords which gives us a maximum 256 queue'd requests. Hopefully this
69  * enough space to avoid backpressure on the driver. We increase the size
70  * of the receive buffer (relative to the send) to ensure a G2H response
71  * CTB has a landing spot.
72  */
73 #define CTB_DESC_SIZE		ALIGN(sizeof(struct guc_ct_buffer_desc), SZ_2K)
74 #define CTB_H2G_BUFFER_SIZE	(SZ_4K)
75 #define CTB_G2H_BUFFER_SIZE	(4 * CTB_H2G_BUFFER_SIZE)
76 #define G2H_ROOM_BUFFER_SIZE	(CTB_G2H_BUFFER_SIZE / 4)
77 
78 struct ct_request {
79 	struct list_head link;
80 	u32 fence;
81 	u32 status;
82 	u32 response_len;
83 	u32 *response_buf;
84 };
85 
86 struct ct_incoming_msg {
87 	struct list_head link;
88 	u32 size;
89 	u32 msg[];
90 };
91 
92 enum { CTB_SEND = 0, CTB_RECV = 1 };
93 
94 enum { CTB_OWNER_HOST = 0 };
95 
96 static void ct_receive_tasklet_func(struct tasklet_struct *t);
97 static void ct_incoming_request_worker_func(struct work_struct *w);
98 
99 /**
100  * intel_guc_ct_init_early - Initialize CT state without requiring device access
101  * @ct: pointer to CT struct
102  */
103 void intel_guc_ct_init_early(struct intel_guc_ct *ct)
104 {
105 	spin_lock_init(&ct->ctbs.send.lock);
106 	spin_lock_init(&ct->ctbs.recv.lock);
107 	spin_lock_init(&ct->requests.lock);
108 	INIT_LIST_HEAD(&ct->requests.pending);
109 	INIT_LIST_HEAD(&ct->requests.incoming);
110 	INIT_WORK(&ct->requests.worker, ct_incoming_request_worker_func);
111 	tasklet_setup(&ct->receive_tasklet, ct_receive_tasklet_func);
112 	init_waitqueue_head(&ct->wq);
113 }
114 
115 static inline const char *guc_ct_buffer_type_to_str(u32 type)
116 {
117 	switch (type) {
118 	case GUC_CTB_TYPE_HOST2GUC:
119 		return "SEND";
120 	case GUC_CTB_TYPE_GUC2HOST:
121 		return "RECV";
122 	default:
123 		return "<invalid>";
124 	}
125 }
126 
127 static void guc_ct_buffer_desc_init(struct guc_ct_buffer_desc *desc)
128 {
129 	memset(desc, 0, sizeof(*desc));
130 }
131 
132 static void guc_ct_buffer_reset(struct intel_guc_ct_buffer *ctb)
133 {
134 	u32 space;
135 
136 	ctb->broken = false;
137 	ctb->tail = 0;
138 	ctb->head = 0;
139 	space = CIRC_SPACE(ctb->tail, ctb->head, ctb->size) - ctb->resv_space;
140 	atomic_set(&ctb->space, space);
141 
142 	guc_ct_buffer_desc_init(ctb->desc);
143 }
144 
145 static void guc_ct_buffer_init(struct intel_guc_ct_buffer *ctb,
146 			       struct guc_ct_buffer_desc *desc,
147 			       u32 *cmds, u32 size_in_bytes, u32 resv_space)
148 {
149 	GEM_BUG_ON(size_in_bytes % 4);
150 
151 	ctb->desc = desc;
152 	ctb->cmds = cmds;
153 	ctb->size = size_in_bytes / 4;
154 	ctb->resv_space = resv_space / 4;
155 
156 	guc_ct_buffer_reset(ctb);
157 }
158 
159 static int guc_action_register_ct_buffer(struct intel_guc *guc, u32 type,
160 					 u32 desc_addr, u32 buff_addr, u32 size)
161 {
162 	u32 request[HOST2GUC_REGISTER_CTB_REQUEST_MSG_LEN] = {
163 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
164 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
165 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_REGISTER_CTB),
166 		FIELD_PREP(HOST2GUC_REGISTER_CTB_REQUEST_MSG_1_SIZE, size / SZ_4K - 1) |
167 		FIELD_PREP(HOST2GUC_REGISTER_CTB_REQUEST_MSG_1_TYPE, type),
168 		FIELD_PREP(HOST2GUC_REGISTER_CTB_REQUEST_MSG_2_DESC_ADDR, desc_addr),
169 		FIELD_PREP(HOST2GUC_REGISTER_CTB_REQUEST_MSG_3_BUFF_ADDR, buff_addr),
170 	};
171 	int ret;
172 
173 	GEM_BUG_ON(type != GUC_CTB_TYPE_HOST2GUC && type != GUC_CTB_TYPE_GUC2HOST);
174 	GEM_BUG_ON(size % SZ_4K);
175 
176 	/* CT registration must go over MMIO */
177 	ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
178 
179 	return ret > 0 ? -EPROTO : ret;
180 }
181 
182 static int ct_register_buffer(struct intel_guc_ct *ct, u32 type,
183 			      u32 desc_addr, u32 buff_addr, u32 size)
184 {
185 	int err;
186 
187 	err = i915_inject_probe_error(guc_to_gt(ct_to_guc(ct))->i915, -ENXIO);
188 	if (unlikely(err))
189 		return err;
190 
191 	err = guc_action_register_ct_buffer(ct_to_guc(ct), type,
192 					    desc_addr, buff_addr, size);
193 	if (unlikely(err))
194 		CT_ERROR(ct, "Failed to register %s buffer (%pe)\n",
195 			 guc_ct_buffer_type_to_str(type), ERR_PTR(err));
196 	return err;
197 }
198 
199 static int guc_action_deregister_ct_buffer(struct intel_guc *guc, u32 type)
200 {
201 	u32 request[HOST2GUC_DEREGISTER_CTB_REQUEST_MSG_LEN] = {
202 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
203 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
204 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_DEREGISTER_CTB),
205 		FIELD_PREP(HOST2GUC_DEREGISTER_CTB_REQUEST_MSG_1_TYPE, type),
206 	};
207 	int ret;
208 
209 	GEM_BUG_ON(type != GUC_CTB_TYPE_HOST2GUC && type != GUC_CTB_TYPE_GUC2HOST);
210 
211 	/* CT deregistration must go over MMIO */
212 	ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
213 
214 	return ret > 0 ? -EPROTO : ret;
215 }
216 
217 static int ct_deregister_buffer(struct intel_guc_ct *ct, u32 type)
218 {
219 	int err = guc_action_deregister_ct_buffer(ct_to_guc(ct), type);
220 
221 	if (unlikely(err))
222 		CT_ERROR(ct, "Failed to deregister %s buffer (%pe)\n",
223 			 guc_ct_buffer_type_to_str(type), ERR_PTR(err));
224 	return err;
225 }
226 
227 /**
228  * intel_guc_ct_init - Init buffer-based communication
229  * @ct: pointer to CT struct
230  *
231  * Allocate memory required for buffer-based communication.
232  *
233  * Return: 0 on success, a negative errno code on failure.
234  */
235 int intel_guc_ct_init(struct intel_guc_ct *ct)
236 {
237 	struct intel_guc *guc = ct_to_guc(ct);
238 	struct guc_ct_buffer_desc *desc;
239 	u32 blob_size;
240 	u32 cmds_size;
241 	u32 resv_space;
242 	void *blob;
243 	u32 *cmds;
244 	int err;
245 
246 	err = i915_inject_probe_error(guc_to_gt(guc)->i915, -ENXIO);
247 	if (err)
248 		return err;
249 
250 	GEM_BUG_ON(ct->vma);
251 
252 	blob_size = 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE + CTB_G2H_BUFFER_SIZE;
253 	err = intel_guc_allocate_and_map_vma(guc, blob_size, &ct->vma, &blob);
254 	if (unlikely(err)) {
255 		CT_PROBE_ERROR(ct, "Failed to allocate %u for CTB data (%pe)\n",
256 			       blob_size, ERR_PTR(err));
257 		return err;
258 	}
259 
260 	CT_DEBUG(ct, "base=%#x size=%u\n", intel_guc_ggtt_offset(guc, ct->vma), blob_size);
261 
262 	/* store pointers to desc and cmds for send ctb */
263 	desc = blob;
264 	cmds = blob + 2 * CTB_DESC_SIZE;
265 	cmds_size = CTB_H2G_BUFFER_SIZE;
266 	resv_space = 0;
267 	CT_DEBUG(ct, "%s desc %#tx cmds %#tx size %u/%u\n", "send",
268 		 ptrdiff(desc, blob), ptrdiff(cmds, blob), cmds_size,
269 		 resv_space);
270 
271 	guc_ct_buffer_init(&ct->ctbs.send, desc, cmds, cmds_size, resv_space);
272 
273 	/* store pointers to desc and cmds for recv ctb */
274 	desc = blob + CTB_DESC_SIZE;
275 	cmds = blob + 2 * CTB_DESC_SIZE + CTB_H2G_BUFFER_SIZE;
276 	cmds_size = CTB_G2H_BUFFER_SIZE;
277 	resv_space = G2H_ROOM_BUFFER_SIZE;
278 	CT_DEBUG(ct, "%s desc %#tx cmds %#tx size %u/%u\n", "recv",
279 		 ptrdiff(desc, blob), ptrdiff(cmds, blob), cmds_size,
280 		 resv_space);
281 
282 	guc_ct_buffer_init(&ct->ctbs.recv, desc, cmds, cmds_size, resv_space);
283 
284 	return 0;
285 }
286 
287 /**
288  * intel_guc_ct_fini - Fini buffer-based communication
289  * @ct: pointer to CT struct
290  *
291  * Deallocate memory required for buffer-based communication.
292  */
293 void intel_guc_ct_fini(struct intel_guc_ct *ct)
294 {
295 	GEM_BUG_ON(ct->enabled);
296 
297 	tasklet_kill(&ct->receive_tasklet);
298 	i915_vma_unpin_and_release(&ct->vma, I915_VMA_RELEASE_MAP);
299 	memset(ct, 0, sizeof(*ct));
300 }
301 
302 /**
303  * intel_guc_ct_enable - Enable buffer based command transport.
304  * @ct: pointer to CT struct
305  *
306  * Return: 0 on success, a negative errno code on failure.
307  */
308 int intel_guc_ct_enable(struct intel_guc_ct *ct)
309 {
310 	struct intel_guc *guc = ct_to_guc(ct);
311 	u32 base, desc, cmds;
312 	void *blob;
313 	int err;
314 
315 	GEM_BUG_ON(ct->enabled);
316 
317 	/* vma should be already allocated and map'ed */
318 	GEM_BUG_ON(!ct->vma);
319 	GEM_BUG_ON(!i915_gem_object_has_pinned_pages(ct->vma->obj));
320 	base = intel_guc_ggtt_offset(guc, ct->vma);
321 
322 	/* blob should start with send descriptor */
323 	blob = __px_vaddr(ct->vma->obj);
324 	GEM_BUG_ON(blob != ct->ctbs.send.desc);
325 
326 	/* (re)initialize descriptors */
327 	guc_ct_buffer_reset(&ct->ctbs.send);
328 	guc_ct_buffer_reset(&ct->ctbs.recv);
329 
330 	/*
331 	 * Register both CT buffers starting with RECV buffer.
332 	 * Descriptors are in first half of the blob.
333 	 */
334 	desc = base + ptrdiff(ct->ctbs.recv.desc, blob);
335 	cmds = base + ptrdiff(ct->ctbs.recv.cmds, blob);
336 	err = ct_register_buffer(ct, GUC_CTB_TYPE_GUC2HOST,
337 				 desc, cmds, ct->ctbs.recv.size * 4);
338 
339 	if (unlikely(err))
340 		goto err_out;
341 
342 	desc = base + ptrdiff(ct->ctbs.send.desc, blob);
343 	cmds = base + ptrdiff(ct->ctbs.send.cmds, blob);
344 	err = ct_register_buffer(ct, GUC_CTB_TYPE_HOST2GUC,
345 				 desc, cmds, ct->ctbs.send.size * 4);
346 
347 	if (unlikely(err))
348 		goto err_deregister;
349 
350 	ct->enabled = true;
351 	ct->stall_time = KTIME_MAX;
352 
353 	return 0;
354 
355 err_deregister:
356 	ct_deregister_buffer(ct, GUC_CTB_TYPE_GUC2HOST);
357 err_out:
358 	CT_PROBE_ERROR(ct, "Failed to enable CTB (%pe)\n", ERR_PTR(err));
359 	return err;
360 }
361 
362 /**
363  * intel_guc_ct_disable - Disable buffer based command transport.
364  * @ct: pointer to CT struct
365  */
366 void intel_guc_ct_disable(struct intel_guc_ct *ct)
367 {
368 	struct intel_guc *guc = ct_to_guc(ct);
369 
370 	GEM_BUG_ON(!ct->enabled);
371 
372 	ct->enabled = false;
373 
374 	if (intel_guc_is_fw_running(guc)) {
375 		ct_deregister_buffer(ct, GUC_CTB_TYPE_HOST2GUC);
376 		ct_deregister_buffer(ct, GUC_CTB_TYPE_GUC2HOST);
377 	}
378 }
379 
380 static u32 ct_get_next_fence(struct intel_guc_ct *ct)
381 {
382 	/* For now it's trivial */
383 	return ++ct->requests.last_fence;
384 }
385 
386 static int ct_write(struct intel_guc_ct *ct,
387 		    const u32 *action,
388 		    u32 len /* in dwords */,
389 		    u32 fence, u32 flags)
390 {
391 	struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
392 	struct guc_ct_buffer_desc *desc = ctb->desc;
393 	u32 tail = ctb->tail;
394 	u32 size = ctb->size;
395 	u32 header;
396 	u32 hxg;
397 	u32 type;
398 	u32 *cmds = ctb->cmds;
399 	unsigned int i;
400 
401 	if (unlikely(desc->status))
402 		goto corrupted;
403 
404 	GEM_BUG_ON(tail > size);
405 
406 #ifdef CONFIG_DRM_I915_DEBUG_GUC
407 	if (unlikely(tail != READ_ONCE(desc->tail))) {
408 		CT_ERROR(ct, "Tail was modified %u != %u\n",
409 			 desc->tail, tail);
410 		desc->status |= GUC_CTB_STATUS_MISMATCH;
411 		goto corrupted;
412 	}
413 	if (unlikely(READ_ONCE(desc->head) >= size)) {
414 		CT_ERROR(ct, "Invalid head offset %u >= %u)\n",
415 			 desc->head, size);
416 		desc->status |= GUC_CTB_STATUS_OVERFLOW;
417 		goto corrupted;
418 	}
419 #endif
420 
421 	/*
422 	 * dw0: CT header (including fence)
423 	 * dw1: HXG header (including action code)
424 	 * dw2+: action data
425 	 */
426 	header = FIELD_PREP(GUC_CTB_MSG_0_FORMAT, GUC_CTB_FORMAT_HXG) |
427 		 FIELD_PREP(GUC_CTB_MSG_0_NUM_DWORDS, len) |
428 		 FIELD_PREP(GUC_CTB_MSG_0_FENCE, fence);
429 
430 	type = (flags & INTEL_GUC_CT_SEND_NB) ? GUC_HXG_TYPE_EVENT :
431 		GUC_HXG_TYPE_REQUEST;
432 	hxg = FIELD_PREP(GUC_HXG_MSG_0_TYPE, type) |
433 		FIELD_PREP(GUC_HXG_EVENT_MSG_0_ACTION |
434 			   GUC_HXG_EVENT_MSG_0_DATA0, action[0]);
435 
436 	CT_DEBUG(ct, "writing (tail %u) %*ph %*ph %*ph\n",
437 		 tail, 4, &header, 4, &hxg, 4 * (len - 1), &action[1]);
438 
439 	cmds[tail] = header;
440 	tail = (tail + 1) % size;
441 
442 	cmds[tail] = hxg;
443 	tail = (tail + 1) % size;
444 
445 	for (i = 1; i < len; i++) {
446 		cmds[tail] = action[i];
447 		tail = (tail + 1) % size;
448 	}
449 	GEM_BUG_ON(tail > size);
450 
451 	/*
452 	 * make sure H2G buffer update and LRC tail update (if this triggering a
453 	 * submission) are visible before updating the descriptor tail
454 	 */
455 	intel_guc_write_barrier(ct_to_guc(ct));
456 
457 	/* update local copies */
458 	ctb->tail = tail;
459 	GEM_BUG_ON(atomic_read(&ctb->space) < len + GUC_CTB_HDR_LEN);
460 	atomic_sub(len + GUC_CTB_HDR_LEN, &ctb->space);
461 
462 	/* now update descriptor */
463 	WRITE_ONCE(desc->tail, tail);
464 
465 	return 0;
466 
467 corrupted:
468 	CT_ERROR(ct, "Corrupted descriptor head=%u tail=%u status=%#x\n",
469 		 desc->head, desc->tail, desc->status);
470 	ctb->broken = true;
471 	return -EPIPE;
472 }
473 
474 /**
475  * wait_for_ct_request_update - Wait for CT request state update.
476  * @req:	pointer to pending request
477  * @status:	placeholder for status
478  *
479  * For each sent request, GuC shall send back CT response message.
480  * Our message handler will update status of tracked request once
481  * response message with given fence is received. Wait here and
482  * check for valid response status value.
483  *
484  * Return:
485  * *	0 response received (status is valid)
486  * *	-ETIMEDOUT no response within hardcoded timeout
487  */
488 static int wait_for_ct_request_update(struct ct_request *req, u32 *status)
489 {
490 	int err;
491 
492 	/*
493 	 * Fast commands should complete in less than 10us, so sample quickly
494 	 * up to that length of time, then switch to a slower sleep-wait loop.
495 	 * No GuC command should ever take longer than 10ms but many GuC
496 	 * commands can be inflight at time, so use a 1s timeout on the slower
497 	 * sleep-wait loop.
498 	 */
499 #define GUC_CTB_RESPONSE_TIMEOUT_SHORT_MS 10
500 #define GUC_CTB_RESPONSE_TIMEOUT_LONG_MS 1000
501 #define done \
502 	(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, READ_ONCE(req->status)) == \
503 	 GUC_HXG_ORIGIN_GUC)
504 	err = wait_for_us(done, GUC_CTB_RESPONSE_TIMEOUT_SHORT_MS);
505 	if (err)
506 		err = wait_for(done, GUC_CTB_RESPONSE_TIMEOUT_LONG_MS);
507 #undef done
508 
509 	*status = req->status;
510 	return err;
511 }
512 
513 #define GUC_CTB_TIMEOUT_MS	1500
514 static inline bool ct_deadlocked(struct intel_guc_ct *ct)
515 {
516 	long timeout = GUC_CTB_TIMEOUT_MS;
517 	bool ret = ktime_ms_delta(ktime_get(), ct->stall_time) > timeout;
518 
519 	if (unlikely(ret)) {
520 		struct guc_ct_buffer_desc *send = ct->ctbs.send.desc;
521 		struct guc_ct_buffer_desc *recv = ct->ctbs.send.desc;
522 
523 		CT_ERROR(ct, "Communication stalled for %lld ms, desc status=%#x,%#x\n",
524 			 ktime_ms_delta(ktime_get(), ct->stall_time),
525 			 send->status, recv->status);
526 		ct->ctbs.send.broken = true;
527 	}
528 
529 	return ret;
530 }
531 
532 static inline bool g2h_has_room(struct intel_guc_ct *ct, u32 g2h_len_dw)
533 {
534 	struct intel_guc_ct_buffer *ctb = &ct->ctbs.recv;
535 
536 	/*
537 	 * We leave a certain amount of space in the G2H CTB buffer for
538 	 * unexpected G2H CTBs (e.g. logging, engine hang, etc...)
539 	 */
540 	return !g2h_len_dw || atomic_read(&ctb->space) >= g2h_len_dw;
541 }
542 
543 static inline void g2h_reserve_space(struct intel_guc_ct *ct, u32 g2h_len_dw)
544 {
545 	lockdep_assert_held(&ct->ctbs.send.lock);
546 
547 	GEM_BUG_ON(!g2h_has_room(ct, g2h_len_dw));
548 
549 	if (g2h_len_dw)
550 		atomic_sub(g2h_len_dw, &ct->ctbs.recv.space);
551 }
552 
553 static inline void g2h_release_space(struct intel_guc_ct *ct, u32 g2h_len_dw)
554 {
555 	atomic_add(g2h_len_dw, &ct->ctbs.recv.space);
556 }
557 
558 static inline bool h2g_has_room(struct intel_guc_ct *ct, u32 len_dw)
559 {
560 	struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
561 	struct guc_ct_buffer_desc *desc = ctb->desc;
562 	u32 head;
563 	u32 space;
564 
565 	if (atomic_read(&ctb->space) >= len_dw)
566 		return true;
567 
568 	head = READ_ONCE(desc->head);
569 	if (unlikely(head > ctb->size)) {
570 		CT_ERROR(ct, "Invalid head offset %u >= %u)\n",
571 			 head, ctb->size);
572 		desc->status |= GUC_CTB_STATUS_OVERFLOW;
573 		ctb->broken = true;
574 		return false;
575 	}
576 
577 	space = CIRC_SPACE(ctb->tail, head, ctb->size);
578 	atomic_set(&ctb->space, space);
579 
580 	return space >= len_dw;
581 }
582 
583 static int has_room_nb(struct intel_guc_ct *ct, u32 h2g_dw, u32 g2h_dw)
584 {
585 	lockdep_assert_held(&ct->ctbs.send.lock);
586 
587 	if (unlikely(!h2g_has_room(ct, h2g_dw) || !g2h_has_room(ct, g2h_dw))) {
588 		if (ct->stall_time == KTIME_MAX)
589 			ct->stall_time = ktime_get();
590 
591 		if (unlikely(ct_deadlocked(ct)))
592 			return -EPIPE;
593 		else
594 			return -EBUSY;
595 	}
596 
597 	ct->stall_time = KTIME_MAX;
598 	return 0;
599 }
600 
601 #define G2H_LEN_DW(f) ({ \
602 	typeof(f) f_ = (f); \
603 	FIELD_GET(INTEL_GUC_CT_SEND_G2H_DW_MASK, f_) ? \
604 	FIELD_GET(INTEL_GUC_CT_SEND_G2H_DW_MASK, f_) + \
605 	GUC_CTB_HXG_MSG_MIN_LEN : 0; \
606 })
607 static int ct_send_nb(struct intel_guc_ct *ct,
608 		      const u32 *action,
609 		      u32 len,
610 		      u32 flags)
611 {
612 	struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
613 	unsigned long spin_flags;
614 	u32 g2h_len_dw = G2H_LEN_DW(flags);
615 	u32 fence;
616 	int ret;
617 
618 	spin_lock_irqsave(&ctb->lock, spin_flags);
619 
620 	ret = has_room_nb(ct, len + GUC_CTB_HDR_LEN, g2h_len_dw);
621 	if (unlikely(ret))
622 		goto out;
623 
624 	fence = ct_get_next_fence(ct);
625 	ret = ct_write(ct, action, len, fence, flags);
626 	if (unlikely(ret))
627 		goto out;
628 
629 	g2h_reserve_space(ct, g2h_len_dw);
630 	intel_guc_notify(ct_to_guc(ct));
631 
632 out:
633 	spin_unlock_irqrestore(&ctb->lock, spin_flags);
634 
635 	return ret;
636 }
637 
638 static int ct_send(struct intel_guc_ct *ct,
639 		   const u32 *action,
640 		   u32 len,
641 		   u32 *response_buf,
642 		   u32 response_buf_size,
643 		   u32 *status)
644 {
645 	struct intel_guc_ct_buffer *ctb = &ct->ctbs.send;
646 	struct ct_request request;
647 	unsigned long flags;
648 	unsigned int sleep_period_ms = 1;
649 	u32 fence;
650 	int err;
651 
652 	GEM_BUG_ON(!ct->enabled);
653 	GEM_BUG_ON(!len);
654 	GEM_BUG_ON(len & ~GUC_CT_MSG_LEN_MASK);
655 	GEM_BUG_ON(!response_buf && response_buf_size);
656 	might_sleep();
657 
658 	/*
659 	 * We use a lazy spin wait loop here as we believe that if the CT
660 	 * buffers are sized correctly the flow control condition should be
661 	 * rare. Reserving the maximum size in the G2H credits as we don't know
662 	 * how big the response is going to be.
663 	 */
664 retry:
665 	spin_lock_irqsave(&ctb->lock, flags);
666 	if (unlikely(!h2g_has_room(ct, len + GUC_CTB_HDR_LEN) ||
667 		     !g2h_has_room(ct, GUC_CTB_HXG_MSG_MAX_LEN))) {
668 		if (ct->stall_time == KTIME_MAX)
669 			ct->stall_time = ktime_get();
670 		spin_unlock_irqrestore(&ctb->lock, flags);
671 
672 		if (unlikely(ct_deadlocked(ct)))
673 			return -EPIPE;
674 
675 		if (msleep_interruptible(sleep_period_ms))
676 			return -EINTR;
677 		sleep_period_ms = sleep_period_ms << 1;
678 
679 		goto retry;
680 	}
681 
682 	ct->stall_time = KTIME_MAX;
683 
684 	fence = ct_get_next_fence(ct);
685 	request.fence = fence;
686 	request.status = 0;
687 	request.response_len = response_buf_size;
688 	request.response_buf = response_buf;
689 
690 	spin_lock(&ct->requests.lock);
691 	list_add_tail(&request.link, &ct->requests.pending);
692 	spin_unlock(&ct->requests.lock);
693 
694 	err = ct_write(ct, action, len, fence, 0);
695 	g2h_reserve_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
696 
697 	spin_unlock_irqrestore(&ctb->lock, flags);
698 
699 	if (unlikely(err))
700 		goto unlink;
701 
702 	intel_guc_notify(ct_to_guc(ct));
703 
704 	err = wait_for_ct_request_update(&request, status);
705 	g2h_release_space(ct, GUC_CTB_HXG_MSG_MAX_LEN);
706 	if (unlikely(err)) {
707 		CT_ERROR(ct, "No response for request %#x (fence %u)\n",
708 			 action[0], request.fence);
709 		goto unlink;
710 	}
711 
712 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, *status) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
713 		err = -EIO;
714 		goto unlink;
715 	}
716 
717 	if (response_buf) {
718 		/* There shall be no data in the status */
719 		WARN_ON(FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, request.status));
720 		/* Return actual response len */
721 		err = request.response_len;
722 	} else {
723 		/* There shall be no response payload */
724 		WARN_ON(request.response_len);
725 		/* Return data decoded from the status dword */
726 		err = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, *status);
727 	}
728 
729 unlink:
730 	spin_lock_irqsave(&ct->requests.lock, flags);
731 	list_del(&request.link);
732 	spin_unlock_irqrestore(&ct->requests.lock, flags);
733 
734 	return err;
735 }
736 
737 /*
738  * Command Transport (CT) buffer based GuC send function.
739  */
740 int intel_guc_ct_send(struct intel_guc_ct *ct, const u32 *action, u32 len,
741 		      u32 *response_buf, u32 response_buf_size, u32 flags)
742 {
743 	u32 status = ~0; /* undefined */
744 	int ret;
745 
746 	if (unlikely(!ct->enabled)) {
747 		struct intel_guc *guc = ct_to_guc(ct);
748 		struct intel_uc *uc = container_of(guc, struct intel_uc, guc);
749 
750 		WARN(!uc->reset_in_progress, "Unexpected send: action=%#x\n", *action);
751 		return -ENODEV;
752 	}
753 
754 	if (unlikely(ct->ctbs.send.broken))
755 		return -EPIPE;
756 
757 	if (flags & INTEL_GUC_CT_SEND_NB)
758 		return ct_send_nb(ct, action, len, flags);
759 
760 	ret = ct_send(ct, action, len, response_buf, response_buf_size, &status);
761 	if (unlikely(ret < 0)) {
762 		CT_ERROR(ct, "Sending action %#x failed (%pe) status=%#X\n",
763 			 action[0], ERR_PTR(ret), status);
764 	} else if (unlikely(ret)) {
765 		CT_DEBUG(ct, "send action %#x returned %d (%#x)\n",
766 			 action[0], ret, ret);
767 	}
768 
769 	return ret;
770 }
771 
772 static struct ct_incoming_msg *ct_alloc_msg(u32 num_dwords)
773 {
774 	struct ct_incoming_msg *msg;
775 
776 	msg = kmalloc(sizeof(*msg) + sizeof(u32) * num_dwords, GFP_ATOMIC);
777 	if (msg)
778 		msg->size = num_dwords;
779 	return msg;
780 }
781 
782 static void ct_free_msg(struct ct_incoming_msg *msg)
783 {
784 	kfree(msg);
785 }
786 
787 /*
788  * Return: number available remaining dwords to read (0 if empty)
789  *         or a negative error code on failure
790  */
791 static int ct_read(struct intel_guc_ct *ct, struct ct_incoming_msg **msg)
792 {
793 	struct intel_guc_ct_buffer *ctb = &ct->ctbs.recv;
794 	struct guc_ct_buffer_desc *desc = ctb->desc;
795 	u32 head = ctb->head;
796 	u32 tail = READ_ONCE(desc->tail);
797 	u32 size = ctb->size;
798 	u32 *cmds = ctb->cmds;
799 	s32 available;
800 	unsigned int len;
801 	unsigned int i;
802 	u32 header;
803 
804 	if (unlikely(ctb->broken))
805 		return -EPIPE;
806 
807 	if (unlikely(desc->status))
808 		goto corrupted;
809 
810 	GEM_BUG_ON(head > size);
811 
812 #ifdef CONFIG_DRM_I915_DEBUG_GUC
813 	if (unlikely(head != READ_ONCE(desc->head))) {
814 		CT_ERROR(ct, "Head was modified %u != %u\n",
815 			 desc->head, head);
816 		desc->status |= GUC_CTB_STATUS_MISMATCH;
817 		goto corrupted;
818 	}
819 #endif
820 	if (unlikely(tail >= size)) {
821 		CT_ERROR(ct, "Invalid tail offset %u >= %u)\n",
822 			 tail, size);
823 		desc->status |= GUC_CTB_STATUS_OVERFLOW;
824 		goto corrupted;
825 	}
826 
827 	/* tail == head condition indicates empty */
828 	available = tail - head;
829 	if (unlikely(available == 0)) {
830 		*msg = NULL;
831 		return 0;
832 	}
833 
834 	/* beware of buffer wrap case */
835 	if (unlikely(available < 0))
836 		available += size;
837 	CT_DEBUG(ct, "available %d (%u:%u:%u)\n", available, head, tail, size);
838 	GEM_BUG_ON(available < 0);
839 
840 	header = cmds[head];
841 	head = (head + 1) % size;
842 
843 	/* message len with header */
844 	len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, header) + GUC_CTB_MSG_MIN_LEN;
845 	if (unlikely(len > (u32)available)) {
846 		CT_ERROR(ct, "Incomplete message %*ph %*ph %*ph\n",
847 			 4, &header,
848 			 4 * (head + available - 1 > size ?
849 			      size - head : available - 1), &cmds[head],
850 			 4 * (head + available - 1 > size ?
851 			      available - 1 - size + head : 0), &cmds[0]);
852 		desc->status |= GUC_CTB_STATUS_UNDERFLOW;
853 		goto corrupted;
854 	}
855 
856 	*msg = ct_alloc_msg(len);
857 	if (!*msg) {
858 		CT_ERROR(ct, "No memory for message %*ph %*ph %*ph\n",
859 			 4, &header,
860 			 4 * (head + available - 1 > size ?
861 			      size - head : available - 1), &cmds[head],
862 			 4 * (head + available - 1 > size ?
863 			      available - 1 - size + head : 0), &cmds[0]);
864 		return available;
865 	}
866 
867 	(*msg)->msg[0] = header;
868 
869 	for (i = 1; i < len; i++) {
870 		(*msg)->msg[i] = cmds[head];
871 		head = (head + 1) % size;
872 	}
873 	CT_DEBUG(ct, "received %*ph\n", 4 * len, (*msg)->msg);
874 
875 	/* update local copies */
876 	ctb->head = head;
877 
878 	/* now update descriptor */
879 	WRITE_ONCE(desc->head, head);
880 
881 	return available - len;
882 
883 corrupted:
884 	CT_ERROR(ct, "Corrupted descriptor head=%u tail=%u status=%#x\n",
885 		 desc->head, desc->tail, desc->status);
886 	ctb->broken = true;
887 	return -EPIPE;
888 }
889 
890 static int ct_handle_response(struct intel_guc_ct *ct, struct ct_incoming_msg *response)
891 {
892 	u32 len = FIELD_GET(GUC_CTB_MSG_0_NUM_DWORDS, response->msg[0]);
893 	u32 fence = FIELD_GET(GUC_CTB_MSG_0_FENCE, response->msg[0]);
894 	const u32 *hxg = &response->msg[GUC_CTB_MSG_MIN_LEN];
895 	const u32 *data = &hxg[GUC_HXG_MSG_MIN_LEN];
896 	u32 datalen = len - GUC_HXG_MSG_MIN_LEN;
897 	struct ct_request *req;
898 	unsigned long flags;
899 	bool found = false;
900 	int err = 0;
901 
902 	GEM_BUG_ON(len < GUC_HXG_MSG_MIN_LEN);
903 	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]) != GUC_HXG_ORIGIN_GUC);
904 	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_RESPONSE_SUCCESS &&
905 		   FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_RESPONSE_FAILURE);
906 
907 	CT_DEBUG(ct, "response fence %u status %#x\n", fence, hxg[0]);
908 
909 	spin_lock_irqsave(&ct->requests.lock, flags);
910 	list_for_each_entry(req, &ct->requests.pending, link) {
911 		if (unlikely(fence != req->fence)) {
912 			CT_DEBUG(ct, "request %u awaits response\n",
913 				 req->fence);
914 			continue;
915 		}
916 		if (unlikely(datalen > req->response_len)) {
917 			CT_ERROR(ct, "Response %u too long (datalen %u > %u)\n",
918 				 req->fence, datalen, req->response_len);
919 			datalen = min(datalen, req->response_len);
920 			err = -EMSGSIZE;
921 		}
922 		if (datalen)
923 			memcpy(req->response_buf, data, 4 * datalen);
924 		req->response_len = datalen;
925 		WRITE_ONCE(req->status, hxg[0]);
926 		found = true;
927 		break;
928 	}
929 	if (!found) {
930 		CT_ERROR(ct, "Unsolicited response (fence %u)\n", fence);
931 		CT_ERROR(ct, "Could not find fence=%u, last_fence=%u\n", fence,
932 			 ct->requests.last_fence);
933 		list_for_each_entry(req, &ct->requests.pending, link)
934 			CT_ERROR(ct, "request %u awaits response\n",
935 				 req->fence);
936 		err = -ENOKEY;
937 	}
938 	spin_unlock_irqrestore(&ct->requests.lock, flags);
939 
940 	if (unlikely(err))
941 		return err;
942 
943 	ct_free_msg(response);
944 	return 0;
945 }
946 
947 static int ct_process_request(struct intel_guc_ct *ct, struct ct_incoming_msg *request)
948 {
949 	struct intel_guc *guc = ct_to_guc(ct);
950 	const u32 *hxg;
951 	const u32 *payload;
952 	u32 hxg_len, action, len;
953 	int ret;
954 
955 	hxg = &request->msg[GUC_CTB_MSG_MIN_LEN];
956 	hxg_len = request->size - GUC_CTB_MSG_MIN_LEN;
957 	payload = &hxg[GUC_HXG_MSG_MIN_LEN];
958 	action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
959 	len = hxg_len - GUC_HXG_MSG_MIN_LEN;
960 
961 	CT_DEBUG(ct, "request %x %*ph\n", action, 4 * len, payload);
962 
963 	switch (action) {
964 	case INTEL_GUC_ACTION_DEFAULT:
965 		ret = intel_guc_to_host_process_recv_msg(guc, payload, len);
966 		break;
967 	case INTEL_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
968 		ret = intel_guc_deregister_done_process_msg(guc, payload,
969 							    len);
970 		break;
971 	case INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
972 		ret = intel_guc_sched_done_process_msg(guc, payload, len);
973 		break;
974 	case INTEL_GUC_ACTION_CONTEXT_RESET_NOTIFICATION:
975 		ret = intel_guc_context_reset_process_msg(guc, payload, len);
976 		break;
977 	case INTEL_GUC_ACTION_ENGINE_FAILURE_NOTIFICATION:
978 		ret = intel_guc_engine_failure_process_msg(guc, payload, len);
979 		break;
980 	default:
981 		ret = -EOPNOTSUPP;
982 		break;
983 	}
984 
985 	if (unlikely(ret)) {
986 		CT_ERROR(ct, "Failed to process request %04x (%pe)\n",
987 			 action, ERR_PTR(ret));
988 		return ret;
989 	}
990 
991 	ct_free_msg(request);
992 	return 0;
993 }
994 
995 static bool ct_process_incoming_requests(struct intel_guc_ct *ct)
996 {
997 	unsigned long flags;
998 	struct ct_incoming_msg *request;
999 	bool done;
1000 	int err;
1001 
1002 	spin_lock_irqsave(&ct->requests.lock, flags);
1003 	request = list_first_entry_or_null(&ct->requests.incoming,
1004 					   struct ct_incoming_msg, link);
1005 	if (request)
1006 		list_del(&request->link);
1007 	done = !!list_empty(&ct->requests.incoming);
1008 	spin_unlock_irqrestore(&ct->requests.lock, flags);
1009 
1010 	if (!request)
1011 		return true;
1012 
1013 	err = ct_process_request(ct, request);
1014 	if (unlikely(err)) {
1015 		CT_ERROR(ct, "Failed to process CT message (%pe) %*ph\n",
1016 			 ERR_PTR(err), 4 * request->size, request->msg);
1017 		ct_free_msg(request);
1018 	}
1019 
1020 	return done;
1021 }
1022 
1023 static void ct_incoming_request_worker_func(struct work_struct *w)
1024 {
1025 	struct intel_guc_ct *ct =
1026 		container_of(w, struct intel_guc_ct, requests.worker);
1027 	bool done;
1028 
1029 	do {
1030 		done = ct_process_incoming_requests(ct);
1031 	} while (!done);
1032 }
1033 
1034 static int ct_handle_event(struct intel_guc_ct *ct, struct ct_incoming_msg *request)
1035 {
1036 	const u32 *hxg = &request->msg[GUC_CTB_MSG_MIN_LEN];
1037 	u32 action = FIELD_GET(GUC_HXG_EVENT_MSG_0_ACTION, hxg[0]);
1038 	unsigned long flags;
1039 
1040 	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]) != GUC_HXG_TYPE_EVENT);
1041 
1042 	/*
1043 	 * Adjusting the space must be done in IRQ or deadlock can occur as the
1044 	 * CTB processing in the below workqueue can send CTBs which creates a
1045 	 * circular dependency if the space was returned there.
1046 	 */
1047 	switch (action) {
1048 	case INTEL_GUC_ACTION_SCHED_CONTEXT_MODE_DONE:
1049 	case INTEL_GUC_ACTION_DEREGISTER_CONTEXT_DONE:
1050 		g2h_release_space(ct, request->size);
1051 	}
1052 
1053 	spin_lock_irqsave(&ct->requests.lock, flags);
1054 	list_add_tail(&request->link, &ct->requests.incoming);
1055 	spin_unlock_irqrestore(&ct->requests.lock, flags);
1056 
1057 	queue_work(system_unbound_wq, &ct->requests.worker);
1058 	return 0;
1059 }
1060 
1061 static int ct_handle_hxg(struct intel_guc_ct *ct, struct ct_incoming_msg *msg)
1062 {
1063 	u32 origin, type;
1064 	u32 *hxg;
1065 	int err;
1066 
1067 	if (unlikely(msg->size < GUC_CTB_HXG_MSG_MIN_LEN))
1068 		return -EBADMSG;
1069 
1070 	hxg = &msg->msg[GUC_CTB_MSG_MIN_LEN];
1071 
1072 	origin = FIELD_GET(GUC_HXG_MSG_0_ORIGIN, hxg[0]);
1073 	if (unlikely(origin != GUC_HXG_ORIGIN_GUC)) {
1074 		err = -EPROTO;
1075 		goto failed;
1076 	}
1077 
1078 	type = FIELD_GET(GUC_HXG_MSG_0_TYPE, hxg[0]);
1079 	switch (type) {
1080 	case GUC_HXG_TYPE_EVENT:
1081 		err = ct_handle_event(ct, msg);
1082 		break;
1083 	case GUC_HXG_TYPE_RESPONSE_SUCCESS:
1084 	case GUC_HXG_TYPE_RESPONSE_FAILURE:
1085 		err = ct_handle_response(ct, msg);
1086 		break;
1087 	default:
1088 		err = -EOPNOTSUPP;
1089 	}
1090 
1091 	if (unlikely(err)) {
1092 failed:
1093 		CT_ERROR(ct, "Failed to handle HXG message (%pe) %*ph\n",
1094 			 ERR_PTR(err), 4 * GUC_HXG_MSG_MIN_LEN, hxg);
1095 	}
1096 	return err;
1097 }
1098 
1099 static void ct_handle_msg(struct intel_guc_ct *ct, struct ct_incoming_msg *msg)
1100 {
1101 	u32 format = FIELD_GET(GUC_CTB_MSG_0_FORMAT, msg->msg[0]);
1102 	int err;
1103 
1104 	if (format == GUC_CTB_FORMAT_HXG)
1105 		err = ct_handle_hxg(ct, msg);
1106 	else
1107 		err = -EOPNOTSUPP;
1108 
1109 	if (unlikely(err)) {
1110 		CT_ERROR(ct, "Failed to process CT message (%pe) %*ph\n",
1111 			 ERR_PTR(err), 4 * msg->size, msg->msg);
1112 		ct_free_msg(msg);
1113 	}
1114 }
1115 
1116 /*
1117  * Return: number available remaining dwords to read (0 if empty)
1118  *         or a negative error code on failure
1119  */
1120 static int ct_receive(struct intel_guc_ct *ct)
1121 {
1122 	struct ct_incoming_msg *msg = NULL;
1123 	unsigned long flags;
1124 	int ret;
1125 
1126 	spin_lock_irqsave(&ct->ctbs.recv.lock, flags);
1127 	ret = ct_read(ct, &msg);
1128 	spin_unlock_irqrestore(&ct->ctbs.recv.lock, flags);
1129 	if (ret < 0)
1130 		return ret;
1131 
1132 	if (msg)
1133 		ct_handle_msg(ct, msg);
1134 
1135 	return ret;
1136 }
1137 
1138 static void ct_try_receive_message(struct intel_guc_ct *ct)
1139 {
1140 	int ret;
1141 
1142 	if (GEM_WARN_ON(!ct->enabled))
1143 		return;
1144 
1145 	ret = ct_receive(ct);
1146 	if (ret > 0)
1147 		tasklet_hi_schedule(&ct->receive_tasklet);
1148 }
1149 
1150 static void ct_receive_tasklet_func(struct tasklet_struct *t)
1151 {
1152 	struct intel_guc_ct *ct = from_tasklet(ct, t, receive_tasklet);
1153 
1154 	ct_try_receive_message(ct);
1155 }
1156 
1157 /*
1158  * When we're communicating with the GuC over CT, GuC uses events
1159  * to notify us about new messages being posted on the RECV buffer.
1160  */
1161 void intel_guc_ct_event_handler(struct intel_guc_ct *ct)
1162 {
1163 	if (unlikely(!ct->enabled)) {
1164 		WARN(1, "Unexpected GuC event received while CT disabled!\n");
1165 		return;
1166 	}
1167 
1168 	ct_try_receive_message(ct);
1169 }
1170 
1171 void intel_guc_ct_print_info(struct intel_guc_ct *ct,
1172 			     struct drm_printer *p)
1173 {
1174 	drm_printf(p, "CT %s\n", enableddisabled(ct->enabled));
1175 
1176 	if (!ct->enabled)
1177 		return;
1178 
1179 	drm_printf(p, "H2G Space: %u\n",
1180 		   atomic_read(&ct->ctbs.send.space) * 4);
1181 	drm_printf(p, "Head: %u\n",
1182 		   ct->ctbs.send.desc->head);
1183 	drm_printf(p, "Tail: %u\n",
1184 		   ct->ctbs.send.desc->tail);
1185 	drm_printf(p, "G2H Space: %u\n",
1186 		   atomic_read(&ct->ctbs.recv.space) * 4);
1187 	drm_printf(p, "Head: %u\n",
1188 		   ct->ctbs.recv.desc->head);
1189 	drm_printf(p, "Tail: %u\n",
1190 		   ct->ctbs.recv.desc->tail);
1191 }
1192