1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2019 Intel Corporation 4 */ 5 6 #include "gem/i915_gem_lmem.h" 7 #include "gt/intel_gt.h" 8 #include "gt/intel_gt_irq.h" 9 #include "gt/intel_gt_pm_irq.h" 10 #include "gt/intel_gt_regs.h" 11 #include "intel_guc.h" 12 #include "intel_guc_ads.h" 13 #include "intel_guc_capture.h" 14 #include "intel_guc_slpc.h" 15 #include "intel_guc_submission.h" 16 #include "i915_drv.h" 17 #include "i915_irq.h" 18 19 /** 20 * DOC: GuC 21 * 22 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is 23 * designed to offload some of the functionality usually performed by the host 24 * driver; currently the main operations it can take care of are: 25 * 26 * - Authentication of the HuC, which is required to fully enable HuC usage. 27 * - Low latency graphics context scheduling (a.k.a. GuC submission). 28 * - GT Power management. 29 * 30 * The enable_guc module parameter can be used to select which of those 31 * operations to enable within GuC. Note that not all the operations are 32 * supported on all gen9+ platforms. 33 * 34 * Enabling the GuC is not mandatory and therefore the firmware is only loaded 35 * if at least one of the operations is selected. However, not loading the GuC 36 * might result in the loss of some features that do require the GuC (currently 37 * just the HuC, but more are expected to land in the future). 38 */ 39 40 void intel_guc_notify(struct intel_guc *guc) 41 { 42 struct intel_gt *gt = guc_to_gt(guc); 43 44 /* 45 * On Gen11+, the value written to the register is passes as a payload 46 * to the FW. However, the FW currently treats all values the same way 47 * (H2G interrupt), so we can just write the value that the HW expects 48 * on older gens. 49 */ 50 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER); 51 } 52 53 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i) 54 { 55 GEM_BUG_ON(!guc->send_regs.base); 56 GEM_BUG_ON(!guc->send_regs.count); 57 GEM_BUG_ON(i >= guc->send_regs.count); 58 59 return _MMIO(guc->send_regs.base + 4 * i); 60 } 61 62 void intel_guc_init_send_regs(struct intel_guc *guc) 63 { 64 struct intel_gt *gt = guc_to_gt(guc); 65 enum forcewake_domains fw_domains = 0; 66 unsigned int i; 67 68 GEM_BUG_ON(!guc->send_regs.base); 69 GEM_BUG_ON(!guc->send_regs.count); 70 71 for (i = 0; i < guc->send_regs.count; i++) { 72 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore, 73 guc_send_reg(guc, i), 74 FW_REG_READ | FW_REG_WRITE); 75 } 76 guc->send_regs.fw_domains = fw_domains; 77 } 78 79 static void gen9_reset_guc_interrupts(struct intel_guc *guc) 80 { 81 struct intel_gt *gt = guc_to_gt(guc); 82 83 assert_rpm_wakelock_held(>->i915->runtime_pm); 84 85 spin_lock_irq(gt->irq_lock); 86 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events); 87 spin_unlock_irq(gt->irq_lock); 88 } 89 90 static void gen9_enable_guc_interrupts(struct intel_guc *guc) 91 { 92 struct intel_gt *gt = guc_to_gt(guc); 93 94 assert_rpm_wakelock_held(>->i915->runtime_pm); 95 96 spin_lock_irq(gt->irq_lock); 97 WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) & 98 gt->pm_guc_events); 99 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events); 100 spin_unlock_irq(gt->irq_lock); 101 102 guc->interrupts.enabled = true; 103 } 104 105 static void gen9_disable_guc_interrupts(struct intel_guc *guc) 106 { 107 struct intel_gt *gt = guc_to_gt(guc); 108 109 assert_rpm_wakelock_held(>->i915->runtime_pm); 110 guc->interrupts.enabled = false; 111 112 spin_lock_irq(gt->irq_lock); 113 114 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events); 115 116 spin_unlock_irq(gt->irq_lock); 117 intel_synchronize_irq(gt->i915); 118 119 gen9_reset_guc_interrupts(guc); 120 } 121 122 static bool __gen11_reset_guc_interrupts(struct intel_gt *gt) 123 { 124 u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC; 125 126 lockdep_assert_held(gt->irq_lock); 127 return gen11_gt_reset_one_iir(gt, 0, irq); 128 } 129 130 static void gen11_reset_guc_interrupts(struct intel_guc *guc) 131 { 132 struct intel_gt *gt = guc_to_gt(guc); 133 134 spin_lock_irq(gt->irq_lock); 135 __gen11_reset_guc_interrupts(gt); 136 spin_unlock_irq(gt->irq_lock); 137 } 138 139 static void gen11_enable_guc_interrupts(struct intel_guc *guc) 140 { 141 struct intel_gt *gt = guc_to_gt(guc); 142 143 spin_lock_irq(gt->irq_lock); 144 __gen11_reset_guc_interrupts(gt); 145 spin_unlock_irq(gt->irq_lock); 146 147 guc->interrupts.enabled = true; 148 } 149 150 static void gen11_disable_guc_interrupts(struct intel_guc *guc) 151 { 152 struct intel_gt *gt = guc_to_gt(guc); 153 154 guc->interrupts.enabled = false; 155 intel_synchronize_irq(gt->i915); 156 157 gen11_reset_guc_interrupts(guc); 158 } 159 160 void intel_guc_init_early(struct intel_guc *guc) 161 { 162 struct intel_gt *gt = guc_to_gt(guc); 163 struct drm_i915_private *i915 = gt->i915; 164 165 intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC); 166 intel_guc_ct_init_early(&guc->ct); 167 intel_guc_log_init_early(&guc->log); 168 intel_guc_submission_init_early(guc); 169 intel_guc_slpc_init_early(&guc->slpc); 170 intel_guc_rc_init_early(guc); 171 172 mutex_init(&guc->send_mutex); 173 spin_lock_init(&guc->irq_lock); 174 if (GRAPHICS_VER(i915) >= 11) { 175 guc->interrupts.reset = gen11_reset_guc_interrupts; 176 guc->interrupts.enable = gen11_enable_guc_interrupts; 177 guc->interrupts.disable = gen11_disable_guc_interrupts; 178 if (gt->type == GT_MEDIA) { 179 guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT; 180 guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0)); 181 } else { 182 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT; 183 guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0)); 184 } 185 186 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT; 187 188 } else { 189 guc->notify_reg = GUC_SEND_INTERRUPT; 190 guc->interrupts.reset = gen9_reset_guc_interrupts; 191 guc->interrupts.enable = gen9_enable_guc_interrupts; 192 guc->interrupts.disable = gen9_disable_guc_interrupts; 193 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0)); 194 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN; 195 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT); 196 } 197 198 intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION | 199 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED); 200 } 201 202 void intel_guc_init_late(struct intel_guc *guc) 203 { 204 intel_guc_ads_init_late(guc); 205 } 206 207 static u32 guc_ctl_debug_flags(struct intel_guc *guc) 208 { 209 u32 level = intel_guc_log_get_level(&guc->log); 210 u32 flags = 0; 211 212 if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) 213 flags |= GUC_LOG_DISABLED; 214 else 215 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << 216 GUC_LOG_VERBOSITY_SHIFT; 217 218 return flags; 219 } 220 221 static u32 guc_ctl_feature_flags(struct intel_guc *guc) 222 { 223 u32 flags = 0; 224 225 if (!intel_guc_submission_is_used(guc)) 226 flags |= GUC_CTL_DISABLE_SCHEDULER; 227 228 if (intel_guc_slpc_is_used(guc)) 229 flags |= GUC_CTL_ENABLE_SLPC; 230 231 return flags; 232 } 233 234 static u32 guc_ctl_log_params_flags(struct intel_guc *guc) 235 { 236 struct intel_guc_log *log = &guc->log; 237 u32 offset, flags; 238 239 GEM_BUG_ON(!log->sizes_initialised); 240 241 offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT; 242 243 flags = GUC_LOG_VALID | 244 GUC_LOG_NOTIFY_ON_HALF_FULL | 245 log->sizes[GUC_LOG_SECTIONS_DEBUG].flag | 246 log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag | 247 (log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) | 248 (log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) | 249 (log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) | 250 (offset << GUC_LOG_BUF_ADDR_SHIFT); 251 252 return flags; 253 } 254 255 static u32 guc_ctl_ads_flags(struct intel_guc *guc) 256 { 257 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT; 258 u32 flags = ads << GUC_ADS_ADDR_SHIFT; 259 260 return flags; 261 } 262 263 static u32 guc_ctl_wa_flags(struct intel_guc *guc) 264 { 265 struct intel_gt *gt = guc_to_gt(guc); 266 u32 flags = 0; 267 268 /* Wa_22012773006:gen11,gen12 < XeHP */ 269 if (GRAPHICS_VER(gt->i915) >= 11 && 270 GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 50)) 271 flags |= GUC_WA_POLLCS; 272 273 /* Wa_16011759253:dg2_g10:a0 */ 274 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0)) 275 flags |= GUC_WA_GAM_CREDITS; 276 277 /* Wa_14014475959:dg2 */ 278 if (IS_DG2(gt->i915)) 279 flags |= GUC_WA_HOLD_CCS_SWITCHOUT; 280 281 /* 282 * Wa_14012197797:dg2_g10:a0,dg2_g11:a0 283 * Wa_22011391025:dg2_g10,dg2_g11,dg2_g12 284 * 285 * The same WA bit is used for both and 22011391025 is applicable to 286 * all DG2. 287 */ 288 if (IS_DG2(gt->i915)) 289 flags |= GUC_WA_DUAL_QUEUE; 290 291 /* Wa_22011802037: graphics version 11/12 */ 292 if (IS_GRAPHICS_VER(gt->i915, 11, 12)) 293 flags |= GUC_WA_PRE_PARSER; 294 295 /* Wa_16011777198:dg2 */ 296 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) || 297 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0)) 298 flags |= GUC_WA_RCS_RESET_BEFORE_RC6; 299 300 /* 301 * Wa_22012727170:dg2_g10[a0-c0), dg2_g11[a0..) 302 * Wa_22012727685:dg2_g11[a0..) 303 */ 304 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) || 305 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_FOREVER)) 306 flags |= GUC_WA_CONTEXT_ISOLATION; 307 308 /* Wa_16015675438 */ 309 if (!RCS_MASK(gt)) 310 flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST; 311 312 return flags; 313 } 314 315 static u32 guc_ctl_devid(struct intel_guc *guc) 316 { 317 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 318 319 return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915); 320 } 321 322 /* 323 * Initialise the GuC parameter block before starting the firmware 324 * transfer. These parameters are read by the firmware on startup 325 * and cannot be changed thereafter. 326 */ 327 static void guc_init_params(struct intel_guc *guc) 328 { 329 u32 *params = guc->params; 330 int i; 331 332 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); 333 334 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); 335 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); 336 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); 337 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); 338 params[GUC_CTL_WA] = guc_ctl_wa_flags(guc); 339 params[GUC_CTL_DEVID] = guc_ctl_devid(guc); 340 341 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 342 DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]); 343 } 344 345 /* 346 * Initialise the GuC parameter block before starting the firmware 347 * transfer. These parameters are read by the firmware on startup 348 * and cannot be changed thereafter. 349 */ 350 void intel_guc_write_params(struct intel_guc *guc) 351 { 352 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 353 int i; 354 355 /* 356 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and 357 * they are power context saved so it's ok to release forcewake 358 * when we are done here and take it again at xfer time. 359 */ 360 intel_uncore_forcewake_get(uncore, FORCEWAKE_GT); 361 362 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0); 363 364 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 365 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]); 366 367 intel_uncore_forcewake_put(uncore, FORCEWAKE_GT); 368 } 369 370 void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p) 371 { 372 struct intel_gt *gt = guc_to_gt(guc); 373 intel_wakeref_t wakeref; 374 u32 stamp = 0; 375 u64 ktime; 376 377 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) 378 stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP); 379 ktime = ktime_get_boottime_ns(); 380 381 drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime); 382 drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp); 383 drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n", 384 gt->clock_frequency, gt->clock_period_ns); 385 } 386 387 int intel_guc_init(struct intel_guc *guc) 388 { 389 struct intel_gt *gt = guc_to_gt(guc); 390 int ret; 391 392 ret = intel_uc_fw_init(&guc->fw); 393 if (ret) 394 goto out; 395 396 ret = intel_guc_log_create(&guc->log); 397 if (ret) 398 goto err_fw; 399 400 ret = intel_guc_capture_init(guc); 401 if (ret) 402 goto err_log; 403 404 ret = intel_guc_ads_create(guc); 405 if (ret) 406 goto err_capture; 407 408 GEM_BUG_ON(!guc->ads_vma); 409 410 ret = intel_guc_ct_init(&guc->ct); 411 if (ret) 412 goto err_ads; 413 414 if (intel_guc_submission_is_used(guc)) { 415 /* 416 * This is stuff we need to have available at fw load time 417 * if we are planning to enable submission later 418 */ 419 ret = intel_guc_submission_init(guc); 420 if (ret) 421 goto err_ct; 422 } 423 424 if (intel_guc_slpc_is_used(guc)) { 425 ret = intel_guc_slpc_init(&guc->slpc); 426 if (ret) 427 goto err_submission; 428 } 429 430 /* now that everything is perma-pinned, initialize the parameters */ 431 guc_init_params(guc); 432 433 /* We need to notify the guc whenever we change the GGTT */ 434 i915_ggtt_enable_guc(gt->ggtt); 435 436 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE); 437 438 return 0; 439 440 err_submission: 441 intel_guc_submission_fini(guc); 442 err_ct: 443 intel_guc_ct_fini(&guc->ct); 444 err_ads: 445 intel_guc_ads_destroy(guc); 446 err_capture: 447 intel_guc_capture_destroy(guc); 448 err_log: 449 intel_guc_log_destroy(&guc->log); 450 err_fw: 451 intel_uc_fw_fini(&guc->fw); 452 out: 453 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL); 454 i915_probe_error(gt->i915, "failed with %d\n", ret); 455 return ret; 456 } 457 458 void intel_guc_fini(struct intel_guc *guc) 459 { 460 struct intel_gt *gt = guc_to_gt(guc); 461 462 if (!intel_uc_fw_is_loadable(&guc->fw)) 463 return; 464 465 i915_ggtt_disable_guc(gt->ggtt); 466 467 if (intel_guc_slpc_is_used(guc)) 468 intel_guc_slpc_fini(&guc->slpc); 469 470 if (intel_guc_submission_is_used(guc)) 471 intel_guc_submission_fini(guc); 472 473 intel_guc_ct_fini(&guc->ct); 474 475 intel_guc_ads_destroy(guc); 476 intel_guc_capture_destroy(guc); 477 intel_guc_log_destroy(&guc->log); 478 intel_uc_fw_fini(&guc->fw); 479 } 480 481 /* 482 * This function implements the MMIO based host to GuC interface. 483 */ 484 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len, 485 u32 *response_buf, u32 response_buf_size) 486 { 487 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 488 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 489 u32 header; 490 int i; 491 int ret; 492 493 GEM_BUG_ON(!len); 494 GEM_BUG_ON(len > guc->send_regs.count); 495 496 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST); 497 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST); 498 499 mutex_lock(&guc->send_mutex); 500 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains); 501 502 retry: 503 for (i = 0; i < len; i++) 504 intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]); 505 506 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1)); 507 508 intel_guc_notify(guc); 509 510 /* 511 * No GuC command should ever take longer than 10ms. 512 * Fast commands should still complete in 10us. 513 */ 514 ret = __intel_wait_for_register_fw(uncore, 515 guc_send_reg(guc, 0), 516 GUC_HXG_MSG_0_ORIGIN, 517 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, 518 GUC_HXG_ORIGIN_GUC), 519 10, 10, &header); 520 if (unlikely(ret)) { 521 timeout: 522 drm_err(&i915->drm, "mmio request %#x: no reply %x\n", 523 request[0], header); 524 goto out; 525 } 526 527 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) { 528 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \ 529 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \ 530 FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; }) 531 532 ret = wait_for(done, 1000); 533 if (unlikely(ret)) 534 goto timeout; 535 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != 536 GUC_HXG_ORIGIN_GUC)) 537 goto proto; 538 #undef done 539 } 540 541 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { 542 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header); 543 544 drm_dbg(&i915->drm, "mmio request %#x: retrying, reason %u\n", 545 request[0], reason); 546 goto retry; 547 } 548 549 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) { 550 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header); 551 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header); 552 553 drm_err(&i915->drm, "mmio request %#x: failure %x/%u\n", 554 request[0], error, hint); 555 ret = -ENXIO; 556 goto out; 557 } 558 559 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) { 560 proto: 561 drm_err(&i915->drm, "mmio request %#x: unexpected reply %#x\n", 562 request[0], header); 563 ret = -EPROTO; 564 goto out; 565 } 566 567 if (response_buf) { 568 int count = min(response_buf_size, guc->send_regs.count); 569 570 GEM_BUG_ON(!count); 571 572 response_buf[0] = header; 573 574 for (i = 1; i < count; i++) 575 response_buf[i] = intel_uncore_read(uncore, 576 guc_send_reg(guc, i)); 577 578 /* Use number of copied dwords as our return value */ 579 ret = count; 580 } else { 581 /* Use data from the GuC response as our return value */ 582 ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header); 583 } 584 585 out: 586 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains); 587 mutex_unlock(&guc->send_mutex); 588 589 return ret; 590 } 591 592 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, 593 const u32 *payload, u32 len) 594 { 595 u32 msg; 596 597 if (unlikely(!len)) 598 return -EPROTO; 599 600 /* Make sure to handle only enabled messages */ 601 msg = payload[0] & guc->msg_enabled_mask; 602 603 if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED) 604 drm_err(&guc_to_gt(guc)->i915->drm, "Received early GuC crash dump notification!\n"); 605 if (msg & INTEL_GUC_RECV_MSG_EXCEPTION) 606 drm_err(&guc_to_gt(guc)->i915->drm, "Received early GuC exception notification!\n"); 607 608 return 0; 609 } 610 611 /** 612 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode 613 * @guc: intel_guc structure 614 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma 615 * 616 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send 617 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by 618 * intel_huc_auth(). 619 * 620 * Return: non-zero code on error 621 */ 622 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset) 623 { 624 u32 action[] = { 625 INTEL_GUC_ACTION_AUTHENTICATE_HUC, 626 rsa_offset 627 }; 628 629 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 630 } 631 632 /** 633 * intel_guc_suspend() - notify GuC entering suspend state 634 * @guc: the guc 635 */ 636 int intel_guc_suspend(struct intel_guc *guc) 637 { 638 int ret; 639 u32 action[] = { 640 INTEL_GUC_ACTION_CLIENT_SOFT_RESET, 641 }; 642 643 if (!intel_guc_is_ready(guc)) 644 return 0; 645 646 if (intel_guc_submission_is_used(guc)) { 647 /* 648 * This H2G MMIO command tears down the GuC in two steps. First it will 649 * generate a G2H CTB for every active context indicating a reset. In 650 * practice the i915 shouldn't ever get a G2H as suspend should only be 651 * called when the GPU is idle. Next, it tears down the CTBs and this 652 * H2G MMIO command completes. 653 * 654 * Don't abort on a failure code from the GuC. Keep going and do the 655 * clean up in santize() and re-initialisation on resume and hopefully 656 * the error here won't be problematic. 657 */ 658 ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0); 659 if (ret) 660 DRM_ERROR("GuC suspend: RESET_CLIENT action failed with error %d!\n", ret); 661 } 662 663 /* Signal that the GuC isn't running. */ 664 intel_guc_sanitize(guc); 665 666 return 0; 667 } 668 669 /** 670 * intel_guc_resume() - notify GuC resuming from suspend state 671 * @guc: the guc 672 */ 673 int intel_guc_resume(struct intel_guc *guc) 674 { 675 /* 676 * NB: This function can still be called even if GuC submission is 677 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus, 678 * if any code is later added here, it must be support doing nothing 679 * if submission is disabled (as per intel_guc_suspend). 680 */ 681 return 0; 682 } 683 684 /** 685 * DOC: GuC Memory Management 686 * 687 * GuC can't allocate any memory for its own usage, so all the allocations must 688 * be handled by the host driver. GuC accesses the memory via the GGTT, with the 689 * exception of the top and bottom parts of the 4GB address space, which are 690 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM) 691 * or other parts of the HW. The driver must take care not to place objects that 692 * the GuC is going to access in these reserved ranges. The layout of the GuC 693 * address space is shown below: 694 * 695 * :: 696 * 697 * +===========> +====================+ <== FFFF_FFFF 698 * ^ | Reserved | 699 * | +====================+ <== GUC_GGTT_TOP 700 * | | | 701 * | | DRAM | 702 * GuC | | 703 * Address +===> +====================+ <== GuC ggtt_pin_bias 704 * Space ^ | | 705 * | | | | 706 * | GuC | GuC | 707 * | WOPCM | WOPCM | 708 * | Size | | 709 * | | | | 710 * v v | | 711 * +=======+===> +====================+ <== 0000_0000 712 * 713 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM 714 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped 715 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size. 716 */ 717 718 /** 719 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage 720 * @guc: the guc 721 * @size: size of area to allocate (both virtual space and memory) 722 * 723 * This is a wrapper to create an object for use with the GuC. In order to 724 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate 725 * both some backing storage and a range inside the Global GTT. We must pin 726 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that 727 * range is reserved inside GuC. 728 * 729 * Return: A i915_vma if successful, otherwise an ERR_PTR. 730 */ 731 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) 732 { 733 struct intel_gt *gt = guc_to_gt(guc); 734 struct drm_i915_gem_object *obj; 735 struct i915_vma *vma; 736 u64 flags; 737 int ret; 738 739 if (HAS_LMEM(gt->i915)) 740 obj = i915_gem_object_create_lmem(gt->i915, size, 741 I915_BO_ALLOC_CPU_CLEAR | 742 I915_BO_ALLOC_CONTIGUOUS | 743 I915_BO_ALLOC_PM_EARLY); 744 else 745 obj = i915_gem_object_create_shmem(gt->i915, size); 746 747 if (IS_ERR(obj)) 748 return ERR_CAST(obj); 749 750 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 751 if (IS_ERR(vma)) 752 goto err; 753 754 flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); 755 ret = i915_ggtt_pin(vma, NULL, 0, flags); 756 if (ret) { 757 vma = ERR_PTR(ret); 758 goto err; 759 } 760 761 return i915_vma_make_unshrinkable(vma); 762 763 err: 764 i915_gem_object_put(obj); 765 return vma; 766 } 767 768 /** 769 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage 770 * @guc: the guc 771 * @size: size of area to allocate (both virtual space and memory) 772 * @out_vma: return variable for the allocated vma pointer 773 * @out_vaddr: return variable for the obj mapping 774 * 775 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated 776 * object with I915_MAP_WB. 777 * 778 * Return: 0 if successful, a negative errno code otherwise. 779 */ 780 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size, 781 struct i915_vma **out_vma, void **out_vaddr) 782 { 783 struct i915_vma *vma; 784 void *vaddr; 785 786 vma = intel_guc_allocate_vma(guc, size); 787 if (IS_ERR(vma)) 788 return PTR_ERR(vma); 789 790 vaddr = i915_gem_object_pin_map_unlocked(vma->obj, 791 i915_coherent_map_type(guc_to_gt(guc)->i915, 792 vma->obj, true)); 793 if (IS_ERR(vaddr)) { 794 i915_vma_unpin_and_release(&vma, 0); 795 return PTR_ERR(vaddr); 796 } 797 798 *out_vma = vma; 799 *out_vaddr = vaddr; 800 801 return 0; 802 } 803 804 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 805 { 806 u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = { 807 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | 808 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | 809 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG), 810 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) | 811 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len), 812 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)), 813 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)), 814 }; 815 int ret; 816 817 GEM_BUG_ON(len > 2); 818 GEM_BUG_ON(len == 1 && upper_32_bits(value)); 819 820 /* Self config must go over MMIO */ 821 ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0); 822 823 if (unlikely(ret < 0)) 824 return ret; 825 if (unlikely(ret > 1)) 826 return -EPROTO; 827 if (unlikely(!ret)) 828 return -ENOKEY; 829 830 return 0; 831 } 832 833 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 834 { 835 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 836 int err = __guc_action_self_cfg(guc, key, len, value); 837 838 if (unlikely(err)) 839 i915_probe_error(i915, "Unsuccessful self-config (%pe) key %#hx value %#llx\n", 840 ERR_PTR(err), key, value); 841 return err; 842 } 843 844 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value) 845 { 846 return __guc_self_cfg(guc, key, 1, value); 847 } 848 849 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value) 850 { 851 return __guc_self_cfg(guc, key, 2, value); 852 } 853 854 /** 855 * intel_guc_load_status - dump information about GuC load status 856 * @guc: the GuC 857 * @p: the &drm_printer 858 * 859 * Pretty printer for GuC load status. 860 */ 861 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p) 862 { 863 struct intel_gt *gt = guc_to_gt(guc); 864 struct intel_uncore *uncore = gt->uncore; 865 intel_wakeref_t wakeref; 866 867 if (!intel_guc_is_supported(guc)) { 868 drm_printf(p, "GuC not supported\n"); 869 return; 870 } 871 872 if (!intel_guc_is_wanted(guc)) { 873 drm_printf(p, "GuC disabled\n"); 874 return; 875 } 876 877 intel_uc_fw_dump(&guc->fw, p); 878 879 with_intel_runtime_pm(uncore->rpm, wakeref) { 880 u32 status = intel_uncore_read(uncore, GUC_STATUS); 881 u32 i; 882 883 drm_printf(p, "GuC status 0x%08x:\n", status); 884 drm_printf(p, "\tBootrom status = 0x%x\n", 885 (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT); 886 drm_printf(p, "\tuKernel status = 0x%x\n", 887 (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT); 888 drm_printf(p, "\tMIA Core status = 0x%x\n", 889 (status & GS_MIA_MASK) >> GS_MIA_SHIFT); 890 drm_puts(p, "Scratch registers:\n"); 891 for (i = 0; i < 16; i++) { 892 drm_printf(p, "\t%2d: \t0x%x\n", 893 i, intel_uncore_read(uncore, SOFT_SCRATCH(i))); 894 } 895 } 896 } 897 898 void intel_guc_write_barrier(struct intel_guc *guc) 899 { 900 struct intel_gt *gt = guc_to_gt(guc); 901 902 if (i915_gem_object_is_lmem(guc->ct.vma->obj)) { 903 /* 904 * Ensure intel_uncore_write_fw can be used rather than 905 * intel_uncore_write. 906 */ 907 GEM_BUG_ON(guc->send_regs.fw_domains); 908 909 /* 910 * This register is used by the i915 and GuC for MMIO based 911 * communication. Once we are in this code CTBs are the only 912 * method the i915 uses to communicate with the GuC so it is 913 * safe to write to this register (a value of 0 is NOP for MMIO 914 * communication). If we ever start mixing CTBs and MMIOs a new 915 * register will have to be chosen. This function is also used 916 * to enforce ordering of a work queue item write and an update 917 * to the process descriptor. When a work queue is being used, 918 * CTBs are also the only mechanism of communication. 919 */ 920 intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0); 921 } else { 922 /* wmb() sufficient for a barrier if in smem */ 923 wmb(); 924 } 925 } 926