1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2019 Intel Corporation 4 */ 5 6 #include "gt/intel_gt.h" 7 #include "gt/intel_gt_irq.h" 8 #include "gt/intel_gt_pm_irq.h" 9 #include "intel_guc.h" 10 #include "intel_guc_ads.h" 11 #include "intel_guc_submission.h" 12 #include "i915_drv.h" 13 14 /** 15 * DOC: GuC 16 * 17 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is 18 * designed to offload some of the functionality usually performed by the host 19 * driver; currently the main operations it can take care of are: 20 * 21 * - Authentication of the HuC, which is required to fully enable HuC usage. 22 * - Low latency graphics context scheduling (a.k.a. GuC submission). 23 * - GT Power management. 24 * 25 * The enable_guc module parameter can be used to select which of those 26 * operations to enable within GuC. Note that not all the operations are 27 * supported on all gen9+ platforms. 28 * 29 * Enabling the GuC is not mandatory and therefore the firmware is only loaded 30 * if at least one of the operations is selected. However, not loading the GuC 31 * might result in the loss of some features that do require the GuC (currently 32 * just the HuC, but more are expected to land in the future). 33 */ 34 35 void intel_guc_notify(struct intel_guc *guc) 36 { 37 struct intel_gt *gt = guc_to_gt(guc); 38 39 /* 40 * On Gen11+, the value written to the register is passes as a payload 41 * to the FW. However, the FW currently treats all values the same way 42 * (H2G interrupt), so we can just write the value that the HW expects 43 * on older gens. 44 */ 45 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER); 46 } 47 48 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i) 49 { 50 GEM_BUG_ON(!guc->send_regs.base); 51 GEM_BUG_ON(!guc->send_regs.count); 52 GEM_BUG_ON(i >= guc->send_regs.count); 53 54 return _MMIO(guc->send_regs.base + 4 * i); 55 } 56 57 void intel_guc_init_send_regs(struct intel_guc *guc) 58 { 59 struct intel_gt *gt = guc_to_gt(guc); 60 enum forcewake_domains fw_domains = 0; 61 unsigned int i; 62 63 if (INTEL_GEN(gt->i915) >= 11) { 64 guc->send_regs.base = 65 i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0)); 66 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT; 67 } else { 68 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0)); 69 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN; 70 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT); 71 } 72 73 for (i = 0; i < guc->send_regs.count; i++) { 74 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore, 75 guc_send_reg(guc, i), 76 FW_REG_READ | FW_REG_WRITE); 77 } 78 guc->send_regs.fw_domains = fw_domains; 79 } 80 81 static void gen9_reset_guc_interrupts(struct intel_guc *guc) 82 { 83 struct intel_gt *gt = guc_to_gt(guc); 84 85 assert_rpm_wakelock_held(>->i915->runtime_pm); 86 87 spin_lock_irq(>->irq_lock); 88 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events); 89 spin_unlock_irq(>->irq_lock); 90 } 91 92 static void gen9_enable_guc_interrupts(struct intel_guc *guc) 93 { 94 struct intel_gt *gt = guc_to_gt(guc); 95 96 assert_rpm_wakelock_held(>->i915->runtime_pm); 97 98 spin_lock_irq(>->irq_lock); 99 if (!guc->interrupts.enabled) { 100 WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) & 101 gt->pm_guc_events); 102 guc->interrupts.enabled = true; 103 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events); 104 } 105 spin_unlock_irq(>->irq_lock); 106 } 107 108 static void gen9_disable_guc_interrupts(struct intel_guc *guc) 109 { 110 struct intel_gt *gt = guc_to_gt(guc); 111 112 assert_rpm_wakelock_held(>->i915->runtime_pm); 113 114 spin_lock_irq(>->irq_lock); 115 guc->interrupts.enabled = false; 116 117 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events); 118 119 spin_unlock_irq(>->irq_lock); 120 intel_synchronize_irq(gt->i915); 121 122 gen9_reset_guc_interrupts(guc); 123 } 124 125 static void gen11_reset_guc_interrupts(struct intel_guc *guc) 126 { 127 struct intel_gt *gt = guc_to_gt(guc); 128 129 spin_lock_irq(>->irq_lock); 130 gen11_gt_reset_one_iir(gt, 0, GEN11_GUC); 131 spin_unlock_irq(>->irq_lock); 132 } 133 134 static void gen11_enable_guc_interrupts(struct intel_guc *guc) 135 { 136 struct intel_gt *gt = guc_to_gt(guc); 137 138 spin_lock_irq(>->irq_lock); 139 if (!guc->interrupts.enabled) { 140 u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST); 141 142 WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC)); 143 intel_uncore_write(gt->uncore, 144 GEN11_GUC_SG_INTR_ENABLE, events); 145 intel_uncore_write(gt->uncore, 146 GEN11_GUC_SG_INTR_MASK, ~events); 147 guc->interrupts.enabled = true; 148 } 149 spin_unlock_irq(>->irq_lock); 150 } 151 152 static void gen11_disable_guc_interrupts(struct intel_guc *guc) 153 { 154 struct intel_gt *gt = guc_to_gt(guc); 155 156 spin_lock_irq(>->irq_lock); 157 guc->interrupts.enabled = false; 158 159 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0); 160 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0); 161 162 spin_unlock_irq(>->irq_lock); 163 intel_synchronize_irq(gt->i915); 164 165 gen11_reset_guc_interrupts(guc); 166 } 167 168 void intel_guc_init_early(struct intel_guc *guc) 169 { 170 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 171 172 intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC); 173 intel_guc_ct_init_early(&guc->ct); 174 intel_guc_log_init_early(&guc->log); 175 intel_guc_submission_init_early(guc); 176 177 mutex_init(&guc->send_mutex); 178 spin_lock_init(&guc->irq_lock); 179 if (INTEL_GEN(i915) >= 11) { 180 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT; 181 guc->interrupts.reset = gen11_reset_guc_interrupts; 182 guc->interrupts.enable = gen11_enable_guc_interrupts; 183 guc->interrupts.disable = gen11_disable_guc_interrupts; 184 } else { 185 guc->notify_reg = GUC_SEND_INTERRUPT; 186 guc->interrupts.reset = gen9_reset_guc_interrupts; 187 guc->interrupts.enable = gen9_enable_guc_interrupts; 188 guc->interrupts.disable = gen9_disable_guc_interrupts; 189 } 190 } 191 192 static u32 guc_ctl_debug_flags(struct intel_guc *guc) 193 { 194 u32 level = intel_guc_log_get_level(&guc->log); 195 u32 flags = 0; 196 197 if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) 198 flags |= GUC_LOG_DISABLED; 199 else 200 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << 201 GUC_LOG_VERBOSITY_SHIFT; 202 203 return flags; 204 } 205 206 static u32 guc_ctl_feature_flags(struct intel_guc *guc) 207 { 208 u32 flags = 0; 209 210 if (!intel_guc_submission_is_used(guc)) 211 flags |= GUC_CTL_DISABLE_SCHEDULER; 212 213 return flags; 214 } 215 216 static u32 guc_ctl_log_params_flags(struct intel_guc *guc) 217 { 218 u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT; 219 u32 flags; 220 221 #if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0) 222 #define UNIT SZ_1M 223 #define FLAG GUC_LOG_ALLOC_IN_MEGABYTE 224 #else 225 #define UNIT SZ_4K 226 #define FLAG 0 227 #endif 228 229 BUILD_BUG_ON(!CRASH_BUFFER_SIZE); 230 BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT)); 231 BUILD_BUG_ON(!DPC_BUFFER_SIZE); 232 BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT)); 233 BUILD_BUG_ON(!ISR_BUFFER_SIZE); 234 BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT)); 235 236 BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) > 237 (GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT)); 238 BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) > 239 (GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT)); 240 BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) > 241 (GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT)); 242 243 flags = GUC_LOG_VALID | 244 GUC_LOG_NOTIFY_ON_HALF_FULL | 245 FLAG | 246 ((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) | 247 ((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) | 248 ((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) | 249 (offset << GUC_LOG_BUF_ADDR_SHIFT); 250 251 #undef UNIT 252 #undef FLAG 253 254 return flags; 255 } 256 257 static u32 guc_ctl_ads_flags(struct intel_guc *guc) 258 { 259 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT; 260 u32 flags = ads << GUC_ADS_ADDR_SHIFT; 261 262 return flags; 263 } 264 265 /* 266 * Initialise the GuC parameter block before starting the firmware 267 * transfer. These parameters are read by the firmware on startup 268 * and cannot be changed thereafter. 269 */ 270 static void guc_init_params(struct intel_guc *guc) 271 { 272 u32 *params = guc->params; 273 int i; 274 275 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); 276 277 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); 278 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); 279 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); 280 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); 281 282 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 283 DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]); 284 } 285 286 /* 287 * Initialise the GuC parameter block before starting the firmware 288 * transfer. These parameters are read by the firmware on startup 289 * and cannot be changed thereafter. 290 */ 291 void intel_guc_write_params(struct intel_guc *guc) 292 { 293 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 294 int i; 295 296 /* 297 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and 298 * they are power context saved so it's ok to release forcewake 299 * when we are done here and take it again at xfer time. 300 */ 301 intel_uncore_forcewake_get(uncore, FORCEWAKE_GT); 302 303 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0); 304 305 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 306 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]); 307 308 intel_uncore_forcewake_put(uncore, FORCEWAKE_GT); 309 } 310 311 int intel_guc_init(struct intel_guc *guc) 312 { 313 struct intel_gt *gt = guc_to_gt(guc); 314 int ret; 315 316 ret = intel_uc_fw_init(&guc->fw); 317 if (ret) 318 goto out; 319 320 ret = intel_guc_log_create(&guc->log); 321 if (ret) 322 goto err_fw; 323 324 ret = intel_guc_ads_create(guc); 325 if (ret) 326 goto err_log; 327 GEM_BUG_ON(!guc->ads_vma); 328 329 ret = intel_guc_ct_init(&guc->ct); 330 if (ret) 331 goto err_ads; 332 333 if (intel_guc_submission_is_used(guc)) { 334 /* 335 * This is stuff we need to have available at fw load time 336 * if we are planning to enable submission later 337 */ 338 ret = intel_guc_submission_init(guc); 339 if (ret) 340 goto err_ct; 341 } 342 343 /* now that everything is perma-pinned, initialize the parameters */ 344 guc_init_params(guc); 345 346 /* We need to notify the guc whenever we change the GGTT */ 347 i915_ggtt_enable_guc(gt->ggtt); 348 349 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE); 350 351 return 0; 352 353 err_ct: 354 intel_guc_ct_fini(&guc->ct); 355 err_ads: 356 intel_guc_ads_destroy(guc); 357 err_log: 358 intel_guc_log_destroy(&guc->log); 359 err_fw: 360 intel_uc_fw_fini(&guc->fw); 361 out: 362 i915_probe_error(gt->i915, "failed with %d\n", ret); 363 return ret; 364 } 365 366 void intel_guc_fini(struct intel_guc *guc) 367 { 368 struct intel_gt *gt = guc_to_gt(guc); 369 370 if (!intel_uc_fw_is_loadable(&guc->fw)) 371 return; 372 373 i915_ggtt_disable_guc(gt->ggtt); 374 375 if (intel_guc_submission_is_used(guc)) 376 intel_guc_submission_fini(guc); 377 378 intel_guc_ct_fini(&guc->ct); 379 380 intel_guc_ads_destroy(guc); 381 intel_guc_log_destroy(&guc->log); 382 intel_uc_fw_fini(&guc->fw); 383 } 384 385 /* 386 * This function implements the MMIO based host to GuC interface. 387 */ 388 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len, 389 u32 *response_buf, u32 response_buf_size) 390 { 391 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 392 u32 status; 393 int i; 394 int ret; 395 396 GEM_BUG_ON(!len); 397 GEM_BUG_ON(len > guc->send_regs.count); 398 399 /* We expect only action code */ 400 GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK); 401 402 /* If CT is available, we expect to use MMIO only during init/fini */ 403 GEM_BUG_ON(*action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER && 404 *action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER); 405 406 mutex_lock(&guc->send_mutex); 407 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains); 408 409 for (i = 0; i < len; i++) 410 intel_uncore_write(uncore, guc_send_reg(guc, i), action[i]); 411 412 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1)); 413 414 intel_guc_notify(guc); 415 416 /* 417 * No GuC command should ever take longer than 10ms. 418 * Fast commands should still complete in 10us. 419 */ 420 ret = __intel_wait_for_register_fw(uncore, 421 guc_send_reg(guc, 0), 422 INTEL_GUC_MSG_TYPE_MASK, 423 INTEL_GUC_MSG_TYPE_RESPONSE << 424 INTEL_GUC_MSG_TYPE_SHIFT, 425 10, 10, &status); 426 /* If GuC explicitly returned an error, convert it to -EIO */ 427 if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status)) 428 ret = -EIO; 429 430 if (ret) { 431 DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n", 432 action[0], ret, status); 433 goto out; 434 } 435 436 if (response_buf) { 437 int count = min(response_buf_size, guc->send_regs.count - 1); 438 439 for (i = 0; i < count; i++) 440 response_buf[i] = intel_uncore_read(uncore, 441 guc_send_reg(guc, i + 1)); 442 } 443 444 /* Use data from the GuC response as our return value */ 445 ret = INTEL_GUC_MSG_TO_DATA(status); 446 447 out: 448 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains); 449 mutex_unlock(&guc->send_mutex); 450 451 return ret; 452 } 453 454 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, 455 const u32 *payload, u32 len) 456 { 457 u32 msg; 458 459 if (unlikely(!len)) 460 return -EPROTO; 461 462 /* Make sure to handle only enabled messages */ 463 msg = payload[0] & guc->msg_enabled_mask; 464 465 if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER | 466 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)) 467 intel_guc_log_handle_flush_event(&guc->log); 468 469 return 0; 470 } 471 472 int intel_guc_sample_forcewake(struct intel_guc *guc) 473 { 474 struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915; 475 u32 action[2]; 476 477 action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE; 478 /* WaRsDisableCoarsePowerGating:skl,cnl */ 479 if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv)) 480 action[1] = 0; 481 else 482 /* bit 0 and 1 are for Render and Media domain separately */ 483 action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA; 484 485 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 486 } 487 488 /** 489 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode 490 * @guc: intel_guc structure 491 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma 492 * 493 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send 494 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by 495 * intel_huc_auth(). 496 * 497 * Return: non-zero code on error 498 */ 499 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset) 500 { 501 u32 action[] = { 502 INTEL_GUC_ACTION_AUTHENTICATE_HUC, 503 rsa_offset 504 }; 505 506 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 507 } 508 509 /** 510 * intel_guc_suspend() - notify GuC entering suspend state 511 * @guc: the guc 512 */ 513 int intel_guc_suspend(struct intel_guc *guc) 514 { 515 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 516 int ret; 517 u32 status; 518 u32 action[] = { 519 INTEL_GUC_ACTION_ENTER_S_STATE, 520 GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */ 521 }; 522 523 /* 524 * If GuC communication is enabled but submission is not supported, 525 * we do not need to suspend the GuC. 526 */ 527 if (!intel_guc_submission_is_used(guc) || !intel_guc_is_ready(guc)) 528 return 0; 529 530 /* 531 * The ENTER_S_STATE action queues the save/restore operation in GuC FW 532 * and then returns, so waiting on the H2G is not enough to guarantee 533 * GuC is done. When all the processing is done, GuC writes 534 * INTEL_GUC_SLEEP_STATE_SUCCESS to scratch register 14, so we can poll 535 * on that. Note that GuC does not ensure that the value in the register 536 * is different from INTEL_GUC_SLEEP_STATE_SUCCESS while the action is 537 * in progress so we need to take care of that ourselves as well. 538 */ 539 540 intel_uncore_write(uncore, SOFT_SCRATCH(14), 541 INTEL_GUC_SLEEP_STATE_INVALID_MASK); 542 543 ret = intel_guc_send(guc, action, ARRAY_SIZE(action)); 544 if (ret) 545 return ret; 546 547 ret = __intel_wait_for_register(uncore, SOFT_SCRATCH(14), 548 INTEL_GUC_SLEEP_STATE_INVALID_MASK, 549 0, 0, 10, &status); 550 if (ret) 551 return ret; 552 553 if (status != INTEL_GUC_SLEEP_STATE_SUCCESS) { 554 DRM_ERROR("GuC failed to change sleep state. " 555 "action=0x%x, err=%u\n", 556 action[0], status); 557 return -EIO; 558 } 559 560 return 0; 561 } 562 563 /** 564 * intel_guc_reset_engine() - ask GuC to reset an engine 565 * @guc: intel_guc structure 566 * @engine: engine to be reset 567 */ 568 int intel_guc_reset_engine(struct intel_guc *guc, 569 struct intel_engine_cs *engine) 570 { 571 /* XXX: to be implemented with submission interface rework */ 572 573 return -ENODEV; 574 } 575 576 /** 577 * intel_guc_resume() - notify GuC resuming from suspend state 578 * @guc: the guc 579 */ 580 int intel_guc_resume(struct intel_guc *guc) 581 { 582 u32 action[] = { 583 INTEL_GUC_ACTION_EXIT_S_STATE, 584 GUC_POWER_D0, 585 }; 586 587 /* 588 * If GuC communication is enabled but submission is not supported, 589 * we do not need to resume the GuC but we do need to enable the 590 * GuC communication on resume (above). 591 */ 592 if (!intel_guc_submission_is_used(guc) || !intel_guc_is_ready(guc)) 593 return 0; 594 595 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 596 } 597 598 /** 599 * DOC: GuC Memory Management 600 * 601 * GuC can't allocate any memory for its own usage, so all the allocations must 602 * be handled by the host driver. GuC accesses the memory via the GGTT, with the 603 * exception of the top and bottom parts of the 4GB address space, which are 604 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM) 605 * or other parts of the HW. The driver must take care not to place objects that 606 * the GuC is going to access in these reserved ranges. The layout of the GuC 607 * address space is shown below: 608 * 609 * :: 610 * 611 * +===========> +====================+ <== FFFF_FFFF 612 * ^ | Reserved | 613 * | +====================+ <== GUC_GGTT_TOP 614 * | | | 615 * | | DRAM | 616 * GuC | | 617 * Address +===> +====================+ <== GuC ggtt_pin_bias 618 * Space ^ | | 619 * | | | | 620 * | GuC | GuC | 621 * | WOPCM | WOPCM | 622 * | Size | | 623 * | | | | 624 * v v | | 625 * +=======+===> +====================+ <== 0000_0000 626 * 627 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM 628 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped 629 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size. 630 */ 631 632 /** 633 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage 634 * @guc: the guc 635 * @size: size of area to allocate (both virtual space and memory) 636 * 637 * This is a wrapper to create an object for use with the GuC. In order to 638 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate 639 * both some backing storage and a range inside the Global GTT. We must pin 640 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that 641 * range is reserved inside GuC. 642 * 643 * Return: A i915_vma if successful, otherwise an ERR_PTR. 644 */ 645 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) 646 { 647 struct intel_gt *gt = guc_to_gt(guc); 648 struct drm_i915_gem_object *obj; 649 struct i915_vma *vma; 650 u64 flags; 651 int ret; 652 653 obj = i915_gem_object_create_shmem(gt->i915, size); 654 if (IS_ERR(obj)) 655 return ERR_CAST(obj); 656 657 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 658 if (IS_ERR(vma)) 659 goto err; 660 661 flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); 662 ret = i915_ggtt_pin(vma, NULL, 0, flags); 663 if (ret) { 664 vma = ERR_PTR(ret); 665 goto err; 666 } 667 668 return i915_vma_make_unshrinkable(vma); 669 670 err: 671 i915_gem_object_put(obj); 672 return vma; 673 } 674 675 /** 676 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage 677 * @guc: the guc 678 * @size: size of area to allocate (both virtual space and memory) 679 * @out_vma: return variable for the allocated vma pointer 680 * @out_vaddr: return variable for the obj mapping 681 * 682 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated 683 * object with I915_MAP_WB. 684 * 685 * Return: 0 if successful, a negative errno code otherwise. 686 */ 687 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size, 688 struct i915_vma **out_vma, void **out_vaddr) 689 { 690 struct i915_vma *vma; 691 void *vaddr; 692 693 vma = intel_guc_allocate_vma(guc, size); 694 if (IS_ERR(vma)) 695 return PTR_ERR(vma); 696 697 vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); 698 if (IS_ERR(vaddr)) { 699 i915_vma_unpin_and_release(&vma, 0); 700 return PTR_ERR(vaddr); 701 } 702 703 *out_vma = vma; 704 *out_vaddr = vaddr; 705 706 return 0; 707 } 708 709 /** 710 * intel_guc_load_status - dump information about GuC load status 711 * @guc: the GuC 712 * @p: the &drm_printer 713 * 714 * Pretty printer for GuC load status. 715 */ 716 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p) 717 { 718 struct intel_gt *gt = guc_to_gt(guc); 719 struct intel_uncore *uncore = gt->uncore; 720 intel_wakeref_t wakeref; 721 722 if (!intel_guc_is_supported(guc)) { 723 drm_printf(p, "GuC not supported\n"); 724 return; 725 } 726 727 if (!intel_guc_is_wanted(guc)) { 728 drm_printf(p, "GuC disabled\n"); 729 return; 730 } 731 732 intel_uc_fw_dump(&guc->fw, p); 733 734 with_intel_runtime_pm(uncore->rpm, wakeref) { 735 u32 status = intel_uncore_read(uncore, GUC_STATUS); 736 u32 i; 737 738 drm_printf(p, "\nGuC status 0x%08x:\n", status); 739 drm_printf(p, "\tBootrom status = 0x%x\n", 740 (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT); 741 drm_printf(p, "\tuKernel status = 0x%x\n", 742 (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT); 743 drm_printf(p, "\tMIA Core status = 0x%x\n", 744 (status & GS_MIA_MASK) >> GS_MIA_SHIFT); 745 drm_puts(p, "\nScratch registers:\n"); 746 for (i = 0; i < 16; i++) { 747 drm_printf(p, "\t%2d: \t0x%x\n", 748 i, intel_uncore_read(uncore, SOFT_SCRATCH(i))); 749 } 750 } 751 } 752