1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2019 Intel Corporation 4 */ 5 6 #include "gem/i915_gem_lmem.h" 7 #include "gt/intel_gt.h" 8 #include "gt/intel_gt_irq.h" 9 #include "gt/intel_gt_pm_irq.h" 10 #include "gt/intel_gt_regs.h" 11 #include "intel_guc.h" 12 #include "intel_guc_ads.h" 13 #include "intel_guc_capture.h" 14 #include "intel_guc_print.h" 15 #include "intel_guc_slpc.h" 16 #include "intel_guc_submission.h" 17 #include "i915_drv.h" 18 #include "i915_irq.h" 19 #include "i915_reg.h" 20 21 /** 22 * DOC: GuC 23 * 24 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is 25 * designed to offload some of the functionality usually performed by the host 26 * driver; currently the main operations it can take care of are: 27 * 28 * - Authentication of the HuC, which is required to fully enable HuC usage. 29 * - Low latency graphics context scheduling (a.k.a. GuC submission). 30 * - GT Power management. 31 * 32 * The enable_guc module parameter can be used to select which of those 33 * operations to enable within GuC. Note that not all the operations are 34 * supported on all gen9+ platforms. 35 * 36 * Enabling the GuC is not mandatory and therefore the firmware is only loaded 37 * if at least one of the operations is selected. However, not loading the GuC 38 * might result in the loss of some features that do require the GuC (currently 39 * just the HuC, but more are expected to land in the future). 40 */ 41 42 void intel_guc_notify(struct intel_guc *guc) 43 { 44 struct intel_gt *gt = guc_to_gt(guc); 45 46 /* 47 * On Gen11+, the value written to the register is passes as a payload 48 * to the FW. However, the FW currently treats all values the same way 49 * (H2G interrupt), so we can just write the value that the HW expects 50 * on older gens. 51 */ 52 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER); 53 } 54 55 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i) 56 { 57 GEM_BUG_ON(!guc->send_regs.base); 58 GEM_BUG_ON(!guc->send_regs.count); 59 GEM_BUG_ON(i >= guc->send_regs.count); 60 61 return _MMIO(guc->send_regs.base + 4 * i); 62 } 63 64 void intel_guc_init_send_regs(struct intel_guc *guc) 65 { 66 struct intel_gt *gt = guc_to_gt(guc); 67 enum forcewake_domains fw_domains = 0; 68 unsigned int i; 69 70 GEM_BUG_ON(!guc->send_regs.base); 71 GEM_BUG_ON(!guc->send_regs.count); 72 73 for (i = 0; i < guc->send_regs.count; i++) { 74 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore, 75 guc_send_reg(guc, i), 76 FW_REG_READ | FW_REG_WRITE); 77 } 78 guc->send_regs.fw_domains = fw_domains; 79 } 80 81 static void gen9_reset_guc_interrupts(struct intel_guc *guc) 82 { 83 struct intel_gt *gt = guc_to_gt(guc); 84 85 assert_rpm_wakelock_held(>->i915->runtime_pm); 86 87 spin_lock_irq(gt->irq_lock); 88 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events); 89 spin_unlock_irq(gt->irq_lock); 90 } 91 92 static void gen9_enable_guc_interrupts(struct intel_guc *guc) 93 { 94 struct intel_gt *gt = guc_to_gt(guc); 95 96 assert_rpm_wakelock_held(>->i915->runtime_pm); 97 98 spin_lock_irq(gt->irq_lock); 99 guc_WARN_ON_ONCE(guc, intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) & 100 gt->pm_guc_events); 101 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events); 102 spin_unlock_irq(gt->irq_lock); 103 104 guc->interrupts.enabled = true; 105 } 106 107 static void gen9_disable_guc_interrupts(struct intel_guc *guc) 108 { 109 struct intel_gt *gt = guc_to_gt(guc); 110 111 assert_rpm_wakelock_held(>->i915->runtime_pm); 112 guc->interrupts.enabled = false; 113 114 spin_lock_irq(gt->irq_lock); 115 116 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events); 117 118 spin_unlock_irq(gt->irq_lock); 119 intel_synchronize_irq(gt->i915); 120 121 gen9_reset_guc_interrupts(guc); 122 } 123 124 static bool __gen11_reset_guc_interrupts(struct intel_gt *gt) 125 { 126 u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC; 127 128 lockdep_assert_held(gt->irq_lock); 129 return gen11_gt_reset_one_iir(gt, 0, irq); 130 } 131 132 static void gen11_reset_guc_interrupts(struct intel_guc *guc) 133 { 134 struct intel_gt *gt = guc_to_gt(guc); 135 136 spin_lock_irq(gt->irq_lock); 137 __gen11_reset_guc_interrupts(gt); 138 spin_unlock_irq(gt->irq_lock); 139 } 140 141 static void gen11_enable_guc_interrupts(struct intel_guc *guc) 142 { 143 struct intel_gt *gt = guc_to_gt(guc); 144 145 spin_lock_irq(gt->irq_lock); 146 __gen11_reset_guc_interrupts(gt); 147 spin_unlock_irq(gt->irq_lock); 148 149 guc->interrupts.enabled = true; 150 } 151 152 static void gen11_disable_guc_interrupts(struct intel_guc *guc) 153 { 154 struct intel_gt *gt = guc_to_gt(guc); 155 156 guc->interrupts.enabled = false; 157 intel_synchronize_irq(gt->i915); 158 159 gen11_reset_guc_interrupts(guc); 160 } 161 162 void intel_guc_init_early(struct intel_guc *guc) 163 { 164 struct intel_gt *gt = guc_to_gt(guc); 165 struct drm_i915_private *i915 = gt->i915; 166 167 intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC, true); 168 intel_guc_ct_init_early(&guc->ct); 169 intel_guc_log_init_early(&guc->log); 170 intel_guc_submission_init_early(guc); 171 intel_guc_slpc_init_early(&guc->slpc); 172 intel_guc_rc_init_early(guc); 173 174 mutex_init(&guc->send_mutex); 175 spin_lock_init(&guc->irq_lock); 176 if (GRAPHICS_VER(i915) >= 11) { 177 guc->interrupts.reset = gen11_reset_guc_interrupts; 178 guc->interrupts.enable = gen11_enable_guc_interrupts; 179 guc->interrupts.disable = gen11_disable_guc_interrupts; 180 if (gt->type == GT_MEDIA) { 181 guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT; 182 guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0)); 183 } else { 184 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT; 185 guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0)); 186 } 187 188 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT; 189 190 } else { 191 guc->notify_reg = GUC_SEND_INTERRUPT; 192 guc->interrupts.reset = gen9_reset_guc_interrupts; 193 guc->interrupts.enable = gen9_enable_guc_interrupts; 194 guc->interrupts.disable = gen9_disable_guc_interrupts; 195 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0)); 196 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN; 197 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT); 198 } 199 200 intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION | 201 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED); 202 } 203 204 void intel_guc_init_late(struct intel_guc *guc) 205 { 206 intel_guc_ads_init_late(guc); 207 } 208 209 static u32 guc_ctl_debug_flags(struct intel_guc *guc) 210 { 211 u32 level = intel_guc_log_get_level(&guc->log); 212 u32 flags = 0; 213 214 if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) 215 flags |= GUC_LOG_DISABLED; 216 else 217 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << 218 GUC_LOG_VERBOSITY_SHIFT; 219 220 return flags; 221 } 222 223 static u32 guc_ctl_feature_flags(struct intel_guc *guc) 224 { 225 u32 flags = 0; 226 227 if (!intel_guc_submission_is_used(guc)) 228 flags |= GUC_CTL_DISABLE_SCHEDULER; 229 230 if (intel_guc_slpc_is_used(guc)) 231 flags |= GUC_CTL_ENABLE_SLPC; 232 233 return flags; 234 } 235 236 static u32 guc_ctl_log_params_flags(struct intel_guc *guc) 237 { 238 struct intel_guc_log *log = &guc->log; 239 u32 offset, flags; 240 241 GEM_BUG_ON(!log->sizes_initialised); 242 243 offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT; 244 245 flags = GUC_LOG_VALID | 246 GUC_LOG_NOTIFY_ON_HALF_FULL | 247 log->sizes[GUC_LOG_SECTIONS_DEBUG].flag | 248 log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag | 249 (log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) | 250 (log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) | 251 (log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) | 252 (offset << GUC_LOG_BUF_ADDR_SHIFT); 253 254 return flags; 255 } 256 257 static u32 guc_ctl_ads_flags(struct intel_guc *guc) 258 { 259 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT; 260 u32 flags = ads << GUC_ADS_ADDR_SHIFT; 261 262 return flags; 263 } 264 265 static u32 guc_ctl_wa_flags(struct intel_guc *guc) 266 { 267 struct intel_gt *gt = guc_to_gt(guc); 268 u32 flags = 0; 269 270 /* Wa_22012773006:gen11,gen12 < XeHP */ 271 if (GRAPHICS_VER(gt->i915) >= 11 && 272 GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 50)) 273 flags |= GUC_WA_POLLCS; 274 275 /* Wa_14014475959 */ 276 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 277 IS_DG2(gt->i915)) 278 flags |= GUC_WA_HOLD_CCS_SWITCHOUT; 279 280 /* 281 * Wa_14012197797 282 * Wa_22011391025 283 * 284 * The same WA bit is used for both and 22011391025 is applicable to 285 * all DG2. 286 */ 287 if (IS_DG2(gt->i915)) 288 flags |= GUC_WA_DUAL_QUEUE; 289 290 /* Wa_22011802037: graphics version 11/12 */ 291 if (intel_engine_reset_needs_wa_22011802037(gt)) 292 flags |= GUC_WA_PRE_PARSER; 293 294 /* 295 * Wa_22012727170 296 * Wa_22012727685 297 */ 298 if (IS_DG2_G11(gt->i915)) 299 flags |= GUC_WA_CONTEXT_ISOLATION; 300 301 /* Wa_16015675438 */ 302 if (!RCS_MASK(gt)) 303 flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST; 304 305 return flags; 306 } 307 308 static u32 guc_ctl_devid(struct intel_guc *guc) 309 { 310 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 311 312 return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915); 313 } 314 315 /* 316 * Initialise the GuC parameter block before starting the firmware 317 * transfer. These parameters are read by the firmware on startup 318 * and cannot be changed thereafter. 319 */ 320 static void guc_init_params(struct intel_guc *guc) 321 { 322 u32 *params = guc->params; 323 int i; 324 325 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); 326 327 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); 328 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); 329 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); 330 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); 331 params[GUC_CTL_WA] = guc_ctl_wa_flags(guc); 332 params[GUC_CTL_DEVID] = guc_ctl_devid(guc); 333 334 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 335 guc_dbg(guc, "param[%2d] = %#x\n", i, params[i]); 336 } 337 338 /* 339 * Initialise the GuC parameter block before starting the firmware 340 * transfer. These parameters are read by the firmware on startup 341 * and cannot be changed thereafter. 342 */ 343 void intel_guc_write_params(struct intel_guc *guc) 344 { 345 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 346 int i; 347 348 /* 349 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and 350 * they are power context saved so it's ok to release forcewake 351 * when we are done here and take it again at xfer time. 352 */ 353 intel_uncore_forcewake_get(uncore, FORCEWAKE_GT); 354 355 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0); 356 357 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 358 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]); 359 360 intel_uncore_forcewake_put(uncore, FORCEWAKE_GT); 361 } 362 363 void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p) 364 { 365 struct intel_gt *gt = guc_to_gt(guc); 366 intel_wakeref_t wakeref; 367 u32 stamp = 0; 368 u64 ktime; 369 370 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) 371 stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP); 372 ktime = ktime_get_boottime_ns(); 373 374 drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime); 375 drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp); 376 drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n", 377 gt->clock_frequency, gt->clock_period_ns); 378 } 379 380 int intel_guc_init(struct intel_guc *guc) 381 { 382 int ret; 383 384 ret = intel_uc_fw_init(&guc->fw); 385 if (ret) 386 goto out; 387 388 ret = intel_guc_log_create(&guc->log); 389 if (ret) 390 goto err_fw; 391 392 ret = intel_guc_capture_init(guc); 393 if (ret) 394 goto err_log; 395 396 ret = intel_guc_ads_create(guc); 397 if (ret) 398 goto err_capture; 399 400 GEM_BUG_ON(!guc->ads_vma); 401 402 ret = intel_guc_ct_init(&guc->ct); 403 if (ret) 404 goto err_ads; 405 406 if (intel_guc_submission_is_used(guc)) { 407 /* 408 * This is stuff we need to have available at fw load time 409 * if we are planning to enable submission later 410 */ 411 ret = intel_guc_submission_init(guc); 412 if (ret) 413 goto err_ct; 414 } 415 416 if (intel_guc_slpc_is_used(guc)) { 417 ret = intel_guc_slpc_init(&guc->slpc); 418 if (ret) 419 goto err_submission; 420 } 421 422 /* now that everything is perma-pinned, initialize the parameters */ 423 guc_init_params(guc); 424 425 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE); 426 427 return 0; 428 429 err_submission: 430 intel_guc_submission_fini(guc); 431 err_ct: 432 intel_guc_ct_fini(&guc->ct); 433 err_ads: 434 intel_guc_ads_destroy(guc); 435 err_capture: 436 intel_guc_capture_destroy(guc); 437 err_log: 438 intel_guc_log_destroy(&guc->log); 439 err_fw: 440 intel_uc_fw_fini(&guc->fw); 441 out: 442 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL); 443 guc_probe_error(guc, "failed with %pe\n", ERR_PTR(ret)); 444 return ret; 445 } 446 447 void intel_guc_fini(struct intel_guc *guc) 448 { 449 if (!intel_uc_fw_is_loadable(&guc->fw)) 450 return; 451 452 if (intel_guc_slpc_is_used(guc)) 453 intel_guc_slpc_fini(&guc->slpc); 454 455 if (intel_guc_submission_is_used(guc)) 456 intel_guc_submission_fini(guc); 457 458 intel_guc_ct_fini(&guc->ct); 459 460 intel_guc_ads_destroy(guc); 461 intel_guc_capture_destroy(guc); 462 intel_guc_log_destroy(&guc->log); 463 intel_uc_fw_fini(&guc->fw); 464 } 465 466 /* 467 * This function implements the MMIO based host to GuC interface. 468 */ 469 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len, 470 u32 *response_buf, u32 response_buf_size) 471 { 472 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 473 u32 header; 474 int i; 475 int ret; 476 477 GEM_BUG_ON(!len); 478 GEM_BUG_ON(len > guc->send_regs.count); 479 480 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST); 481 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST); 482 483 mutex_lock(&guc->send_mutex); 484 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains); 485 486 retry: 487 for (i = 0; i < len; i++) 488 intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]); 489 490 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1)); 491 492 intel_guc_notify(guc); 493 494 /* 495 * No GuC command should ever take longer than 10ms. 496 * Fast commands should still complete in 10us. 497 */ 498 ret = __intel_wait_for_register_fw(uncore, 499 guc_send_reg(guc, 0), 500 GUC_HXG_MSG_0_ORIGIN, 501 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, 502 GUC_HXG_ORIGIN_GUC), 503 10, 10, &header); 504 if (unlikely(ret)) { 505 timeout: 506 guc_err(guc, "mmio request %#x: no reply %x\n", 507 request[0], header); 508 goto out; 509 } 510 511 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) { 512 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \ 513 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \ 514 FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; }) 515 516 ret = wait_for(done, 1000); 517 if (unlikely(ret)) 518 goto timeout; 519 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != 520 GUC_HXG_ORIGIN_GUC)) 521 goto proto; 522 #undef done 523 } 524 525 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { 526 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header); 527 528 guc_dbg(guc, "mmio request %#x: retrying, reason %u\n", 529 request[0], reason); 530 goto retry; 531 } 532 533 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) { 534 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header); 535 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header); 536 537 guc_err(guc, "mmio request %#x: failure %x/%u\n", 538 request[0], error, hint); 539 ret = -ENXIO; 540 goto out; 541 } 542 543 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) { 544 proto: 545 guc_err(guc, "mmio request %#x: unexpected reply %#x\n", 546 request[0], header); 547 ret = -EPROTO; 548 goto out; 549 } 550 551 if (response_buf) { 552 int count = min(response_buf_size, guc->send_regs.count); 553 554 GEM_BUG_ON(!count); 555 556 response_buf[0] = header; 557 558 for (i = 1; i < count; i++) 559 response_buf[i] = intel_uncore_read(uncore, 560 guc_send_reg(guc, i)); 561 562 /* Use number of copied dwords as our return value */ 563 ret = count; 564 } else { 565 /* Use data from the GuC response as our return value */ 566 ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header); 567 } 568 569 out: 570 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains); 571 mutex_unlock(&guc->send_mutex); 572 573 return ret; 574 } 575 576 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, 577 const u32 *payload, u32 len) 578 { 579 u32 msg; 580 581 if (unlikely(!len)) 582 return -EPROTO; 583 584 /* Make sure to handle only enabled messages */ 585 msg = payload[0] & guc->msg_enabled_mask; 586 587 if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED) 588 guc_err(guc, "Received early crash dump notification!\n"); 589 if (msg & INTEL_GUC_RECV_MSG_EXCEPTION) 590 guc_err(guc, "Received early exception notification!\n"); 591 592 return 0; 593 } 594 595 /** 596 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode 597 * @guc: intel_guc structure 598 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma 599 * 600 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send 601 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by 602 * intel_huc_auth(). 603 * 604 * Return: non-zero code on error 605 */ 606 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset) 607 { 608 u32 action[] = { 609 INTEL_GUC_ACTION_AUTHENTICATE_HUC, 610 rsa_offset 611 }; 612 613 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 614 } 615 616 /** 617 * intel_guc_suspend() - notify GuC entering suspend state 618 * @guc: the guc 619 */ 620 int intel_guc_suspend(struct intel_guc *guc) 621 { 622 int ret; 623 u32 action[] = { 624 INTEL_GUC_ACTION_CLIENT_SOFT_RESET, 625 }; 626 627 if (!intel_guc_is_ready(guc)) 628 return 0; 629 630 if (intel_guc_submission_is_used(guc)) { 631 /* 632 * This H2G MMIO command tears down the GuC in two steps. First it will 633 * generate a G2H CTB for every active context indicating a reset. In 634 * practice the i915 shouldn't ever get a G2H as suspend should only be 635 * called when the GPU is idle. Next, it tears down the CTBs and this 636 * H2G MMIO command completes. 637 * 638 * Don't abort on a failure code from the GuC. Keep going and do the 639 * clean up in santize() and re-initialisation on resume and hopefully 640 * the error here won't be problematic. 641 */ 642 ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0); 643 if (ret) 644 guc_err(guc, "suspend: RESET_CLIENT action failed with %pe\n", 645 ERR_PTR(ret)); 646 } 647 648 /* Signal that the GuC isn't running. */ 649 intel_guc_sanitize(guc); 650 651 return 0; 652 } 653 654 /** 655 * intel_guc_resume() - notify GuC resuming from suspend state 656 * @guc: the guc 657 */ 658 int intel_guc_resume(struct intel_guc *guc) 659 { 660 /* 661 * NB: This function can still be called even if GuC submission is 662 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus, 663 * if any code is later added here, it must be support doing nothing 664 * if submission is disabled (as per intel_guc_suspend). 665 */ 666 return 0; 667 } 668 669 /** 670 * DOC: GuC Memory Management 671 * 672 * GuC can't allocate any memory for its own usage, so all the allocations must 673 * be handled by the host driver. GuC accesses the memory via the GGTT, with the 674 * exception of the top and bottom parts of the 4GB address space, which are 675 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM) 676 * or other parts of the HW. The driver must take care not to place objects that 677 * the GuC is going to access in these reserved ranges. The layout of the GuC 678 * address space is shown below: 679 * 680 * :: 681 * 682 * +===========> +====================+ <== FFFF_FFFF 683 * ^ | Reserved | 684 * | +====================+ <== GUC_GGTT_TOP 685 * | | | 686 * | | DRAM | 687 * GuC | | 688 * Address +===> +====================+ <== GuC ggtt_pin_bias 689 * Space ^ | | 690 * | | | | 691 * | GuC | GuC | 692 * | WOPCM | WOPCM | 693 * | Size | | 694 * | | | | 695 * v v | | 696 * +=======+===> +====================+ <== 0000_0000 697 * 698 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM 699 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped 700 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size. 701 */ 702 703 /** 704 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage 705 * @guc: the guc 706 * @size: size of area to allocate (both virtual space and memory) 707 * 708 * This is a wrapper to create an object for use with the GuC. In order to 709 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate 710 * both some backing storage and a range inside the Global GTT. We must pin 711 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that 712 * range is reserved inside GuC. 713 * 714 * Return: A i915_vma if successful, otherwise an ERR_PTR. 715 */ 716 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) 717 { 718 struct intel_gt *gt = guc_to_gt(guc); 719 struct drm_i915_gem_object *obj; 720 struct i915_vma *vma; 721 u64 flags; 722 int ret; 723 724 if (HAS_LMEM(gt->i915)) 725 obj = i915_gem_object_create_lmem(gt->i915, size, 726 I915_BO_ALLOC_CPU_CLEAR | 727 I915_BO_ALLOC_CONTIGUOUS | 728 I915_BO_ALLOC_PM_EARLY); 729 else 730 obj = i915_gem_object_create_shmem(gt->i915, size); 731 732 if (IS_ERR(obj)) 733 return ERR_CAST(obj); 734 735 /* 736 * Wa_22016122933: For Media version 13.0, all Media GT shared 737 * memory needs to be mapped as WC on CPU side and UC (PAT 738 * index 2) on GPU side. 739 */ 740 if (intel_gt_needs_wa_22016122933(gt)) 741 i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE); 742 743 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 744 if (IS_ERR(vma)) 745 goto err; 746 747 flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); 748 ret = i915_ggtt_pin(vma, NULL, 0, flags); 749 if (ret) { 750 vma = ERR_PTR(ret); 751 goto err; 752 } 753 754 return i915_vma_make_unshrinkable(vma); 755 756 err: 757 i915_gem_object_put(obj); 758 return vma; 759 } 760 761 /** 762 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage 763 * @guc: the guc 764 * @size: size of area to allocate (both virtual space and memory) 765 * @out_vma: return variable for the allocated vma pointer 766 * @out_vaddr: return variable for the obj mapping 767 * 768 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated 769 * object with I915_MAP_WB. 770 * 771 * Return: 0 if successful, a negative errno code otherwise. 772 */ 773 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size, 774 struct i915_vma **out_vma, void **out_vaddr) 775 { 776 struct i915_vma *vma; 777 void *vaddr; 778 779 vma = intel_guc_allocate_vma(guc, size); 780 if (IS_ERR(vma)) 781 return PTR_ERR(vma); 782 783 vaddr = i915_gem_object_pin_map_unlocked(vma->obj, 784 intel_gt_coherent_map_type(guc_to_gt(guc), 785 vma->obj, true)); 786 if (IS_ERR(vaddr)) { 787 i915_vma_unpin_and_release(&vma, 0); 788 return PTR_ERR(vaddr); 789 } 790 791 *out_vma = vma; 792 *out_vaddr = vaddr; 793 794 return 0; 795 } 796 797 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 798 { 799 u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = { 800 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | 801 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | 802 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG), 803 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) | 804 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len), 805 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)), 806 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)), 807 }; 808 int ret; 809 810 GEM_BUG_ON(len > 2); 811 GEM_BUG_ON(len == 1 && upper_32_bits(value)); 812 813 /* Self config must go over MMIO */ 814 ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0); 815 816 if (unlikely(ret < 0)) 817 return ret; 818 if (unlikely(ret > 1)) 819 return -EPROTO; 820 if (unlikely(!ret)) 821 return -ENOKEY; 822 823 return 0; 824 } 825 826 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 827 { 828 int err = __guc_action_self_cfg(guc, key, len, value); 829 830 if (unlikely(err)) 831 guc_probe_error(guc, "Unsuccessful self-config (%pe) key %#hx value %#llx\n", 832 ERR_PTR(err), key, value); 833 return err; 834 } 835 836 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value) 837 { 838 return __guc_self_cfg(guc, key, 1, value); 839 } 840 841 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value) 842 { 843 return __guc_self_cfg(guc, key, 2, value); 844 } 845 846 /** 847 * intel_guc_load_status - dump information about GuC load status 848 * @guc: the GuC 849 * @p: the &drm_printer 850 * 851 * Pretty printer for GuC load status. 852 */ 853 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p) 854 { 855 struct intel_gt *gt = guc_to_gt(guc); 856 struct intel_uncore *uncore = gt->uncore; 857 intel_wakeref_t wakeref; 858 859 if (!intel_guc_is_supported(guc)) { 860 drm_printf(p, "GuC not supported\n"); 861 return; 862 } 863 864 if (!intel_guc_is_wanted(guc)) { 865 drm_printf(p, "GuC disabled\n"); 866 return; 867 } 868 869 intel_uc_fw_dump(&guc->fw, p); 870 871 with_intel_runtime_pm(uncore->rpm, wakeref) { 872 u32 status = intel_uncore_read(uncore, GUC_STATUS); 873 u32 i; 874 875 drm_printf(p, "GuC status 0x%08x:\n", status); 876 drm_printf(p, "\tBootrom status = 0x%x\n", 877 (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT); 878 drm_printf(p, "\tuKernel status = 0x%x\n", 879 (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT); 880 drm_printf(p, "\tMIA Core status = 0x%x\n", 881 (status & GS_MIA_MASK) >> GS_MIA_SHIFT); 882 drm_puts(p, "Scratch registers:\n"); 883 for (i = 0; i < 16; i++) { 884 drm_printf(p, "\t%2d: \t0x%x\n", 885 i, intel_uncore_read(uncore, SOFT_SCRATCH(i))); 886 } 887 } 888 } 889 890 void intel_guc_write_barrier(struct intel_guc *guc) 891 { 892 struct intel_gt *gt = guc_to_gt(guc); 893 894 if (i915_gem_object_is_lmem(guc->ct.vma->obj)) { 895 /* 896 * Ensure intel_uncore_write_fw can be used rather than 897 * intel_uncore_write. 898 */ 899 GEM_BUG_ON(guc->send_regs.fw_domains); 900 901 /* 902 * This register is used by the i915 and GuC for MMIO based 903 * communication. Once we are in this code CTBs are the only 904 * method the i915 uses to communicate with the GuC so it is 905 * safe to write to this register (a value of 0 is NOP for MMIO 906 * communication). If we ever start mixing CTBs and MMIOs a new 907 * register will have to be chosen. This function is also used 908 * to enforce ordering of a work queue item write and an update 909 * to the process descriptor. When a work queue is being used, 910 * CTBs are also the only mechanism of communication. 911 */ 912 intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0); 913 } else { 914 /* wmb() sufficient for a barrier if in smem */ 915 wmb(); 916 } 917 } 918