xref: /openbmc/linux/drivers/gpu/drm/i915/gt/uc/intel_guc.c (revision ee7da21a)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2019 Intel Corporation
4  */
5 
6 #include "gt/intel_gt.h"
7 #include "gt/intel_gt_irq.h"
8 #include "gt/intel_gt_pm_irq.h"
9 #include "intel_guc.h"
10 #include "intel_guc_ads.h"
11 #include "intel_guc_submission.h"
12 #include "i915_drv.h"
13 
14 /**
15  * DOC: GuC
16  *
17  * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
18  * designed to offload some of the functionality usually performed by the host
19  * driver; currently the main operations it can take care of are:
20  *
21  * - Authentication of the HuC, which is required to fully enable HuC usage.
22  * - Low latency graphics context scheduling (a.k.a. GuC submission).
23  * - GT Power management.
24  *
25  * The enable_guc module parameter can be used to select which of those
26  * operations to enable within GuC. Note that not all the operations are
27  * supported on all gen9+ platforms.
28  *
29  * Enabling the GuC is not mandatory and therefore the firmware is only loaded
30  * if at least one of the operations is selected. However, not loading the GuC
31  * might result in the loss of some features that do require the GuC (currently
32  * just the HuC, but more are expected to land in the future).
33  */
34 
35 void intel_guc_notify(struct intel_guc *guc)
36 {
37 	struct intel_gt *gt = guc_to_gt(guc);
38 
39 	/*
40 	 * On Gen11+, the value written to the register is passes as a payload
41 	 * to the FW. However, the FW currently treats all values the same way
42 	 * (H2G interrupt), so we can just write the value that the HW expects
43 	 * on older gens.
44 	 */
45 	intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
46 }
47 
48 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
49 {
50 	GEM_BUG_ON(!guc->send_regs.base);
51 	GEM_BUG_ON(!guc->send_regs.count);
52 	GEM_BUG_ON(i >= guc->send_regs.count);
53 
54 	return _MMIO(guc->send_regs.base + 4 * i);
55 }
56 
57 void intel_guc_init_send_regs(struct intel_guc *guc)
58 {
59 	struct intel_gt *gt = guc_to_gt(guc);
60 	enum forcewake_domains fw_domains = 0;
61 	unsigned int i;
62 
63 	GEM_BUG_ON(!guc->send_regs.base);
64 	GEM_BUG_ON(!guc->send_regs.count);
65 
66 	for (i = 0; i < guc->send_regs.count; i++) {
67 		fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
68 					guc_send_reg(guc, i),
69 					FW_REG_READ | FW_REG_WRITE);
70 	}
71 	guc->send_regs.fw_domains = fw_domains;
72 }
73 
74 static void gen9_reset_guc_interrupts(struct intel_guc *guc)
75 {
76 	struct intel_gt *gt = guc_to_gt(guc);
77 
78 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
79 
80 	spin_lock_irq(&gt->irq_lock);
81 	gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
82 	spin_unlock_irq(&gt->irq_lock);
83 }
84 
85 static void gen9_enable_guc_interrupts(struct intel_guc *guc)
86 {
87 	struct intel_gt *gt = guc_to_gt(guc);
88 
89 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
90 
91 	spin_lock_irq(&gt->irq_lock);
92 	WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
93 		     gt->pm_guc_events);
94 	gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
95 	spin_unlock_irq(&gt->irq_lock);
96 }
97 
98 static void gen9_disable_guc_interrupts(struct intel_guc *guc)
99 {
100 	struct intel_gt *gt = guc_to_gt(guc);
101 
102 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
103 
104 	spin_lock_irq(&gt->irq_lock);
105 
106 	gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
107 
108 	spin_unlock_irq(&gt->irq_lock);
109 	intel_synchronize_irq(gt->i915);
110 
111 	gen9_reset_guc_interrupts(guc);
112 }
113 
114 static void gen11_reset_guc_interrupts(struct intel_guc *guc)
115 {
116 	struct intel_gt *gt = guc_to_gt(guc);
117 
118 	spin_lock_irq(&gt->irq_lock);
119 	gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
120 	spin_unlock_irq(&gt->irq_lock);
121 }
122 
123 static void gen11_enable_guc_interrupts(struct intel_guc *guc)
124 {
125 	struct intel_gt *gt = guc_to_gt(guc);
126 	u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
127 
128 	spin_lock_irq(&gt->irq_lock);
129 	WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
130 	intel_uncore_write(gt->uncore,
131 			   GEN11_GUC_SG_INTR_ENABLE, events);
132 	intel_uncore_write(gt->uncore,
133 			   GEN11_GUC_SG_INTR_MASK, ~events);
134 	spin_unlock_irq(&gt->irq_lock);
135 }
136 
137 static void gen11_disable_guc_interrupts(struct intel_guc *guc)
138 {
139 	struct intel_gt *gt = guc_to_gt(guc);
140 
141 	spin_lock_irq(&gt->irq_lock);
142 
143 	intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
144 	intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
145 
146 	spin_unlock_irq(&gt->irq_lock);
147 	intel_synchronize_irq(gt->i915);
148 
149 	gen11_reset_guc_interrupts(guc);
150 }
151 
152 void intel_guc_init_early(struct intel_guc *guc)
153 {
154 	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
155 
156 	intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC);
157 	intel_guc_ct_init_early(&guc->ct);
158 	intel_guc_log_init_early(&guc->log);
159 	intel_guc_submission_init_early(guc);
160 
161 	mutex_init(&guc->send_mutex);
162 	spin_lock_init(&guc->irq_lock);
163 	if (GRAPHICS_VER(i915) >= 11) {
164 		guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
165 		guc->interrupts.reset = gen11_reset_guc_interrupts;
166 		guc->interrupts.enable = gen11_enable_guc_interrupts;
167 		guc->interrupts.disable = gen11_disable_guc_interrupts;
168 		guc->send_regs.base =
169 			i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
170 		guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
171 
172 	} else {
173 		guc->notify_reg = GUC_SEND_INTERRUPT;
174 		guc->interrupts.reset = gen9_reset_guc_interrupts;
175 		guc->interrupts.enable = gen9_enable_guc_interrupts;
176 		guc->interrupts.disable = gen9_disable_guc_interrupts;
177 		guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
178 		guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
179 		BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
180 	}
181 }
182 
183 static u32 guc_ctl_debug_flags(struct intel_guc *guc)
184 {
185 	u32 level = intel_guc_log_get_level(&guc->log);
186 	u32 flags = 0;
187 
188 	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
189 		flags |= GUC_LOG_DISABLED;
190 	else
191 		flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
192 			 GUC_LOG_VERBOSITY_SHIFT;
193 
194 	return flags;
195 }
196 
197 static u32 guc_ctl_feature_flags(struct intel_guc *guc)
198 {
199 	u32 flags = 0;
200 
201 	if (!intel_guc_submission_is_used(guc))
202 		flags |= GUC_CTL_DISABLE_SCHEDULER;
203 
204 	return flags;
205 }
206 
207 static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
208 {
209 	u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT;
210 	u32 flags;
211 
212 	#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
213 	#define UNIT SZ_1M
214 	#define FLAG GUC_LOG_ALLOC_IN_MEGABYTE
215 	#else
216 	#define UNIT SZ_4K
217 	#define FLAG 0
218 	#endif
219 
220 	BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
221 	BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT));
222 	BUILD_BUG_ON(!DPC_BUFFER_SIZE);
223 	BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT));
224 	BUILD_BUG_ON(!ISR_BUFFER_SIZE);
225 	BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT));
226 
227 	BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) >
228 			(GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
229 	BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) >
230 			(GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT));
231 	BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) >
232 			(GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT));
233 
234 	flags = GUC_LOG_VALID |
235 		GUC_LOG_NOTIFY_ON_HALF_FULL |
236 		FLAG |
237 		((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
238 		((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) |
239 		((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) |
240 		(offset << GUC_LOG_BUF_ADDR_SHIFT);
241 
242 	#undef UNIT
243 	#undef FLAG
244 
245 	return flags;
246 }
247 
248 static u32 guc_ctl_ads_flags(struct intel_guc *guc)
249 {
250 	u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
251 	u32 flags = ads << GUC_ADS_ADDR_SHIFT;
252 
253 	return flags;
254 }
255 
256 /*
257  * Initialise the GuC parameter block before starting the firmware
258  * transfer. These parameters are read by the firmware on startup
259  * and cannot be changed thereafter.
260  */
261 static void guc_init_params(struct intel_guc *guc)
262 {
263 	u32 *params = guc->params;
264 	int i;
265 
266 	BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
267 
268 	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
269 	params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
270 	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
271 	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
272 
273 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
274 		DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]);
275 }
276 
277 /*
278  * Initialise the GuC parameter block before starting the firmware
279  * transfer. These parameters are read by the firmware on startup
280  * and cannot be changed thereafter.
281  */
282 void intel_guc_write_params(struct intel_guc *guc)
283 {
284 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
285 	int i;
286 
287 	/*
288 	 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and
289 	 * they are power context saved so it's ok to release forcewake
290 	 * when we are done here and take it again at xfer time.
291 	 */
292 	intel_uncore_forcewake_get(uncore, FORCEWAKE_GT);
293 
294 	intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
295 
296 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
297 		intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
298 
299 	intel_uncore_forcewake_put(uncore, FORCEWAKE_GT);
300 }
301 
302 int intel_guc_init(struct intel_guc *guc)
303 {
304 	struct intel_gt *gt = guc_to_gt(guc);
305 	int ret;
306 
307 	ret = intel_uc_fw_init(&guc->fw);
308 	if (ret)
309 		goto out;
310 
311 	ret = intel_guc_log_create(&guc->log);
312 	if (ret)
313 		goto err_fw;
314 
315 	ret = intel_guc_ads_create(guc);
316 	if (ret)
317 		goto err_log;
318 	GEM_BUG_ON(!guc->ads_vma);
319 
320 	ret = intel_guc_ct_init(&guc->ct);
321 	if (ret)
322 		goto err_ads;
323 
324 	if (intel_guc_submission_is_used(guc)) {
325 		/*
326 		 * This is stuff we need to have available at fw load time
327 		 * if we are planning to enable submission later
328 		 */
329 		ret = intel_guc_submission_init(guc);
330 		if (ret)
331 			goto err_ct;
332 	}
333 
334 	/* now that everything is perma-pinned, initialize the parameters */
335 	guc_init_params(guc);
336 
337 	/* We need to notify the guc whenever we change the GGTT */
338 	i915_ggtt_enable_guc(gt->ggtt);
339 
340 	intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE);
341 
342 	return 0;
343 
344 err_ct:
345 	intel_guc_ct_fini(&guc->ct);
346 err_ads:
347 	intel_guc_ads_destroy(guc);
348 err_log:
349 	intel_guc_log_destroy(&guc->log);
350 err_fw:
351 	intel_uc_fw_fini(&guc->fw);
352 out:
353 	i915_probe_error(gt->i915, "failed with %d\n", ret);
354 	return ret;
355 }
356 
357 void intel_guc_fini(struct intel_guc *guc)
358 {
359 	struct intel_gt *gt = guc_to_gt(guc);
360 
361 	if (!intel_uc_fw_is_loadable(&guc->fw))
362 		return;
363 
364 	i915_ggtt_disable_guc(gt->ggtt);
365 
366 	if (intel_guc_submission_is_used(guc))
367 		intel_guc_submission_fini(guc);
368 
369 	intel_guc_ct_fini(&guc->ct);
370 
371 	intel_guc_ads_destroy(guc);
372 	intel_guc_log_destroy(&guc->log);
373 	intel_uc_fw_fini(&guc->fw);
374 }
375 
376 /*
377  * This function implements the MMIO based host to GuC interface.
378  */
379 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len,
380 			u32 *response_buf, u32 response_buf_size)
381 {
382 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
383 	u32 status;
384 	int i;
385 	int ret;
386 
387 	GEM_BUG_ON(!len);
388 	GEM_BUG_ON(len > guc->send_regs.count);
389 
390 	/* We expect only action code */
391 	GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK);
392 
393 	/* If CT is available, we expect to use MMIO only during init/fini */
394 	GEM_BUG_ON(*action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER &&
395 		   *action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER);
396 
397 	mutex_lock(&guc->send_mutex);
398 	intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
399 
400 	for (i = 0; i < len; i++)
401 		intel_uncore_write(uncore, guc_send_reg(guc, i), action[i]);
402 
403 	intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
404 
405 	intel_guc_notify(guc);
406 
407 	/*
408 	 * No GuC command should ever take longer than 10ms.
409 	 * Fast commands should still complete in 10us.
410 	 */
411 	ret = __intel_wait_for_register_fw(uncore,
412 					   guc_send_reg(guc, 0),
413 					   INTEL_GUC_MSG_TYPE_MASK,
414 					   INTEL_GUC_MSG_TYPE_RESPONSE <<
415 					   INTEL_GUC_MSG_TYPE_SHIFT,
416 					   10, 10, &status);
417 	/* If GuC explicitly returned an error, convert it to -EIO */
418 	if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status))
419 		ret = -EIO;
420 
421 	if (ret) {
422 		DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n",
423 			  action[0], ret, status);
424 		goto out;
425 	}
426 
427 	if (response_buf) {
428 		int count = min(response_buf_size, guc->send_regs.count - 1);
429 
430 		for (i = 0; i < count; i++)
431 			response_buf[i] = intel_uncore_read(uncore,
432 							    guc_send_reg(guc, i + 1));
433 	}
434 
435 	/* Use data from the GuC response as our return value */
436 	ret = INTEL_GUC_MSG_TO_DATA(status);
437 
438 out:
439 	intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
440 	mutex_unlock(&guc->send_mutex);
441 
442 	return ret;
443 }
444 
445 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
446 				       const u32 *payload, u32 len)
447 {
448 	u32 msg;
449 
450 	if (unlikely(!len))
451 		return -EPROTO;
452 
453 	/* Make sure to handle only enabled messages */
454 	msg = payload[0] & guc->msg_enabled_mask;
455 
456 	if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
457 		   INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED))
458 		intel_guc_log_handle_flush_event(&guc->log);
459 
460 	return 0;
461 }
462 
463 /**
464  * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
465  * @guc: intel_guc structure
466  * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
467  *
468  * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
469  * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
470  * intel_huc_auth().
471  *
472  * Return:	non-zero code on error
473  */
474 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
475 {
476 	u32 action[] = {
477 		INTEL_GUC_ACTION_AUTHENTICATE_HUC,
478 		rsa_offset
479 	};
480 
481 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
482 }
483 
484 /**
485  * intel_guc_suspend() - notify GuC entering suspend state
486  * @guc:	the guc
487  */
488 int intel_guc_suspend(struct intel_guc *guc)
489 {
490 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
491 	int ret;
492 	u32 status;
493 	u32 action[] = {
494 		INTEL_GUC_ACTION_ENTER_S_STATE,
495 		GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */
496 	};
497 
498 	/*
499 	 * If GuC communication is enabled but submission is not supported,
500 	 * we do not need to suspend the GuC.
501 	 */
502 	if (!intel_guc_submission_is_used(guc) || !intel_guc_is_ready(guc))
503 		return 0;
504 
505 	/*
506 	 * The ENTER_S_STATE action queues the save/restore operation in GuC FW
507 	 * and then returns, so waiting on the H2G is not enough to guarantee
508 	 * GuC is done. When all the processing is done, GuC writes
509 	 * INTEL_GUC_SLEEP_STATE_SUCCESS to scratch register 14, so we can poll
510 	 * on that. Note that GuC does not ensure that the value in the register
511 	 * is different from INTEL_GUC_SLEEP_STATE_SUCCESS while the action is
512 	 * in progress so we need to take care of that ourselves as well.
513 	 */
514 
515 	intel_uncore_write(uncore, SOFT_SCRATCH(14),
516 			   INTEL_GUC_SLEEP_STATE_INVALID_MASK);
517 
518 	ret = intel_guc_send(guc, action, ARRAY_SIZE(action));
519 	if (ret)
520 		return ret;
521 
522 	ret = __intel_wait_for_register(uncore, SOFT_SCRATCH(14),
523 					INTEL_GUC_SLEEP_STATE_INVALID_MASK,
524 					0, 0, 10, &status);
525 	if (ret)
526 		return ret;
527 
528 	if (status != INTEL_GUC_SLEEP_STATE_SUCCESS) {
529 		DRM_ERROR("GuC failed to change sleep state. "
530 			  "action=0x%x, err=%u\n",
531 			  action[0], status);
532 		return -EIO;
533 	}
534 
535 	return 0;
536 }
537 
538 /**
539  * intel_guc_reset_engine() - ask GuC to reset an engine
540  * @guc:	intel_guc structure
541  * @engine:	engine to be reset
542  */
543 int intel_guc_reset_engine(struct intel_guc *guc,
544 			   struct intel_engine_cs *engine)
545 {
546 	/* XXX: to be implemented with submission interface rework */
547 
548 	return -ENODEV;
549 }
550 
551 /**
552  * intel_guc_resume() - notify GuC resuming from suspend state
553  * @guc:	the guc
554  */
555 int intel_guc_resume(struct intel_guc *guc)
556 {
557 	/* XXX: to be implemented with submission interface rework */
558 	return 0;
559 }
560 
561 /**
562  * DOC: GuC Memory Management
563  *
564  * GuC can't allocate any memory for its own usage, so all the allocations must
565  * be handled by the host driver. GuC accesses the memory via the GGTT, with the
566  * exception of the top and bottom parts of the 4GB address space, which are
567  * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
568  * or other parts of the HW. The driver must take care not to place objects that
569  * the GuC is going to access in these reserved ranges. The layout of the GuC
570  * address space is shown below:
571  *
572  * ::
573  *
574  *     +===========> +====================+ <== FFFF_FFFF
575  *     ^             |      Reserved      |
576  *     |             +====================+ <== GUC_GGTT_TOP
577  *     |             |                    |
578  *     |             |        DRAM        |
579  *    GuC            |                    |
580  *  Address    +===> +====================+ <== GuC ggtt_pin_bias
581  *   Space     ^     |                    |
582  *     |       |     |                    |
583  *     |      GuC    |        GuC         |
584  *     |     WOPCM   |       WOPCM        |
585  *     |      Size   |                    |
586  *     |       |     |                    |
587  *     v       v     |                    |
588  *     +=======+===> +====================+ <== 0000_0000
589  *
590  * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
591  * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
592  * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
593  */
594 
595 /**
596  * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
597  * @guc:	the guc
598  * @size:	size of area to allocate (both virtual space and memory)
599  *
600  * This is a wrapper to create an object for use with the GuC. In order to
601  * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
602  * both some backing storage and a range inside the Global GTT. We must pin
603  * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
604  * range is reserved inside GuC.
605  *
606  * Return:	A i915_vma if successful, otherwise an ERR_PTR.
607  */
608 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
609 {
610 	struct intel_gt *gt = guc_to_gt(guc);
611 	struct drm_i915_gem_object *obj;
612 	struct i915_vma *vma;
613 	u64 flags;
614 	int ret;
615 
616 	obj = i915_gem_object_create_shmem(gt->i915, size);
617 	if (IS_ERR(obj))
618 		return ERR_CAST(obj);
619 
620 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
621 	if (IS_ERR(vma))
622 		goto err;
623 
624 	flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
625 	ret = i915_ggtt_pin(vma, NULL, 0, flags);
626 	if (ret) {
627 		vma = ERR_PTR(ret);
628 		goto err;
629 	}
630 
631 	return i915_vma_make_unshrinkable(vma);
632 
633 err:
634 	i915_gem_object_put(obj);
635 	return vma;
636 }
637 
638 /**
639  * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
640  * @guc:	the guc
641  * @size:	size of area to allocate (both virtual space and memory)
642  * @out_vma:	return variable for the allocated vma pointer
643  * @out_vaddr:	return variable for the obj mapping
644  *
645  * This wrapper calls intel_guc_allocate_vma() and then maps the allocated
646  * object with I915_MAP_WB.
647  *
648  * Return:	0 if successful, a negative errno code otherwise.
649  */
650 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
651 				   struct i915_vma **out_vma, void **out_vaddr)
652 {
653 	struct i915_vma *vma;
654 	void *vaddr;
655 
656 	vma = intel_guc_allocate_vma(guc, size);
657 	if (IS_ERR(vma))
658 		return PTR_ERR(vma);
659 
660 	vaddr = i915_gem_object_pin_map_unlocked(vma->obj,
661 						 i915_coherent_map_type(guc_to_gt(guc)->i915,
662 									vma->obj, true));
663 	if (IS_ERR(vaddr)) {
664 		i915_vma_unpin_and_release(&vma, 0);
665 		return PTR_ERR(vaddr);
666 	}
667 
668 	*out_vma = vma;
669 	*out_vaddr = vaddr;
670 
671 	return 0;
672 }
673 
674 /**
675  * intel_guc_load_status - dump information about GuC load status
676  * @guc: the GuC
677  * @p: the &drm_printer
678  *
679  * Pretty printer for GuC load status.
680  */
681 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p)
682 {
683 	struct intel_gt *gt = guc_to_gt(guc);
684 	struct intel_uncore *uncore = gt->uncore;
685 	intel_wakeref_t wakeref;
686 
687 	if (!intel_guc_is_supported(guc)) {
688 		drm_printf(p, "GuC not supported\n");
689 		return;
690 	}
691 
692 	if (!intel_guc_is_wanted(guc)) {
693 		drm_printf(p, "GuC disabled\n");
694 		return;
695 	}
696 
697 	intel_uc_fw_dump(&guc->fw, p);
698 
699 	with_intel_runtime_pm(uncore->rpm, wakeref) {
700 		u32 status = intel_uncore_read(uncore, GUC_STATUS);
701 		u32 i;
702 
703 		drm_printf(p, "\nGuC status 0x%08x:\n", status);
704 		drm_printf(p, "\tBootrom status = 0x%x\n",
705 			   (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
706 		drm_printf(p, "\tuKernel status = 0x%x\n",
707 			   (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
708 		drm_printf(p, "\tMIA Core status = 0x%x\n",
709 			   (status & GS_MIA_MASK) >> GS_MIA_SHIFT);
710 		drm_puts(p, "\nScratch registers:\n");
711 		for (i = 0; i < 16; i++) {
712 			drm_printf(p, "\t%2d: \t0x%x\n",
713 				   i, intel_uncore_read(uncore, SOFT_SCRATCH(i)));
714 		}
715 	}
716 }
717