xref: /openbmc/linux/drivers/gpu/drm/i915/gt/uc/intel_guc.c (revision e7bae9bb)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2019 Intel Corporation
4  */
5 
6 #include "gt/intel_gt.h"
7 #include "gt/intel_gt_irq.h"
8 #include "gt/intel_gt_pm_irq.h"
9 #include "intel_guc.h"
10 #include "intel_guc_ads.h"
11 #include "intel_guc_submission.h"
12 #include "i915_drv.h"
13 
14 /**
15  * DOC: GuC
16  *
17  * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
18  * designed to offload some of the functionality usually performed by the host
19  * driver; currently the main operations it can take care of are:
20  *
21  * - Authentication of the HuC, which is required to fully enable HuC usage.
22  * - Low latency graphics context scheduling (a.k.a. GuC submission).
23  * - GT Power management.
24  *
25  * The enable_guc module parameter can be used to select which of those
26  * operations to enable within GuC. Note that not all the operations are
27  * supported on all gen9+ platforms.
28  *
29  * Enabling the GuC is not mandatory and therefore the firmware is only loaded
30  * if at least one of the operations is selected. However, not loading the GuC
31  * might result in the loss of some features that do require the GuC (currently
32  * just the HuC, but more are expected to land in the future).
33  */
34 
35 void intel_guc_notify(struct intel_guc *guc)
36 {
37 	struct intel_gt *gt = guc_to_gt(guc);
38 
39 	/*
40 	 * On Gen11+, the value written to the register is passes as a payload
41 	 * to the FW. However, the FW currently treats all values the same way
42 	 * (H2G interrupt), so we can just write the value that the HW expects
43 	 * on older gens.
44 	 */
45 	intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
46 }
47 
48 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
49 {
50 	GEM_BUG_ON(!guc->send_regs.base);
51 	GEM_BUG_ON(!guc->send_regs.count);
52 	GEM_BUG_ON(i >= guc->send_regs.count);
53 
54 	return _MMIO(guc->send_regs.base + 4 * i);
55 }
56 
57 void intel_guc_init_send_regs(struct intel_guc *guc)
58 {
59 	struct intel_gt *gt = guc_to_gt(guc);
60 	enum forcewake_domains fw_domains = 0;
61 	unsigned int i;
62 
63 	if (INTEL_GEN(gt->i915) >= 11) {
64 		guc->send_regs.base =
65 				i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
66 		guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
67 	} else {
68 		guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
69 		guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
70 		BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
71 	}
72 
73 	for (i = 0; i < guc->send_regs.count; i++) {
74 		fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
75 					guc_send_reg(guc, i),
76 					FW_REG_READ | FW_REG_WRITE);
77 	}
78 	guc->send_regs.fw_domains = fw_domains;
79 }
80 
81 static void gen9_reset_guc_interrupts(struct intel_guc *guc)
82 {
83 	struct intel_gt *gt = guc_to_gt(guc);
84 
85 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
86 
87 	spin_lock_irq(&gt->irq_lock);
88 	gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
89 	spin_unlock_irq(&gt->irq_lock);
90 }
91 
92 static void gen9_enable_guc_interrupts(struct intel_guc *guc)
93 {
94 	struct intel_gt *gt = guc_to_gt(guc);
95 
96 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
97 
98 	spin_lock_irq(&gt->irq_lock);
99 	if (!guc->interrupts.enabled) {
100 		WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
101 			     gt->pm_guc_events);
102 		guc->interrupts.enabled = true;
103 		gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
104 	}
105 	spin_unlock_irq(&gt->irq_lock);
106 }
107 
108 static void gen9_disable_guc_interrupts(struct intel_guc *guc)
109 {
110 	struct intel_gt *gt = guc_to_gt(guc);
111 
112 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
113 
114 	spin_lock_irq(&gt->irq_lock);
115 	guc->interrupts.enabled = false;
116 
117 	gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
118 
119 	spin_unlock_irq(&gt->irq_lock);
120 	intel_synchronize_irq(gt->i915);
121 
122 	gen9_reset_guc_interrupts(guc);
123 }
124 
125 static void gen11_reset_guc_interrupts(struct intel_guc *guc)
126 {
127 	struct intel_gt *gt = guc_to_gt(guc);
128 
129 	spin_lock_irq(&gt->irq_lock);
130 	gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
131 	spin_unlock_irq(&gt->irq_lock);
132 }
133 
134 static void gen11_enable_guc_interrupts(struct intel_guc *guc)
135 {
136 	struct intel_gt *gt = guc_to_gt(guc);
137 
138 	spin_lock_irq(&gt->irq_lock);
139 	if (!guc->interrupts.enabled) {
140 		u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
141 
142 		WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
143 		intel_uncore_write(gt->uncore,
144 				   GEN11_GUC_SG_INTR_ENABLE, events);
145 		intel_uncore_write(gt->uncore,
146 				   GEN11_GUC_SG_INTR_MASK, ~events);
147 		guc->interrupts.enabled = true;
148 	}
149 	spin_unlock_irq(&gt->irq_lock);
150 }
151 
152 static void gen11_disable_guc_interrupts(struct intel_guc *guc)
153 {
154 	struct intel_gt *gt = guc_to_gt(guc);
155 
156 	spin_lock_irq(&gt->irq_lock);
157 	guc->interrupts.enabled = false;
158 
159 	intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
160 	intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
161 
162 	spin_unlock_irq(&gt->irq_lock);
163 	intel_synchronize_irq(gt->i915);
164 
165 	gen11_reset_guc_interrupts(guc);
166 }
167 
168 void intel_guc_init_early(struct intel_guc *guc)
169 {
170 	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
171 
172 	intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC);
173 	intel_guc_ct_init_early(&guc->ct);
174 	intel_guc_log_init_early(&guc->log);
175 	intel_guc_submission_init_early(guc);
176 
177 	mutex_init(&guc->send_mutex);
178 	spin_lock_init(&guc->irq_lock);
179 	if (INTEL_GEN(i915) >= 11) {
180 		guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
181 		guc->interrupts.reset = gen11_reset_guc_interrupts;
182 		guc->interrupts.enable = gen11_enable_guc_interrupts;
183 		guc->interrupts.disable = gen11_disable_guc_interrupts;
184 	} else {
185 		guc->notify_reg = GUC_SEND_INTERRUPT;
186 		guc->interrupts.reset = gen9_reset_guc_interrupts;
187 		guc->interrupts.enable = gen9_enable_guc_interrupts;
188 		guc->interrupts.disable = gen9_disable_guc_interrupts;
189 	}
190 }
191 
192 static u32 guc_ctl_debug_flags(struct intel_guc *guc)
193 {
194 	u32 level = intel_guc_log_get_level(&guc->log);
195 	u32 flags = 0;
196 
197 	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
198 		flags |= GUC_LOG_DISABLED;
199 	else
200 		flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
201 			 GUC_LOG_VERBOSITY_SHIFT;
202 
203 	return flags;
204 }
205 
206 static u32 guc_ctl_feature_flags(struct intel_guc *guc)
207 {
208 	u32 flags = 0;
209 
210 	if (!intel_guc_submission_is_used(guc))
211 		flags |= GUC_CTL_DISABLE_SCHEDULER;
212 
213 	return flags;
214 }
215 
216 static u32 guc_ctl_ctxinfo_flags(struct intel_guc *guc)
217 {
218 	u32 flags = 0;
219 
220 	if (intel_guc_submission_is_used(guc)) {
221 		u32 ctxnum, base;
222 
223 		base = intel_guc_ggtt_offset(guc, guc->stage_desc_pool);
224 		ctxnum = GUC_MAX_STAGE_DESCRIPTORS / 16;
225 
226 		base >>= PAGE_SHIFT;
227 		flags |= (base << GUC_CTL_BASE_ADDR_SHIFT) |
228 			(ctxnum << GUC_CTL_CTXNUM_IN16_SHIFT);
229 	}
230 	return flags;
231 }
232 
233 static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
234 {
235 	u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT;
236 	u32 flags;
237 
238 	#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
239 	#define UNIT SZ_1M
240 	#define FLAG GUC_LOG_ALLOC_IN_MEGABYTE
241 	#else
242 	#define UNIT SZ_4K
243 	#define FLAG 0
244 	#endif
245 
246 	BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
247 	BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT));
248 	BUILD_BUG_ON(!DPC_BUFFER_SIZE);
249 	BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT));
250 	BUILD_BUG_ON(!ISR_BUFFER_SIZE);
251 	BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT));
252 
253 	BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) >
254 			(GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
255 	BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) >
256 			(GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT));
257 	BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) >
258 			(GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT));
259 
260 	flags = GUC_LOG_VALID |
261 		GUC_LOG_NOTIFY_ON_HALF_FULL |
262 		FLAG |
263 		((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
264 		((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) |
265 		((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) |
266 		(offset << GUC_LOG_BUF_ADDR_SHIFT);
267 
268 	#undef UNIT
269 	#undef FLAG
270 
271 	return flags;
272 }
273 
274 static u32 guc_ctl_ads_flags(struct intel_guc *guc)
275 {
276 	u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
277 	u32 flags = ads << GUC_ADS_ADDR_SHIFT;
278 
279 	return flags;
280 }
281 
282 /*
283  * Initialise the GuC parameter block before starting the firmware
284  * transfer. These parameters are read by the firmware on startup
285  * and cannot be changed thereafter.
286  */
287 static void guc_init_params(struct intel_guc *guc)
288 {
289 	u32 *params = guc->params;
290 	int i;
291 
292 	BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
293 
294 	params[GUC_CTL_CTXINFO] = guc_ctl_ctxinfo_flags(guc);
295 	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
296 	params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
297 	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
298 	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
299 
300 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
301 		DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]);
302 }
303 
304 /*
305  * Initialise the GuC parameter block before starting the firmware
306  * transfer. These parameters are read by the firmware on startup
307  * and cannot be changed thereafter.
308  */
309 void intel_guc_write_params(struct intel_guc *guc)
310 {
311 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
312 	int i;
313 
314 	/*
315 	 * All SOFT_SCRATCH registers are in FORCEWAKE_BLITTER domain and
316 	 * they are power context saved so it's ok to release forcewake
317 	 * when we are done here and take it again at xfer time.
318 	 */
319 	intel_uncore_forcewake_get(uncore, FORCEWAKE_BLITTER);
320 
321 	intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
322 
323 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
324 		intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
325 
326 	intel_uncore_forcewake_put(uncore, FORCEWAKE_BLITTER);
327 }
328 
329 int intel_guc_init(struct intel_guc *guc)
330 {
331 	struct intel_gt *gt = guc_to_gt(guc);
332 	int ret;
333 
334 	ret = intel_uc_fw_init(&guc->fw);
335 	if (ret)
336 		goto out;
337 
338 	ret = intel_guc_log_create(&guc->log);
339 	if (ret)
340 		goto err_fw;
341 
342 	ret = intel_guc_ads_create(guc);
343 	if (ret)
344 		goto err_log;
345 	GEM_BUG_ON(!guc->ads_vma);
346 
347 	ret = intel_guc_ct_init(&guc->ct);
348 	if (ret)
349 		goto err_ads;
350 
351 	if (intel_guc_submission_is_used(guc)) {
352 		/*
353 		 * This is stuff we need to have available at fw load time
354 		 * if we are planning to enable submission later
355 		 */
356 		ret = intel_guc_submission_init(guc);
357 		if (ret)
358 			goto err_ct;
359 	}
360 
361 	/* now that everything is perma-pinned, initialize the parameters */
362 	guc_init_params(guc);
363 
364 	/* We need to notify the guc whenever we change the GGTT */
365 	i915_ggtt_enable_guc(gt->ggtt);
366 
367 	intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE);
368 
369 	return 0;
370 
371 err_ct:
372 	intel_guc_ct_fini(&guc->ct);
373 err_ads:
374 	intel_guc_ads_destroy(guc);
375 err_log:
376 	intel_guc_log_destroy(&guc->log);
377 err_fw:
378 	intel_uc_fw_fini(&guc->fw);
379 out:
380 	i915_probe_error(gt->i915, "failed with %d\n", ret);
381 	return ret;
382 }
383 
384 void intel_guc_fini(struct intel_guc *guc)
385 {
386 	struct intel_gt *gt = guc_to_gt(guc);
387 
388 	if (!intel_uc_fw_is_loadable(&guc->fw))
389 		return;
390 
391 	i915_ggtt_disable_guc(gt->ggtt);
392 
393 	if (intel_guc_submission_is_used(guc))
394 		intel_guc_submission_fini(guc);
395 
396 	intel_guc_ct_fini(&guc->ct);
397 
398 	intel_guc_ads_destroy(guc);
399 	intel_guc_log_destroy(&guc->log);
400 	intel_uc_fw_fini(&guc->fw);
401 }
402 
403 /*
404  * This function implements the MMIO based host to GuC interface.
405  */
406 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len,
407 			u32 *response_buf, u32 response_buf_size)
408 {
409 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
410 	u32 status;
411 	int i;
412 	int ret;
413 
414 	GEM_BUG_ON(!len);
415 	GEM_BUG_ON(len > guc->send_regs.count);
416 
417 	/* We expect only action code */
418 	GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK);
419 
420 	/* If CT is available, we expect to use MMIO only during init/fini */
421 	GEM_BUG_ON(*action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER &&
422 		   *action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER);
423 
424 	mutex_lock(&guc->send_mutex);
425 	intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
426 
427 	for (i = 0; i < len; i++)
428 		intel_uncore_write(uncore, guc_send_reg(guc, i), action[i]);
429 
430 	intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
431 
432 	intel_guc_notify(guc);
433 
434 	/*
435 	 * No GuC command should ever take longer than 10ms.
436 	 * Fast commands should still complete in 10us.
437 	 */
438 	ret = __intel_wait_for_register_fw(uncore,
439 					   guc_send_reg(guc, 0),
440 					   INTEL_GUC_MSG_TYPE_MASK,
441 					   INTEL_GUC_MSG_TYPE_RESPONSE <<
442 					   INTEL_GUC_MSG_TYPE_SHIFT,
443 					   10, 10, &status);
444 	/* If GuC explicitly returned an error, convert it to -EIO */
445 	if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status))
446 		ret = -EIO;
447 
448 	if (ret) {
449 		DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n",
450 			  action[0], ret, status);
451 		goto out;
452 	}
453 
454 	if (response_buf) {
455 		int count = min(response_buf_size, guc->send_regs.count - 1);
456 
457 		for (i = 0; i < count; i++)
458 			response_buf[i] = intel_uncore_read(uncore,
459 							    guc_send_reg(guc, i + 1));
460 	}
461 
462 	/* Use data from the GuC response as our return value */
463 	ret = INTEL_GUC_MSG_TO_DATA(status);
464 
465 out:
466 	intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
467 	mutex_unlock(&guc->send_mutex);
468 
469 	return ret;
470 }
471 
472 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
473 				       const u32 *payload, u32 len)
474 {
475 	u32 msg;
476 
477 	if (unlikely(!len))
478 		return -EPROTO;
479 
480 	/* Make sure to handle only enabled messages */
481 	msg = payload[0] & guc->msg_enabled_mask;
482 
483 	if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
484 		   INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED))
485 		intel_guc_log_handle_flush_event(&guc->log);
486 
487 	return 0;
488 }
489 
490 int intel_guc_sample_forcewake(struct intel_guc *guc)
491 {
492 	struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915;
493 	u32 action[2];
494 
495 	action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE;
496 	/* WaRsDisableCoarsePowerGating:skl,cnl */
497 	if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
498 		action[1] = 0;
499 	else
500 		/* bit 0 and 1 are for Render and Media domain separately */
501 		action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;
502 
503 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
504 }
505 
506 /**
507  * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
508  * @guc: intel_guc structure
509  * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
510  *
511  * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
512  * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
513  * intel_huc_auth().
514  *
515  * Return:	non-zero code on error
516  */
517 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
518 {
519 	u32 action[] = {
520 		INTEL_GUC_ACTION_AUTHENTICATE_HUC,
521 		rsa_offset
522 	};
523 
524 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
525 }
526 
527 /**
528  * intel_guc_suspend() - notify GuC entering suspend state
529  * @guc:	the guc
530  */
531 int intel_guc_suspend(struct intel_guc *guc)
532 {
533 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
534 	int ret;
535 	u32 status;
536 	u32 action[] = {
537 		INTEL_GUC_ACTION_ENTER_S_STATE,
538 		GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */
539 	};
540 
541 	/*
542 	 * If GuC communication is enabled but submission is not supported,
543 	 * we do not need to suspend the GuC.
544 	 */
545 	if (!intel_guc_submission_is_used(guc) || !intel_guc_is_ready(guc))
546 		return 0;
547 
548 	/*
549 	 * The ENTER_S_STATE action queues the save/restore operation in GuC FW
550 	 * and then returns, so waiting on the H2G is not enough to guarantee
551 	 * GuC is done. When all the processing is done, GuC writes
552 	 * INTEL_GUC_SLEEP_STATE_SUCCESS to scratch register 14, so we can poll
553 	 * on that. Note that GuC does not ensure that the value in the register
554 	 * is different from INTEL_GUC_SLEEP_STATE_SUCCESS while the action is
555 	 * in progress so we need to take care of that ourselves as well.
556 	 */
557 
558 	intel_uncore_write(uncore, SOFT_SCRATCH(14),
559 			   INTEL_GUC_SLEEP_STATE_INVALID_MASK);
560 
561 	ret = intel_guc_send(guc, action, ARRAY_SIZE(action));
562 	if (ret)
563 		return ret;
564 
565 	ret = __intel_wait_for_register(uncore, SOFT_SCRATCH(14),
566 					INTEL_GUC_SLEEP_STATE_INVALID_MASK,
567 					0, 0, 10, &status);
568 	if (ret)
569 		return ret;
570 
571 	if (status != INTEL_GUC_SLEEP_STATE_SUCCESS) {
572 		DRM_ERROR("GuC failed to change sleep state. "
573 			  "action=0x%x, err=%u\n",
574 			  action[0], status);
575 		return -EIO;
576 	}
577 
578 	return 0;
579 }
580 
581 /**
582  * intel_guc_reset_engine() - ask GuC to reset an engine
583  * @guc:	intel_guc structure
584  * @engine:	engine to be reset
585  */
586 int intel_guc_reset_engine(struct intel_guc *guc,
587 			   struct intel_engine_cs *engine)
588 {
589 	/* XXX: to be implemented with submission interface rework */
590 
591 	return -ENODEV;
592 }
593 
594 /**
595  * intel_guc_resume() - notify GuC resuming from suspend state
596  * @guc:	the guc
597  */
598 int intel_guc_resume(struct intel_guc *guc)
599 {
600 	u32 action[] = {
601 		INTEL_GUC_ACTION_EXIT_S_STATE,
602 		GUC_POWER_D0,
603 	};
604 
605 	/*
606 	 * If GuC communication is enabled but submission is not supported,
607 	 * we do not need to resume the GuC but we do need to enable the
608 	 * GuC communication on resume (above).
609 	 */
610 	if (!intel_guc_submission_is_used(guc) || !intel_guc_is_ready(guc))
611 		return 0;
612 
613 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
614 }
615 
616 /**
617  * DOC: GuC Memory Management
618  *
619  * GuC can't allocate any memory for its own usage, so all the allocations must
620  * be handled by the host driver. GuC accesses the memory via the GGTT, with the
621  * exception of the top and bottom parts of the 4GB address space, which are
622  * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
623  * or other parts of the HW. The driver must take care not to place objects that
624  * the GuC is going to access in these reserved ranges. The layout of the GuC
625  * address space is shown below:
626  *
627  * ::
628  *
629  *     +===========> +====================+ <== FFFF_FFFF
630  *     ^             |      Reserved      |
631  *     |             +====================+ <== GUC_GGTT_TOP
632  *     |             |                    |
633  *     |             |        DRAM        |
634  *    GuC            |                    |
635  *  Address    +===> +====================+ <== GuC ggtt_pin_bias
636  *   Space     ^     |                    |
637  *     |       |     |                    |
638  *     |      GuC    |        GuC         |
639  *     |     WOPCM   |       WOPCM        |
640  *     |      Size   |                    |
641  *     |       |     |                    |
642  *     v       v     |                    |
643  *     +=======+===> +====================+ <== 0000_0000
644  *
645  * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
646  * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
647  * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
648  */
649 
650 /**
651  * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
652  * @guc:	the guc
653  * @size:	size of area to allocate (both virtual space and memory)
654  *
655  * This is a wrapper to create an object for use with the GuC. In order to
656  * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
657  * both some backing storage and a range inside the Global GTT. We must pin
658  * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
659  * range is reserved inside GuC.
660  *
661  * Return:	A i915_vma if successful, otherwise an ERR_PTR.
662  */
663 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
664 {
665 	struct intel_gt *gt = guc_to_gt(guc);
666 	struct drm_i915_gem_object *obj;
667 	struct i915_vma *vma;
668 	u64 flags;
669 	int ret;
670 
671 	obj = i915_gem_object_create_shmem(gt->i915, size);
672 	if (IS_ERR(obj))
673 		return ERR_CAST(obj);
674 
675 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
676 	if (IS_ERR(vma))
677 		goto err;
678 
679 	flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
680 	ret = i915_ggtt_pin(vma, 0, flags);
681 	if (ret) {
682 		vma = ERR_PTR(ret);
683 		goto err;
684 	}
685 
686 	return i915_vma_make_unshrinkable(vma);
687 
688 err:
689 	i915_gem_object_put(obj);
690 	return vma;
691 }
692 
693 /**
694  * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
695  * @guc:	the guc
696  * @size:	size of area to allocate (both virtual space and memory)
697  * @out_vma:	return variable for the allocated vma pointer
698  * @out_vaddr:	return variable for the obj mapping
699  *
700  * This wrapper calls intel_guc_allocate_vma() and then maps the allocated
701  * object with I915_MAP_WB.
702  *
703  * Return:	0 if successful, a negative errno code otherwise.
704  */
705 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
706 				   struct i915_vma **out_vma, void **out_vaddr)
707 {
708 	struct i915_vma *vma;
709 	void *vaddr;
710 
711 	vma = intel_guc_allocate_vma(guc, size);
712 	if (IS_ERR(vma))
713 		return PTR_ERR(vma);
714 
715 	vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
716 	if (IS_ERR(vaddr)) {
717 		i915_vma_unpin_and_release(&vma, 0);
718 		return PTR_ERR(vaddr);
719 	}
720 
721 	*out_vma = vma;
722 	*out_vaddr = vaddr;
723 
724 	return 0;
725 }
726 
727 /**
728  * intel_guc_load_status - dump information about GuC load status
729  * @guc: the GuC
730  * @p: the &drm_printer
731  *
732  * Pretty printer for GuC load status.
733  */
734 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p)
735 {
736 	struct intel_gt *gt = guc_to_gt(guc);
737 	struct intel_uncore *uncore = gt->uncore;
738 	intel_wakeref_t wakeref;
739 
740 	if (!intel_guc_is_supported(guc)) {
741 		drm_printf(p, "GuC not supported\n");
742 		return;
743 	}
744 
745 	if (!intel_guc_is_wanted(guc)) {
746 		drm_printf(p, "GuC disabled\n");
747 		return;
748 	}
749 
750 	intel_uc_fw_dump(&guc->fw, p);
751 
752 	with_intel_runtime_pm(uncore->rpm, wakeref) {
753 		u32 status = intel_uncore_read(uncore, GUC_STATUS);
754 		u32 i;
755 
756 		drm_printf(p, "\nGuC status 0x%08x:\n", status);
757 		drm_printf(p, "\tBootrom status = 0x%x\n",
758 			   (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
759 		drm_printf(p, "\tuKernel status = 0x%x\n",
760 			   (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
761 		drm_printf(p, "\tMIA Core status = 0x%x\n",
762 			   (status & GS_MIA_MASK) >> GS_MIA_SHIFT);
763 		drm_puts(p, "\nScratch registers:\n");
764 		for (i = 0; i < 16; i++) {
765 			drm_printf(p, "\t%2d: \t0x%x\n",
766 				   i, intel_uncore_read(uncore, SOFT_SCRATCH(i)));
767 		}
768 	}
769 }
770