1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2019 Intel Corporation 4 */ 5 6 #include "gt/intel_gt.h" 7 #include "gt/intel_gt_irq.h" 8 #include "gt/intel_gt_pm_irq.h" 9 #include "intel_guc.h" 10 #include "intel_guc_ads.h" 11 #include "intel_guc_submission.h" 12 #include "i915_drv.h" 13 14 /** 15 * DOC: GuC 16 * 17 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is 18 * designed to offload some of the functionality usually performed by the host 19 * driver; currently the main operations it can take care of are: 20 * 21 * - Authentication of the HuC, which is required to fully enable HuC usage. 22 * - Low latency graphics context scheduling (a.k.a. GuC submission). 23 * - GT Power management. 24 * 25 * The enable_guc module parameter can be used to select which of those 26 * operations to enable within GuC. Note that not all the operations are 27 * supported on all gen9+ platforms. 28 * 29 * Enabling the GuC is not mandatory and therefore the firmware is only loaded 30 * if at least one of the operations is selected. However, not loading the GuC 31 * might result in the loss of some features that do require the GuC (currently 32 * just the HuC, but more are expected to land in the future). 33 */ 34 35 void intel_guc_notify(struct intel_guc *guc) 36 { 37 struct intel_gt *gt = guc_to_gt(guc); 38 39 /* 40 * On Gen11+, the value written to the register is passes as a payload 41 * to the FW. However, the FW currently treats all values the same way 42 * (H2G interrupt), so we can just write the value that the HW expects 43 * on older gens. 44 */ 45 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER); 46 } 47 48 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i) 49 { 50 GEM_BUG_ON(!guc->send_regs.base); 51 GEM_BUG_ON(!guc->send_regs.count); 52 GEM_BUG_ON(i >= guc->send_regs.count); 53 54 return _MMIO(guc->send_regs.base + 4 * i); 55 } 56 57 void intel_guc_init_send_regs(struct intel_guc *guc) 58 { 59 struct intel_gt *gt = guc_to_gt(guc); 60 enum forcewake_domains fw_domains = 0; 61 unsigned int i; 62 63 if (INTEL_GEN(gt->i915) >= 11) { 64 guc->send_regs.base = 65 i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0)); 66 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT; 67 } else { 68 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0)); 69 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN; 70 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT); 71 } 72 73 for (i = 0; i < guc->send_regs.count; i++) { 74 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore, 75 guc_send_reg(guc, i), 76 FW_REG_READ | FW_REG_WRITE); 77 } 78 guc->send_regs.fw_domains = fw_domains; 79 } 80 81 static void gen9_reset_guc_interrupts(struct intel_guc *guc) 82 { 83 struct intel_gt *gt = guc_to_gt(guc); 84 85 assert_rpm_wakelock_held(>->i915->runtime_pm); 86 87 spin_lock_irq(>->irq_lock); 88 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events); 89 spin_unlock_irq(>->irq_lock); 90 } 91 92 static void gen9_enable_guc_interrupts(struct intel_guc *guc) 93 { 94 struct intel_gt *gt = guc_to_gt(guc); 95 96 assert_rpm_wakelock_held(>->i915->runtime_pm); 97 98 spin_lock_irq(>->irq_lock); 99 if (!guc->interrupts.enabled) { 100 WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) & 101 gt->pm_guc_events); 102 guc->interrupts.enabled = true; 103 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events); 104 } 105 spin_unlock_irq(>->irq_lock); 106 } 107 108 static void gen9_disable_guc_interrupts(struct intel_guc *guc) 109 { 110 struct intel_gt *gt = guc_to_gt(guc); 111 112 assert_rpm_wakelock_held(>->i915->runtime_pm); 113 114 spin_lock_irq(>->irq_lock); 115 guc->interrupts.enabled = false; 116 117 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events); 118 119 spin_unlock_irq(>->irq_lock); 120 intel_synchronize_irq(gt->i915); 121 122 gen9_reset_guc_interrupts(guc); 123 } 124 125 static void gen11_reset_guc_interrupts(struct intel_guc *guc) 126 { 127 struct intel_gt *gt = guc_to_gt(guc); 128 129 spin_lock_irq(>->irq_lock); 130 gen11_gt_reset_one_iir(gt, 0, GEN11_GUC); 131 spin_unlock_irq(>->irq_lock); 132 } 133 134 static void gen11_enable_guc_interrupts(struct intel_guc *guc) 135 { 136 struct intel_gt *gt = guc_to_gt(guc); 137 138 spin_lock_irq(>->irq_lock); 139 if (!guc->interrupts.enabled) { 140 u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST); 141 142 WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC)); 143 intel_uncore_write(gt->uncore, 144 GEN11_GUC_SG_INTR_ENABLE, events); 145 intel_uncore_write(gt->uncore, 146 GEN11_GUC_SG_INTR_MASK, ~events); 147 guc->interrupts.enabled = true; 148 } 149 spin_unlock_irq(>->irq_lock); 150 } 151 152 static void gen11_disable_guc_interrupts(struct intel_guc *guc) 153 { 154 struct intel_gt *gt = guc_to_gt(guc); 155 156 spin_lock_irq(>->irq_lock); 157 guc->interrupts.enabled = false; 158 159 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0); 160 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0); 161 162 spin_unlock_irq(>->irq_lock); 163 intel_synchronize_irq(gt->i915); 164 165 gen11_reset_guc_interrupts(guc); 166 } 167 168 void intel_guc_init_early(struct intel_guc *guc) 169 { 170 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 171 172 intel_guc_fw_init_early(guc); 173 intel_guc_ct_init_early(&guc->ct); 174 intel_guc_log_init_early(&guc->log); 175 intel_guc_submission_init_early(guc); 176 177 mutex_init(&guc->send_mutex); 178 spin_lock_init(&guc->irq_lock); 179 if (INTEL_GEN(i915) >= 11) { 180 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT; 181 guc->interrupts.reset = gen11_reset_guc_interrupts; 182 guc->interrupts.enable = gen11_enable_guc_interrupts; 183 guc->interrupts.disable = gen11_disable_guc_interrupts; 184 } else { 185 guc->notify_reg = GUC_SEND_INTERRUPT; 186 guc->interrupts.reset = gen9_reset_guc_interrupts; 187 guc->interrupts.enable = gen9_enable_guc_interrupts; 188 guc->interrupts.disable = gen9_disable_guc_interrupts; 189 } 190 } 191 192 static u32 guc_ctl_debug_flags(struct intel_guc *guc) 193 { 194 u32 level = intel_guc_log_get_level(&guc->log); 195 u32 flags = 0; 196 197 if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) 198 flags |= GUC_LOG_DISABLED; 199 else 200 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << 201 GUC_LOG_VERBOSITY_SHIFT; 202 203 return flags; 204 } 205 206 static u32 guc_ctl_feature_flags(struct intel_guc *guc) 207 { 208 u32 flags = 0; 209 210 if (!intel_guc_is_submission_supported(guc)) 211 flags |= GUC_CTL_DISABLE_SCHEDULER; 212 213 return flags; 214 } 215 216 static u32 guc_ctl_ctxinfo_flags(struct intel_guc *guc) 217 { 218 u32 flags = 0; 219 220 if (intel_guc_is_submission_supported(guc)) { 221 u32 ctxnum, base; 222 223 base = intel_guc_ggtt_offset(guc, guc->stage_desc_pool); 224 ctxnum = GUC_MAX_STAGE_DESCRIPTORS / 16; 225 226 base >>= PAGE_SHIFT; 227 flags |= (base << GUC_CTL_BASE_ADDR_SHIFT) | 228 (ctxnum << GUC_CTL_CTXNUM_IN16_SHIFT); 229 } 230 return flags; 231 } 232 233 static u32 guc_ctl_log_params_flags(struct intel_guc *guc) 234 { 235 u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT; 236 u32 flags; 237 238 #if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0) 239 #define UNIT SZ_1M 240 #define FLAG GUC_LOG_ALLOC_IN_MEGABYTE 241 #else 242 #define UNIT SZ_4K 243 #define FLAG 0 244 #endif 245 246 BUILD_BUG_ON(!CRASH_BUFFER_SIZE); 247 BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT)); 248 BUILD_BUG_ON(!DPC_BUFFER_SIZE); 249 BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT)); 250 BUILD_BUG_ON(!ISR_BUFFER_SIZE); 251 BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT)); 252 253 BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) > 254 (GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT)); 255 BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) > 256 (GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT)); 257 BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) > 258 (GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT)); 259 260 flags = GUC_LOG_VALID | 261 GUC_LOG_NOTIFY_ON_HALF_FULL | 262 FLAG | 263 ((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) | 264 ((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) | 265 ((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) | 266 (offset << GUC_LOG_BUF_ADDR_SHIFT); 267 268 #undef UNIT 269 #undef FLAG 270 271 return flags; 272 } 273 274 static u32 guc_ctl_ads_flags(struct intel_guc *guc) 275 { 276 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT; 277 u32 flags = ads << GUC_ADS_ADDR_SHIFT; 278 279 return flags; 280 } 281 282 /* 283 * Initialise the GuC parameter block before starting the firmware 284 * transfer. These parameters are read by the firmware on startup 285 * and cannot be changed thereafter. 286 */ 287 static void guc_init_params(struct intel_guc *guc) 288 { 289 u32 *params = guc->params; 290 int i; 291 292 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); 293 294 params[GUC_CTL_CTXINFO] = guc_ctl_ctxinfo_flags(guc); 295 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); 296 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); 297 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); 298 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); 299 300 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 301 DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]); 302 } 303 304 /* 305 * Initialise the GuC parameter block before starting the firmware 306 * transfer. These parameters are read by the firmware on startup 307 * and cannot be changed thereafter. 308 */ 309 void intel_guc_write_params(struct intel_guc *guc) 310 { 311 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 312 int i; 313 314 /* 315 * All SOFT_SCRATCH registers are in FORCEWAKE_BLITTER domain and 316 * they are power context saved so it's ok to release forcewake 317 * when we are done here and take it again at xfer time. 318 */ 319 intel_uncore_forcewake_get(uncore, FORCEWAKE_BLITTER); 320 321 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0); 322 323 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 324 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]); 325 326 intel_uncore_forcewake_put(uncore, FORCEWAKE_BLITTER); 327 } 328 329 int intel_guc_init(struct intel_guc *guc) 330 { 331 struct intel_gt *gt = guc_to_gt(guc); 332 int ret; 333 334 ret = intel_uc_fw_init(&guc->fw); 335 if (ret) 336 goto err_fetch; 337 338 ret = intel_guc_log_create(&guc->log); 339 if (ret) 340 goto err_fw; 341 342 ret = intel_guc_ads_create(guc); 343 if (ret) 344 goto err_log; 345 GEM_BUG_ON(!guc->ads_vma); 346 347 ret = intel_guc_ct_init(&guc->ct); 348 if (ret) 349 goto err_ads; 350 351 if (intel_guc_is_submission_supported(guc)) { 352 /* 353 * This is stuff we need to have available at fw load time 354 * if we are planning to enable submission later 355 */ 356 ret = intel_guc_submission_init(guc); 357 if (ret) 358 goto err_ct; 359 } 360 361 /* now that everything is perma-pinned, initialize the parameters */ 362 guc_init_params(guc); 363 364 /* We need to notify the guc whenever we change the GGTT */ 365 i915_ggtt_enable_guc(gt->ggtt); 366 367 return 0; 368 369 err_ct: 370 intel_guc_ct_fini(&guc->ct); 371 err_ads: 372 intel_guc_ads_destroy(guc); 373 err_log: 374 intel_guc_log_destroy(&guc->log); 375 err_fw: 376 intel_uc_fw_fini(&guc->fw); 377 err_fetch: 378 intel_uc_fw_cleanup_fetch(&guc->fw); 379 DRM_DEV_DEBUG_DRIVER(gt->i915->drm.dev, "failed with %d\n", ret); 380 return ret; 381 } 382 383 void intel_guc_fini(struct intel_guc *guc) 384 { 385 struct intel_gt *gt = guc_to_gt(guc); 386 387 if (!intel_uc_fw_is_available(&guc->fw)) 388 return; 389 390 i915_ggtt_disable_guc(gt->ggtt); 391 392 if (intel_guc_is_submission_supported(guc)) 393 intel_guc_submission_fini(guc); 394 395 intel_guc_ct_fini(&guc->ct); 396 397 intel_guc_ads_destroy(guc); 398 intel_guc_log_destroy(&guc->log); 399 intel_uc_fw_fini(&guc->fw); 400 intel_uc_fw_cleanup_fetch(&guc->fw); 401 402 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_DISABLED); 403 } 404 405 /* 406 * This function implements the MMIO based host to GuC interface. 407 */ 408 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len, 409 u32 *response_buf, u32 response_buf_size) 410 { 411 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 412 u32 status; 413 int i; 414 int ret; 415 416 GEM_BUG_ON(!len); 417 GEM_BUG_ON(len > guc->send_regs.count); 418 419 /* We expect only action code */ 420 GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK); 421 422 /* If CT is available, we expect to use MMIO only during init/fini */ 423 GEM_BUG_ON(*action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER && 424 *action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER); 425 426 mutex_lock(&guc->send_mutex); 427 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains); 428 429 for (i = 0; i < len; i++) 430 intel_uncore_write(uncore, guc_send_reg(guc, i), action[i]); 431 432 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1)); 433 434 intel_guc_notify(guc); 435 436 /* 437 * No GuC command should ever take longer than 10ms. 438 * Fast commands should still complete in 10us. 439 */ 440 ret = __intel_wait_for_register_fw(uncore, 441 guc_send_reg(guc, 0), 442 INTEL_GUC_MSG_TYPE_MASK, 443 INTEL_GUC_MSG_TYPE_RESPONSE << 444 INTEL_GUC_MSG_TYPE_SHIFT, 445 10, 10, &status); 446 /* If GuC explicitly returned an error, convert it to -EIO */ 447 if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status)) 448 ret = -EIO; 449 450 if (ret) { 451 DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n", 452 action[0], ret, status); 453 goto out; 454 } 455 456 if (response_buf) { 457 int count = min(response_buf_size, guc->send_regs.count - 1); 458 459 for (i = 0; i < count; i++) 460 response_buf[i] = intel_uncore_read(uncore, 461 guc_send_reg(guc, i + 1)); 462 } 463 464 /* Use data from the GuC response as our return value */ 465 ret = INTEL_GUC_MSG_TO_DATA(status); 466 467 out: 468 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains); 469 mutex_unlock(&guc->send_mutex); 470 471 return ret; 472 } 473 474 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, 475 const u32 *payload, u32 len) 476 { 477 u32 msg; 478 479 if (unlikely(!len)) 480 return -EPROTO; 481 482 /* Make sure to handle only enabled messages */ 483 msg = payload[0] & guc->msg_enabled_mask; 484 485 if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER | 486 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)) 487 intel_guc_log_handle_flush_event(&guc->log); 488 489 return 0; 490 } 491 492 int intel_guc_sample_forcewake(struct intel_guc *guc) 493 { 494 struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915; 495 u32 action[2]; 496 497 action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE; 498 /* WaRsDisableCoarsePowerGating:skl,cnl */ 499 if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv)) 500 action[1] = 0; 501 else 502 /* bit 0 and 1 are for Render and Media domain separately */ 503 action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA; 504 505 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 506 } 507 508 /** 509 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode 510 * @guc: intel_guc structure 511 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma 512 * 513 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send 514 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by 515 * intel_huc_auth(). 516 * 517 * Return: non-zero code on error 518 */ 519 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset) 520 { 521 u32 action[] = { 522 INTEL_GUC_ACTION_AUTHENTICATE_HUC, 523 rsa_offset 524 }; 525 526 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 527 } 528 529 /** 530 * intel_guc_suspend() - notify GuC entering suspend state 531 * @guc: the guc 532 */ 533 int intel_guc_suspend(struct intel_guc *guc) 534 { 535 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 536 int ret; 537 u32 status; 538 u32 action[] = { 539 INTEL_GUC_ACTION_ENTER_S_STATE, 540 GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */ 541 }; 542 543 /* 544 * If GuC communication is enabled but submission is not supported, 545 * we do not need to suspend the GuC. 546 */ 547 if (!intel_guc_submission_is_enabled(guc)) 548 return 0; 549 550 /* 551 * The ENTER_S_STATE action queues the save/restore operation in GuC FW 552 * and then returns, so waiting on the H2G is not enough to guarantee 553 * GuC is done. When all the processing is done, GuC writes 554 * INTEL_GUC_SLEEP_STATE_SUCCESS to scratch register 14, so we can poll 555 * on that. Note that GuC does not ensure that the value in the register 556 * is different from INTEL_GUC_SLEEP_STATE_SUCCESS while the action is 557 * in progress so we need to take care of that ourselves as well. 558 */ 559 560 intel_uncore_write(uncore, SOFT_SCRATCH(14), 561 INTEL_GUC_SLEEP_STATE_INVALID_MASK); 562 563 ret = intel_guc_send(guc, action, ARRAY_SIZE(action)); 564 if (ret) 565 return ret; 566 567 ret = __intel_wait_for_register(uncore, SOFT_SCRATCH(14), 568 INTEL_GUC_SLEEP_STATE_INVALID_MASK, 569 0, 0, 10, &status); 570 if (ret) 571 return ret; 572 573 if (status != INTEL_GUC_SLEEP_STATE_SUCCESS) { 574 DRM_ERROR("GuC failed to change sleep state. " 575 "action=0x%x, err=%u\n", 576 action[0], status); 577 return -EIO; 578 } 579 580 return 0; 581 } 582 583 /** 584 * intel_guc_reset_engine() - ask GuC to reset an engine 585 * @guc: intel_guc structure 586 * @engine: engine to be reset 587 */ 588 int intel_guc_reset_engine(struct intel_guc *guc, 589 struct intel_engine_cs *engine) 590 { 591 /* XXX: to be implemented with submission interface rework */ 592 593 return -ENODEV; 594 } 595 596 /** 597 * intel_guc_resume() - notify GuC resuming from suspend state 598 * @guc: the guc 599 */ 600 int intel_guc_resume(struct intel_guc *guc) 601 { 602 u32 action[] = { 603 INTEL_GUC_ACTION_EXIT_S_STATE, 604 GUC_POWER_D0, 605 }; 606 607 /* 608 * If GuC communication is enabled but submission is not supported, 609 * we do not need to resume the GuC but we do need to enable the 610 * GuC communication on resume (above). 611 */ 612 if (!intel_guc_submission_is_enabled(guc)) 613 return 0; 614 615 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 616 } 617 618 /** 619 * DOC: GuC Memory Management 620 * 621 * GuC can't allocate any memory for its own usage, so all the allocations must 622 * be handled by the host driver. GuC accesses the memory via the GGTT, with the 623 * exception of the top and bottom parts of the 4GB address space, which are 624 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM) 625 * or other parts of the HW. The driver must take care not to place objects that 626 * the GuC is going to access in these reserved ranges. The layout of the GuC 627 * address space is shown below: 628 * 629 * :: 630 * 631 * +===========> +====================+ <== FFFF_FFFF 632 * ^ | Reserved | 633 * | +====================+ <== GUC_GGTT_TOP 634 * | | | 635 * | | DRAM | 636 * GuC | | 637 * Address +===> +====================+ <== GuC ggtt_pin_bias 638 * Space ^ | | 639 * | | | | 640 * | GuC | GuC | 641 * | WOPCM | WOPCM | 642 * | Size | | 643 * | | | | 644 * v v | | 645 * +=======+===> +====================+ <== 0000_0000 646 * 647 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM 648 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped 649 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size. 650 */ 651 652 /** 653 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage 654 * @guc: the guc 655 * @size: size of area to allocate (both virtual space and memory) 656 * 657 * This is a wrapper to create an object for use with the GuC. In order to 658 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate 659 * both some backing storage and a range inside the Global GTT. We must pin 660 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that 661 * range is reserved inside GuC. 662 * 663 * Return: A i915_vma if successful, otherwise an ERR_PTR. 664 */ 665 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) 666 { 667 struct intel_gt *gt = guc_to_gt(guc); 668 struct drm_i915_gem_object *obj; 669 struct i915_vma *vma; 670 u64 flags; 671 int ret; 672 673 obj = i915_gem_object_create_shmem(gt->i915, size); 674 if (IS_ERR(obj)) 675 return ERR_CAST(obj); 676 677 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 678 if (IS_ERR(vma)) 679 goto err; 680 681 flags = PIN_GLOBAL | PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); 682 ret = i915_vma_pin(vma, 0, 0, flags); 683 if (ret) { 684 vma = ERR_PTR(ret); 685 goto err; 686 } 687 688 return i915_vma_make_unshrinkable(vma); 689 690 err: 691 i915_gem_object_put(obj); 692 return vma; 693 } 694 695 /** 696 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage 697 * @guc: the guc 698 * @size: size of area to allocate (both virtual space and memory) 699 * @out_vma: return variable for the allocated vma pointer 700 * @out_vaddr: return variable for the obj mapping 701 * 702 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated 703 * object with I915_MAP_WB. 704 * 705 * Return: 0 if successful, a negative errno code otherwise. 706 */ 707 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size, 708 struct i915_vma **out_vma, void **out_vaddr) 709 { 710 struct i915_vma *vma; 711 void *vaddr; 712 713 vma = intel_guc_allocate_vma(guc, size); 714 if (IS_ERR(vma)) 715 return PTR_ERR(vma); 716 717 vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); 718 if (IS_ERR(vaddr)) { 719 i915_vma_unpin_and_release(&vma, 0); 720 return PTR_ERR(vaddr); 721 } 722 723 *out_vma = vma; 724 *out_vaddr = vaddr; 725 726 return 0; 727 } 728