1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2019 Intel Corporation 4 */ 5 6 #include "gem/i915_gem_lmem.h" 7 #include "gt/intel_gt.h" 8 #include "gt/intel_gt_irq.h" 9 #include "gt/intel_gt_pm_irq.h" 10 #include "gt/intel_gt_regs.h" 11 #include "intel_guc.h" 12 #include "intel_guc_ads.h" 13 #include "intel_guc_capture.h" 14 #include "intel_guc_print.h" 15 #include "intel_guc_slpc.h" 16 #include "intel_guc_submission.h" 17 #include "i915_drv.h" 18 #include "i915_irq.h" 19 #include "i915_reg.h" 20 21 /** 22 * DOC: GuC 23 * 24 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is 25 * designed to offload some of the functionality usually performed by the host 26 * driver; currently the main operations it can take care of are: 27 * 28 * - Authentication of the HuC, which is required to fully enable HuC usage. 29 * - Low latency graphics context scheduling (a.k.a. GuC submission). 30 * - GT Power management. 31 * 32 * The enable_guc module parameter can be used to select which of those 33 * operations to enable within GuC. Note that not all the operations are 34 * supported on all gen9+ platforms. 35 * 36 * Enabling the GuC is not mandatory and therefore the firmware is only loaded 37 * if at least one of the operations is selected. However, not loading the GuC 38 * might result in the loss of some features that do require the GuC (currently 39 * just the HuC, but more are expected to land in the future). 40 */ 41 42 void intel_guc_notify(struct intel_guc *guc) 43 { 44 struct intel_gt *gt = guc_to_gt(guc); 45 46 /* 47 * On Gen11+, the value written to the register is passes as a payload 48 * to the FW. However, the FW currently treats all values the same way 49 * (H2G interrupt), so we can just write the value that the HW expects 50 * on older gens. 51 */ 52 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER); 53 } 54 55 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i) 56 { 57 GEM_BUG_ON(!guc->send_regs.base); 58 GEM_BUG_ON(!guc->send_regs.count); 59 GEM_BUG_ON(i >= guc->send_regs.count); 60 61 return _MMIO(guc->send_regs.base + 4 * i); 62 } 63 64 void intel_guc_init_send_regs(struct intel_guc *guc) 65 { 66 struct intel_gt *gt = guc_to_gt(guc); 67 enum forcewake_domains fw_domains = 0; 68 unsigned int i; 69 70 GEM_BUG_ON(!guc->send_regs.base); 71 GEM_BUG_ON(!guc->send_regs.count); 72 73 for (i = 0; i < guc->send_regs.count; i++) { 74 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore, 75 guc_send_reg(guc, i), 76 FW_REG_READ | FW_REG_WRITE); 77 } 78 guc->send_regs.fw_domains = fw_domains; 79 } 80 81 static void gen9_reset_guc_interrupts(struct intel_guc *guc) 82 { 83 struct intel_gt *gt = guc_to_gt(guc); 84 85 assert_rpm_wakelock_held(>->i915->runtime_pm); 86 87 spin_lock_irq(gt->irq_lock); 88 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events); 89 spin_unlock_irq(gt->irq_lock); 90 } 91 92 static void gen9_enable_guc_interrupts(struct intel_guc *guc) 93 { 94 struct intel_gt *gt = guc_to_gt(guc); 95 96 assert_rpm_wakelock_held(>->i915->runtime_pm); 97 98 spin_lock_irq(gt->irq_lock); 99 guc_WARN_ON_ONCE(guc, intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) & 100 gt->pm_guc_events); 101 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events); 102 spin_unlock_irq(gt->irq_lock); 103 104 guc->interrupts.enabled = true; 105 } 106 107 static void gen9_disable_guc_interrupts(struct intel_guc *guc) 108 { 109 struct intel_gt *gt = guc_to_gt(guc); 110 111 assert_rpm_wakelock_held(>->i915->runtime_pm); 112 guc->interrupts.enabled = false; 113 114 spin_lock_irq(gt->irq_lock); 115 116 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events); 117 118 spin_unlock_irq(gt->irq_lock); 119 intel_synchronize_irq(gt->i915); 120 121 gen9_reset_guc_interrupts(guc); 122 } 123 124 static bool __gen11_reset_guc_interrupts(struct intel_gt *gt) 125 { 126 u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC; 127 128 lockdep_assert_held(gt->irq_lock); 129 return gen11_gt_reset_one_iir(gt, 0, irq); 130 } 131 132 static void gen11_reset_guc_interrupts(struct intel_guc *guc) 133 { 134 struct intel_gt *gt = guc_to_gt(guc); 135 136 spin_lock_irq(gt->irq_lock); 137 __gen11_reset_guc_interrupts(gt); 138 spin_unlock_irq(gt->irq_lock); 139 } 140 141 static void gen11_enable_guc_interrupts(struct intel_guc *guc) 142 { 143 struct intel_gt *gt = guc_to_gt(guc); 144 145 spin_lock_irq(gt->irq_lock); 146 __gen11_reset_guc_interrupts(gt); 147 spin_unlock_irq(gt->irq_lock); 148 149 guc->interrupts.enabled = true; 150 } 151 152 static void gen11_disable_guc_interrupts(struct intel_guc *guc) 153 { 154 struct intel_gt *gt = guc_to_gt(guc); 155 156 guc->interrupts.enabled = false; 157 intel_synchronize_irq(gt->i915); 158 159 gen11_reset_guc_interrupts(guc); 160 } 161 162 void intel_guc_init_early(struct intel_guc *guc) 163 { 164 struct intel_gt *gt = guc_to_gt(guc); 165 struct drm_i915_private *i915 = gt->i915; 166 167 intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC, true); 168 intel_guc_ct_init_early(&guc->ct); 169 intel_guc_log_init_early(&guc->log); 170 intel_guc_submission_init_early(guc); 171 intel_guc_slpc_init_early(&guc->slpc); 172 intel_guc_rc_init_early(guc); 173 174 mutex_init(&guc->send_mutex); 175 spin_lock_init(&guc->irq_lock); 176 if (GRAPHICS_VER(i915) >= 11) { 177 guc->interrupts.reset = gen11_reset_guc_interrupts; 178 guc->interrupts.enable = gen11_enable_guc_interrupts; 179 guc->interrupts.disable = gen11_disable_guc_interrupts; 180 if (gt->type == GT_MEDIA) { 181 guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT; 182 guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0)); 183 } else { 184 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT; 185 guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0)); 186 } 187 188 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT; 189 190 } else { 191 guc->notify_reg = GUC_SEND_INTERRUPT; 192 guc->interrupts.reset = gen9_reset_guc_interrupts; 193 guc->interrupts.enable = gen9_enable_guc_interrupts; 194 guc->interrupts.disable = gen9_disable_guc_interrupts; 195 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0)); 196 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN; 197 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT); 198 } 199 200 intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION | 201 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED); 202 } 203 204 void intel_guc_init_late(struct intel_guc *guc) 205 { 206 intel_guc_ads_init_late(guc); 207 } 208 209 static u32 guc_ctl_debug_flags(struct intel_guc *guc) 210 { 211 u32 level = intel_guc_log_get_level(&guc->log); 212 u32 flags = 0; 213 214 if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) 215 flags |= GUC_LOG_DISABLED; 216 else 217 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << 218 GUC_LOG_VERBOSITY_SHIFT; 219 220 return flags; 221 } 222 223 static u32 guc_ctl_feature_flags(struct intel_guc *guc) 224 { 225 u32 flags = 0; 226 227 if (!intel_guc_submission_is_used(guc)) 228 flags |= GUC_CTL_DISABLE_SCHEDULER; 229 230 if (intel_guc_slpc_is_used(guc)) 231 flags |= GUC_CTL_ENABLE_SLPC; 232 233 return flags; 234 } 235 236 static u32 guc_ctl_log_params_flags(struct intel_guc *guc) 237 { 238 struct intel_guc_log *log = &guc->log; 239 u32 offset, flags; 240 241 GEM_BUG_ON(!log->sizes_initialised); 242 243 offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT; 244 245 flags = GUC_LOG_VALID | 246 GUC_LOG_NOTIFY_ON_HALF_FULL | 247 log->sizes[GUC_LOG_SECTIONS_DEBUG].flag | 248 log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag | 249 (log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) | 250 (log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) | 251 (log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) | 252 (offset << GUC_LOG_BUF_ADDR_SHIFT); 253 254 return flags; 255 } 256 257 static u32 guc_ctl_ads_flags(struct intel_guc *guc) 258 { 259 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT; 260 u32 flags = ads << GUC_ADS_ADDR_SHIFT; 261 262 return flags; 263 } 264 265 static u32 guc_ctl_wa_flags(struct intel_guc *guc) 266 { 267 struct intel_gt *gt = guc_to_gt(guc); 268 u32 flags = 0; 269 270 /* Wa_22012773006:gen11,gen12 < XeHP */ 271 if (GRAPHICS_VER(gt->i915) >= 11 && 272 GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 50)) 273 flags |= GUC_WA_POLLCS; 274 275 /* Wa_16011759253:dg2_g10:a0 */ 276 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0)) 277 flags |= GUC_WA_GAM_CREDITS; 278 279 /* Wa_14014475959 */ 280 if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) || 281 IS_DG2(gt->i915)) 282 flags |= GUC_WA_HOLD_CCS_SWITCHOUT; 283 284 /* 285 * Wa_14012197797:dg2_g10:a0,dg2_g11:a0 286 * Wa_22011391025:dg2_g10,dg2_g11,dg2_g12 287 * 288 * The same WA bit is used for both and 22011391025 is applicable to 289 * all DG2. 290 */ 291 if (IS_DG2(gt->i915)) 292 flags |= GUC_WA_DUAL_QUEUE; 293 294 /* Wa_22011802037: graphics version 11/12 */ 295 if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) || 296 (GRAPHICS_VER(gt->i915) >= 11 && 297 GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70))) 298 flags |= GUC_WA_PRE_PARSER; 299 300 /* Wa_16011777198:dg2 */ 301 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) || 302 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0)) 303 flags |= GUC_WA_RCS_RESET_BEFORE_RC6; 304 305 /* 306 * Wa_22012727170:dg2_g10[a0-c0), dg2_g11[a0..) 307 * Wa_22012727685:dg2_g11[a0..) 308 */ 309 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) || 310 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_FOREVER)) 311 flags |= GUC_WA_CONTEXT_ISOLATION; 312 313 /* Wa_16015675438 */ 314 if (!RCS_MASK(gt)) 315 flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST; 316 317 return flags; 318 } 319 320 static u32 guc_ctl_devid(struct intel_guc *guc) 321 { 322 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 323 324 return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915); 325 } 326 327 /* 328 * Initialise the GuC parameter block before starting the firmware 329 * transfer. These parameters are read by the firmware on startup 330 * and cannot be changed thereafter. 331 */ 332 static void guc_init_params(struct intel_guc *guc) 333 { 334 u32 *params = guc->params; 335 int i; 336 337 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); 338 339 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); 340 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); 341 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); 342 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); 343 params[GUC_CTL_WA] = guc_ctl_wa_flags(guc); 344 params[GUC_CTL_DEVID] = guc_ctl_devid(guc); 345 346 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 347 guc_dbg(guc, "param[%2d] = %#x\n", i, params[i]); 348 } 349 350 /* 351 * Initialise the GuC parameter block before starting the firmware 352 * transfer. These parameters are read by the firmware on startup 353 * and cannot be changed thereafter. 354 */ 355 void intel_guc_write_params(struct intel_guc *guc) 356 { 357 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 358 int i; 359 360 /* 361 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and 362 * they are power context saved so it's ok to release forcewake 363 * when we are done here and take it again at xfer time. 364 */ 365 intel_uncore_forcewake_get(uncore, FORCEWAKE_GT); 366 367 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0); 368 369 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 370 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]); 371 372 intel_uncore_forcewake_put(uncore, FORCEWAKE_GT); 373 } 374 375 void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p) 376 { 377 struct intel_gt *gt = guc_to_gt(guc); 378 intel_wakeref_t wakeref; 379 u32 stamp = 0; 380 u64 ktime; 381 382 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) 383 stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP); 384 ktime = ktime_get_boottime_ns(); 385 386 drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime); 387 drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp); 388 drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n", 389 gt->clock_frequency, gt->clock_period_ns); 390 } 391 392 int intel_guc_init(struct intel_guc *guc) 393 { 394 int ret; 395 396 ret = intel_uc_fw_init(&guc->fw); 397 if (ret) 398 goto out; 399 400 ret = intel_guc_log_create(&guc->log); 401 if (ret) 402 goto err_fw; 403 404 ret = intel_guc_capture_init(guc); 405 if (ret) 406 goto err_log; 407 408 ret = intel_guc_ads_create(guc); 409 if (ret) 410 goto err_capture; 411 412 GEM_BUG_ON(!guc->ads_vma); 413 414 ret = intel_guc_ct_init(&guc->ct); 415 if (ret) 416 goto err_ads; 417 418 if (intel_guc_submission_is_used(guc)) { 419 /* 420 * This is stuff we need to have available at fw load time 421 * if we are planning to enable submission later 422 */ 423 ret = intel_guc_submission_init(guc); 424 if (ret) 425 goto err_ct; 426 } 427 428 if (intel_guc_slpc_is_used(guc)) { 429 ret = intel_guc_slpc_init(&guc->slpc); 430 if (ret) 431 goto err_submission; 432 } 433 434 /* now that everything is perma-pinned, initialize the parameters */ 435 guc_init_params(guc); 436 437 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE); 438 439 return 0; 440 441 err_submission: 442 intel_guc_submission_fini(guc); 443 err_ct: 444 intel_guc_ct_fini(&guc->ct); 445 err_ads: 446 intel_guc_ads_destroy(guc); 447 err_capture: 448 intel_guc_capture_destroy(guc); 449 err_log: 450 intel_guc_log_destroy(&guc->log); 451 err_fw: 452 intel_uc_fw_fini(&guc->fw); 453 out: 454 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL); 455 guc_probe_error(guc, "failed with %pe\n", ERR_PTR(ret)); 456 return ret; 457 } 458 459 void intel_guc_fini(struct intel_guc *guc) 460 { 461 if (!intel_uc_fw_is_loadable(&guc->fw)) 462 return; 463 464 if (intel_guc_slpc_is_used(guc)) 465 intel_guc_slpc_fini(&guc->slpc); 466 467 if (intel_guc_submission_is_used(guc)) 468 intel_guc_submission_fini(guc); 469 470 intel_guc_ct_fini(&guc->ct); 471 472 intel_guc_ads_destroy(guc); 473 intel_guc_capture_destroy(guc); 474 intel_guc_log_destroy(&guc->log); 475 intel_uc_fw_fini(&guc->fw); 476 } 477 478 /* 479 * This function implements the MMIO based host to GuC interface. 480 */ 481 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len, 482 u32 *response_buf, u32 response_buf_size) 483 { 484 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 485 u32 header; 486 int i; 487 int ret; 488 489 GEM_BUG_ON(!len); 490 GEM_BUG_ON(len > guc->send_regs.count); 491 492 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST); 493 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST); 494 495 mutex_lock(&guc->send_mutex); 496 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains); 497 498 retry: 499 for (i = 0; i < len; i++) 500 intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]); 501 502 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1)); 503 504 intel_guc_notify(guc); 505 506 /* 507 * No GuC command should ever take longer than 10ms. 508 * Fast commands should still complete in 10us. 509 */ 510 ret = __intel_wait_for_register_fw(uncore, 511 guc_send_reg(guc, 0), 512 GUC_HXG_MSG_0_ORIGIN, 513 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, 514 GUC_HXG_ORIGIN_GUC), 515 10, 10, &header); 516 if (unlikely(ret)) { 517 timeout: 518 guc_err(guc, "mmio request %#x: no reply %x\n", 519 request[0], header); 520 goto out; 521 } 522 523 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) { 524 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \ 525 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \ 526 FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; }) 527 528 ret = wait_for(done, 1000); 529 if (unlikely(ret)) 530 goto timeout; 531 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != 532 GUC_HXG_ORIGIN_GUC)) 533 goto proto; 534 #undef done 535 } 536 537 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { 538 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header); 539 540 guc_dbg(guc, "mmio request %#x: retrying, reason %u\n", 541 request[0], reason); 542 goto retry; 543 } 544 545 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) { 546 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header); 547 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header); 548 549 guc_err(guc, "mmio request %#x: failure %x/%u\n", 550 request[0], error, hint); 551 ret = -ENXIO; 552 goto out; 553 } 554 555 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) { 556 proto: 557 guc_err(guc, "mmio request %#x: unexpected reply %#x\n", 558 request[0], header); 559 ret = -EPROTO; 560 goto out; 561 } 562 563 if (response_buf) { 564 int count = min(response_buf_size, guc->send_regs.count); 565 566 GEM_BUG_ON(!count); 567 568 response_buf[0] = header; 569 570 for (i = 1; i < count; i++) 571 response_buf[i] = intel_uncore_read(uncore, 572 guc_send_reg(guc, i)); 573 574 /* Use number of copied dwords as our return value */ 575 ret = count; 576 } else { 577 /* Use data from the GuC response as our return value */ 578 ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header); 579 } 580 581 out: 582 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains); 583 mutex_unlock(&guc->send_mutex); 584 585 return ret; 586 } 587 588 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, 589 const u32 *payload, u32 len) 590 { 591 u32 msg; 592 593 if (unlikely(!len)) 594 return -EPROTO; 595 596 /* Make sure to handle only enabled messages */ 597 msg = payload[0] & guc->msg_enabled_mask; 598 599 if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED) 600 guc_err(guc, "Received early crash dump notification!\n"); 601 if (msg & INTEL_GUC_RECV_MSG_EXCEPTION) 602 guc_err(guc, "Received early exception notification!\n"); 603 604 return 0; 605 } 606 607 /** 608 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode 609 * @guc: intel_guc structure 610 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma 611 * 612 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send 613 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by 614 * intel_huc_auth(). 615 * 616 * Return: non-zero code on error 617 */ 618 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset) 619 { 620 u32 action[] = { 621 INTEL_GUC_ACTION_AUTHENTICATE_HUC, 622 rsa_offset 623 }; 624 625 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 626 } 627 628 /** 629 * intel_guc_suspend() - notify GuC entering suspend state 630 * @guc: the guc 631 */ 632 int intel_guc_suspend(struct intel_guc *guc) 633 { 634 int ret; 635 u32 action[] = { 636 INTEL_GUC_ACTION_CLIENT_SOFT_RESET, 637 }; 638 639 if (!intel_guc_is_ready(guc)) 640 return 0; 641 642 if (intel_guc_submission_is_used(guc)) { 643 /* 644 * This H2G MMIO command tears down the GuC in two steps. First it will 645 * generate a G2H CTB for every active context indicating a reset. In 646 * practice the i915 shouldn't ever get a G2H as suspend should only be 647 * called when the GPU is idle. Next, it tears down the CTBs and this 648 * H2G MMIO command completes. 649 * 650 * Don't abort on a failure code from the GuC. Keep going and do the 651 * clean up in santize() and re-initialisation on resume and hopefully 652 * the error here won't be problematic. 653 */ 654 ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0); 655 if (ret) 656 guc_err(guc, "suspend: RESET_CLIENT action failed with %pe\n", 657 ERR_PTR(ret)); 658 } 659 660 /* Signal that the GuC isn't running. */ 661 intel_guc_sanitize(guc); 662 663 return 0; 664 } 665 666 /** 667 * intel_guc_resume() - notify GuC resuming from suspend state 668 * @guc: the guc 669 */ 670 int intel_guc_resume(struct intel_guc *guc) 671 { 672 /* 673 * NB: This function can still be called even if GuC submission is 674 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus, 675 * if any code is later added here, it must be support doing nothing 676 * if submission is disabled (as per intel_guc_suspend). 677 */ 678 return 0; 679 } 680 681 /** 682 * DOC: GuC Memory Management 683 * 684 * GuC can't allocate any memory for its own usage, so all the allocations must 685 * be handled by the host driver. GuC accesses the memory via the GGTT, with the 686 * exception of the top and bottom parts of the 4GB address space, which are 687 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM) 688 * or other parts of the HW. The driver must take care not to place objects that 689 * the GuC is going to access in these reserved ranges. The layout of the GuC 690 * address space is shown below: 691 * 692 * :: 693 * 694 * +===========> +====================+ <== FFFF_FFFF 695 * ^ | Reserved | 696 * | +====================+ <== GUC_GGTT_TOP 697 * | | | 698 * | | DRAM | 699 * GuC | | 700 * Address +===> +====================+ <== GuC ggtt_pin_bias 701 * Space ^ | | 702 * | | | | 703 * | GuC | GuC | 704 * | WOPCM | WOPCM | 705 * | Size | | 706 * | | | | 707 * v v | | 708 * +=======+===> +====================+ <== 0000_0000 709 * 710 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM 711 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped 712 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size. 713 */ 714 715 /** 716 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage 717 * @guc: the guc 718 * @size: size of area to allocate (both virtual space and memory) 719 * 720 * This is a wrapper to create an object for use with the GuC. In order to 721 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate 722 * both some backing storage and a range inside the Global GTT. We must pin 723 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that 724 * range is reserved inside GuC. 725 * 726 * Return: A i915_vma if successful, otherwise an ERR_PTR. 727 */ 728 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) 729 { 730 struct intel_gt *gt = guc_to_gt(guc); 731 struct drm_i915_gem_object *obj; 732 struct i915_vma *vma; 733 u64 flags; 734 int ret; 735 736 if (HAS_LMEM(gt->i915)) 737 obj = i915_gem_object_create_lmem(gt->i915, size, 738 I915_BO_ALLOC_CPU_CLEAR | 739 I915_BO_ALLOC_CONTIGUOUS | 740 I915_BO_ALLOC_PM_EARLY); 741 else 742 obj = i915_gem_object_create_shmem(gt->i915, size); 743 744 if (IS_ERR(obj)) 745 return ERR_CAST(obj); 746 747 /* 748 * Wa_22016122933: For MTL the shared memory needs to be mapped 749 * as WC on CPU side and UC (PAT index 2) on GPU side 750 */ 751 if (IS_METEORLAKE(gt->i915)) 752 i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE); 753 754 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 755 if (IS_ERR(vma)) 756 goto err; 757 758 flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); 759 ret = i915_ggtt_pin(vma, NULL, 0, flags); 760 if (ret) { 761 vma = ERR_PTR(ret); 762 goto err; 763 } 764 765 return i915_vma_make_unshrinkable(vma); 766 767 err: 768 i915_gem_object_put(obj); 769 return vma; 770 } 771 772 /** 773 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage 774 * @guc: the guc 775 * @size: size of area to allocate (both virtual space and memory) 776 * @out_vma: return variable for the allocated vma pointer 777 * @out_vaddr: return variable for the obj mapping 778 * 779 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated 780 * object with I915_MAP_WB. 781 * 782 * Return: 0 if successful, a negative errno code otherwise. 783 */ 784 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size, 785 struct i915_vma **out_vma, void **out_vaddr) 786 { 787 struct i915_vma *vma; 788 void *vaddr; 789 790 vma = intel_guc_allocate_vma(guc, size); 791 if (IS_ERR(vma)) 792 return PTR_ERR(vma); 793 794 vaddr = i915_gem_object_pin_map_unlocked(vma->obj, 795 i915_coherent_map_type(guc_to_gt(guc)->i915, 796 vma->obj, true)); 797 if (IS_ERR(vaddr)) { 798 i915_vma_unpin_and_release(&vma, 0); 799 return PTR_ERR(vaddr); 800 } 801 802 *out_vma = vma; 803 *out_vaddr = vaddr; 804 805 return 0; 806 } 807 808 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 809 { 810 u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = { 811 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | 812 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | 813 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG), 814 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) | 815 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len), 816 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)), 817 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)), 818 }; 819 int ret; 820 821 GEM_BUG_ON(len > 2); 822 GEM_BUG_ON(len == 1 && upper_32_bits(value)); 823 824 /* Self config must go over MMIO */ 825 ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0); 826 827 if (unlikely(ret < 0)) 828 return ret; 829 if (unlikely(ret > 1)) 830 return -EPROTO; 831 if (unlikely(!ret)) 832 return -ENOKEY; 833 834 return 0; 835 } 836 837 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 838 { 839 int err = __guc_action_self_cfg(guc, key, len, value); 840 841 if (unlikely(err)) 842 guc_probe_error(guc, "Unsuccessful self-config (%pe) key %#hx value %#llx\n", 843 ERR_PTR(err), key, value); 844 return err; 845 } 846 847 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value) 848 { 849 return __guc_self_cfg(guc, key, 1, value); 850 } 851 852 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value) 853 { 854 return __guc_self_cfg(guc, key, 2, value); 855 } 856 857 /** 858 * intel_guc_load_status - dump information about GuC load status 859 * @guc: the GuC 860 * @p: the &drm_printer 861 * 862 * Pretty printer for GuC load status. 863 */ 864 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p) 865 { 866 struct intel_gt *gt = guc_to_gt(guc); 867 struct intel_uncore *uncore = gt->uncore; 868 intel_wakeref_t wakeref; 869 870 if (!intel_guc_is_supported(guc)) { 871 drm_printf(p, "GuC not supported\n"); 872 return; 873 } 874 875 if (!intel_guc_is_wanted(guc)) { 876 drm_printf(p, "GuC disabled\n"); 877 return; 878 } 879 880 intel_uc_fw_dump(&guc->fw, p); 881 882 with_intel_runtime_pm(uncore->rpm, wakeref) { 883 u32 status = intel_uncore_read(uncore, GUC_STATUS); 884 u32 i; 885 886 drm_printf(p, "GuC status 0x%08x:\n", status); 887 drm_printf(p, "\tBootrom status = 0x%x\n", 888 (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT); 889 drm_printf(p, "\tuKernel status = 0x%x\n", 890 (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT); 891 drm_printf(p, "\tMIA Core status = 0x%x\n", 892 (status & GS_MIA_MASK) >> GS_MIA_SHIFT); 893 drm_puts(p, "Scratch registers:\n"); 894 for (i = 0; i < 16; i++) { 895 drm_printf(p, "\t%2d: \t0x%x\n", 896 i, intel_uncore_read(uncore, SOFT_SCRATCH(i))); 897 } 898 } 899 } 900 901 void intel_guc_write_barrier(struct intel_guc *guc) 902 { 903 struct intel_gt *gt = guc_to_gt(guc); 904 905 if (i915_gem_object_is_lmem(guc->ct.vma->obj)) { 906 /* 907 * Ensure intel_uncore_write_fw can be used rather than 908 * intel_uncore_write. 909 */ 910 GEM_BUG_ON(guc->send_regs.fw_domains); 911 912 /* 913 * This register is used by the i915 and GuC for MMIO based 914 * communication. Once we are in this code CTBs are the only 915 * method the i915 uses to communicate with the GuC so it is 916 * safe to write to this register (a value of 0 is NOP for MMIO 917 * communication). If we ever start mixing CTBs and MMIOs a new 918 * register will have to be chosen. This function is also used 919 * to enforce ordering of a work queue item write and an update 920 * to the process descriptor. When a work queue is being used, 921 * CTBs are also the only mechanism of communication. 922 */ 923 intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0); 924 } else { 925 /* wmb() sufficient for a barrier if in smem */ 926 wmb(); 927 } 928 } 929