1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2019 Intel Corporation 4 */ 5 6 #include "gt/intel_gt.h" 7 #include "gt/intel_gt_irq.h" 8 #include "gt/intel_gt_pm_irq.h" 9 #include "intel_guc.h" 10 #include "intel_guc_ads.h" 11 #include "intel_guc_submission.h" 12 #include "i915_drv.h" 13 14 /** 15 * DOC: GuC 16 * 17 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is 18 * designed to offload some of the functionality usually performed by the host 19 * driver; currently the main operations it can take care of are: 20 * 21 * - Authentication of the HuC, which is required to fully enable HuC usage. 22 * - Low latency graphics context scheduling (a.k.a. GuC submission). 23 * - GT Power management. 24 * 25 * The enable_guc module parameter can be used to select which of those 26 * operations to enable within GuC. Note that not all the operations are 27 * supported on all gen9+ platforms. 28 * 29 * Enabling the GuC is not mandatory and therefore the firmware is only loaded 30 * if at least one of the operations is selected. However, not loading the GuC 31 * might result in the loss of some features that do require the GuC (currently 32 * just the HuC, but more are expected to land in the future). 33 */ 34 35 void intel_guc_notify(struct intel_guc *guc) 36 { 37 struct intel_gt *gt = guc_to_gt(guc); 38 39 /* 40 * On Gen11+, the value written to the register is passes as a payload 41 * to the FW. However, the FW currently treats all values the same way 42 * (H2G interrupt), so we can just write the value that the HW expects 43 * on older gens. 44 */ 45 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER); 46 } 47 48 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i) 49 { 50 GEM_BUG_ON(!guc->send_regs.base); 51 GEM_BUG_ON(!guc->send_regs.count); 52 GEM_BUG_ON(i >= guc->send_regs.count); 53 54 return _MMIO(guc->send_regs.base + 4 * i); 55 } 56 57 void intel_guc_init_send_regs(struct intel_guc *guc) 58 { 59 struct intel_gt *gt = guc_to_gt(guc); 60 enum forcewake_domains fw_domains = 0; 61 unsigned int i; 62 63 GEM_BUG_ON(!guc->send_regs.base); 64 GEM_BUG_ON(!guc->send_regs.count); 65 66 for (i = 0; i < guc->send_regs.count; i++) { 67 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore, 68 guc_send_reg(guc, i), 69 FW_REG_READ | FW_REG_WRITE); 70 } 71 guc->send_regs.fw_domains = fw_domains; 72 } 73 74 static void gen9_reset_guc_interrupts(struct intel_guc *guc) 75 { 76 struct intel_gt *gt = guc_to_gt(guc); 77 78 assert_rpm_wakelock_held(>->i915->runtime_pm); 79 80 spin_lock_irq(>->irq_lock); 81 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events); 82 spin_unlock_irq(>->irq_lock); 83 } 84 85 static void gen9_enable_guc_interrupts(struct intel_guc *guc) 86 { 87 struct intel_gt *gt = guc_to_gt(guc); 88 89 assert_rpm_wakelock_held(>->i915->runtime_pm); 90 91 spin_lock_irq(>->irq_lock); 92 WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) & 93 gt->pm_guc_events); 94 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events); 95 spin_unlock_irq(>->irq_lock); 96 } 97 98 static void gen9_disable_guc_interrupts(struct intel_guc *guc) 99 { 100 struct intel_gt *gt = guc_to_gt(guc); 101 102 assert_rpm_wakelock_held(>->i915->runtime_pm); 103 104 spin_lock_irq(>->irq_lock); 105 106 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events); 107 108 spin_unlock_irq(>->irq_lock); 109 intel_synchronize_irq(gt->i915); 110 111 gen9_reset_guc_interrupts(guc); 112 } 113 114 static void gen11_reset_guc_interrupts(struct intel_guc *guc) 115 { 116 struct intel_gt *gt = guc_to_gt(guc); 117 118 spin_lock_irq(>->irq_lock); 119 gen11_gt_reset_one_iir(gt, 0, GEN11_GUC); 120 spin_unlock_irq(>->irq_lock); 121 } 122 123 static void gen11_enable_guc_interrupts(struct intel_guc *guc) 124 { 125 struct intel_gt *gt = guc_to_gt(guc); 126 u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST); 127 128 spin_lock_irq(>->irq_lock); 129 WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC)); 130 intel_uncore_write(gt->uncore, 131 GEN11_GUC_SG_INTR_ENABLE, events); 132 intel_uncore_write(gt->uncore, 133 GEN11_GUC_SG_INTR_MASK, ~events); 134 spin_unlock_irq(>->irq_lock); 135 } 136 137 static void gen11_disable_guc_interrupts(struct intel_guc *guc) 138 { 139 struct intel_gt *gt = guc_to_gt(guc); 140 141 spin_lock_irq(>->irq_lock); 142 143 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0); 144 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0); 145 146 spin_unlock_irq(>->irq_lock); 147 intel_synchronize_irq(gt->i915); 148 149 gen11_reset_guc_interrupts(guc); 150 } 151 152 void intel_guc_init_early(struct intel_guc *guc) 153 { 154 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 155 156 intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC); 157 intel_guc_ct_init_early(&guc->ct); 158 intel_guc_log_init_early(&guc->log); 159 intel_guc_submission_init_early(guc); 160 161 mutex_init(&guc->send_mutex); 162 spin_lock_init(&guc->irq_lock); 163 if (GRAPHICS_VER(i915) >= 11) { 164 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT; 165 guc->interrupts.reset = gen11_reset_guc_interrupts; 166 guc->interrupts.enable = gen11_enable_guc_interrupts; 167 guc->interrupts.disable = gen11_disable_guc_interrupts; 168 guc->send_regs.base = 169 i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0)); 170 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT; 171 172 } else { 173 guc->notify_reg = GUC_SEND_INTERRUPT; 174 guc->interrupts.reset = gen9_reset_guc_interrupts; 175 guc->interrupts.enable = gen9_enable_guc_interrupts; 176 guc->interrupts.disable = gen9_disable_guc_interrupts; 177 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0)); 178 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN; 179 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT); 180 } 181 } 182 183 static u32 guc_ctl_debug_flags(struct intel_guc *guc) 184 { 185 u32 level = intel_guc_log_get_level(&guc->log); 186 u32 flags = 0; 187 188 if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) 189 flags |= GUC_LOG_DISABLED; 190 else 191 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << 192 GUC_LOG_VERBOSITY_SHIFT; 193 194 return flags; 195 } 196 197 static u32 guc_ctl_feature_flags(struct intel_guc *guc) 198 { 199 u32 flags = 0; 200 201 if (!intel_guc_submission_is_used(guc)) 202 flags |= GUC_CTL_DISABLE_SCHEDULER; 203 204 return flags; 205 } 206 207 static u32 guc_ctl_log_params_flags(struct intel_guc *guc) 208 { 209 u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT; 210 u32 flags; 211 212 #if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0) 213 #define UNIT SZ_1M 214 #define FLAG GUC_LOG_ALLOC_IN_MEGABYTE 215 #else 216 #define UNIT SZ_4K 217 #define FLAG 0 218 #endif 219 220 BUILD_BUG_ON(!CRASH_BUFFER_SIZE); 221 BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT)); 222 BUILD_BUG_ON(!DPC_BUFFER_SIZE); 223 BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT)); 224 BUILD_BUG_ON(!ISR_BUFFER_SIZE); 225 BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT)); 226 227 BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) > 228 (GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT)); 229 BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) > 230 (GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT)); 231 BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) > 232 (GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT)); 233 234 flags = GUC_LOG_VALID | 235 GUC_LOG_NOTIFY_ON_HALF_FULL | 236 FLAG | 237 ((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) | 238 ((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) | 239 ((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) | 240 (offset << GUC_LOG_BUF_ADDR_SHIFT); 241 242 #undef UNIT 243 #undef FLAG 244 245 return flags; 246 } 247 248 static u32 guc_ctl_ads_flags(struct intel_guc *guc) 249 { 250 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT; 251 u32 flags = ads << GUC_ADS_ADDR_SHIFT; 252 253 return flags; 254 } 255 256 /* 257 * Initialise the GuC parameter block before starting the firmware 258 * transfer. These parameters are read by the firmware on startup 259 * and cannot be changed thereafter. 260 */ 261 static void guc_init_params(struct intel_guc *guc) 262 { 263 u32 *params = guc->params; 264 int i; 265 266 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); 267 268 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); 269 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); 270 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); 271 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); 272 273 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 274 DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]); 275 } 276 277 /* 278 * Initialise the GuC parameter block before starting the firmware 279 * transfer. These parameters are read by the firmware on startup 280 * and cannot be changed thereafter. 281 */ 282 void intel_guc_write_params(struct intel_guc *guc) 283 { 284 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 285 int i; 286 287 /* 288 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and 289 * they are power context saved so it's ok to release forcewake 290 * when we are done here and take it again at xfer time. 291 */ 292 intel_uncore_forcewake_get(uncore, FORCEWAKE_GT); 293 294 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0); 295 296 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 297 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]); 298 299 intel_uncore_forcewake_put(uncore, FORCEWAKE_GT); 300 } 301 302 int intel_guc_init(struct intel_guc *guc) 303 { 304 struct intel_gt *gt = guc_to_gt(guc); 305 int ret; 306 307 ret = intel_uc_fw_init(&guc->fw); 308 if (ret) 309 goto out; 310 311 ret = intel_guc_log_create(&guc->log); 312 if (ret) 313 goto err_fw; 314 315 ret = intel_guc_ads_create(guc); 316 if (ret) 317 goto err_log; 318 GEM_BUG_ON(!guc->ads_vma); 319 320 ret = intel_guc_ct_init(&guc->ct); 321 if (ret) 322 goto err_ads; 323 324 if (intel_guc_submission_is_used(guc)) { 325 /* 326 * This is stuff we need to have available at fw load time 327 * if we are planning to enable submission later 328 */ 329 ret = intel_guc_submission_init(guc); 330 if (ret) 331 goto err_ct; 332 } 333 334 /* now that everything is perma-pinned, initialize the parameters */ 335 guc_init_params(guc); 336 337 /* We need to notify the guc whenever we change the GGTT */ 338 i915_ggtt_enable_guc(gt->ggtt); 339 340 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE); 341 342 return 0; 343 344 err_ct: 345 intel_guc_ct_fini(&guc->ct); 346 err_ads: 347 intel_guc_ads_destroy(guc); 348 err_log: 349 intel_guc_log_destroy(&guc->log); 350 err_fw: 351 intel_uc_fw_fini(&guc->fw); 352 out: 353 i915_probe_error(gt->i915, "failed with %d\n", ret); 354 return ret; 355 } 356 357 void intel_guc_fini(struct intel_guc *guc) 358 { 359 struct intel_gt *gt = guc_to_gt(guc); 360 361 if (!intel_uc_fw_is_loadable(&guc->fw)) 362 return; 363 364 i915_ggtt_disable_guc(gt->ggtt); 365 366 if (intel_guc_submission_is_used(guc)) 367 intel_guc_submission_fini(guc); 368 369 intel_guc_ct_fini(&guc->ct); 370 371 intel_guc_ads_destroy(guc); 372 intel_guc_log_destroy(&guc->log); 373 intel_uc_fw_fini(&guc->fw); 374 } 375 376 /* 377 * This function implements the MMIO based host to GuC interface. 378 */ 379 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len, 380 u32 *response_buf, u32 response_buf_size) 381 { 382 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 383 u32 status; 384 int i; 385 int ret; 386 387 GEM_BUG_ON(!len); 388 GEM_BUG_ON(len > guc->send_regs.count); 389 390 /* We expect only action code */ 391 GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK); 392 393 /* If CT is available, we expect to use MMIO only during init/fini */ 394 GEM_BUG_ON(*action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER && 395 *action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER); 396 397 mutex_lock(&guc->send_mutex); 398 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains); 399 400 for (i = 0; i < len; i++) 401 intel_uncore_write(uncore, guc_send_reg(guc, i), action[i]); 402 403 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1)); 404 405 intel_guc_notify(guc); 406 407 /* 408 * No GuC command should ever take longer than 10ms. 409 * Fast commands should still complete in 10us. 410 */ 411 ret = __intel_wait_for_register_fw(uncore, 412 guc_send_reg(guc, 0), 413 INTEL_GUC_MSG_TYPE_MASK, 414 INTEL_GUC_MSG_TYPE_RESPONSE << 415 INTEL_GUC_MSG_TYPE_SHIFT, 416 10, 10, &status); 417 /* If GuC explicitly returned an error, convert it to -EIO */ 418 if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status)) 419 ret = -EIO; 420 421 if (ret) { 422 DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n", 423 action[0], ret, status); 424 goto out; 425 } 426 427 if (response_buf) { 428 int count = min(response_buf_size, guc->send_regs.count - 1); 429 430 for (i = 0; i < count; i++) 431 response_buf[i] = intel_uncore_read(uncore, 432 guc_send_reg(guc, i + 1)); 433 } 434 435 /* Use data from the GuC response as our return value */ 436 ret = INTEL_GUC_MSG_TO_DATA(status); 437 438 out: 439 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains); 440 mutex_unlock(&guc->send_mutex); 441 442 return ret; 443 } 444 445 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, 446 const u32 *payload, u32 len) 447 { 448 u32 msg; 449 450 if (unlikely(!len)) 451 return -EPROTO; 452 453 /* Make sure to handle only enabled messages */ 454 msg = payload[0] & guc->msg_enabled_mask; 455 456 if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER | 457 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)) 458 intel_guc_log_handle_flush_event(&guc->log); 459 460 return 0; 461 } 462 463 /** 464 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode 465 * @guc: intel_guc structure 466 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma 467 * 468 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send 469 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by 470 * intel_huc_auth(). 471 * 472 * Return: non-zero code on error 473 */ 474 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset) 475 { 476 u32 action[] = { 477 INTEL_GUC_ACTION_AUTHENTICATE_HUC, 478 rsa_offset 479 }; 480 481 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 482 } 483 484 /** 485 * intel_guc_suspend() - notify GuC entering suspend state 486 * @guc: the guc 487 */ 488 int intel_guc_suspend(struct intel_guc *guc) 489 { 490 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 491 int ret; 492 u32 status; 493 u32 action[] = { 494 INTEL_GUC_ACTION_ENTER_S_STATE, 495 GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */ 496 }; 497 498 /* 499 * If GuC communication is enabled but submission is not supported, 500 * we do not need to suspend the GuC. 501 */ 502 if (!intel_guc_submission_is_used(guc) || !intel_guc_is_ready(guc)) 503 return 0; 504 505 /* 506 * The ENTER_S_STATE action queues the save/restore operation in GuC FW 507 * and then returns, so waiting on the H2G is not enough to guarantee 508 * GuC is done. When all the processing is done, GuC writes 509 * INTEL_GUC_SLEEP_STATE_SUCCESS to scratch register 14, so we can poll 510 * on that. Note that GuC does not ensure that the value in the register 511 * is different from INTEL_GUC_SLEEP_STATE_SUCCESS while the action is 512 * in progress so we need to take care of that ourselves as well. 513 */ 514 515 intel_uncore_write(uncore, SOFT_SCRATCH(14), 516 INTEL_GUC_SLEEP_STATE_INVALID_MASK); 517 518 ret = intel_guc_send(guc, action, ARRAY_SIZE(action)); 519 if (ret) 520 return ret; 521 522 ret = __intel_wait_for_register(uncore, SOFT_SCRATCH(14), 523 INTEL_GUC_SLEEP_STATE_INVALID_MASK, 524 0, 0, 10, &status); 525 if (ret) 526 return ret; 527 528 if (status != INTEL_GUC_SLEEP_STATE_SUCCESS) { 529 DRM_ERROR("GuC failed to change sleep state. " 530 "action=0x%x, err=%u\n", 531 action[0], status); 532 return -EIO; 533 } 534 535 return 0; 536 } 537 538 /** 539 * intel_guc_reset_engine() - ask GuC to reset an engine 540 * @guc: intel_guc structure 541 * @engine: engine to be reset 542 */ 543 int intel_guc_reset_engine(struct intel_guc *guc, 544 struct intel_engine_cs *engine) 545 { 546 /* XXX: to be implemented with submission interface rework */ 547 548 return -ENODEV; 549 } 550 551 /** 552 * intel_guc_resume() - notify GuC resuming from suspend state 553 * @guc: the guc 554 */ 555 int intel_guc_resume(struct intel_guc *guc) 556 { 557 /* XXX: to be implemented with submission interface rework */ 558 return 0; 559 } 560 561 /** 562 * DOC: GuC Memory Management 563 * 564 * GuC can't allocate any memory for its own usage, so all the allocations must 565 * be handled by the host driver. GuC accesses the memory via the GGTT, with the 566 * exception of the top and bottom parts of the 4GB address space, which are 567 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM) 568 * or other parts of the HW. The driver must take care not to place objects that 569 * the GuC is going to access in these reserved ranges. The layout of the GuC 570 * address space is shown below: 571 * 572 * :: 573 * 574 * +===========> +====================+ <== FFFF_FFFF 575 * ^ | Reserved | 576 * | +====================+ <== GUC_GGTT_TOP 577 * | | | 578 * | | DRAM | 579 * GuC | | 580 * Address +===> +====================+ <== GuC ggtt_pin_bias 581 * Space ^ | | 582 * | | | | 583 * | GuC | GuC | 584 * | WOPCM | WOPCM | 585 * | Size | | 586 * | | | | 587 * v v | | 588 * +=======+===> +====================+ <== 0000_0000 589 * 590 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM 591 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped 592 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size. 593 */ 594 595 /** 596 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage 597 * @guc: the guc 598 * @size: size of area to allocate (both virtual space and memory) 599 * 600 * This is a wrapper to create an object for use with the GuC. In order to 601 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate 602 * both some backing storage and a range inside the Global GTT. We must pin 603 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that 604 * range is reserved inside GuC. 605 * 606 * Return: A i915_vma if successful, otherwise an ERR_PTR. 607 */ 608 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) 609 { 610 struct intel_gt *gt = guc_to_gt(guc); 611 struct drm_i915_gem_object *obj; 612 struct i915_vma *vma; 613 u64 flags; 614 int ret; 615 616 obj = i915_gem_object_create_shmem(gt->i915, size); 617 if (IS_ERR(obj)) 618 return ERR_CAST(obj); 619 620 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 621 if (IS_ERR(vma)) 622 goto err; 623 624 flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); 625 ret = i915_ggtt_pin(vma, NULL, 0, flags); 626 if (ret) { 627 vma = ERR_PTR(ret); 628 goto err; 629 } 630 631 return i915_vma_make_unshrinkable(vma); 632 633 err: 634 i915_gem_object_put(obj); 635 return vma; 636 } 637 638 /** 639 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage 640 * @guc: the guc 641 * @size: size of area to allocate (both virtual space and memory) 642 * @out_vma: return variable for the allocated vma pointer 643 * @out_vaddr: return variable for the obj mapping 644 * 645 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated 646 * object with I915_MAP_WB. 647 * 648 * Return: 0 if successful, a negative errno code otherwise. 649 */ 650 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size, 651 struct i915_vma **out_vma, void **out_vaddr) 652 { 653 struct i915_vma *vma; 654 void *vaddr; 655 656 vma = intel_guc_allocate_vma(guc, size); 657 if (IS_ERR(vma)) 658 return PTR_ERR(vma); 659 660 vaddr = i915_gem_object_pin_map_unlocked(vma->obj, 661 i915_coherent_map_type(guc_to_gt(guc)->i915, 662 vma->obj, true)); 663 if (IS_ERR(vaddr)) { 664 i915_vma_unpin_and_release(&vma, 0); 665 return PTR_ERR(vaddr); 666 } 667 668 *out_vma = vma; 669 *out_vaddr = vaddr; 670 671 return 0; 672 } 673 674 /** 675 * intel_guc_load_status - dump information about GuC load status 676 * @guc: the GuC 677 * @p: the &drm_printer 678 * 679 * Pretty printer for GuC load status. 680 */ 681 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p) 682 { 683 struct intel_gt *gt = guc_to_gt(guc); 684 struct intel_uncore *uncore = gt->uncore; 685 intel_wakeref_t wakeref; 686 687 if (!intel_guc_is_supported(guc)) { 688 drm_printf(p, "GuC not supported\n"); 689 return; 690 } 691 692 if (!intel_guc_is_wanted(guc)) { 693 drm_printf(p, "GuC disabled\n"); 694 return; 695 } 696 697 intel_uc_fw_dump(&guc->fw, p); 698 699 with_intel_runtime_pm(uncore->rpm, wakeref) { 700 u32 status = intel_uncore_read(uncore, GUC_STATUS); 701 u32 i; 702 703 drm_printf(p, "\nGuC status 0x%08x:\n", status); 704 drm_printf(p, "\tBootrom status = 0x%x\n", 705 (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT); 706 drm_printf(p, "\tuKernel status = 0x%x\n", 707 (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT); 708 drm_printf(p, "\tMIA Core status = 0x%x\n", 709 (status & GS_MIA_MASK) >> GS_MIA_SHIFT); 710 drm_puts(p, "\nScratch registers:\n"); 711 for (i = 0; i < 16; i++) { 712 drm_printf(p, "\t%2d: \t0x%x\n", 713 i, intel_uncore_read(uncore, SOFT_SCRATCH(i))); 714 } 715 } 716 } 717