xref: /openbmc/linux/drivers/gpu/drm/i915/gt/uc/intel_guc.c (revision a9d85efb)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2019 Intel Corporation
4  */
5 
6 #include "gt/intel_gt.h"
7 #include "gt/intel_gt_irq.h"
8 #include "gt/intel_gt_pm_irq.h"
9 #include "intel_guc.h"
10 #include "intel_guc_slpc.h"
11 #include "intel_guc_ads.h"
12 #include "intel_guc_submission.h"
13 #include "i915_drv.h"
14 
15 /**
16  * DOC: GuC
17  *
18  * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
19  * designed to offload some of the functionality usually performed by the host
20  * driver; currently the main operations it can take care of are:
21  *
22  * - Authentication of the HuC, which is required to fully enable HuC usage.
23  * - Low latency graphics context scheduling (a.k.a. GuC submission).
24  * - GT Power management.
25  *
26  * The enable_guc module parameter can be used to select which of those
27  * operations to enable within GuC. Note that not all the operations are
28  * supported on all gen9+ platforms.
29  *
30  * Enabling the GuC is not mandatory and therefore the firmware is only loaded
31  * if at least one of the operations is selected. However, not loading the GuC
32  * might result in the loss of some features that do require the GuC (currently
33  * just the HuC, but more are expected to land in the future).
34  */
35 
36 void intel_guc_notify(struct intel_guc *guc)
37 {
38 	struct intel_gt *gt = guc_to_gt(guc);
39 
40 	/*
41 	 * On Gen11+, the value written to the register is passes as a payload
42 	 * to the FW. However, the FW currently treats all values the same way
43 	 * (H2G interrupt), so we can just write the value that the HW expects
44 	 * on older gens.
45 	 */
46 	intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
47 }
48 
49 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
50 {
51 	GEM_BUG_ON(!guc->send_regs.base);
52 	GEM_BUG_ON(!guc->send_regs.count);
53 	GEM_BUG_ON(i >= guc->send_regs.count);
54 
55 	return _MMIO(guc->send_regs.base + 4 * i);
56 }
57 
58 void intel_guc_init_send_regs(struct intel_guc *guc)
59 {
60 	struct intel_gt *gt = guc_to_gt(guc);
61 	enum forcewake_domains fw_domains = 0;
62 	unsigned int i;
63 
64 	GEM_BUG_ON(!guc->send_regs.base);
65 	GEM_BUG_ON(!guc->send_regs.count);
66 
67 	for (i = 0; i < guc->send_regs.count; i++) {
68 		fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
69 					guc_send_reg(guc, i),
70 					FW_REG_READ | FW_REG_WRITE);
71 	}
72 	guc->send_regs.fw_domains = fw_domains;
73 }
74 
75 static void gen9_reset_guc_interrupts(struct intel_guc *guc)
76 {
77 	struct intel_gt *gt = guc_to_gt(guc);
78 
79 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
80 
81 	spin_lock_irq(&gt->irq_lock);
82 	gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
83 	spin_unlock_irq(&gt->irq_lock);
84 }
85 
86 static void gen9_enable_guc_interrupts(struct intel_guc *guc)
87 {
88 	struct intel_gt *gt = guc_to_gt(guc);
89 
90 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
91 
92 	spin_lock_irq(&gt->irq_lock);
93 	WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
94 		     gt->pm_guc_events);
95 	gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
96 	spin_unlock_irq(&gt->irq_lock);
97 }
98 
99 static void gen9_disable_guc_interrupts(struct intel_guc *guc)
100 {
101 	struct intel_gt *gt = guc_to_gt(guc);
102 
103 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
104 
105 	spin_lock_irq(&gt->irq_lock);
106 
107 	gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
108 
109 	spin_unlock_irq(&gt->irq_lock);
110 	intel_synchronize_irq(gt->i915);
111 
112 	gen9_reset_guc_interrupts(guc);
113 }
114 
115 static void gen11_reset_guc_interrupts(struct intel_guc *guc)
116 {
117 	struct intel_gt *gt = guc_to_gt(guc);
118 
119 	spin_lock_irq(&gt->irq_lock);
120 	gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
121 	spin_unlock_irq(&gt->irq_lock);
122 }
123 
124 static void gen11_enable_guc_interrupts(struct intel_guc *guc)
125 {
126 	struct intel_gt *gt = guc_to_gt(guc);
127 	u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
128 
129 	spin_lock_irq(&gt->irq_lock);
130 	WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
131 	intel_uncore_write(gt->uncore,
132 			   GEN11_GUC_SG_INTR_ENABLE, events);
133 	intel_uncore_write(gt->uncore,
134 			   GEN11_GUC_SG_INTR_MASK, ~events);
135 	spin_unlock_irq(&gt->irq_lock);
136 }
137 
138 static void gen11_disable_guc_interrupts(struct intel_guc *guc)
139 {
140 	struct intel_gt *gt = guc_to_gt(guc);
141 
142 	spin_lock_irq(&gt->irq_lock);
143 
144 	intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
145 	intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
146 
147 	spin_unlock_irq(&gt->irq_lock);
148 	intel_synchronize_irq(gt->i915);
149 
150 	gen11_reset_guc_interrupts(guc);
151 }
152 
153 void intel_guc_init_early(struct intel_guc *guc)
154 {
155 	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
156 
157 	intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC);
158 	intel_guc_ct_init_early(&guc->ct);
159 	intel_guc_log_init_early(&guc->log);
160 	intel_guc_submission_init_early(guc);
161 	intel_guc_slpc_init_early(&guc->slpc);
162 	intel_guc_rc_init_early(guc);
163 
164 	mutex_init(&guc->send_mutex);
165 	spin_lock_init(&guc->irq_lock);
166 	if (GRAPHICS_VER(i915) >= 11) {
167 		guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
168 		guc->interrupts.reset = gen11_reset_guc_interrupts;
169 		guc->interrupts.enable = gen11_enable_guc_interrupts;
170 		guc->interrupts.disable = gen11_disable_guc_interrupts;
171 		guc->send_regs.base =
172 			i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
173 		guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
174 
175 	} else {
176 		guc->notify_reg = GUC_SEND_INTERRUPT;
177 		guc->interrupts.reset = gen9_reset_guc_interrupts;
178 		guc->interrupts.enable = gen9_enable_guc_interrupts;
179 		guc->interrupts.disable = gen9_disable_guc_interrupts;
180 		guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
181 		guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
182 		BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
183 	}
184 }
185 
186 void intel_guc_init_late(struct intel_guc *guc)
187 {
188 	intel_guc_ads_init_late(guc);
189 }
190 
191 static u32 guc_ctl_debug_flags(struct intel_guc *guc)
192 {
193 	u32 level = intel_guc_log_get_level(&guc->log);
194 	u32 flags = 0;
195 
196 	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
197 		flags |= GUC_LOG_DISABLED;
198 	else
199 		flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
200 			 GUC_LOG_VERBOSITY_SHIFT;
201 
202 	return flags;
203 }
204 
205 static u32 guc_ctl_feature_flags(struct intel_guc *guc)
206 {
207 	u32 flags = 0;
208 
209 	if (!intel_guc_submission_is_used(guc))
210 		flags |= GUC_CTL_DISABLE_SCHEDULER;
211 
212 	if (intel_guc_slpc_is_used(guc))
213 		flags |= GUC_CTL_ENABLE_SLPC;
214 
215 	return flags;
216 }
217 
218 static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
219 {
220 	u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT;
221 	u32 flags;
222 
223 	#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
224 	#define UNIT SZ_1M
225 	#define FLAG GUC_LOG_ALLOC_IN_MEGABYTE
226 	#else
227 	#define UNIT SZ_4K
228 	#define FLAG 0
229 	#endif
230 
231 	BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
232 	BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT));
233 	BUILD_BUG_ON(!DEBUG_BUFFER_SIZE);
234 	BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, UNIT));
235 
236 	BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) >
237 			(GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
238 	BUILD_BUG_ON((DEBUG_BUFFER_SIZE / UNIT - 1) >
239 			(GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT));
240 
241 	flags = GUC_LOG_VALID |
242 		GUC_LOG_NOTIFY_ON_HALF_FULL |
243 		FLAG |
244 		((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
245 		((DEBUG_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DEBUG_SHIFT) |
246 		(offset << GUC_LOG_BUF_ADDR_SHIFT);
247 
248 	#undef UNIT
249 	#undef FLAG
250 
251 	return flags;
252 }
253 
254 static u32 guc_ctl_ads_flags(struct intel_guc *guc)
255 {
256 	u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
257 	u32 flags = ads << GUC_ADS_ADDR_SHIFT;
258 
259 	return flags;
260 }
261 
262 /*
263  * Initialise the GuC parameter block before starting the firmware
264  * transfer. These parameters are read by the firmware on startup
265  * and cannot be changed thereafter.
266  */
267 static void guc_init_params(struct intel_guc *guc)
268 {
269 	u32 *params = guc->params;
270 	int i;
271 
272 	BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
273 
274 	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
275 	params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
276 	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
277 	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
278 
279 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
280 		DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]);
281 }
282 
283 /*
284  * Initialise the GuC parameter block before starting the firmware
285  * transfer. These parameters are read by the firmware on startup
286  * and cannot be changed thereafter.
287  */
288 void intel_guc_write_params(struct intel_guc *guc)
289 {
290 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
291 	int i;
292 
293 	/*
294 	 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and
295 	 * they are power context saved so it's ok to release forcewake
296 	 * when we are done here and take it again at xfer time.
297 	 */
298 	intel_uncore_forcewake_get(uncore, FORCEWAKE_GT);
299 
300 	intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
301 
302 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
303 		intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
304 
305 	intel_uncore_forcewake_put(uncore, FORCEWAKE_GT);
306 }
307 
308 int intel_guc_init(struct intel_guc *guc)
309 {
310 	struct intel_gt *gt = guc_to_gt(guc);
311 	int ret;
312 
313 	ret = intel_uc_fw_init(&guc->fw);
314 	if (ret)
315 		goto out;
316 
317 	ret = intel_guc_log_create(&guc->log);
318 	if (ret)
319 		goto err_fw;
320 
321 	ret = intel_guc_ads_create(guc);
322 	if (ret)
323 		goto err_log;
324 	GEM_BUG_ON(!guc->ads_vma);
325 
326 	ret = intel_guc_ct_init(&guc->ct);
327 	if (ret)
328 		goto err_ads;
329 
330 	if (intel_guc_submission_is_used(guc)) {
331 		/*
332 		 * This is stuff we need to have available at fw load time
333 		 * if we are planning to enable submission later
334 		 */
335 		ret = intel_guc_submission_init(guc);
336 		if (ret)
337 			goto err_ct;
338 	}
339 
340 	if (intel_guc_slpc_is_used(guc)) {
341 		ret = intel_guc_slpc_init(&guc->slpc);
342 		if (ret)
343 			goto err_submission;
344 	}
345 
346 	/* now that everything is perma-pinned, initialize the parameters */
347 	guc_init_params(guc);
348 
349 	/* We need to notify the guc whenever we change the GGTT */
350 	i915_ggtt_enable_guc(gt->ggtt);
351 
352 	intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE);
353 
354 	return 0;
355 
356 err_submission:
357 	intel_guc_submission_fini(guc);
358 err_ct:
359 	intel_guc_ct_fini(&guc->ct);
360 err_ads:
361 	intel_guc_ads_destroy(guc);
362 err_log:
363 	intel_guc_log_destroy(&guc->log);
364 err_fw:
365 	intel_uc_fw_fini(&guc->fw);
366 out:
367 	i915_probe_error(gt->i915, "failed with %d\n", ret);
368 	return ret;
369 }
370 
371 void intel_guc_fini(struct intel_guc *guc)
372 {
373 	struct intel_gt *gt = guc_to_gt(guc);
374 
375 	if (!intel_uc_fw_is_loadable(&guc->fw))
376 		return;
377 
378 	i915_ggtt_disable_guc(gt->ggtt);
379 
380 	if (intel_guc_slpc_is_used(guc))
381 		intel_guc_slpc_fini(&guc->slpc);
382 
383 	if (intel_guc_submission_is_used(guc))
384 		intel_guc_submission_fini(guc);
385 
386 	intel_guc_ct_fini(&guc->ct);
387 
388 	intel_guc_ads_destroy(guc);
389 	intel_guc_log_destroy(&guc->log);
390 	intel_uc_fw_fini(&guc->fw);
391 }
392 
393 /*
394  * This function implements the MMIO based host to GuC interface.
395  */
396 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len,
397 			u32 *response_buf, u32 response_buf_size)
398 {
399 	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
400 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
401 	u32 header;
402 	int i;
403 	int ret;
404 
405 	GEM_BUG_ON(!len);
406 	GEM_BUG_ON(len > guc->send_regs.count);
407 
408 	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST);
409 	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST);
410 
411 	mutex_lock(&guc->send_mutex);
412 	intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
413 
414 retry:
415 	for (i = 0; i < len; i++)
416 		intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]);
417 
418 	intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
419 
420 	intel_guc_notify(guc);
421 
422 	/*
423 	 * No GuC command should ever take longer than 10ms.
424 	 * Fast commands should still complete in 10us.
425 	 */
426 	ret = __intel_wait_for_register_fw(uncore,
427 					   guc_send_reg(guc, 0),
428 					   GUC_HXG_MSG_0_ORIGIN,
429 					   FIELD_PREP(GUC_HXG_MSG_0_ORIGIN,
430 						      GUC_HXG_ORIGIN_GUC),
431 					   10, 10, &header);
432 	if (unlikely(ret)) {
433 timeout:
434 		drm_err(&i915->drm, "mmio request %#x: no reply %x\n",
435 			request[0], header);
436 		goto out;
437 	}
438 
439 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
440 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \
441 		FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \
442 		FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; })
443 
444 		ret = wait_for(done, 1000);
445 		if (unlikely(ret))
446 			goto timeout;
447 		if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
448 				       GUC_HXG_ORIGIN_GUC))
449 			goto proto;
450 #undef done
451 	}
452 
453 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
454 		u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
455 
456 		drm_dbg(&i915->drm, "mmio request %#x: retrying, reason %u\n",
457 			request[0], reason);
458 		goto retry;
459 	}
460 
461 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) {
462 		u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
463 		u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
464 
465 		drm_err(&i915->drm, "mmio request %#x: failure %x/%u\n",
466 			request[0], error, hint);
467 		ret = -ENXIO;
468 		goto out;
469 	}
470 
471 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
472 proto:
473 		drm_err(&i915->drm, "mmio request %#x: unexpected reply %#x\n",
474 			request[0], header);
475 		ret = -EPROTO;
476 		goto out;
477 	}
478 
479 	if (response_buf) {
480 		int count = min(response_buf_size, guc->send_regs.count);
481 
482 		GEM_BUG_ON(!count);
483 
484 		response_buf[0] = header;
485 
486 		for (i = 1; i < count; i++)
487 			response_buf[i] = intel_uncore_read(uncore,
488 							    guc_send_reg(guc, i));
489 
490 		/* Use number of copied dwords as our return value */
491 		ret = count;
492 	} else {
493 		/* Use data from the GuC response as our return value */
494 		ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
495 	}
496 
497 out:
498 	intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
499 	mutex_unlock(&guc->send_mutex);
500 
501 	return ret;
502 }
503 
504 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
505 				       const u32 *payload, u32 len)
506 {
507 	u32 msg;
508 
509 	if (unlikely(!len))
510 		return -EPROTO;
511 
512 	/* Make sure to handle only enabled messages */
513 	msg = payload[0] & guc->msg_enabled_mask;
514 
515 	if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
516 		   INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED))
517 		intel_guc_log_handle_flush_event(&guc->log);
518 
519 	return 0;
520 }
521 
522 /**
523  * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
524  * @guc: intel_guc structure
525  * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
526  *
527  * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
528  * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
529  * intel_huc_auth().
530  *
531  * Return:	non-zero code on error
532  */
533 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
534 {
535 	u32 action[] = {
536 		INTEL_GUC_ACTION_AUTHENTICATE_HUC,
537 		rsa_offset
538 	};
539 
540 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
541 }
542 
543 /**
544  * intel_guc_suspend() - notify GuC entering suspend state
545  * @guc:	the guc
546  */
547 int intel_guc_suspend(struct intel_guc *guc)
548 {
549 	int ret;
550 	u32 action[] = {
551 		INTEL_GUC_ACTION_RESET_CLIENT,
552 	};
553 
554 	if (!intel_guc_is_ready(guc))
555 		return 0;
556 
557 	if (intel_guc_submission_is_used(guc)) {
558 		/*
559 		 * This H2G MMIO command tears down the GuC in two steps. First it will
560 		 * generate a G2H CTB for every active context indicating a reset. In
561 		 * practice the i915 shouldn't ever get a G2H as suspend should only be
562 		 * called when the GPU is idle. Next, it tears down the CTBs and this
563 		 * H2G MMIO command completes.
564 		 *
565 		 * Don't abort on a failure code from the GuC. Keep going and do the
566 		 * clean up in santize() and re-initialisation on resume and hopefully
567 		 * the error here won't be problematic.
568 		 */
569 		ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0);
570 		if (ret)
571 			DRM_ERROR("GuC suspend: RESET_CLIENT action failed with error %d!\n", ret);
572 	}
573 
574 	/* Signal that the GuC isn't running. */
575 	intel_guc_sanitize(guc);
576 
577 	return 0;
578 }
579 
580 /**
581  * intel_guc_resume() - notify GuC resuming from suspend state
582  * @guc:	the guc
583  */
584 int intel_guc_resume(struct intel_guc *guc)
585 {
586 	/*
587 	 * NB: This function can still be called even if GuC submission is
588 	 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus,
589 	 * if any code is later added here, it must be support doing nothing
590 	 * if submission is disabled (as per intel_guc_suspend).
591 	 */
592 	return 0;
593 }
594 
595 /**
596  * DOC: GuC Memory Management
597  *
598  * GuC can't allocate any memory for its own usage, so all the allocations must
599  * be handled by the host driver. GuC accesses the memory via the GGTT, with the
600  * exception of the top and bottom parts of the 4GB address space, which are
601  * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
602  * or other parts of the HW. The driver must take care not to place objects that
603  * the GuC is going to access in these reserved ranges. The layout of the GuC
604  * address space is shown below:
605  *
606  * ::
607  *
608  *     +===========> +====================+ <== FFFF_FFFF
609  *     ^             |      Reserved      |
610  *     |             +====================+ <== GUC_GGTT_TOP
611  *     |             |                    |
612  *     |             |        DRAM        |
613  *    GuC            |                    |
614  *  Address    +===> +====================+ <== GuC ggtt_pin_bias
615  *   Space     ^     |                    |
616  *     |       |     |                    |
617  *     |      GuC    |        GuC         |
618  *     |     WOPCM   |       WOPCM        |
619  *     |      Size   |                    |
620  *     |       |     |                    |
621  *     v       v     |                    |
622  *     +=======+===> +====================+ <== 0000_0000
623  *
624  * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
625  * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
626  * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
627  */
628 
629 /**
630  * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
631  * @guc:	the guc
632  * @size:	size of area to allocate (both virtual space and memory)
633  *
634  * This is a wrapper to create an object for use with the GuC. In order to
635  * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
636  * both some backing storage and a range inside the Global GTT. We must pin
637  * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
638  * range is reserved inside GuC.
639  *
640  * Return:	A i915_vma if successful, otherwise an ERR_PTR.
641  */
642 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
643 {
644 	struct intel_gt *gt = guc_to_gt(guc);
645 	struct drm_i915_gem_object *obj;
646 	struct i915_vma *vma;
647 	u64 flags;
648 	int ret;
649 
650 	obj = i915_gem_object_create_shmem(gt->i915, size);
651 	if (IS_ERR(obj))
652 		return ERR_CAST(obj);
653 
654 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
655 	if (IS_ERR(vma))
656 		goto err;
657 
658 	flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
659 	ret = i915_ggtt_pin(vma, NULL, 0, flags);
660 	if (ret) {
661 		vma = ERR_PTR(ret);
662 		goto err;
663 	}
664 
665 	return i915_vma_make_unshrinkable(vma);
666 
667 err:
668 	i915_gem_object_put(obj);
669 	return vma;
670 }
671 
672 /**
673  * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
674  * @guc:	the guc
675  * @size:	size of area to allocate (both virtual space and memory)
676  * @out_vma:	return variable for the allocated vma pointer
677  * @out_vaddr:	return variable for the obj mapping
678  *
679  * This wrapper calls intel_guc_allocate_vma() and then maps the allocated
680  * object with I915_MAP_WB.
681  *
682  * Return:	0 if successful, a negative errno code otherwise.
683  */
684 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
685 				   struct i915_vma **out_vma, void **out_vaddr)
686 {
687 	struct i915_vma *vma;
688 	void *vaddr;
689 
690 	vma = intel_guc_allocate_vma(guc, size);
691 	if (IS_ERR(vma))
692 		return PTR_ERR(vma);
693 
694 	vaddr = i915_gem_object_pin_map_unlocked(vma->obj,
695 						 i915_coherent_map_type(guc_to_gt(guc)->i915,
696 									vma->obj, true));
697 	if (IS_ERR(vaddr)) {
698 		i915_vma_unpin_and_release(&vma, 0);
699 		return PTR_ERR(vaddr);
700 	}
701 
702 	*out_vma = vma;
703 	*out_vaddr = vaddr;
704 
705 	return 0;
706 }
707 
708 /**
709  * intel_guc_load_status - dump information about GuC load status
710  * @guc: the GuC
711  * @p: the &drm_printer
712  *
713  * Pretty printer for GuC load status.
714  */
715 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p)
716 {
717 	struct intel_gt *gt = guc_to_gt(guc);
718 	struct intel_uncore *uncore = gt->uncore;
719 	intel_wakeref_t wakeref;
720 
721 	if (!intel_guc_is_supported(guc)) {
722 		drm_printf(p, "GuC not supported\n");
723 		return;
724 	}
725 
726 	if (!intel_guc_is_wanted(guc)) {
727 		drm_printf(p, "GuC disabled\n");
728 		return;
729 	}
730 
731 	intel_uc_fw_dump(&guc->fw, p);
732 
733 	with_intel_runtime_pm(uncore->rpm, wakeref) {
734 		u32 status = intel_uncore_read(uncore, GUC_STATUS);
735 		u32 i;
736 
737 		drm_printf(p, "\nGuC status 0x%08x:\n", status);
738 		drm_printf(p, "\tBootrom status = 0x%x\n",
739 			   (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
740 		drm_printf(p, "\tuKernel status = 0x%x\n",
741 			   (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
742 		drm_printf(p, "\tMIA Core status = 0x%x\n",
743 			   (status & GS_MIA_MASK) >> GS_MIA_SHIFT);
744 		drm_puts(p, "\nScratch registers:\n");
745 		for (i = 0; i < 16; i++) {
746 			drm_printf(p, "\t%2d: \t0x%x\n",
747 				   i, intel_uncore_read(uncore, SOFT_SCRATCH(i)));
748 		}
749 	}
750 }
751