xref: /openbmc/linux/drivers/gpu/drm/i915/gt/uc/intel_guc.c (revision 8e4ee5e8)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2019 Intel Corporation
4  */
5 
6 #include "gem/i915_gem_lmem.h"
7 #include "gt/intel_gt.h"
8 #include "gt/intel_gt_irq.h"
9 #include "gt/intel_gt_pm_irq.h"
10 #include "gt/intel_gt_regs.h"
11 #include "intel_guc.h"
12 #include "intel_guc_ads.h"
13 #include "intel_guc_capture.h"
14 #include "intel_guc_slpc.h"
15 #include "intel_guc_submission.h"
16 #include "i915_drv.h"
17 #include "i915_irq.h"
18 
19 /**
20  * DOC: GuC
21  *
22  * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
23  * designed to offload some of the functionality usually performed by the host
24  * driver; currently the main operations it can take care of are:
25  *
26  * - Authentication of the HuC, which is required to fully enable HuC usage.
27  * - Low latency graphics context scheduling (a.k.a. GuC submission).
28  * - GT Power management.
29  *
30  * The enable_guc module parameter can be used to select which of those
31  * operations to enable within GuC. Note that not all the operations are
32  * supported on all gen9+ platforms.
33  *
34  * Enabling the GuC is not mandatory and therefore the firmware is only loaded
35  * if at least one of the operations is selected. However, not loading the GuC
36  * might result in the loss of some features that do require the GuC (currently
37  * just the HuC, but more are expected to land in the future).
38  */
39 
40 void intel_guc_notify(struct intel_guc *guc)
41 {
42 	struct intel_gt *gt = guc_to_gt(guc);
43 
44 	/*
45 	 * On Gen11+, the value written to the register is passes as a payload
46 	 * to the FW. However, the FW currently treats all values the same way
47 	 * (H2G interrupt), so we can just write the value that the HW expects
48 	 * on older gens.
49 	 */
50 	intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
51 }
52 
53 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
54 {
55 	GEM_BUG_ON(!guc->send_regs.base);
56 	GEM_BUG_ON(!guc->send_regs.count);
57 	GEM_BUG_ON(i >= guc->send_regs.count);
58 
59 	return _MMIO(guc->send_regs.base + 4 * i);
60 }
61 
62 void intel_guc_init_send_regs(struct intel_guc *guc)
63 {
64 	struct intel_gt *gt = guc_to_gt(guc);
65 	enum forcewake_domains fw_domains = 0;
66 	unsigned int i;
67 
68 	GEM_BUG_ON(!guc->send_regs.base);
69 	GEM_BUG_ON(!guc->send_regs.count);
70 
71 	for (i = 0; i < guc->send_regs.count; i++) {
72 		fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
73 					guc_send_reg(guc, i),
74 					FW_REG_READ | FW_REG_WRITE);
75 	}
76 	guc->send_regs.fw_domains = fw_domains;
77 }
78 
79 static void gen9_reset_guc_interrupts(struct intel_guc *guc)
80 {
81 	struct intel_gt *gt = guc_to_gt(guc);
82 
83 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
84 
85 	spin_lock_irq(gt->irq_lock);
86 	gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
87 	spin_unlock_irq(gt->irq_lock);
88 }
89 
90 static void gen9_enable_guc_interrupts(struct intel_guc *guc)
91 {
92 	struct intel_gt *gt = guc_to_gt(guc);
93 
94 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
95 
96 	spin_lock_irq(gt->irq_lock);
97 	WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
98 		     gt->pm_guc_events);
99 	gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
100 	spin_unlock_irq(gt->irq_lock);
101 
102 	guc->interrupts.enabled = true;
103 }
104 
105 static void gen9_disable_guc_interrupts(struct intel_guc *guc)
106 {
107 	struct intel_gt *gt = guc_to_gt(guc);
108 
109 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
110 	guc->interrupts.enabled = false;
111 
112 	spin_lock_irq(gt->irq_lock);
113 
114 	gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
115 
116 	spin_unlock_irq(gt->irq_lock);
117 	intel_synchronize_irq(gt->i915);
118 
119 	gen9_reset_guc_interrupts(guc);
120 }
121 
122 static bool __gen11_reset_guc_interrupts(struct intel_gt *gt)
123 {
124 	u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC;
125 
126 	lockdep_assert_held(gt->irq_lock);
127 	return gen11_gt_reset_one_iir(gt, 0, irq);
128 }
129 
130 static void gen11_reset_guc_interrupts(struct intel_guc *guc)
131 {
132 	struct intel_gt *gt = guc_to_gt(guc);
133 
134 	spin_lock_irq(gt->irq_lock);
135 	__gen11_reset_guc_interrupts(gt);
136 	spin_unlock_irq(gt->irq_lock);
137 }
138 
139 static void gen11_enable_guc_interrupts(struct intel_guc *guc)
140 {
141 	struct intel_gt *gt = guc_to_gt(guc);
142 
143 	spin_lock_irq(gt->irq_lock);
144 	__gen11_reset_guc_interrupts(gt);
145 	spin_unlock_irq(gt->irq_lock);
146 
147 	guc->interrupts.enabled = true;
148 }
149 
150 static void gen11_disable_guc_interrupts(struct intel_guc *guc)
151 {
152 	struct intel_gt *gt = guc_to_gt(guc);
153 
154 	guc->interrupts.enabled = false;
155 	intel_synchronize_irq(gt->i915);
156 
157 	gen11_reset_guc_interrupts(guc);
158 }
159 
160 void intel_guc_init_early(struct intel_guc *guc)
161 {
162 	struct intel_gt *gt = guc_to_gt(guc);
163 	struct drm_i915_private *i915 = gt->i915;
164 
165 	intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC);
166 	intel_guc_ct_init_early(&guc->ct);
167 	intel_guc_log_init_early(&guc->log);
168 	intel_guc_submission_init_early(guc);
169 	intel_guc_slpc_init_early(&guc->slpc);
170 	intel_guc_rc_init_early(guc);
171 
172 	mutex_init(&guc->send_mutex);
173 	spin_lock_init(&guc->irq_lock);
174 	if (GRAPHICS_VER(i915) >= 11) {
175 		guc->interrupts.reset = gen11_reset_guc_interrupts;
176 		guc->interrupts.enable = gen11_enable_guc_interrupts;
177 		guc->interrupts.disable = gen11_disable_guc_interrupts;
178 		if (gt->type == GT_MEDIA) {
179 			guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT;
180 			guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0));
181 		} else {
182 			guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
183 			guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
184 		}
185 
186 		guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
187 
188 	} else {
189 		guc->notify_reg = GUC_SEND_INTERRUPT;
190 		guc->interrupts.reset = gen9_reset_guc_interrupts;
191 		guc->interrupts.enable = gen9_enable_guc_interrupts;
192 		guc->interrupts.disable = gen9_disable_guc_interrupts;
193 		guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
194 		guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
195 		BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
196 	}
197 
198 	intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION |
199 				  INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
200 }
201 
202 void intel_guc_init_late(struct intel_guc *guc)
203 {
204 	intel_guc_ads_init_late(guc);
205 }
206 
207 static u32 guc_ctl_debug_flags(struct intel_guc *guc)
208 {
209 	u32 level = intel_guc_log_get_level(&guc->log);
210 	u32 flags = 0;
211 
212 	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
213 		flags |= GUC_LOG_DISABLED;
214 	else
215 		flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
216 			 GUC_LOG_VERBOSITY_SHIFT;
217 
218 	return flags;
219 }
220 
221 static u32 guc_ctl_feature_flags(struct intel_guc *guc)
222 {
223 	u32 flags = 0;
224 
225 	if (!intel_guc_submission_is_used(guc))
226 		flags |= GUC_CTL_DISABLE_SCHEDULER;
227 
228 	if (intel_guc_slpc_is_used(guc))
229 		flags |= GUC_CTL_ENABLE_SLPC;
230 
231 	return flags;
232 }
233 
234 static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
235 {
236 	struct intel_guc_log *log = &guc->log;
237 	u32 offset, flags;
238 
239 	GEM_BUG_ON(!log->sizes_initialised);
240 
241 	offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT;
242 
243 	flags = GUC_LOG_VALID |
244 		GUC_LOG_NOTIFY_ON_HALF_FULL |
245 		log->sizes[GUC_LOG_SECTIONS_DEBUG].flag |
246 		log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag |
247 		(log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) |
248 		(log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) |
249 		(log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) |
250 		(offset << GUC_LOG_BUF_ADDR_SHIFT);
251 
252 	return flags;
253 }
254 
255 static u32 guc_ctl_ads_flags(struct intel_guc *guc)
256 {
257 	u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
258 	u32 flags = ads << GUC_ADS_ADDR_SHIFT;
259 
260 	return flags;
261 }
262 
263 static u32 guc_ctl_wa_flags(struct intel_guc *guc)
264 {
265 	struct intel_gt *gt = guc_to_gt(guc);
266 	u32 flags = 0;
267 
268 	/* Wa_22012773006:gen11,gen12 < XeHP */
269 	if (GRAPHICS_VER(gt->i915) >= 11 &&
270 	    GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 50))
271 		flags |= GUC_WA_POLLCS;
272 
273 	/* Wa_16011759253:dg2_g10:a0 */
274 	if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0))
275 		flags |= GUC_WA_GAM_CREDITS;
276 
277 	/* Wa_14014475959:dg2 */
278 	if (IS_DG2(gt->i915))
279 		flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
280 
281 	/*
282 	 * Wa_14012197797:dg2_g10:a0,dg2_g11:a0
283 	 * Wa_22011391025:dg2_g10,dg2_g11,dg2_g12
284 	 *
285 	 * The same WA bit is used for both and 22011391025 is applicable to
286 	 * all DG2.
287 	 */
288 	if (IS_DG2(gt->i915))
289 		flags |= GUC_WA_DUAL_QUEUE;
290 
291 	/* Wa_22011802037: graphics version 11/12 */
292 	if (IS_GRAPHICS_VER(gt->i915, 11, 12))
293 		flags |= GUC_WA_PRE_PARSER;
294 
295 	/* Wa_16011777198:dg2 */
296 	if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
297 	    IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))
298 		flags |= GUC_WA_RCS_RESET_BEFORE_RC6;
299 
300 	/*
301 	 * Wa_22012727170:dg2_g10[a0-c0), dg2_g11[a0..)
302 	 * Wa_22012727685:dg2_g11[a0..)
303 	 */
304 	if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
305 	    IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_FOREVER))
306 		flags |= GUC_WA_CONTEXT_ISOLATION;
307 
308 	/* Wa_16015675438 */
309 	if (!RCS_MASK(gt))
310 		flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
311 
312 	return flags;
313 }
314 
315 static u32 guc_ctl_devid(struct intel_guc *guc)
316 {
317 	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
318 
319 	return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915);
320 }
321 
322 /*
323  * Initialise the GuC parameter block before starting the firmware
324  * transfer. These parameters are read by the firmware on startup
325  * and cannot be changed thereafter.
326  */
327 static void guc_init_params(struct intel_guc *guc)
328 {
329 	u32 *params = guc->params;
330 	int i;
331 
332 	BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
333 
334 	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
335 	params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
336 	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
337 	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
338 	params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
339 	params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
340 
341 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
342 		DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]);
343 }
344 
345 /*
346  * Initialise the GuC parameter block before starting the firmware
347  * transfer. These parameters are read by the firmware on startup
348  * and cannot be changed thereafter.
349  */
350 void intel_guc_write_params(struct intel_guc *guc)
351 {
352 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
353 	int i;
354 
355 	/*
356 	 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and
357 	 * they are power context saved so it's ok to release forcewake
358 	 * when we are done here and take it again at xfer time.
359 	 */
360 	intel_uncore_forcewake_get(uncore, FORCEWAKE_GT);
361 
362 	intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
363 
364 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
365 		intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
366 
367 	intel_uncore_forcewake_put(uncore, FORCEWAKE_GT);
368 }
369 
370 void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p)
371 {
372 	struct intel_gt *gt = guc_to_gt(guc);
373 	intel_wakeref_t wakeref;
374 	u32 stamp = 0;
375 	u64 ktime;
376 
377 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
378 		stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP);
379 	ktime = ktime_get_boottime_ns();
380 
381 	drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime);
382 	drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp);
383 	drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n",
384 		   gt->clock_frequency, gt->clock_period_ns);
385 }
386 
387 int intel_guc_init(struct intel_guc *guc)
388 {
389 	struct intel_gt *gt = guc_to_gt(guc);
390 	int ret;
391 
392 	ret = intel_uc_fw_init(&guc->fw);
393 	if (ret)
394 		goto out;
395 
396 	ret = intel_guc_log_create(&guc->log);
397 	if (ret)
398 		goto err_fw;
399 
400 	ret = intel_guc_capture_init(guc);
401 	if (ret)
402 		goto err_log;
403 
404 	ret = intel_guc_ads_create(guc);
405 	if (ret)
406 		goto err_capture;
407 
408 	GEM_BUG_ON(!guc->ads_vma);
409 
410 	ret = intel_guc_ct_init(&guc->ct);
411 	if (ret)
412 		goto err_ads;
413 
414 	if (intel_guc_submission_is_used(guc)) {
415 		/*
416 		 * This is stuff we need to have available at fw load time
417 		 * if we are planning to enable submission later
418 		 */
419 		ret = intel_guc_submission_init(guc);
420 		if (ret)
421 			goto err_ct;
422 	}
423 
424 	if (intel_guc_slpc_is_used(guc)) {
425 		ret = intel_guc_slpc_init(&guc->slpc);
426 		if (ret)
427 			goto err_submission;
428 	}
429 
430 	/* now that everything is perma-pinned, initialize the parameters */
431 	guc_init_params(guc);
432 
433 	intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE);
434 
435 	return 0;
436 
437 err_submission:
438 	intel_guc_submission_fini(guc);
439 err_ct:
440 	intel_guc_ct_fini(&guc->ct);
441 err_ads:
442 	intel_guc_ads_destroy(guc);
443 err_capture:
444 	intel_guc_capture_destroy(guc);
445 err_log:
446 	intel_guc_log_destroy(&guc->log);
447 err_fw:
448 	intel_uc_fw_fini(&guc->fw);
449 out:
450 	intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
451 	i915_probe_error(gt->i915, "failed with %d\n", ret);
452 	return ret;
453 }
454 
455 void intel_guc_fini(struct intel_guc *guc)
456 {
457 	if (!intel_uc_fw_is_loadable(&guc->fw))
458 		return;
459 
460 	if (intel_guc_slpc_is_used(guc))
461 		intel_guc_slpc_fini(&guc->slpc);
462 
463 	if (intel_guc_submission_is_used(guc))
464 		intel_guc_submission_fini(guc);
465 
466 	intel_guc_ct_fini(&guc->ct);
467 
468 	intel_guc_ads_destroy(guc);
469 	intel_guc_capture_destroy(guc);
470 	intel_guc_log_destroy(&guc->log);
471 	intel_uc_fw_fini(&guc->fw);
472 }
473 
474 /*
475  * This function implements the MMIO based host to GuC interface.
476  */
477 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len,
478 			u32 *response_buf, u32 response_buf_size)
479 {
480 	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
481 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
482 	u32 header;
483 	int i;
484 	int ret;
485 
486 	GEM_BUG_ON(!len);
487 	GEM_BUG_ON(len > guc->send_regs.count);
488 
489 	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST);
490 	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST);
491 
492 	mutex_lock(&guc->send_mutex);
493 	intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
494 
495 retry:
496 	for (i = 0; i < len; i++)
497 		intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]);
498 
499 	intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
500 
501 	intel_guc_notify(guc);
502 
503 	/*
504 	 * No GuC command should ever take longer than 10ms.
505 	 * Fast commands should still complete in 10us.
506 	 */
507 	ret = __intel_wait_for_register_fw(uncore,
508 					   guc_send_reg(guc, 0),
509 					   GUC_HXG_MSG_0_ORIGIN,
510 					   FIELD_PREP(GUC_HXG_MSG_0_ORIGIN,
511 						      GUC_HXG_ORIGIN_GUC),
512 					   10, 10, &header);
513 	if (unlikely(ret)) {
514 timeout:
515 		drm_err(&i915->drm, "mmio request %#x: no reply %x\n",
516 			request[0], header);
517 		goto out;
518 	}
519 
520 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
521 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \
522 		FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \
523 		FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; })
524 
525 		ret = wait_for(done, 1000);
526 		if (unlikely(ret))
527 			goto timeout;
528 		if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
529 				       GUC_HXG_ORIGIN_GUC))
530 			goto proto;
531 #undef done
532 	}
533 
534 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
535 		u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
536 
537 		drm_dbg(&i915->drm, "mmio request %#x: retrying, reason %u\n",
538 			request[0], reason);
539 		goto retry;
540 	}
541 
542 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) {
543 		u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
544 		u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
545 
546 		drm_err(&i915->drm, "mmio request %#x: failure %x/%u\n",
547 			request[0], error, hint);
548 		ret = -ENXIO;
549 		goto out;
550 	}
551 
552 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
553 proto:
554 		drm_err(&i915->drm, "mmio request %#x: unexpected reply %#x\n",
555 			request[0], header);
556 		ret = -EPROTO;
557 		goto out;
558 	}
559 
560 	if (response_buf) {
561 		int count = min(response_buf_size, guc->send_regs.count);
562 
563 		GEM_BUG_ON(!count);
564 
565 		response_buf[0] = header;
566 
567 		for (i = 1; i < count; i++)
568 			response_buf[i] = intel_uncore_read(uncore,
569 							    guc_send_reg(guc, i));
570 
571 		/* Use number of copied dwords as our return value */
572 		ret = count;
573 	} else {
574 		/* Use data from the GuC response as our return value */
575 		ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
576 	}
577 
578 out:
579 	intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
580 	mutex_unlock(&guc->send_mutex);
581 
582 	return ret;
583 }
584 
585 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
586 				       const u32 *payload, u32 len)
587 {
588 	u32 msg;
589 
590 	if (unlikely(!len))
591 		return -EPROTO;
592 
593 	/* Make sure to handle only enabled messages */
594 	msg = payload[0] & guc->msg_enabled_mask;
595 
596 	if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)
597 		drm_err(&guc_to_gt(guc)->i915->drm, "Received early GuC crash dump notification!\n");
598 	if (msg & INTEL_GUC_RECV_MSG_EXCEPTION)
599 		drm_err(&guc_to_gt(guc)->i915->drm, "Received early GuC exception notification!\n");
600 
601 	return 0;
602 }
603 
604 /**
605  * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
606  * @guc: intel_guc structure
607  * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
608  *
609  * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
610  * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
611  * intel_huc_auth().
612  *
613  * Return:	non-zero code on error
614  */
615 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
616 {
617 	u32 action[] = {
618 		INTEL_GUC_ACTION_AUTHENTICATE_HUC,
619 		rsa_offset
620 	};
621 
622 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
623 }
624 
625 /**
626  * intel_guc_suspend() - notify GuC entering suspend state
627  * @guc:	the guc
628  */
629 int intel_guc_suspend(struct intel_guc *guc)
630 {
631 	int ret;
632 	u32 action[] = {
633 		INTEL_GUC_ACTION_CLIENT_SOFT_RESET,
634 	};
635 
636 	if (!intel_guc_is_ready(guc))
637 		return 0;
638 
639 	if (intel_guc_submission_is_used(guc)) {
640 		/*
641 		 * This H2G MMIO command tears down the GuC in two steps. First it will
642 		 * generate a G2H CTB for every active context indicating a reset. In
643 		 * practice the i915 shouldn't ever get a G2H as suspend should only be
644 		 * called when the GPU is idle. Next, it tears down the CTBs and this
645 		 * H2G MMIO command completes.
646 		 *
647 		 * Don't abort on a failure code from the GuC. Keep going and do the
648 		 * clean up in santize() and re-initialisation on resume and hopefully
649 		 * the error here won't be problematic.
650 		 */
651 		ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0);
652 		if (ret)
653 			DRM_ERROR("GuC suspend: RESET_CLIENT action failed with error %d!\n", ret);
654 	}
655 
656 	/* Signal that the GuC isn't running. */
657 	intel_guc_sanitize(guc);
658 
659 	return 0;
660 }
661 
662 /**
663  * intel_guc_resume() - notify GuC resuming from suspend state
664  * @guc:	the guc
665  */
666 int intel_guc_resume(struct intel_guc *guc)
667 {
668 	/*
669 	 * NB: This function can still be called even if GuC submission is
670 	 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus,
671 	 * if any code is later added here, it must be support doing nothing
672 	 * if submission is disabled (as per intel_guc_suspend).
673 	 */
674 	return 0;
675 }
676 
677 /**
678  * DOC: GuC Memory Management
679  *
680  * GuC can't allocate any memory for its own usage, so all the allocations must
681  * be handled by the host driver. GuC accesses the memory via the GGTT, with the
682  * exception of the top and bottom parts of the 4GB address space, which are
683  * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
684  * or other parts of the HW. The driver must take care not to place objects that
685  * the GuC is going to access in these reserved ranges. The layout of the GuC
686  * address space is shown below:
687  *
688  * ::
689  *
690  *     +===========> +====================+ <== FFFF_FFFF
691  *     ^             |      Reserved      |
692  *     |             +====================+ <== GUC_GGTT_TOP
693  *     |             |                    |
694  *     |             |        DRAM        |
695  *    GuC            |                    |
696  *  Address    +===> +====================+ <== GuC ggtt_pin_bias
697  *   Space     ^     |                    |
698  *     |       |     |                    |
699  *     |      GuC    |        GuC         |
700  *     |     WOPCM   |       WOPCM        |
701  *     |      Size   |                    |
702  *     |       |     |                    |
703  *     v       v     |                    |
704  *     +=======+===> +====================+ <== 0000_0000
705  *
706  * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
707  * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
708  * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
709  */
710 
711 /**
712  * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
713  * @guc:	the guc
714  * @size:	size of area to allocate (both virtual space and memory)
715  *
716  * This is a wrapper to create an object for use with the GuC. In order to
717  * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
718  * both some backing storage and a range inside the Global GTT. We must pin
719  * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
720  * range is reserved inside GuC.
721  *
722  * Return:	A i915_vma if successful, otherwise an ERR_PTR.
723  */
724 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
725 {
726 	struct intel_gt *gt = guc_to_gt(guc);
727 	struct drm_i915_gem_object *obj;
728 	struct i915_vma *vma;
729 	u64 flags;
730 	int ret;
731 
732 	if (HAS_LMEM(gt->i915))
733 		obj = i915_gem_object_create_lmem(gt->i915, size,
734 						  I915_BO_ALLOC_CPU_CLEAR |
735 						  I915_BO_ALLOC_CONTIGUOUS |
736 						  I915_BO_ALLOC_PM_EARLY);
737 	else
738 		obj = i915_gem_object_create_shmem(gt->i915, size);
739 
740 	if (IS_ERR(obj))
741 		return ERR_CAST(obj);
742 
743 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
744 	if (IS_ERR(vma))
745 		goto err;
746 
747 	flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
748 	ret = i915_ggtt_pin(vma, NULL, 0, flags);
749 	if (ret) {
750 		vma = ERR_PTR(ret);
751 		goto err;
752 	}
753 
754 	return i915_vma_make_unshrinkable(vma);
755 
756 err:
757 	i915_gem_object_put(obj);
758 	return vma;
759 }
760 
761 /**
762  * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
763  * @guc:	the guc
764  * @size:	size of area to allocate (both virtual space and memory)
765  * @out_vma:	return variable for the allocated vma pointer
766  * @out_vaddr:	return variable for the obj mapping
767  *
768  * This wrapper calls intel_guc_allocate_vma() and then maps the allocated
769  * object with I915_MAP_WB.
770  *
771  * Return:	0 if successful, a negative errno code otherwise.
772  */
773 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
774 				   struct i915_vma **out_vma, void **out_vaddr)
775 {
776 	struct i915_vma *vma;
777 	void *vaddr;
778 
779 	vma = intel_guc_allocate_vma(guc, size);
780 	if (IS_ERR(vma))
781 		return PTR_ERR(vma);
782 
783 	vaddr = i915_gem_object_pin_map_unlocked(vma->obj,
784 						 i915_coherent_map_type(guc_to_gt(guc)->i915,
785 									vma->obj, true));
786 	if (IS_ERR(vaddr)) {
787 		i915_vma_unpin_and_release(&vma, 0);
788 		return PTR_ERR(vaddr);
789 	}
790 
791 	*out_vma = vma;
792 	*out_vaddr = vaddr;
793 
794 	return 0;
795 }
796 
797 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
798 {
799 	u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
800 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
801 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
802 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG),
803 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
804 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
805 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)),
806 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)),
807 	};
808 	int ret;
809 
810 	GEM_BUG_ON(len > 2);
811 	GEM_BUG_ON(len == 1 && upper_32_bits(value));
812 
813 	/* Self config must go over MMIO */
814 	ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
815 
816 	if (unlikely(ret < 0))
817 		return ret;
818 	if (unlikely(ret > 1))
819 		return -EPROTO;
820 	if (unlikely(!ret))
821 		return -ENOKEY;
822 
823 	return 0;
824 }
825 
826 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
827 {
828 	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
829 	int err = __guc_action_self_cfg(guc, key, len, value);
830 
831 	if (unlikely(err))
832 		i915_probe_error(i915, "Unsuccessful self-config (%pe) key %#hx value %#llx\n",
833 				 ERR_PTR(err), key, value);
834 	return err;
835 }
836 
837 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value)
838 {
839 	return __guc_self_cfg(guc, key, 1, value);
840 }
841 
842 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value)
843 {
844 	return __guc_self_cfg(guc, key, 2, value);
845 }
846 
847 /**
848  * intel_guc_load_status - dump information about GuC load status
849  * @guc: the GuC
850  * @p: the &drm_printer
851  *
852  * Pretty printer for GuC load status.
853  */
854 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p)
855 {
856 	struct intel_gt *gt = guc_to_gt(guc);
857 	struct intel_uncore *uncore = gt->uncore;
858 	intel_wakeref_t wakeref;
859 
860 	if (!intel_guc_is_supported(guc)) {
861 		drm_printf(p, "GuC not supported\n");
862 		return;
863 	}
864 
865 	if (!intel_guc_is_wanted(guc)) {
866 		drm_printf(p, "GuC disabled\n");
867 		return;
868 	}
869 
870 	intel_uc_fw_dump(&guc->fw, p);
871 
872 	with_intel_runtime_pm(uncore->rpm, wakeref) {
873 		u32 status = intel_uncore_read(uncore, GUC_STATUS);
874 		u32 i;
875 
876 		drm_printf(p, "GuC status 0x%08x:\n", status);
877 		drm_printf(p, "\tBootrom status = 0x%x\n",
878 			   (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
879 		drm_printf(p, "\tuKernel status = 0x%x\n",
880 			   (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
881 		drm_printf(p, "\tMIA Core status = 0x%x\n",
882 			   (status & GS_MIA_MASK) >> GS_MIA_SHIFT);
883 		drm_puts(p, "Scratch registers:\n");
884 		for (i = 0; i < 16; i++) {
885 			drm_printf(p, "\t%2d: \t0x%x\n",
886 				   i, intel_uncore_read(uncore, SOFT_SCRATCH(i)));
887 		}
888 	}
889 }
890 
891 void intel_guc_write_barrier(struct intel_guc *guc)
892 {
893 	struct intel_gt *gt = guc_to_gt(guc);
894 
895 	if (i915_gem_object_is_lmem(guc->ct.vma->obj)) {
896 		/*
897 		 * Ensure intel_uncore_write_fw can be used rather than
898 		 * intel_uncore_write.
899 		 */
900 		GEM_BUG_ON(guc->send_regs.fw_domains);
901 
902 		/*
903 		 * This register is used by the i915 and GuC for MMIO based
904 		 * communication. Once we are in this code CTBs are the only
905 		 * method the i915 uses to communicate with the GuC so it is
906 		 * safe to write to this register (a value of 0 is NOP for MMIO
907 		 * communication). If we ever start mixing CTBs and MMIOs a new
908 		 * register will have to be chosen. This function is also used
909 		 * to enforce ordering of a work queue item write and an update
910 		 * to the process descriptor. When a work queue is being used,
911 		 * CTBs are also the only mechanism of communication.
912 		 */
913 		intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0);
914 	} else {
915 		/* wmb() sufficient for a barrier if in smem */
916 		wmb();
917 	}
918 }
919