1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2019 Intel Corporation 4 */ 5 6 #include "gem/i915_gem_lmem.h" 7 #include "gt/intel_gt.h" 8 #include "gt/intel_gt_irq.h" 9 #include "gt/intel_gt_pm_irq.h" 10 #include "gt/intel_gt_regs.h" 11 #include "intel_guc.h" 12 #include "intel_guc_ads.h" 13 #include "intel_guc_capture.h" 14 #include "intel_guc_slpc.h" 15 #include "intel_guc_submission.h" 16 #include "i915_drv.h" 17 #include "i915_irq.h" 18 19 /** 20 * DOC: GuC 21 * 22 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is 23 * designed to offload some of the functionality usually performed by the host 24 * driver; currently the main operations it can take care of are: 25 * 26 * - Authentication of the HuC, which is required to fully enable HuC usage. 27 * - Low latency graphics context scheduling (a.k.a. GuC submission). 28 * - GT Power management. 29 * 30 * The enable_guc module parameter can be used to select which of those 31 * operations to enable within GuC. Note that not all the operations are 32 * supported on all gen9+ platforms. 33 * 34 * Enabling the GuC is not mandatory and therefore the firmware is only loaded 35 * if at least one of the operations is selected. However, not loading the GuC 36 * might result in the loss of some features that do require the GuC (currently 37 * just the HuC, but more are expected to land in the future). 38 */ 39 40 void intel_guc_notify(struct intel_guc *guc) 41 { 42 struct intel_gt *gt = guc_to_gt(guc); 43 44 /* 45 * On Gen11+, the value written to the register is passes as a payload 46 * to the FW. However, the FW currently treats all values the same way 47 * (H2G interrupt), so we can just write the value that the HW expects 48 * on older gens. 49 */ 50 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER); 51 } 52 53 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i) 54 { 55 GEM_BUG_ON(!guc->send_regs.base); 56 GEM_BUG_ON(!guc->send_regs.count); 57 GEM_BUG_ON(i >= guc->send_regs.count); 58 59 return _MMIO(guc->send_regs.base + 4 * i); 60 } 61 62 void intel_guc_init_send_regs(struct intel_guc *guc) 63 { 64 struct intel_gt *gt = guc_to_gt(guc); 65 enum forcewake_domains fw_domains = 0; 66 unsigned int i; 67 68 GEM_BUG_ON(!guc->send_regs.base); 69 GEM_BUG_ON(!guc->send_regs.count); 70 71 for (i = 0; i < guc->send_regs.count; i++) { 72 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore, 73 guc_send_reg(guc, i), 74 FW_REG_READ | FW_REG_WRITE); 75 } 76 guc->send_regs.fw_domains = fw_domains; 77 } 78 79 static void gen9_reset_guc_interrupts(struct intel_guc *guc) 80 { 81 struct intel_gt *gt = guc_to_gt(guc); 82 83 assert_rpm_wakelock_held(>->i915->runtime_pm); 84 85 spin_lock_irq(gt->irq_lock); 86 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events); 87 spin_unlock_irq(gt->irq_lock); 88 } 89 90 static void gen9_enable_guc_interrupts(struct intel_guc *guc) 91 { 92 struct intel_gt *gt = guc_to_gt(guc); 93 94 assert_rpm_wakelock_held(>->i915->runtime_pm); 95 96 spin_lock_irq(gt->irq_lock); 97 WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) & 98 gt->pm_guc_events); 99 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events); 100 spin_unlock_irq(gt->irq_lock); 101 102 guc->interrupts.enabled = true; 103 } 104 105 static void gen9_disable_guc_interrupts(struct intel_guc *guc) 106 { 107 struct intel_gt *gt = guc_to_gt(guc); 108 109 assert_rpm_wakelock_held(>->i915->runtime_pm); 110 guc->interrupts.enabled = false; 111 112 spin_lock_irq(gt->irq_lock); 113 114 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events); 115 116 spin_unlock_irq(gt->irq_lock); 117 intel_synchronize_irq(gt->i915); 118 119 gen9_reset_guc_interrupts(guc); 120 } 121 122 static bool __gen11_reset_guc_interrupts(struct intel_gt *gt) 123 { 124 u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC; 125 126 lockdep_assert_held(gt->irq_lock); 127 return gen11_gt_reset_one_iir(gt, 0, irq); 128 } 129 130 static void gen11_reset_guc_interrupts(struct intel_guc *guc) 131 { 132 struct intel_gt *gt = guc_to_gt(guc); 133 134 spin_lock_irq(gt->irq_lock); 135 __gen11_reset_guc_interrupts(gt); 136 spin_unlock_irq(gt->irq_lock); 137 } 138 139 static void gen11_enable_guc_interrupts(struct intel_guc *guc) 140 { 141 struct intel_gt *gt = guc_to_gt(guc); 142 143 spin_lock_irq(gt->irq_lock); 144 __gen11_reset_guc_interrupts(gt); 145 spin_unlock_irq(gt->irq_lock); 146 147 guc->interrupts.enabled = true; 148 } 149 150 static void gen11_disable_guc_interrupts(struct intel_guc *guc) 151 { 152 struct intel_gt *gt = guc_to_gt(guc); 153 154 guc->interrupts.enabled = false; 155 intel_synchronize_irq(gt->i915); 156 157 gen11_reset_guc_interrupts(guc); 158 } 159 160 void intel_guc_init_early(struct intel_guc *guc) 161 { 162 struct intel_gt *gt = guc_to_gt(guc); 163 struct drm_i915_private *i915 = gt->i915; 164 165 intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC); 166 intel_guc_ct_init_early(&guc->ct); 167 intel_guc_log_init_early(&guc->log); 168 intel_guc_submission_init_early(guc); 169 intel_guc_slpc_init_early(&guc->slpc); 170 intel_guc_rc_init_early(guc); 171 172 mutex_init(&guc->send_mutex); 173 spin_lock_init(&guc->irq_lock); 174 if (GRAPHICS_VER(i915) >= 11) { 175 guc->interrupts.reset = gen11_reset_guc_interrupts; 176 guc->interrupts.enable = gen11_enable_guc_interrupts; 177 guc->interrupts.disable = gen11_disable_guc_interrupts; 178 if (gt->type == GT_MEDIA) { 179 guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT; 180 guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0)); 181 } else { 182 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT; 183 guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0)); 184 } 185 186 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT; 187 188 } else { 189 guc->notify_reg = GUC_SEND_INTERRUPT; 190 guc->interrupts.reset = gen9_reset_guc_interrupts; 191 guc->interrupts.enable = gen9_enable_guc_interrupts; 192 guc->interrupts.disable = gen9_disable_guc_interrupts; 193 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0)); 194 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN; 195 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT); 196 } 197 198 intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION | 199 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED); 200 } 201 202 void intel_guc_init_late(struct intel_guc *guc) 203 { 204 intel_guc_ads_init_late(guc); 205 } 206 207 static u32 guc_ctl_debug_flags(struct intel_guc *guc) 208 { 209 u32 level = intel_guc_log_get_level(&guc->log); 210 u32 flags = 0; 211 212 if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) 213 flags |= GUC_LOG_DISABLED; 214 else 215 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << 216 GUC_LOG_VERBOSITY_SHIFT; 217 218 return flags; 219 } 220 221 static u32 guc_ctl_feature_flags(struct intel_guc *guc) 222 { 223 u32 flags = 0; 224 225 if (!intel_guc_submission_is_used(guc)) 226 flags |= GUC_CTL_DISABLE_SCHEDULER; 227 228 if (intel_guc_slpc_is_used(guc)) 229 flags |= GUC_CTL_ENABLE_SLPC; 230 231 return flags; 232 } 233 234 static u32 guc_ctl_log_params_flags(struct intel_guc *guc) 235 { 236 struct intel_guc_log *log = &guc->log; 237 u32 offset, flags; 238 239 GEM_BUG_ON(!log->sizes_initialised); 240 241 offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT; 242 243 flags = GUC_LOG_VALID | 244 GUC_LOG_NOTIFY_ON_HALF_FULL | 245 log->sizes[GUC_LOG_SECTIONS_DEBUG].flag | 246 log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag | 247 (log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) | 248 (log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) | 249 (log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) | 250 (offset << GUC_LOG_BUF_ADDR_SHIFT); 251 252 return flags; 253 } 254 255 static u32 guc_ctl_ads_flags(struct intel_guc *guc) 256 { 257 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT; 258 u32 flags = ads << GUC_ADS_ADDR_SHIFT; 259 260 return flags; 261 } 262 263 static u32 guc_ctl_wa_flags(struct intel_guc *guc) 264 { 265 struct intel_gt *gt = guc_to_gt(guc); 266 u32 flags = 0; 267 268 /* Wa_22012773006:gen11,gen12 < XeHP */ 269 if (GRAPHICS_VER(gt->i915) >= 11 && 270 GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 50)) 271 flags |= GUC_WA_POLLCS; 272 273 /* Wa_16011759253:dg2_g10:a0 */ 274 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0)) 275 flags |= GUC_WA_GAM_CREDITS; 276 277 /* Wa_14014475959:dg2 */ 278 if (IS_DG2(gt->i915)) 279 flags |= GUC_WA_HOLD_CCS_SWITCHOUT; 280 281 /* 282 * Wa_14012197797:dg2_g10:a0,dg2_g11:a0 283 * Wa_22011391025:dg2_g10,dg2_g11,dg2_g12 284 * 285 * The same WA bit is used for both and 22011391025 is applicable to 286 * all DG2. 287 */ 288 if (IS_DG2(gt->i915)) 289 flags |= GUC_WA_DUAL_QUEUE; 290 291 /* Wa_22011802037: graphics version 11/12 */ 292 if (IS_GRAPHICS_VER(gt->i915, 11, 12)) 293 flags |= GUC_WA_PRE_PARSER; 294 295 /* Wa_16011777198:dg2 */ 296 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) || 297 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0)) 298 flags |= GUC_WA_RCS_RESET_BEFORE_RC6; 299 300 /* 301 * Wa_22012727170:dg2_g10[a0-c0), dg2_g11[a0..) 302 * Wa_22012727685:dg2_g11[a0..) 303 */ 304 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) || 305 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_FOREVER)) 306 flags |= GUC_WA_CONTEXT_ISOLATION; 307 308 /* Wa_16015675438 */ 309 if (!RCS_MASK(gt)) 310 flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST; 311 312 return flags; 313 } 314 315 static u32 guc_ctl_devid(struct intel_guc *guc) 316 { 317 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 318 319 return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915); 320 } 321 322 /* 323 * Initialise the GuC parameter block before starting the firmware 324 * transfer. These parameters are read by the firmware on startup 325 * and cannot be changed thereafter. 326 */ 327 static void guc_init_params(struct intel_guc *guc) 328 { 329 u32 *params = guc->params; 330 int i; 331 332 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); 333 334 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); 335 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); 336 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); 337 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); 338 params[GUC_CTL_WA] = guc_ctl_wa_flags(guc); 339 params[GUC_CTL_DEVID] = guc_ctl_devid(guc); 340 341 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 342 DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]); 343 } 344 345 /* 346 * Initialise the GuC parameter block before starting the firmware 347 * transfer. These parameters are read by the firmware on startup 348 * and cannot be changed thereafter. 349 */ 350 void intel_guc_write_params(struct intel_guc *guc) 351 { 352 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 353 int i; 354 355 /* 356 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and 357 * they are power context saved so it's ok to release forcewake 358 * when we are done here and take it again at xfer time. 359 */ 360 intel_uncore_forcewake_get(uncore, FORCEWAKE_GT); 361 362 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0); 363 364 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 365 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]); 366 367 intel_uncore_forcewake_put(uncore, FORCEWAKE_GT); 368 } 369 370 void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p) 371 { 372 struct intel_gt *gt = guc_to_gt(guc); 373 intel_wakeref_t wakeref; 374 u32 stamp = 0; 375 u64 ktime; 376 377 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) 378 stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP); 379 ktime = ktime_get_boottime_ns(); 380 381 drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime); 382 drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp); 383 drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n", 384 gt->clock_frequency, gt->clock_period_ns); 385 } 386 387 int intel_guc_init(struct intel_guc *guc) 388 { 389 struct intel_gt *gt = guc_to_gt(guc); 390 int ret; 391 392 ret = intel_uc_fw_init(&guc->fw); 393 if (ret) 394 goto out; 395 396 ret = intel_guc_log_create(&guc->log); 397 if (ret) 398 goto err_fw; 399 400 ret = intel_guc_capture_init(guc); 401 if (ret) 402 goto err_log; 403 404 ret = intel_guc_ads_create(guc); 405 if (ret) 406 goto err_capture; 407 408 GEM_BUG_ON(!guc->ads_vma); 409 410 ret = intel_guc_ct_init(&guc->ct); 411 if (ret) 412 goto err_ads; 413 414 if (intel_guc_submission_is_used(guc)) { 415 /* 416 * This is stuff we need to have available at fw load time 417 * if we are planning to enable submission later 418 */ 419 ret = intel_guc_submission_init(guc); 420 if (ret) 421 goto err_ct; 422 } 423 424 if (intel_guc_slpc_is_used(guc)) { 425 ret = intel_guc_slpc_init(&guc->slpc); 426 if (ret) 427 goto err_submission; 428 } 429 430 /* now that everything is perma-pinned, initialize the parameters */ 431 guc_init_params(guc); 432 433 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE); 434 435 return 0; 436 437 err_submission: 438 intel_guc_submission_fini(guc); 439 err_ct: 440 intel_guc_ct_fini(&guc->ct); 441 err_ads: 442 intel_guc_ads_destroy(guc); 443 err_capture: 444 intel_guc_capture_destroy(guc); 445 err_log: 446 intel_guc_log_destroy(&guc->log); 447 err_fw: 448 intel_uc_fw_fini(&guc->fw); 449 out: 450 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL); 451 i915_probe_error(gt->i915, "failed with %d\n", ret); 452 return ret; 453 } 454 455 void intel_guc_fini(struct intel_guc *guc) 456 { 457 if (!intel_uc_fw_is_loadable(&guc->fw)) 458 return; 459 460 if (intel_guc_slpc_is_used(guc)) 461 intel_guc_slpc_fini(&guc->slpc); 462 463 if (intel_guc_submission_is_used(guc)) 464 intel_guc_submission_fini(guc); 465 466 intel_guc_ct_fini(&guc->ct); 467 468 intel_guc_ads_destroy(guc); 469 intel_guc_capture_destroy(guc); 470 intel_guc_log_destroy(&guc->log); 471 intel_uc_fw_fini(&guc->fw); 472 } 473 474 /* 475 * This function implements the MMIO based host to GuC interface. 476 */ 477 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len, 478 u32 *response_buf, u32 response_buf_size) 479 { 480 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 481 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 482 u32 header; 483 int i; 484 int ret; 485 486 GEM_BUG_ON(!len); 487 GEM_BUG_ON(len > guc->send_regs.count); 488 489 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST); 490 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST); 491 492 mutex_lock(&guc->send_mutex); 493 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains); 494 495 retry: 496 for (i = 0; i < len; i++) 497 intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]); 498 499 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1)); 500 501 intel_guc_notify(guc); 502 503 /* 504 * No GuC command should ever take longer than 10ms. 505 * Fast commands should still complete in 10us. 506 */ 507 ret = __intel_wait_for_register_fw(uncore, 508 guc_send_reg(guc, 0), 509 GUC_HXG_MSG_0_ORIGIN, 510 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, 511 GUC_HXG_ORIGIN_GUC), 512 10, 10, &header); 513 if (unlikely(ret)) { 514 timeout: 515 drm_err(&i915->drm, "mmio request %#x: no reply %x\n", 516 request[0], header); 517 goto out; 518 } 519 520 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) { 521 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \ 522 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \ 523 FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; }) 524 525 ret = wait_for(done, 1000); 526 if (unlikely(ret)) 527 goto timeout; 528 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != 529 GUC_HXG_ORIGIN_GUC)) 530 goto proto; 531 #undef done 532 } 533 534 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { 535 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header); 536 537 drm_dbg(&i915->drm, "mmio request %#x: retrying, reason %u\n", 538 request[0], reason); 539 goto retry; 540 } 541 542 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) { 543 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header); 544 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header); 545 546 drm_err(&i915->drm, "mmio request %#x: failure %x/%u\n", 547 request[0], error, hint); 548 ret = -ENXIO; 549 goto out; 550 } 551 552 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) { 553 proto: 554 drm_err(&i915->drm, "mmio request %#x: unexpected reply %#x\n", 555 request[0], header); 556 ret = -EPROTO; 557 goto out; 558 } 559 560 if (response_buf) { 561 int count = min(response_buf_size, guc->send_regs.count); 562 563 GEM_BUG_ON(!count); 564 565 response_buf[0] = header; 566 567 for (i = 1; i < count; i++) 568 response_buf[i] = intel_uncore_read(uncore, 569 guc_send_reg(guc, i)); 570 571 /* Use number of copied dwords as our return value */ 572 ret = count; 573 } else { 574 /* Use data from the GuC response as our return value */ 575 ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header); 576 } 577 578 out: 579 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains); 580 mutex_unlock(&guc->send_mutex); 581 582 return ret; 583 } 584 585 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, 586 const u32 *payload, u32 len) 587 { 588 u32 msg; 589 590 if (unlikely(!len)) 591 return -EPROTO; 592 593 /* Make sure to handle only enabled messages */ 594 msg = payload[0] & guc->msg_enabled_mask; 595 596 if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED) 597 drm_err(&guc_to_gt(guc)->i915->drm, "Received early GuC crash dump notification!\n"); 598 if (msg & INTEL_GUC_RECV_MSG_EXCEPTION) 599 drm_err(&guc_to_gt(guc)->i915->drm, "Received early GuC exception notification!\n"); 600 601 return 0; 602 } 603 604 /** 605 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode 606 * @guc: intel_guc structure 607 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma 608 * 609 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send 610 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by 611 * intel_huc_auth(). 612 * 613 * Return: non-zero code on error 614 */ 615 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset) 616 { 617 u32 action[] = { 618 INTEL_GUC_ACTION_AUTHENTICATE_HUC, 619 rsa_offset 620 }; 621 622 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 623 } 624 625 /** 626 * intel_guc_suspend() - notify GuC entering suspend state 627 * @guc: the guc 628 */ 629 int intel_guc_suspend(struct intel_guc *guc) 630 { 631 int ret; 632 u32 action[] = { 633 INTEL_GUC_ACTION_CLIENT_SOFT_RESET, 634 }; 635 636 if (!intel_guc_is_ready(guc)) 637 return 0; 638 639 if (intel_guc_submission_is_used(guc)) { 640 /* 641 * This H2G MMIO command tears down the GuC in two steps. First it will 642 * generate a G2H CTB for every active context indicating a reset. In 643 * practice the i915 shouldn't ever get a G2H as suspend should only be 644 * called when the GPU is idle. Next, it tears down the CTBs and this 645 * H2G MMIO command completes. 646 * 647 * Don't abort on a failure code from the GuC. Keep going and do the 648 * clean up in santize() and re-initialisation on resume and hopefully 649 * the error here won't be problematic. 650 */ 651 ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0); 652 if (ret) 653 DRM_ERROR("GuC suspend: RESET_CLIENT action failed with error %d!\n", ret); 654 } 655 656 /* Signal that the GuC isn't running. */ 657 intel_guc_sanitize(guc); 658 659 return 0; 660 } 661 662 /** 663 * intel_guc_resume() - notify GuC resuming from suspend state 664 * @guc: the guc 665 */ 666 int intel_guc_resume(struct intel_guc *guc) 667 { 668 /* 669 * NB: This function can still be called even if GuC submission is 670 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus, 671 * if any code is later added here, it must be support doing nothing 672 * if submission is disabled (as per intel_guc_suspend). 673 */ 674 return 0; 675 } 676 677 /** 678 * DOC: GuC Memory Management 679 * 680 * GuC can't allocate any memory for its own usage, so all the allocations must 681 * be handled by the host driver. GuC accesses the memory via the GGTT, with the 682 * exception of the top and bottom parts of the 4GB address space, which are 683 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM) 684 * or other parts of the HW. The driver must take care not to place objects that 685 * the GuC is going to access in these reserved ranges. The layout of the GuC 686 * address space is shown below: 687 * 688 * :: 689 * 690 * +===========> +====================+ <== FFFF_FFFF 691 * ^ | Reserved | 692 * | +====================+ <== GUC_GGTT_TOP 693 * | | | 694 * | | DRAM | 695 * GuC | | 696 * Address +===> +====================+ <== GuC ggtt_pin_bias 697 * Space ^ | | 698 * | | | | 699 * | GuC | GuC | 700 * | WOPCM | WOPCM | 701 * | Size | | 702 * | | | | 703 * v v | | 704 * +=======+===> +====================+ <== 0000_0000 705 * 706 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM 707 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped 708 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size. 709 */ 710 711 /** 712 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage 713 * @guc: the guc 714 * @size: size of area to allocate (both virtual space and memory) 715 * 716 * This is a wrapper to create an object for use with the GuC. In order to 717 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate 718 * both some backing storage and a range inside the Global GTT. We must pin 719 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that 720 * range is reserved inside GuC. 721 * 722 * Return: A i915_vma if successful, otherwise an ERR_PTR. 723 */ 724 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) 725 { 726 struct intel_gt *gt = guc_to_gt(guc); 727 struct drm_i915_gem_object *obj; 728 struct i915_vma *vma; 729 u64 flags; 730 int ret; 731 732 if (HAS_LMEM(gt->i915)) 733 obj = i915_gem_object_create_lmem(gt->i915, size, 734 I915_BO_ALLOC_CPU_CLEAR | 735 I915_BO_ALLOC_CONTIGUOUS | 736 I915_BO_ALLOC_PM_EARLY); 737 else 738 obj = i915_gem_object_create_shmem(gt->i915, size); 739 740 if (IS_ERR(obj)) 741 return ERR_CAST(obj); 742 743 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 744 if (IS_ERR(vma)) 745 goto err; 746 747 flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); 748 ret = i915_ggtt_pin(vma, NULL, 0, flags); 749 if (ret) { 750 vma = ERR_PTR(ret); 751 goto err; 752 } 753 754 return i915_vma_make_unshrinkable(vma); 755 756 err: 757 i915_gem_object_put(obj); 758 return vma; 759 } 760 761 /** 762 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage 763 * @guc: the guc 764 * @size: size of area to allocate (both virtual space and memory) 765 * @out_vma: return variable for the allocated vma pointer 766 * @out_vaddr: return variable for the obj mapping 767 * 768 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated 769 * object with I915_MAP_WB. 770 * 771 * Return: 0 if successful, a negative errno code otherwise. 772 */ 773 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size, 774 struct i915_vma **out_vma, void **out_vaddr) 775 { 776 struct i915_vma *vma; 777 void *vaddr; 778 779 vma = intel_guc_allocate_vma(guc, size); 780 if (IS_ERR(vma)) 781 return PTR_ERR(vma); 782 783 vaddr = i915_gem_object_pin_map_unlocked(vma->obj, 784 i915_coherent_map_type(guc_to_gt(guc)->i915, 785 vma->obj, true)); 786 if (IS_ERR(vaddr)) { 787 i915_vma_unpin_and_release(&vma, 0); 788 return PTR_ERR(vaddr); 789 } 790 791 *out_vma = vma; 792 *out_vaddr = vaddr; 793 794 return 0; 795 } 796 797 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 798 { 799 u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = { 800 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | 801 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | 802 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG), 803 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) | 804 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len), 805 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)), 806 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)), 807 }; 808 int ret; 809 810 GEM_BUG_ON(len > 2); 811 GEM_BUG_ON(len == 1 && upper_32_bits(value)); 812 813 /* Self config must go over MMIO */ 814 ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0); 815 816 if (unlikely(ret < 0)) 817 return ret; 818 if (unlikely(ret > 1)) 819 return -EPROTO; 820 if (unlikely(!ret)) 821 return -ENOKEY; 822 823 return 0; 824 } 825 826 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 827 { 828 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 829 int err = __guc_action_self_cfg(guc, key, len, value); 830 831 if (unlikely(err)) 832 i915_probe_error(i915, "Unsuccessful self-config (%pe) key %#hx value %#llx\n", 833 ERR_PTR(err), key, value); 834 return err; 835 } 836 837 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value) 838 { 839 return __guc_self_cfg(guc, key, 1, value); 840 } 841 842 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value) 843 { 844 return __guc_self_cfg(guc, key, 2, value); 845 } 846 847 /** 848 * intel_guc_load_status - dump information about GuC load status 849 * @guc: the GuC 850 * @p: the &drm_printer 851 * 852 * Pretty printer for GuC load status. 853 */ 854 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p) 855 { 856 struct intel_gt *gt = guc_to_gt(guc); 857 struct intel_uncore *uncore = gt->uncore; 858 intel_wakeref_t wakeref; 859 860 if (!intel_guc_is_supported(guc)) { 861 drm_printf(p, "GuC not supported\n"); 862 return; 863 } 864 865 if (!intel_guc_is_wanted(guc)) { 866 drm_printf(p, "GuC disabled\n"); 867 return; 868 } 869 870 intel_uc_fw_dump(&guc->fw, p); 871 872 with_intel_runtime_pm(uncore->rpm, wakeref) { 873 u32 status = intel_uncore_read(uncore, GUC_STATUS); 874 u32 i; 875 876 drm_printf(p, "GuC status 0x%08x:\n", status); 877 drm_printf(p, "\tBootrom status = 0x%x\n", 878 (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT); 879 drm_printf(p, "\tuKernel status = 0x%x\n", 880 (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT); 881 drm_printf(p, "\tMIA Core status = 0x%x\n", 882 (status & GS_MIA_MASK) >> GS_MIA_SHIFT); 883 drm_puts(p, "Scratch registers:\n"); 884 for (i = 0; i < 16; i++) { 885 drm_printf(p, "\t%2d: \t0x%x\n", 886 i, intel_uncore_read(uncore, SOFT_SCRATCH(i))); 887 } 888 } 889 } 890 891 void intel_guc_write_barrier(struct intel_guc *guc) 892 { 893 struct intel_gt *gt = guc_to_gt(guc); 894 895 if (i915_gem_object_is_lmem(guc->ct.vma->obj)) { 896 /* 897 * Ensure intel_uncore_write_fw can be used rather than 898 * intel_uncore_write. 899 */ 900 GEM_BUG_ON(guc->send_regs.fw_domains); 901 902 /* 903 * This register is used by the i915 and GuC for MMIO based 904 * communication. Once we are in this code CTBs are the only 905 * method the i915 uses to communicate with the GuC so it is 906 * safe to write to this register (a value of 0 is NOP for MMIO 907 * communication). If we ever start mixing CTBs and MMIOs a new 908 * register will have to be chosen. This function is also used 909 * to enforce ordering of a work queue item write and an update 910 * to the process descriptor. When a work queue is being used, 911 * CTBs are also the only mechanism of communication. 912 */ 913 intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0); 914 } else { 915 /* wmb() sufficient for a barrier if in smem */ 916 wmb(); 917 } 918 } 919