1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2019 Intel Corporation 4 */ 5 6 #include "gem/i915_gem_lmem.h" 7 #include "gt/intel_gt.h" 8 #include "gt/intel_gt_irq.h" 9 #include "gt/intel_gt_pm_irq.h" 10 #include "gt/intel_gt_regs.h" 11 #include "intel_guc.h" 12 #include "intel_guc_slpc.h" 13 #include "intel_guc_ads.h" 14 #include "intel_guc_submission.h" 15 #include "i915_drv.h" 16 #include "i915_irq.h" 17 18 /** 19 * DOC: GuC 20 * 21 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is 22 * designed to offload some of the functionality usually performed by the host 23 * driver; currently the main operations it can take care of are: 24 * 25 * - Authentication of the HuC, which is required to fully enable HuC usage. 26 * - Low latency graphics context scheduling (a.k.a. GuC submission). 27 * - GT Power management. 28 * 29 * The enable_guc module parameter can be used to select which of those 30 * operations to enable within GuC. Note that not all the operations are 31 * supported on all gen9+ platforms. 32 * 33 * Enabling the GuC is not mandatory and therefore the firmware is only loaded 34 * if at least one of the operations is selected. However, not loading the GuC 35 * might result in the loss of some features that do require the GuC (currently 36 * just the HuC, but more are expected to land in the future). 37 */ 38 39 void intel_guc_notify(struct intel_guc *guc) 40 { 41 struct intel_gt *gt = guc_to_gt(guc); 42 43 /* 44 * On Gen11+, the value written to the register is passes as a payload 45 * to the FW. However, the FW currently treats all values the same way 46 * (H2G interrupt), so we can just write the value that the HW expects 47 * on older gens. 48 */ 49 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER); 50 } 51 52 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i) 53 { 54 GEM_BUG_ON(!guc->send_regs.base); 55 GEM_BUG_ON(!guc->send_regs.count); 56 GEM_BUG_ON(i >= guc->send_regs.count); 57 58 return _MMIO(guc->send_regs.base + 4 * i); 59 } 60 61 void intel_guc_init_send_regs(struct intel_guc *guc) 62 { 63 struct intel_gt *gt = guc_to_gt(guc); 64 enum forcewake_domains fw_domains = 0; 65 unsigned int i; 66 67 GEM_BUG_ON(!guc->send_regs.base); 68 GEM_BUG_ON(!guc->send_regs.count); 69 70 for (i = 0; i < guc->send_regs.count; i++) { 71 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore, 72 guc_send_reg(guc, i), 73 FW_REG_READ | FW_REG_WRITE); 74 } 75 guc->send_regs.fw_domains = fw_domains; 76 } 77 78 static void gen9_reset_guc_interrupts(struct intel_guc *guc) 79 { 80 struct intel_gt *gt = guc_to_gt(guc); 81 82 assert_rpm_wakelock_held(>->i915->runtime_pm); 83 84 spin_lock_irq(>->irq_lock); 85 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events); 86 spin_unlock_irq(>->irq_lock); 87 } 88 89 static void gen9_enable_guc_interrupts(struct intel_guc *guc) 90 { 91 struct intel_gt *gt = guc_to_gt(guc); 92 93 assert_rpm_wakelock_held(>->i915->runtime_pm); 94 95 spin_lock_irq(>->irq_lock); 96 WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) & 97 gt->pm_guc_events); 98 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events); 99 spin_unlock_irq(>->irq_lock); 100 } 101 102 static void gen9_disable_guc_interrupts(struct intel_guc *guc) 103 { 104 struct intel_gt *gt = guc_to_gt(guc); 105 106 assert_rpm_wakelock_held(>->i915->runtime_pm); 107 108 spin_lock_irq(>->irq_lock); 109 110 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events); 111 112 spin_unlock_irq(>->irq_lock); 113 intel_synchronize_irq(gt->i915); 114 115 gen9_reset_guc_interrupts(guc); 116 } 117 118 static void gen11_reset_guc_interrupts(struct intel_guc *guc) 119 { 120 struct intel_gt *gt = guc_to_gt(guc); 121 122 spin_lock_irq(>->irq_lock); 123 gen11_gt_reset_one_iir(gt, 0, GEN11_GUC); 124 spin_unlock_irq(>->irq_lock); 125 } 126 127 static void gen11_enable_guc_interrupts(struct intel_guc *guc) 128 { 129 struct intel_gt *gt = guc_to_gt(guc); 130 u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST); 131 132 spin_lock_irq(>->irq_lock); 133 WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC)); 134 intel_uncore_write(gt->uncore, 135 GEN11_GUC_SG_INTR_ENABLE, events); 136 intel_uncore_write(gt->uncore, 137 GEN11_GUC_SG_INTR_MASK, ~events); 138 spin_unlock_irq(>->irq_lock); 139 } 140 141 static void gen11_disable_guc_interrupts(struct intel_guc *guc) 142 { 143 struct intel_gt *gt = guc_to_gt(guc); 144 145 spin_lock_irq(>->irq_lock); 146 147 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0); 148 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0); 149 150 spin_unlock_irq(>->irq_lock); 151 intel_synchronize_irq(gt->i915); 152 153 gen11_reset_guc_interrupts(guc); 154 } 155 156 void intel_guc_init_early(struct intel_guc *guc) 157 { 158 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 159 160 intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC); 161 intel_guc_ct_init_early(&guc->ct); 162 intel_guc_log_init_early(&guc->log); 163 intel_guc_submission_init_early(guc); 164 intel_guc_slpc_init_early(&guc->slpc); 165 intel_guc_rc_init_early(guc); 166 167 mutex_init(&guc->send_mutex); 168 spin_lock_init(&guc->irq_lock); 169 if (GRAPHICS_VER(i915) >= 11) { 170 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT; 171 guc->interrupts.reset = gen11_reset_guc_interrupts; 172 guc->interrupts.enable = gen11_enable_guc_interrupts; 173 guc->interrupts.disable = gen11_disable_guc_interrupts; 174 guc->send_regs.base = 175 i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0)); 176 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT; 177 178 } else { 179 guc->notify_reg = GUC_SEND_INTERRUPT; 180 guc->interrupts.reset = gen9_reset_guc_interrupts; 181 guc->interrupts.enable = gen9_enable_guc_interrupts; 182 guc->interrupts.disable = gen9_disable_guc_interrupts; 183 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0)); 184 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN; 185 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT); 186 } 187 188 intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION | 189 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED); 190 } 191 192 void intel_guc_init_late(struct intel_guc *guc) 193 { 194 intel_guc_ads_init_late(guc); 195 } 196 197 static u32 guc_ctl_debug_flags(struct intel_guc *guc) 198 { 199 u32 level = intel_guc_log_get_level(&guc->log); 200 u32 flags = 0; 201 202 if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) 203 flags |= GUC_LOG_DISABLED; 204 else 205 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << 206 GUC_LOG_VERBOSITY_SHIFT; 207 208 return flags; 209 } 210 211 static u32 guc_ctl_feature_flags(struct intel_guc *guc) 212 { 213 u32 flags = 0; 214 215 if (!intel_guc_submission_is_used(guc)) 216 flags |= GUC_CTL_DISABLE_SCHEDULER; 217 218 if (intel_guc_slpc_is_used(guc)) 219 flags |= GUC_CTL_ENABLE_SLPC; 220 221 return flags; 222 } 223 224 static u32 guc_ctl_log_params_flags(struct intel_guc *guc) 225 { 226 u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT; 227 u32 flags; 228 229 #if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0) 230 #define LOG_UNIT SZ_1M 231 #define LOG_FLAG GUC_LOG_LOG_ALLOC_UNITS 232 #else 233 #define LOG_UNIT SZ_4K 234 #define LOG_FLAG 0 235 #endif 236 237 #if (((CAPTURE_BUFFER_SIZE) % SZ_1M) == 0) 238 #define CAPTURE_UNIT SZ_1M 239 #define CAPTURE_FLAG GUC_LOG_CAPTURE_ALLOC_UNITS 240 #else 241 #define CAPTURE_UNIT SZ_4K 242 #define CAPTURE_FLAG 0 243 #endif 244 245 BUILD_BUG_ON(!CRASH_BUFFER_SIZE); 246 BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, LOG_UNIT)); 247 BUILD_BUG_ON(!DEBUG_BUFFER_SIZE); 248 BUILD_BUG_ON(!IS_ALIGNED(DEBUG_BUFFER_SIZE, LOG_UNIT)); 249 BUILD_BUG_ON(!CAPTURE_BUFFER_SIZE); 250 BUILD_BUG_ON(!IS_ALIGNED(CAPTURE_BUFFER_SIZE, CAPTURE_UNIT)); 251 252 BUILD_BUG_ON((CRASH_BUFFER_SIZE / LOG_UNIT - 1) > 253 (GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT)); 254 BUILD_BUG_ON((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) > 255 (GUC_LOG_DEBUG_MASK >> GUC_LOG_DEBUG_SHIFT)); 256 BUILD_BUG_ON((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) > 257 (GUC_LOG_CAPTURE_MASK >> GUC_LOG_CAPTURE_SHIFT)); 258 259 flags = GUC_LOG_VALID | 260 GUC_LOG_NOTIFY_ON_HALF_FULL | 261 CAPTURE_FLAG | 262 LOG_FLAG | 263 ((CRASH_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_CRASH_SHIFT) | 264 ((DEBUG_BUFFER_SIZE / LOG_UNIT - 1) << GUC_LOG_DEBUG_SHIFT) | 265 ((CAPTURE_BUFFER_SIZE / CAPTURE_UNIT - 1) << GUC_LOG_CAPTURE_SHIFT) | 266 (offset << GUC_LOG_BUF_ADDR_SHIFT); 267 268 #undef LOG_UNIT 269 #undef LOG_FLAG 270 #undef CAPTURE_UNIT 271 #undef CAPTURE_FLAG 272 273 return flags; 274 } 275 276 static u32 guc_ctl_ads_flags(struct intel_guc *guc) 277 { 278 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT; 279 u32 flags = ads << GUC_ADS_ADDR_SHIFT; 280 281 return flags; 282 } 283 284 static u32 guc_ctl_wa_flags(struct intel_guc *guc) 285 { 286 struct intel_gt *gt = guc_to_gt(guc); 287 u32 flags = 0; 288 289 /* Wa_22012773006:gen11,gen12 < XeHP */ 290 if (GRAPHICS_VER(gt->i915) >= 11 && 291 GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 50)) 292 flags |= GUC_WA_POLLCS; 293 294 return flags; 295 } 296 297 static u32 guc_ctl_devid(struct intel_guc *guc) 298 { 299 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 300 301 return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915); 302 } 303 304 /* 305 * Initialise the GuC parameter block before starting the firmware 306 * transfer. These parameters are read by the firmware on startup 307 * and cannot be changed thereafter. 308 */ 309 static void guc_init_params(struct intel_guc *guc) 310 { 311 u32 *params = guc->params; 312 int i; 313 314 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); 315 316 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); 317 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); 318 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); 319 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); 320 params[GUC_CTL_WA] = guc_ctl_wa_flags(guc); 321 params[GUC_CTL_DEVID] = guc_ctl_devid(guc); 322 323 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 324 DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]); 325 } 326 327 /* 328 * Initialise the GuC parameter block before starting the firmware 329 * transfer. These parameters are read by the firmware on startup 330 * and cannot be changed thereafter. 331 */ 332 void intel_guc_write_params(struct intel_guc *guc) 333 { 334 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 335 int i; 336 337 /* 338 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and 339 * they are power context saved so it's ok to release forcewake 340 * when we are done here and take it again at xfer time. 341 */ 342 intel_uncore_forcewake_get(uncore, FORCEWAKE_GT); 343 344 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0); 345 346 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 347 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]); 348 349 intel_uncore_forcewake_put(uncore, FORCEWAKE_GT); 350 } 351 352 int intel_guc_init(struct intel_guc *guc) 353 { 354 struct intel_gt *gt = guc_to_gt(guc); 355 int ret; 356 357 ret = intel_uc_fw_init(&guc->fw); 358 if (ret) 359 goto out; 360 361 ret = intel_guc_log_create(&guc->log); 362 if (ret) 363 goto err_fw; 364 365 ret = intel_guc_ads_create(guc); 366 if (ret) 367 goto err_log; 368 GEM_BUG_ON(!guc->ads_vma); 369 370 ret = intel_guc_ct_init(&guc->ct); 371 if (ret) 372 goto err_ads; 373 374 if (intel_guc_submission_is_used(guc)) { 375 /* 376 * This is stuff we need to have available at fw load time 377 * if we are planning to enable submission later 378 */ 379 ret = intel_guc_submission_init(guc); 380 if (ret) 381 goto err_ct; 382 } 383 384 if (intel_guc_slpc_is_used(guc)) { 385 ret = intel_guc_slpc_init(&guc->slpc); 386 if (ret) 387 goto err_submission; 388 } 389 390 /* now that everything is perma-pinned, initialize the parameters */ 391 guc_init_params(guc); 392 393 /* We need to notify the guc whenever we change the GGTT */ 394 i915_ggtt_enable_guc(gt->ggtt); 395 396 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE); 397 398 return 0; 399 400 err_submission: 401 intel_guc_submission_fini(guc); 402 err_ct: 403 intel_guc_ct_fini(&guc->ct); 404 err_ads: 405 intel_guc_ads_destroy(guc); 406 err_log: 407 intel_guc_log_destroy(&guc->log); 408 err_fw: 409 intel_uc_fw_fini(&guc->fw); 410 out: 411 i915_probe_error(gt->i915, "failed with %d\n", ret); 412 return ret; 413 } 414 415 void intel_guc_fini(struct intel_guc *guc) 416 { 417 struct intel_gt *gt = guc_to_gt(guc); 418 419 if (!intel_uc_fw_is_loadable(&guc->fw)) 420 return; 421 422 i915_ggtt_disable_guc(gt->ggtt); 423 424 if (intel_guc_slpc_is_used(guc)) 425 intel_guc_slpc_fini(&guc->slpc); 426 427 if (intel_guc_submission_is_used(guc)) 428 intel_guc_submission_fini(guc); 429 430 intel_guc_ct_fini(&guc->ct); 431 432 intel_guc_ads_destroy(guc); 433 intel_guc_log_destroy(&guc->log); 434 intel_uc_fw_fini(&guc->fw); 435 } 436 437 /* 438 * This function implements the MMIO based host to GuC interface. 439 */ 440 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len, 441 u32 *response_buf, u32 response_buf_size) 442 { 443 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 444 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 445 u32 header; 446 int i; 447 int ret; 448 449 GEM_BUG_ON(!len); 450 GEM_BUG_ON(len > guc->send_regs.count); 451 452 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST); 453 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST); 454 455 mutex_lock(&guc->send_mutex); 456 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains); 457 458 retry: 459 for (i = 0; i < len; i++) 460 intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]); 461 462 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1)); 463 464 intel_guc_notify(guc); 465 466 /* 467 * No GuC command should ever take longer than 10ms. 468 * Fast commands should still complete in 10us. 469 */ 470 ret = __intel_wait_for_register_fw(uncore, 471 guc_send_reg(guc, 0), 472 GUC_HXG_MSG_0_ORIGIN, 473 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, 474 GUC_HXG_ORIGIN_GUC), 475 10, 10, &header); 476 if (unlikely(ret)) { 477 timeout: 478 drm_err(&i915->drm, "mmio request %#x: no reply %x\n", 479 request[0], header); 480 goto out; 481 } 482 483 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) { 484 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \ 485 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \ 486 FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; }) 487 488 ret = wait_for(done, 1000); 489 if (unlikely(ret)) 490 goto timeout; 491 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != 492 GUC_HXG_ORIGIN_GUC)) 493 goto proto; 494 #undef done 495 } 496 497 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { 498 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header); 499 500 drm_dbg(&i915->drm, "mmio request %#x: retrying, reason %u\n", 501 request[0], reason); 502 goto retry; 503 } 504 505 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) { 506 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header); 507 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header); 508 509 drm_err(&i915->drm, "mmio request %#x: failure %x/%u\n", 510 request[0], error, hint); 511 ret = -ENXIO; 512 goto out; 513 } 514 515 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) { 516 proto: 517 drm_err(&i915->drm, "mmio request %#x: unexpected reply %#x\n", 518 request[0], header); 519 ret = -EPROTO; 520 goto out; 521 } 522 523 if (response_buf) { 524 int count = min(response_buf_size, guc->send_regs.count); 525 526 GEM_BUG_ON(!count); 527 528 response_buf[0] = header; 529 530 for (i = 1; i < count; i++) 531 response_buf[i] = intel_uncore_read(uncore, 532 guc_send_reg(guc, i)); 533 534 /* Use number of copied dwords as our return value */ 535 ret = count; 536 } else { 537 /* Use data from the GuC response as our return value */ 538 ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header); 539 } 540 541 out: 542 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains); 543 mutex_unlock(&guc->send_mutex); 544 545 return ret; 546 } 547 548 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, 549 const u32 *payload, u32 len) 550 { 551 u32 msg; 552 553 if (unlikely(!len)) 554 return -EPROTO; 555 556 /* Make sure to handle only enabled messages */ 557 msg = payload[0] & guc->msg_enabled_mask; 558 559 if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED) 560 drm_err(&guc_to_gt(guc)->i915->drm, "Received early GuC crash dump notification!\n"); 561 if (msg & INTEL_GUC_RECV_MSG_EXCEPTION) 562 drm_err(&guc_to_gt(guc)->i915->drm, "Received early GuC exception notification!\n"); 563 564 return 0; 565 } 566 567 /** 568 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode 569 * @guc: intel_guc structure 570 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma 571 * 572 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send 573 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by 574 * intel_huc_auth(). 575 * 576 * Return: non-zero code on error 577 */ 578 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset) 579 { 580 u32 action[] = { 581 INTEL_GUC_ACTION_AUTHENTICATE_HUC, 582 rsa_offset 583 }; 584 585 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 586 } 587 588 /** 589 * intel_guc_suspend() - notify GuC entering suspend state 590 * @guc: the guc 591 */ 592 int intel_guc_suspend(struct intel_guc *guc) 593 { 594 int ret; 595 u32 action[] = { 596 INTEL_GUC_ACTION_CLIENT_SOFT_RESET, 597 }; 598 599 if (!intel_guc_is_ready(guc)) 600 return 0; 601 602 if (intel_guc_submission_is_used(guc)) { 603 /* 604 * This H2G MMIO command tears down the GuC in two steps. First it will 605 * generate a G2H CTB for every active context indicating a reset. In 606 * practice the i915 shouldn't ever get a G2H as suspend should only be 607 * called when the GPU is idle. Next, it tears down the CTBs and this 608 * H2G MMIO command completes. 609 * 610 * Don't abort on a failure code from the GuC. Keep going and do the 611 * clean up in santize() and re-initialisation on resume and hopefully 612 * the error here won't be problematic. 613 */ 614 ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0); 615 if (ret) 616 DRM_ERROR("GuC suspend: RESET_CLIENT action failed with error %d!\n", ret); 617 } 618 619 /* Signal that the GuC isn't running. */ 620 intel_guc_sanitize(guc); 621 622 return 0; 623 } 624 625 /** 626 * intel_guc_resume() - notify GuC resuming from suspend state 627 * @guc: the guc 628 */ 629 int intel_guc_resume(struct intel_guc *guc) 630 { 631 /* 632 * NB: This function can still be called even if GuC submission is 633 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus, 634 * if any code is later added here, it must be support doing nothing 635 * if submission is disabled (as per intel_guc_suspend). 636 */ 637 return 0; 638 } 639 640 /** 641 * DOC: GuC Memory Management 642 * 643 * GuC can't allocate any memory for its own usage, so all the allocations must 644 * be handled by the host driver. GuC accesses the memory via the GGTT, with the 645 * exception of the top and bottom parts of the 4GB address space, which are 646 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM) 647 * or other parts of the HW. The driver must take care not to place objects that 648 * the GuC is going to access in these reserved ranges. The layout of the GuC 649 * address space is shown below: 650 * 651 * :: 652 * 653 * +===========> +====================+ <== FFFF_FFFF 654 * ^ | Reserved | 655 * | +====================+ <== GUC_GGTT_TOP 656 * | | | 657 * | | DRAM | 658 * GuC | | 659 * Address +===> +====================+ <== GuC ggtt_pin_bias 660 * Space ^ | | 661 * | | | | 662 * | GuC | GuC | 663 * | WOPCM | WOPCM | 664 * | Size | | 665 * | | | | 666 * v v | | 667 * +=======+===> +====================+ <== 0000_0000 668 * 669 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM 670 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped 671 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size. 672 */ 673 674 /** 675 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage 676 * @guc: the guc 677 * @size: size of area to allocate (both virtual space and memory) 678 * 679 * This is a wrapper to create an object for use with the GuC. In order to 680 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate 681 * both some backing storage and a range inside the Global GTT. We must pin 682 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that 683 * range is reserved inside GuC. 684 * 685 * Return: A i915_vma if successful, otherwise an ERR_PTR. 686 */ 687 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) 688 { 689 struct intel_gt *gt = guc_to_gt(guc); 690 struct drm_i915_gem_object *obj; 691 struct i915_vma *vma; 692 u64 flags; 693 int ret; 694 695 if (HAS_LMEM(gt->i915)) 696 obj = i915_gem_object_create_lmem(gt->i915, size, 697 I915_BO_ALLOC_CPU_CLEAR | 698 I915_BO_ALLOC_CONTIGUOUS | 699 I915_BO_ALLOC_PM_EARLY); 700 else 701 obj = i915_gem_object_create_shmem(gt->i915, size); 702 703 if (IS_ERR(obj)) 704 return ERR_CAST(obj); 705 706 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 707 if (IS_ERR(vma)) 708 goto err; 709 710 flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); 711 ret = i915_ggtt_pin(vma, NULL, 0, flags); 712 if (ret) { 713 vma = ERR_PTR(ret); 714 goto err; 715 } 716 717 return i915_vma_make_unshrinkable(vma); 718 719 err: 720 i915_gem_object_put(obj); 721 return vma; 722 } 723 724 /** 725 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage 726 * @guc: the guc 727 * @size: size of area to allocate (both virtual space and memory) 728 * @out_vma: return variable for the allocated vma pointer 729 * @out_vaddr: return variable for the obj mapping 730 * 731 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated 732 * object with I915_MAP_WB. 733 * 734 * Return: 0 if successful, a negative errno code otherwise. 735 */ 736 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size, 737 struct i915_vma **out_vma, void **out_vaddr) 738 { 739 struct i915_vma *vma; 740 void *vaddr; 741 742 vma = intel_guc_allocate_vma(guc, size); 743 if (IS_ERR(vma)) 744 return PTR_ERR(vma); 745 746 vaddr = i915_gem_object_pin_map_unlocked(vma->obj, 747 i915_coherent_map_type(guc_to_gt(guc)->i915, 748 vma->obj, true)); 749 if (IS_ERR(vaddr)) { 750 i915_vma_unpin_and_release(&vma, 0); 751 return PTR_ERR(vaddr); 752 } 753 754 *out_vma = vma; 755 *out_vaddr = vaddr; 756 757 return 0; 758 } 759 760 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 761 { 762 u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = { 763 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | 764 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | 765 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG), 766 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) | 767 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len), 768 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)), 769 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)), 770 }; 771 int ret; 772 773 GEM_BUG_ON(len > 2); 774 GEM_BUG_ON(len == 1 && upper_32_bits(value)); 775 776 /* Self config must go over MMIO */ 777 ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0); 778 779 if (unlikely(ret < 0)) 780 return ret; 781 if (unlikely(ret > 1)) 782 return -EPROTO; 783 if (unlikely(!ret)) 784 return -ENOKEY; 785 786 return 0; 787 } 788 789 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 790 { 791 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 792 int err = __guc_action_self_cfg(guc, key, len, value); 793 794 if (unlikely(err)) 795 i915_probe_error(i915, "Unsuccessful self-config (%pe) key %#hx value %#llx\n", 796 ERR_PTR(err), key, value); 797 return err; 798 } 799 800 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value) 801 { 802 return __guc_self_cfg(guc, key, 1, value); 803 } 804 805 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value) 806 { 807 return __guc_self_cfg(guc, key, 2, value); 808 } 809 810 /** 811 * intel_guc_load_status - dump information about GuC load status 812 * @guc: the GuC 813 * @p: the &drm_printer 814 * 815 * Pretty printer for GuC load status. 816 */ 817 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p) 818 { 819 struct intel_gt *gt = guc_to_gt(guc); 820 struct intel_uncore *uncore = gt->uncore; 821 intel_wakeref_t wakeref; 822 823 if (!intel_guc_is_supported(guc)) { 824 drm_printf(p, "GuC not supported\n"); 825 return; 826 } 827 828 if (!intel_guc_is_wanted(guc)) { 829 drm_printf(p, "GuC disabled\n"); 830 return; 831 } 832 833 intel_uc_fw_dump(&guc->fw, p); 834 835 with_intel_runtime_pm(uncore->rpm, wakeref) { 836 u32 status = intel_uncore_read(uncore, GUC_STATUS); 837 u32 i; 838 839 drm_printf(p, "\nGuC status 0x%08x:\n", status); 840 drm_printf(p, "\tBootrom status = 0x%x\n", 841 (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT); 842 drm_printf(p, "\tuKernel status = 0x%x\n", 843 (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT); 844 drm_printf(p, "\tMIA Core status = 0x%x\n", 845 (status & GS_MIA_MASK) >> GS_MIA_SHIFT); 846 drm_puts(p, "\nScratch registers:\n"); 847 for (i = 0; i < 16; i++) { 848 drm_printf(p, "\t%2d: \t0x%x\n", 849 i, intel_uncore_read(uncore, SOFT_SCRATCH(i))); 850 } 851 } 852 } 853 854 void intel_guc_write_barrier(struct intel_guc *guc) 855 { 856 struct intel_gt *gt = guc_to_gt(guc); 857 858 if (i915_gem_object_is_lmem(guc->ct.vma->obj)) { 859 /* 860 * Ensure intel_uncore_write_fw can be used rather than 861 * intel_uncore_write. 862 */ 863 GEM_BUG_ON(guc->send_regs.fw_domains); 864 865 /* 866 * This register is used by the i915 and GuC for MMIO based 867 * communication. Once we are in this code CTBs are the only 868 * method the i915 uses to communicate with the GuC so it is 869 * safe to write to this register (a value of 0 is NOP for MMIO 870 * communication). If we ever start mixing CTBs and MMIOs a new 871 * register will have to be chosen. This function is also used 872 * to enforce ordering of a work queue item write and an update 873 * to the process descriptor. When a work queue is being used, 874 * CTBs are also the only mechanism of communication. 875 */ 876 intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0); 877 } else { 878 /* wmb() sufficient for a barrier if in smem */ 879 wmb(); 880 } 881 } 882