1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2019 Intel Corporation 4 */ 5 6 #include "gt/intel_gt.h" 7 #include "gt/intel_gt_irq.h" 8 #include "gt/intel_gt_pm_irq.h" 9 #include "intel_guc.h" 10 #include "intel_guc_ads.h" 11 #include "intel_guc_submission.h" 12 #include "i915_drv.h" 13 14 /** 15 * DOC: GuC 16 * 17 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is 18 * designed to offload some of the functionality usually performed by the host 19 * driver; currently the main operations it can take care of are: 20 * 21 * - Authentication of the HuC, which is required to fully enable HuC usage. 22 * - Low latency graphics context scheduling (a.k.a. GuC submission). 23 * - GT Power management. 24 * 25 * The enable_guc module parameter can be used to select which of those 26 * operations to enable within GuC. Note that not all the operations are 27 * supported on all gen9+ platforms. 28 * 29 * Enabling the GuC is not mandatory and therefore the firmware is only loaded 30 * if at least one of the operations is selected. However, not loading the GuC 31 * might result in the loss of some features that do require the GuC (currently 32 * just the HuC, but more are expected to land in the future). 33 */ 34 35 void intel_guc_notify(struct intel_guc *guc) 36 { 37 struct intel_gt *gt = guc_to_gt(guc); 38 39 /* 40 * On Gen11+, the value written to the register is passes as a payload 41 * to the FW. However, the FW currently treats all values the same way 42 * (H2G interrupt), so we can just write the value that the HW expects 43 * on older gens. 44 */ 45 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER); 46 } 47 48 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i) 49 { 50 GEM_BUG_ON(!guc->send_regs.base); 51 GEM_BUG_ON(!guc->send_regs.count); 52 GEM_BUG_ON(i >= guc->send_regs.count); 53 54 return _MMIO(guc->send_regs.base + 4 * i); 55 } 56 57 void intel_guc_init_send_regs(struct intel_guc *guc) 58 { 59 struct intel_gt *gt = guc_to_gt(guc); 60 enum forcewake_domains fw_domains = 0; 61 unsigned int i; 62 63 if (INTEL_GEN(gt->i915) >= 11) { 64 guc->send_regs.base = 65 i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0)); 66 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT; 67 } else { 68 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0)); 69 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN; 70 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT); 71 } 72 73 for (i = 0; i < guc->send_regs.count; i++) { 74 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore, 75 guc_send_reg(guc, i), 76 FW_REG_READ | FW_REG_WRITE); 77 } 78 guc->send_regs.fw_domains = fw_domains; 79 } 80 81 static void gen9_reset_guc_interrupts(struct intel_guc *guc) 82 { 83 struct intel_gt *gt = guc_to_gt(guc); 84 85 assert_rpm_wakelock_held(>->i915->runtime_pm); 86 87 spin_lock_irq(>->irq_lock); 88 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events); 89 spin_unlock_irq(>->irq_lock); 90 } 91 92 static void gen9_enable_guc_interrupts(struct intel_guc *guc) 93 { 94 struct intel_gt *gt = guc_to_gt(guc); 95 96 assert_rpm_wakelock_held(>->i915->runtime_pm); 97 98 spin_lock_irq(>->irq_lock); 99 if (!guc->interrupts.enabled) { 100 WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) & 101 gt->pm_guc_events); 102 guc->interrupts.enabled = true; 103 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events); 104 } 105 spin_unlock_irq(>->irq_lock); 106 } 107 108 static void gen9_disable_guc_interrupts(struct intel_guc *guc) 109 { 110 struct intel_gt *gt = guc_to_gt(guc); 111 112 assert_rpm_wakelock_held(>->i915->runtime_pm); 113 114 spin_lock_irq(>->irq_lock); 115 guc->interrupts.enabled = false; 116 117 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events); 118 119 spin_unlock_irq(>->irq_lock); 120 intel_synchronize_irq(gt->i915); 121 122 gen9_reset_guc_interrupts(guc); 123 } 124 125 static void gen11_reset_guc_interrupts(struct intel_guc *guc) 126 { 127 struct intel_gt *gt = guc_to_gt(guc); 128 129 spin_lock_irq(>->irq_lock); 130 gen11_gt_reset_one_iir(gt, 0, GEN11_GUC); 131 spin_unlock_irq(>->irq_lock); 132 } 133 134 static void gen11_enable_guc_interrupts(struct intel_guc *guc) 135 { 136 struct intel_gt *gt = guc_to_gt(guc); 137 138 spin_lock_irq(>->irq_lock); 139 if (!guc->interrupts.enabled) { 140 u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST); 141 142 WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC)); 143 intel_uncore_write(gt->uncore, 144 GEN11_GUC_SG_INTR_ENABLE, events); 145 intel_uncore_write(gt->uncore, 146 GEN11_GUC_SG_INTR_MASK, ~events); 147 guc->interrupts.enabled = true; 148 } 149 spin_unlock_irq(>->irq_lock); 150 } 151 152 static void gen11_disable_guc_interrupts(struct intel_guc *guc) 153 { 154 struct intel_gt *gt = guc_to_gt(guc); 155 156 spin_lock_irq(>->irq_lock); 157 guc->interrupts.enabled = false; 158 159 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0); 160 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0); 161 162 spin_unlock_irq(>->irq_lock); 163 intel_synchronize_irq(gt->i915); 164 165 gen11_reset_guc_interrupts(guc); 166 } 167 168 void intel_guc_init_early(struct intel_guc *guc) 169 { 170 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 171 172 intel_guc_fw_init_early(guc); 173 intel_guc_ct_init_early(&guc->ct); 174 intel_guc_log_init_early(&guc->log); 175 intel_guc_submission_init_early(guc); 176 177 mutex_init(&guc->send_mutex); 178 spin_lock_init(&guc->irq_lock); 179 if (INTEL_GEN(i915) >= 11) { 180 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT; 181 guc->interrupts.reset = gen11_reset_guc_interrupts; 182 guc->interrupts.enable = gen11_enable_guc_interrupts; 183 guc->interrupts.disable = gen11_disable_guc_interrupts; 184 } else { 185 guc->notify_reg = GUC_SEND_INTERRUPT; 186 guc->interrupts.reset = gen9_reset_guc_interrupts; 187 guc->interrupts.enable = gen9_enable_guc_interrupts; 188 guc->interrupts.disable = gen9_disable_guc_interrupts; 189 } 190 } 191 192 static u32 guc_ctl_debug_flags(struct intel_guc *guc) 193 { 194 u32 level = intel_guc_log_get_level(&guc->log); 195 u32 flags = 0; 196 197 if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) 198 flags |= GUC_LOG_DISABLED; 199 else 200 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << 201 GUC_LOG_VERBOSITY_SHIFT; 202 203 return flags; 204 } 205 206 static u32 guc_ctl_feature_flags(struct intel_guc *guc) 207 { 208 u32 flags = 0; 209 210 if (!intel_guc_submission_is_used(guc)) 211 flags |= GUC_CTL_DISABLE_SCHEDULER; 212 213 return flags; 214 } 215 216 static u32 guc_ctl_ctxinfo_flags(struct intel_guc *guc) 217 { 218 u32 flags = 0; 219 220 if (intel_guc_submission_is_used(guc)) { 221 u32 ctxnum, base; 222 223 base = intel_guc_ggtt_offset(guc, guc->stage_desc_pool); 224 ctxnum = GUC_MAX_STAGE_DESCRIPTORS / 16; 225 226 base >>= PAGE_SHIFT; 227 flags |= (base << GUC_CTL_BASE_ADDR_SHIFT) | 228 (ctxnum << GUC_CTL_CTXNUM_IN16_SHIFT); 229 } 230 return flags; 231 } 232 233 static u32 guc_ctl_log_params_flags(struct intel_guc *guc) 234 { 235 u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT; 236 u32 flags; 237 238 #if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0) 239 #define UNIT SZ_1M 240 #define FLAG GUC_LOG_ALLOC_IN_MEGABYTE 241 #else 242 #define UNIT SZ_4K 243 #define FLAG 0 244 #endif 245 246 BUILD_BUG_ON(!CRASH_BUFFER_SIZE); 247 BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT)); 248 BUILD_BUG_ON(!DPC_BUFFER_SIZE); 249 BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT)); 250 BUILD_BUG_ON(!ISR_BUFFER_SIZE); 251 BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT)); 252 253 BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) > 254 (GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT)); 255 BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) > 256 (GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT)); 257 BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) > 258 (GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT)); 259 260 flags = GUC_LOG_VALID | 261 GUC_LOG_NOTIFY_ON_HALF_FULL | 262 FLAG | 263 ((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) | 264 ((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) | 265 ((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) | 266 (offset << GUC_LOG_BUF_ADDR_SHIFT); 267 268 #undef UNIT 269 #undef FLAG 270 271 return flags; 272 } 273 274 static u32 guc_ctl_ads_flags(struct intel_guc *guc) 275 { 276 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT; 277 u32 flags = ads << GUC_ADS_ADDR_SHIFT; 278 279 return flags; 280 } 281 282 /* 283 * Initialise the GuC parameter block before starting the firmware 284 * transfer. These parameters are read by the firmware on startup 285 * and cannot be changed thereafter. 286 */ 287 static void guc_init_params(struct intel_guc *guc) 288 { 289 u32 *params = guc->params; 290 int i; 291 292 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); 293 294 params[GUC_CTL_CTXINFO] = guc_ctl_ctxinfo_flags(guc); 295 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); 296 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); 297 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); 298 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); 299 300 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 301 DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]); 302 } 303 304 /* 305 * Initialise the GuC parameter block before starting the firmware 306 * transfer. These parameters are read by the firmware on startup 307 * and cannot be changed thereafter. 308 */ 309 void intel_guc_write_params(struct intel_guc *guc) 310 { 311 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 312 int i; 313 314 /* 315 * All SOFT_SCRATCH registers are in FORCEWAKE_BLITTER domain and 316 * they are power context saved so it's ok to release forcewake 317 * when we are done here and take it again at xfer time. 318 */ 319 intel_uncore_forcewake_get(uncore, FORCEWAKE_BLITTER); 320 321 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0); 322 323 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 324 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]); 325 326 intel_uncore_forcewake_put(uncore, FORCEWAKE_BLITTER); 327 } 328 329 int intel_guc_init(struct intel_guc *guc) 330 { 331 struct intel_gt *gt = guc_to_gt(guc); 332 int ret; 333 334 ret = intel_uc_fw_init(&guc->fw); 335 if (ret) 336 goto out; 337 338 ret = intel_guc_log_create(&guc->log); 339 if (ret) 340 goto err_fw; 341 342 ret = intel_guc_ads_create(guc); 343 if (ret) 344 goto err_log; 345 GEM_BUG_ON(!guc->ads_vma); 346 347 ret = intel_guc_ct_init(&guc->ct); 348 if (ret) 349 goto err_ads; 350 351 if (intel_guc_submission_is_used(guc)) { 352 /* 353 * This is stuff we need to have available at fw load time 354 * if we are planning to enable submission later 355 */ 356 ret = intel_guc_submission_init(guc); 357 if (ret) 358 goto err_ct; 359 } 360 361 /* now that everything is perma-pinned, initialize the parameters */ 362 guc_init_params(guc); 363 364 /* We need to notify the guc whenever we change the GGTT */ 365 i915_ggtt_enable_guc(gt->ggtt); 366 367 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE); 368 369 return 0; 370 371 err_ct: 372 intel_guc_ct_fini(&guc->ct); 373 err_ads: 374 intel_guc_ads_destroy(guc); 375 err_log: 376 intel_guc_log_destroy(&guc->log); 377 err_fw: 378 intel_uc_fw_fini(&guc->fw); 379 out: 380 i915_probe_error(gt->i915, "failed with %d\n", ret); 381 return ret; 382 } 383 384 void intel_guc_fini(struct intel_guc *guc) 385 { 386 struct intel_gt *gt = guc_to_gt(guc); 387 388 if (!intel_uc_fw_is_loadable(&guc->fw)) 389 return; 390 391 i915_ggtt_disable_guc(gt->ggtt); 392 393 if (intel_guc_submission_is_used(guc)) 394 intel_guc_submission_fini(guc); 395 396 intel_guc_ct_fini(&guc->ct); 397 398 intel_guc_ads_destroy(guc); 399 intel_guc_log_destroy(&guc->log); 400 intel_uc_fw_fini(&guc->fw); 401 } 402 403 /* 404 * This function implements the MMIO based host to GuC interface. 405 */ 406 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len, 407 u32 *response_buf, u32 response_buf_size) 408 { 409 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 410 u32 status; 411 int i; 412 int ret; 413 414 GEM_BUG_ON(!len); 415 GEM_BUG_ON(len > guc->send_regs.count); 416 417 /* We expect only action code */ 418 GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK); 419 420 /* If CT is available, we expect to use MMIO only during init/fini */ 421 GEM_BUG_ON(*action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER && 422 *action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER); 423 424 mutex_lock(&guc->send_mutex); 425 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains); 426 427 for (i = 0; i < len; i++) 428 intel_uncore_write(uncore, guc_send_reg(guc, i), action[i]); 429 430 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1)); 431 432 intel_guc_notify(guc); 433 434 /* 435 * No GuC command should ever take longer than 10ms. 436 * Fast commands should still complete in 10us. 437 */ 438 ret = __intel_wait_for_register_fw(uncore, 439 guc_send_reg(guc, 0), 440 INTEL_GUC_MSG_TYPE_MASK, 441 INTEL_GUC_MSG_TYPE_RESPONSE << 442 INTEL_GUC_MSG_TYPE_SHIFT, 443 10, 10, &status); 444 /* If GuC explicitly returned an error, convert it to -EIO */ 445 if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status)) 446 ret = -EIO; 447 448 if (ret) { 449 DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n", 450 action[0], ret, status); 451 goto out; 452 } 453 454 if (response_buf) { 455 int count = min(response_buf_size, guc->send_regs.count - 1); 456 457 for (i = 0; i < count; i++) 458 response_buf[i] = intel_uncore_read(uncore, 459 guc_send_reg(guc, i + 1)); 460 } 461 462 /* Use data from the GuC response as our return value */ 463 ret = INTEL_GUC_MSG_TO_DATA(status); 464 465 out: 466 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains); 467 mutex_unlock(&guc->send_mutex); 468 469 return ret; 470 } 471 472 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, 473 const u32 *payload, u32 len) 474 { 475 u32 msg; 476 477 if (unlikely(!len)) 478 return -EPROTO; 479 480 /* Make sure to handle only enabled messages */ 481 msg = payload[0] & guc->msg_enabled_mask; 482 483 if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER | 484 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)) 485 intel_guc_log_handle_flush_event(&guc->log); 486 487 return 0; 488 } 489 490 int intel_guc_sample_forcewake(struct intel_guc *guc) 491 { 492 struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915; 493 u32 action[2]; 494 495 action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE; 496 /* WaRsDisableCoarsePowerGating:skl,cnl */ 497 if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv)) 498 action[1] = 0; 499 else 500 /* bit 0 and 1 are for Render and Media domain separately */ 501 action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA; 502 503 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 504 } 505 506 /** 507 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode 508 * @guc: intel_guc structure 509 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma 510 * 511 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send 512 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by 513 * intel_huc_auth(). 514 * 515 * Return: non-zero code on error 516 */ 517 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset) 518 { 519 u32 action[] = { 520 INTEL_GUC_ACTION_AUTHENTICATE_HUC, 521 rsa_offset 522 }; 523 524 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 525 } 526 527 /** 528 * intel_guc_suspend() - notify GuC entering suspend state 529 * @guc: the guc 530 */ 531 int intel_guc_suspend(struct intel_guc *guc) 532 { 533 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 534 int ret; 535 u32 status; 536 u32 action[] = { 537 INTEL_GUC_ACTION_ENTER_S_STATE, 538 GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */ 539 }; 540 541 /* 542 * If GuC communication is enabled but submission is not supported, 543 * we do not need to suspend the GuC. 544 */ 545 if (!intel_guc_submission_is_used(guc) || !intel_guc_is_ready(guc)) 546 return 0; 547 548 /* 549 * The ENTER_S_STATE action queues the save/restore operation in GuC FW 550 * and then returns, so waiting on the H2G is not enough to guarantee 551 * GuC is done. When all the processing is done, GuC writes 552 * INTEL_GUC_SLEEP_STATE_SUCCESS to scratch register 14, so we can poll 553 * on that. Note that GuC does not ensure that the value in the register 554 * is different from INTEL_GUC_SLEEP_STATE_SUCCESS while the action is 555 * in progress so we need to take care of that ourselves as well. 556 */ 557 558 intel_uncore_write(uncore, SOFT_SCRATCH(14), 559 INTEL_GUC_SLEEP_STATE_INVALID_MASK); 560 561 ret = intel_guc_send(guc, action, ARRAY_SIZE(action)); 562 if (ret) 563 return ret; 564 565 ret = __intel_wait_for_register(uncore, SOFT_SCRATCH(14), 566 INTEL_GUC_SLEEP_STATE_INVALID_MASK, 567 0, 0, 10, &status); 568 if (ret) 569 return ret; 570 571 if (status != INTEL_GUC_SLEEP_STATE_SUCCESS) { 572 DRM_ERROR("GuC failed to change sleep state. " 573 "action=0x%x, err=%u\n", 574 action[0], status); 575 return -EIO; 576 } 577 578 return 0; 579 } 580 581 /** 582 * intel_guc_reset_engine() - ask GuC to reset an engine 583 * @guc: intel_guc structure 584 * @engine: engine to be reset 585 */ 586 int intel_guc_reset_engine(struct intel_guc *guc, 587 struct intel_engine_cs *engine) 588 { 589 /* XXX: to be implemented with submission interface rework */ 590 591 return -ENODEV; 592 } 593 594 /** 595 * intel_guc_resume() - notify GuC resuming from suspend state 596 * @guc: the guc 597 */ 598 int intel_guc_resume(struct intel_guc *guc) 599 { 600 u32 action[] = { 601 INTEL_GUC_ACTION_EXIT_S_STATE, 602 GUC_POWER_D0, 603 }; 604 605 /* 606 * If GuC communication is enabled but submission is not supported, 607 * we do not need to resume the GuC but we do need to enable the 608 * GuC communication on resume (above). 609 */ 610 if (!intel_guc_submission_is_used(guc) || !intel_guc_is_ready(guc)) 611 return 0; 612 613 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 614 } 615 616 /** 617 * DOC: GuC Memory Management 618 * 619 * GuC can't allocate any memory for its own usage, so all the allocations must 620 * be handled by the host driver. GuC accesses the memory via the GGTT, with the 621 * exception of the top and bottom parts of the 4GB address space, which are 622 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM) 623 * or other parts of the HW. The driver must take care not to place objects that 624 * the GuC is going to access in these reserved ranges. The layout of the GuC 625 * address space is shown below: 626 * 627 * :: 628 * 629 * +===========> +====================+ <== FFFF_FFFF 630 * ^ | Reserved | 631 * | +====================+ <== GUC_GGTT_TOP 632 * | | | 633 * | | DRAM | 634 * GuC | | 635 * Address +===> +====================+ <== GuC ggtt_pin_bias 636 * Space ^ | | 637 * | | | | 638 * | GuC | GuC | 639 * | WOPCM | WOPCM | 640 * | Size | | 641 * | | | | 642 * v v | | 643 * +=======+===> +====================+ <== 0000_0000 644 * 645 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM 646 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped 647 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size. 648 */ 649 650 /** 651 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage 652 * @guc: the guc 653 * @size: size of area to allocate (both virtual space and memory) 654 * 655 * This is a wrapper to create an object for use with the GuC. In order to 656 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate 657 * both some backing storage and a range inside the Global GTT. We must pin 658 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that 659 * range is reserved inside GuC. 660 * 661 * Return: A i915_vma if successful, otherwise an ERR_PTR. 662 */ 663 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) 664 { 665 struct intel_gt *gt = guc_to_gt(guc); 666 struct drm_i915_gem_object *obj; 667 struct i915_vma *vma; 668 u64 flags; 669 int ret; 670 671 obj = i915_gem_object_create_shmem(gt->i915, size); 672 if (IS_ERR(obj)) 673 return ERR_CAST(obj); 674 675 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 676 if (IS_ERR(vma)) 677 goto err; 678 679 flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); 680 ret = i915_ggtt_pin(vma, 0, flags); 681 if (ret) { 682 vma = ERR_PTR(ret); 683 goto err; 684 } 685 686 return i915_vma_make_unshrinkable(vma); 687 688 err: 689 i915_gem_object_put(obj); 690 return vma; 691 } 692 693 /** 694 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage 695 * @guc: the guc 696 * @size: size of area to allocate (both virtual space and memory) 697 * @out_vma: return variable for the allocated vma pointer 698 * @out_vaddr: return variable for the obj mapping 699 * 700 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated 701 * object with I915_MAP_WB. 702 * 703 * Return: 0 if successful, a negative errno code otherwise. 704 */ 705 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size, 706 struct i915_vma **out_vma, void **out_vaddr) 707 { 708 struct i915_vma *vma; 709 void *vaddr; 710 711 vma = intel_guc_allocate_vma(guc, size); 712 if (IS_ERR(vma)) 713 return PTR_ERR(vma); 714 715 vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); 716 if (IS_ERR(vaddr)) { 717 i915_vma_unpin_and_release(&vma, 0); 718 return PTR_ERR(vaddr); 719 } 720 721 *out_vma = vma; 722 *out_vaddr = vaddr; 723 724 return 0; 725 } 726