xref: /openbmc/linux/drivers/gpu/drm/i915/gt/uc/intel_guc.c (revision 657c45b3)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2019 Intel Corporation
4  */
5 
6 #include "gem/i915_gem_lmem.h"
7 #include "gt/intel_gt.h"
8 #include "gt/intel_gt_irq.h"
9 #include "gt/intel_gt_pm_irq.h"
10 #include "gt/intel_gt_regs.h"
11 #include "intel_guc.h"
12 #include "intel_guc_ads.h"
13 #include "intel_guc_capture.h"
14 #include "intel_guc_print.h"
15 #include "intel_guc_slpc.h"
16 #include "intel_guc_submission.h"
17 #include "i915_drv.h"
18 #include "i915_irq.h"
19 #include "i915_reg.h"
20 
21 /**
22  * DOC: GuC
23  *
24  * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
25  * designed to offload some of the functionality usually performed by the host
26  * driver; currently the main operations it can take care of are:
27  *
28  * - Authentication of the HuC, which is required to fully enable HuC usage.
29  * - Low latency graphics context scheduling (a.k.a. GuC submission).
30  * - GT Power management.
31  *
32  * The enable_guc module parameter can be used to select which of those
33  * operations to enable within GuC. Note that not all the operations are
34  * supported on all gen9+ platforms.
35  *
36  * Enabling the GuC is not mandatory and therefore the firmware is only loaded
37  * if at least one of the operations is selected. However, not loading the GuC
38  * might result in the loss of some features that do require the GuC (currently
39  * just the HuC, but more are expected to land in the future).
40  */
41 
42 void intel_guc_notify(struct intel_guc *guc)
43 {
44 	struct intel_gt *gt = guc_to_gt(guc);
45 
46 	/*
47 	 * On Gen11+, the value written to the register is passes as a payload
48 	 * to the FW. However, the FW currently treats all values the same way
49 	 * (H2G interrupt), so we can just write the value that the HW expects
50 	 * on older gens.
51 	 */
52 	intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
53 }
54 
55 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
56 {
57 	GEM_BUG_ON(!guc->send_regs.base);
58 	GEM_BUG_ON(!guc->send_regs.count);
59 	GEM_BUG_ON(i >= guc->send_regs.count);
60 
61 	return _MMIO(guc->send_regs.base + 4 * i);
62 }
63 
64 void intel_guc_init_send_regs(struct intel_guc *guc)
65 {
66 	struct intel_gt *gt = guc_to_gt(guc);
67 	enum forcewake_domains fw_domains = 0;
68 	unsigned int i;
69 
70 	GEM_BUG_ON(!guc->send_regs.base);
71 	GEM_BUG_ON(!guc->send_regs.count);
72 
73 	for (i = 0; i < guc->send_regs.count; i++) {
74 		fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
75 					guc_send_reg(guc, i),
76 					FW_REG_READ | FW_REG_WRITE);
77 	}
78 	guc->send_regs.fw_domains = fw_domains;
79 }
80 
81 static void gen9_reset_guc_interrupts(struct intel_guc *guc)
82 {
83 	struct intel_gt *gt = guc_to_gt(guc);
84 
85 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
86 
87 	spin_lock_irq(gt->irq_lock);
88 	gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
89 	spin_unlock_irq(gt->irq_lock);
90 }
91 
92 static void gen9_enable_guc_interrupts(struct intel_guc *guc)
93 {
94 	struct intel_gt *gt = guc_to_gt(guc);
95 
96 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
97 
98 	spin_lock_irq(gt->irq_lock);
99 	guc_WARN_ON_ONCE(guc, intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
100 			 gt->pm_guc_events);
101 	gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
102 	spin_unlock_irq(gt->irq_lock);
103 
104 	guc->interrupts.enabled = true;
105 }
106 
107 static void gen9_disable_guc_interrupts(struct intel_guc *guc)
108 {
109 	struct intel_gt *gt = guc_to_gt(guc);
110 
111 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
112 	guc->interrupts.enabled = false;
113 
114 	spin_lock_irq(gt->irq_lock);
115 
116 	gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
117 
118 	spin_unlock_irq(gt->irq_lock);
119 	intel_synchronize_irq(gt->i915);
120 
121 	gen9_reset_guc_interrupts(guc);
122 }
123 
124 static bool __gen11_reset_guc_interrupts(struct intel_gt *gt)
125 {
126 	u32 irq = gt->type == GT_MEDIA ? MTL_MGUC : GEN11_GUC;
127 
128 	lockdep_assert_held(gt->irq_lock);
129 	return gen11_gt_reset_one_iir(gt, 0, irq);
130 }
131 
132 static void gen11_reset_guc_interrupts(struct intel_guc *guc)
133 {
134 	struct intel_gt *gt = guc_to_gt(guc);
135 
136 	spin_lock_irq(gt->irq_lock);
137 	__gen11_reset_guc_interrupts(gt);
138 	spin_unlock_irq(gt->irq_lock);
139 }
140 
141 static void gen11_enable_guc_interrupts(struct intel_guc *guc)
142 {
143 	struct intel_gt *gt = guc_to_gt(guc);
144 
145 	spin_lock_irq(gt->irq_lock);
146 	__gen11_reset_guc_interrupts(gt);
147 	spin_unlock_irq(gt->irq_lock);
148 
149 	guc->interrupts.enabled = true;
150 }
151 
152 static void gen11_disable_guc_interrupts(struct intel_guc *guc)
153 {
154 	struct intel_gt *gt = guc_to_gt(guc);
155 
156 	guc->interrupts.enabled = false;
157 	intel_synchronize_irq(gt->i915);
158 
159 	gen11_reset_guc_interrupts(guc);
160 }
161 
162 void intel_guc_init_early(struct intel_guc *guc)
163 {
164 	struct intel_gt *gt = guc_to_gt(guc);
165 	struct drm_i915_private *i915 = gt->i915;
166 
167 	intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC, true);
168 	intel_guc_ct_init_early(&guc->ct);
169 	intel_guc_log_init_early(&guc->log);
170 	intel_guc_submission_init_early(guc);
171 	intel_guc_slpc_init_early(&guc->slpc);
172 	intel_guc_rc_init_early(guc);
173 
174 	mutex_init(&guc->send_mutex);
175 	spin_lock_init(&guc->irq_lock);
176 	if (GRAPHICS_VER(i915) >= 11) {
177 		guc->interrupts.reset = gen11_reset_guc_interrupts;
178 		guc->interrupts.enable = gen11_enable_guc_interrupts;
179 		guc->interrupts.disable = gen11_disable_guc_interrupts;
180 		if (gt->type == GT_MEDIA) {
181 			guc->notify_reg = MEDIA_GUC_HOST_INTERRUPT;
182 			guc->send_regs.base = i915_mmio_reg_offset(MEDIA_SOFT_SCRATCH(0));
183 		} else {
184 			guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
185 			guc->send_regs.base = i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
186 		}
187 
188 		guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
189 
190 	} else {
191 		guc->notify_reg = GUC_SEND_INTERRUPT;
192 		guc->interrupts.reset = gen9_reset_guc_interrupts;
193 		guc->interrupts.enable = gen9_enable_guc_interrupts;
194 		guc->interrupts.disable = gen9_disable_guc_interrupts;
195 		guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
196 		guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
197 		BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
198 	}
199 
200 	intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION |
201 				  INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED);
202 }
203 
204 void intel_guc_init_late(struct intel_guc *guc)
205 {
206 	intel_guc_ads_init_late(guc);
207 }
208 
209 static u32 guc_ctl_debug_flags(struct intel_guc *guc)
210 {
211 	u32 level = intel_guc_log_get_level(&guc->log);
212 	u32 flags = 0;
213 
214 	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
215 		flags |= GUC_LOG_DISABLED;
216 	else
217 		flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
218 			 GUC_LOG_VERBOSITY_SHIFT;
219 
220 	return flags;
221 }
222 
223 static u32 guc_ctl_feature_flags(struct intel_guc *guc)
224 {
225 	u32 flags = 0;
226 
227 	if (!intel_guc_submission_is_used(guc))
228 		flags |= GUC_CTL_DISABLE_SCHEDULER;
229 
230 	if (intel_guc_slpc_is_used(guc))
231 		flags |= GUC_CTL_ENABLE_SLPC;
232 
233 	return flags;
234 }
235 
236 static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
237 {
238 	struct intel_guc_log *log = &guc->log;
239 	u32 offset, flags;
240 
241 	GEM_BUG_ON(!log->sizes_initialised);
242 
243 	offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT;
244 
245 	flags = GUC_LOG_VALID |
246 		GUC_LOG_NOTIFY_ON_HALF_FULL |
247 		log->sizes[GUC_LOG_SECTIONS_DEBUG].flag |
248 		log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag |
249 		(log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) |
250 		(log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) |
251 		(log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) |
252 		(offset << GUC_LOG_BUF_ADDR_SHIFT);
253 
254 	return flags;
255 }
256 
257 static u32 guc_ctl_ads_flags(struct intel_guc *guc)
258 {
259 	u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
260 	u32 flags = ads << GUC_ADS_ADDR_SHIFT;
261 
262 	return flags;
263 }
264 
265 static u32 guc_ctl_wa_flags(struct intel_guc *guc)
266 {
267 	struct intel_gt *gt = guc_to_gt(guc);
268 	u32 flags = 0;
269 
270 	/* Wa_22012773006:gen11,gen12 < XeHP */
271 	if (GRAPHICS_VER(gt->i915) >= 11 &&
272 	    GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 50))
273 		flags |= GUC_WA_POLLCS;
274 
275 	/* Wa_16011759253:dg2_g10:a0 */
276 	if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0))
277 		flags |= GUC_WA_GAM_CREDITS;
278 
279 	/* Wa_14014475959 */
280 	if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) ||
281 	    IS_DG2(gt->i915))
282 		flags |= GUC_WA_HOLD_CCS_SWITCHOUT;
283 
284 	/*
285 	 * Wa_14012197797:dg2_g10:a0,dg2_g11:a0
286 	 * Wa_22011391025:dg2_g10,dg2_g11,dg2_g12
287 	 *
288 	 * The same WA bit is used for both and 22011391025 is applicable to
289 	 * all DG2.
290 	 */
291 	if (IS_DG2(gt->i915))
292 		flags |= GUC_WA_DUAL_QUEUE;
293 
294 	/* Wa_22011802037: graphics version 11/12 */
295 	if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) ||
296 	    (GRAPHICS_VER(gt->i915) >= 11 &&
297 	    GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 70)))
298 		flags |= GUC_WA_PRE_PARSER;
299 
300 	/* Wa_16011777198:dg2 */
301 	if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
302 	    IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0))
303 		flags |= GUC_WA_RCS_RESET_BEFORE_RC6;
304 
305 	/*
306 	 * Wa_22012727170:dg2_g10[a0-c0), dg2_g11[a0..)
307 	 * Wa_22012727685:dg2_g11[a0..)
308 	 */
309 	if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) ||
310 	    IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_FOREVER))
311 		flags |= GUC_WA_CONTEXT_ISOLATION;
312 
313 	/* Wa_16015675438 */
314 	if (!RCS_MASK(gt))
315 		flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST;
316 
317 	return flags;
318 }
319 
320 static u32 guc_ctl_devid(struct intel_guc *guc)
321 {
322 	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
323 
324 	return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915);
325 }
326 
327 /*
328  * Initialise the GuC parameter block before starting the firmware
329  * transfer. These parameters are read by the firmware on startup
330  * and cannot be changed thereafter.
331  */
332 static void guc_init_params(struct intel_guc *guc)
333 {
334 	u32 *params = guc->params;
335 	int i;
336 
337 	BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
338 
339 	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
340 	params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
341 	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
342 	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
343 	params[GUC_CTL_WA] = guc_ctl_wa_flags(guc);
344 	params[GUC_CTL_DEVID] = guc_ctl_devid(guc);
345 
346 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
347 		guc_dbg(guc, "param[%2d] = %#x\n", i, params[i]);
348 }
349 
350 /*
351  * Initialise the GuC parameter block before starting the firmware
352  * transfer. These parameters are read by the firmware on startup
353  * and cannot be changed thereafter.
354  */
355 void intel_guc_write_params(struct intel_guc *guc)
356 {
357 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
358 	int i;
359 
360 	/*
361 	 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and
362 	 * they are power context saved so it's ok to release forcewake
363 	 * when we are done here and take it again at xfer time.
364 	 */
365 	intel_uncore_forcewake_get(uncore, FORCEWAKE_GT);
366 
367 	intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
368 
369 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
370 		intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
371 
372 	intel_uncore_forcewake_put(uncore, FORCEWAKE_GT);
373 }
374 
375 void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p)
376 {
377 	struct intel_gt *gt = guc_to_gt(guc);
378 	intel_wakeref_t wakeref;
379 	u32 stamp = 0;
380 	u64 ktime;
381 
382 	with_intel_runtime_pm(&gt->i915->runtime_pm, wakeref)
383 		stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP);
384 	ktime = ktime_get_boottime_ns();
385 
386 	drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime);
387 	drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp);
388 	drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n",
389 		   gt->clock_frequency, gt->clock_period_ns);
390 }
391 
392 int intel_guc_init(struct intel_guc *guc)
393 {
394 	int ret;
395 
396 	ret = intel_uc_fw_init(&guc->fw);
397 	if (ret)
398 		goto out;
399 
400 	ret = intel_guc_log_create(&guc->log);
401 	if (ret)
402 		goto err_fw;
403 
404 	ret = intel_guc_capture_init(guc);
405 	if (ret)
406 		goto err_log;
407 
408 	ret = intel_guc_ads_create(guc);
409 	if (ret)
410 		goto err_capture;
411 
412 	GEM_BUG_ON(!guc->ads_vma);
413 
414 	ret = intel_guc_ct_init(&guc->ct);
415 	if (ret)
416 		goto err_ads;
417 
418 	if (intel_guc_submission_is_used(guc)) {
419 		/*
420 		 * This is stuff we need to have available at fw load time
421 		 * if we are planning to enable submission later
422 		 */
423 		ret = intel_guc_submission_init(guc);
424 		if (ret)
425 			goto err_ct;
426 	}
427 
428 	if (intel_guc_slpc_is_used(guc)) {
429 		ret = intel_guc_slpc_init(&guc->slpc);
430 		if (ret)
431 			goto err_submission;
432 	}
433 
434 	/* now that everything is perma-pinned, initialize the parameters */
435 	guc_init_params(guc);
436 
437 	intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE);
438 
439 	return 0;
440 
441 err_submission:
442 	intel_guc_submission_fini(guc);
443 err_ct:
444 	intel_guc_ct_fini(&guc->ct);
445 err_ads:
446 	intel_guc_ads_destroy(guc);
447 err_capture:
448 	intel_guc_capture_destroy(guc);
449 err_log:
450 	intel_guc_log_destroy(&guc->log);
451 err_fw:
452 	intel_uc_fw_fini(&guc->fw);
453 out:
454 	intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL);
455 	guc_probe_error(guc, "failed with %pe\n", ERR_PTR(ret));
456 	return ret;
457 }
458 
459 void intel_guc_fini(struct intel_guc *guc)
460 {
461 	if (!intel_uc_fw_is_loadable(&guc->fw))
462 		return;
463 
464 	if (intel_guc_slpc_is_used(guc))
465 		intel_guc_slpc_fini(&guc->slpc);
466 
467 	if (intel_guc_submission_is_used(guc))
468 		intel_guc_submission_fini(guc);
469 
470 	intel_guc_ct_fini(&guc->ct);
471 
472 	intel_guc_ads_destroy(guc);
473 	intel_guc_capture_destroy(guc);
474 	intel_guc_log_destroy(&guc->log);
475 	intel_uc_fw_fini(&guc->fw);
476 }
477 
478 /*
479  * This function implements the MMIO based host to GuC interface.
480  */
481 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len,
482 			u32 *response_buf, u32 response_buf_size)
483 {
484 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
485 	u32 header;
486 	int i;
487 	int ret;
488 
489 	GEM_BUG_ON(!len);
490 	GEM_BUG_ON(len > guc->send_regs.count);
491 
492 	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST);
493 	GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST);
494 
495 	mutex_lock(&guc->send_mutex);
496 	intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
497 
498 retry:
499 	for (i = 0; i < len; i++)
500 		intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]);
501 
502 	intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
503 
504 	intel_guc_notify(guc);
505 
506 	/*
507 	 * No GuC command should ever take longer than 10ms.
508 	 * Fast commands should still complete in 10us.
509 	 */
510 	ret = __intel_wait_for_register_fw(uncore,
511 					   guc_send_reg(guc, 0),
512 					   GUC_HXG_MSG_0_ORIGIN,
513 					   FIELD_PREP(GUC_HXG_MSG_0_ORIGIN,
514 						      GUC_HXG_ORIGIN_GUC),
515 					   10, 10, &header);
516 	if (unlikely(ret)) {
517 timeout:
518 		guc_err(guc, "mmio request %#x: no reply %x\n",
519 			request[0], header);
520 		goto out;
521 	}
522 
523 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) {
524 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \
525 		FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \
526 		FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; })
527 
528 		ret = wait_for(done, 1000);
529 		if (unlikely(ret))
530 			goto timeout;
531 		if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) !=
532 				       GUC_HXG_ORIGIN_GUC))
533 			goto proto;
534 #undef done
535 	}
536 
537 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) {
538 		u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header);
539 
540 		guc_dbg(guc, "mmio request %#x: retrying, reason %u\n",
541 			request[0], reason);
542 		goto retry;
543 	}
544 
545 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) {
546 		u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header);
547 		u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header);
548 
549 		guc_err(guc, "mmio request %#x: failure %x/%u\n",
550 			request[0], error, hint);
551 		ret = -ENXIO;
552 		goto out;
553 	}
554 
555 	if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) {
556 proto:
557 		guc_err(guc, "mmio request %#x: unexpected reply %#x\n",
558 			request[0], header);
559 		ret = -EPROTO;
560 		goto out;
561 	}
562 
563 	if (response_buf) {
564 		int count = min(response_buf_size, guc->send_regs.count);
565 
566 		GEM_BUG_ON(!count);
567 
568 		response_buf[0] = header;
569 
570 		for (i = 1; i < count; i++)
571 			response_buf[i] = intel_uncore_read(uncore,
572 							    guc_send_reg(guc, i));
573 
574 		/* Use number of copied dwords as our return value */
575 		ret = count;
576 	} else {
577 		/* Use data from the GuC response as our return value */
578 		ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header);
579 	}
580 
581 out:
582 	intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
583 	mutex_unlock(&guc->send_mutex);
584 
585 	return ret;
586 }
587 
588 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
589 				       const u32 *payload, u32 len)
590 {
591 	u32 msg;
592 
593 	if (unlikely(!len))
594 		return -EPROTO;
595 
596 	/* Make sure to handle only enabled messages */
597 	msg = payload[0] & guc->msg_enabled_mask;
598 
599 	if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED)
600 		guc_err(guc, "Received early crash dump notification!\n");
601 	if (msg & INTEL_GUC_RECV_MSG_EXCEPTION)
602 		guc_err(guc, "Received early exception notification!\n");
603 
604 	return 0;
605 }
606 
607 /**
608  * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
609  * @guc: intel_guc structure
610  * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
611  *
612  * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
613  * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
614  * intel_huc_auth().
615  *
616  * Return:	non-zero code on error
617  */
618 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
619 {
620 	u32 action[] = {
621 		INTEL_GUC_ACTION_AUTHENTICATE_HUC,
622 		rsa_offset
623 	};
624 
625 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
626 }
627 
628 /**
629  * intel_guc_suspend() - notify GuC entering suspend state
630  * @guc:	the guc
631  */
632 int intel_guc_suspend(struct intel_guc *guc)
633 {
634 	int ret;
635 	u32 action[] = {
636 		INTEL_GUC_ACTION_CLIENT_SOFT_RESET,
637 	};
638 
639 	if (!intel_guc_is_ready(guc))
640 		return 0;
641 
642 	if (intel_guc_submission_is_used(guc)) {
643 		/*
644 		 * This H2G MMIO command tears down the GuC in two steps. First it will
645 		 * generate a G2H CTB for every active context indicating a reset. In
646 		 * practice the i915 shouldn't ever get a G2H as suspend should only be
647 		 * called when the GPU is idle. Next, it tears down the CTBs and this
648 		 * H2G MMIO command completes.
649 		 *
650 		 * Don't abort on a failure code from the GuC. Keep going and do the
651 		 * clean up in santize() and re-initialisation on resume and hopefully
652 		 * the error here won't be problematic.
653 		 */
654 		ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0);
655 		if (ret)
656 			guc_err(guc, "suspend: RESET_CLIENT action failed with %pe\n",
657 				ERR_PTR(ret));
658 	}
659 
660 	/* Signal that the GuC isn't running. */
661 	intel_guc_sanitize(guc);
662 
663 	return 0;
664 }
665 
666 /**
667  * intel_guc_resume() - notify GuC resuming from suspend state
668  * @guc:	the guc
669  */
670 int intel_guc_resume(struct intel_guc *guc)
671 {
672 	/*
673 	 * NB: This function can still be called even if GuC submission is
674 	 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus,
675 	 * if any code is later added here, it must be support doing nothing
676 	 * if submission is disabled (as per intel_guc_suspend).
677 	 */
678 	return 0;
679 }
680 
681 /**
682  * DOC: GuC Memory Management
683  *
684  * GuC can't allocate any memory for its own usage, so all the allocations must
685  * be handled by the host driver. GuC accesses the memory via the GGTT, with the
686  * exception of the top and bottom parts of the 4GB address space, which are
687  * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
688  * or other parts of the HW. The driver must take care not to place objects that
689  * the GuC is going to access in these reserved ranges. The layout of the GuC
690  * address space is shown below:
691  *
692  * ::
693  *
694  *     +===========> +====================+ <== FFFF_FFFF
695  *     ^             |      Reserved      |
696  *     |             +====================+ <== GUC_GGTT_TOP
697  *     |             |                    |
698  *     |             |        DRAM        |
699  *    GuC            |                    |
700  *  Address    +===> +====================+ <== GuC ggtt_pin_bias
701  *   Space     ^     |                    |
702  *     |       |     |                    |
703  *     |      GuC    |        GuC         |
704  *     |     WOPCM   |       WOPCM        |
705  *     |      Size   |                    |
706  *     |       |     |                    |
707  *     v       v     |                    |
708  *     +=======+===> +====================+ <== 0000_0000
709  *
710  * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
711  * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
712  * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
713  */
714 
715 /**
716  * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
717  * @guc:	the guc
718  * @size:	size of area to allocate (both virtual space and memory)
719  *
720  * This is a wrapper to create an object for use with the GuC. In order to
721  * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
722  * both some backing storage and a range inside the Global GTT. We must pin
723  * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
724  * range is reserved inside GuC.
725  *
726  * Return:	A i915_vma if successful, otherwise an ERR_PTR.
727  */
728 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
729 {
730 	struct intel_gt *gt = guc_to_gt(guc);
731 	struct drm_i915_gem_object *obj;
732 	struct i915_vma *vma;
733 	u64 flags;
734 	int ret;
735 
736 	if (HAS_LMEM(gt->i915))
737 		obj = i915_gem_object_create_lmem(gt->i915, size,
738 						  I915_BO_ALLOC_CPU_CLEAR |
739 						  I915_BO_ALLOC_CONTIGUOUS |
740 						  I915_BO_ALLOC_PM_EARLY);
741 	else
742 		obj = i915_gem_object_create_shmem(gt->i915, size);
743 
744 	if (IS_ERR(obj))
745 		return ERR_CAST(obj);
746 
747 	/*
748 	 * Wa_22016122933: For MTL the shared memory needs to be mapped
749 	 * as WC on CPU side and UC (PAT index 2) on GPU side
750 	 */
751 	if (IS_METEORLAKE(gt->i915))
752 		i915_gem_object_set_cache_coherency(obj, I915_CACHE_NONE);
753 
754 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
755 	if (IS_ERR(vma))
756 		goto err;
757 
758 	flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
759 	ret = i915_ggtt_pin(vma, NULL, 0, flags);
760 	if (ret) {
761 		vma = ERR_PTR(ret);
762 		goto err;
763 	}
764 
765 	return i915_vma_make_unshrinkable(vma);
766 
767 err:
768 	i915_gem_object_put(obj);
769 	return vma;
770 }
771 
772 /**
773  * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
774  * @guc:	the guc
775  * @size:	size of area to allocate (both virtual space and memory)
776  * @out_vma:	return variable for the allocated vma pointer
777  * @out_vaddr:	return variable for the obj mapping
778  *
779  * This wrapper calls intel_guc_allocate_vma() and then maps the allocated
780  * object with I915_MAP_WB.
781  *
782  * Return:	0 if successful, a negative errno code otherwise.
783  */
784 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
785 				   struct i915_vma **out_vma, void **out_vaddr)
786 {
787 	struct i915_vma *vma;
788 	void *vaddr;
789 
790 	vma = intel_guc_allocate_vma(guc, size);
791 	if (IS_ERR(vma))
792 		return PTR_ERR(vma);
793 
794 	vaddr = i915_gem_object_pin_map_unlocked(vma->obj,
795 						 i915_coherent_map_type(guc_to_gt(guc)->i915,
796 									vma->obj, true));
797 	if (IS_ERR(vaddr)) {
798 		i915_vma_unpin_and_release(&vma, 0);
799 		return PTR_ERR(vaddr);
800 	}
801 
802 	*out_vma = vma;
803 	*out_vaddr = vaddr;
804 
805 	return 0;
806 }
807 
808 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
809 {
810 	u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = {
811 		FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) |
812 		FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) |
813 		FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG),
814 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) |
815 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len),
816 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)),
817 		FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)),
818 	};
819 	int ret;
820 
821 	GEM_BUG_ON(len > 2);
822 	GEM_BUG_ON(len == 1 && upper_32_bits(value));
823 
824 	/* Self config must go over MMIO */
825 	ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0);
826 
827 	if (unlikely(ret < 0))
828 		return ret;
829 	if (unlikely(ret > 1))
830 		return -EPROTO;
831 	if (unlikely(!ret))
832 		return -ENOKEY;
833 
834 	return 0;
835 }
836 
837 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value)
838 {
839 	int err = __guc_action_self_cfg(guc, key, len, value);
840 
841 	if (unlikely(err))
842 		guc_probe_error(guc, "Unsuccessful self-config (%pe) key %#hx value %#llx\n",
843 				ERR_PTR(err), key, value);
844 	return err;
845 }
846 
847 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value)
848 {
849 	return __guc_self_cfg(guc, key, 1, value);
850 }
851 
852 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value)
853 {
854 	return __guc_self_cfg(guc, key, 2, value);
855 }
856 
857 /**
858  * intel_guc_load_status - dump information about GuC load status
859  * @guc: the GuC
860  * @p: the &drm_printer
861  *
862  * Pretty printer for GuC load status.
863  */
864 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p)
865 {
866 	struct intel_gt *gt = guc_to_gt(guc);
867 	struct intel_uncore *uncore = gt->uncore;
868 	intel_wakeref_t wakeref;
869 
870 	if (!intel_guc_is_supported(guc)) {
871 		drm_printf(p, "GuC not supported\n");
872 		return;
873 	}
874 
875 	if (!intel_guc_is_wanted(guc)) {
876 		drm_printf(p, "GuC disabled\n");
877 		return;
878 	}
879 
880 	intel_uc_fw_dump(&guc->fw, p);
881 
882 	with_intel_runtime_pm(uncore->rpm, wakeref) {
883 		u32 status = intel_uncore_read(uncore, GUC_STATUS);
884 		u32 i;
885 
886 		drm_printf(p, "GuC status 0x%08x:\n", status);
887 		drm_printf(p, "\tBootrom status = 0x%x\n",
888 			   (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT);
889 		drm_printf(p, "\tuKernel status = 0x%x\n",
890 			   (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT);
891 		drm_printf(p, "\tMIA Core status = 0x%x\n",
892 			   (status & GS_MIA_MASK) >> GS_MIA_SHIFT);
893 		drm_puts(p, "Scratch registers:\n");
894 		for (i = 0; i < 16; i++) {
895 			drm_printf(p, "\t%2d: \t0x%x\n",
896 				   i, intel_uncore_read(uncore, SOFT_SCRATCH(i)));
897 		}
898 	}
899 }
900 
901 void intel_guc_write_barrier(struct intel_guc *guc)
902 {
903 	struct intel_gt *gt = guc_to_gt(guc);
904 
905 	if (i915_gem_object_is_lmem(guc->ct.vma->obj)) {
906 		/*
907 		 * Ensure intel_uncore_write_fw can be used rather than
908 		 * intel_uncore_write.
909 		 */
910 		GEM_BUG_ON(guc->send_regs.fw_domains);
911 
912 		/*
913 		 * This register is used by the i915 and GuC for MMIO based
914 		 * communication. Once we are in this code CTBs are the only
915 		 * method the i915 uses to communicate with the GuC so it is
916 		 * safe to write to this register (a value of 0 is NOP for MMIO
917 		 * communication). If we ever start mixing CTBs and MMIOs a new
918 		 * register will have to be chosen. This function is also used
919 		 * to enforce ordering of a work queue item write and an update
920 		 * to the process descriptor. When a work queue is being used,
921 		 * CTBs are also the only mechanism of communication.
922 		 */
923 		intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0);
924 	} else {
925 		/* wmb() sufficient for a barrier if in smem */
926 		wmb();
927 	}
928 }
929