1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2019 Intel Corporation 4 */ 5 6 #include "gem/i915_gem_lmem.h" 7 #include "gt/intel_gt.h" 8 #include "gt/intel_gt_irq.h" 9 #include "gt/intel_gt_pm_irq.h" 10 #include "gt/intel_gt_regs.h" 11 #include "intel_guc.h" 12 #include "intel_guc_ads.h" 13 #include "intel_guc_capture.h" 14 #include "intel_guc_slpc.h" 15 #include "intel_guc_submission.h" 16 #include "i915_drv.h" 17 #include "i915_irq.h" 18 19 /** 20 * DOC: GuC 21 * 22 * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is 23 * designed to offload some of the functionality usually performed by the host 24 * driver; currently the main operations it can take care of are: 25 * 26 * - Authentication of the HuC, which is required to fully enable HuC usage. 27 * - Low latency graphics context scheduling (a.k.a. GuC submission). 28 * - GT Power management. 29 * 30 * The enable_guc module parameter can be used to select which of those 31 * operations to enable within GuC. Note that not all the operations are 32 * supported on all gen9+ platforms. 33 * 34 * Enabling the GuC is not mandatory and therefore the firmware is only loaded 35 * if at least one of the operations is selected. However, not loading the GuC 36 * might result in the loss of some features that do require the GuC (currently 37 * just the HuC, but more are expected to land in the future). 38 */ 39 40 void intel_guc_notify(struct intel_guc *guc) 41 { 42 struct intel_gt *gt = guc_to_gt(guc); 43 44 /* 45 * On Gen11+, the value written to the register is passes as a payload 46 * to the FW. However, the FW currently treats all values the same way 47 * (H2G interrupt), so we can just write the value that the HW expects 48 * on older gens. 49 */ 50 intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER); 51 } 52 53 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i) 54 { 55 GEM_BUG_ON(!guc->send_regs.base); 56 GEM_BUG_ON(!guc->send_regs.count); 57 GEM_BUG_ON(i >= guc->send_regs.count); 58 59 return _MMIO(guc->send_regs.base + 4 * i); 60 } 61 62 void intel_guc_init_send_regs(struct intel_guc *guc) 63 { 64 struct intel_gt *gt = guc_to_gt(guc); 65 enum forcewake_domains fw_domains = 0; 66 unsigned int i; 67 68 GEM_BUG_ON(!guc->send_regs.base); 69 GEM_BUG_ON(!guc->send_regs.count); 70 71 for (i = 0; i < guc->send_regs.count; i++) { 72 fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore, 73 guc_send_reg(guc, i), 74 FW_REG_READ | FW_REG_WRITE); 75 } 76 guc->send_regs.fw_domains = fw_domains; 77 } 78 79 static void gen9_reset_guc_interrupts(struct intel_guc *guc) 80 { 81 struct intel_gt *gt = guc_to_gt(guc); 82 83 assert_rpm_wakelock_held(>->i915->runtime_pm); 84 85 spin_lock_irq(gt->irq_lock); 86 gen6_gt_pm_reset_iir(gt, gt->pm_guc_events); 87 spin_unlock_irq(gt->irq_lock); 88 } 89 90 static void gen9_enable_guc_interrupts(struct intel_guc *guc) 91 { 92 struct intel_gt *gt = guc_to_gt(guc); 93 94 assert_rpm_wakelock_held(>->i915->runtime_pm); 95 96 spin_lock_irq(gt->irq_lock); 97 WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) & 98 gt->pm_guc_events); 99 gen6_gt_pm_enable_irq(gt, gt->pm_guc_events); 100 spin_unlock_irq(gt->irq_lock); 101 } 102 103 static void gen9_disable_guc_interrupts(struct intel_guc *guc) 104 { 105 struct intel_gt *gt = guc_to_gt(guc); 106 107 assert_rpm_wakelock_held(>->i915->runtime_pm); 108 109 spin_lock_irq(gt->irq_lock); 110 111 gen6_gt_pm_disable_irq(gt, gt->pm_guc_events); 112 113 spin_unlock_irq(gt->irq_lock); 114 intel_synchronize_irq(gt->i915); 115 116 gen9_reset_guc_interrupts(guc); 117 } 118 119 static void gen11_reset_guc_interrupts(struct intel_guc *guc) 120 { 121 struct intel_gt *gt = guc_to_gt(guc); 122 123 spin_lock_irq(gt->irq_lock); 124 gen11_gt_reset_one_iir(gt, 0, GEN11_GUC); 125 spin_unlock_irq(gt->irq_lock); 126 } 127 128 static void gen11_enable_guc_interrupts(struct intel_guc *guc) 129 { 130 struct intel_gt *gt = guc_to_gt(guc); 131 u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST); 132 133 spin_lock_irq(gt->irq_lock); 134 WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC)); 135 intel_uncore_write(gt->uncore, 136 GEN11_GUC_SG_INTR_ENABLE, events); 137 intel_uncore_write(gt->uncore, 138 GEN11_GUC_SG_INTR_MASK, ~events); 139 spin_unlock_irq(gt->irq_lock); 140 } 141 142 static void gen11_disable_guc_interrupts(struct intel_guc *guc) 143 { 144 struct intel_gt *gt = guc_to_gt(guc); 145 146 spin_lock_irq(gt->irq_lock); 147 148 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0); 149 intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0); 150 151 spin_unlock_irq(gt->irq_lock); 152 intel_synchronize_irq(gt->i915); 153 154 gen11_reset_guc_interrupts(guc); 155 } 156 157 void intel_guc_init_early(struct intel_guc *guc) 158 { 159 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 160 161 intel_uc_fw_init_early(&guc->fw, INTEL_UC_FW_TYPE_GUC); 162 intel_guc_ct_init_early(&guc->ct); 163 intel_guc_log_init_early(&guc->log); 164 intel_guc_submission_init_early(guc); 165 intel_guc_slpc_init_early(&guc->slpc); 166 intel_guc_rc_init_early(guc); 167 168 mutex_init(&guc->send_mutex); 169 spin_lock_init(&guc->irq_lock); 170 if (GRAPHICS_VER(i915) >= 11) { 171 guc->notify_reg = GEN11_GUC_HOST_INTERRUPT; 172 guc->interrupts.reset = gen11_reset_guc_interrupts; 173 guc->interrupts.enable = gen11_enable_guc_interrupts; 174 guc->interrupts.disable = gen11_disable_guc_interrupts; 175 guc->send_regs.base = 176 i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0)); 177 guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT; 178 179 } else { 180 guc->notify_reg = GUC_SEND_INTERRUPT; 181 guc->interrupts.reset = gen9_reset_guc_interrupts; 182 guc->interrupts.enable = gen9_enable_guc_interrupts; 183 guc->interrupts.disable = gen9_disable_guc_interrupts; 184 guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0)); 185 guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN; 186 BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT); 187 } 188 189 intel_guc_enable_msg(guc, INTEL_GUC_RECV_MSG_EXCEPTION | 190 INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED); 191 } 192 193 void intel_guc_init_late(struct intel_guc *guc) 194 { 195 intel_guc_ads_init_late(guc); 196 } 197 198 static u32 guc_ctl_debug_flags(struct intel_guc *guc) 199 { 200 u32 level = intel_guc_log_get_level(&guc->log); 201 u32 flags = 0; 202 203 if (!GUC_LOG_LEVEL_IS_VERBOSE(level)) 204 flags |= GUC_LOG_DISABLED; 205 else 206 flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) << 207 GUC_LOG_VERBOSITY_SHIFT; 208 209 return flags; 210 } 211 212 static u32 guc_ctl_feature_flags(struct intel_guc *guc) 213 { 214 u32 flags = 0; 215 216 if (!intel_guc_submission_is_used(guc)) 217 flags |= GUC_CTL_DISABLE_SCHEDULER; 218 219 if (intel_guc_slpc_is_used(guc)) 220 flags |= GUC_CTL_ENABLE_SLPC; 221 222 return flags; 223 } 224 225 static u32 guc_ctl_log_params_flags(struct intel_guc *guc) 226 { 227 struct intel_guc_log *log = &guc->log; 228 u32 offset, flags; 229 230 GEM_BUG_ON(!log->sizes_initialised); 231 232 offset = intel_guc_ggtt_offset(guc, log->vma) >> PAGE_SHIFT; 233 234 flags = GUC_LOG_VALID | 235 GUC_LOG_NOTIFY_ON_HALF_FULL | 236 log->sizes[GUC_LOG_SECTIONS_DEBUG].flag | 237 log->sizes[GUC_LOG_SECTIONS_CAPTURE].flag | 238 (log->sizes[GUC_LOG_SECTIONS_CRASH].count << GUC_LOG_CRASH_SHIFT) | 239 (log->sizes[GUC_LOG_SECTIONS_DEBUG].count << GUC_LOG_DEBUG_SHIFT) | 240 (log->sizes[GUC_LOG_SECTIONS_CAPTURE].count << GUC_LOG_CAPTURE_SHIFT) | 241 (offset << GUC_LOG_BUF_ADDR_SHIFT); 242 243 return flags; 244 } 245 246 static u32 guc_ctl_ads_flags(struct intel_guc *guc) 247 { 248 u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT; 249 u32 flags = ads << GUC_ADS_ADDR_SHIFT; 250 251 return flags; 252 } 253 254 static u32 guc_ctl_wa_flags(struct intel_guc *guc) 255 { 256 struct intel_gt *gt = guc_to_gt(guc); 257 u32 flags = 0; 258 259 /* Wa_22012773006:gen11,gen12 < XeHP */ 260 if (GRAPHICS_VER(gt->i915) >= 11 && 261 GRAPHICS_VER_FULL(gt->i915) < IP_VER(12, 50)) 262 flags |= GUC_WA_POLLCS; 263 264 /* Wa_16011759253:dg2_g10:a0 */ 265 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0)) 266 flags |= GUC_WA_GAM_CREDITS; 267 268 /* Wa_14014475959:dg2 */ 269 if (IS_DG2(gt->i915)) 270 flags |= GUC_WA_HOLD_CCS_SWITCHOUT; 271 272 /* 273 * Wa_14012197797:dg2_g10:a0,dg2_g11:a0 274 * Wa_22011391025:dg2_g10,dg2_g11,dg2_g12 275 * 276 * The same WA bit is used for both and 22011391025 is applicable to 277 * all DG2. 278 */ 279 if (IS_DG2(gt->i915)) 280 flags |= GUC_WA_DUAL_QUEUE; 281 282 /* Wa_22011802037: graphics version 11/12 */ 283 if (IS_GRAPHICS_VER(gt->i915, 11, 12)) 284 flags |= GUC_WA_PRE_PARSER; 285 286 /* Wa_16011777198:dg2 */ 287 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) || 288 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0)) 289 flags |= GUC_WA_RCS_RESET_BEFORE_RC6; 290 291 /* 292 * Wa_22012727170:dg2_g10[a0-c0), dg2_g11[a0..) 293 * Wa_22012727685:dg2_g11[a0..) 294 */ 295 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_C0) || 296 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_FOREVER)) 297 flags |= GUC_WA_CONTEXT_ISOLATION; 298 299 /* Wa_16015675438 */ 300 if (!RCS_MASK(gt)) 301 flags |= GUC_WA_RCS_REGS_IN_CCS_REGS_LIST; 302 303 return flags; 304 } 305 306 static u32 guc_ctl_devid(struct intel_guc *guc) 307 { 308 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 309 310 return (INTEL_DEVID(i915) << 16) | INTEL_REVID(i915); 311 } 312 313 /* 314 * Initialise the GuC parameter block before starting the firmware 315 * transfer. These parameters are read by the firmware on startup 316 * and cannot be changed thereafter. 317 */ 318 static void guc_init_params(struct intel_guc *guc) 319 { 320 u32 *params = guc->params; 321 int i; 322 323 BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32)); 324 325 params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc); 326 params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc); 327 params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc); 328 params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc); 329 params[GUC_CTL_WA] = guc_ctl_wa_flags(guc); 330 params[GUC_CTL_DEVID] = guc_ctl_devid(guc); 331 332 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 333 DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]); 334 } 335 336 /* 337 * Initialise the GuC parameter block before starting the firmware 338 * transfer. These parameters are read by the firmware on startup 339 * and cannot be changed thereafter. 340 */ 341 void intel_guc_write_params(struct intel_guc *guc) 342 { 343 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 344 int i; 345 346 /* 347 * All SOFT_SCRATCH registers are in FORCEWAKE_GT domain and 348 * they are power context saved so it's ok to release forcewake 349 * when we are done here and take it again at xfer time. 350 */ 351 intel_uncore_forcewake_get(uncore, FORCEWAKE_GT); 352 353 intel_uncore_write(uncore, SOFT_SCRATCH(0), 0); 354 355 for (i = 0; i < GUC_CTL_MAX_DWORDS; i++) 356 intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]); 357 358 intel_uncore_forcewake_put(uncore, FORCEWAKE_GT); 359 } 360 361 void intel_guc_dump_time_info(struct intel_guc *guc, struct drm_printer *p) 362 { 363 struct intel_gt *gt = guc_to_gt(guc); 364 intel_wakeref_t wakeref; 365 u32 stamp = 0; 366 u64 ktime; 367 368 with_intel_runtime_pm(>->i915->runtime_pm, wakeref) 369 stamp = intel_uncore_read(gt->uncore, GUCPMTIMESTAMP); 370 ktime = ktime_get_boottime_ns(); 371 372 drm_printf(p, "Kernel timestamp: 0x%08llX [%llu]\n", ktime, ktime); 373 drm_printf(p, "GuC timestamp: 0x%08X [%u]\n", stamp, stamp); 374 drm_printf(p, "CS timestamp frequency: %u Hz, %u ns\n", 375 gt->clock_frequency, gt->clock_period_ns); 376 } 377 378 int intel_guc_init(struct intel_guc *guc) 379 { 380 struct intel_gt *gt = guc_to_gt(guc); 381 int ret; 382 383 ret = intel_uc_fw_init(&guc->fw); 384 if (ret) 385 goto out; 386 387 ret = intel_guc_log_create(&guc->log); 388 if (ret) 389 goto err_fw; 390 391 ret = intel_guc_capture_init(guc); 392 if (ret) 393 goto err_log; 394 395 ret = intel_guc_ads_create(guc); 396 if (ret) 397 goto err_capture; 398 399 GEM_BUG_ON(!guc->ads_vma); 400 401 ret = intel_guc_ct_init(&guc->ct); 402 if (ret) 403 goto err_ads; 404 405 if (intel_guc_submission_is_used(guc)) { 406 /* 407 * This is stuff we need to have available at fw load time 408 * if we are planning to enable submission later 409 */ 410 ret = intel_guc_submission_init(guc); 411 if (ret) 412 goto err_ct; 413 } 414 415 if (intel_guc_slpc_is_used(guc)) { 416 ret = intel_guc_slpc_init(&guc->slpc); 417 if (ret) 418 goto err_submission; 419 } 420 421 /* now that everything is perma-pinned, initialize the parameters */ 422 guc_init_params(guc); 423 424 /* We need to notify the guc whenever we change the GGTT */ 425 i915_ggtt_enable_guc(gt->ggtt); 426 427 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_LOADABLE); 428 429 return 0; 430 431 err_submission: 432 intel_guc_submission_fini(guc); 433 err_ct: 434 intel_guc_ct_fini(&guc->ct); 435 err_ads: 436 intel_guc_ads_destroy(guc); 437 err_capture: 438 intel_guc_capture_destroy(guc); 439 err_log: 440 intel_guc_log_destroy(&guc->log); 441 err_fw: 442 intel_uc_fw_fini(&guc->fw); 443 out: 444 intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_INIT_FAIL); 445 i915_probe_error(gt->i915, "failed with %d\n", ret); 446 return ret; 447 } 448 449 void intel_guc_fini(struct intel_guc *guc) 450 { 451 struct intel_gt *gt = guc_to_gt(guc); 452 453 if (!intel_uc_fw_is_loadable(&guc->fw)) 454 return; 455 456 i915_ggtt_disable_guc(gt->ggtt); 457 458 if (intel_guc_slpc_is_used(guc)) 459 intel_guc_slpc_fini(&guc->slpc); 460 461 if (intel_guc_submission_is_used(guc)) 462 intel_guc_submission_fini(guc); 463 464 intel_guc_ct_fini(&guc->ct); 465 466 intel_guc_ads_destroy(guc); 467 intel_guc_capture_destroy(guc); 468 intel_guc_log_destroy(&guc->log); 469 intel_uc_fw_fini(&guc->fw); 470 } 471 472 /* 473 * This function implements the MMIO based host to GuC interface. 474 */ 475 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *request, u32 len, 476 u32 *response_buf, u32 response_buf_size) 477 { 478 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 479 struct intel_uncore *uncore = guc_to_gt(guc)->uncore; 480 u32 header; 481 int i; 482 int ret; 483 484 GEM_BUG_ON(!len); 485 GEM_BUG_ON(len > guc->send_regs.count); 486 487 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, request[0]) != GUC_HXG_ORIGIN_HOST); 488 GEM_BUG_ON(FIELD_GET(GUC_HXG_MSG_0_TYPE, request[0]) != GUC_HXG_TYPE_REQUEST); 489 490 mutex_lock(&guc->send_mutex); 491 intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains); 492 493 retry: 494 for (i = 0; i < len; i++) 495 intel_uncore_write(uncore, guc_send_reg(guc, i), request[i]); 496 497 intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1)); 498 499 intel_guc_notify(guc); 500 501 /* 502 * No GuC command should ever take longer than 10ms. 503 * Fast commands should still complete in 10us. 504 */ 505 ret = __intel_wait_for_register_fw(uncore, 506 guc_send_reg(guc, 0), 507 GUC_HXG_MSG_0_ORIGIN, 508 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, 509 GUC_HXG_ORIGIN_GUC), 510 10, 10, &header); 511 if (unlikely(ret)) { 512 timeout: 513 drm_err(&i915->drm, "mmio request %#x: no reply %x\n", 514 request[0], header); 515 goto out; 516 } 517 518 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_BUSY) { 519 #define done ({ header = intel_uncore_read(uncore, guc_send_reg(guc, 0)); \ 520 FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != GUC_HXG_ORIGIN_GUC || \ 521 FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_NO_RESPONSE_BUSY; }) 522 523 ret = wait_for(done, 1000); 524 if (unlikely(ret)) 525 goto timeout; 526 if (unlikely(FIELD_GET(GUC_HXG_MSG_0_ORIGIN, header) != 527 GUC_HXG_ORIGIN_GUC)) 528 goto proto; 529 #undef done 530 } 531 532 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_NO_RESPONSE_RETRY) { 533 u32 reason = FIELD_GET(GUC_HXG_RETRY_MSG_0_REASON, header); 534 535 drm_dbg(&i915->drm, "mmio request %#x: retrying, reason %u\n", 536 request[0], reason); 537 goto retry; 538 } 539 540 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) == GUC_HXG_TYPE_RESPONSE_FAILURE) { 541 u32 hint = FIELD_GET(GUC_HXG_FAILURE_MSG_0_HINT, header); 542 u32 error = FIELD_GET(GUC_HXG_FAILURE_MSG_0_ERROR, header); 543 544 drm_err(&i915->drm, "mmio request %#x: failure %x/%u\n", 545 request[0], error, hint); 546 ret = -ENXIO; 547 goto out; 548 } 549 550 if (FIELD_GET(GUC_HXG_MSG_0_TYPE, header) != GUC_HXG_TYPE_RESPONSE_SUCCESS) { 551 proto: 552 drm_err(&i915->drm, "mmio request %#x: unexpected reply %#x\n", 553 request[0], header); 554 ret = -EPROTO; 555 goto out; 556 } 557 558 if (response_buf) { 559 int count = min(response_buf_size, guc->send_regs.count); 560 561 GEM_BUG_ON(!count); 562 563 response_buf[0] = header; 564 565 for (i = 1; i < count; i++) 566 response_buf[i] = intel_uncore_read(uncore, 567 guc_send_reg(guc, i)); 568 569 /* Use number of copied dwords as our return value */ 570 ret = count; 571 } else { 572 /* Use data from the GuC response as our return value */ 573 ret = FIELD_GET(GUC_HXG_RESPONSE_MSG_0_DATA0, header); 574 } 575 576 out: 577 intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains); 578 mutex_unlock(&guc->send_mutex); 579 580 return ret; 581 } 582 583 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc, 584 const u32 *payload, u32 len) 585 { 586 u32 msg; 587 588 if (unlikely(!len)) 589 return -EPROTO; 590 591 /* Make sure to handle only enabled messages */ 592 msg = payload[0] & guc->msg_enabled_mask; 593 594 if (msg & INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED) 595 drm_err(&guc_to_gt(guc)->i915->drm, "Received early GuC crash dump notification!\n"); 596 if (msg & INTEL_GUC_RECV_MSG_EXCEPTION) 597 drm_err(&guc_to_gt(guc)->i915->drm, "Received early GuC exception notification!\n"); 598 599 return 0; 600 } 601 602 /** 603 * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode 604 * @guc: intel_guc structure 605 * @rsa_offset: rsa offset w.r.t ggtt base of huc vma 606 * 607 * Triggers a HuC firmware authentication request to the GuC via intel_guc_send 608 * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by 609 * intel_huc_auth(). 610 * 611 * Return: non-zero code on error 612 */ 613 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset) 614 { 615 u32 action[] = { 616 INTEL_GUC_ACTION_AUTHENTICATE_HUC, 617 rsa_offset 618 }; 619 620 return intel_guc_send(guc, action, ARRAY_SIZE(action)); 621 } 622 623 /** 624 * intel_guc_suspend() - notify GuC entering suspend state 625 * @guc: the guc 626 */ 627 int intel_guc_suspend(struct intel_guc *guc) 628 { 629 int ret; 630 u32 action[] = { 631 INTEL_GUC_ACTION_CLIENT_SOFT_RESET, 632 }; 633 634 if (!intel_guc_is_ready(guc)) 635 return 0; 636 637 if (intel_guc_submission_is_used(guc)) { 638 /* 639 * This H2G MMIO command tears down the GuC in two steps. First it will 640 * generate a G2H CTB for every active context indicating a reset. In 641 * practice the i915 shouldn't ever get a G2H as suspend should only be 642 * called when the GPU is idle. Next, it tears down the CTBs and this 643 * H2G MMIO command completes. 644 * 645 * Don't abort on a failure code from the GuC. Keep going and do the 646 * clean up in santize() and re-initialisation on resume and hopefully 647 * the error here won't be problematic. 648 */ 649 ret = intel_guc_send_mmio(guc, action, ARRAY_SIZE(action), NULL, 0); 650 if (ret) 651 DRM_ERROR("GuC suspend: RESET_CLIENT action failed with error %d!\n", ret); 652 } 653 654 /* Signal that the GuC isn't running. */ 655 intel_guc_sanitize(guc); 656 657 return 0; 658 } 659 660 /** 661 * intel_guc_resume() - notify GuC resuming from suspend state 662 * @guc: the guc 663 */ 664 int intel_guc_resume(struct intel_guc *guc) 665 { 666 /* 667 * NB: This function can still be called even if GuC submission is 668 * disabled, e.g. if GuC is enabled for HuC authentication only. Thus, 669 * if any code is later added here, it must be support doing nothing 670 * if submission is disabled (as per intel_guc_suspend). 671 */ 672 return 0; 673 } 674 675 /** 676 * DOC: GuC Memory Management 677 * 678 * GuC can't allocate any memory for its own usage, so all the allocations must 679 * be handled by the host driver. GuC accesses the memory via the GGTT, with the 680 * exception of the top and bottom parts of the 4GB address space, which are 681 * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM) 682 * or other parts of the HW. The driver must take care not to place objects that 683 * the GuC is going to access in these reserved ranges. The layout of the GuC 684 * address space is shown below: 685 * 686 * :: 687 * 688 * +===========> +====================+ <== FFFF_FFFF 689 * ^ | Reserved | 690 * | +====================+ <== GUC_GGTT_TOP 691 * | | | 692 * | | DRAM | 693 * GuC | | 694 * Address +===> +====================+ <== GuC ggtt_pin_bias 695 * Space ^ | | 696 * | | | | 697 * | GuC | GuC | 698 * | WOPCM | WOPCM | 699 * | Size | | 700 * | | | | 701 * v v | | 702 * +=======+===> +====================+ <== 0000_0000 703 * 704 * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM 705 * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped 706 * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size. 707 */ 708 709 /** 710 * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage 711 * @guc: the guc 712 * @size: size of area to allocate (both virtual space and memory) 713 * 714 * This is a wrapper to create an object for use with the GuC. In order to 715 * use it inside the GuC, an object needs to be pinned lifetime, so we allocate 716 * both some backing storage and a range inside the Global GTT. We must pin 717 * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that 718 * range is reserved inside GuC. 719 * 720 * Return: A i915_vma if successful, otherwise an ERR_PTR. 721 */ 722 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size) 723 { 724 struct intel_gt *gt = guc_to_gt(guc); 725 struct drm_i915_gem_object *obj; 726 struct i915_vma *vma; 727 u64 flags; 728 int ret; 729 730 if (HAS_LMEM(gt->i915)) 731 obj = i915_gem_object_create_lmem(gt->i915, size, 732 I915_BO_ALLOC_CPU_CLEAR | 733 I915_BO_ALLOC_CONTIGUOUS | 734 I915_BO_ALLOC_PM_EARLY); 735 else 736 obj = i915_gem_object_create_shmem(gt->i915, size); 737 738 if (IS_ERR(obj)) 739 return ERR_CAST(obj); 740 741 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 742 if (IS_ERR(vma)) 743 goto err; 744 745 flags = PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma); 746 ret = i915_ggtt_pin(vma, NULL, 0, flags); 747 if (ret) { 748 vma = ERR_PTR(ret); 749 goto err; 750 } 751 752 return i915_vma_make_unshrinkable(vma); 753 754 err: 755 i915_gem_object_put(obj); 756 return vma; 757 } 758 759 /** 760 * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage 761 * @guc: the guc 762 * @size: size of area to allocate (both virtual space and memory) 763 * @out_vma: return variable for the allocated vma pointer 764 * @out_vaddr: return variable for the obj mapping 765 * 766 * This wrapper calls intel_guc_allocate_vma() and then maps the allocated 767 * object with I915_MAP_WB. 768 * 769 * Return: 0 if successful, a negative errno code otherwise. 770 */ 771 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size, 772 struct i915_vma **out_vma, void **out_vaddr) 773 { 774 struct i915_vma *vma; 775 void *vaddr; 776 777 vma = intel_guc_allocate_vma(guc, size); 778 if (IS_ERR(vma)) 779 return PTR_ERR(vma); 780 781 vaddr = i915_gem_object_pin_map_unlocked(vma->obj, 782 i915_coherent_map_type(guc_to_gt(guc)->i915, 783 vma->obj, true)); 784 if (IS_ERR(vaddr)) { 785 i915_vma_unpin_and_release(&vma, 0); 786 return PTR_ERR(vaddr); 787 } 788 789 *out_vma = vma; 790 *out_vaddr = vaddr; 791 792 return 0; 793 } 794 795 static int __guc_action_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 796 { 797 u32 request[HOST2GUC_SELF_CFG_REQUEST_MSG_LEN] = { 798 FIELD_PREP(GUC_HXG_MSG_0_ORIGIN, GUC_HXG_ORIGIN_HOST) | 799 FIELD_PREP(GUC_HXG_MSG_0_TYPE, GUC_HXG_TYPE_REQUEST) | 800 FIELD_PREP(GUC_HXG_REQUEST_MSG_0_ACTION, GUC_ACTION_HOST2GUC_SELF_CFG), 801 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_KEY, key) | 802 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_1_KLV_LEN, len), 803 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_2_VALUE32, lower_32_bits(value)), 804 FIELD_PREP(HOST2GUC_SELF_CFG_REQUEST_MSG_3_VALUE64, upper_32_bits(value)), 805 }; 806 int ret; 807 808 GEM_BUG_ON(len > 2); 809 GEM_BUG_ON(len == 1 && upper_32_bits(value)); 810 811 /* Self config must go over MMIO */ 812 ret = intel_guc_send_mmio(guc, request, ARRAY_SIZE(request), NULL, 0); 813 814 if (unlikely(ret < 0)) 815 return ret; 816 if (unlikely(ret > 1)) 817 return -EPROTO; 818 if (unlikely(!ret)) 819 return -ENOKEY; 820 821 return 0; 822 } 823 824 static int __guc_self_cfg(struct intel_guc *guc, u16 key, u16 len, u64 value) 825 { 826 struct drm_i915_private *i915 = guc_to_gt(guc)->i915; 827 int err = __guc_action_self_cfg(guc, key, len, value); 828 829 if (unlikely(err)) 830 i915_probe_error(i915, "Unsuccessful self-config (%pe) key %#hx value %#llx\n", 831 ERR_PTR(err), key, value); 832 return err; 833 } 834 835 int intel_guc_self_cfg32(struct intel_guc *guc, u16 key, u32 value) 836 { 837 return __guc_self_cfg(guc, key, 1, value); 838 } 839 840 int intel_guc_self_cfg64(struct intel_guc *guc, u16 key, u64 value) 841 { 842 return __guc_self_cfg(guc, key, 2, value); 843 } 844 845 /** 846 * intel_guc_load_status - dump information about GuC load status 847 * @guc: the GuC 848 * @p: the &drm_printer 849 * 850 * Pretty printer for GuC load status. 851 */ 852 void intel_guc_load_status(struct intel_guc *guc, struct drm_printer *p) 853 { 854 struct intel_gt *gt = guc_to_gt(guc); 855 struct intel_uncore *uncore = gt->uncore; 856 intel_wakeref_t wakeref; 857 858 if (!intel_guc_is_supported(guc)) { 859 drm_printf(p, "GuC not supported\n"); 860 return; 861 } 862 863 if (!intel_guc_is_wanted(guc)) { 864 drm_printf(p, "GuC disabled\n"); 865 return; 866 } 867 868 intel_uc_fw_dump(&guc->fw, p); 869 870 with_intel_runtime_pm(uncore->rpm, wakeref) { 871 u32 status = intel_uncore_read(uncore, GUC_STATUS); 872 u32 i; 873 874 drm_printf(p, "\nGuC status 0x%08x:\n", status); 875 drm_printf(p, "\tBootrom status = 0x%x\n", 876 (status & GS_BOOTROM_MASK) >> GS_BOOTROM_SHIFT); 877 drm_printf(p, "\tuKernel status = 0x%x\n", 878 (status & GS_UKERNEL_MASK) >> GS_UKERNEL_SHIFT); 879 drm_printf(p, "\tMIA Core status = 0x%x\n", 880 (status & GS_MIA_MASK) >> GS_MIA_SHIFT); 881 drm_puts(p, "\nScratch registers:\n"); 882 for (i = 0; i < 16; i++) { 883 drm_printf(p, "\t%2d: \t0x%x\n", 884 i, intel_uncore_read(uncore, SOFT_SCRATCH(i))); 885 } 886 } 887 } 888 889 void intel_guc_write_barrier(struct intel_guc *guc) 890 { 891 struct intel_gt *gt = guc_to_gt(guc); 892 893 if (i915_gem_object_is_lmem(guc->ct.vma->obj)) { 894 /* 895 * Ensure intel_uncore_write_fw can be used rather than 896 * intel_uncore_write. 897 */ 898 GEM_BUG_ON(guc->send_regs.fw_domains); 899 900 /* 901 * This register is used by the i915 and GuC for MMIO based 902 * communication. Once we are in this code CTBs are the only 903 * method the i915 uses to communicate with the GuC so it is 904 * safe to write to this register (a value of 0 is NOP for MMIO 905 * communication). If we ever start mixing CTBs and MMIOs a new 906 * register will have to be chosen. This function is also used 907 * to enforce ordering of a work queue item write and an update 908 * to the process descriptor. When a work queue is being used, 909 * CTBs are also the only mechanism of communication. 910 */ 911 intel_uncore_write_fw(gt->uncore, GEN11_SOFT_SCRATCH(0), 0); 912 } else { 913 /* wmb() sufficient for a barrier if in smem */ 914 wmb(); 915 } 916 } 917