xref: /openbmc/linux/drivers/gpu/drm/i915/gt/uc/intel_guc.c (revision 32ced09d)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2019 Intel Corporation
4  */
5 
6 #include "gt/intel_gt.h"
7 #include "gt/intel_gt_irq.h"
8 #include "gt/intel_gt_pm_irq.h"
9 #include "intel_guc.h"
10 #include "intel_guc_ads.h"
11 #include "intel_guc_submission.h"
12 #include "i915_drv.h"
13 
14 /**
15  * DOC: GuC
16  *
17  * The GuC is a microcontroller inside the GT HW, introduced in gen9. The GuC is
18  * designed to offload some of the functionality usually performed by the host
19  * driver; currently the main operations it can take care of are:
20  *
21  * - Authentication of the HuC, which is required to fully enable HuC usage.
22  * - Low latency graphics context scheduling (a.k.a. GuC submission).
23  * - GT Power management.
24  *
25  * The enable_guc module parameter can be used to select which of those
26  * operations to enable within GuC. Note that not all the operations are
27  * supported on all gen9+ platforms.
28  *
29  * Enabling the GuC is not mandatory and therefore the firmware is only loaded
30  * if at least one of the operations is selected. However, not loading the GuC
31  * might result in the loss of some features that do require the GuC (currently
32  * just the HuC, but more are expected to land in the future).
33  */
34 
35 void intel_guc_notify(struct intel_guc *guc)
36 {
37 	struct intel_gt *gt = guc_to_gt(guc);
38 
39 	/*
40 	 * On Gen11+, the value written to the register is passes as a payload
41 	 * to the FW. However, the FW currently treats all values the same way
42 	 * (H2G interrupt), so we can just write the value that the HW expects
43 	 * on older gens.
44 	 */
45 	intel_uncore_write(gt->uncore, guc->notify_reg, GUC_SEND_TRIGGER);
46 }
47 
48 static inline i915_reg_t guc_send_reg(struct intel_guc *guc, u32 i)
49 {
50 	GEM_BUG_ON(!guc->send_regs.base);
51 	GEM_BUG_ON(!guc->send_regs.count);
52 	GEM_BUG_ON(i >= guc->send_regs.count);
53 
54 	return _MMIO(guc->send_regs.base + 4 * i);
55 }
56 
57 void intel_guc_init_send_regs(struct intel_guc *guc)
58 {
59 	struct intel_gt *gt = guc_to_gt(guc);
60 	enum forcewake_domains fw_domains = 0;
61 	unsigned int i;
62 
63 	if (INTEL_GEN(gt->i915) >= 11) {
64 		guc->send_regs.base =
65 				i915_mmio_reg_offset(GEN11_SOFT_SCRATCH(0));
66 		guc->send_regs.count = GEN11_SOFT_SCRATCH_COUNT;
67 	} else {
68 		guc->send_regs.base = i915_mmio_reg_offset(SOFT_SCRATCH(0));
69 		guc->send_regs.count = GUC_MAX_MMIO_MSG_LEN;
70 		BUILD_BUG_ON(GUC_MAX_MMIO_MSG_LEN > SOFT_SCRATCH_COUNT);
71 	}
72 
73 	for (i = 0; i < guc->send_regs.count; i++) {
74 		fw_domains |= intel_uncore_forcewake_for_reg(gt->uncore,
75 					guc_send_reg(guc, i),
76 					FW_REG_READ | FW_REG_WRITE);
77 	}
78 	guc->send_regs.fw_domains = fw_domains;
79 }
80 
81 static void gen9_reset_guc_interrupts(struct intel_guc *guc)
82 {
83 	struct intel_gt *gt = guc_to_gt(guc);
84 
85 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
86 
87 	spin_lock_irq(&gt->irq_lock);
88 	gen6_gt_pm_reset_iir(gt, gt->pm_guc_events);
89 	spin_unlock_irq(&gt->irq_lock);
90 }
91 
92 static void gen9_enable_guc_interrupts(struct intel_guc *guc)
93 {
94 	struct intel_gt *gt = guc_to_gt(guc);
95 
96 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
97 
98 	spin_lock_irq(&gt->irq_lock);
99 	if (!guc->interrupts.enabled) {
100 		WARN_ON_ONCE(intel_uncore_read(gt->uncore, GEN8_GT_IIR(2)) &
101 			     gt->pm_guc_events);
102 		guc->interrupts.enabled = true;
103 		gen6_gt_pm_enable_irq(gt, gt->pm_guc_events);
104 	}
105 	spin_unlock_irq(&gt->irq_lock);
106 }
107 
108 static void gen9_disable_guc_interrupts(struct intel_guc *guc)
109 {
110 	struct intel_gt *gt = guc_to_gt(guc);
111 
112 	assert_rpm_wakelock_held(&gt->i915->runtime_pm);
113 
114 	spin_lock_irq(&gt->irq_lock);
115 	guc->interrupts.enabled = false;
116 
117 	gen6_gt_pm_disable_irq(gt, gt->pm_guc_events);
118 
119 	spin_unlock_irq(&gt->irq_lock);
120 	intel_synchronize_irq(gt->i915);
121 
122 	gen9_reset_guc_interrupts(guc);
123 }
124 
125 static void gen11_reset_guc_interrupts(struct intel_guc *guc)
126 {
127 	struct intel_gt *gt = guc_to_gt(guc);
128 
129 	spin_lock_irq(&gt->irq_lock);
130 	gen11_gt_reset_one_iir(gt, 0, GEN11_GUC);
131 	spin_unlock_irq(&gt->irq_lock);
132 }
133 
134 static void gen11_enable_guc_interrupts(struct intel_guc *guc)
135 {
136 	struct intel_gt *gt = guc_to_gt(guc);
137 
138 	spin_lock_irq(&gt->irq_lock);
139 	if (!guc->interrupts.enabled) {
140 		u32 events = REG_FIELD_PREP(ENGINE1_MASK, GUC_INTR_GUC2HOST);
141 
142 		WARN_ON_ONCE(gen11_gt_reset_one_iir(gt, 0, GEN11_GUC));
143 		intel_uncore_write(gt->uncore,
144 				   GEN11_GUC_SG_INTR_ENABLE, events);
145 		intel_uncore_write(gt->uncore,
146 				   GEN11_GUC_SG_INTR_MASK, ~events);
147 		guc->interrupts.enabled = true;
148 	}
149 	spin_unlock_irq(&gt->irq_lock);
150 }
151 
152 static void gen11_disable_guc_interrupts(struct intel_guc *guc)
153 {
154 	struct intel_gt *gt = guc_to_gt(guc);
155 
156 	spin_lock_irq(&gt->irq_lock);
157 	guc->interrupts.enabled = false;
158 
159 	intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_MASK, ~0);
160 	intel_uncore_write(gt->uncore, GEN11_GUC_SG_INTR_ENABLE, 0);
161 
162 	spin_unlock_irq(&gt->irq_lock);
163 	intel_synchronize_irq(gt->i915);
164 
165 	gen11_reset_guc_interrupts(guc);
166 }
167 
168 void intel_guc_init_early(struct intel_guc *guc)
169 {
170 	struct drm_i915_private *i915 = guc_to_gt(guc)->i915;
171 
172 	intel_guc_fw_init_early(guc);
173 	intel_guc_ct_init_early(&guc->ct);
174 	intel_guc_log_init_early(&guc->log);
175 	intel_guc_submission_init_early(guc);
176 
177 	mutex_init(&guc->send_mutex);
178 	spin_lock_init(&guc->irq_lock);
179 	if (INTEL_GEN(i915) >= 11) {
180 		guc->notify_reg = GEN11_GUC_HOST_INTERRUPT;
181 		guc->interrupts.reset = gen11_reset_guc_interrupts;
182 		guc->interrupts.enable = gen11_enable_guc_interrupts;
183 		guc->interrupts.disable = gen11_disable_guc_interrupts;
184 	} else {
185 		guc->notify_reg = GUC_SEND_INTERRUPT;
186 		guc->interrupts.reset = gen9_reset_guc_interrupts;
187 		guc->interrupts.enable = gen9_enable_guc_interrupts;
188 		guc->interrupts.disable = gen9_disable_guc_interrupts;
189 	}
190 }
191 
192 static u32 guc_ctl_debug_flags(struct intel_guc *guc)
193 {
194 	u32 level = intel_guc_log_get_level(&guc->log);
195 	u32 flags = 0;
196 
197 	if (!GUC_LOG_LEVEL_IS_VERBOSE(level))
198 		flags |= GUC_LOG_DISABLED;
199 	else
200 		flags |= GUC_LOG_LEVEL_TO_VERBOSITY(level) <<
201 			 GUC_LOG_VERBOSITY_SHIFT;
202 
203 	return flags;
204 }
205 
206 static u32 guc_ctl_feature_flags(struct intel_guc *guc)
207 {
208 	u32 flags = 0;
209 
210 	if (!intel_guc_is_submission_supported(guc))
211 		flags |= GUC_CTL_DISABLE_SCHEDULER;
212 
213 	return flags;
214 }
215 
216 static u32 guc_ctl_ctxinfo_flags(struct intel_guc *guc)
217 {
218 	u32 flags = 0;
219 
220 	if (intel_guc_is_submission_supported(guc)) {
221 		u32 ctxnum, base;
222 
223 		base = intel_guc_ggtt_offset(guc, guc->stage_desc_pool);
224 		ctxnum = GUC_MAX_STAGE_DESCRIPTORS / 16;
225 
226 		base >>= PAGE_SHIFT;
227 		flags |= (base << GUC_CTL_BASE_ADDR_SHIFT) |
228 			(ctxnum << GUC_CTL_CTXNUM_IN16_SHIFT);
229 	}
230 	return flags;
231 }
232 
233 static u32 guc_ctl_log_params_flags(struct intel_guc *guc)
234 {
235 	u32 offset = intel_guc_ggtt_offset(guc, guc->log.vma) >> PAGE_SHIFT;
236 	u32 flags;
237 
238 	#if (((CRASH_BUFFER_SIZE) % SZ_1M) == 0)
239 	#define UNIT SZ_1M
240 	#define FLAG GUC_LOG_ALLOC_IN_MEGABYTE
241 	#else
242 	#define UNIT SZ_4K
243 	#define FLAG 0
244 	#endif
245 
246 	BUILD_BUG_ON(!CRASH_BUFFER_SIZE);
247 	BUILD_BUG_ON(!IS_ALIGNED(CRASH_BUFFER_SIZE, UNIT));
248 	BUILD_BUG_ON(!DPC_BUFFER_SIZE);
249 	BUILD_BUG_ON(!IS_ALIGNED(DPC_BUFFER_SIZE, UNIT));
250 	BUILD_BUG_ON(!ISR_BUFFER_SIZE);
251 	BUILD_BUG_ON(!IS_ALIGNED(ISR_BUFFER_SIZE, UNIT));
252 
253 	BUILD_BUG_ON((CRASH_BUFFER_SIZE / UNIT - 1) >
254 			(GUC_LOG_CRASH_MASK >> GUC_LOG_CRASH_SHIFT));
255 	BUILD_BUG_ON((DPC_BUFFER_SIZE / UNIT - 1) >
256 			(GUC_LOG_DPC_MASK >> GUC_LOG_DPC_SHIFT));
257 	BUILD_BUG_ON((ISR_BUFFER_SIZE / UNIT - 1) >
258 			(GUC_LOG_ISR_MASK >> GUC_LOG_ISR_SHIFT));
259 
260 	flags = GUC_LOG_VALID |
261 		GUC_LOG_NOTIFY_ON_HALF_FULL |
262 		FLAG |
263 		((CRASH_BUFFER_SIZE / UNIT - 1) << GUC_LOG_CRASH_SHIFT) |
264 		((DPC_BUFFER_SIZE / UNIT - 1) << GUC_LOG_DPC_SHIFT) |
265 		((ISR_BUFFER_SIZE / UNIT - 1) << GUC_LOG_ISR_SHIFT) |
266 		(offset << GUC_LOG_BUF_ADDR_SHIFT);
267 
268 	#undef UNIT
269 	#undef FLAG
270 
271 	return flags;
272 }
273 
274 static u32 guc_ctl_ads_flags(struct intel_guc *guc)
275 {
276 	u32 ads = intel_guc_ggtt_offset(guc, guc->ads_vma) >> PAGE_SHIFT;
277 	u32 flags = ads << GUC_ADS_ADDR_SHIFT;
278 
279 	return flags;
280 }
281 
282 /*
283  * Initialise the GuC parameter block before starting the firmware
284  * transfer. These parameters are read by the firmware on startup
285  * and cannot be changed thereafter.
286  */
287 static void guc_init_params(struct intel_guc *guc)
288 {
289 	u32 *params = guc->params;
290 	int i;
291 
292 	BUILD_BUG_ON(sizeof(guc->params) != GUC_CTL_MAX_DWORDS * sizeof(u32));
293 
294 	params[GUC_CTL_CTXINFO] = guc_ctl_ctxinfo_flags(guc);
295 	params[GUC_CTL_LOG_PARAMS] = guc_ctl_log_params_flags(guc);
296 	params[GUC_CTL_FEATURE] = guc_ctl_feature_flags(guc);
297 	params[GUC_CTL_DEBUG] = guc_ctl_debug_flags(guc);
298 	params[GUC_CTL_ADS] = guc_ctl_ads_flags(guc);
299 
300 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
301 		DRM_DEBUG_DRIVER("param[%2d] = %#x\n", i, params[i]);
302 }
303 
304 /*
305  * Initialise the GuC parameter block before starting the firmware
306  * transfer. These parameters are read by the firmware on startup
307  * and cannot be changed thereafter.
308  */
309 void intel_guc_write_params(struct intel_guc *guc)
310 {
311 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
312 	int i;
313 
314 	/*
315 	 * All SOFT_SCRATCH registers are in FORCEWAKE_BLITTER domain and
316 	 * they are power context saved so it's ok to release forcewake
317 	 * when we are done here and take it again at xfer time.
318 	 */
319 	intel_uncore_forcewake_get(uncore, FORCEWAKE_BLITTER);
320 
321 	intel_uncore_write(uncore, SOFT_SCRATCH(0), 0);
322 
323 	for (i = 0; i < GUC_CTL_MAX_DWORDS; i++)
324 		intel_uncore_write(uncore, SOFT_SCRATCH(1 + i), guc->params[i]);
325 
326 	intel_uncore_forcewake_put(uncore, FORCEWAKE_BLITTER);
327 }
328 
329 int intel_guc_init(struct intel_guc *guc)
330 {
331 	struct intel_gt *gt = guc_to_gt(guc);
332 	int ret;
333 
334 	ret = intel_uc_fw_init(&guc->fw);
335 	if (ret)
336 		goto err_fetch;
337 
338 	ret = intel_guc_log_create(&guc->log);
339 	if (ret)
340 		goto err_fw;
341 
342 	ret = intel_guc_ads_create(guc);
343 	if (ret)
344 		goto err_log;
345 	GEM_BUG_ON(!guc->ads_vma);
346 
347 	ret = intel_guc_ct_init(&guc->ct);
348 	if (ret)
349 		goto err_ads;
350 
351 	if (intel_guc_is_submission_supported(guc)) {
352 		/*
353 		 * This is stuff we need to have available at fw load time
354 		 * if we are planning to enable submission later
355 		 */
356 		ret = intel_guc_submission_init(guc);
357 		if (ret)
358 			goto err_ct;
359 	}
360 
361 	/* now that everything is perma-pinned, initialize the parameters */
362 	guc_init_params(guc);
363 
364 	/* We need to notify the guc whenever we change the GGTT */
365 	i915_ggtt_enable_guc(gt->ggtt);
366 
367 	return 0;
368 
369 err_ct:
370 	intel_guc_ct_fini(&guc->ct);
371 err_ads:
372 	intel_guc_ads_destroy(guc);
373 err_log:
374 	intel_guc_log_destroy(&guc->log);
375 err_fw:
376 	intel_uc_fw_fini(&guc->fw);
377 err_fetch:
378 	intel_uc_fw_cleanup_fetch(&guc->fw);
379 	DRM_DEV_DEBUG_DRIVER(gt->i915->drm.dev, "failed with %d\n", ret);
380 	return ret;
381 }
382 
383 void intel_guc_fini(struct intel_guc *guc)
384 {
385 	struct intel_gt *gt = guc_to_gt(guc);
386 
387 	if (!intel_uc_fw_is_available(&guc->fw))
388 		return;
389 
390 	i915_ggtt_disable_guc(gt->ggtt);
391 
392 	if (intel_guc_is_submission_supported(guc))
393 		intel_guc_submission_fini(guc);
394 
395 	intel_guc_ct_fini(&guc->ct);
396 
397 	intel_guc_ads_destroy(guc);
398 	intel_guc_log_destroy(&guc->log);
399 	intel_uc_fw_fini(&guc->fw);
400 	intel_uc_fw_cleanup_fetch(&guc->fw);
401 
402 	intel_uc_fw_change_status(&guc->fw, INTEL_UC_FIRMWARE_DISABLED);
403 }
404 
405 /*
406  * This function implements the MMIO based host to GuC interface.
407  */
408 int intel_guc_send_mmio(struct intel_guc *guc, const u32 *action, u32 len,
409 			u32 *response_buf, u32 response_buf_size)
410 {
411 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
412 	u32 status;
413 	int i;
414 	int ret;
415 
416 	GEM_BUG_ON(!len);
417 	GEM_BUG_ON(len > guc->send_regs.count);
418 
419 	/* We expect only action code */
420 	GEM_BUG_ON(*action & ~INTEL_GUC_MSG_CODE_MASK);
421 
422 	/* If CT is available, we expect to use MMIO only during init/fini */
423 	GEM_BUG_ON(*action != INTEL_GUC_ACTION_REGISTER_COMMAND_TRANSPORT_BUFFER &&
424 		   *action != INTEL_GUC_ACTION_DEREGISTER_COMMAND_TRANSPORT_BUFFER);
425 
426 	mutex_lock(&guc->send_mutex);
427 	intel_uncore_forcewake_get(uncore, guc->send_regs.fw_domains);
428 
429 	for (i = 0; i < len; i++)
430 		intel_uncore_write(uncore, guc_send_reg(guc, i), action[i]);
431 
432 	intel_uncore_posting_read(uncore, guc_send_reg(guc, i - 1));
433 
434 	intel_guc_notify(guc);
435 
436 	/*
437 	 * No GuC command should ever take longer than 10ms.
438 	 * Fast commands should still complete in 10us.
439 	 */
440 	ret = __intel_wait_for_register_fw(uncore,
441 					   guc_send_reg(guc, 0),
442 					   INTEL_GUC_MSG_TYPE_MASK,
443 					   INTEL_GUC_MSG_TYPE_RESPONSE <<
444 					   INTEL_GUC_MSG_TYPE_SHIFT,
445 					   10, 10, &status);
446 	/* If GuC explicitly returned an error, convert it to -EIO */
447 	if (!ret && !INTEL_GUC_MSG_IS_RESPONSE_SUCCESS(status))
448 		ret = -EIO;
449 
450 	if (ret) {
451 		DRM_ERROR("MMIO: GuC action %#x failed with error %d %#x\n",
452 			  action[0], ret, status);
453 		goto out;
454 	}
455 
456 	if (response_buf) {
457 		int count = min(response_buf_size, guc->send_regs.count - 1);
458 
459 		for (i = 0; i < count; i++)
460 			response_buf[i] = intel_uncore_read(uncore,
461 							    guc_send_reg(guc, i + 1));
462 	}
463 
464 	/* Use data from the GuC response as our return value */
465 	ret = INTEL_GUC_MSG_TO_DATA(status);
466 
467 out:
468 	intel_uncore_forcewake_put(uncore, guc->send_regs.fw_domains);
469 	mutex_unlock(&guc->send_mutex);
470 
471 	return ret;
472 }
473 
474 int intel_guc_to_host_process_recv_msg(struct intel_guc *guc,
475 				       const u32 *payload, u32 len)
476 {
477 	u32 msg;
478 
479 	if (unlikely(!len))
480 		return -EPROTO;
481 
482 	/* Make sure to handle only enabled messages */
483 	msg = payload[0] & guc->msg_enabled_mask;
484 
485 	if (msg & (INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER |
486 		   INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED))
487 		intel_guc_log_handle_flush_event(&guc->log);
488 
489 	return 0;
490 }
491 
492 int intel_guc_sample_forcewake(struct intel_guc *guc)
493 {
494 	struct drm_i915_private *dev_priv = guc_to_gt(guc)->i915;
495 	u32 action[2];
496 
497 	action[0] = INTEL_GUC_ACTION_SAMPLE_FORCEWAKE;
498 	/* WaRsDisableCoarsePowerGating:skl,cnl */
499 	if (!HAS_RC6(dev_priv) || NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
500 		action[1] = 0;
501 	else
502 		/* bit 0 and 1 are for Render and Media domain separately */
503 		action[1] = GUC_FORCEWAKE_RENDER | GUC_FORCEWAKE_MEDIA;
504 
505 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
506 }
507 
508 /**
509  * intel_guc_auth_huc() - Send action to GuC to authenticate HuC ucode
510  * @guc: intel_guc structure
511  * @rsa_offset: rsa offset w.r.t ggtt base of huc vma
512  *
513  * Triggers a HuC firmware authentication request to the GuC via intel_guc_send
514  * INTEL_GUC_ACTION_AUTHENTICATE_HUC interface. This function is invoked by
515  * intel_huc_auth().
516  *
517  * Return:	non-zero code on error
518  */
519 int intel_guc_auth_huc(struct intel_guc *guc, u32 rsa_offset)
520 {
521 	u32 action[] = {
522 		INTEL_GUC_ACTION_AUTHENTICATE_HUC,
523 		rsa_offset
524 	};
525 
526 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
527 }
528 
529 /**
530  * intel_guc_suspend() - notify GuC entering suspend state
531  * @guc:	the guc
532  */
533 int intel_guc_suspend(struct intel_guc *guc)
534 {
535 	struct intel_uncore *uncore = guc_to_gt(guc)->uncore;
536 	int ret;
537 	u32 status;
538 	u32 action[] = {
539 		INTEL_GUC_ACTION_ENTER_S_STATE,
540 		GUC_POWER_D1, /* any value greater than GUC_POWER_D0 */
541 	};
542 
543 	/*
544 	 * If GuC communication is enabled but submission is not supported,
545 	 * we do not need to suspend the GuC.
546 	 */
547 	if (!intel_guc_submission_is_enabled(guc))
548 		return 0;
549 
550 	/*
551 	 * The ENTER_S_STATE action queues the save/restore operation in GuC FW
552 	 * and then returns, so waiting on the H2G is not enough to guarantee
553 	 * GuC is done. When all the processing is done, GuC writes
554 	 * INTEL_GUC_SLEEP_STATE_SUCCESS to scratch register 14, so we can poll
555 	 * on that. Note that GuC does not ensure that the value in the register
556 	 * is different from INTEL_GUC_SLEEP_STATE_SUCCESS while the action is
557 	 * in progress so we need to take care of that ourselves as well.
558 	 */
559 
560 	intel_uncore_write(uncore, SOFT_SCRATCH(14),
561 			   INTEL_GUC_SLEEP_STATE_INVALID_MASK);
562 
563 	ret = intel_guc_send(guc, action, ARRAY_SIZE(action));
564 	if (ret)
565 		return ret;
566 
567 	ret = __intel_wait_for_register(uncore, SOFT_SCRATCH(14),
568 					INTEL_GUC_SLEEP_STATE_INVALID_MASK,
569 					0, 0, 10, &status);
570 	if (ret)
571 		return ret;
572 
573 	if (status != INTEL_GUC_SLEEP_STATE_SUCCESS) {
574 		DRM_ERROR("GuC failed to change sleep state. "
575 			  "action=0x%x, err=%u\n",
576 			  action[0], status);
577 		return -EIO;
578 	}
579 
580 	return 0;
581 }
582 
583 /**
584  * intel_guc_reset_engine() - ask GuC to reset an engine
585  * @guc:	intel_guc structure
586  * @engine:	engine to be reset
587  */
588 int intel_guc_reset_engine(struct intel_guc *guc,
589 			   struct intel_engine_cs *engine)
590 {
591 	/* XXX: to be implemented with submission interface rework */
592 
593 	return -ENODEV;
594 }
595 
596 /**
597  * intel_guc_resume() - notify GuC resuming from suspend state
598  * @guc:	the guc
599  */
600 int intel_guc_resume(struct intel_guc *guc)
601 {
602 	u32 action[] = {
603 		INTEL_GUC_ACTION_EXIT_S_STATE,
604 		GUC_POWER_D0,
605 	};
606 
607 	/*
608 	 * If GuC communication is enabled but submission is not supported,
609 	 * we do not need to resume the GuC but we do need to enable the
610 	 * GuC communication on resume (above).
611 	 */
612 	if (!intel_guc_submission_is_enabled(guc))
613 		return 0;
614 
615 	return intel_guc_send(guc, action, ARRAY_SIZE(action));
616 }
617 
618 /**
619  * DOC: GuC Memory Management
620  *
621  * GuC can't allocate any memory for its own usage, so all the allocations must
622  * be handled by the host driver. GuC accesses the memory via the GGTT, with the
623  * exception of the top and bottom parts of the 4GB address space, which are
624  * instead re-mapped by the GuC HW to memory location of the FW itself (WOPCM)
625  * or other parts of the HW. The driver must take care not to place objects that
626  * the GuC is going to access in these reserved ranges. The layout of the GuC
627  * address space is shown below:
628  *
629  * ::
630  *
631  *     +===========> +====================+ <== FFFF_FFFF
632  *     ^             |      Reserved      |
633  *     |             +====================+ <== GUC_GGTT_TOP
634  *     |             |                    |
635  *     |             |        DRAM        |
636  *    GuC            |                    |
637  *  Address    +===> +====================+ <== GuC ggtt_pin_bias
638  *   Space     ^     |                    |
639  *     |       |     |                    |
640  *     |      GuC    |        GuC         |
641  *     |     WOPCM   |       WOPCM        |
642  *     |      Size   |                    |
643  *     |       |     |                    |
644  *     v       v     |                    |
645  *     +=======+===> +====================+ <== 0000_0000
646  *
647  * The lower part of GuC Address Space [0, ggtt_pin_bias) is mapped to GuC WOPCM
648  * while upper part of GuC Address Space [ggtt_pin_bias, GUC_GGTT_TOP) is mapped
649  * to DRAM. The value of the GuC ggtt_pin_bias is the GuC WOPCM size.
650  */
651 
652 /**
653  * intel_guc_allocate_vma() - Allocate a GGTT VMA for GuC usage
654  * @guc:	the guc
655  * @size:	size of area to allocate (both virtual space and memory)
656  *
657  * This is a wrapper to create an object for use with the GuC. In order to
658  * use it inside the GuC, an object needs to be pinned lifetime, so we allocate
659  * both some backing storage and a range inside the Global GTT. We must pin
660  * it in the GGTT somewhere other than than [0, GUC ggtt_pin_bias) because that
661  * range is reserved inside GuC.
662  *
663  * Return:	A i915_vma if successful, otherwise an ERR_PTR.
664  */
665 struct i915_vma *intel_guc_allocate_vma(struct intel_guc *guc, u32 size)
666 {
667 	struct intel_gt *gt = guc_to_gt(guc);
668 	struct drm_i915_gem_object *obj;
669 	struct i915_vma *vma;
670 	u64 flags;
671 	int ret;
672 
673 	obj = i915_gem_object_create_shmem(gt->i915, size);
674 	if (IS_ERR(obj))
675 		return ERR_CAST(obj);
676 
677 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
678 	if (IS_ERR(vma))
679 		goto err;
680 
681 	flags = PIN_GLOBAL | PIN_OFFSET_BIAS | i915_ggtt_pin_bias(vma);
682 	ret = i915_vma_pin(vma, 0, 0, flags);
683 	if (ret) {
684 		vma = ERR_PTR(ret);
685 		goto err;
686 	}
687 
688 	return i915_vma_make_unshrinkable(vma);
689 
690 err:
691 	i915_gem_object_put(obj);
692 	return vma;
693 }
694 
695 /**
696  * intel_guc_allocate_and_map_vma() - Allocate and map VMA for GuC usage
697  * @guc:	the guc
698  * @size:	size of area to allocate (both virtual space and memory)
699  * @out_vma:	return variable for the allocated vma pointer
700  * @out_vaddr:	return variable for the obj mapping
701  *
702  * This wrapper calls intel_guc_allocate_vma() and then maps the allocated
703  * object with I915_MAP_WB.
704  *
705  * Return:	0 if successful, a negative errno code otherwise.
706  */
707 int intel_guc_allocate_and_map_vma(struct intel_guc *guc, u32 size,
708 				   struct i915_vma **out_vma, void **out_vaddr)
709 {
710 	struct i915_vma *vma;
711 	void *vaddr;
712 
713 	vma = intel_guc_allocate_vma(guc, size);
714 	if (IS_ERR(vma))
715 		return PTR_ERR(vma);
716 
717 	vaddr = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
718 	if (IS_ERR(vaddr)) {
719 		i915_vma_unpin_and_release(&vma, 0);
720 		return PTR_ERR(vaddr);
721 	}
722 
723 	*out_vma = vma;
724 	*out_vaddr = vaddr;
725 
726 	return 0;
727 }
728