1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2017-2018 Intel Corporation 4 */ 5 6 #include <linux/prime_numbers.h> 7 #include <linux/string_helpers.h> 8 9 #include "intel_context.h" 10 #include "intel_engine_heartbeat.h" 11 #include "intel_engine_pm.h" 12 #include "intel_engine_regs.h" 13 #include "intel_gpu_commands.h" 14 #include "intel_gt.h" 15 #include "intel_gt_requests.h" 16 #include "intel_ring.h" 17 #include "selftest_engine_heartbeat.h" 18 19 #include "../selftests/i915_random.h" 20 #include "../i915_selftest.h" 21 22 #include "selftests/igt_flush_test.h" 23 #include "selftests/lib_sw_fence.h" 24 #include "selftests/mock_gem_device.h" 25 #include "selftests/mock_timeline.h" 26 27 static struct page *hwsp_page(struct intel_timeline *tl) 28 { 29 struct drm_i915_gem_object *obj = tl->hwsp_ggtt->obj; 30 31 GEM_BUG_ON(!i915_gem_object_has_pinned_pages(obj)); 32 return sg_page(obj->mm.pages->sgl); 33 } 34 35 static unsigned long hwsp_cacheline(struct intel_timeline *tl) 36 { 37 unsigned long address = (unsigned long)page_address(hwsp_page(tl)); 38 39 return (address + offset_in_page(tl->hwsp_offset)) / TIMELINE_SEQNO_BYTES; 40 } 41 42 static int selftest_tl_pin(struct intel_timeline *tl) 43 { 44 struct i915_gem_ww_ctx ww; 45 int err; 46 47 i915_gem_ww_ctx_init(&ww, false); 48 retry: 49 err = i915_gem_object_lock(tl->hwsp_ggtt->obj, &ww); 50 if (!err) 51 err = intel_timeline_pin(tl, &ww); 52 53 if (err == -EDEADLK) { 54 err = i915_gem_ww_ctx_backoff(&ww); 55 if (!err) 56 goto retry; 57 } 58 i915_gem_ww_ctx_fini(&ww); 59 return err; 60 } 61 62 /* Only half of seqno's are usable, see __intel_timeline_get_seqno() */ 63 #define CACHELINES_PER_PAGE (PAGE_SIZE / TIMELINE_SEQNO_BYTES / 2) 64 65 struct mock_hwsp_freelist { 66 struct intel_gt *gt; 67 struct radix_tree_root cachelines; 68 struct intel_timeline **history; 69 unsigned long count, max; 70 struct rnd_state prng; 71 }; 72 73 enum { 74 SHUFFLE = BIT(0), 75 }; 76 77 static void __mock_hwsp_record(struct mock_hwsp_freelist *state, 78 unsigned int idx, 79 struct intel_timeline *tl) 80 { 81 tl = xchg(&state->history[idx], tl); 82 if (tl) { 83 radix_tree_delete(&state->cachelines, hwsp_cacheline(tl)); 84 intel_timeline_unpin(tl); 85 intel_timeline_put(tl); 86 } 87 } 88 89 static int __mock_hwsp_timeline(struct mock_hwsp_freelist *state, 90 unsigned int count, 91 unsigned int flags) 92 { 93 struct intel_timeline *tl; 94 unsigned int idx; 95 96 while (count--) { 97 unsigned long cacheline; 98 int err; 99 100 tl = intel_timeline_create(state->gt); 101 if (IS_ERR(tl)) 102 return PTR_ERR(tl); 103 104 err = selftest_tl_pin(tl); 105 if (err) { 106 intel_timeline_put(tl); 107 return err; 108 } 109 110 cacheline = hwsp_cacheline(tl); 111 err = radix_tree_insert(&state->cachelines, cacheline, tl); 112 if (err) { 113 if (err == -EEXIST) { 114 pr_err("HWSP cacheline %lu already used; duplicate allocation!\n", 115 cacheline); 116 } 117 intel_timeline_unpin(tl); 118 intel_timeline_put(tl); 119 return err; 120 } 121 122 idx = state->count++ % state->max; 123 __mock_hwsp_record(state, idx, tl); 124 } 125 126 if (flags & SHUFFLE) 127 i915_prandom_shuffle(state->history, 128 sizeof(*state->history), 129 min(state->count, state->max), 130 &state->prng); 131 132 count = i915_prandom_u32_max_state(min(state->count, state->max), 133 &state->prng); 134 while (count--) { 135 idx = --state->count % state->max; 136 __mock_hwsp_record(state, idx, NULL); 137 } 138 139 return 0; 140 } 141 142 static int mock_hwsp_freelist(void *arg) 143 { 144 struct mock_hwsp_freelist state; 145 struct drm_i915_private *i915; 146 const struct { 147 const char *name; 148 unsigned int flags; 149 } phases[] = { 150 { "linear", 0 }, 151 { "shuffled", SHUFFLE }, 152 { }, 153 }, *p; 154 unsigned int na; 155 int err = 0; 156 157 i915 = mock_gem_device(); 158 if (!i915) 159 return -ENOMEM; 160 161 INIT_RADIX_TREE(&state.cachelines, GFP_KERNEL); 162 state.prng = I915_RND_STATE_INITIALIZER(i915_selftest.random_seed); 163 164 state.gt = to_gt(i915); 165 166 /* 167 * Create a bunch of timelines and check that their HWSP do not overlap. 168 * Free some, and try again. 169 */ 170 171 state.max = PAGE_SIZE / sizeof(*state.history); 172 state.count = 0; 173 state.history = kcalloc(state.max, sizeof(*state.history), GFP_KERNEL); 174 if (!state.history) { 175 err = -ENOMEM; 176 goto err_put; 177 } 178 179 for (p = phases; p->name; p++) { 180 pr_debug("%s(%s)\n", __func__, p->name); 181 for_each_prime_number_from(na, 1, 2 * CACHELINES_PER_PAGE) { 182 err = __mock_hwsp_timeline(&state, na, p->flags); 183 if (err) 184 goto out; 185 } 186 } 187 188 out: 189 for (na = 0; na < state.max; na++) 190 __mock_hwsp_record(&state, na, NULL); 191 kfree(state.history); 192 err_put: 193 mock_destroy_device(i915); 194 return err; 195 } 196 197 struct __igt_sync { 198 const char *name; 199 u32 seqno; 200 bool expected; 201 bool set; 202 }; 203 204 static int __igt_sync(struct intel_timeline *tl, 205 u64 ctx, 206 const struct __igt_sync *p, 207 const char *name) 208 { 209 int ret; 210 211 if (__intel_timeline_sync_is_later(tl, ctx, p->seqno) != p->expected) { 212 pr_err("%s: %s(ctx=%llu, seqno=%u) expected passed %s but failed\n", 213 name, p->name, ctx, p->seqno, str_yes_no(p->expected)); 214 return -EINVAL; 215 } 216 217 if (p->set) { 218 ret = __intel_timeline_sync_set(tl, ctx, p->seqno); 219 if (ret) 220 return ret; 221 } 222 223 return 0; 224 } 225 226 static int igt_sync(void *arg) 227 { 228 const struct __igt_sync pass[] = { 229 { "unset", 0, false, false }, 230 { "new", 0, false, true }, 231 { "0a", 0, true, true }, 232 { "1a", 1, false, true }, 233 { "1b", 1, true, true }, 234 { "0b", 0, true, false }, 235 { "2a", 2, false, true }, 236 { "4", 4, false, true }, 237 { "INT_MAX", INT_MAX, false, true }, 238 { "INT_MAX-1", INT_MAX-1, true, false }, 239 { "INT_MAX+1", (u32)INT_MAX+1, false, true }, 240 { "INT_MAX", INT_MAX, true, false }, 241 { "UINT_MAX", UINT_MAX, false, true }, 242 { "wrap", 0, false, true }, 243 { "unwrap", UINT_MAX, true, false }, 244 {}, 245 }, *p; 246 struct intel_timeline tl; 247 int order, offset; 248 int ret = -ENODEV; 249 250 mock_timeline_init(&tl, 0); 251 for (p = pass; p->name; p++) { 252 for (order = 1; order < 64; order++) { 253 for (offset = -1; offset <= (order > 1); offset++) { 254 u64 ctx = BIT_ULL(order) + offset; 255 256 ret = __igt_sync(&tl, ctx, p, "1"); 257 if (ret) 258 goto out; 259 } 260 } 261 } 262 mock_timeline_fini(&tl); 263 264 mock_timeline_init(&tl, 0); 265 for (order = 1; order < 64; order++) { 266 for (offset = -1; offset <= (order > 1); offset++) { 267 u64 ctx = BIT_ULL(order) + offset; 268 269 for (p = pass; p->name; p++) { 270 ret = __igt_sync(&tl, ctx, p, "2"); 271 if (ret) 272 goto out; 273 } 274 } 275 } 276 277 out: 278 mock_timeline_fini(&tl); 279 return ret; 280 } 281 282 static unsigned int random_engine(struct rnd_state *rnd) 283 { 284 return i915_prandom_u32_max_state(I915_NUM_ENGINES, rnd); 285 } 286 287 static int bench_sync(void *arg) 288 { 289 struct rnd_state prng; 290 struct intel_timeline tl; 291 unsigned long end_time, count; 292 u64 prng32_1M; 293 ktime_t kt; 294 int order, last_order; 295 296 mock_timeline_init(&tl, 0); 297 298 /* Lookups from cache are very fast and so the random number generation 299 * and the loop itself becomes a significant factor in the per-iteration 300 * timings. We try to compensate the results by measuring the overhead 301 * of the prng and subtract it from the reported results. 302 */ 303 prandom_seed_state(&prng, i915_selftest.random_seed); 304 count = 0; 305 kt = ktime_get(); 306 end_time = jiffies + HZ/10; 307 do { 308 u32 x; 309 310 /* Make sure the compiler doesn't optimise away the prng call */ 311 WRITE_ONCE(x, prandom_u32_state(&prng)); 312 313 count++; 314 } while (!time_after(jiffies, end_time)); 315 kt = ktime_sub(ktime_get(), kt); 316 pr_debug("%s: %lu random evaluations, %lluns/prng\n", 317 __func__, count, (long long)div64_ul(ktime_to_ns(kt), count)); 318 prng32_1M = div64_ul(ktime_to_ns(kt) << 20, count); 319 320 /* Benchmark (only) setting random context ids */ 321 prandom_seed_state(&prng, i915_selftest.random_seed); 322 count = 0; 323 kt = ktime_get(); 324 end_time = jiffies + HZ/10; 325 do { 326 u64 id = i915_prandom_u64_state(&prng); 327 328 __intel_timeline_sync_set(&tl, id, 0); 329 count++; 330 } while (!time_after(jiffies, end_time)); 331 kt = ktime_sub(ktime_get(), kt); 332 kt = ktime_sub_ns(kt, (count * prng32_1M * 2) >> 20); 333 pr_info("%s: %lu random insertions, %lluns/insert\n", 334 __func__, count, (long long)div64_ul(ktime_to_ns(kt), count)); 335 336 /* Benchmark looking up the exact same context ids as we just set */ 337 prandom_seed_state(&prng, i915_selftest.random_seed); 338 end_time = count; 339 kt = ktime_get(); 340 while (end_time--) { 341 u64 id = i915_prandom_u64_state(&prng); 342 343 if (!__intel_timeline_sync_is_later(&tl, id, 0)) { 344 mock_timeline_fini(&tl); 345 pr_err("Lookup of %llu failed\n", id); 346 return -EINVAL; 347 } 348 } 349 kt = ktime_sub(ktime_get(), kt); 350 kt = ktime_sub_ns(kt, (count * prng32_1M * 2) >> 20); 351 pr_info("%s: %lu random lookups, %lluns/lookup\n", 352 __func__, count, (long long)div64_ul(ktime_to_ns(kt), count)); 353 354 mock_timeline_fini(&tl); 355 cond_resched(); 356 357 mock_timeline_init(&tl, 0); 358 359 /* Benchmark setting the first N (in order) contexts */ 360 count = 0; 361 kt = ktime_get(); 362 end_time = jiffies + HZ/10; 363 do { 364 __intel_timeline_sync_set(&tl, count++, 0); 365 } while (!time_after(jiffies, end_time)); 366 kt = ktime_sub(ktime_get(), kt); 367 pr_info("%s: %lu in-order insertions, %lluns/insert\n", 368 __func__, count, (long long)div64_ul(ktime_to_ns(kt), count)); 369 370 /* Benchmark looking up the exact same context ids as we just set */ 371 end_time = count; 372 kt = ktime_get(); 373 while (end_time--) { 374 if (!__intel_timeline_sync_is_later(&tl, end_time, 0)) { 375 pr_err("Lookup of %lu failed\n", end_time); 376 mock_timeline_fini(&tl); 377 return -EINVAL; 378 } 379 } 380 kt = ktime_sub(ktime_get(), kt); 381 pr_info("%s: %lu in-order lookups, %lluns/lookup\n", 382 __func__, count, (long long)div64_ul(ktime_to_ns(kt), count)); 383 384 mock_timeline_fini(&tl); 385 cond_resched(); 386 387 mock_timeline_init(&tl, 0); 388 389 /* Benchmark searching for a random context id and maybe changing it */ 390 prandom_seed_state(&prng, i915_selftest.random_seed); 391 count = 0; 392 kt = ktime_get(); 393 end_time = jiffies + HZ/10; 394 do { 395 u32 id = random_engine(&prng); 396 u32 seqno = prandom_u32_state(&prng); 397 398 if (!__intel_timeline_sync_is_later(&tl, id, seqno)) 399 __intel_timeline_sync_set(&tl, id, seqno); 400 401 count++; 402 } while (!time_after(jiffies, end_time)); 403 kt = ktime_sub(ktime_get(), kt); 404 kt = ktime_sub_ns(kt, (count * prng32_1M * 2) >> 20); 405 pr_info("%s: %lu repeated insert/lookups, %lluns/op\n", 406 __func__, count, (long long)div64_ul(ktime_to_ns(kt), count)); 407 mock_timeline_fini(&tl); 408 cond_resched(); 409 410 /* Benchmark searching for a known context id and changing the seqno */ 411 for (last_order = 1, order = 1; order < 32; 412 ({ int tmp = last_order; last_order = order; order += tmp; })) { 413 unsigned int mask = BIT(order) - 1; 414 415 mock_timeline_init(&tl, 0); 416 417 count = 0; 418 kt = ktime_get(); 419 end_time = jiffies + HZ/10; 420 do { 421 /* Without assuming too many details of the underlying 422 * implementation, try to identify its phase-changes 423 * (if any)! 424 */ 425 u64 id = (u64)(count & mask) << order; 426 427 __intel_timeline_sync_is_later(&tl, id, 0); 428 __intel_timeline_sync_set(&tl, id, 0); 429 430 count++; 431 } while (!time_after(jiffies, end_time)); 432 kt = ktime_sub(ktime_get(), kt); 433 pr_info("%s: %lu cyclic/%d insert/lookups, %lluns/op\n", 434 __func__, count, order, 435 (long long)div64_ul(ktime_to_ns(kt), count)); 436 mock_timeline_fini(&tl); 437 cond_resched(); 438 } 439 440 return 0; 441 } 442 443 int intel_timeline_mock_selftests(void) 444 { 445 static const struct i915_subtest tests[] = { 446 SUBTEST(mock_hwsp_freelist), 447 SUBTEST(igt_sync), 448 SUBTEST(bench_sync), 449 }; 450 451 return i915_subtests(tests, NULL); 452 } 453 454 static int emit_ggtt_store_dw(struct i915_request *rq, u32 addr, u32 value) 455 { 456 u32 *cs; 457 458 cs = intel_ring_begin(rq, 4); 459 if (IS_ERR(cs)) 460 return PTR_ERR(cs); 461 462 if (GRAPHICS_VER(rq->i915) >= 8) { 463 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 464 *cs++ = addr; 465 *cs++ = 0; 466 *cs++ = value; 467 } else if (GRAPHICS_VER(rq->i915) >= 4) { 468 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 469 *cs++ = 0; 470 *cs++ = addr; 471 *cs++ = value; 472 } else { 473 *cs++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL; 474 *cs++ = addr; 475 *cs++ = value; 476 *cs++ = MI_NOOP; 477 } 478 479 intel_ring_advance(rq, cs); 480 481 return 0; 482 } 483 484 static struct i915_request * 485 checked_tl_write(struct intel_timeline *tl, struct intel_engine_cs *engine, u32 value) 486 { 487 struct i915_request *rq; 488 int err; 489 490 err = selftest_tl_pin(tl); 491 if (err) { 492 rq = ERR_PTR(err); 493 goto out; 494 } 495 496 if (READ_ONCE(*tl->hwsp_seqno) != tl->seqno) { 497 pr_err("Timeline created with incorrect breadcrumb, found %x, expected %x\n", 498 *tl->hwsp_seqno, tl->seqno); 499 intel_timeline_unpin(tl); 500 return ERR_PTR(-EINVAL); 501 } 502 503 rq = intel_engine_create_kernel_request(engine); 504 if (IS_ERR(rq)) 505 goto out_unpin; 506 507 i915_request_get(rq); 508 509 err = emit_ggtt_store_dw(rq, tl->hwsp_offset, value); 510 i915_request_add(rq); 511 if (err) { 512 i915_request_put(rq); 513 rq = ERR_PTR(err); 514 } 515 516 out_unpin: 517 intel_timeline_unpin(tl); 518 out: 519 if (IS_ERR(rq)) 520 pr_err("Failed to write to timeline!\n"); 521 return rq; 522 } 523 524 static int live_hwsp_engine(void *arg) 525 { 526 #define NUM_TIMELINES 4096 527 struct intel_gt *gt = arg; 528 struct intel_timeline **timelines; 529 struct intel_engine_cs *engine; 530 enum intel_engine_id id; 531 unsigned long count, n; 532 int err = 0; 533 534 /* 535 * Create a bunch of timelines and check we can write 536 * independently to each of their breadcrumb slots. 537 */ 538 539 timelines = kvmalloc_array(NUM_TIMELINES * I915_NUM_ENGINES, 540 sizeof(*timelines), 541 GFP_KERNEL); 542 if (!timelines) 543 return -ENOMEM; 544 545 count = 0; 546 for_each_engine(engine, gt, id) { 547 if (!intel_engine_can_store_dword(engine)) 548 continue; 549 550 intel_engine_pm_get(engine); 551 552 for (n = 0; n < NUM_TIMELINES; n++) { 553 struct intel_timeline *tl; 554 struct i915_request *rq; 555 556 tl = intel_timeline_create(gt); 557 if (IS_ERR(tl)) { 558 err = PTR_ERR(tl); 559 break; 560 } 561 562 rq = checked_tl_write(tl, engine, count); 563 if (IS_ERR(rq)) { 564 intel_timeline_put(tl); 565 err = PTR_ERR(rq); 566 break; 567 } 568 569 timelines[count++] = tl; 570 i915_request_put(rq); 571 } 572 573 intel_engine_pm_put(engine); 574 if (err) 575 break; 576 } 577 578 if (igt_flush_test(gt->i915)) 579 err = -EIO; 580 581 for (n = 0; n < count; n++) { 582 struct intel_timeline *tl = timelines[n]; 583 584 if (!err && READ_ONCE(*tl->hwsp_seqno) != n) { 585 GEM_TRACE_ERR("Invalid seqno:%lu stored in timeline %llu @ %x, found 0x%x\n", 586 n, tl->fence_context, tl->hwsp_offset, *tl->hwsp_seqno); 587 GEM_TRACE_DUMP(); 588 err = -EINVAL; 589 } 590 intel_timeline_put(tl); 591 } 592 593 kvfree(timelines); 594 return err; 595 #undef NUM_TIMELINES 596 } 597 598 static int live_hwsp_alternate(void *arg) 599 { 600 #define NUM_TIMELINES 4096 601 struct intel_gt *gt = arg; 602 struct intel_timeline **timelines; 603 struct intel_engine_cs *engine; 604 enum intel_engine_id id; 605 unsigned long count, n; 606 int err = 0; 607 608 /* 609 * Create a bunch of timelines and check we can write 610 * independently to each of their breadcrumb slots with adjacent 611 * engines. 612 */ 613 614 timelines = kvmalloc_array(NUM_TIMELINES * I915_NUM_ENGINES, 615 sizeof(*timelines), 616 GFP_KERNEL); 617 if (!timelines) 618 return -ENOMEM; 619 620 count = 0; 621 for (n = 0; n < NUM_TIMELINES; n++) { 622 for_each_engine(engine, gt, id) { 623 struct intel_timeline *tl; 624 struct i915_request *rq; 625 626 if (!intel_engine_can_store_dword(engine)) 627 continue; 628 629 tl = intel_timeline_create(gt); 630 if (IS_ERR(tl)) { 631 err = PTR_ERR(tl); 632 goto out; 633 } 634 635 intel_engine_pm_get(engine); 636 rq = checked_tl_write(tl, engine, count); 637 intel_engine_pm_put(engine); 638 if (IS_ERR(rq)) { 639 intel_timeline_put(tl); 640 err = PTR_ERR(rq); 641 goto out; 642 } 643 644 timelines[count++] = tl; 645 i915_request_put(rq); 646 } 647 } 648 649 out: 650 if (igt_flush_test(gt->i915)) 651 err = -EIO; 652 653 for (n = 0; n < count; n++) { 654 struct intel_timeline *tl = timelines[n]; 655 656 if (!err && READ_ONCE(*tl->hwsp_seqno) != n) { 657 GEM_TRACE_ERR("Invalid seqno:%lu stored in timeline %llu @ %x, found 0x%x\n", 658 n, tl->fence_context, tl->hwsp_offset, *tl->hwsp_seqno); 659 GEM_TRACE_DUMP(); 660 err = -EINVAL; 661 } 662 intel_timeline_put(tl); 663 } 664 665 kvfree(timelines); 666 return err; 667 #undef NUM_TIMELINES 668 } 669 670 static int live_hwsp_wrap(void *arg) 671 { 672 struct intel_gt *gt = arg; 673 struct intel_engine_cs *engine; 674 struct intel_timeline *tl; 675 enum intel_engine_id id; 676 int err = 0; 677 678 /* 679 * Across a seqno wrap, we need to keep the old cacheline alive for 680 * foreign GPU references. 681 */ 682 683 tl = intel_timeline_create(gt); 684 if (IS_ERR(tl)) 685 return PTR_ERR(tl); 686 687 if (!tl->has_initial_breadcrumb) 688 goto out_free; 689 690 err = selftest_tl_pin(tl); 691 if (err) 692 goto out_free; 693 694 for_each_engine(engine, gt, id) { 695 const u32 *hwsp_seqno[2]; 696 struct i915_request *rq; 697 u32 seqno[2]; 698 699 if (!intel_engine_can_store_dword(engine)) 700 continue; 701 702 rq = intel_engine_create_kernel_request(engine); 703 if (IS_ERR(rq)) { 704 err = PTR_ERR(rq); 705 goto out; 706 } 707 708 tl->seqno = -4u; 709 710 mutex_lock_nested(&tl->mutex, SINGLE_DEPTH_NESTING); 711 err = intel_timeline_get_seqno(tl, rq, &seqno[0]); 712 mutex_unlock(&tl->mutex); 713 if (err) { 714 i915_request_add(rq); 715 goto out; 716 } 717 pr_debug("seqno[0]:%08x, hwsp_offset:%08x\n", 718 seqno[0], tl->hwsp_offset); 719 720 err = emit_ggtt_store_dw(rq, tl->hwsp_offset, seqno[0]); 721 if (err) { 722 i915_request_add(rq); 723 goto out; 724 } 725 hwsp_seqno[0] = tl->hwsp_seqno; 726 727 mutex_lock_nested(&tl->mutex, SINGLE_DEPTH_NESTING); 728 err = intel_timeline_get_seqno(tl, rq, &seqno[1]); 729 mutex_unlock(&tl->mutex); 730 if (err) { 731 i915_request_add(rq); 732 goto out; 733 } 734 pr_debug("seqno[1]:%08x, hwsp_offset:%08x\n", 735 seqno[1], tl->hwsp_offset); 736 737 err = emit_ggtt_store_dw(rq, tl->hwsp_offset, seqno[1]); 738 if (err) { 739 i915_request_add(rq); 740 goto out; 741 } 742 hwsp_seqno[1] = tl->hwsp_seqno; 743 744 /* With wrap should come a new hwsp */ 745 GEM_BUG_ON(seqno[1] >= seqno[0]); 746 GEM_BUG_ON(hwsp_seqno[0] == hwsp_seqno[1]); 747 748 i915_request_add(rq); 749 750 if (i915_request_wait(rq, 0, HZ / 5) < 0) { 751 pr_err("Wait for timeline writes timed out!\n"); 752 err = -EIO; 753 goto out; 754 } 755 756 if (READ_ONCE(*hwsp_seqno[0]) != seqno[0] || 757 READ_ONCE(*hwsp_seqno[1]) != seqno[1]) { 758 pr_err("Bad timeline values: found (%x, %x), expected (%x, %x)\n", 759 *hwsp_seqno[0], *hwsp_seqno[1], 760 seqno[0], seqno[1]); 761 err = -EINVAL; 762 goto out; 763 } 764 765 intel_gt_retire_requests(gt); /* recycle HWSP */ 766 } 767 768 out: 769 if (igt_flush_test(gt->i915)) 770 err = -EIO; 771 772 intel_timeline_unpin(tl); 773 out_free: 774 intel_timeline_put(tl); 775 return err; 776 } 777 778 static int emit_read_hwsp(struct i915_request *rq, 779 u32 seqno, u32 hwsp, 780 u32 *addr) 781 { 782 const u32 gpr = i915_mmio_reg_offset(GEN8_RING_CS_GPR(rq->engine->mmio_base, 0)); 783 u32 *cs; 784 785 cs = intel_ring_begin(rq, 12); 786 if (IS_ERR(cs)) 787 return PTR_ERR(cs); 788 789 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 790 *cs++ = *addr; 791 *cs++ = 0; 792 *cs++ = seqno; 793 *addr += 4; 794 795 *cs++ = MI_LOAD_REGISTER_MEM_GEN8 | MI_USE_GGTT; 796 *cs++ = gpr; 797 *cs++ = hwsp; 798 *cs++ = 0; 799 800 *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT; 801 *cs++ = gpr; 802 *cs++ = *addr; 803 *cs++ = 0; 804 *addr += 4; 805 806 intel_ring_advance(rq, cs); 807 808 return 0; 809 } 810 811 struct hwsp_watcher { 812 struct i915_vma *vma; 813 struct i915_request *rq; 814 u32 addr; 815 u32 *map; 816 }; 817 818 static bool cmp_lt(u32 a, u32 b) 819 { 820 return a < b; 821 } 822 823 static bool cmp_gte(u32 a, u32 b) 824 { 825 return a >= b; 826 } 827 828 static int setup_watcher(struct hwsp_watcher *w, struct intel_gt *gt, 829 struct intel_timeline *tl) 830 { 831 struct drm_i915_gem_object *obj; 832 struct i915_vma *vma; 833 834 obj = i915_gem_object_create_internal(gt->i915, SZ_2M); 835 if (IS_ERR(obj)) 836 return PTR_ERR(obj); 837 838 /* keep the same cache settings as timeline */ 839 i915_gem_object_set_pat_index(obj, tl->hwsp_ggtt->obj->pat_index); 840 w->map = i915_gem_object_pin_map_unlocked(obj, 841 page_unmask_bits(tl->hwsp_ggtt->obj->mm.mapping)); 842 if (IS_ERR(w->map)) { 843 i915_gem_object_put(obj); 844 return PTR_ERR(w->map); 845 } 846 847 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0, 0); 848 if (IS_ERR(vma)) { 849 i915_gem_object_put(obj); 850 return PTR_ERR(vma); 851 } 852 853 w->vma = vma; 854 w->addr = i915_ggtt_offset(vma); 855 return 0; 856 } 857 858 static void switch_tl_lock(struct i915_request *from, struct i915_request *to) 859 { 860 /* some light mutex juggling required; think co-routines */ 861 862 if (from) { 863 lockdep_unpin_lock(&from->context->timeline->mutex, from->cookie); 864 mutex_unlock(&from->context->timeline->mutex); 865 } 866 867 if (to) { 868 mutex_lock(&to->context->timeline->mutex); 869 to->cookie = lockdep_pin_lock(&to->context->timeline->mutex); 870 } 871 } 872 873 static int create_watcher(struct hwsp_watcher *w, 874 struct intel_engine_cs *engine, 875 int ringsz) 876 { 877 struct intel_context *ce; 878 879 ce = intel_context_create(engine); 880 if (IS_ERR(ce)) 881 return PTR_ERR(ce); 882 883 ce->ring_size = ringsz; 884 w->rq = intel_context_create_request(ce); 885 intel_context_put(ce); 886 if (IS_ERR(w->rq)) 887 return PTR_ERR(w->rq); 888 889 w->addr = i915_ggtt_offset(w->vma); 890 891 switch_tl_lock(w->rq, NULL); 892 893 return 0; 894 } 895 896 static int check_watcher(struct hwsp_watcher *w, const char *name, 897 bool (*op)(u32 hwsp, u32 seqno)) 898 { 899 struct i915_request *rq = fetch_and_zero(&w->rq); 900 u32 offset, end; 901 int err; 902 903 GEM_BUG_ON(w->addr - i915_ggtt_offset(w->vma) > w->vma->size); 904 905 i915_request_get(rq); 906 switch_tl_lock(NULL, rq); 907 i915_request_add(rq); 908 909 if (i915_request_wait(rq, 0, HZ) < 0) { 910 err = -ETIME; 911 goto out; 912 } 913 914 err = 0; 915 offset = 0; 916 end = (w->addr - i915_ggtt_offset(w->vma)) / sizeof(*w->map); 917 while (offset < end) { 918 if (!op(w->map[offset + 1], w->map[offset])) { 919 pr_err("Watcher '%s' found HWSP value %x for seqno %x\n", 920 name, w->map[offset + 1], w->map[offset]); 921 err = -EINVAL; 922 } 923 924 offset += 2; 925 } 926 927 out: 928 i915_request_put(rq); 929 return err; 930 } 931 932 static void cleanup_watcher(struct hwsp_watcher *w) 933 { 934 if (w->rq) { 935 switch_tl_lock(NULL, w->rq); 936 937 i915_request_add(w->rq); 938 } 939 940 i915_vma_unpin_and_release(&w->vma, I915_VMA_RELEASE_MAP); 941 } 942 943 static bool retire_requests(struct intel_timeline *tl) 944 { 945 struct i915_request *rq, *rn; 946 947 mutex_lock(&tl->mutex); 948 list_for_each_entry_safe(rq, rn, &tl->requests, link) 949 if (!i915_request_retire(rq)) 950 break; 951 mutex_unlock(&tl->mutex); 952 953 return !i915_active_fence_isset(&tl->last_request); 954 } 955 956 static struct i915_request *wrap_timeline(struct i915_request *rq) 957 { 958 struct intel_context *ce = rq->context; 959 struct intel_timeline *tl = ce->timeline; 960 u32 seqno = rq->fence.seqno; 961 962 while (tl->seqno >= seqno) { /* Cause a wrap */ 963 i915_request_put(rq); 964 rq = intel_context_create_request(ce); 965 if (IS_ERR(rq)) 966 return rq; 967 968 i915_request_get(rq); 969 i915_request_add(rq); 970 } 971 972 i915_request_put(rq); 973 rq = i915_request_create(ce); 974 if (IS_ERR(rq)) 975 return rq; 976 977 i915_request_get(rq); 978 i915_request_add(rq); 979 980 return rq; 981 } 982 983 static int live_hwsp_read(void *arg) 984 { 985 struct intel_gt *gt = arg; 986 struct hwsp_watcher watcher[2] = {}; 987 struct intel_engine_cs *engine; 988 struct intel_timeline *tl; 989 enum intel_engine_id id; 990 int err = 0; 991 int i; 992 993 /* 994 * If we take a reference to the HWSP for reading on the GPU, that 995 * read may be arbitrarily delayed (either by foreign fence or 996 * priority saturation) and a wrap can happen within 30 minutes. 997 * When the GPU read is finally submitted it should be correct, 998 * even across multiple wraps. 999 */ 1000 1001 if (GRAPHICS_VER(gt->i915) < 8) /* CS convenience [SRM/LRM] */ 1002 return 0; 1003 1004 tl = intel_timeline_create(gt); 1005 if (IS_ERR(tl)) 1006 return PTR_ERR(tl); 1007 1008 if (!tl->has_initial_breadcrumb) 1009 goto out_free; 1010 1011 selftest_tl_pin(tl); 1012 1013 for (i = 0; i < ARRAY_SIZE(watcher); i++) { 1014 err = setup_watcher(&watcher[i], gt, tl); 1015 if (err) 1016 goto out; 1017 } 1018 1019 for_each_engine(engine, gt, id) { 1020 struct intel_context *ce; 1021 unsigned long count = 0; 1022 IGT_TIMEOUT(end_time); 1023 1024 /* Create a request we can use for remote reading of the HWSP */ 1025 err = create_watcher(&watcher[1], engine, SZ_512K); 1026 if (err) 1027 goto out; 1028 1029 do { 1030 struct i915_sw_fence *submit; 1031 struct i915_request *rq; 1032 u32 hwsp, dummy; 1033 1034 submit = heap_fence_create(GFP_KERNEL); 1035 if (!submit) { 1036 err = -ENOMEM; 1037 goto out; 1038 } 1039 1040 err = create_watcher(&watcher[0], engine, SZ_4K); 1041 if (err) 1042 goto out; 1043 1044 ce = intel_context_create(engine); 1045 if (IS_ERR(ce)) { 1046 err = PTR_ERR(ce); 1047 goto out; 1048 } 1049 1050 ce->timeline = intel_timeline_get(tl); 1051 1052 /* Ensure timeline is mapped, done during first pin */ 1053 err = intel_context_pin(ce); 1054 if (err) { 1055 intel_context_put(ce); 1056 goto out; 1057 } 1058 1059 /* 1060 * Start at a new wrap, and set seqno right before another wrap, 1061 * saving 30 minutes of nops 1062 */ 1063 tl->seqno = -12u + 2 * (count & 3); 1064 __intel_timeline_get_seqno(tl, &dummy); 1065 1066 rq = i915_request_create(ce); 1067 if (IS_ERR(rq)) { 1068 err = PTR_ERR(rq); 1069 intel_context_unpin(ce); 1070 intel_context_put(ce); 1071 goto out; 1072 } 1073 1074 err = i915_sw_fence_await_dma_fence(&rq->submit, 1075 &watcher[0].rq->fence, 0, 1076 GFP_KERNEL); 1077 if (err < 0) { 1078 i915_request_add(rq); 1079 intel_context_unpin(ce); 1080 intel_context_put(ce); 1081 goto out; 1082 } 1083 1084 switch_tl_lock(rq, watcher[0].rq); 1085 err = intel_timeline_read_hwsp(rq, watcher[0].rq, &hwsp); 1086 if (err == 0) 1087 err = emit_read_hwsp(watcher[0].rq, /* before */ 1088 rq->fence.seqno, hwsp, 1089 &watcher[0].addr); 1090 switch_tl_lock(watcher[0].rq, rq); 1091 if (err) { 1092 i915_request_add(rq); 1093 intel_context_unpin(ce); 1094 intel_context_put(ce); 1095 goto out; 1096 } 1097 1098 switch_tl_lock(rq, watcher[1].rq); 1099 err = intel_timeline_read_hwsp(rq, watcher[1].rq, &hwsp); 1100 if (err == 0) 1101 err = emit_read_hwsp(watcher[1].rq, /* after */ 1102 rq->fence.seqno, hwsp, 1103 &watcher[1].addr); 1104 switch_tl_lock(watcher[1].rq, rq); 1105 if (err) { 1106 i915_request_add(rq); 1107 intel_context_unpin(ce); 1108 intel_context_put(ce); 1109 goto out; 1110 } 1111 1112 i915_request_get(rq); 1113 i915_request_add(rq); 1114 1115 rq = wrap_timeline(rq); 1116 intel_context_unpin(ce); 1117 intel_context_put(ce); 1118 if (IS_ERR(rq)) { 1119 err = PTR_ERR(rq); 1120 goto out; 1121 } 1122 1123 err = i915_sw_fence_await_dma_fence(&watcher[1].rq->submit, 1124 &rq->fence, 0, 1125 GFP_KERNEL); 1126 if (err < 0) { 1127 i915_request_put(rq); 1128 goto out; 1129 } 1130 1131 err = check_watcher(&watcher[0], "before", cmp_lt); 1132 i915_sw_fence_commit(submit); 1133 heap_fence_put(submit); 1134 if (err) { 1135 i915_request_put(rq); 1136 goto out; 1137 } 1138 count++; 1139 1140 /* Flush the timeline before manually wrapping again */ 1141 if (i915_request_wait(rq, 1142 I915_WAIT_INTERRUPTIBLE, 1143 HZ) < 0) { 1144 err = -ETIME; 1145 i915_request_put(rq); 1146 goto out; 1147 } 1148 retire_requests(tl); 1149 i915_request_put(rq); 1150 1151 /* Single requests are limited to half a ring at most */ 1152 if (8 * watcher[1].rq->ring->emit > 1153 3 * watcher[1].rq->ring->size) 1154 break; 1155 1156 } while (!__igt_timeout(end_time, NULL) && 1157 count < (PAGE_SIZE / TIMELINE_SEQNO_BYTES - 1) / 2); 1158 1159 pr_info("%s: simulated %lu wraps\n", engine->name, count); 1160 err = check_watcher(&watcher[1], "after", cmp_gte); 1161 if (err) 1162 goto out; 1163 } 1164 1165 out: 1166 for (i = 0; i < ARRAY_SIZE(watcher); i++) 1167 cleanup_watcher(&watcher[i]); 1168 1169 intel_timeline_unpin(tl); 1170 1171 if (igt_flush_test(gt->i915)) 1172 err = -EIO; 1173 1174 out_free: 1175 intel_timeline_put(tl); 1176 return err; 1177 } 1178 1179 static int live_hwsp_rollover_kernel(void *arg) 1180 { 1181 struct intel_gt *gt = arg; 1182 struct intel_engine_cs *engine; 1183 enum intel_engine_id id; 1184 int err = 0; 1185 1186 /* 1187 * Run the host for long enough, and even the kernel context will 1188 * see a seqno rollover. 1189 */ 1190 1191 for_each_engine(engine, gt, id) { 1192 struct intel_context *ce = engine->kernel_context; 1193 struct intel_timeline *tl = ce->timeline; 1194 struct i915_request *rq[3] = {}; 1195 int i; 1196 1197 st_engine_heartbeat_disable(engine); 1198 if (intel_gt_wait_for_idle(gt, HZ / 2)) { 1199 err = -EIO; 1200 goto out; 1201 } 1202 1203 GEM_BUG_ON(i915_active_fence_isset(&tl->last_request)); 1204 tl->seqno = -2u; 1205 WRITE_ONCE(*(u32 *)tl->hwsp_seqno, tl->seqno); 1206 1207 for (i = 0; i < ARRAY_SIZE(rq); i++) { 1208 struct i915_request *this; 1209 1210 this = i915_request_create(ce); 1211 if (IS_ERR(this)) { 1212 err = PTR_ERR(this); 1213 goto out; 1214 } 1215 1216 pr_debug("%s: create fence.seqnp:%d\n", 1217 engine->name, 1218 lower_32_bits(this->fence.seqno)); 1219 1220 GEM_BUG_ON(rcu_access_pointer(this->timeline) != tl); 1221 1222 rq[i] = i915_request_get(this); 1223 i915_request_add(this); 1224 } 1225 1226 /* We expected a wrap! */ 1227 GEM_BUG_ON(rq[2]->fence.seqno > rq[0]->fence.seqno); 1228 1229 if (i915_request_wait(rq[2], 0, HZ / 5) < 0) { 1230 pr_err("Wait for timeline wrap timed out!\n"); 1231 err = -EIO; 1232 goto out; 1233 } 1234 1235 for (i = 0; i < ARRAY_SIZE(rq); i++) { 1236 if (!i915_request_completed(rq[i])) { 1237 pr_err("Pre-wrap request not completed!\n"); 1238 err = -EINVAL; 1239 goto out; 1240 } 1241 } 1242 1243 out: 1244 for (i = 0; i < ARRAY_SIZE(rq); i++) 1245 i915_request_put(rq[i]); 1246 st_engine_heartbeat_enable(engine); 1247 if (err) 1248 break; 1249 } 1250 1251 if (igt_flush_test(gt->i915)) 1252 err = -EIO; 1253 1254 return err; 1255 } 1256 1257 static int live_hwsp_rollover_user(void *arg) 1258 { 1259 struct intel_gt *gt = arg; 1260 struct intel_engine_cs *engine; 1261 enum intel_engine_id id; 1262 int err = 0; 1263 1264 /* 1265 * Simulate a long running user context, and force the seqno wrap 1266 * on the user's timeline. 1267 */ 1268 1269 for_each_engine(engine, gt, id) { 1270 struct i915_request *rq[3] = {}; 1271 struct intel_timeline *tl; 1272 struct intel_context *ce; 1273 int i; 1274 1275 ce = intel_context_create(engine); 1276 if (IS_ERR(ce)) 1277 return PTR_ERR(ce); 1278 1279 err = intel_context_alloc_state(ce); 1280 if (err) 1281 goto out; 1282 1283 tl = ce->timeline; 1284 if (!tl->has_initial_breadcrumb) 1285 goto out; 1286 1287 err = intel_context_pin(ce); 1288 if (err) 1289 goto out; 1290 1291 tl->seqno = -4u; 1292 WRITE_ONCE(*(u32 *)tl->hwsp_seqno, tl->seqno); 1293 1294 for (i = 0; i < ARRAY_SIZE(rq); i++) { 1295 struct i915_request *this; 1296 1297 this = intel_context_create_request(ce); 1298 if (IS_ERR(this)) { 1299 err = PTR_ERR(this); 1300 goto out_unpin; 1301 } 1302 1303 pr_debug("%s: create fence.seqnp:%d\n", 1304 engine->name, 1305 lower_32_bits(this->fence.seqno)); 1306 1307 GEM_BUG_ON(rcu_access_pointer(this->timeline) != tl); 1308 1309 rq[i] = i915_request_get(this); 1310 i915_request_add(this); 1311 } 1312 1313 /* We expected a wrap! */ 1314 GEM_BUG_ON(rq[2]->fence.seqno > rq[0]->fence.seqno); 1315 1316 if (i915_request_wait(rq[2], 0, HZ / 5) < 0) { 1317 pr_err("Wait for timeline wrap timed out!\n"); 1318 err = -EIO; 1319 goto out_unpin; 1320 } 1321 1322 for (i = 0; i < ARRAY_SIZE(rq); i++) { 1323 if (!i915_request_completed(rq[i])) { 1324 pr_err("Pre-wrap request not completed!\n"); 1325 err = -EINVAL; 1326 goto out_unpin; 1327 } 1328 } 1329 out_unpin: 1330 intel_context_unpin(ce); 1331 out: 1332 for (i = 0; i < ARRAY_SIZE(rq); i++) 1333 i915_request_put(rq[i]); 1334 intel_context_put(ce); 1335 if (err) 1336 break; 1337 } 1338 1339 if (igt_flush_test(gt->i915)) 1340 err = -EIO; 1341 1342 return err; 1343 } 1344 1345 static int live_hwsp_recycle(void *arg) 1346 { 1347 struct intel_gt *gt = arg; 1348 struct intel_engine_cs *engine; 1349 enum intel_engine_id id; 1350 unsigned long count; 1351 int err = 0; 1352 1353 /* 1354 * Check seqno writes into one timeline at a time. We expect to 1355 * recycle the breadcrumb slot between iterations and neither 1356 * want to confuse ourselves or the GPU. 1357 */ 1358 1359 count = 0; 1360 for_each_engine(engine, gt, id) { 1361 IGT_TIMEOUT(end_time); 1362 1363 if (!intel_engine_can_store_dword(engine)) 1364 continue; 1365 1366 intel_engine_pm_get(engine); 1367 1368 do { 1369 struct intel_timeline *tl; 1370 struct i915_request *rq; 1371 1372 tl = intel_timeline_create(gt); 1373 if (IS_ERR(tl)) { 1374 err = PTR_ERR(tl); 1375 break; 1376 } 1377 1378 rq = checked_tl_write(tl, engine, count); 1379 if (IS_ERR(rq)) { 1380 intel_timeline_put(tl); 1381 err = PTR_ERR(rq); 1382 break; 1383 } 1384 1385 if (i915_request_wait(rq, 0, HZ / 5) < 0) { 1386 pr_err("Wait for timeline writes timed out!\n"); 1387 i915_request_put(rq); 1388 intel_timeline_put(tl); 1389 err = -EIO; 1390 break; 1391 } 1392 1393 if (READ_ONCE(*tl->hwsp_seqno) != count) { 1394 GEM_TRACE_ERR("Invalid seqno:%lu stored in timeline %llu @ %x found 0x%x\n", 1395 count, tl->fence_context, 1396 tl->hwsp_offset, *tl->hwsp_seqno); 1397 GEM_TRACE_DUMP(); 1398 err = -EINVAL; 1399 } 1400 1401 i915_request_put(rq); 1402 intel_timeline_put(tl); 1403 count++; 1404 1405 if (err) 1406 break; 1407 } while (!__igt_timeout(end_time, NULL)); 1408 1409 intel_engine_pm_put(engine); 1410 if (err) 1411 break; 1412 } 1413 1414 return err; 1415 } 1416 1417 int intel_timeline_live_selftests(struct drm_i915_private *i915) 1418 { 1419 static const struct i915_subtest tests[] = { 1420 SUBTEST(live_hwsp_recycle), 1421 SUBTEST(live_hwsp_engine), 1422 SUBTEST(live_hwsp_alternate), 1423 SUBTEST(live_hwsp_wrap), 1424 SUBTEST(live_hwsp_read), 1425 SUBTEST(live_hwsp_rollover_kernel), 1426 SUBTEST(live_hwsp_rollover_user), 1427 }; 1428 1429 if (intel_gt_is_wedged(to_gt(i915))) 1430 return 0; 1431 1432 return intel_gt_live_subtests(tests, to_gt(i915)); 1433 } 1434