1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright © 2018 Intel Corporation 4 */ 5 6 #include <linux/sort.h> 7 8 #include "i915_selftest.h" 9 #include "intel_engine_regs.h" 10 #include "intel_gpu_commands.h" 11 #include "intel_gt_clock_utils.h" 12 #include "selftest_engine.h" 13 #include "selftest_engine_heartbeat.h" 14 #include "selftests/igt_atomic.h" 15 #include "selftests/igt_flush_test.h" 16 #include "selftests/igt_spinner.h" 17 18 #define COUNT 5 19 20 static int cmp_u64(const void *A, const void *B) 21 { 22 const u64 *a = A, *b = B; 23 24 return *a - *b; 25 } 26 27 static u64 trifilter(u64 *a) 28 { 29 sort(a, COUNT, sizeof(*a), cmp_u64, NULL); 30 return (a[1] + 2 * a[2] + a[3]) >> 2; 31 } 32 33 static u32 *emit_wait(u32 *cs, u32 offset, int op, u32 value) 34 { 35 *cs++ = MI_SEMAPHORE_WAIT | 36 MI_SEMAPHORE_GLOBAL_GTT | 37 MI_SEMAPHORE_POLL | 38 op; 39 *cs++ = value; 40 *cs++ = offset; 41 *cs++ = 0; 42 43 return cs; 44 } 45 46 static u32 *emit_store(u32 *cs, u32 offset, u32 value) 47 { 48 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 49 *cs++ = offset; 50 *cs++ = 0; 51 *cs++ = value; 52 53 return cs; 54 } 55 56 static u32 *emit_srm(u32 *cs, i915_reg_t reg, u32 offset) 57 { 58 *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT; 59 *cs++ = i915_mmio_reg_offset(reg); 60 *cs++ = offset; 61 *cs++ = 0; 62 63 return cs; 64 } 65 66 static void write_semaphore(u32 *x, u32 value) 67 { 68 WRITE_ONCE(*x, value); 69 wmb(); 70 } 71 72 static int __measure_timestamps(struct intel_context *ce, 73 u64 *dt, u64 *d_ring, u64 *d_ctx) 74 { 75 struct intel_engine_cs *engine = ce->engine; 76 u32 *sema = memset32(engine->status_page.addr + 1000, 0, 5); 77 u32 offset = i915_ggtt_offset(engine->status_page.vma); 78 struct i915_request *rq; 79 u32 *cs; 80 81 rq = intel_context_create_request(ce); 82 if (IS_ERR(rq)) 83 return PTR_ERR(rq); 84 85 cs = intel_ring_begin(rq, 28); 86 if (IS_ERR(cs)) { 87 i915_request_add(rq); 88 return PTR_ERR(cs); 89 } 90 91 /* Signal & wait for start */ 92 cs = emit_store(cs, offset + 4008, 1); 93 cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_NEQ_SDD, 1); 94 95 cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4000); 96 cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4004); 97 98 /* Busy wait */ 99 cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_EQ_SDD, 1); 100 101 cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4016); 102 cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4012); 103 104 intel_ring_advance(rq, cs); 105 i915_request_get(rq); 106 i915_request_add(rq); 107 intel_engine_flush_submission(engine); 108 109 /* Wait for the request to start executing, that then waits for us */ 110 while (READ_ONCE(sema[2]) == 0) 111 cpu_relax(); 112 113 /* Run the request for a 100us, sampling timestamps before/after */ 114 local_irq_disable(); 115 write_semaphore(&sema[2], 0); 116 while (READ_ONCE(sema[1]) == 0) /* wait for the gpu to catch up */ 117 cpu_relax(); 118 *dt = local_clock(); 119 udelay(100); 120 *dt = local_clock() - *dt; 121 write_semaphore(&sema[2], 1); 122 local_irq_enable(); 123 124 if (i915_request_wait(rq, 0, HZ / 2) < 0) { 125 i915_request_put(rq); 126 return -ETIME; 127 } 128 i915_request_put(rq); 129 130 pr_debug("%s CTX_TIMESTAMP: [%x, %x], RING_TIMESTAMP: [%x, %x]\n", 131 engine->name, sema[1], sema[3], sema[0], sema[4]); 132 133 *d_ctx = sema[3] - sema[1]; 134 *d_ring = sema[4] - sema[0]; 135 return 0; 136 } 137 138 static int __live_engine_timestamps(struct intel_engine_cs *engine) 139 { 140 u64 s_ring[COUNT], s_ctx[COUNT], st[COUNT], d_ring, d_ctx, dt; 141 struct intel_context *ce; 142 int i, err = 0; 143 144 ce = intel_context_create(engine); 145 if (IS_ERR(ce)) 146 return PTR_ERR(ce); 147 148 for (i = 0; i < COUNT; i++) { 149 err = __measure_timestamps(ce, &st[i], &s_ring[i], &s_ctx[i]); 150 if (err) 151 break; 152 } 153 intel_context_put(ce); 154 if (err) 155 return err; 156 157 dt = trifilter(st); 158 d_ring = trifilter(s_ring); 159 d_ctx = trifilter(s_ctx); 160 161 pr_info("%s elapsed:%lldns, CTX_TIMESTAMP:%lldns, RING_TIMESTAMP:%lldns\n", 162 engine->name, dt, 163 intel_gt_clock_interval_to_ns(engine->gt, d_ctx), 164 intel_gt_clock_interval_to_ns(engine->gt, d_ring)); 165 166 d_ring = intel_gt_clock_interval_to_ns(engine->gt, d_ring); 167 if (3 * dt > 4 * d_ring || 4 * dt < 3 * d_ring) { 168 pr_err("%s Mismatch between ring timestamp and walltime!\n", 169 engine->name); 170 return -EINVAL; 171 } 172 173 d_ring = trifilter(s_ring); 174 d_ctx = trifilter(s_ctx); 175 176 d_ctx *= engine->gt->clock_frequency; 177 if (GRAPHICS_VER(engine->i915) == 11) 178 d_ring *= 12500000; /* Fixed 80ns for GEN11 ctx timestamp? */ 179 else 180 d_ring *= engine->gt->clock_frequency; 181 182 if (3 * d_ctx > 4 * d_ring || 4 * d_ctx < 3 * d_ring) { 183 pr_err("%s Mismatch between ring and context timestamps!\n", 184 engine->name); 185 return -EINVAL; 186 } 187 188 return 0; 189 } 190 191 static int live_engine_timestamps(void *arg) 192 { 193 struct intel_gt *gt = arg; 194 struct intel_engine_cs *engine; 195 enum intel_engine_id id; 196 197 /* 198 * Check that CS_TIMESTAMP / CTX_TIMESTAMP are in sync, i.e. share 199 * the same CS clock. 200 */ 201 202 if (GRAPHICS_VER(gt->i915) < 8) 203 return 0; 204 205 for_each_engine(engine, gt, id) { 206 int err; 207 208 st_engine_heartbeat_disable(engine); 209 err = __live_engine_timestamps(engine); 210 st_engine_heartbeat_enable(engine); 211 if (err) 212 return err; 213 } 214 215 return 0; 216 } 217 218 static int __spin_until_busier(struct intel_engine_cs *engine, ktime_t busyness) 219 { 220 ktime_t start, unused, dt; 221 222 if (!intel_engine_uses_guc(engine)) 223 return 0; 224 225 /* 226 * In GuC mode of submission, the busyness stats may get updated after 227 * the batch starts running. Poll for a change in busyness and timeout 228 * after 500 us. 229 */ 230 start = ktime_get(); 231 while (intel_engine_get_busy_time(engine, &unused) == busyness) { 232 dt = ktime_get() - start; 233 if (dt > 10000000) { 234 pr_err("active wait timed out %lld\n", dt); 235 ENGINE_TRACE(engine, "active wait time out %lld\n", dt); 236 return -ETIME; 237 } 238 } 239 240 return 0; 241 } 242 243 static int live_engine_busy_stats(void *arg) 244 { 245 struct intel_gt *gt = arg; 246 struct intel_engine_cs *engine; 247 enum intel_engine_id id; 248 struct igt_spinner spin; 249 int err = 0; 250 251 /* 252 * Check that if an engine supports busy-stats, they tell the truth. 253 */ 254 255 if (igt_spinner_init(&spin, gt)) 256 return -ENOMEM; 257 258 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 259 for_each_engine(engine, gt, id) { 260 struct i915_request *rq; 261 ktime_t busyness, dummy; 262 ktime_t de, dt; 263 ktime_t t[2]; 264 265 if (!intel_engine_supports_stats(engine)) 266 continue; 267 268 if (!intel_engine_can_store_dword(engine)) 269 continue; 270 271 if (intel_gt_pm_wait_for_idle(gt)) { 272 err = -EBUSY; 273 break; 274 } 275 276 st_engine_heartbeat_disable(engine); 277 278 ENGINE_TRACE(engine, "measuring idle time\n"); 279 preempt_disable(); 280 de = intel_engine_get_busy_time(engine, &t[0]); 281 udelay(100); 282 de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de); 283 preempt_enable(); 284 dt = ktime_sub(t[1], t[0]); 285 if (de < 0 || de > 10) { 286 pr_err("%s: reported %lldns [%d%%] busyness while sleeping [for %lldns]\n", 287 engine->name, 288 de, (int)div64_u64(100 * de, dt), dt); 289 GEM_TRACE_DUMP(); 290 err = -EINVAL; 291 goto end; 292 } 293 294 /* 100% busy */ 295 rq = igt_spinner_create_request(&spin, 296 engine->kernel_context, 297 MI_NOOP); 298 if (IS_ERR(rq)) { 299 err = PTR_ERR(rq); 300 goto end; 301 } 302 i915_request_add(rq); 303 304 busyness = intel_engine_get_busy_time(engine, &dummy); 305 if (!igt_wait_for_spinner(&spin, rq)) { 306 intel_gt_set_wedged(engine->gt); 307 err = -ETIME; 308 goto end; 309 } 310 311 err = __spin_until_busier(engine, busyness); 312 if (err) { 313 GEM_TRACE_DUMP(); 314 goto end; 315 } 316 317 ENGINE_TRACE(engine, "measuring busy time\n"); 318 preempt_disable(); 319 de = intel_engine_get_busy_time(engine, &t[0]); 320 mdelay(10); 321 de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de); 322 preempt_enable(); 323 dt = ktime_sub(t[1], t[0]); 324 if (100 * de < 95 * dt || 95 * de > 100 * dt) { 325 pr_err("%s: reported %lldns [%d%%] busyness while spinning [for %lldns]\n", 326 engine->name, 327 de, (int)div64_u64(100 * de, dt), dt); 328 GEM_TRACE_DUMP(); 329 err = -EINVAL; 330 goto end; 331 } 332 333 end: 334 st_engine_heartbeat_enable(engine); 335 igt_spinner_end(&spin); 336 if (igt_flush_test(gt->i915)) 337 err = -EIO; 338 if (err) 339 break; 340 } 341 342 igt_spinner_fini(&spin); 343 if (igt_flush_test(gt->i915)) 344 err = -EIO; 345 return err; 346 } 347 348 static int live_engine_pm(void *arg) 349 { 350 struct intel_gt *gt = arg; 351 struct intel_engine_cs *engine; 352 enum intel_engine_id id; 353 354 /* 355 * Check we can call intel_engine_pm_put from any context. No 356 * failures are reported directly, but if we mess up lockdep should 357 * tell us. 358 */ 359 if (intel_gt_pm_wait_for_idle(gt)) { 360 pr_err("Unable to flush GT pm before test\n"); 361 return -EBUSY; 362 } 363 364 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 365 for_each_engine(engine, gt, id) { 366 const typeof(*igt_atomic_phases) *p; 367 368 for (p = igt_atomic_phases; p->name; p++) { 369 /* 370 * Acquisition is always synchronous, except if we 371 * know that the engine is already awake, in which 372 * case we should use intel_engine_pm_get_if_awake() 373 * to atomically grab the wakeref. 374 * 375 * In practice, 376 * intel_engine_pm_get(); 377 * intel_engine_pm_put(); 378 * occurs in one thread, while simultaneously 379 * intel_engine_pm_get_if_awake(); 380 * intel_engine_pm_put(); 381 * occurs from atomic context in another. 382 */ 383 GEM_BUG_ON(intel_engine_pm_is_awake(engine)); 384 intel_engine_pm_get(engine); 385 386 p->critical_section_begin(); 387 if (!intel_engine_pm_get_if_awake(engine)) 388 pr_err("intel_engine_pm_get_if_awake(%s) failed under %s\n", 389 engine->name, p->name); 390 else 391 intel_engine_pm_put_async(engine); 392 intel_engine_pm_put_async(engine); 393 p->critical_section_end(); 394 395 intel_engine_pm_flush(engine); 396 397 if (intel_engine_pm_is_awake(engine)) { 398 pr_err("%s is still awake after flushing pm\n", 399 engine->name); 400 return -EINVAL; 401 } 402 403 /* gt wakeref is async (deferred to workqueue) */ 404 if (intel_gt_pm_wait_for_idle(gt)) { 405 pr_err("GT failed to idle\n"); 406 return -EINVAL; 407 } 408 } 409 } 410 411 return 0; 412 } 413 414 int live_engine_pm_selftests(struct intel_gt *gt) 415 { 416 static const struct i915_subtest tests[] = { 417 SUBTEST(live_engine_timestamps), 418 SUBTEST(live_engine_busy_stats), 419 SUBTEST(live_engine_pm), 420 }; 421 422 return intel_gt_live_subtests(tests, gt); 423 } 424