1 // SPDX-License-Identifier: GPL-2.0 2 /* 3 * Copyright © 2018 Intel Corporation 4 */ 5 6 #include <linux/sort.h> 7 8 #include "i915_selftest.h" 9 #include "intel_gpu_commands.h" 10 #include "intel_gt_clock_utils.h" 11 #include "selftest_engine.h" 12 #include "selftest_engine_heartbeat.h" 13 #include "selftests/igt_atomic.h" 14 #include "selftests/igt_flush_test.h" 15 #include "selftests/igt_spinner.h" 16 17 #define COUNT 5 18 19 static int cmp_u64(const void *A, const void *B) 20 { 21 const u64 *a = A, *b = B; 22 23 return *a - *b; 24 } 25 26 static u64 trifilter(u64 *a) 27 { 28 sort(a, COUNT, sizeof(*a), cmp_u64, NULL); 29 return (a[1] + 2 * a[2] + a[3]) >> 2; 30 } 31 32 static u32 *emit_wait(u32 *cs, u32 offset, int op, u32 value) 33 { 34 *cs++ = MI_SEMAPHORE_WAIT | 35 MI_SEMAPHORE_GLOBAL_GTT | 36 MI_SEMAPHORE_POLL | 37 op; 38 *cs++ = value; 39 *cs++ = offset; 40 *cs++ = 0; 41 42 return cs; 43 } 44 45 static u32 *emit_store(u32 *cs, u32 offset, u32 value) 46 { 47 *cs++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT; 48 *cs++ = offset; 49 *cs++ = 0; 50 *cs++ = value; 51 52 return cs; 53 } 54 55 static u32 *emit_srm(u32 *cs, i915_reg_t reg, u32 offset) 56 { 57 *cs++ = MI_STORE_REGISTER_MEM_GEN8 | MI_USE_GGTT; 58 *cs++ = i915_mmio_reg_offset(reg); 59 *cs++ = offset; 60 *cs++ = 0; 61 62 return cs; 63 } 64 65 static void write_semaphore(u32 *x, u32 value) 66 { 67 WRITE_ONCE(*x, value); 68 wmb(); 69 } 70 71 static int __measure_timestamps(struct intel_context *ce, 72 u64 *dt, u64 *d_ring, u64 *d_ctx) 73 { 74 struct intel_engine_cs *engine = ce->engine; 75 u32 *sema = memset32(engine->status_page.addr + 1000, 0, 5); 76 u32 offset = i915_ggtt_offset(engine->status_page.vma); 77 struct i915_request *rq; 78 u32 *cs; 79 80 rq = intel_context_create_request(ce); 81 if (IS_ERR(rq)) 82 return PTR_ERR(rq); 83 84 cs = intel_ring_begin(rq, 28); 85 if (IS_ERR(cs)) { 86 i915_request_add(rq); 87 return PTR_ERR(cs); 88 } 89 90 /* Signal & wait for start */ 91 cs = emit_store(cs, offset + 4008, 1); 92 cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_NEQ_SDD, 1); 93 94 cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4000); 95 cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4004); 96 97 /* Busy wait */ 98 cs = emit_wait(cs, offset + 4008, MI_SEMAPHORE_SAD_EQ_SDD, 1); 99 100 cs = emit_srm(cs, RING_TIMESTAMP(engine->mmio_base), offset + 4016); 101 cs = emit_srm(cs, RING_CTX_TIMESTAMP(engine->mmio_base), offset + 4012); 102 103 intel_ring_advance(rq, cs); 104 i915_request_get(rq); 105 i915_request_add(rq); 106 intel_engine_flush_submission(engine); 107 108 /* Wait for the request to start executing, that then waits for us */ 109 while (READ_ONCE(sema[2]) == 0) 110 cpu_relax(); 111 112 /* Run the request for a 100us, sampling timestamps before/after */ 113 local_irq_disable(); 114 write_semaphore(&sema[2], 0); 115 while (READ_ONCE(sema[1]) == 0) /* wait for the gpu to catch up */ 116 cpu_relax(); 117 *dt = local_clock(); 118 udelay(100); 119 *dt = local_clock() - *dt; 120 write_semaphore(&sema[2], 1); 121 local_irq_enable(); 122 123 if (i915_request_wait(rq, 0, HZ / 2) < 0) { 124 i915_request_put(rq); 125 return -ETIME; 126 } 127 i915_request_put(rq); 128 129 pr_debug("%s CTX_TIMESTAMP: [%x, %x], RING_TIMESTAMP: [%x, %x]\n", 130 engine->name, sema[1], sema[3], sema[0], sema[4]); 131 132 *d_ctx = sema[3] - sema[1]; 133 *d_ring = sema[4] - sema[0]; 134 return 0; 135 } 136 137 static int __live_engine_timestamps(struct intel_engine_cs *engine) 138 { 139 u64 s_ring[COUNT], s_ctx[COUNT], st[COUNT], d_ring, d_ctx, dt; 140 struct intel_context *ce; 141 int i, err = 0; 142 143 ce = intel_context_create(engine); 144 if (IS_ERR(ce)) 145 return PTR_ERR(ce); 146 147 for (i = 0; i < COUNT; i++) { 148 err = __measure_timestamps(ce, &st[i], &s_ring[i], &s_ctx[i]); 149 if (err) 150 break; 151 } 152 intel_context_put(ce); 153 if (err) 154 return err; 155 156 dt = trifilter(st); 157 d_ring = trifilter(s_ring); 158 d_ctx = trifilter(s_ctx); 159 160 pr_info("%s elapsed:%lldns, CTX_TIMESTAMP:%lldns, RING_TIMESTAMP:%lldns\n", 161 engine->name, dt, 162 intel_gt_clock_interval_to_ns(engine->gt, d_ctx), 163 intel_gt_clock_interval_to_ns(engine->gt, d_ring)); 164 165 d_ring = intel_gt_clock_interval_to_ns(engine->gt, d_ring); 166 if (3 * dt > 4 * d_ring || 4 * dt < 3 * d_ring) { 167 pr_err("%s Mismatch between ring timestamp and walltime!\n", 168 engine->name); 169 return -EINVAL; 170 } 171 172 d_ring = trifilter(s_ring); 173 d_ctx = trifilter(s_ctx); 174 175 d_ctx *= engine->gt->clock_frequency; 176 if (GRAPHICS_VER(engine->i915) == 11) 177 d_ring *= 12500000; /* Fixed 80ns for GEN11 ctx timestamp? */ 178 else 179 d_ring *= engine->gt->clock_frequency; 180 181 if (3 * d_ctx > 4 * d_ring || 4 * d_ctx < 3 * d_ring) { 182 pr_err("%s Mismatch between ring and context timestamps!\n", 183 engine->name); 184 return -EINVAL; 185 } 186 187 return 0; 188 } 189 190 static int live_engine_timestamps(void *arg) 191 { 192 struct intel_gt *gt = arg; 193 struct intel_engine_cs *engine; 194 enum intel_engine_id id; 195 196 /* 197 * Check that CS_TIMESTAMP / CTX_TIMESTAMP are in sync, i.e. share 198 * the same CS clock. 199 */ 200 201 if (GRAPHICS_VER(gt->i915) < 8) 202 return 0; 203 204 for_each_engine(engine, gt, id) { 205 int err; 206 207 st_engine_heartbeat_disable(engine); 208 err = __live_engine_timestamps(engine); 209 st_engine_heartbeat_enable(engine); 210 if (err) 211 return err; 212 } 213 214 return 0; 215 } 216 217 static int live_engine_busy_stats(void *arg) 218 { 219 struct intel_gt *gt = arg; 220 struct intel_engine_cs *engine; 221 enum intel_engine_id id; 222 struct igt_spinner spin; 223 int err = 0; 224 225 /* 226 * Check that if an engine supports busy-stats, they tell the truth. 227 */ 228 229 if (igt_spinner_init(&spin, gt)) 230 return -ENOMEM; 231 232 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 233 for_each_engine(engine, gt, id) { 234 struct i915_request *rq; 235 ktime_t de, dt; 236 ktime_t t[2]; 237 238 if (!intel_engine_supports_stats(engine)) 239 continue; 240 241 if (!intel_engine_can_store_dword(engine)) 242 continue; 243 244 if (intel_gt_pm_wait_for_idle(gt)) { 245 err = -EBUSY; 246 break; 247 } 248 249 st_engine_heartbeat_disable(engine); 250 251 ENGINE_TRACE(engine, "measuring idle time\n"); 252 preempt_disable(); 253 de = intel_engine_get_busy_time(engine, &t[0]); 254 udelay(100); 255 de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de); 256 preempt_enable(); 257 dt = ktime_sub(t[1], t[0]); 258 if (de < 0 || de > 10) { 259 pr_err("%s: reported %lldns [%d%%] busyness while sleeping [for %lldns]\n", 260 engine->name, 261 de, (int)div64_u64(100 * de, dt), dt); 262 GEM_TRACE_DUMP(); 263 err = -EINVAL; 264 goto end; 265 } 266 267 /* 100% busy */ 268 rq = igt_spinner_create_request(&spin, 269 engine->kernel_context, 270 MI_NOOP); 271 if (IS_ERR(rq)) { 272 err = PTR_ERR(rq); 273 goto end; 274 } 275 i915_request_add(rq); 276 277 if (!igt_wait_for_spinner(&spin, rq)) { 278 intel_gt_set_wedged(engine->gt); 279 err = -ETIME; 280 goto end; 281 } 282 283 ENGINE_TRACE(engine, "measuring busy time\n"); 284 preempt_disable(); 285 de = intel_engine_get_busy_time(engine, &t[0]); 286 udelay(100); 287 de = ktime_sub(intel_engine_get_busy_time(engine, &t[1]), de); 288 preempt_enable(); 289 dt = ktime_sub(t[1], t[0]); 290 if (100 * de < 95 * dt || 95 * de > 100 * dt) { 291 pr_err("%s: reported %lldns [%d%%] busyness while spinning [for %lldns]\n", 292 engine->name, 293 de, (int)div64_u64(100 * de, dt), dt); 294 GEM_TRACE_DUMP(); 295 err = -EINVAL; 296 goto end; 297 } 298 299 end: 300 st_engine_heartbeat_enable(engine); 301 igt_spinner_end(&spin); 302 if (igt_flush_test(gt->i915)) 303 err = -EIO; 304 if (err) 305 break; 306 } 307 308 igt_spinner_fini(&spin); 309 if (igt_flush_test(gt->i915)) 310 err = -EIO; 311 return err; 312 } 313 314 static int live_engine_pm(void *arg) 315 { 316 struct intel_gt *gt = arg; 317 struct intel_engine_cs *engine; 318 enum intel_engine_id id; 319 320 /* 321 * Check we can call intel_engine_pm_put from any context. No 322 * failures are reported directly, but if we mess up lockdep should 323 * tell us. 324 */ 325 if (intel_gt_pm_wait_for_idle(gt)) { 326 pr_err("Unable to flush GT pm before test\n"); 327 return -EBUSY; 328 } 329 330 GEM_BUG_ON(intel_gt_pm_is_awake(gt)); 331 for_each_engine(engine, gt, id) { 332 const typeof(*igt_atomic_phases) *p; 333 334 for (p = igt_atomic_phases; p->name; p++) { 335 /* 336 * Acquisition is always synchronous, except if we 337 * know that the engine is already awake, in which 338 * case we should use intel_engine_pm_get_if_awake() 339 * to atomically grab the wakeref. 340 * 341 * In practice, 342 * intel_engine_pm_get(); 343 * intel_engine_pm_put(); 344 * occurs in one thread, while simultaneously 345 * intel_engine_pm_get_if_awake(); 346 * intel_engine_pm_put(); 347 * occurs from atomic context in another. 348 */ 349 GEM_BUG_ON(intel_engine_pm_is_awake(engine)); 350 intel_engine_pm_get(engine); 351 352 p->critical_section_begin(); 353 if (!intel_engine_pm_get_if_awake(engine)) 354 pr_err("intel_engine_pm_get_if_awake(%s) failed under %s\n", 355 engine->name, p->name); 356 else 357 intel_engine_pm_put_async(engine); 358 intel_engine_pm_put_async(engine); 359 p->critical_section_end(); 360 361 intel_engine_pm_flush(engine); 362 363 if (intel_engine_pm_is_awake(engine)) { 364 pr_err("%s is still awake after flushing pm\n", 365 engine->name); 366 return -EINVAL; 367 } 368 369 /* gt wakeref is async (deferred to workqueue) */ 370 if (intel_gt_pm_wait_for_idle(gt)) { 371 pr_err("GT failed to idle\n"); 372 return -EINVAL; 373 } 374 } 375 } 376 377 return 0; 378 } 379 380 int live_engine_pm_selftests(struct intel_gt *gt) 381 { 382 static const struct i915_subtest tests[] = { 383 SUBTEST(live_engine_timestamps), 384 SUBTEST(live_engine_busy_stats), 385 SUBTEST(live_engine_pm), 386 }; 387 388 return intel_gt_live_subtests(tests, gt); 389 } 390