1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2018 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "intel_context.h"
9 #include "intel_engine_pm.h"
10 #include "intel_engine_regs.h"
11 #include "intel_gpu_commands.h"
12 #include "intel_gt.h"
13 #include "intel_gt_ccs_mode.h"
14 #include "intel_gt_mcr.h"
15 #include "intel_gt_regs.h"
16 #include "intel_ring.h"
17 #include "intel_workarounds.h"
18 
19 /**
20  * DOC: Hardware workarounds
21  *
22  * Hardware workarounds are register programming documented to be executed in
23  * the driver that fall outside of the normal programming sequences for a
24  * platform. There are some basic categories of workarounds, depending on
25  * how/when they are applied:
26  *
27  * - Context workarounds: workarounds that touch registers that are
28  *   saved/restored to/from the HW context image. The list is emitted (via Load
29  *   Register Immediate commands) once when initializing the device and saved in
30  *   the default context. That default context is then used on every context
31  *   creation to have a "primed golden context", i.e. a context image that
32  *   already contains the changes needed to all the registers.
33  *
34  *   Context workarounds should be implemented in the \*_ctx_workarounds_init()
35  *   variants respective to the targeted platforms.
36  *
37  * - Engine workarounds: the list of these WAs is applied whenever the specific
38  *   engine is reset. It's also possible that a set of engine classes share a
39  *   common power domain and they are reset together. This happens on some
40  *   platforms with render and compute engines. In this case (at least) one of
41  *   them need to keeep the workaround programming: the approach taken in the
42  *   driver is to tie those workarounds to the first compute/render engine that
43  *   is registered.  When executing with GuC submission, engine resets are
44  *   outside of kernel driver control, hence the list of registers involved in
45  *   written once, on engine initialization, and then passed to GuC, that
46  *   saves/restores their values before/after the reset takes place. See
47  *   ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference.
48  *
49  *   Workarounds for registers specific to RCS and CCS should be implemented in
50  *   rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for
51  *   registers belonging to BCS, VCS or VECS should be implemented in
52  *   xcs_engine_wa_init(). Workarounds for registers not belonging to a specific
53  *   engine's MMIO range but that are part of of the common RCS/CCS reset domain
54  *   should be implemented in general_render_compute_wa_init(). The settings
55  *   about the CCS load balancing should be added in ccs_engine_wa_mode().
56  *
57  * - GT workarounds: the list of these WAs is applied whenever these registers
58  *   revert to their default values: on GPU reset, suspend/resume [1]_, etc.
59  *
60  *   GT workarounds should be implemented in the \*_gt_workarounds_init()
61  *   variants respective to the targeted platforms.
62  *
63  * - Register whitelist: some workarounds need to be implemented in userspace,
64  *   but need to touch privileged registers. The whitelist in the kernel
65  *   instructs the hardware to allow the access to happen. From the kernel side,
66  *   this is just a special case of a MMIO workaround (as we write the list of
67  *   these to/be-whitelisted registers to some special HW registers).
68  *
69  *   Register whitelisting should be done in the \*_whitelist_build() variants
70  *   respective to the targeted platforms.
71  *
72  * - Workaround batchbuffers: buffers that get executed automatically by the
73  *   hardware on every HW context restore. These buffers are created and
74  *   programmed in the default context so the hardware always go through those
75  *   programming sequences when switching contexts. The support for workaround
76  *   batchbuffers is enabled these hardware mechanisms:
77  *
78  *   #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default
79  *      context, pointing the hardware to jump to that location when that offset
80  *      is reached in the context restore. Workaround batchbuffer in the driver
81  *      currently uses this mechanism for all platforms.
82  *
83  *   #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context,
84  *      pointing the hardware to a buffer to continue executing after the
85  *      engine registers are restored in a context restore sequence. This is
86  *      currently not used in the driver.
87  *
88  * - Other:  There are WAs that, due to their nature, cannot be applied from a
89  *   central place. Those are peppered around the rest of the code, as needed.
90  *   Workarounds related to the display IP are the main example.
91  *
92  * .. [1] Technically, some registers are powercontext saved & restored, so they
93  *    survive a suspend/resume. In practice, writing them again is not too
94  *    costly and simplifies things, so it's the approach taken in the driver.
95  */
96 
97 static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt,
98 			  const char *name, const char *engine_name)
99 {
100 	wal->gt = gt;
101 	wal->name = name;
102 	wal->engine_name = engine_name;
103 }
104 
105 #define WA_LIST_CHUNK (1 << 4)
106 
107 static void wa_init_finish(struct i915_wa_list *wal)
108 {
109 	/* Trim unused entries. */
110 	if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) {
111 		struct i915_wa *list = kmemdup(wal->list,
112 					       wal->count * sizeof(*list),
113 					       GFP_KERNEL);
114 
115 		if (list) {
116 			kfree(wal->list);
117 			wal->list = list;
118 		}
119 	}
120 
121 	if (!wal->count)
122 		return;
123 
124 	drm_dbg(&wal->gt->i915->drm, "Initialized %u %s workarounds on %s\n",
125 		wal->wa_count, wal->name, wal->engine_name);
126 }
127 
128 static enum forcewake_domains
129 wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal)
130 {
131 	enum forcewake_domains fw = 0;
132 	struct i915_wa *wa;
133 	unsigned int i;
134 
135 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
136 		fw |= intel_uncore_forcewake_for_reg(uncore,
137 						     wa->reg,
138 						     FW_REG_READ |
139 						     FW_REG_WRITE);
140 
141 	return fw;
142 }
143 
144 static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa)
145 {
146 	unsigned int addr = i915_mmio_reg_offset(wa->reg);
147 	struct drm_i915_private *i915 = wal->gt->i915;
148 	unsigned int start = 0, end = wal->count;
149 	const unsigned int grow = WA_LIST_CHUNK;
150 	struct i915_wa *wa_;
151 
152 	GEM_BUG_ON(!is_power_of_2(grow));
153 
154 	if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */
155 		struct i915_wa *list;
156 
157 		list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa),
158 				     GFP_KERNEL);
159 		if (!list) {
160 			drm_err(&i915->drm, "No space for workaround init!\n");
161 			return;
162 		}
163 
164 		if (wal->list) {
165 			memcpy(list, wal->list, sizeof(*wa) * wal->count);
166 			kfree(wal->list);
167 		}
168 
169 		wal->list = list;
170 	}
171 
172 	while (start < end) {
173 		unsigned int mid = start + (end - start) / 2;
174 
175 		if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) {
176 			start = mid + 1;
177 		} else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) {
178 			end = mid;
179 		} else {
180 			wa_ = &wal->list[mid];
181 
182 			if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) {
183 				drm_err(&i915->drm,
184 					"Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n",
185 					i915_mmio_reg_offset(wa_->reg),
186 					wa_->clr, wa_->set);
187 
188 				wa_->set &= ~wa->clr;
189 			}
190 
191 			wal->wa_count++;
192 			wa_->set |= wa->set;
193 			wa_->clr |= wa->clr;
194 			wa_->read |= wa->read;
195 			return;
196 		}
197 	}
198 
199 	wal->wa_count++;
200 	wa_ = &wal->list[wal->count++];
201 	*wa_ = *wa;
202 
203 	while (wa_-- > wal->list) {
204 		GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) ==
205 			   i915_mmio_reg_offset(wa_[1].reg));
206 		if (i915_mmio_reg_offset(wa_[1].reg) >
207 		    i915_mmio_reg_offset(wa_[0].reg))
208 			break;
209 
210 		swap(wa_[1], wa_[0]);
211 	}
212 }
213 
214 static void wa_add(struct i915_wa_list *wal, i915_reg_t reg,
215 		   u32 clear, u32 set, u32 read_mask, bool masked_reg)
216 {
217 	struct i915_wa wa = {
218 		.reg  = reg,
219 		.clr  = clear,
220 		.set  = set,
221 		.read = read_mask,
222 		.masked_reg = masked_reg,
223 	};
224 
225 	_wa_add(wal, &wa);
226 }
227 
228 static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg,
229 		       u32 clear, u32 set, u32 read_mask, bool masked_reg)
230 {
231 	struct i915_wa wa = {
232 		.mcr_reg = reg,
233 		.clr  = clear,
234 		.set  = set,
235 		.read = read_mask,
236 		.masked_reg = masked_reg,
237 		.is_mcr = 1,
238 	};
239 
240 	_wa_add(wal, &wa);
241 }
242 
243 static void
244 wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set)
245 {
246 	wa_add(wal, reg, clear, set, clear | set, false);
247 }
248 
249 static void
250 wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set)
251 {
252 	wa_mcr_add(wal, reg, clear, set, clear | set, false);
253 }
254 
255 static void
256 wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
257 {
258 	wa_write_clr_set(wal, reg, ~0, set);
259 }
260 
261 static void
262 wa_mcr_write(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
263 {
264 	wa_mcr_write_clr_set(wal, reg, ~0, set);
265 }
266 
267 static void
268 wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
269 {
270 	wa_write_clr_set(wal, reg, set, set);
271 }
272 
273 static void
274 wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
275 {
276 	wa_mcr_write_clr_set(wal, reg, set, set);
277 }
278 
279 static void
280 wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr)
281 {
282 	wa_write_clr_set(wal, reg, clr, 0);
283 }
284 
285 static void
286 wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr)
287 {
288 	wa_mcr_write_clr_set(wal, reg, clr, 0);
289 }
290 
291 /*
292  * WA operations on "masked register". A masked register has the upper 16 bits
293  * documented as "masked" in b-spec. Its purpose is to allow writing to just a
294  * portion of the register without a rmw: you simply write in the upper 16 bits
295  * the mask of bits you are going to modify.
296  *
297  * The wa_masked_* family of functions already does the necessary operations to
298  * calculate the mask based on the parameters passed, so user only has to
299  * provide the lower 16 bits of that register.
300  */
301 
302 static void
303 wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
304 {
305 	wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
306 }
307 
308 static void
309 wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
310 {
311 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
312 }
313 
314 static void
315 wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
316 {
317 	wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
318 }
319 
320 static void
321 wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
322 {
323 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
324 }
325 
326 static void
327 wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg,
328 		    u32 mask, u32 val)
329 {
330 	wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
331 }
332 
333 static void
334 wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg,
335 			u32 mask, u32 val)
336 {
337 	wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
338 }
339 
340 static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine,
341 				      struct i915_wa_list *wal)
342 {
343 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
344 }
345 
346 static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine,
347 				      struct i915_wa_list *wal)
348 {
349 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
350 }
351 
352 static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine,
353 				      struct i915_wa_list *wal)
354 {
355 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
356 
357 	/* WaDisableAsyncFlipPerfMode:bdw,chv */
358 	wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE);
359 
360 	/* WaDisablePartialInstShootdown:bdw,chv */
361 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
362 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
363 
364 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
365 	 * workaround for a possible hang in the unlikely event a TLB
366 	 * invalidation occurs during a PSD flush.
367 	 */
368 	/* WaForceEnableNonCoherent:bdw,chv */
369 	/* WaHdcDisableFetchWhenMasked:bdw,chv */
370 	wa_masked_en(wal, HDC_CHICKEN0,
371 		     HDC_DONOT_FETCH_MEM_WHEN_MASKED |
372 		     HDC_FORCE_NON_COHERENT);
373 
374 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
375 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
376 	 *  polygons in the same 8x4 pixel/sample area to be processed without
377 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
378 	 *  buffer."
379 	 *
380 	 * This optimization is off by default for BDW and CHV; turn it on.
381 	 */
382 	wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
383 
384 	/* Wa4x4STCOptimizationDisable:bdw,chv */
385 	wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
386 
387 	/*
388 	 * BSpec recommends 8x4 when MSAA is used,
389 	 * however in practice 16x4 seems fastest.
390 	 *
391 	 * Note that PS/WM thread counts depend on the WIZ hashing
392 	 * disable bit, which we don't touch here, but it's good
393 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
394 	 */
395 	wa_masked_field_set(wal, GEN7_GT_MODE,
396 			    GEN6_WIZ_HASHING_MASK,
397 			    GEN6_WIZ_HASHING_16x4);
398 }
399 
400 static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine,
401 				     struct i915_wa_list *wal)
402 {
403 	struct drm_i915_private *i915 = engine->i915;
404 
405 	gen8_ctx_workarounds_init(engine, wal);
406 
407 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
408 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
409 
410 	/* WaDisableDopClockGating:bdw
411 	 *
412 	 * Also see the related UCGTCL1 write in bdw_init_clock_gating()
413 	 * to disable EUTC clock gating.
414 	 */
415 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
416 			 DOP_CLOCK_GATING_DISABLE);
417 
418 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
419 			 GEN8_SAMPLER_POWER_BYPASS_DIS);
420 
421 	wa_masked_en(wal, HDC_CHICKEN0,
422 		     /* WaForceContextSaveRestoreNonCoherent:bdw */
423 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
424 		     /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
425 		     (IS_BROADWELL_GT3(i915) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
426 }
427 
428 static void chv_ctx_workarounds_init(struct intel_engine_cs *engine,
429 				     struct i915_wa_list *wal)
430 {
431 	gen8_ctx_workarounds_init(engine, wal);
432 
433 	/* WaDisableThreadStallDopClockGating:chv */
434 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
435 
436 	/* Improve HiZ throughput on CHV. */
437 	wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
438 }
439 
440 static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine,
441 				      struct i915_wa_list *wal)
442 {
443 	struct drm_i915_private *i915 = engine->i915;
444 
445 	if (HAS_LLC(i915)) {
446 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
447 		 *
448 		 * Must match Display Engine. See
449 		 * WaCompressedResourceDisplayNewHashMode.
450 		 */
451 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
452 			     GEN9_PBE_COMPRESSED_HASH_SELECTION);
453 		wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
454 				 GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR);
455 	}
456 
457 	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */
458 	/* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */
459 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
460 			 FLOW_CONTROL_ENABLE |
461 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
462 
463 	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */
464 	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */
465 	wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
466 			 GEN9_ENABLE_YV12_BUGFIX |
467 			 GEN9_ENABLE_GPGPU_PREEMPTION);
468 
469 	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */
470 	/* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */
471 	wa_masked_en(wal, CACHE_MODE_1,
472 		     GEN8_4x4_STC_OPTIMIZATION_DISABLE |
473 		     GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
474 
475 	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */
476 	wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5,
477 			  GEN9_CCS_TLB_PREFETCH_ENABLE);
478 
479 	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */
480 	wa_masked_en(wal, HDC_CHICKEN0,
481 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
482 		     HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
483 
484 	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
485 	 * both tied to WaForceContextSaveRestoreNonCoherent
486 	 * in some hsds for skl. We keep the tie for all gen9. The
487 	 * documentation is a bit hazy and so we want to get common behaviour,
488 	 * even though there is no clear evidence we would need both on kbl/bxt.
489 	 * This area has been source of system hangs so we play it safe
490 	 * and mimic the skl regardless of what bspec says.
491 	 *
492 	 * Use Force Non-Coherent whenever executing a 3D context. This
493 	 * is a workaround for a possible hang in the unlikely event
494 	 * a TLB invalidation occurs during a PSD flush.
495 	 */
496 
497 	/* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */
498 	wa_masked_en(wal, HDC_CHICKEN0,
499 		     HDC_FORCE_NON_COHERENT);
500 
501 	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */
502 	if (IS_SKYLAKE(i915) ||
503 	    IS_KABYLAKE(i915) ||
504 	    IS_COFFEELAKE(i915) ||
505 	    IS_COMETLAKE(i915))
506 		wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
507 				 GEN8_SAMPLER_POWER_BYPASS_DIS);
508 
509 	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */
510 	wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
511 
512 	/*
513 	 * Supporting preemption with fine-granularity requires changes in the
514 	 * batch buffer programming. Since we can't break old userspace, we
515 	 * need to set our default preemption level to safe value. Userspace is
516 	 * still able to use more fine-grained preemption levels, since in
517 	 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the
518 	 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are
519 	 * not real HW workarounds, but merely a way to start using preemption
520 	 * while maintaining old contract with userspace.
521 	 */
522 
523 	/* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */
524 	wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);
525 
526 	/* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */
527 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
528 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
529 			    GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);
530 
531 	/* WaClearHIZ_WM_CHICKEN3:bxt,glk */
532 	if (IS_GEN9_LP(i915))
533 		wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ);
534 }
535 
536 static void skl_tune_iz_hashing(struct intel_engine_cs *engine,
537 				struct i915_wa_list *wal)
538 {
539 	struct intel_gt *gt = engine->gt;
540 	u8 vals[3] = { 0, 0, 0 };
541 	unsigned int i;
542 
543 	for (i = 0; i < 3; i++) {
544 		u8 ss;
545 
546 		/*
547 		 * Only consider slices where one, and only one, subslice has 7
548 		 * EUs
549 		 */
550 		if (!is_power_of_2(gt->info.sseu.subslice_7eu[i]))
551 			continue;
552 
553 		/*
554 		 * subslice_7eu[i] != 0 (because of the check above) and
555 		 * ss_max == 4 (maximum number of subslices possible per slice)
556 		 *
557 		 * ->    0 <= ss <= 3;
558 		 */
559 		ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1;
560 		vals[i] = 3 - ss;
561 	}
562 
563 	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
564 		return;
565 
566 	/* Tune IZ hashing. See intel_device_info_runtime_init() */
567 	wa_masked_field_set(wal, GEN7_GT_MODE,
568 			    GEN9_IZ_HASHING_MASK(2) |
569 			    GEN9_IZ_HASHING_MASK(1) |
570 			    GEN9_IZ_HASHING_MASK(0),
571 			    GEN9_IZ_HASHING(2, vals[2]) |
572 			    GEN9_IZ_HASHING(1, vals[1]) |
573 			    GEN9_IZ_HASHING(0, vals[0]));
574 }
575 
576 static void skl_ctx_workarounds_init(struct intel_engine_cs *engine,
577 				     struct i915_wa_list *wal)
578 {
579 	gen9_ctx_workarounds_init(engine, wal);
580 	skl_tune_iz_hashing(engine, wal);
581 }
582 
583 static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine,
584 				     struct i915_wa_list *wal)
585 {
586 	gen9_ctx_workarounds_init(engine, wal);
587 
588 	/* WaDisableThreadStallDopClockGating:bxt */
589 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
590 			 STALL_DOP_GATING_DISABLE);
591 
592 	/* WaToEnableHwFixForPushConstHWBug:bxt */
593 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
594 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
595 }
596 
597 static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine,
598 				     struct i915_wa_list *wal)
599 {
600 	struct drm_i915_private *i915 = engine->i915;
601 
602 	gen9_ctx_workarounds_init(engine, wal);
603 
604 	/* WaToEnableHwFixForPushConstHWBug:kbl */
605 	if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER))
606 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
607 			     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
608 
609 	/* WaDisableSbeCacheDispatchPortSharing:kbl */
610 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
611 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
612 }
613 
614 static void glk_ctx_workarounds_init(struct intel_engine_cs *engine,
615 				     struct i915_wa_list *wal)
616 {
617 	gen9_ctx_workarounds_init(engine, wal);
618 
619 	/* WaToEnableHwFixForPushConstHWBug:glk */
620 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
621 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
622 }
623 
624 static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine,
625 				     struct i915_wa_list *wal)
626 {
627 	gen9_ctx_workarounds_init(engine, wal);
628 
629 	/* WaToEnableHwFixForPushConstHWBug:cfl */
630 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
631 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
632 
633 	/* WaDisableSbeCacheDispatchPortSharing:cfl */
634 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
635 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
636 }
637 
638 static void icl_ctx_workarounds_init(struct intel_engine_cs *engine,
639 				     struct i915_wa_list *wal)
640 {
641 	/* Wa_1406697149 (WaDisableBankHangMode:icl) */
642 	wa_write(wal, GEN8_L3CNTLREG, GEN8_ERRDETBCTRL);
643 
644 	/* WaForceEnableNonCoherent:icl
645 	 * This is not the same workaround as in early Gen9 platforms, where
646 	 * lacking this could cause system hangs, but coherency performance
647 	 * overhead is high and only a few compute workloads really need it
648 	 * (the register is whitelisted in hardware now, so UMDs can opt in
649 	 * for coherency if they have a good reason).
650 	 */
651 	wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT);
652 
653 	/* WaEnableFloatBlendOptimization:icl */
654 	wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
655 		   _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE),
656 		   0 /* write-only, so skip validation */,
657 		   true);
658 
659 	/* WaDisableGPGPUMidThreadPreemption:icl */
660 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
661 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
662 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
663 
664 	/* allow headerless messages for preemptible GPGPU context */
665 	wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
666 			 GEN11_SAMPLER_ENABLE_HEADLESS_MSG);
667 
668 	/* Wa_1604278689:icl,ehl */
669 	wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID);
670 	wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER,
671 			 0,
672 			 0xFFFFFFFF);
673 
674 	/* Wa_1406306137:icl,ehl */
675 	wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU);
676 }
677 
678 /*
679  * These settings aren't actually workarounds, but general tuning settings that
680  * need to be programmed on dg2 platform.
681  */
682 static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine,
683 				   struct i915_wa_list *wal)
684 {
685 	wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP);
686 	wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK,
687 			     REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f));
688 	wa_mcr_write_clr_set(wal, XEHP_FF_MODE2, FF_MODE2_TDS_TIMER_MASK,
689 			     FF_MODE2_TDS_TIMER_128);
690 }
691 
692 static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine,
693 				       struct i915_wa_list *wal)
694 {
695 	struct drm_i915_private *i915 = engine->i915;
696 
697 	/*
698 	 * Wa_1409142259:tgl,dg1,adl-p
699 	 * Wa_1409347922:tgl,dg1,adl-p
700 	 * Wa_1409252684:tgl,dg1,adl-p
701 	 * Wa_1409217633:tgl,dg1,adl-p
702 	 * Wa_1409207793:tgl,dg1,adl-p
703 	 * Wa_1409178076:tgl,dg1,adl-p
704 	 * Wa_1408979724:tgl,dg1,adl-p
705 	 * Wa_14010443199:tgl,rkl,dg1,adl-p
706 	 * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p
707 	 * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p
708 	 */
709 	wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3,
710 		     GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
711 
712 	/* WaDisableGPGPUMidThreadPreemption:gen12 */
713 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
714 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
715 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
716 
717 	/*
718 	 * Wa_16011163337 - GS_TIMER
719 	 *
720 	 * TDS_TIMER: Although some platforms refer to it as Wa_1604555607, we
721 	 * need to program it even on those that don't explicitly list that
722 	 * workaround.
723 	 *
724 	 * Note that the programming of GEN12_FF_MODE2 is further modified
725 	 * according to the FF_MODE2 guidance given by Wa_1608008084.
726 	 * Wa_1608008084 tells us the FF_MODE2 register will return the wrong
727 	 * value when read from the CPU.
728 	 *
729 	 * The default value for this register is zero for all fields.
730 	 * So instead of doing a RMW we should just write the desired values
731 	 * for TDS and GS timers. Note that since the readback can't be trusted,
732 	 * the clear mask is just set to ~0 to make sure other bits are not
733 	 * inadvertently set. For the same reason read verification is ignored.
734 	 */
735 	wa_add(wal,
736 	       GEN12_FF_MODE2,
737 	       ~0,
738 	       FF_MODE2_TDS_TIMER_128 | FF_MODE2_GS_TIMER_224,
739 	       0, false);
740 
741 	if (!IS_DG1(i915)) {
742 		/* Wa_1806527549 */
743 		wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE);
744 
745 		/* Wa_1606376872 */
746 		wa_masked_en(wal, COMMON_SLICE_CHICKEN4, DISABLE_TDC_LOAD_BALANCING_CALC);
747 	}
748 }
749 
750 static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine,
751 				     struct i915_wa_list *wal)
752 {
753 	gen12_ctx_workarounds_init(engine, wal);
754 
755 	/* Wa_1409044764 */
756 	wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3,
757 		      DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN);
758 
759 	/* Wa_22010493298 */
760 	wa_masked_en(wal, HIZ_CHICKEN,
761 		     DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE);
762 }
763 
764 static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine,
765 				     struct i915_wa_list *wal)
766 {
767 	dg2_ctx_gt_tuning_init(engine, wal);
768 
769 	/* Wa_16013271637:dg2 */
770 	wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
771 			 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
772 
773 	/* Wa_14014947963:dg2 */
774 	wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000);
775 
776 	/* Wa_18018764978:dg2 */
777 	wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
778 
779 	/* Wa_15010599737:dg2 */
780 	wa_mcr_masked_en(wal, CHICKEN_RASTER_1, DIS_SF_ROUND_NEAREST_EVEN);
781 
782 	/* Wa_18019271663:dg2 */
783 	wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
784 }
785 
786 static void xelpg_ctx_gt_tuning_init(struct intel_engine_cs *engine,
787 				     struct i915_wa_list *wal)
788 {
789 	struct intel_gt *gt = engine->gt;
790 
791 	dg2_ctx_gt_tuning_init(engine, wal);
792 
793 	/*
794 	 * Due to Wa_16014892111, the DRAW_WATERMARK tuning must be done in
795 	 * gen12_emit_indirect_ctx_rcs() rather than here on some early
796 	 * steppings.
797 	 */
798 	if (!(IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
799 	      IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)))
800 		wa_add(wal, DRAW_WATERMARK, VERT_WM_VAL, 0x3FF, 0, false);
801 }
802 
803 static void xelpg_ctx_workarounds_init(struct intel_engine_cs *engine,
804 				       struct i915_wa_list *wal)
805 {
806 	struct intel_gt *gt = engine->gt;
807 
808 	xelpg_ctx_gt_tuning_init(engine, wal);
809 
810 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
811 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
812 		/* Wa_14014947963 */
813 		wa_masked_field_set(wal, VF_PREEMPTION,
814 				    PREEMPTION_VERTEX_COUNT, 0x4000);
815 
816 		/* Wa_16013271637 */
817 		wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
818 				 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
819 
820 		/* Wa_18019627453 */
821 		wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS);
822 
823 		/* Wa_18018764978 */
824 		wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
825 	}
826 
827 	/* Wa_18019271663 */
828 	wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
829 }
830 
831 static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine,
832 					 struct i915_wa_list *wal)
833 {
834 	/*
835 	 * This is a "fake" workaround defined by software to ensure we
836 	 * maintain reliable, backward-compatible behavior for userspace with
837 	 * regards to how nested MI_BATCH_BUFFER_START commands are handled.
838 	 *
839 	 * The per-context setting of MI_MODE[12] determines whether the bits
840 	 * of a nested MI_BATCH_BUFFER_START instruction should be interpreted
841 	 * in the traditional manner or whether they should instead use a new
842 	 * tgl+ meaning that breaks backward compatibility, but allows nesting
843 	 * into 3rd-level batchbuffers.  When this new capability was first
844 	 * added in TGL, it remained off by default unless a context
845 	 * intentionally opted in to the new behavior.  However Xe_HPG now
846 	 * flips this on by default and requires that we explicitly opt out if
847 	 * we don't want the new behavior.
848 	 *
849 	 * From a SW perspective, we want to maintain the backward-compatible
850 	 * behavior for userspace, so we'll apply a fake workaround to set it
851 	 * back to the legacy behavior on platforms where the hardware default
852 	 * is to break compatibility.  At the moment there is no Linux
853 	 * userspace that utilizes third-level batchbuffers, so this will avoid
854 	 * userspace from needing to make any changes.  using the legacy
855 	 * meaning is the correct thing to do.  If/when we have userspace
856 	 * consumers that want to utilize third-level batch nesting, we can
857 	 * provide a context parameter to allow them to opt-in.
858 	 */
859 	wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN);
860 }
861 
862 static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine,
863 				   struct i915_wa_list *wal)
864 {
865 	u8 mocs;
866 
867 	/*
868 	 * Some blitter commands do not have a field for MOCS, those
869 	 * commands will use MOCS index pointed by BLIT_CCTL.
870 	 * BLIT_CCTL registers are needed to be programmed to un-cached.
871 	 */
872 	if (engine->class == COPY_ENGINE_CLASS) {
873 		mocs = engine->gt->mocs.uc_index;
874 		wa_write_clr_set(wal,
875 				 BLIT_CCTL(engine->mmio_base),
876 				 BLIT_CCTL_MASK,
877 				 BLIT_CCTL_MOCS(mocs, mocs));
878 	}
879 }
880 
881 /*
882  * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround
883  * defined by the hardware team, but it programming general context registers.
884  * Adding those context register programming in context workaround
885  * allow us to use the wa framework for proper application and validation.
886  */
887 static void
888 gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine,
889 			  struct i915_wa_list *wal)
890 {
891 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
892 		fakewa_disable_nestedbb_mode(engine, wal);
893 
894 	gen12_ctx_gt_mocs_init(engine, wal);
895 }
896 
897 static void
898 __intel_engine_init_ctx_wa(struct intel_engine_cs *engine,
899 			   struct i915_wa_list *wal,
900 			   const char *name)
901 {
902 	struct drm_i915_private *i915 = engine->i915;
903 
904 	wa_init_start(wal, engine->gt, name, engine->name);
905 
906 	/* Applies to all engines */
907 	/*
908 	 * Fake workarounds are not the actual workaround but
909 	 * programming of context registers using workaround framework.
910 	 */
911 	if (GRAPHICS_VER(i915) >= 12)
912 		gen12_ctx_gt_fake_wa_init(engine, wal);
913 
914 	if (engine->class != RENDER_CLASS)
915 		goto done;
916 
917 	if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
918 		xelpg_ctx_workarounds_init(engine, wal);
919 	else if (IS_PONTEVECCHIO(i915))
920 		; /* noop; none at this time */
921 	else if (IS_DG2(i915))
922 		dg2_ctx_workarounds_init(engine, wal);
923 	else if (IS_XEHPSDV(i915))
924 		; /* noop; none at this time */
925 	else if (IS_DG1(i915))
926 		dg1_ctx_workarounds_init(engine, wal);
927 	else if (GRAPHICS_VER(i915) == 12)
928 		gen12_ctx_workarounds_init(engine, wal);
929 	else if (GRAPHICS_VER(i915) == 11)
930 		icl_ctx_workarounds_init(engine, wal);
931 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
932 		cfl_ctx_workarounds_init(engine, wal);
933 	else if (IS_GEMINILAKE(i915))
934 		glk_ctx_workarounds_init(engine, wal);
935 	else if (IS_KABYLAKE(i915))
936 		kbl_ctx_workarounds_init(engine, wal);
937 	else if (IS_BROXTON(i915))
938 		bxt_ctx_workarounds_init(engine, wal);
939 	else if (IS_SKYLAKE(i915))
940 		skl_ctx_workarounds_init(engine, wal);
941 	else if (IS_CHERRYVIEW(i915))
942 		chv_ctx_workarounds_init(engine, wal);
943 	else if (IS_BROADWELL(i915))
944 		bdw_ctx_workarounds_init(engine, wal);
945 	else if (GRAPHICS_VER(i915) == 7)
946 		gen7_ctx_workarounds_init(engine, wal);
947 	else if (GRAPHICS_VER(i915) == 6)
948 		gen6_ctx_workarounds_init(engine, wal);
949 	else if (GRAPHICS_VER(i915) < 8)
950 		;
951 	else
952 		MISSING_CASE(GRAPHICS_VER(i915));
953 
954 done:
955 	wa_init_finish(wal);
956 }
957 
958 void intel_engine_init_ctx_wa(struct intel_engine_cs *engine)
959 {
960 	__intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context");
961 }
962 
963 int intel_engine_emit_ctx_wa(struct i915_request *rq)
964 {
965 	struct i915_wa_list *wal = &rq->engine->ctx_wa_list;
966 	struct intel_uncore *uncore = rq->engine->uncore;
967 	enum forcewake_domains fw;
968 	unsigned long flags;
969 	struct i915_wa *wa;
970 	unsigned int i;
971 	u32 *cs;
972 	int ret;
973 
974 	if (wal->count == 0)
975 		return 0;
976 
977 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
978 	if (ret)
979 		return ret;
980 
981 	cs = intel_ring_begin(rq, (wal->count * 2 + 2));
982 	if (IS_ERR(cs))
983 		return PTR_ERR(cs);
984 
985 	fw = wal_get_fw_for_rmw(uncore, wal);
986 
987 	intel_gt_mcr_lock(wal->gt, &flags);
988 	spin_lock(&uncore->lock);
989 	intel_uncore_forcewake_get__locked(uncore, fw);
990 
991 	*cs++ = MI_LOAD_REGISTER_IMM(wal->count);
992 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
993 		u32 val;
994 
995 		/* Skip reading the register if it's not really needed */
996 		if (wa->masked_reg || (wa->clr | wa->set) == U32_MAX) {
997 			val = wa->set;
998 		} else {
999 			val = wa->is_mcr ?
1000 				intel_gt_mcr_read_any_fw(wal->gt, wa->mcr_reg) :
1001 				intel_uncore_read_fw(uncore, wa->reg);
1002 			val &= ~wa->clr;
1003 			val |= wa->set;
1004 		}
1005 
1006 		*cs++ = i915_mmio_reg_offset(wa->reg);
1007 		*cs++ = val;
1008 	}
1009 	*cs++ = MI_NOOP;
1010 
1011 	intel_uncore_forcewake_put__locked(uncore, fw);
1012 	spin_unlock(&uncore->lock);
1013 	intel_gt_mcr_unlock(wal->gt, flags);
1014 
1015 	intel_ring_advance(rq, cs);
1016 
1017 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
1018 	if (ret)
1019 		return ret;
1020 
1021 	return 0;
1022 }
1023 
1024 static void
1025 gen4_gt_workarounds_init(struct intel_gt *gt,
1026 			 struct i915_wa_list *wal)
1027 {
1028 	/* WaDisable_RenderCache_OperationalFlush:gen4,ilk */
1029 	wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
1030 }
1031 
1032 static void
1033 g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1034 {
1035 	gen4_gt_workarounds_init(gt, wal);
1036 
1037 	/* WaDisableRenderCachePipelinedFlush:g4x,ilk */
1038 	wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE);
1039 }
1040 
1041 static void
1042 ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1043 {
1044 	g4x_gt_workarounds_init(gt, wal);
1045 
1046 	wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED);
1047 }
1048 
1049 static void
1050 snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1051 {
1052 }
1053 
1054 static void
1055 ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1056 {
1057 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
1058 	wa_masked_dis(wal,
1059 		      GEN7_COMMON_SLICE_CHICKEN1,
1060 		      GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
1061 
1062 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
1063 	wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
1064 	wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
1065 
1066 	/* WaForceL3Serialization:ivb */
1067 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1068 }
1069 
1070 static void
1071 vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1072 {
1073 	/* WaForceL3Serialization:vlv */
1074 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1075 
1076 	/*
1077 	 * WaIncreaseL3CreditsForVLVB0:vlv
1078 	 * This is the hardware default actually.
1079 	 */
1080 	wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
1081 }
1082 
1083 static void
1084 hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1085 {
1086 	/* L3 caching of data atomics doesn't work -- disable it. */
1087 	wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
1088 
1089 	wa_add(wal,
1090 	       HSW_ROW_CHICKEN3, 0,
1091 	       _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
1092 	       0 /* XXX does this reg exist? */, true);
1093 
1094 	/* WaVSRefCountFullforceMissDisable:hsw */
1095 	wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME);
1096 }
1097 
1098 static void
1099 gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal)
1100 {
1101 	const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu;
1102 	unsigned int slice, subslice;
1103 	u32 mcr, mcr_mask;
1104 
1105 	GEM_BUG_ON(GRAPHICS_VER(i915) != 9);
1106 
1107 	/*
1108 	 * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml
1109 	 * Before any MMIO read into slice/subslice specific registers, MCR
1110 	 * packet control register needs to be programmed to point to any
1111 	 * enabled s/ss pair. Otherwise, incorrect values will be returned.
1112 	 * This means each subsequent MMIO read will be forwarded to an
1113 	 * specific s/ss combination, but this is OK since these registers
1114 	 * are consistent across s/ss in almost all cases. In the rare
1115 	 * occasions, such as INSTDONE, where this value is dependent
1116 	 * on s/ss combo, the read should be done with read_subslice_reg.
1117 	 */
1118 	slice = ffs(sseu->slice_mask) - 1;
1119 	GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw));
1120 	subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice));
1121 	GEM_BUG_ON(!subslice);
1122 	subslice--;
1123 
1124 	/*
1125 	 * We use GEN8_MCR..() macros to calculate the |mcr| value for
1126 	 * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads
1127 	 */
1128 	mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1129 	mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1130 
1131 	drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr);
1132 
1133 	wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr);
1134 }
1135 
1136 static void
1137 gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1138 {
1139 	struct drm_i915_private *i915 = gt->i915;
1140 
1141 	/* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */
1142 	gen9_wa_init_mcr(i915, wal);
1143 
1144 	/* WaDisableKillLogic:bxt,skl,kbl */
1145 	if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915))
1146 		wa_write_or(wal,
1147 			    GAM_ECOCHK,
1148 			    ECOCHK_DIS_TLB);
1149 
1150 	if (HAS_LLC(i915)) {
1151 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
1152 		 *
1153 		 * Must match Display Engine. See
1154 		 * WaCompressedResourceDisplayNewHashMode.
1155 		 */
1156 		wa_write_or(wal,
1157 			    MMCD_MISC_CTRL,
1158 			    MMCD_PCLA | MMCD_HOTSPOT_EN);
1159 	}
1160 
1161 	/* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */
1162 	wa_write_or(wal,
1163 		    GAM_ECOCHK,
1164 		    BDW_DISABLE_HDC_INVALIDATION);
1165 }
1166 
1167 static void
1168 skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1169 {
1170 	gen9_gt_workarounds_init(gt, wal);
1171 
1172 	/* WaDisableGafsUnitClkGating:skl */
1173 	wa_write_or(wal,
1174 		    GEN7_UCGCTL4,
1175 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1176 
1177 	/* WaInPlaceDecompressionHang:skl */
1178 	if (IS_SKYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0))
1179 		wa_write_or(wal,
1180 			    GEN9_GAMT_ECO_REG_RW_IA,
1181 			    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1182 }
1183 
1184 static void
1185 kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1186 {
1187 	gen9_gt_workarounds_init(gt, wal);
1188 
1189 	/* WaDisableDynamicCreditSharing:kbl */
1190 	if (IS_KABYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, 0, STEP_C0))
1191 		wa_write_or(wal,
1192 			    GAMT_CHKN_BIT_REG,
1193 			    GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1194 
1195 	/* WaDisableGafsUnitClkGating:kbl */
1196 	wa_write_or(wal,
1197 		    GEN7_UCGCTL4,
1198 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1199 
1200 	/* WaInPlaceDecompressionHang:kbl */
1201 	wa_write_or(wal,
1202 		    GEN9_GAMT_ECO_REG_RW_IA,
1203 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1204 }
1205 
1206 static void
1207 glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1208 {
1209 	gen9_gt_workarounds_init(gt, wal);
1210 }
1211 
1212 static void
1213 cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1214 {
1215 	gen9_gt_workarounds_init(gt, wal);
1216 
1217 	/* WaDisableGafsUnitClkGating:cfl */
1218 	wa_write_or(wal,
1219 		    GEN7_UCGCTL4,
1220 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1221 
1222 	/* WaInPlaceDecompressionHang:cfl */
1223 	wa_write_or(wal,
1224 		    GEN9_GAMT_ECO_REG_RW_IA,
1225 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1226 }
1227 
1228 static void __set_mcr_steering(struct i915_wa_list *wal,
1229 			       i915_reg_t steering_reg,
1230 			       unsigned int slice, unsigned int subslice)
1231 {
1232 	u32 mcr, mcr_mask;
1233 
1234 	mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1235 	mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1236 
1237 	wa_write_clr_set(wal, steering_reg, mcr_mask, mcr);
1238 }
1239 
1240 static void debug_dump_steering(struct intel_gt *gt)
1241 {
1242 	struct drm_printer p = drm_debug_printer("MCR Steering:");
1243 
1244 	if (drm_debug_enabled(DRM_UT_DRIVER))
1245 		intel_gt_mcr_report_steering(&p, gt, false);
1246 }
1247 
1248 static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal,
1249 			 unsigned int slice, unsigned int subslice)
1250 {
1251 	__set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice);
1252 
1253 	gt->default_steering.groupid = slice;
1254 	gt->default_steering.instanceid = subslice;
1255 
1256 	debug_dump_steering(gt);
1257 }
1258 
1259 static void
1260 icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1261 {
1262 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1263 	unsigned int subslice;
1264 
1265 	GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11);
1266 	GEM_BUG_ON(hweight8(sseu->slice_mask) > 1);
1267 
1268 	/*
1269 	 * Although a platform may have subslices, we need to always steer
1270 	 * reads to the lowest instance that isn't fused off.  When Render
1271 	 * Power Gating is enabled, grabbing forcewake will only power up a
1272 	 * single subslice (the "minconfig") if there isn't a real workload
1273 	 * that needs to be run; this means that if we steer register reads to
1274 	 * one of the higher subslices, we run the risk of reading back 0's or
1275 	 * random garbage.
1276 	 */
1277 	subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0));
1278 
1279 	/*
1280 	 * If the subslice we picked above also steers us to a valid L3 bank,
1281 	 * then we can just rely on the default steering and won't need to
1282 	 * worry about explicitly re-steering L3BANK reads later.
1283 	 */
1284 	if (gt->info.l3bank_mask & BIT(subslice))
1285 		gt->steering_table[L3BANK] = NULL;
1286 
1287 	__add_mcr_wa(gt, wal, 0, subslice);
1288 }
1289 
1290 static void
1291 xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1292 {
1293 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1294 	unsigned long slice, subslice = 0, slice_mask = 0;
1295 	u32 lncf_mask = 0;
1296 	int i;
1297 
1298 	/*
1299 	 * On Xe_HP the steering increases in complexity. There are now several
1300 	 * more units that require steering and we're not guaranteed to be able
1301 	 * to find a common setting for all of them. These are:
1302 	 * - GSLICE (fusable)
1303 	 * - DSS (sub-unit within gslice; fusable)
1304 	 * - L3 Bank (fusable)
1305 	 * - MSLICE (fusable)
1306 	 * - LNCF (sub-unit within mslice; always present if mslice is present)
1307 	 *
1308 	 * We'll do our default/implicit steering based on GSLICE (in the
1309 	 * sliceid field) and DSS (in the subsliceid field).  If we can
1310 	 * find overlap between the valid MSLICE and/or LNCF values with
1311 	 * a suitable GSLICE, then we can just re-use the default value and
1312 	 * skip and explicit steering at runtime.
1313 	 *
1314 	 * We only need to look for overlap between GSLICE/MSLICE/LNCF to find
1315 	 * a valid sliceid value.  DSS steering is the only type of steering
1316 	 * that utilizes the 'subsliceid' bits.
1317 	 *
1318 	 * Also note that, even though the steering domain is called "GSlice"
1319 	 * and it is encoded in the register using the gslice format, the spec
1320 	 * says that the combined (geometry | compute) fuse should be used to
1321 	 * select the steering.
1322 	 */
1323 
1324 	/* Find the potential gslice candidates */
1325 	slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask,
1326 						       GEN_DSS_PER_GSLICE);
1327 
1328 	/*
1329 	 * Find the potential LNCF candidates.  Either LNCF within a valid
1330 	 * mslice is fine.
1331 	 */
1332 	for_each_set_bit(i, &gt->info.mslice_mask, GEN12_MAX_MSLICES)
1333 		lncf_mask |= (0x3 << (i * 2));
1334 
1335 	/*
1336 	 * Are there any sliceid values that work for both GSLICE and LNCF
1337 	 * steering?
1338 	 */
1339 	if (slice_mask & lncf_mask) {
1340 		slice_mask &= lncf_mask;
1341 		gt->steering_table[LNCF] = NULL;
1342 	}
1343 
1344 	/* How about sliceid values that also work for MSLICE steering? */
1345 	if (slice_mask & gt->info.mslice_mask) {
1346 		slice_mask &= gt->info.mslice_mask;
1347 		gt->steering_table[MSLICE] = NULL;
1348 	}
1349 
1350 	if (IS_XEHPSDV(gt->i915) && slice_mask & BIT(0))
1351 		gt->steering_table[GAM] = NULL;
1352 
1353 	slice = __ffs(slice_mask);
1354 	subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) %
1355 		GEN_DSS_PER_GSLICE;
1356 
1357 	__add_mcr_wa(gt, wal, slice, subslice);
1358 
1359 	/*
1360 	 * SQIDI ranges are special because they use different steering
1361 	 * registers than everything else we work with.  On XeHP SDV and
1362 	 * DG2-G10, any value in the steering registers will work fine since
1363 	 * all instances are present, but DG2-G11 only has SQIDI instances at
1364 	 * ID's 2 and 3, so we need to steer to one of those.  For simplicity
1365 	 * we'll just steer to a hardcoded "2" since that value will work
1366 	 * everywhere.
1367 	 */
1368 	__set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2);
1369 	__set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2);
1370 
1371 	/*
1372 	 * On DG2, GAM registers have a dedicated steering control register
1373 	 * and must always be programmed to a hardcoded groupid of "1."
1374 	 */
1375 	if (IS_DG2(gt->i915))
1376 		__set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0);
1377 }
1378 
1379 static void
1380 pvc_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1381 {
1382 	unsigned int dss;
1383 
1384 	/*
1385 	 * Setup implicit steering for COMPUTE and DSS ranges to the first
1386 	 * non-fused-off DSS.  All other types of MCR registers will be
1387 	 * explicitly steered.
1388 	 */
1389 	dss = intel_sseu_find_first_xehp_dss(&gt->info.sseu, 0, 0);
1390 	__add_mcr_wa(gt, wal, dss / GEN_DSS_PER_CSLICE, dss % GEN_DSS_PER_CSLICE);
1391 }
1392 
1393 static void
1394 icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1395 {
1396 	struct drm_i915_private *i915 = gt->i915;
1397 
1398 	icl_wa_init_mcr(gt, wal);
1399 
1400 	/* WaModifyGamTlbPartitioning:icl */
1401 	wa_write_clr_set(wal,
1402 			 GEN11_GACB_PERF_CTRL,
1403 			 GEN11_HASH_CTRL_MASK,
1404 			 GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4);
1405 
1406 	/* Wa_1405766107:icl
1407 	 * Formerly known as WaCL2SFHalfMaxAlloc
1408 	 */
1409 	wa_write_or(wal,
1410 		    GEN11_LSN_UNSLCVC,
1411 		    GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC |
1412 		    GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC);
1413 
1414 	/* Wa_220166154:icl
1415 	 * Formerly known as WaDisCtxReload
1416 	 */
1417 	wa_write_or(wal,
1418 		    GEN8_GAMW_ECO_DEV_RW_IA,
1419 		    GAMW_ECO_DEV_CTX_RELOAD_DISABLE);
1420 
1421 	/* Wa_1406463099:icl
1422 	 * Formerly known as WaGamTlbPendError
1423 	 */
1424 	wa_write_or(wal,
1425 		    GAMT_CHKN_BIT_REG,
1426 		    GAMT_CHKN_DISABLE_L3_COH_PIPE);
1427 
1428 	/*
1429 	 * Wa_1408615072:icl,ehl  (vsunit)
1430 	 * Wa_1407596294:icl,ehl  (hsunit)
1431 	 */
1432 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1433 		    VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);
1434 
1435 	/* Wa_1407352427:icl,ehl */
1436 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1437 		    PSDUNIT_CLKGATE_DIS);
1438 
1439 	/* Wa_1406680159:icl,ehl */
1440 	wa_mcr_write_or(wal,
1441 			GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1442 			GWUNIT_CLKGATE_DIS);
1443 
1444 	/* Wa_1607087056:icl,ehl,jsl */
1445 	if (IS_ICELAKE(i915) ||
1446 		((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) &&
1447 		IS_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)))
1448 		wa_write_or(wal,
1449 			    GEN11_SLICE_UNIT_LEVEL_CLKGATE,
1450 			    L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1451 
1452 	/*
1453 	 * This is not a documented workaround, but rather an optimization
1454 	 * to reduce sampler power.
1455 	 */
1456 	wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1457 }
1458 
1459 /*
1460  * Though there are per-engine instances of these registers,
1461  * they retain their value through engine resets and should
1462  * only be provided on the GT workaround list rather than
1463  * the engine-specific workaround list.
1464  */
1465 static void
1466 wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal)
1467 {
1468 	struct intel_engine_cs *engine;
1469 	int id;
1470 
1471 	for_each_engine(engine, gt, id) {
1472 		if (engine->class != VIDEO_DECODE_CLASS ||
1473 		    (engine->instance % 2))
1474 			continue;
1475 
1476 		wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base),
1477 			    IECPUNIT_CLKGATE_DIS);
1478 	}
1479 }
1480 
1481 static void
1482 gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1483 {
1484 	icl_wa_init_mcr(gt, wal);
1485 
1486 	/* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */
1487 	wa_14011060649(gt, wal);
1488 
1489 	/* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */
1490 	wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1491 
1492 	/*
1493 	 * Wa_14015795083
1494 	 *
1495 	 * Firmware on some gen12 platforms locks the MISCCPCTL register,
1496 	 * preventing i915 from modifying it for this workaround.  Skip the
1497 	 * readback verification for this workaround on debug builds; if the
1498 	 * workaround doesn't stick due to firmware behavior, it's not an error
1499 	 * that we want CI to flag.
1500 	 */
1501 	wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE,
1502 	       0, 0, false);
1503 }
1504 
1505 static void
1506 dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1507 {
1508 	gen12_gt_workarounds_init(gt, wal);
1509 
1510 	/* Wa_1409420604:dg1 */
1511 	wa_mcr_write_or(wal, SUBSLICE_UNIT_LEVEL_CLKGATE2,
1512 			CPSSUNIT_CLKGATE_DIS);
1513 
1514 	/* Wa_1408615072:dg1 */
1515 	/* Empirical testing shows this register is unaffected by engine reset. */
1516 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, VSUNIT_CLKGATE_DIS_TGL);
1517 }
1518 
1519 static void
1520 xehpsdv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1521 {
1522 	struct drm_i915_private *i915 = gt->i915;
1523 
1524 	xehp_init_mcr(gt, wal);
1525 
1526 	/* Wa_1409757795:xehpsdv */
1527 	wa_mcr_write_or(wal, SCCGCTL94DC, CG3DDISURB);
1528 
1529 	/* Wa_18011725039:xehpsdv */
1530 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_B0)) {
1531 		wa_mcr_masked_dis(wal, MLTICTXCTL, TDONRENDER);
1532 		wa_mcr_write_or(wal, L3SQCREG1_CCS0, FLUSHALLNONCOH);
1533 	}
1534 
1535 	/* Wa_16011155590:xehpsdv */
1536 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1537 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1538 			    TSGUNIT_CLKGATE_DIS);
1539 
1540 	/* Wa_14011780169:xehpsdv */
1541 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_B0, STEP_FOREVER)) {
1542 		wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS |
1543 			    GAMTLBVDBOX7_CLKGATE_DIS |
1544 			    GAMTLBVDBOX6_CLKGATE_DIS |
1545 			    GAMTLBVDBOX5_CLKGATE_DIS |
1546 			    GAMTLBVDBOX4_CLKGATE_DIS |
1547 			    GAMTLBVDBOX3_CLKGATE_DIS |
1548 			    GAMTLBVDBOX2_CLKGATE_DIS |
1549 			    GAMTLBVDBOX1_CLKGATE_DIS |
1550 			    GAMTLBVDBOX0_CLKGATE_DIS |
1551 			    GAMTLBKCR_CLKGATE_DIS |
1552 			    GAMTLBGUC_CLKGATE_DIS |
1553 			    GAMTLBBLT_CLKGATE_DIS);
1554 		wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS |
1555 			    GAMTLBGFXA1_CLKGATE_DIS |
1556 			    GAMTLBCOMPA0_CLKGATE_DIS |
1557 			    GAMTLBCOMPA1_CLKGATE_DIS |
1558 			    GAMTLBCOMPB0_CLKGATE_DIS |
1559 			    GAMTLBCOMPB1_CLKGATE_DIS |
1560 			    GAMTLBCOMPC0_CLKGATE_DIS |
1561 			    GAMTLBCOMPC1_CLKGATE_DIS |
1562 			    GAMTLBCOMPD0_CLKGATE_DIS |
1563 			    GAMTLBCOMPD1_CLKGATE_DIS |
1564 			    GAMTLBMERT_CLKGATE_DIS   |
1565 			    GAMTLBVEBOX3_CLKGATE_DIS |
1566 			    GAMTLBVEBOX2_CLKGATE_DIS |
1567 			    GAMTLBVEBOX1_CLKGATE_DIS |
1568 			    GAMTLBVEBOX0_CLKGATE_DIS);
1569 	}
1570 
1571 	/* Wa_16012725990:xehpsdv */
1572 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_FOREVER))
1573 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, VFUNIT_CLKGATE_DIS);
1574 
1575 	/* Wa_14011060649:xehpsdv */
1576 	wa_14011060649(gt, wal);
1577 
1578 	/* Wa_14012362059:xehpsdv */
1579 	wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB);
1580 
1581 	/* Wa_14014368820:xehpsdv */
1582 	wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1583 			INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1584 
1585 	/* Wa_14010670810:xehpsdv */
1586 	wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1587 }
1588 
1589 static void
1590 dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1591 {
1592 	xehp_init_mcr(gt, wal);
1593 
1594 	/* Wa_14011060649:dg2 */
1595 	wa_14011060649(gt, wal);
1596 
1597 	if (IS_DG2_G10(gt->i915)) {
1598 		/* Wa_22010523718:dg2 */
1599 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1600 			    CG3DDISCFEG_CLKGATE_DIS);
1601 
1602 		/* Wa_14011006942:dg2 */
1603 		wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1604 				DSS_ROUTER_CLKGATE_DIS);
1605 	}
1606 
1607 	/* Wa_14014830051:dg2 */
1608 	wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1609 
1610 	/* Wa_14015795083 */
1611 	wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1612 
1613 	/* Wa_18018781329 */
1614 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1615 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1616 	wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1617 	wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1618 
1619 	/* Wa_1509235366:dg2 */
1620 	wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1621 			INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1622 
1623 	/* Wa_14010648519:dg2 */
1624 	wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1625 }
1626 
1627 static void
1628 pvc_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1629 {
1630 	pvc_init_mcr(gt, wal);
1631 
1632 	/* Wa_14015795083 */
1633 	wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1634 
1635 	/* Wa_18018781329 */
1636 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1637 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1638 	wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1639 	wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1640 
1641 	/* Wa_16016694945 */
1642 	wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_OVRLSCCC);
1643 }
1644 
1645 static void
1646 xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1647 {
1648 	/* Wa_14018575942 / Wa_18018781329 */
1649 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1650 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1651 
1652 	/* Wa_22016670082 */
1653 	wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE);
1654 
1655 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
1656 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
1657 		/* Wa_14014830051 */
1658 		wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1659 
1660 		/* Wa_14015795083 */
1661 		wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1662 	}
1663 
1664 	/*
1665 	 * Unlike older platforms, we no longer setup implicit steering here;
1666 	 * all MCR accesses are explicitly steered.
1667 	 */
1668 	debug_dump_steering(gt);
1669 }
1670 
1671 static void
1672 xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1673 {
1674 	/*
1675 	 * Wa_14018778641
1676 	 * Wa_18018781329
1677 	 *
1678 	 * Note that although these registers are MCR on the primary
1679 	 * GT, the media GT's versions are regular singleton registers.
1680 	 */
1681 	wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB);
1682 
1683 	debug_dump_steering(gt);
1684 }
1685 
1686 /*
1687  * The bspec performance guide has recommended MMIO tuning settings.  These
1688  * aren't truly "workarounds" but we want to program them through the
1689  * workaround infrastructure to make sure they're (re)applied at the proper
1690  * times.
1691  *
1692  * The programming in this function is for settings that persist through
1693  * engine resets and also are not part of any engine's register state context.
1694  * I.e., settings that only need to be re-applied in the event of a full GT
1695  * reset.
1696  */
1697 static void gt_tuning_settings(struct intel_gt *gt, struct i915_wa_list *wal)
1698 {
1699 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) {
1700 		wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1701 		wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1702 	}
1703 
1704 	if (IS_PONTEVECCHIO(gt->i915)) {
1705 		wa_mcr_write(wal, XEHPC_L3SCRUB,
1706 			     SCRUB_CL_DWNGRADE_SHARED | SCRUB_RATE_4B_PER_CLK);
1707 		wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_HOSTCACHEEN);
1708 	}
1709 
1710 	if (IS_DG2(gt->i915)) {
1711 		wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1712 		wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1713 	}
1714 }
1715 
1716 static void
1717 gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal)
1718 {
1719 	struct drm_i915_private *i915 = gt->i915;
1720 
1721 	gt_tuning_settings(gt, wal);
1722 
1723 	if (gt->type == GT_MEDIA) {
1724 		if (MEDIA_VER(i915) >= 13)
1725 			xelpmp_gt_workarounds_init(gt, wal);
1726 		else
1727 			MISSING_CASE(MEDIA_VER(i915));
1728 
1729 		return;
1730 	}
1731 
1732 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)))
1733 		xelpg_gt_workarounds_init(gt, wal);
1734 	else if (IS_PONTEVECCHIO(i915))
1735 		pvc_gt_workarounds_init(gt, wal);
1736 	else if (IS_DG2(i915))
1737 		dg2_gt_workarounds_init(gt, wal);
1738 	else if (IS_XEHPSDV(i915))
1739 		xehpsdv_gt_workarounds_init(gt, wal);
1740 	else if (IS_DG1(i915))
1741 		dg1_gt_workarounds_init(gt, wal);
1742 	else if (GRAPHICS_VER(i915) == 12)
1743 		gen12_gt_workarounds_init(gt, wal);
1744 	else if (GRAPHICS_VER(i915) == 11)
1745 		icl_gt_workarounds_init(gt, wal);
1746 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
1747 		cfl_gt_workarounds_init(gt, wal);
1748 	else if (IS_GEMINILAKE(i915))
1749 		glk_gt_workarounds_init(gt, wal);
1750 	else if (IS_KABYLAKE(i915))
1751 		kbl_gt_workarounds_init(gt, wal);
1752 	else if (IS_BROXTON(i915))
1753 		gen9_gt_workarounds_init(gt, wal);
1754 	else if (IS_SKYLAKE(i915))
1755 		skl_gt_workarounds_init(gt, wal);
1756 	else if (IS_HASWELL(i915))
1757 		hsw_gt_workarounds_init(gt, wal);
1758 	else if (IS_VALLEYVIEW(i915))
1759 		vlv_gt_workarounds_init(gt, wal);
1760 	else if (IS_IVYBRIDGE(i915))
1761 		ivb_gt_workarounds_init(gt, wal);
1762 	else if (GRAPHICS_VER(i915) == 6)
1763 		snb_gt_workarounds_init(gt, wal);
1764 	else if (GRAPHICS_VER(i915) == 5)
1765 		ilk_gt_workarounds_init(gt, wal);
1766 	else if (IS_G4X(i915))
1767 		g4x_gt_workarounds_init(gt, wal);
1768 	else if (GRAPHICS_VER(i915) == 4)
1769 		gen4_gt_workarounds_init(gt, wal);
1770 	else if (GRAPHICS_VER(i915) <= 8)
1771 		;
1772 	else
1773 		MISSING_CASE(GRAPHICS_VER(i915));
1774 }
1775 
1776 void intel_gt_init_workarounds(struct intel_gt *gt)
1777 {
1778 	struct i915_wa_list *wal = &gt->wa_list;
1779 
1780 	wa_init_start(wal, gt, "GT", "global");
1781 	gt_init_workarounds(gt, wal);
1782 	wa_init_finish(wal);
1783 }
1784 
1785 static bool
1786 wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur,
1787 	  const char *name, const char *from)
1788 {
1789 	if ((cur ^ wa->set) & wa->read) {
1790 		drm_err(&gt->i915->drm,
1791 			"%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n",
1792 			name, from, i915_mmio_reg_offset(wa->reg),
1793 			cur, cur & wa->read, wa->set & wa->read);
1794 
1795 		return false;
1796 	}
1797 
1798 	return true;
1799 }
1800 
1801 static void wa_list_apply(const struct i915_wa_list *wal)
1802 {
1803 	struct intel_gt *gt = wal->gt;
1804 	struct intel_uncore *uncore = gt->uncore;
1805 	enum forcewake_domains fw;
1806 	unsigned long flags;
1807 	struct i915_wa *wa;
1808 	unsigned int i;
1809 
1810 	if (!wal->count)
1811 		return;
1812 
1813 	fw = wal_get_fw_for_rmw(uncore, wal);
1814 
1815 	intel_gt_mcr_lock(gt, &flags);
1816 	spin_lock(&uncore->lock);
1817 	intel_uncore_forcewake_get__locked(uncore, fw);
1818 
1819 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
1820 		u32 val, old = 0;
1821 
1822 		/* open-coded rmw due to steering */
1823 		if (wa->clr)
1824 			old = wa->is_mcr ?
1825 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1826 				intel_uncore_read_fw(uncore, wa->reg);
1827 		val = (old & ~wa->clr) | wa->set;
1828 		if (val != old || !wa->clr) {
1829 			if (wa->is_mcr)
1830 				intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val);
1831 			else
1832 				intel_uncore_write_fw(uncore, wa->reg, val);
1833 		}
1834 
1835 		if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
1836 			u32 val = wa->is_mcr ?
1837 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1838 				intel_uncore_read_fw(uncore, wa->reg);
1839 
1840 			wa_verify(gt, wa, val, wal->name, "application");
1841 		}
1842 	}
1843 
1844 	intel_uncore_forcewake_put__locked(uncore, fw);
1845 	spin_unlock(&uncore->lock);
1846 	intel_gt_mcr_unlock(gt, flags);
1847 }
1848 
1849 void intel_gt_apply_workarounds(struct intel_gt *gt)
1850 {
1851 	wa_list_apply(&gt->wa_list);
1852 }
1853 
1854 static bool wa_list_verify(struct intel_gt *gt,
1855 			   const struct i915_wa_list *wal,
1856 			   const char *from)
1857 {
1858 	struct intel_uncore *uncore = gt->uncore;
1859 	struct i915_wa *wa;
1860 	enum forcewake_domains fw;
1861 	unsigned long flags;
1862 	unsigned int i;
1863 	bool ok = true;
1864 
1865 	fw = wal_get_fw_for_rmw(uncore, wal);
1866 
1867 	intel_gt_mcr_lock(gt, &flags);
1868 	spin_lock(&uncore->lock);
1869 	intel_uncore_forcewake_get__locked(uncore, fw);
1870 
1871 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1872 		ok &= wa_verify(wal->gt, wa, wa->is_mcr ?
1873 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1874 				intel_uncore_read_fw(uncore, wa->reg),
1875 				wal->name, from);
1876 
1877 	intel_uncore_forcewake_put__locked(uncore, fw);
1878 	spin_unlock(&uncore->lock);
1879 	intel_gt_mcr_unlock(gt, flags);
1880 
1881 	return ok;
1882 }
1883 
1884 bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from)
1885 {
1886 	return wa_list_verify(gt, &gt->wa_list, from);
1887 }
1888 
1889 __maybe_unused
1890 static bool is_nonpriv_flags_valid(u32 flags)
1891 {
1892 	/* Check only valid flag bits are set */
1893 	if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID)
1894 		return false;
1895 
1896 	/* NB: Only 3 out of 4 enum values are valid for access field */
1897 	if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) ==
1898 	    RING_FORCE_TO_NONPRIV_ACCESS_INVALID)
1899 		return false;
1900 
1901 	return true;
1902 }
1903 
1904 static void
1905 whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags)
1906 {
1907 	struct i915_wa wa = {
1908 		.reg = reg
1909 	};
1910 
1911 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1912 		return;
1913 
1914 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1915 		return;
1916 
1917 	wa.reg.reg |= flags;
1918 	_wa_add(wal, &wa);
1919 }
1920 
1921 static void
1922 whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags)
1923 {
1924 	struct i915_wa wa = {
1925 		.mcr_reg = reg,
1926 		.is_mcr = 1,
1927 	};
1928 
1929 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1930 		return;
1931 
1932 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1933 		return;
1934 
1935 	wa.mcr_reg.reg |= flags;
1936 	_wa_add(wal, &wa);
1937 }
1938 
1939 static void
1940 whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg)
1941 {
1942 	whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1943 }
1944 
1945 static void
1946 whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg)
1947 {
1948 	whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1949 }
1950 
1951 static void gen9_whitelist_build(struct i915_wa_list *w)
1952 {
1953 	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */
1954 	whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
1955 
1956 	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */
1957 	whitelist_reg(w, GEN8_CS_CHICKEN1);
1958 
1959 	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */
1960 	whitelist_reg(w, GEN8_HDC_CHICKEN1);
1961 
1962 	/* WaSendPushConstantsFromMMIO:skl,bxt */
1963 	whitelist_reg(w, COMMON_SLICE_CHICKEN2);
1964 }
1965 
1966 static void skl_whitelist_build(struct intel_engine_cs *engine)
1967 {
1968 	struct i915_wa_list *w = &engine->whitelist;
1969 
1970 	if (engine->class != RENDER_CLASS)
1971 		return;
1972 
1973 	gen9_whitelist_build(w);
1974 
1975 	/* WaDisableLSQCROPERFforOCL:skl */
1976 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
1977 }
1978 
1979 static void bxt_whitelist_build(struct intel_engine_cs *engine)
1980 {
1981 	if (engine->class != RENDER_CLASS)
1982 		return;
1983 
1984 	gen9_whitelist_build(&engine->whitelist);
1985 }
1986 
1987 static void kbl_whitelist_build(struct intel_engine_cs *engine)
1988 {
1989 	struct i915_wa_list *w = &engine->whitelist;
1990 
1991 	if (engine->class != RENDER_CLASS)
1992 		return;
1993 
1994 	gen9_whitelist_build(w);
1995 
1996 	/* WaDisableLSQCROPERFforOCL:kbl */
1997 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
1998 }
1999 
2000 static void glk_whitelist_build(struct intel_engine_cs *engine)
2001 {
2002 	struct i915_wa_list *w = &engine->whitelist;
2003 
2004 	if (engine->class != RENDER_CLASS)
2005 		return;
2006 
2007 	gen9_whitelist_build(w);
2008 
2009 	/* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */
2010 	whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2011 }
2012 
2013 static void cfl_whitelist_build(struct intel_engine_cs *engine)
2014 {
2015 	struct i915_wa_list *w = &engine->whitelist;
2016 
2017 	if (engine->class != RENDER_CLASS)
2018 		return;
2019 
2020 	gen9_whitelist_build(w);
2021 
2022 	/*
2023 	 * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml
2024 	 *
2025 	 * This covers 4 register which are next to one another :
2026 	 *   - PS_INVOCATION_COUNT
2027 	 *   - PS_INVOCATION_COUNT_UDW
2028 	 *   - PS_DEPTH_COUNT
2029 	 *   - PS_DEPTH_COUNT_UDW
2030 	 */
2031 	whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2032 			  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2033 			  RING_FORCE_TO_NONPRIV_RANGE_4);
2034 }
2035 
2036 static void allow_read_ctx_timestamp(struct intel_engine_cs *engine)
2037 {
2038 	struct i915_wa_list *w = &engine->whitelist;
2039 
2040 	if (engine->class != RENDER_CLASS)
2041 		whitelist_reg_ext(w,
2042 				  RING_CTX_TIMESTAMP(engine->mmio_base),
2043 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2044 }
2045 
2046 static void cml_whitelist_build(struct intel_engine_cs *engine)
2047 {
2048 	allow_read_ctx_timestamp(engine);
2049 
2050 	cfl_whitelist_build(engine);
2051 }
2052 
2053 static void icl_whitelist_build(struct intel_engine_cs *engine)
2054 {
2055 	struct i915_wa_list *w = &engine->whitelist;
2056 
2057 	allow_read_ctx_timestamp(engine);
2058 
2059 	switch (engine->class) {
2060 	case RENDER_CLASS:
2061 		/* WaAllowUMDToModifyHalfSliceChicken7:icl */
2062 		whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7);
2063 
2064 		/* WaAllowUMDToModifySamplerMode:icl */
2065 		whitelist_mcr_reg(w, GEN10_SAMPLER_MODE);
2066 
2067 		/* WaEnableStateCacheRedirectToCS:icl */
2068 		whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2069 
2070 		/*
2071 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl
2072 		 *
2073 		 * This covers 4 register which are next to one another :
2074 		 *   - PS_INVOCATION_COUNT
2075 		 *   - PS_INVOCATION_COUNT_UDW
2076 		 *   - PS_DEPTH_COUNT
2077 		 *   - PS_DEPTH_COUNT_UDW
2078 		 */
2079 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2080 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2081 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2082 		break;
2083 
2084 	case VIDEO_DECODE_CLASS:
2085 		/* hucStatusRegOffset */
2086 		whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base),
2087 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2088 		/* hucUKernelHdrInfoRegOffset */
2089 		whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base),
2090 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2091 		/* hucStatus2RegOffset */
2092 		whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base),
2093 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2094 		break;
2095 
2096 	default:
2097 		break;
2098 	}
2099 }
2100 
2101 static void tgl_whitelist_build(struct intel_engine_cs *engine)
2102 {
2103 	struct i915_wa_list *w = &engine->whitelist;
2104 
2105 	allow_read_ctx_timestamp(engine);
2106 
2107 	switch (engine->class) {
2108 	case RENDER_CLASS:
2109 		/*
2110 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl
2111 		 * Wa_1408556865:tgl
2112 		 *
2113 		 * This covers 4 registers which are next to one another :
2114 		 *   - PS_INVOCATION_COUNT
2115 		 *   - PS_INVOCATION_COUNT_UDW
2116 		 *   - PS_DEPTH_COUNT
2117 		 *   - PS_DEPTH_COUNT_UDW
2118 		 */
2119 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2120 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2121 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2122 
2123 		/*
2124 		 * Wa_1808121037:tgl
2125 		 * Wa_14012131227:dg1
2126 		 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p
2127 		 */
2128 		whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2129 
2130 		/* Wa_1806527549:tgl */
2131 		whitelist_reg(w, HIZ_CHICKEN);
2132 
2133 		/* Required by recommended tuning setting (not a workaround) */
2134 		whitelist_reg(w, GEN11_COMMON_SLICE_CHICKEN3);
2135 
2136 		break;
2137 	default:
2138 		break;
2139 	}
2140 }
2141 
2142 static void dg2_whitelist_build(struct intel_engine_cs *engine)
2143 {
2144 	struct i915_wa_list *w = &engine->whitelist;
2145 
2146 	switch (engine->class) {
2147 	case RENDER_CLASS:
2148 		/* Required by recommended tuning setting (not a workaround) */
2149 		whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2150 
2151 		break;
2152 	default:
2153 		break;
2154 	}
2155 }
2156 
2157 static void blacklist_trtt(struct intel_engine_cs *engine)
2158 {
2159 	struct i915_wa_list *w = &engine->whitelist;
2160 
2161 	/*
2162 	 * Prevent read/write access to [0x4400, 0x4600) which covers
2163 	 * the TRTT range across all engines. Note that normally userspace
2164 	 * cannot access the other engines' trtt control, but for simplicity
2165 	 * we cover the entire range on each engine.
2166 	 */
2167 	whitelist_reg_ext(w, _MMIO(0x4400),
2168 			  RING_FORCE_TO_NONPRIV_DENY |
2169 			  RING_FORCE_TO_NONPRIV_RANGE_64);
2170 	whitelist_reg_ext(w, _MMIO(0x4500),
2171 			  RING_FORCE_TO_NONPRIV_DENY |
2172 			  RING_FORCE_TO_NONPRIV_RANGE_64);
2173 }
2174 
2175 static void pvc_whitelist_build(struct intel_engine_cs *engine)
2176 {
2177 	/* Wa_16014440446:pvc */
2178 	blacklist_trtt(engine);
2179 }
2180 
2181 static void xelpg_whitelist_build(struct intel_engine_cs *engine)
2182 {
2183 	struct i915_wa_list *w = &engine->whitelist;
2184 
2185 	switch (engine->class) {
2186 	case RENDER_CLASS:
2187 		/* Required by recommended tuning setting (not a workaround) */
2188 		whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2189 
2190 		break;
2191 	default:
2192 		break;
2193 	}
2194 }
2195 
2196 void intel_engine_init_whitelist(struct intel_engine_cs *engine)
2197 {
2198 	struct drm_i915_private *i915 = engine->i915;
2199 	struct i915_wa_list *w = &engine->whitelist;
2200 
2201 	wa_init_start(w, engine->gt, "whitelist", engine->name);
2202 
2203 	if (engine->gt->type == GT_MEDIA)
2204 		; /* none yet */
2205 	else if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74)))
2206 		xelpg_whitelist_build(engine);
2207 	else if (IS_PONTEVECCHIO(i915))
2208 		pvc_whitelist_build(engine);
2209 	else if (IS_DG2(i915))
2210 		dg2_whitelist_build(engine);
2211 	else if (IS_XEHPSDV(i915))
2212 		; /* none needed */
2213 	else if (GRAPHICS_VER(i915) == 12)
2214 		tgl_whitelist_build(engine);
2215 	else if (GRAPHICS_VER(i915) == 11)
2216 		icl_whitelist_build(engine);
2217 	else if (IS_COMETLAKE(i915))
2218 		cml_whitelist_build(engine);
2219 	else if (IS_COFFEELAKE(i915))
2220 		cfl_whitelist_build(engine);
2221 	else if (IS_GEMINILAKE(i915))
2222 		glk_whitelist_build(engine);
2223 	else if (IS_KABYLAKE(i915))
2224 		kbl_whitelist_build(engine);
2225 	else if (IS_BROXTON(i915))
2226 		bxt_whitelist_build(engine);
2227 	else if (IS_SKYLAKE(i915))
2228 		skl_whitelist_build(engine);
2229 	else if (GRAPHICS_VER(i915) <= 8)
2230 		;
2231 	else
2232 		MISSING_CASE(GRAPHICS_VER(i915));
2233 
2234 	wa_init_finish(w);
2235 }
2236 
2237 void intel_engine_apply_whitelist(struct intel_engine_cs *engine)
2238 {
2239 	const struct i915_wa_list *wal = &engine->whitelist;
2240 	struct intel_uncore *uncore = engine->uncore;
2241 	const u32 base = engine->mmio_base;
2242 	struct i915_wa *wa;
2243 	unsigned int i;
2244 
2245 	if (!wal->count)
2246 		return;
2247 
2248 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
2249 		intel_uncore_write(uncore,
2250 				   RING_FORCE_TO_NONPRIV(base, i),
2251 				   i915_mmio_reg_offset(wa->reg));
2252 
2253 	/* And clear the rest just in case of garbage */
2254 	for (; i < RING_MAX_NONPRIV_SLOTS; i++)
2255 		intel_uncore_write(uncore,
2256 				   RING_FORCE_TO_NONPRIV(base, i),
2257 				   i915_mmio_reg_offset(RING_NOPID(base)));
2258 }
2259 
2260 /*
2261  * engine_fake_wa_init(), a place holder to program the registers
2262  * which are not part of an official workaround defined by the
2263  * hardware team.
2264  * Adding programming of those register inside workaround will
2265  * allow utilizing wa framework to proper application and verification.
2266  */
2267 static void
2268 engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2269 {
2270 	u8 mocs_w, mocs_r;
2271 
2272 	/*
2273 	 * RING_CMD_CCTL specifies the default MOCS entry that will be used
2274 	 * by the command streamer when executing commands that don't have
2275 	 * a way to explicitly specify a MOCS setting.  The default should
2276 	 * usually reference whichever MOCS entry corresponds to uncached
2277 	 * behavior, although use of a WB cached entry is recommended by the
2278 	 * spec in certain circumstances on specific platforms.
2279 	 */
2280 	if (GRAPHICS_VER(engine->i915) >= 12) {
2281 		mocs_r = engine->gt->mocs.uc_index;
2282 		mocs_w = engine->gt->mocs.uc_index;
2283 
2284 		if (HAS_L3_CCS_READ(engine->i915) &&
2285 		    engine->class == COMPUTE_CLASS) {
2286 			mocs_r = engine->gt->mocs.wb_index;
2287 
2288 			/*
2289 			 * Even on the few platforms where MOCS 0 is a
2290 			 * legitimate table entry, it's never the correct
2291 			 * setting to use here; we can assume the MOCS init
2292 			 * just forgot to initialize wb_index.
2293 			 */
2294 			drm_WARN_ON(&engine->i915->drm, mocs_r == 0);
2295 		}
2296 
2297 		wa_masked_field_set(wal,
2298 				    RING_CMD_CCTL(engine->mmio_base),
2299 				    CMD_CCTL_MOCS_MASK,
2300 				    CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r));
2301 	}
2302 }
2303 
2304 static void
2305 rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2306 {
2307 	struct drm_i915_private *i915 = engine->i915;
2308 	struct intel_gt *gt = engine->gt;
2309 
2310 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2311 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) {
2312 		/* Wa_22014600077 */
2313 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2314 				 ENABLE_EU_COUNT_FOR_TDL_FLUSH);
2315 	}
2316 
2317 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2318 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2319 	    IS_DG2(i915)) {
2320 		/* Wa_1509727124 */
2321 		wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2322 				 SC_DISABLE_POWER_OPTIMIZATION_EBB);
2323 	}
2324 
2325 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2326 	    IS_DG2(i915)) {
2327 		/* Wa_22012856258 */
2328 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2329 				 GEN12_DISABLE_READ_SUPPRESSION);
2330 	}
2331 
2332 	if (IS_DG2(i915)) {
2333 		/*
2334 		 * Wa_22010960976:dg2
2335 		 * Wa_14013347512:dg2
2336 		 */
2337 		wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0,
2338 				  LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK);
2339 	}
2340 
2341 	if (IS_DG2_G11(i915) || IS_DG2_G10(i915)) {
2342 		/* Wa_22014600077:dg2 */
2343 		wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
2344 			   _MASKED_BIT_ENABLE(ENABLE_EU_COUNT_FOR_TDL_FLUSH),
2345 			   0 /* Wa_14012342262 write-only reg, so skip verification */,
2346 			   true);
2347 	}
2348 
2349 	if (IS_DG2(i915) || IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2350 	    IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2351 		/*
2352 		 * Wa_1606700617:tgl,dg1,adl-p
2353 		 * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p
2354 		 * Wa_14010826681:tgl,dg1,rkl,adl-p
2355 		 * Wa_18019627453:dg2
2356 		 */
2357 		wa_masked_en(wal,
2358 			     GEN9_CS_DEBUG_MODE1,
2359 			     FF_DOP_CLOCK_GATE_DISABLE);
2360 	}
2361 
2362 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) ||
2363 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2364 		/* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */
2365 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ);
2366 
2367 		/*
2368 		 * Wa_1407928979:tgl A*
2369 		 * Wa_18011464164:tgl[B0+],dg1[B0+]
2370 		 * Wa_22010931296:tgl[B0+],dg1[B0+]
2371 		 * Wa_14010919138:rkl,dg1,adl-s,adl-p
2372 		 */
2373 		wa_write_or(wal, GEN7_FF_THREAD_MODE,
2374 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2375 
2376 		/* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */
2377 		wa_mcr_masked_en(wal,
2378 				 GEN10_SAMPLER_MODE,
2379 				 ENABLE_SMALLPL);
2380 	}
2381 
2382 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2383 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2384 		/* Wa_1409804808 */
2385 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2386 				 GEN12_PUSH_CONST_DEREF_HOLD_DIS);
2387 
2388 		/* Wa_14010229206 */
2389 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH);
2390 	}
2391 
2392 	if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) {
2393 		/*
2394 		 * Wa_1607297627
2395 		 *
2396 		 * On TGL and RKL there are multiple entries for this WA in the
2397 		 * BSpec; some indicate this is an A0-only WA, others indicate
2398 		 * it applies to all steppings so we trust the "all steppings."
2399 		 */
2400 		wa_masked_en(wal,
2401 			     RING_PSMI_CTL(RENDER_RING_BASE),
2402 			     GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE |
2403 			     GEN8_RC_SEMA_IDLE_MSG_DISABLE);
2404 	}
2405 
2406 	if (GRAPHICS_VER(i915) == 11) {
2407 		/* This is not an Wa. Enable for better image quality */
2408 		wa_masked_en(wal,
2409 			     _3D_CHICKEN3,
2410 			     _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE);
2411 
2412 		/*
2413 		 * Wa_1405543622:icl
2414 		 * Formerly known as WaGAPZPriorityScheme
2415 		 */
2416 		wa_write_or(wal,
2417 			    GEN8_GARBCNTL,
2418 			    GEN11_ARBITRATION_PRIO_ORDER_MASK);
2419 
2420 		/*
2421 		 * Wa_1604223664:icl
2422 		 * Formerly known as WaL3BankAddressHashing
2423 		 */
2424 		wa_write_clr_set(wal,
2425 				 GEN8_GARBCNTL,
2426 				 GEN11_HASH_CTRL_EXCL_MASK,
2427 				 GEN11_HASH_CTRL_EXCL_BIT0);
2428 		wa_write_clr_set(wal,
2429 				 GEN11_GLBLINVL,
2430 				 GEN11_BANK_HASH_ADDR_EXCL_MASK,
2431 				 GEN11_BANK_HASH_ADDR_EXCL_BIT0);
2432 
2433 		/*
2434 		 * Wa_1405733216:icl
2435 		 * Formerly known as WaDisableCleanEvicts
2436 		 */
2437 		wa_mcr_write_or(wal,
2438 				GEN8_L3SQCREG4,
2439 				GEN11_LQSC_CLEAN_EVICT_DISABLE);
2440 
2441 		/* Wa_1606682166:icl */
2442 		wa_write_or(wal,
2443 			    GEN7_SARCHKMD,
2444 			    GEN7_DISABLE_SAMPLER_PREFETCH);
2445 
2446 		/* Wa_1409178092:icl */
2447 		wa_mcr_write_clr_set(wal,
2448 				     GEN11_SCRATCH2,
2449 				     GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE,
2450 				     0);
2451 
2452 		/* WaEnable32PlaneMode:icl */
2453 		wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS,
2454 			     GEN11_ENABLE_32_PLANE_MODE);
2455 
2456 		/*
2457 		 * Wa_1408767742:icl[a2..forever],ehl[all]
2458 		 * Wa_1605460711:icl[a0..c0]
2459 		 */
2460 		wa_write_or(wal,
2461 			    GEN7_FF_THREAD_MODE,
2462 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2463 
2464 		/* Wa_22010271021 */
2465 		wa_masked_en(wal,
2466 			     GEN9_CS_DEBUG_MODE1,
2467 			     FF_DOP_CLOCK_GATE_DISABLE);
2468 	}
2469 
2470 	/*
2471 	 * Intel platforms that support fine-grained preemption (i.e., gen9 and
2472 	 * beyond) allow the kernel-mode driver to choose between two different
2473 	 * options for controlling preemption granularity and behavior.
2474 	 *
2475 	 * Option 1 (hardware default):
2476 	 *   Preemption settings are controlled in a global manner via
2477 	 *   kernel-only register CS_DEBUG_MODE1 (0x20EC).  Any granularity
2478 	 *   and settings chosen by the kernel-mode driver will apply to all
2479 	 *   userspace clients.
2480 	 *
2481 	 * Option 2:
2482 	 *   Preemption settings are controlled on a per-context basis via
2483 	 *   register CS_CHICKEN1 (0x2580).  CS_CHICKEN1 is saved/restored on
2484 	 *   context switch and is writable by userspace (e.g., via
2485 	 *   MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer)
2486 	 *   which allows different userspace drivers/clients to select
2487 	 *   different settings, or to change those settings on the fly in
2488 	 *   response to runtime needs.  This option was known by name
2489 	 *   "FtrPerCtxtPreemptionGranularityControl" at one time, although
2490 	 *   that name is somewhat misleading as other non-granularity
2491 	 *   preemption settings are also impacted by this decision.
2492 	 *
2493 	 * On Linux, our policy has always been to let userspace drivers
2494 	 * control preemption granularity/settings (Option 2).  This was
2495 	 * originally mandatory on gen9 to prevent ABI breakage (old gen9
2496 	 * userspace developed before object-level preemption was enabled would
2497 	 * not behave well if i915 were to go with Option 1 and enable that
2498 	 * preemption in a global manner).  On gen9 each context would have
2499 	 * object-level preemption disabled by default (see
2500 	 * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but
2501 	 * userspace drivers could opt-in to object-level preemption as they
2502 	 * saw fit.  For post-gen9 platforms, we continue to utilize Option 2;
2503 	 * even though it is no longer necessary for ABI compatibility when
2504 	 * enabling a new platform, it does ensure that userspace will be able
2505 	 * to implement any workarounds that show up requiring temporary
2506 	 * adjustments to preemption behavior at runtime.
2507 	 *
2508 	 * Notes/Workarounds:
2509 	 *  - Wa_14015141709:  On DG2 and early steppings of MTL,
2510 	 *      CS_CHICKEN1[0] does not disable object-level preemption as
2511 	 *      it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been
2512 	 *      using Option 1).  Effectively this means userspace is unable
2513 	 *      to disable object-level preemption on these platforms/steppings
2514 	 *      despite the setting here.
2515 	 *
2516 	 *  - Wa_16013994831:  May require that userspace program
2517 	 *      CS_CHICKEN1[10] when certain runtime conditions are true.
2518 	 *      Userspace requires Option 2 to be in effect for their update of
2519 	 *      CS_CHICKEN1[10] to be effective.
2520 	 *
2521 	 * Other workarounds may appear in the future that will also require
2522 	 * Option 2 behavior to allow proper userspace implementation.
2523 	 */
2524 	if (GRAPHICS_VER(i915) >= 9)
2525 		wa_masked_en(wal,
2526 			     GEN7_FF_SLICE_CS_CHICKEN1,
2527 			     GEN9_FFSC_PERCTX_PREEMPT_CTRL);
2528 
2529 	if (IS_SKYLAKE(i915) ||
2530 	    IS_KABYLAKE(i915) ||
2531 	    IS_COFFEELAKE(i915) ||
2532 	    IS_COMETLAKE(i915)) {
2533 		/* WaEnableGapsTsvCreditFix:skl,kbl,cfl */
2534 		wa_write_or(wal,
2535 			    GEN8_GARBCNTL,
2536 			    GEN9_GAPS_TSV_CREDIT_DISABLE);
2537 	}
2538 
2539 	if (IS_BROXTON(i915)) {
2540 		/* WaDisablePooledEuLoadBalancingFix:bxt */
2541 		wa_masked_en(wal,
2542 			     FF_SLICE_CS_CHICKEN2,
2543 			     GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
2544 	}
2545 
2546 	if (GRAPHICS_VER(i915) == 9) {
2547 		/* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */
2548 		wa_masked_en(wal,
2549 			     GEN9_CSFE_CHICKEN1_RCS,
2550 			     GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE);
2551 
2552 		/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */
2553 		wa_mcr_write_or(wal,
2554 				BDW_SCRATCH1,
2555 				GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
2556 
2557 		/* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */
2558 		if (IS_GEN9_LP(i915))
2559 			wa_mcr_write_clr_set(wal,
2560 					     GEN8_L3SQCREG1,
2561 					     L3_PRIO_CREDITS_MASK,
2562 					     L3_GENERAL_PRIO_CREDITS(62) |
2563 					     L3_HIGH_PRIO_CREDITS(2));
2564 
2565 		/* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */
2566 		wa_mcr_write_or(wal,
2567 				GEN8_L3SQCREG4,
2568 				GEN8_LQSC_FLUSH_COHERENT_LINES);
2569 
2570 		/* Disable atomics in L3 to prevent unrecoverable hangs */
2571 		wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1,
2572 				 GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2573 		wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4,
2574 				     GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2575 		wa_mcr_write_clr_set(wal, GEN9_SCRATCH1,
2576 				     EVICTION_PERF_FIX_ENABLE, 0);
2577 	}
2578 
2579 	if (IS_HASWELL(i915)) {
2580 		/* WaSampleCChickenBitEnable:hsw */
2581 		wa_masked_en(wal,
2582 			     HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE);
2583 
2584 		wa_masked_dis(wal,
2585 			      CACHE_MODE_0_GEN7,
2586 			      /* enable HiZ Raw Stall Optimization */
2587 			      HIZ_RAW_STALL_OPT_DISABLE);
2588 	}
2589 
2590 	if (IS_VALLEYVIEW(i915)) {
2591 		/* WaDisableEarlyCull:vlv */
2592 		wa_masked_en(wal,
2593 			     _3D_CHICKEN3,
2594 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2595 
2596 		/*
2597 		 * WaVSThreadDispatchOverride:ivb,vlv
2598 		 *
2599 		 * This actually overrides the dispatch
2600 		 * mode for all thread types.
2601 		 */
2602 		wa_write_clr_set(wal,
2603 				 GEN7_FF_THREAD_MODE,
2604 				 GEN7_FF_SCHED_MASK,
2605 				 GEN7_FF_TS_SCHED_HW |
2606 				 GEN7_FF_VS_SCHED_HW |
2607 				 GEN7_FF_DS_SCHED_HW);
2608 
2609 		/* WaPsdDispatchEnable:vlv */
2610 		/* WaDisablePSDDualDispatchEnable:vlv */
2611 		wa_masked_en(wal,
2612 			     GEN7_HALF_SLICE_CHICKEN1,
2613 			     GEN7_MAX_PS_THREAD_DEP |
2614 			     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2615 	}
2616 
2617 	if (IS_IVYBRIDGE(i915)) {
2618 		/* WaDisableEarlyCull:ivb */
2619 		wa_masked_en(wal,
2620 			     _3D_CHICKEN3,
2621 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2622 
2623 		if (0) { /* causes HiZ corruption on ivb:gt1 */
2624 			/* enable HiZ Raw Stall Optimization */
2625 			wa_masked_dis(wal,
2626 				      CACHE_MODE_0_GEN7,
2627 				      HIZ_RAW_STALL_OPT_DISABLE);
2628 		}
2629 
2630 		/*
2631 		 * WaVSThreadDispatchOverride:ivb,vlv
2632 		 *
2633 		 * This actually overrides the dispatch
2634 		 * mode for all thread types.
2635 		 */
2636 		wa_write_clr_set(wal,
2637 				 GEN7_FF_THREAD_MODE,
2638 				 GEN7_FF_SCHED_MASK,
2639 				 GEN7_FF_TS_SCHED_HW |
2640 				 GEN7_FF_VS_SCHED_HW |
2641 				 GEN7_FF_DS_SCHED_HW);
2642 
2643 		/* WaDisablePSDDualDispatchEnable:ivb */
2644 		if (IS_IVB_GT1(i915))
2645 			wa_masked_en(wal,
2646 				     GEN7_HALF_SLICE_CHICKEN1,
2647 				     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2648 	}
2649 
2650 	if (GRAPHICS_VER(i915) == 7) {
2651 		/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
2652 		wa_masked_en(wal,
2653 			     RING_MODE_GEN7(RENDER_RING_BASE),
2654 			     GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE);
2655 
2656 		/* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */
2657 		wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE);
2658 
2659 		/*
2660 		 * BSpec says this must be set, even though
2661 		 * WaDisable4x2SubspanOptimization:ivb,hsw
2662 		 * WaDisable4x2SubspanOptimization isn't listed for VLV.
2663 		 */
2664 		wa_masked_en(wal,
2665 			     CACHE_MODE_1,
2666 			     PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
2667 
2668 		/*
2669 		 * BSpec recommends 8x4 when MSAA is used,
2670 		 * however in practice 16x4 seems fastest.
2671 		 *
2672 		 * Note that PS/WM thread counts depend on the WIZ hashing
2673 		 * disable bit, which we don't touch here, but it's good
2674 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2675 		 */
2676 		wa_masked_field_set(wal,
2677 				    GEN7_GT_MODE,
2678 				    GEN6_WIZ_HASHING_MASK,
2679 				    GEN6_WIZ_HASHING_16x4);
2680 	}
2681 
2682 	if (IS_GRAPHICS_VER(i915, 6, 7))
2683 		/*
2684 		 * We need to disable the AsyncFlip performance optimisations in
2685 		 * order to use MI_WAIT_FOR_EVENT within the CS. It should
2686 		 * already be programmed to '1' on all products.
2687 		 *
2688 		 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
2689 		 */
2690 		wa_masked_en(wal,
2691 			     RING_MI_MODE(RENDER_RING_BASE),
2692 			     ASYNC_FLIP_PERF_DISABLE);
2693 
2694 	if (GRAPHICS_VER(i915) == 6) {
2695 		/*
2696 		 * Required for the hardware to program scanline values for
2697 		 * waiting
2698 		 * WaEnableFlushTlbInvalidationMode:snb
2699 		 */
2700 		wa_masked_en(wal,
2701 			     GFX_MODE,
2702 			     GFX_TLB_INVALIDATE_EXPLICIT);
2703 
2704 		/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
2705 		wa_masked_en(wal,
2706 			     _3D_CHICKEN,
2707 			     _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB);
2708 
2709 		wa_masked_en(wal,
2710 			     _3D_CHICKEN3,
2711 			     /* WaStripsFansDisableFastClipPerformanceFix:snb */
2712 			     _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL |
2713 			     /*
2714 			      * Bspec says:
2715 			      * "This bit must be set if 3DSTATE_CLIP clip mode is set
2716 			      * to normal and 3DSTATE_SF number of SF output attributes
2717 			      * is more than 16."
2718 			      */
2719 			     _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH);
2720 
2721 		/*
2722 		 * BSpec recommends 8x4 when MSAA is used,
2723 		 * however in practice 16x4 seems fastest.
2724 		 *
2725 		 * Note that PS/WM thread counts depend on the WIZ hashing
2726 		 * disable bit, which we don't touch here, but it's good
2727 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2728 		 */
2729 		wa_masked_field_set(wal,
2730 				    GEN6_GT_MODE,
2731 				    GEN6_WIZ_HASHING_MASK,
2732 				    GEN6_WIZ_HASHING_16x4);
2733 
2734 		/* WaDisable_RenderCache_OperationalFlush:snb */
2735 		wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
2736 
2737 		/*
2738 		 * From the Sandybridge PRM, volume 1 part 3, page 24:
2739 		 * "If this bit is set, STCunit will have LRA as replacement
2740 		 *  policy. [...] This bit must be reset. LRA replacement
2741 		 *  policy is not supported."
2742 		 */
2743 		wa_masked_dis(wal,
2744 			      CACHE_MODE_0,
2745 			      CM0_STC_EVICT_DISABLE_LRA_SNB);
2746 	}
2747 
2748 	if (IS_GRAPHICS_VER(i915, 4, 6))
2749 		/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
2750 		wa_add(wal, RING_MI_MODE(RENDER_RING_BASE),
2751 		       0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH),
2752 		       /* XXX bit doesn't stick on Broadwater */
2753 		       IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true);
2754 
2755 	if (GRAPHICS_VER(i915) == 4)
2756 		/*
2757 		 * Disable CONSTANT_BUFFER before it is loaded from the context
2758 		 * image. For as it is loaded, it is executed and the stored
2759 		 * address may no longer be valid, leading to a GPU hang.
2760 		 *
2761 		 * This imposes the requirement that userspace reload their
2762 		 * CONSTANT_BUFFER on every batch, fortunately a requirement
2763 		 * they are already accustomed to from before contexts were
2764 		 * enabled.
2765 		 */
2766 		wa_add(wal, ECOSKPD(RENDER_RING_BASE),
2767 		       0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE),
2768 		       0 /* XXX bit doesn't stick on Broadwater */,
2769 		       true);
2770 }
2771 
2772 static void
2773 xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2774 {
2775 	struct drm_i915_private *i915 = engine->i915;
2776 
2777 	/* WaKBLVECSSemaphoreWaitPoll:kbl */
2778 	if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) {
2779 		wa_write(wal,
2780 			 RING_SEMA_WAIT_POLL(engine->mmio_base),
2781 			 1);
2782 	}
2783 }
2784 
2785 static void
2786 ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2787 {
2788 	if (IS_PVC_CT_STEP(engine->i915, STEP_A0, STEP_C0)) {
2789 		/* Wa_14014999345:pvc */
2790 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, DISABLE_ECC);
2791 	}
2792 }
2793 
2794 /*
2795  * The bspec performance guide has recommended MMIO tuning settings.  These
2796  * aren't truly "workarounds" but we want to program them with the same
2797  * workaround infrastructure to ensure that they're automatically added to
2798  * the GuC save/restore lists, re-applied at the right times, and checked for
2799  * any conflicting programming requested by real workarounds.
2800  *
2801  * Programming settings should be added here only if their registers are not
2802  * part of an engine's register state context.  If a register is part of a
2803  * context, then any tuning settings should be programmed in an appropriate
2804  * function invoked by __intel_engine_init_ctx_wa().
2805  */
2806 static void
2807 add_render_compute_tuning_settings(struct intel_gt *gt,
2808 				   struct i915_wa_list *wal)
2809 {
2810 	struct drm_i915_private *i915 = gt->i915;
2811 
2812 	if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)) || IS_DG2(i915))
2813 		wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512);
2814 
2815 	/*
2816 	 * This tuning setting proves beneficial only on ATS-M designs; the
2817 	 * default "age based" setting is optimal on regular DG2 and other
2818 	 * platforms.
2819 	 */
2820 	if (INTEL_INFO(i915)->tuning_thread_rr_after_dep)
2821 		wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE,
2822 					THREAD_EX_ARB_MODE_RR_AFTER_DEP);
2823 
2824 	if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
2825 		wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC);
2826 }
2827 
2828 static void ccs_engine_wa_mode(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2829 {
2830 	struct intel_gt *gt = engine->gt;
2831 	u32 mode;
2832 
2833 	if (!IS_DG2(gt->i915))
2834 		return;
2835 
2836 	/*
2837 	 * Wa_14019159160: This workaround, along with others, leads to
2838 	 * significant challenges in utilizing load balancing among the
2839 	 * CCS slices. Consequently, an architectural decision has been
2840 	 * made to completely disable automatic CCS load balancing.
2841 	 */
2842 	wa_masked_en(wal, GEN12_RCU_MODE, XEHP_RCU_MODE_FIXED_SLICE_CCS_MODE);
2843 
2844 	/*
2845 	 * After having disabled automatic load balancing we need to
2846 	 * assign all slices to a single CCS. We will call it CCS mode 1
2847 	 */
2848 	mode = intel_gt_apply_ccs_mode(gt);
2849 	wa_masked_en(wal, XEHP_CCS_MODE, mode);
2850 }
2851 
2852 /*
2853  * The workarounds in this function apply to shared registers in
2854  * the general render reset domain that aren't tied to a
2855  * specific engine.  Since all render+compute engines get reset
2856  * together, and the contents of these registers are lost during
2857  * the shared render domain reset, we'll define such workarounds
2858  * here and then add them to just a single RCS or CCS engine's
2859  * workaround list (whichever engine has the XXXX flag).
2860  */
2861 static void
2862 general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2863 {
2864 	struct drm_i915_private *i915 = engine->i915;
2865 	struct intel_gt *gt = engine->gt;
2866 
2867 	add_render_compute_tuning_settings(gt, wal);
2868 
2869 	if (GRAPHICS_VER(i915) >= 11) {
2870 		/* This is not a Wa (although referred to as
2871 		 * WaSetInidrectStateOverride in places), this allows
2872 		 * applications that reference sampler states through
2873 		 * the BindlessSamplerStateBaseAddress to have their
2874 		 * border color relative to DynamicStateBaseAddress
2875 		 * rather than BindlessSamplerStateBaseAddress.
2876 		 *
2877 		 * Otherwise SAMPLER_STATE border colors have to be
2878 		 * copied in multiple heaps (DynamicStateBaseAddress &
2879 		 * BindlessSamplerStateBaseAddress)
2880 		 *
2881 		 * BSpec: 46052
2882 		 */
2883 		wa_mcr_masked_en(wal,
2884 				 GEN10_SAMPLER_MODE,
2885 				 GEN11_INDIRECT_STATE_BASE_ADDR_OVERRIDE);
2886 	}
2887 
2888 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_B0, STEP_FOREVER) ||
2889 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_B0, STEP_FOREVER) ||
2890 	    IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 74), IP_VER(12, 74)))
2891 		/* Wa_14017856879 */
2892 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN3, MTL_DISABLE_FIX_FOR_EOT_FLUSH);
2893 
2894 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2895 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2896 		/*
2897 		 * Wa_14017066071
2898 		 * Wa_14017654203
2899 		 */
2900 		wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2901 				 MTL_DISABLE_SAMPLER_SC_OOO);
2902 
2903 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))
2904 		/* Wa_22015279794 */
2905 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2906 				 DISABLE_PREFETCH_INTO_IC);
2907 
2908 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2909 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2910 	    IS_DG2(i915)) {
2911 		/* Wa_22013037850 */
2912 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW,
2913 				DISABLE_128B_EVICTION_COMMAND_UDW);
2914 
2915 		/* Wa_18017747507 */
2916 		wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE);
2917 	}
2918 
2919 	if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) ||
2920 	    IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) ||
2921 	    IS_PONTEVECCHIO(i915) ||
2922 	    IS_DG2(i915)) {
2923 		/* Wa_22014226127 */
2924 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE);
2925 	}
2926 
2927 	if (IS_PONTEVECCHIO(i915) || IS_DG2(i915)) {
2928 		/* Wa_14015227452:dg2,pvc */
2929 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE);
2930 
2931 		/* Wa_16015675438:dg2,pvc */
2932 		wa_masked_en(wal, FF_SLICE_CS_CHICKEN2, GEN12_PERF_FIX_BALANCING_CFE_DISABLE);
2933 	}
2934 
2935 	if (IS_DG2(i915)) {
2936 		/*
2937 		 * Wa_16011620976:dg2_g11
2938 		 * Wa_22015475538:dg2
2939 		 */
2940 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8);
2941 	}
2942 
2943 	if (IS_DG2_G11(i915)) {
2944 		/*
2945 		 * Wa_22012826095:dg2
2946 		 * Wa_22013059131:dg2
2947 		 */
2948 		wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW,
2949 				     MAXREQS_PER_BANK,
2950 				     REG_FIELD_PREP(MAXREQS_PER_BANK, 2));
2951 
2952 		/* Wa_22013059131:dg2 */
2953 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0,
2954 				FORCE_1_SUB_MESSAGE_PER_FRAGMENT);
2955 
2956 		/*
2957 		 * Wa_22012654132
2958 		 *
2959 		 * Note that register 0xE420 is write-only and cannot be read
2960 		 * back for verification on DG2 (due to Wa_14012342262), so
2961 		 * we need to explicitly skip the readback.
2962 		 */
2963 		wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
2964 			   _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC),
2965 			   0 /* write-only, so skip validation */,
2966 			   true);
2967 	}
2968 
2969 	if (IS_XEHPSDV(i915)) {
2970 		/* Wa_1409954639 */
2971 		wa_mcr_masked_en(wal,
2972 				 GEN8_ROW_CHICKEN,
2973 				 SYSTOLIC_DOP_CLOCK_GATING_DIS);
2974 
2975 		/* Wa_1607196519 */
2976 		wa_mcr_masked_en(wal,
2977 				 GEN9_ROW_CHICKEN4,
2978 				 GEN12_DISABLE_GRF_CLEAR);
2979 
2980 		/* Wa_14010449647:xehpsdv */
2981 		wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
2982 				 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2983 	}
2984 }
2985 
2986 static void
2987 engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2988 {
2989 	if (GRAPHICS_VER(engine->i915) < 4)
2990 		return;
2991 
2992 	engine_fake_wa_init(engine, wal);
2993 
2994 	/*
2995 	 * These are common workarounds that just need to applied
2996 	 * to a single RCS/CCS engine's workaround list since
2997 	 * they're reset as part of the general render domain reset.
2998 	 */
2999 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) {
3000 		general_render_compute_wa_init(engine, wal);
3001 		ccs_engine_wa_mode(engine, wal);
3002 	}
3003 
3004 	if (engine->class == COMPUTE_CLASS)
3005 		ccs_engine_wa_init(engine, wal);
3006 	else if (engine->class == RENDER_CLASS)
3007 		rcs_engine_wa_init(engine, wal);
3008 	else
3009 		xcs_engine_wa_init(engine, wal);
3010 }
3011 
3012 void intel_engine_init_workarounds(struct intel_engine_cs *engine)
3013 {
3014 	struct i915_wa_list *wal = &engine->wa_list;
3015 
3016 	wa_init_start(wal, engine->gt, "engine", engine->name);
3017 	engine_init_workarounds(engine, wal);
3018 	wa_init_finish(wal);
3019 }
3020 
3021 void intel_engine_apply_workarounds(struct intel_engine_cs *engine)
3022 {
3023 	wa_list_apply(&engine->wa_list);
3024 }
3025 
3026 static const struct i915_range mcr_ranges_gen8[] = {
3027 	{ .start = 0x5500, .end = 0x55ff },
3028 	{ .start = 0x7000, .end = 0x7fff },
3029 	{ .start = 0x9400, .end = 0x97ff },
3030 	{ .start = 0xb000, .end = 0xb3ff },
3031 	{ .start = 0xe000, .end = 0xe7ff },
3032 	{},
3033 };
3034 
3035 static const struct i915_range mcr_ranges_gen12[] = {
3036 	{ .start =  0x8150, .end =  0x815f },
3037 	{ .start =  0x9520, .end =  0x955f },
3038 	{ .start =  0xb100, .end =  0xb3ff },
3039 	{ .start =  0xde80, .end =  0xe8ff },
3040 	{ .start = 0x24a00, .end = 0x24a7f },
3041 	{},
3042 };
3043 
3044 static const struct i915_range mcr_ranges_xehp[] = {
3045 	{ .start =  0x4000, .end =  0x4aff },
3046 	{ .start =  0x5200, .end =  0x52ff },
3047 	{ .start =  0x5400, .end =  0x7fff },
3048 	{ .start =  0x8140, .end =  0x815f },
3049 	{ .start =  0x8c80, .end =  0x8dff },
3050 	{ .start =  0x94d0, .end =  0x955f },
3051 	{ .start =  0x9680, .end =  0x96ff },
3052 	{ .start =  0xb000, .end =  0xb3ff },
3053 	{ .start =  0xc800, .end =  0xcfff },
3054 	{ .start =  0xd800, .end =  0xd8ff },
3055 	{ .start =  0xdc00, .end =  0xffff },
3056 	{ .start = 0x17000, .end = 0x17fff },
3057 	{ .start = 0x24a00, .end = 0x24a7f },
3058 	{},
3059 };
3060 
3061 static bool mcr_range(struct drm_i915_private *i915, u32 offset)
3062 {
3063 	const struct i915_range *mcr_ranges;
3064 	int i;
3065 
3066 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
3067 		mcr_ranges = mcr_ranges_xehp;
3068 	else if (GRAPHICS_VER(i915) >= 12)
3069 		mcr_ranges = mcr_ranges_gen12;
3070 	else if (GRAPHICS_VER(i915) >= 8)
3071 		mcr_ranges = mcr_ranges_gen8;
3072 	else
3073 		return false;
3074 
3075 	/*
3076 	 * Registers in these ranges are affected by the MCR selector
3077 	 * which only controls CPU initiated MMIO. Routing does not
3078 	 * work for CS access so we cannot verify them on this path.
3079 	 */
3080 	for (i = 0; mcr_ranges[i].start; i++)
3081 		if (offset >= mcr_ranges[i].start &&
3082 		    offset <= mcr_ranges[i].end)
3083 			return true;
3084 
3085 	return false;
3086 }
3087 
3088 static int
3089 wa_list_srm(struct i915_request *rq,
3090 	    const struct i915_wa_list *wal,
3091 	    struct i915_vma *vma)
3092 {
3093 	struct drm_i915_private *i915 = rq->i915;
3094 	unsigned int i, count = 0;
3095 	const struct i915_wa *wa;
3096 	u32 srm, *cs;
3097 
3098 	srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
3099 	if (GRAPHICS_VER(i915) >= 8)
3100 		srm++;
3101 
3102 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3103 		if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg)))
3104 			count++;
3105 	}
3106 
3107 	cs = intel_ring_begin(rq, 4 * count);
3108 	if (IS_ERR(cs))
3109 		return PTR_ERR(cs);
3110 
3111 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3112 		u32 offset = i915_mmio_reg_offset(wa->reg);
3113 
3114 		if (mcr_range(i915, offset))
3115 			continue;
3116 
3117 		*cs++ = srm;
3118 		*cs++ = offset;
3119 		*cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i;
3120 		*cs++ = 0;
3121 	}
3122 	intel_ring_advance(rq, cs);
3123 
3124 	return 0;
3125 }
3126 
3127 static int engine_wa_list_verify(struct intel_context *ce,
3128 				 const struct i915_wa_list * const wal,
3129 				 const char *from)
3130 {
3131 	const struct i915_wa *wa;
3132 	struct i915_request *rq;
3133 	struct i915_vma *vma;
3134 	struct i915_gem_ww_ctx ww;
3135 	unsigned int i;
3136 	u32 *results;
3137 	int err;
3138 
3139 	if (!wal->count)
3140 		return 0;
3141 
3142 	vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm,
3143 					   wal->count * sizeof(u32));
3144 	if (IS_ERR(vma))
3145 		return PTR_ERR(vma);
3146 
3147 	intel_engine_pm_get(ce->engine);
3148 	i915_gem_ww_ctx_init(&ww, false);
3149 retry:
3150 	err = i915_gem_object_lock(vma->obj, &ww);
3151 	if (err == 0)
3152 		err = intel_context_pin_ww(ce, &ww);
3153 	if (err)
3154 		goto err_pm;
3155 
3156 	err = i915_vma_pin_ww(vma, &ww, 0, 0,
3157 			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
3158 	if (err)
3159 		goto err_unpin;
3160 
3161 	rq = i915_request_create(ce);
3162 	if (IS_ERR(rq)) {
3163 		err = PTR_ERR(rq);
3164 		goto err_vma;
3165 	}
3166 
3167 	err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
3168 	if (err == 0)
3169 		err = wa_list_srm(rq, wal, vma);
3170 
3171 	i915_request_get(rq);
3172 	if (err)
3173 		i915_request_set_error_once(rq, err);
3174 	i915_request_add(rq);
3175 
3176 	if (err)
3177 		goto err_rq;
3178 
3179 	if (i915_request_wait(rq, 0, HZ / 5) < 0) {
3180 		err = -ETIME;
3181 		goto err_rq;
3182 	}
3183 
3184 	results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
3185 	if (IS_ERR(results)) {
3186 		err = PTR_ERR(results);
3187 		goto err_rq;
3188 	}
3189 
3190 	err = 0;
3191 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3192 		if (mcr_range(rq->i915, i915_mmio_reg_offset(wa->reg)))
3193 			continue;
3194 
3195 		if (!wa_verify(wal->gt, wa, results[i], wal->name, from))
3196 			err = -ENXIO;
3197 	}
3198 
3199 	i915_gem_object_unpin_map(vma->obj);
3200 
3201 err_rq:
3202 	i915_request_put(rq);
3203 err_vma:
3204 	i915_vma_unpin(vma);
3205 err_unpin:
3206 	intel_context_unpin(ce);
3207 err_pm:
3208 	if (err == -EDEADLK) {
3209 		err = i915_gem_ww_ctx_backoff(&ww);
3210 		if (!err)
3211 			goto retry;
3212 	}
3213 	i915_gem_ww_ctx_fini(&ww);
3214 	intel_engine_pm_put(ce->engine);
3215 	i915_vma_put(vma);
3216 	return err;
3217 }
3218 
3219 int intel_engine_verify_workarounds(struct intel_engine_cs *engine,
3220 				    const char *from)
3221 {
3222 	return engine_wa_list_verify(engine->kernel_context,
3223 				     &engine->wa_list,
3224 				     from);
3225 }
3226 
3227 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3228 #include "selftest_workarounds.c"
3229 #endif
3230