1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2018 Intel Corporation 4 */ 5 6 #include "i915_drv.h" 7 #include "i915_reg.h" 8 #include "intel_context.h" 9 #include "intel_engine_pm.h" 10 #include "intel_engine_regs.h" 11 #include "intel_gpu_commands.h" 12 #include "intel_gt.h" 13 #include "intel_gt_ccs_mode.h" 14 #include "intel_gt_mcr.h" 15 #include "intel_gt_regs.h" 16 #include "intel_ring.h" 17 #include "intel_workarounds.h" 18 19 /** 20 * DOC: Hardware workarounds 21 * 22 * Hardware workarounds are register programming documented to be executed in 23 * the driver that fall outside of the normal programming sequences for a 24 * platform. There are some basic categories of workarounds, depending on 25 * how/when they are applied: 26 * 27 * - Context workarounds: workarounds that touch registers that are 28 * saved/restored to/from the HW context image. The list is emitted (via Load 29 * Register Immediate commands) once when initializing the device and saved in 30 * the default context. That default context is then used on every context 31 * creation to have a "primed golden context", i.e. a context image that 32 * already contains the changes needed to all the registers. 33 * 34 * Context workarounds should be implemented in the \*_ctx_workarounds_init() 35 * variants respective to the targeted platforms. 36 * 37 * - Engine workarounds: the list of these WAs is applied whenever the specific 38 * engine is reset. It's also possible that a set of engine classes share a 39 * common power domain and they are reset together. This happens on some 40 * platforms with render and compute engines. In this case (at least) one of 41 * them need to keeep the workaround programming: the approach taken in the 42 * driver is to tie those workarounds to the first compute/render engine that 43 * is registered. When executing with GuC submission, engine resets are 44 * outside of kernel driver control, hence the list of registers involved in 45 * written once, on engine initialization, and then passed to GuC, that 46 * saves/restores their values before/after the reset takes place. See 47 * ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference. 48 * 49 * Workarounds for registers specific to RCS and CCS should be implemented in 50 * rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for 51 * registers belonging to BCS, VCS or VECS should be implemented in 52 * xcs_engine_wa_init(). Workarounds for registers not belonging to a specific 53 * engine's MMIO range but that are part of of the common RCS/CCS reset domain 54 * should be implemented in general_render_compute_wa_init(). The settings 55 * about the CCS load balancing should be added in ccs_engine_wa_mode(). 56 * 57 * - GT workarounds: the list of these WAs is applied whenever these registers 58 * revert to their default values: on GPU reset, suspend/resume [1]_, etc. 59 * 60 * GT workarounds should be implemented in the \*_gt_workarounds_init() 61 * variants respective to the targeted platforms. 62 * 63 * - Register whitelist: some workarounds need to be implemented in userspace, 64 * but need to touch privileged registers. The whitelist in the kernel 65 * instructs the hardware to allow the access to happen. From the kernel side, 66 * this is just a special case of a MMIO workaround (as we write the list of 67 * these to/be-whitelisted registers to some special HW registers). 68 * 69 * Register whitelisting should be done in the \*_whitelist_build() variants 70 * respective to the targeted platforms. 71 * 72 * - Workaround batchbuffers: buffers that get executed automatically by the 73 * hardware on every HW context restore. These buffers are created and 74 * programmed in the default context so the hardware always go through those 75 * programming sequences when switching contexts. The support for workaround 76 * batchbuffers is enabled these hardware mechanisms: 77 * 78 * #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default 79 * context, pointing the hardware to jump to that location when that offset 80 * is reached in the context restore. Workaround batchbuffer in the driver 81 * currently uses this mechanism for all platforms. 82 * 83 * #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context, 84 * pointing the hardware to a buffer to continue executing after the 85 * engine registers are restored in a context restore sequence. This is 86 * currently not used in the driver. 87 * 88 * - Other: There are WAs that, due to their nature, cannot be applied from a 89 * central place. Those are peppered around the rest of the code, as needed. 90 * Workarounds related to the display IP are the main example. 91 * 92 * .. [1] Technically, some registers are powercontext saved & restored, so they 93 * survive a suspend/resume. In practice, writing them again is not too 94 * costly and simplifies things, so it's the approach taken in the driver. 95 */ 96 97 static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt, 98 const char *name, const char *engine_name) 99 { 100 wal->gt = gt; 101 wal->name = name; 102 wal->engine_name = engine_name; 103 } 104 105 #define WA_LIST_CHUNK (1 << 4) 106 107 static void wa_init_finish(struct i915_wa_list *wal) 108 { 109 /* Trim unused entries. */ 110 if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) { 111 struct i915_wa *list = kmemdup(wal->list, 112 wal->count * sizeof(*list), 113 GFP_KERNEL); 114 115 if (list) { 116 kfree(wal->list); 117 wal->list = list; 118 } 119 } 120 121 if (!wal->count) 122 return; 123 124 drm_dbg(&wal->gt->i915->drm, "Initialized %u %s workarounds on %s\n", 125 wal->wa_count, wal->name, wal->engine_name); 126 } 127 128 static enum forcewake_domains 129 wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal) 130 { 131 enum forcewake_domains fw = 0; 132 struct i915_wa *wa; 133 unsigned int i; 134 135 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) 136 fw |= intel_uncore_forcewake_for_reg(uncore, 137 wa->reg, 138 FW_REG_READ | 139 FW_REG_WRITE); 140 141 return fw; 142 } 143 144 static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa) 145 { 146 unsigned int addr = i915_mmio_reg_offset(wa->reg); 147 struct drm_i915_private *i915 = wal->gt->i915; 148 unsigned int start = 0, end = wal->count; 149 const unsigned int grow = WA_LIST_CHUNK; 150 struct i915_wa *wa_; 151 152 GEM_BUG_ON(!is_power_of_2(grow)); 153 154 if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */ 155 struct i915_wa *list; 156 157 list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa), 158 GFP_KERNEL); 159 if (!list) { 160 drm_err(&i915->drm, "No space for workaround init!\n"); 161 return; 162 } 163 164 if (wal->list) { 165 memcpy(list, wal->list, sizeof(*wa) * wal->count); 166 kfree(wal->list); 167 } 168 169 wal->list = list; 170 } 171 172 while (start < end) { 173 unsigned int mid = start + (end - start) / 2; 174 175 if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) { 176 start = mid + 1; 177 } else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) { 178 end = mid; 179 } else { 180 wa_ = &wal->list[mid]; 181 182 if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) { 183 drm_err(&i915->drm, 184 "Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n", 185 i915_mmio_reg_offset(wa_->reg), 186 wa_->clr, wa_->set); 187 188 wa_->set &= ~wa->clr; 189 } 190 191 wal->wa_count++; 192 wa_->set |= wa->set; 193 wa_->clr |= wa->clr; 194 wa_->read |= wa->read; 195 return; 196 } 197 } 198 199 wal->wa_count++; 200 wa_ = &wal->list[wal->count++]; 201 *wa_ = *wa; 202 203 while (wa_-- > wal->list) { 204 GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) == 205 i915_mmio_reg_offset(wa_[1].reg)); 206 if (i915_mmio_reg_offset(wa_[1].reg) > 207 i915_mmio_reg_offset(wa_[0].reg)) 208 break; 209 210 swap(wa_[1], wa_[0]); 211 } 212 } 213 214 static void wa_add(struct i915_wa_list *wal, i915_reg_t reg, 215 u32 clear, u32 set, u32 read_mask, bool masked_reg) 216 { 217 struct i915_wa wa = { 218 .reg = reg, 219 .clr = clear, 220 .set = set, 221 .read = read_mask, 222 .masked_reg = masked_reg, 223 }; 224 225 _wa_add(wal, &wa); 226 } 227 228 static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg, 229 u32 clear, u32 set, u32 read_mask, bool masked_reg) 230 { 231 struct i915_wa wa = { 232 .mcr_reg = reg, 233 .clr = clear, 234 .set = set, 235 .read = read_mask, 236 .masked_reg = masked_reg, 237 .is_mcr = 1, 238 }; 239 240 _wa_add(wal, &wa); 241 } 242 243 static void 244 wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set) 245 { 246 wa_add(wal, reg, clear, set, clear | set, false); 247 } 248 249 static void 250 wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set) 251 { 252 wa_mcr_add(wal, reg, clear, set, clear | set, false); 253 } 254 255 static void 256 wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set) 257 { 258 wa_write_clr_set(wal, reg, ~0, set); 259 } 260 261 static void 262 wa_mcr_write(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set) 263 { 264 wa_mcr_write_clr_set(wal, reg, ~0, set); 265 } 266 267 static void 268 wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set) 269 { 270 wa_write_clr_set(wal, reg, set, set); 271 } 272 273 static void 274 wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set) 275 { 276 wa_mcr_write_clr_set(wal, reg, set, set); 277 } 278 279 static void 280 wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr) 281 { 282 wa_write_clr_set(wal, reg, clr, 0); 283 } 284 285 static void 286 wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr) 287 { 288 wa_mcr_write_clr_set(wal, reg, clr, 0); 289 } 290 291 /* 292 * WA operations on "masked register". A masked register has the upper 16 bits 293 * documented as "masked" in b-spec. Its purpose is to allow writing to just a 294 * portion of the register without a rmw: you simply write in the upper 16 bits 295 * the mask of bits you are going to modify. 296 * 297 * The wa_masked_* family of functions already does the necessary operations to 298 * calculate the mask based on the parameters passed, so user only has to 299 * provide the lower 16 bits of that register. 300 */ 301 302 static void 303 wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val) 304 { 305 wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true); 306 } 307 308 static void 309 wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val) 310 { 311 wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true); 312 } 313 314 static void 315 wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val) 316 { 317 wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true); 318 } 319 320 static void 321 wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val) 322 { 323 wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true); 324 } 325 326 static void 327 wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg, 328 u32 mask, u32 val) 329 { 330 wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true); 331 } 332 333 static void 334 wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, 335 u32 mask, u32 val) 336 { 337 wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true); 338 } 339 340 static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine, 341 struct i915_wa_list *wal) 342 { 343 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING); 344 } 345 346 static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine, 347 struct i915_wa_list *wal) 348 { 349 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING); 350 } 351 352 static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine, 353 struct i915_wa_list *wal) 354 { 355 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING); 356 357 /* WaDisableAsyncFlipPerfMode:bdw,chv */ 358 wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE); 359 360 /* WaDisablePartialInstShootdown:bdw,chv */ 361 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, 362 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE); 363 364 /* Use Force Non-Coherent whenever executing a 3D context. This is a 365 * workaround for a possible hang in the unlikely event a TLB 366 * invalidation occurs during a PSD flush. 367 */ 368 /* WaForceEnableNonCoherent:bdw,chv */ 369 /* WaHdcDisableFetchWhenMasked:bdw,chv */ 370 wa_masked_en(wal, HDC_CHICKEN0, 371 HDC_DONOT_FETCH_MEM_WHEN_MASKED | 372 HDC_FORCE_NON_COHERENT); 373 374 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0: 375 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping 376 * polygons in the same 8x4 pixel/sample area to be processed without 377 * stalling waiting for the earlier ones to write to Hierarchical Z 378 * buffer." 379 * 380 * This optimization is off by default for BDW and CHV; turn it on. 381 */ 382 wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE); 383 384 /* Wa4x4STCOptimizationDisable:bdw,chv */ 385 wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE); 386 387 /* 388 * BSpec recommends 8x4 when MSAA is used, 389 * however in practice 16x4 seems fastest. 390 * 391 * Note that PS/WM thread counts depend on the WIZ hashing 392 * disable bit, which we don't touch here, but it's good 393 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). 394 */ 395 wa_masked_field_set(wal, GEN7_GT_MODE, 396 GEN6_WIZ_HASHING_MASK, 397 GEN6_WIZ_HASHING_16x4); 398 } 399 400 static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine, 401 struct i915_wa_list *wal) 402 { 403 struct drm_i915_private *i915 = engine->i915; 404 405 gen8_ctx_workarounds_init(engine, wal); 406 407 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */ 408 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE); 409 410 /* WaDisableDopClockGating:bdw 411 * 412 * Also see the related UCGTCL1 write in bdw_init_clock_gating() 413 * to disable EUTC clock gating. 414 */ 415 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, 416 DOP_CLOCK_GATING_DISABLE); 417 418 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3, 419 GEN8_SAMPLER_POWER_BYPASS_DIS); 420 421 wa_masked_en(wal, HDC_CHICKEN0, 422 /* WaForceContextSaveRestoreNonCoherent:bdw */ 423 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT | 424 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */ 425 (IS_BROADWELL_GT3(i915) ? HDC_FENCE_DEST_SLM_DISABLE : 0)); 426 } 427 428 static void chv_ctx_workarounds_init(struct intel_engine_cs *engine, 429 struct i915_wa_list *wal) 430 { 431 gen8_ctx_workarounds_init(engine, wal); 432 433 /* WaDisableThreadStallDopClockGating:chv */ 434 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE); 435 436 /* Improve HiZ throughput on CHV. */ 437 wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X); 438 } 439 440 static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine, 441 struct i915_wa_list *wal) 442 { 443 struct drm_i915_private *i915 = engine->i915; 444 445 if (HAS_LLC(i915)) { 446 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl 447 * 448 * Must match Display Engine. See 449 * WaCompressedResourceDisplayNewHashMode. 450 */ 451 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 452 GEN9_PBE_COMPRESSED_HASH_SELECTION); 453 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7, 454 GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR); 455 } 456 457 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */ 458 /* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */ 459 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, 460 FLOW_CONTROL_ENABLE | 461 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE); 462 463 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */ 464 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */ 465 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7, 466 GEN9_ENABLE_YV12_BUGFIX | 467 GEN9_ENABLE_GPGPU_PREEMPTION); 468 469 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */ 470 /* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */ 471 wa_masked_en(wal, CACHE_MODE_1, 472 GEN8_4x4_STC_OPTIMIZATION_DISABLE | 473 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE); 474 475 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */ 476 wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5, 477 GEN9_CCS_TLB_PREFETCH_ENABLE); 478 479 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */ 480 wa_masked_en(wal, HDC_CHICKEN0, 481 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT | 482 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE); 483 484 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are 485 * both tied to WaForceContextSaveRestoreNonCoherent 486 * in some hsds for skl. We keep the tie for all gen9. The 487 * documentation is a bit hazy and so we want to get common behaviour, 488 * even though there is no clear evidence we would need both on kbl/bxt. 489 * This area has been source of system hangs so we play it safe 490 * and mimic the skl regardless of what bspec says. 491 * 492 * Use Force Non-Coherent whenever executing a 3D context. This 493 * is a workaround for a possible hang in the unlikely event 494 * a TLB invalidation occurs during a PSD flush. 495 */ 496 497 /* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */ 498 wa_masked_en(wal, HDC_CHICKEN0, 499 HDC_FORCE_NON_COHERENT); 500 501 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */ 502 if (IS_SKYLAKE(i915) || 503 IS_KABYLAKE(i915) || 504 IS_COFFEELAKE(i915) || 505 IS_COMETLAKE(i915)) 506 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3, 507 GEN8_SAMPLER_POWER_BYPASS_DIS); 508 509 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */ 510 wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE); 511 512 /* 513 * Supporting preemption with fine-granularity requires changes in the 514 * batch buffer programming. Since we can't break old userspace, we 515 * need to set our default preemption level to safe value. Userspace is 516 * still able to use more fine-grained preemption levels, since in 517 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the 518 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are 519 * not real HW workarounds, but merely a way to start using preemption 520 * while maintaining old contract with userspace. 521 */ 522 523 /* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */ 524 wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL); 525 526 /* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */ 527 wa_masked_field_set(wal, GEN8_CS_CHICKEN1, 528 GEN9_PREEMPT_GPGPU_LEVEL_MASK, 529 GEN9_PREEMPT_GPGPU_COMMAND_LEVEL); 530 531 /* WaClearHIZ_WM_CHICKEN3:bxt,glk */ 532 if (IS_GEN9_LP(i915)) 533 wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ); 534 } 535 536 static void skl_tune_iz_hashing(struct intel_engine_cs *engine, 537 struct i915_wa_list *wal) 538 { 539 struct intel_gt *gt = engine->gt; 540 u8 vals[3] = { 0, 0, 0 }; 541 unsigned int i; 542 543 for (i = 0; i < 3; i++) { 544 u8 ss; 545 546 /* 547 * Only consider slices where one, and only one, subslice has 7 548 * EUs 549 */ 550 if (!is_power_of_2(gt->info.sseu.subslice_7eu[i])) 551 continue; 552 553 /* 554 * subslice_7eu[i] != 0 (because of the check above) and 555 * ss_max == 4 (maximum number of subslices possible per slice) 556 * 557 * -> 0 <= ss <= 3; 558 */ 559 ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1; 560 vals[i] = 3 - ss; 561 } 562 563 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0) 564 return; 565 566 /* Tune IZ hashing. See intel_device_info_runtime_init() */ 567 wa_masked_field_set(wal, GEN7_GT_MODE, 568 GEN9_IZ_HASHING_MASK(2) | 569 GEN9_IZ_HASHING_MASK(1) | 570 GEN9_IZ_HASHING_MASK(0), 571 GEN9_IZ_HASHING(2, vals[2]) | 572 GEN9_IZ_HASHING(1, vals[1]) | 573 GEN9_IZ_HASHING(0, vals[0])); 574 } 575 576 static void skl_ctx_workarounds_init(struct intel_engine_cs *engine, 577 struct i915_wa_list *wal) 578 { 579 gen9_ctx_workarounds_init(engine, wal); 580 skl_tune_iz_hashing(engine, wal); 581 } 582 583 static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine, 584 struct i915_wa_list *wal) 585 { 586 gen9_ctx_workarounds_init(engine, wal); 587 588 /* WaDisableThreadStallDopClockGating:bxt */ 589 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, 590 STALL_DOP_GATING_DISABLE); 591 592 /* WaToEnableHwFixForPushConstHWBug:bxt */ 593 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 594 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); 595 } 596 597 static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine, 598 struct i915_wa_list *wal) 599 { 600 struct drm_i915_private *i915 = engine->i915; 601 602 gen9_ctx_workarounds_init(engine, wal); 603 604 /* WaToEnableHwFixForPushConstHWBug:kbl */ 605 if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER)) 606 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 607 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); 608 609 /* WaDisableSbeCacheDispatchPortSharing:kbl */ 610 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1, 611 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE); 612 } 613 614 static void glk_ctx_workarounds_init(struct intel_engine_cs *engine, 615 struct i915_wa_list *wal) 616 { 617 gen9_ctx_workarounds_init(engine, wal); 618 619 /* WaToEnableHwFixForPushConstHWBug:glk */ 620 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 621 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); 622 } 623 624 static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine, 625 struct i915_wa_list *wal) 626 { 627 gen9_ctx_workarounds_init(engine, wal); 628 629 /* WaToEnableHwFixForPushConstHWBug:cfl */ 630 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 631 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); 632 633 /* WaDisableSbeCacheDispatchPortSharing:cfl */ 634 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1, 635 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE); 636 } 637 638 static void icl_ctx_workarounds_init(struct intel_engine_cs *engine, 639 struct i915_wa_list *wal) 640 { 641 /* Wa_1406697149 (WaDisableBankHangMode:icl) */ 642 wa_write(wal, GEN8_L3CNTLREG, GEN8_ERRDETBCTRL); 643 644 /* WaForceEnableNonCoherent:icl 645 * This is not the same workaround as in early Gen9 platforms, where 646 * lacking this could cause system hangs, but coherency performance 647 * overhead is high and only a few compute workloads really need it 648 * (the register is whitelisted in hardware now, so UMDs can opt in 649 * for coherency if they have a good reason). 650 */ 651 wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT); 652 653 /* WaEnableFloatBlendOptimization:icl */ 654 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0, 655 _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE), 656 0 /* write-only, so skip validation */, 657 true); 658 659 /* WaDisableGPGPUMidThreadPreemption:icl */ 660 wa_masked_field_set(wal, GEN8_CS_CHICKEN1, 661 GEN9_PREEMPT_GPGPU_LEVEL_MASK, 662 GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL); 663 664 /* allow headerless messages for preemptible GPGPU context */ 665 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, 666 GEN11_SAMPLER_ENABLE_HEADLESS_MSG); 667 668 /* Wa_1604278689:icl,ehl */ 669 wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID); 670 wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER, 671 0, 672 0xFFFFFFFF); 673 674 /* Wa_1406306137:icl,ehl */ 675 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU); 676 } 677 678 /* 679 * These settings aren't actually workarounds, but general tuning settings that 680 * need to be programmed on dg2 platform. 681 */ 682 static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine, 683 struct i915_wa_list *wal) 684 { 685 wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP); 686 wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK, 687 REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f)); 688 wa_mcr_write_clr_set(wal, XEHP_FF_MODE2, FF_MODE2_TDS_TIMER_MASK, 689 FF_MODE2_TDS_TIMER_128); 690 } 691 692 static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine, 693 struct i915_wa_list *wal) 694 { 695 struct drm_i915_private *i915 = engine->i915; 696 697 /* 698 * Wa_1409142259:tgl,dg1,adl-p 699 * Wa_1409347922:tgl,dg1,adl-p 700 * Wa_1409252684:tgl,dg1,adl-p 701 * Wa_1409217633:tgl,dg1,adl-p 702 * Wa_1409207793:tgl,dg1,adl-p 703 * Wa_1409178076:tgl,dg1,adl-p 704 * Wa_1408979724:tgl,dg1,adl-p 705 * Wa_14010443199:tgl,rkl,dg1,adl-p 706 * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p 707 * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p 708 */ 709 wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3, 710 GEN12_DISABLE_CPS_AWARE_COLOR_PIPE); 711 712 /* WaDisableGPGPUMidThreadPreemption:gen12 */ 713 wa_masked_field_set(wal, GEN8_CS_CHICKEN1, 714 GEN9_PREEMPT_GPGPU_LEVEL_MASK, 715 GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL); 716 717 /* 718 * Wa_16011163337 - GS_TIMER 719 * 720 * TDS_TIMER: Although some platforms refer to it as Wa_1604555607, we 721 * need to program it even on those that don't explicitly list that 722 * workaround. 723 * 724 * Note that the programming of GEN12_FF_MODE2 is further modified 725 * according to the FF_MODE2 guidance given by Wa_1608008084. 726 * Wa_1608008084 tells us the FF_MODE2 register will return the wrong 727 * value when read from the CPU. 728 * 729 * The default value for this register is zero for all fields. 730 * So instead of doing a RMW we should just write the desired values 731 * for TDS and GS timers. Note that since the readback can't be trusted, 732 * the clear mask is just set to ~0 to make sure other bits are not 733 * inadvertently set. For the same reason read verification is ignored. 734 */ 735 wa_add(wal, 736 GEN12_FF_MODE2, 737 ~0, 738 FF_MODE2_TDS_TIMER_128 | FF_MODE2_GS_TIMER_224, 739 0, false); 740 741 if (!IS_DG1(i915)) { 742 /* Wa_1806527549 */ 743 wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE); 744 745 /* Wa_1606376872 */ 746 wa_masked_en(wal, COMMON_SLICE_CHICKEN4, DISABLE_TDC_LOAD_BALANCING_CALC); 747 } 748 } 749 750 static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine, 751 struct i915_wa_list *wal) 752 { 753 gen12_ctx_workarounds_init(engine, wal); 754 755 /* Wa_1409044764 */ 756 wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3, 757 DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN); 758 759 /* Wa_22010493298 */ 760 wa_masked_en(wal, HIZ_CHICKEN, 761 DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE); 762 } 763 764 static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine, 765 struct i915_wa_list *wal) 766 { 767 dg2_ctx_gt_tuning_init(engine, wal); 768 769 /* Wa_16013271637:dg2 */ 770 wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1, 771 MSC_MSAA_REODER_BUF_BYPASS_DISABLE); 772 773 /* Wa_14014947963:dg2 */ 774 wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000); 775 776 /* Wa_18018764978:dg2 */ 777 wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL); 778 779 /* Wa_15010599737:dg2 */ 780 wa_mcr_masked_en(wal, CHICKEN_RASTER_1, DIS_SF_ROUND_NEAREST_EVEN); 781 782 /* Wa_18019271663:dg2 */ 783 wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE); 784 } 785 786 static void xelpg_ctx_gt_tuning_init(struct intel_engine_cs *engine, 787 struct i915_wa_list *wal) 788 { 789 struct intel_gt *gt = engine->gt; 790 791 dg2_ctx_gt_tuning_init(engine, wal); 792 793 /* 794 * Due to Wa_16014892111, the DRAW_WATERMARK tuning must be done in 795 * gen12_emit_indirect_ctx_rcs() rather than here on some early 796 * steppings. 797 */ 798 if (!(IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 799 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0))) 800 wa_add(wal, DRAW_WATERMARK, VERT_WM_VAL, 0x3FF, 0, false); 801 } 802 803 static void xelpg_ctx_workarounds_init(struct intel_engine_cs *engine, 804 struct i915_wa_list *wal) 805 { 806 struct intel_gt *gt = engine->gt; 807 808 xelpg_ctx_gt_tuning_init(engine, wal); 809 810 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 811 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) { 812 /* Wa_14014947963 */ 813 wa_masked_field_set(wal, VF_PREEMPTION, 814 PREEMPTION_VERTEX_COUNT, 0x4000); 815 816 /* Wa_16013271637 */ 817 wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1, 818 MSC_MSAA_REODER_BUF_BYPASS_DISABLE); 819 820 /* Wa_18019627453 */ 821 wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS); 822 823 /* Wa_18018764978 */ 824 wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL); 825 } 826 827 /* Wa_18019271663 */ 828 wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE); 829 } 830 831 static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine, 832 struct i915_wa_list *wal) 833 { 834 /* 835 * This is a "fake" workaround defined by software to ensure we 836 * maintain reliable, backward-compatible behavior for userspace with 837 * regards to how nested MI_BATCH_BUFFER_START commands are handled. 838 * 839 * The per-context setting of MI_MODE[12] determines whether the bits 840 * of a nested MI_BATCH_BUFFER_START instruction should be interpreted 841 * in the traditional manner or whether they should instead use a new 842 * tgl+ meaning that breaks backward compatibility, but allows nesting 843 * into 3rd-level batchbuffers. When this new capability was first 844 * added in TGL, it remained off by default unless a context 845 * intentionally opted in to the new behavior. However Xe_HPG now 846 * flips this on by default and requires that we explicitly opt out if 847 * we don't want the new behavior. 848 * 849 * From a SW perspective, we want to maintain the backward-compatible 850 * behavior for userspace, so we'll apply a fake workaround to set it 851 * back to the legacy behavior on platforms where the hardware default 852 * is to break compatibility. At the moment there is no Linux 853 * userspace that utilizes third-level batchbuffers, so this will avoid 854 * userspace from needing to make any changes. using the legacy 855 * meaning is the correct thing to do. If/when we have userspace 856 * consumers that want to utilize third-level batch nesting, we can 857 * provide a context parameter to allow them to opt-in. 858 */ 859 wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN); 860 } 861 862 static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine, 863 struct i915_wa_list *wal) 864 { 865 u8 mocs; 866 867 /* 868 * Some blitter commands do not have a field for MOCS, those 869 * commands will use MOCS index pointed by BLIT_CCTL. 870 * BLIT_CCTL registers are needed to be programmed to un-cached. 871 */ 872 if (engine->class == COPY_ENGINE_CLASS) { 873 mocs = engine->gt->mocs.uc_index; 874 wa_write_clr_set(wal, 875 BLIT_CCTL(engine->mmio_base), 876 BLIT_CCTL_MASK, 877 BLIT_CCTL_MOCS(mocs, mocs)); 878 } 879 } 880 881 /* 882 * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround 883 * defined by the hardware team, but it programming general context registers. 884 * Adding those context register programming in context workaround 885 * allow us to use the wa framework for proper application and validation. 886 */ 887 static void 888 gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine, 889 struct i915_wa_list *wal) 890 { 891 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) 892 fakewa_disable_nestedbb_mode(engine, wal); 893 894 gen12_ctx_gt_mocs_init(engine, wal); 895 } 896 897 static void 898 __intel_engine_init_ctx_wa(struct intel_engine_cs *engine, 899 struct i915_wa_list *wal, 900 const char *name) 901 { 902 struct drm_i915_private *i915 = engine->i915; 903 904 wa_init_start(wal, engine->gt, name, engine->name); 905 906 /* Applies to all engines */ 907 /* 908 * Fake workarounds are not the actual workaround but 909 * programming of context registers using workaround framework. 910 */ 911 if (GRAPHICS_VER(i915) >= 12) 912 gen12_ctx_gt_fake_wa_init(engine, wal); 913 914 if (engine->class != RENDER_CLASS) 915 goto done; 916 917 if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74))) 918 xelpg_ctx_workarounds_init(engine, wal); 919 else if (IS_PONTEVECCHIO(i915)) 920 ; /* noop; none at this time */ 921 else if (IS_DG2(i915)) 922 dg2_ctx_workarounds_init(engine, wal); 923 else if (IS_XEHPSDV(i915)) 924 ; /* noop; none at this time */ 925 else if (IS_DG1(i915)) 926 dg1_ctx_workarounds_init(engine, wal); 927 else if (GRAPHICS_VER(i915) == 12) 928 gen12_ctx_workarounds_init(engine, wal); 929 else if (GRAPHICS_VER(i915) == 11) 930 icl_ctx_workarounds_init(engine, wal); 931 else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) 932 cfl_ctx_workarounds_init(engine, wal); 933 else if (IS_GEMINILAKE(i915)) 934 glk_ctx_workarounds_init(engine, wal); 935 else if (IS_KABYLAKE(i915)) 936 kbl_ctx_workarounds_init(engine, wal); 937 else if (IS_BROXTON(i915)) 938 bxt_ctx_workarounds_init(engine, wal); 939 else if (IS_SKYLAKE(i915)) 940 skl_ctx_workarounds_init(engine, wal); 941 else if (IS_CHERRYVIEW(i915)) 942 chv_ctx_workarounds_init(engine, wal); 943 else if (IS_BROADWELL(i915)) 944 bdw_ctx_workarounds_init(engine, wal); 945 else if (GRAPHICS_VER(i915) == 7) 946 gen7_ctx_workarounds_init(engine, wal); 947 else if (GRAPHICS_VER(i915) == 6) 948 gen6_ctx_workarounds_init(engine, wal); 949 else if (GRAPHICS_VER(i915) < 8) 950 ; 951 else 952 MISSING_CASE(GRAPHICS_VER(i915)); 953 954 done: 955 wa_init_finish(wal); 956 } 957 958 void intel_engine_init_ctx_wa(struct intel_engine_cs *engine) 959 { 960 __intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context"); 961 } 962 963 int intel_engine_emit_ctx_wa(struct i915_request *rq) 964 { 965 struct i915_wa_list *wal = &rq->engine->ctx_wa_list; 966 struct intel_uncore *uncore = rq->engine->uncore; 967 enum forcewake_domains fw; 968 unsigned long flags; 969 struct i915_wa *wa; 970 unsigned int i; 971 u32 *cs; 972 int ret; 973 974 if (wal->count == 0) 975 return 0; 976 977 ret = rq->engine->emit_flush(rq, EMIT_BARRIER); 978 if (ret) 979 return ret; 980 981 cs = intel_ring_begin(rq, (wal->count * 2 + 2)); 982 if (IS_ERR(cs)) 983 return PTR_ERR(cs); 984 985 fw = wal_get_fw_for_rmw(uncore, wal); 986 987 intel_gt_mcr_lock(wal->gt, &flags); 988 spin_lock(&uncore->lock); 989 intel_uncore_forcewake_get__locked(uncore, fw); 990 991 *cs++ = MI_LOAD_REGISTER_IMM(wal->count); 992 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 993 u32 val; 994 995 /* Skip reading the register if it's not really needed */ 996 if (wa->masked_reg || (wa->clr | wa->set) == U32_MAX) { 997 val = wa->set; 998 } else { 999 val = wa->is_mcr ? 1000 intel_gt_mcr_read_any_fw(wal->gt, wa->mcr_reg) : 1001 intel_uncore_read_fw(uncore, wa->reg); 1002 val &= ~wa->clr; 1003 val |= wa->set; 1004 } 1005 1006 *cs++ = i915_mmio_reg_offset(wa->reg); 1007 *cs++ = val; 1008 } 1009 *cs++ = MI_NOOP; 1010 1011 intel_uncore_forcewake_put__locked(uncore, fw); 1012 spin_unlock(&uncore->lock); 1013 intel_gt_mcr_unlock(wal->gt, flags); 1014 1015 intel_ring_advance(rq, cs); 1016 1017 ret = rq->engine->emit_flush(rq, EMIT_BARRIER); 1018 if (ret) 1019 return ret; 1020 1021 return 0; 1022 } 1023 1024 static void 1025 gen4_gt_workarounds_init(struct intel_gt *gt, 1026 struct i915_wa_list *wal) 1027 { 1028 /* WaDisable_RenderCache_OperationalFlush:gen4,ilk */ 1029 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE); 1030 } 1031 1032 static void 1033 g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1034 { 1035 gen4_gt_workarounds_init(gt, wal); 1036 1037 /* WaDisableRenderCachePipelinedFlush:g4x,ilk */ 1038 wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE); 1039 } 1040 1041 static void 1042 ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1043 { 1044 g4x_gt_workarounds_init(gt, wal); 1045 1046 wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED); 1047 } 1048 1049 static void 1050 snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1051 { 1052 } 1053 1054 static void 1055 ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1056 { 1057 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */ 1058 wa_masked_dis(wal, 1059 GEN7_COMMON_SLICE_CHICKEN1, 1060 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC); 1061 1062 /* WaApplyL3ControlAndL3ChickenMode:ivb */ 1063 wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL); 1064 wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE); 1065 1066 /* WaForceL3Serialization:ivb */ 1067 wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE); 1068 } 1069 1070 static void 1071 vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1072 { 1073 /* WaForceL3Serialization:vlv */ 1074 wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE); 1075 1076 /* 1077 * WaIncreaseL3CreditsForVLVB0:vlv 1078 * This is the hardware default actually. 1079 */ 1080 wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE); 1081 } 1082 1083 static void 1084 hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1085 { 1086 /* L3 caching of data atomics doesn't work -- disable it. */ 1087 wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE); 1088 1089 wa_add(wal, 1090 HSW_ROW_CHICKEN3, 0, 1091 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE), 1092 0 /* XXX does this reg exist? */, true); 1093 1094 /* WaVSRefCountFullforceMissDisable:hsw */ 1095 wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME); 1096 } 1097 1098 static void 1099 gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal) 1100 { 1101 const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu; 1102 unsigned int slice, subslice; 1103 u32 mcr, mcr_mask; 1104 1105 GEM_BUG_ON(GRAPHICS_VER(i915) != 9); 1106 1107 /* 1108 * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml 1109 * Before any MMIO read into slice/subslice specific registers, MCR 1110 * packet control register needs to be programmed to point to any 1111 * enabled s/ss pair. Otherwise, incorrect values will be returned. 1112 * This means each subsequent MMIO read will be forwarded to an 1113 * specific s/ss combination, but this is OK since these registers 1114 * are consistent across s/ss in almost all cases. In the rare 1115 * occasions, such as INSTDONE, where this value is dependent 1116 * on s/ss combo, the read should be done with read_subslice_reg. 1117 */ 1118 slice = ffs(sseu->slice_mask) - 1; 1119 GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw)); 1120 subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice)); 1121 GEM_BUG_ON(!subslice); 1122 subslice--; 1123 1124 /* 1125 * We use GEN8_MCR..() macros to calculate the |mcr| value for 1126 * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads 1127 */ 1128 mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice); 1129 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK; 1130 1131 drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr); 1132 1133 wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr); 1134 } 1135 1136 static void 1137 gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1138 { 1139 struct drm_i915_private *i915 = gt->i915; 1140 1141 /* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */ 1142 gen9_wa_init_mcr(i915, wal); 1143 1144 /* WaDisableKillLogic:bxt,skl,kbl */ 1145 if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915)) 1146 wa_write_or(wal, 1147 GAM_ECOCHK, 1148 ECOCHK_DIS_TLB); 1149 1150 if (HAS_LLC(i915)) { 1151 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl 1152 * 1153 * Must match Display Engine. See 1154 * WaCompressedResourceDisplayNewHashMode. 1155 */ 1156 wa_write_or(wal, 1157 MMCD_MISC_CTRL, 1158 MMCD_PCLA | MMCD_HOTSPOT_EN); 1159 } 1160 1161 /* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */ 1162 wa_write_or(wal, 1163 GAM_ECOCHK, 1164 BDW_DISABLE_HDC_INVALIDATION); 1165 } 1166 1167 static void 1168 skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1169 { 1170 gen9_gt_workarounds_init(gt, wal); 1171 1172 /* WaDisableGafsUnitClkGating:skl */ 1173 wa_write_or(wal, 1174 GEN7_UCGCTL4, 1175 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); 1176 1177 /* WaInPlaceDecompressionHang:skl */ 1178 if (IS_SKYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0)) 1179 wa_write_or(wal, 1180 GEN9_GAMT_ECO_REG_RW_IA, 1181 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS); 1182 } 1183 1184 static void 1185 kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1186 { 1187 gen9_gt_workarounds_init(gt, wal); 1188 1189 /* WaDisableDynamicCreditSharing:kbl */ 1190 if (IS_KABYLAKE(gt->i915) && IS_GRAPHICS_STEP(gt->i915, 0, STEP_C0)) 1191 wa_write_or(wal, 1192 GAMT_CHKN_BIT_REG, 1193 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING); 1194 1195 /* WaDisableGafsUnitClkGating:kbl */ 1196 wa_write_or(wal, 1197 GEN7_UCGCTL4, 1198 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); 1199 1200 /* WaInPlaceDecompressionHang:kbl */ 1201 wa_write_or(wal, 1202 GEN9_GAMT_ECO_REG_RW_IA, 1203 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS); 1204 } 1205 1206 static void 1207 glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1208 { 1209 gen9_gt_workarounds_init(gt, wal); 1210 } 1211 1212 static void 1213 cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1214 { 1215 gen9_gt_workarounds_init(gt, wal); 1216 1217 /* WaDisableGafsUnitClkGating:cfl */ 1218 wa_write_or(wal, 1219 GEN7_UCGCTL4, 1220 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); 1221 1222 /* WaInPlaceDecompressionHang:cfl */ 1223 wa_write_or(wal, 1224 GEN9_GAMT_ECO_REG_RW_IA, 1225 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS); 1226 } 1227 1228 static void __set_mcr_steering(struct i915_wa_list *wal, 1229 i915_reg_t steering_reg, 1230 unsigned int slice, unsigned int subslice) 1231 { 1232 u32 mcr, mcr_mask; 1233 1234 mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice); 1235 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK; 1236 1237 wa_write_clr_set(wal, steering_reg, mcr_mask, mcr); 1238 } 1239 1240 static void debug_dump_steering(struct intel_gt *gt) 1241 { 1242 struct drm_printer p = drm_debug_printer("MCR Steering:"); 1243 1244 if (drm_debug_enabled(DRM_UT_DRIVER)) 1245 intel_gt_mcr_report_steering(&p, gt, false); 1246 } 1247 1248 static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal, 1249 unsigned int slice, unsigned int subslice) 1250 { 1251 __set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice); 1252 1253 gt->default_steering.groupid = slice; 1254 gt->default_steering.instanceid = subslice; 1255 1256 debug_dump_steering(gt); 1257 } 1258 1259 static void 1260 icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal) 1261 { 1262 const struct sseu_dev_info *sseu = >->info.sseu; 1263 unsigned int subslice; 1264 1265 GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11); 1266 GEM_BUG_ON(hweight8(sseu->slice_mask) > 1); 1267 1268 /* 1269 * Although a platform may have subslices, we need to always steer 1270 * reads to the lowest instance that isn't fused off. When Render 1271 * Power Gating is enabled, grabbing forcewake will only power up a 1272 * single subslice (the "minconfig") if there isn't a real workload 1273 * that needs to be run; this means that if we steer register reads to 1274 * one of the higher subslices, we run the risk of reading back 0's or 1275 * random garbage. 1276 */ 1277 subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0)); 1278 1279 /* 1280 * If the subslice we picked above also steers us to a valid L3 bank, 1281 * then we can just rely on the default steering and won't need to 1282 * worry about explicitly re-steering L3BANK reads later. 1283 */ 1284 if (gt->info.l3bank_mask & BIT(subslice)) 1285 gt->steering_table[L3BANK] = NULL; 1286 1287 __add_mcr_wa(gt, wal, 0, subslice); 1288 } 1289 1290 static void 1291 xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal) 1292 { 1293 const struct sseu_dev_info *sseu = >->info.sseu; 1294 unsigned long slice, subslice = 0, slice_mask = 0; 1295 u32 lncf_mask = 0; 1296 int i; 1297 1298 /* 1299 * On Xe_HP the steering increases in complexity. There are now several 1300 * more units that require steering and we're not guaranteed to be able 1301 * to find a common setting for all of them. These are: 1302 * - GSLICE (fusable) 1303 * - DSS (sub-unit within gslice; fusable) 1304 * - L3 Bank (fusable) 1305 * - MSLICE (fusable) 1306 * - LNCF (sub-unit within mslice; always present if mslice is present) 1307 * 1308 * We'll do our default/implicit steering based on GSLICE (in the 1309 * sliceid field) and DSS (in the subsliceid field). If we can 1310 * find overlap between the valid MSLICE and/or LNCF values with 1311 * a suitable GSLICE, then we can just re-use the default value and 1312 * skip and explicit steering at runtime. 1313 * 1314 * We only need to look for overlap between GSLICE/MSLICE/LNCF to find 1315 * a valid sliceid value. DSS steering is the only type of steering 1316 * that utilizes the 'subsliceid' bits. 1317 * 1318 * Also note that, even though the steering domain is called "GSlice" 1319 * and it is encoded in the register using the gslice format, the spec 1320 * says that the combined (geometry | compute) fuse should be used to 1321 * select the steering. 1322 */ 1323 1324 /* Find the potential gslice candidates */ 1325 slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask, 1326 GEN_DSS_PER_GSLICE); 1327 1328 /* 1329 * Find the potential LNCF candidates. Either LNCF within a valid 1330 * mslice is fine. 1331 */ 1332 for_each_set_bit(i, >->info.mslice_mask, GEN12_MAX_MSLICES) 1333 lncf_mask |= (0x3 << (i * 2)); 1334 1335 /* 1336 * Are there any sliceid values that work for both GSLICE and LNCF 1337 * steering? 1338 */ 1339 if (slice_mask & lncf_mask) { 1340 slice_mask &= lncf_mask; 1341 gt->steering_table[LNCF] = NULL; 1342 } 1343 1344 /* How about sliceid values that also work for MSLICE steering? */ 1345 if (slice_mask & gt->info.mslice_mask) { 1346 slice_mask &= gt->info.mslice_mask; 1347 gt->steering_table[MSLICE] = NULL; 1348 } 1349 1350 if (IS_XEHPSDV(gt->i915) && slice_mask & BIT(0)) 1351 gt->steering_table[GAM] = NULL; 1352 1353 slice = __ffs(slice_mask); 1354 subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) % 1355 GEN_DSS_PER_GSLICE; 1356 1357 __add_mcr_wa(gt, wal, slice, subslice); 1358 1359 /* 1360 * SQIDI ranges are special because they use different steering 1361 * registers than everything else we work with. On XeHP SDV and 1362 * DG2-G10, any value in the steering registers will work fine since 1363 * all instances are present, but DG2-G11 only has SQIDI instances at 1364 * ID's 2 and 3, so we need to steer to one of those. For simplicity 1365 * we'll just steer to a hardcoded "2" since that value will work 1366 * everywhere. 1367 */ 1368 __set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2); 1369 __set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2); 1370 1371 /* 1372 * On DG2, GAM registers have a dedicated steering control register 1373 * and must always be programmed to a hardcoded groupid of "1." 1374 */ 1375 if (IS_DG2(gt->i915)) 1376 __set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0); 1377 } 1378 1379 static void 1380 pvc_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal) 1381 { 1382 unsigned int dss; 1383 1384 /* 1385 * Setup implicit steering for COMPUTE and DSS ranges to the first 1386 * non-fused-off DSS. All other types of MCR registers will be 1387 * explicitly steered. 1388 */ 1389 dss = intel_sseu_find_first_xehp_dss(>->info.sseu, 0, 0); 1390 __add_mcr_wa(gt, wal, dss / GEN_DSS_PER_CSLICE, dss % GEN_DSS_PER_CSLICE); 1391 } 1392 1393 static void 1394 icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1395 { 1396 struct drm_i915_private *i915 = gt->i915; 1397 1398 icl_wa_init_mcr(gt, wal); 1399 1400 /* WaModifyGamTlbPartitioning:icl */ 1401 wa_write_clr_set(wal, 1402 GEN11_GACB_PERF_CTRL, 1403 GEN11_HASH_CTRL_MASK, 1404 GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4); 1405 1406 /* Wa_1405766107:icl 1407 * Formerly known as WaCL2SFHalfMaxAlloc 1408 */ 1409 wa_write_or(wal, 1410 GEN11_LSN_UNSLCVC, 1411 GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC | 1412 GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC); 1413 1414 /* Wa_220166154:icl 1415 * Formerly known as WaDisCtxReload 1416 */ 1417 wa_write_or(wal, 1418 GEN8_GAMW_ECO_DEV_RW_IA, 1419 GAMW_ECO_DEV_CTX_RELOAD_DISABLE); 1420 1421 /* Wa_1406463099:icl 1422 * Formerly known as WaGamTlbPendError 1423 */ 1424 wa_write_or(wal, 1425 GAMT_CHKN_BIT_REG, 1426 GAMT_CHKN_DISABLE_L3_COH_PIPE); 1427 1428 /* 1429 * Wa_1408615072:icl,ehl (vsunit) 1430 * Wa_1407596294:icl,ehl (hsunit) 1431 */ 1432 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, 1433 VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS); 1434 1435 /* Wa_1407352427:icl,ehl */ 1436 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, 1437 PSDUNIT_CLKGATE_DIS); 1438 1439 /* Wa_1406680159:icl,ehl */ 1440 wa_mcr_write_or(wal, 1441 GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE, 1442 GWUNIT_CLKGATE_DIS); 1443 1444 /* Wa_1607087056:icl,ehl,jsl */ 1445 if (IS_ICELAKE(i915) || 1446 ((IS_JASPERLAKE(i915) || IS_ELKHARTLAKE(i915)) && 1447 IS_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))) 1448 wa_write_or(wal, 1449 GEN11_SLICE_UNIT_LEVEL_CLKGATE, 1450 L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS); 1451 1452 /* 1453 * This is not a documented workaround, but rather an optimization 1454 * to reduce sampler power. 1455 */ 1456 wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE); 1457 } 1458 1459 /* 1460 * Though there are per-engine instances of these registers, 1461 * they retain their value through engine resets and should 1462 * only be provided on the GT workaround list rather than 1463 * the engine-specific workaround list. 1464 */ 1465 static void 1466 wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal) 1467 { 1468 struct intel_engine_cs *engine; 1469 int id; 1470 1471 for_each_engine(engine, gt, id) { 1472 if (engine->class != VIDEO_DECODE_CLASS || 1473 (engine->instance % 2)) 1474 continue; 1475 1476 wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base), 1477 IECPUNIT_CLKGATE_DIS); 1478 } 1479 } 1480 1481 static void 1482 gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1483 { 1484 icl_wa_init_mcr(gt, wal); 1485 1486 /* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */ 1487 wa_14011060649(gt, wal); 1488 1489 /* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */ 1490 wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE); 1491 1492 /* 1493 * Wa_14015795083 1494 * 1495 * Firmware on some gen12 platforms locks the MISCCPCTL register, 1496 * preventing i915 from modifying it for this workaround. Skip the 1497 * readback verification for this workaround on debug builds; if the 1498 * workaround doesn't stick due to firmware behavior, it's not an error 1499 * that we want CI to flag. 1500 */ 1501 wa_add(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE, 1502 0, 0, false); 1503 } 1504 1505 static void 1506 dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1507 { 1508 gen12_gt_workarounds_init(gt, wal); 1509 1510 /* Wa_1409420604:dg1 */ 1511 wa_mcr_write_or(wal, SUBSLICE_UNIT_LEVEL_CLKGATE2, 1512 CPSSUNIT_CLKGATE_DIS); 1513 1514 /* Wa_1408615072:dg1 */ 1515 /* Empirical testing shows this register is unaffected by engine reset. */ 1516 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, VSUNIT_CLKGATE_DIS_TGL); 1517 } 1518 1519 static void 1520 xehpsdv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1521 { 1522 struct drm_i915_private *i915 = gt->i915; 1523 1524 xehp_init_mcr(gt, wal); 1525 1526 /* Wa_1409757795:xehpsdv */ 1527 wa_mcr_write_or(wal, SCCGCTL94DC, CG3DDISURB); 1528 1529 /* Wa_18011725039:xehpsdv */ 1530 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_B0)) { 1531 wa_mcr_masked_dis(wal, MLTICTXCTL, TDONRENDER); 1532 wa_mcr_write_or(wal, L3SQCREG1_CCS0, FLUSHALLNONCOH); 1533 } 1534 1535 /* Wa_16011155590:xehpsdv */ 1536 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)) 1537 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, 1538 TSGUNIT_CLKGATE_DIS); 1539 1540 /* Wa_14011780169:xehpsdv */ 1541 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_B0, STEP_FOREVER)) { 1542 wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS | 1543 GAMTLBVDBOX7_CLKGATE_DIS | 1544 GAMTLBVDBOX6_CLKGATE_DIS | 1545 GAMTLBVDBOX5_CLKGATE_DIS | 1546 GAMTLBVDBOX4_CLKGATE_DIS | 1547 GAMTLBVDBOX3_CLKGATE_DIS | 1548 GAMTLBVDBOX2_CLKGATE_DIS | 1549 GAMTLBVDBOX1_CLKGATE_DIS | 1550 GAMTLBVDBOX0_CLKGATE_DIS | 1551 GAMTLBKCR_CLKGATE_DIS | 1552 GAMTLBGUC_CLKGATE_DIS | 1553 GAMTLBBLT_CLKGATE_DIS); 1554 wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS | 1555 GAMTLBGFXA1_CLKGATE_DIS | 1556 GAMTLBCOMPA0_CLKGATE_DIS | 1557 GAMTLBCOMPA1_CLKGATE_DIS | 1558 GAMTLBCOMPB0_CLKGATE_DIS | 1559 GAMTLBCOMPB1_CLKGATE_DIS | 1560 GAMTLBCOMPC0_CLKGATE_DIS | 1561 GAMTLBCOMPC1_CLKGATE_DIS | 1562 GAMTLBCOMPD0_CLKGATE_DIS | 1563 GAMTLBCOMPD1_CLKGATE_DIS | 1564 GAMTLBMERT_CLKGATE_DIS | 1565 GAMTLBVEBOX3_CLKGATE_DIS | 1566 GAMTLBVEBOX2_CLKGATE_DIS | 1567 GAMTLBVEBOX1_CLKGATE_DIS | 1568 GAMTLBVEBOX0_CLKGATE_DIS); 1569 } 1570 1571 /* Wa_16012725990:xehpsdv */ 1572 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_FOREVER)) 1573 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, VFUNIT_CLKGATE_DIS); 1574 1575 /* Wa_14011060649:xehpsdv */ 1576 wa_14011060649(gt, wal); 1577 1578 /* Wa_14012362059:xehpsdv */ 1579 wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB); 1580 1581 /* Wa_14014368820:xehpsdv */ 1582 wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL, 1583 INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE); 1584 1585 /* Wa_14010670810:xehpsdv */ 1586 wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE); 1587 } 1588 1589 static void 1590 dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1591 { 1592 xehp_init_mcr(gt, wal); 1593 1594 /* Wa_14011060649:dg2 */ 1595 wa_14011060649(gt, wal); 1596 1597 if (IS_DG2_G10(gt->i915)) { 1598 /* Wa_22010523718:dg2 */ 1599 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, 1600 CG3DDISCFEG_CLKGATE_DIS); 1601 1602 /* Wa_14011006942:dg2 */ 1603 wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE, 1604 DSS_ROUTER_CLKGATE_DIS); 1605 } 1606 1607 /* Wa_14014830051:dg2 */ 1608 wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN); 1609 1610 /* Wa_14015795083 */ 1611 wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE); 1612 1613 /* Wa_18018781329 */ 1614 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB); 1615 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB); 1616 wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB); 1617 wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB); 1618 1619 /* Wa_1509235366:dg2 */ 1620 wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL, 1621 INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE); 1622 1623 /* Wa_14010648519:dg2 */ 1624 wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE); 1625 } 1626 1627 static void 1628 pvc_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1629 { 1630 pvc_init_mcr(gt, wal); 1631 1632 /* Wa_14015795083 */ 1633 wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE); 1634 1635 /* Wa_18018781329 */ 1636 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB); 1637 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB); 1638 wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB); 1639 wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB); 1640 1641 /* Wa_16016694945 */ 1642 wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_OVRLSCCC); 1643 } 1644 1645 static void 1646 xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1647 { 1648 /* Wa_14018575942 / Wa_18018781329 */ 1649 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB); 1650 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB); 1651 1652 /* Wa_22016670082 */ 1653 wa_write_or(wal, GEN12_SQCNT1, GEN12_STRICT_RAR_ENABLE); 1654 1655 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 1656 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) { 1657 /* Wa_14014830051 */ 1658 wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN); 1659 1660 /* Wa_14015795083 */ 1661 wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE); 1662 } 1663 1664 /* 1665 * Unlike older platforms, we no longer setup implicit steering here; 1666 * all MCR accesses are explicitly steered. 1667 */ 1668 debug_dump_steering(gt); 1669 } 1670 1671 static void 1672 xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1673 { 1674 /* 1675 * Wa_14018778641 1676 * Wa_18018781329 1677 * 1678 * Note that although these registers are MCR on the primary 1679 * GT, the media GT's versions are regular singleton registers. 1680 */ 1681 wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB); 1682 1683 debug_dump_steering(gt); 1684 } 1685 1686 /* 1687 * The bspec performance guide has recommended MMIO tuning settings. These 1688 * aren't truly "workarounds" but we want to program them through the 1689 * workaround infrastructure to make sure they're (re)applied at the proper 1690 * times. 1691 * 1692 * The programming in this function is for settings that persist through 1693 * engine resets and also are not part of any engine's register state context. 1694 * I.e., settings that only need to be re-applied in the event of a full GT 1695 * reset. 1696 */ 1697 static void gt_tuning_settings(struct intel_gt *gt, struct i915_wa_list *wal) 1698 { 1699 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) { 1700 wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS); 1701 wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS); 1702 } 1703 1704 if (IS_PONTEVECCHIO(gt->i915)) { 1705 wa_mcr_write(wal, XEHPC_L3SCRUB, 1706 SCRUB_CL_DWNGRADE_SHARED | SCRUB_RATE_4B_PER_CLK); 1707 wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_HOSTCACHEEN); 1708 } 1709 1710 if (IS_DG2(gt->i915)) { 1711 wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS); 1712 wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS); 1713 } 1714 } 1715 1716 static void 1717 gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal) 1718 { 1719 struct drm_i915_private *i915 = gt->i915; 1720 1721 gt_tuning_settings(gt, wal); 1722 1723 if (gt->type == GT_MEDIA) { 1724 if (MEDIA_VER(i915) >= 13) 1725 xelpmp_gt_workarounds_init(gt, wal); 1726 else 1727 MISSING_CASE(MEDIA_VER(i915)); 1728 1729 return; 1730 } 1731 1732 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74))) 1733 xelpg_gt_workarounds_init(gt, wal); 1734 else if (IS_PONTEVECCHIO(i915)) 1735 pvc_gt_workarounds_init(gt, wal); 1736 else if (IS_DG2(i915)) 1737 dg2_gt_workarounds_init(gt, wal); 1738 else if (IS_XEHPSDV(i915)) 1739 xehpsdv_gt_workarounds_init(gt, wal); 1740 else if (IS_DG1(i915)) 1741 dg1_gt_workarounds_init(gt, wal); 1742 else if (GRAPHICS_VER(i915) == 12) 1743 gen12_gt_workarounds_init(gt, wal); 1744 else if (GRAPHICS_VER(i915) == 11) 1745 icl_gt_workarounds_init(gt, wal); 1746 else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) 1747 cfl_gt_workarounds_init(gt, wal); 1748 else if (IS_GEMINILAKE(i915)) 1749 glk_gt_workarounds_init(gt, wal); 1750 else if (IS_KABYLAKE(i915)) 1751 kbl_gt_workarounds_init(gt, wal); 1752 else if (IS_BROXTON(i915)) 1753 gen9_gt_workarounds_init(gt, wal); 1754 else if (IS_SKYLAKE(i915)) 1755 skl_gt_workarounds_init(gt, wal); 1756 else if (IS_HASWELL(i915)) 1757 hsw_gt_workarounds_init(gt, wal); 1758 else if (IS_VALLEYVIEW(i915)) 1759 vlv_gt_workarounds_init(gt, wal); 1760 else if (IS_IVYBRIDGE(i915)) 1761 ivb_gt_workarounds_init(gt, wal); 1762 else if (GRAPHICS_VER(i915) == 6) 1763 snb_gt_workarounds_init(gt, wal); 1764 else if (GRAPHICS_VER(i915) == 5) 1765 ilk_gt_workarounds_init(gt, wal); 1766 else if (IS_G4X(i915)) 1767 g4x_gt_workarounds_init(gt, wal); 1768 else if (GRAPHICS_VER(i915) == 4) 1769 gen4_gt_workarounds_init(gt, wal); 1770 else if (GRAPHICS_VER(i915) <= 8) 1771 ; 1772 else 1773 MISSING_CASE(GRAPHICS_VER(i915)); 1774 } 1775 1776 void intel_gt_init_workarounds(struct intel_gt *gt) 1777 { 1778 struct i915_wa_list *wal = >->wa_list; 1779 1780 wa_init_start(wal, gt, "GT", "global"); 1781 gt_init_workarounds(gt, wal); 1782 wa_init_finish(wal); 1783 } 1784 1785 static bool 1786 wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur, 1787 const char *name, const char *from) 1788 { 1789 if ((cur ^ wa->set) & wa->read) { 1790 drm_err(>->i915->drm, 1791 "%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n", 1792 name, from, i915_mmio_reg_offset(wa->reg), 1793 cur, cur & wa->read, wa->set & wa->read); 1794 1795 return false; 1796 } 1797 1798 return true; 1799 } 1800 1801 static void wa_list_apply(const struct i915_wa_list *wal) 1802 { 1803 struct intel_gt *gt = wal->gt; 1804 struct intel_uncore *uncore = gt->uncore; 1805 enum forcewake_domains fw; 1806 unsigned long flags; 1807 struct i915_wa *wa; 1808 unsigned int i; 1809 1810 if (!wal->count) 1811 return; 1812 1813 fw = wal_get_fw_for_rmw(uncore, wal); 1814 1815 intel_gt_mcr_lock(gt, &flags); 1816 spin_lock(&uncore->lock); 1817 intel_uncore_forcewake_get__locked(uncore, fw); 1818 1819 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 1820 u32 val, old = 0; 1821 1822 /* open-coded rmw due to steering */ 1823 if (wa->clr) 1824 old = wa->is_mcr ? 1825 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) : 1826 intel_uncore_read_fw(uncore, wa->reg); 1827 val = (old & ~wa->clr) | wa->set; 1828 if (val != old || !wa->clr) { 1829 if (wa->is_mcr) 1830 intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val); 1831 else 1832 intel_uncore_write_fw(uncore, wa->reg, val); 1833 } 1834 1835 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) { 1836 u32 val = wa->is_mcr ? 1837 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) : 1838 intel_uncore_read_fw(uncore, wa->reg); 1839 1840 wa_verify(gt, wa, val, wal->name, "application"); 1841 } 1842 } 1843 1844 intel_uncore_forcewake_put__locked(uncore, fw); 1845 spin_unlock(&uncore->lock); 1846 intel_gt_mcr_unlock(gt, flags); 1847 } 1848 1849 void intel_gt_apply_workarounds(struct intel_gt *gt) 1850 { 1851 wa_list_apply(>->wa_list); 1852 } 1853 1854 static bool wa_list_verify(struct intel_gt *gt, 1855 const struct i915_wa_list *wal, 1856 const char *from) 1857 { 1858 struct intel_uncore *uncore = gt->uncore; 1859 struct i915_wa *wa; 1860 enum forcewake_domains fw; 1861 unsigned long flags; 1862 unsigned int i; 1863 bool ok = true; 1864 1865 fw = wal_get_fw_for_rmw(uncore, wal); 1866 1867 intel_gt_mcr_lock(gt, &flags); 1868 spin_lock(&uncore->lock); 1869 intel_uncore_forcewake_get__locked(uncore, fw); 1870 1871 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) 1872 ok &= wa_verify(wal->gt, wa, wa->is_mcr ? 1873 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) : 1874 intel_uncore_read_fw(uncore, wa->reg), 1875 wal->name, from); 1876 1877 intel_uncore_forcewake_put__locked(uncore, fw); 1878 spin_unlock(&uncore->lock); 1879 intel_gt_mcr_unlock(gt, flags); 1880 1881 return ok; 1882 } 1883 1884 bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from) 1885 { 1886 return wa_list_verify(gt, >->wa_list, from); 1887 } 1888 1889 __maybe_unused 1890 static bool is_nonpriv_flags_valid(u32 flags) 1891 { 1892 /* Check only valid flag bits are set */ 1893 if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID) 1894 return false; 1895 1896 /* NB: Only 3 out of 4 enum values are valid for access field */ 1897 if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) == 1898 RING_FORCE_TO_NONPRIV_ACCESS_INVALID) 1899 return false; 1900 1901 return true; 1902 } 1903 1904 static void 1905 whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags) 1906 { 1907 struct i915_wa wa = { 1908 .reg = reg 1909 }; 1910 1911 if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS)) 1912 return; 1913 1914 if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags))) 1915 return; 1916 1917 wa.reg.reg |= flags; 1918 _wa_add(wal, &wa); 1919 } 1920 1921 static void 1922 whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags) 1923 { 1924 struct i915_wa wa = { 1925 .mcr_reg = reg, 1926 .is_mcr = 1, 1927 }; 1928 1929 if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS)) 1930 return; 1931 1932 if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags))) 1933 return; 1934 1935 wa.mcr_reg.reg |= flags; 1936 _wa_add(wal, &wa); 1937 } 1938 1939 static void 1940 whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg) 1941 { 1942 whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW); 1943 } 1944 1945 static void 1946 whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg) 1947 { 1948 whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW); 1949 } 1950 1951 static void gen9_whitelist_build(struct i915_wa_list *w) 1952 { 1953 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */ 1954 whitelist_reg(w, GEN9_CTX_PREEMPT_REG); 1955 1956 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */ 1957 whitelist_reg(w, GEN8_CS_CHICKEN1); 1958 1959 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */ 1960 whitelist_reg(w, GEN8_HDC_CHICKEN1); 1961 1962 /* WaSendPushConstantsFromMMIO:skl,bxt */ 1963 whitelist_reg(w, COMMON_SLICE_CHICKEN2); 1964 } 1965 1966 static void skl_whitelist_build(struct intel_engine_cs *engine) 1967 { 1968 struct i915_wa_list *w = &engine->whitelist; 1969 1970 if (engine->class != RENDER_CLASS) 1971 return; 1972 1973 gen9_whitelist_build(w); 1974 1975 /* WaDisableLSQCROPERFforOCL:skl */ 1976 whitelist_mcr_reg(w, GEN8_L3SQCREG4); 1977 } 1978 1979 static void bxt_whitelist_build(struct intel_engine_cs *engine) 1980 { 1981 if (engine->class != RENDER_CLASS) 1982 return; 1983 1984 gen9_whitelist_build(&engine->whitelist); 1985 } 1986 1987 static void kbl_whitelist_build(struct intel_engine_cs *engine) 1988 { 1989 struct i915_wa_list *w = &engine->whitelist; 1990 1991 if (engine->class != RENDER_CLASS) 1992 return; 1993 1994 gen9_whitelist_build(w); 1995 1996 /* WaDisableLSQCROPERFforOCL:kbl */ 1997 whitelist_mcr_reg(w, GEN8_L3SQCREG4); 1998 } 1999 2000 static void glk_whitelist_build(struct intel_engine_cs *engine) 2001 { 2002 struct i915_wa_list *w = &engine->whitelist; 2003 2004 if (engine->class != RENDER_CLASS) 2005 return; 2006 2007 gen9_whitelist_build(w); 2008 2009 /* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */ 2010 whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1); 2011 } 2012 2013 static void cfl_whitelist_build(struct intel_engine_cs *engine) 2014 { 2015 struct i915_wa_list *w = &engine->whitelist; 2016 2017 if (engine->class != RENDER_CLASS) 2018 return; 2019 2020 gen9_whitelist_build(w); 2021 2022 /* 2023 * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml 2024 * 2025 * This covers 4 register which are next to one another : 2026 * - PS_INVOCATION_COUNT 2027 * - PS_INVOCATION_COUNT_UDW 2028 * - PS_DEPTH_COUNT 2029 * - PS_DEPTH_COUNT_UDW 2030 */ 2031 whitelist_reg_ext(w, PS_INVOCATION_COUNT, 2032 RING_FORCE_TO_NONPRIV_ACCESS_RD | 2033 RING_FORCE_TO_NONPRIV_RANGE_4); 2034 } 2035 2036 static void allow_read_ctx_timestamp(struct intel_engine_cs *engine) 2037 { 2038 struct i915_wa_list *w = &engine->whitelist; 2039 2040 if (engine->class != RENDER_CLASS) 2041 whitelist_reg_ext(w, 2042 RING_CTX_TIMESTAMP(engine->mmio_base), 2043 RING_FORCE_TO_NONPRIV_ACCESS_RD); 2044 } 2045 2046 static void cml_whitelist_build(struct intel_engine_cs *engine) 2047 { 2048 allow_read_ctx_timestamp(engine); 2049 2050 cfl_whitelist_build(engine); 2051 } 2052 2053 static void icl_whitelist_build(struct intel_engine_cs *engine) 2054 { 2055 struct i915_wa_list *w = &engine->whitelist; 2056 2057 allow_read_ctx_timestamp(engine); 2058 2059 switch (engine->class) { 2060 case RENDER_CLASS: 2061 /* WaAllowUMDToModifyHalfSliceChicken7:icl */ 2062 whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7); 2063 2064 /* WaAllowUMDToModifySamplerMode:icl */ 2065 whitelist_mcr_reg(w, GEN10_SAMPLER_MODE); 2066 2067 /* WaEnableStateCacheRedirectToCS:icl */ 2068 whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1); 2069 2070 /* 2071 * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl 2072 * 2073 * This covers 4 register which are next to one another : 2074 * - PS_INVOCATION_COUNT 2075 * - PS_INVOCATION_COUNT_UDW 2076 * - PS_DEPTH_COUNT 2077 * - PS_DEPTH_COUNT_UDW 2078 */ 2079 whitelist_reg_ext(w, PS_INVOCATION_COUNT, 2080 RING_FORCE_TO_NONPRIV_ACCESS_RD | 2081 RING_FORCE_TO_NONPRIV_RANGE_4); 2082 break; 2083 2084 case VIDEO_DECODE_CLASS: 2085 /* hucStatusRegOffset */ 2086 whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base), 2087 RING_FORCE_TO_NONPRIV_ACCESS_RD); 2088 /* hucUKernelHdrInfoRegOffset */ 2089 whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base), 2090 RING_FORCE_TO_NONPRIV_ACCESS_RD); 2091 /* hucStatus2RegOffset */ 2092 whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base), 2093 RING_FORCE_TO_NONPRIV_ACCESS_RD); 2094 break; 2095 2096 default: 2097 break; 2098 } 2099 } 2100 2101 static void tgl_whitelist_build(struct intel_engine_cs *engine) 2102 { 2103 struct i915_wa_list *w = &engine->whitelist; 2104 2105 allow_read_ctx_timestamp(engine); 2106 2107 switch (engine->class) { 2108 case RENDER_CLASS: 2109 /* 2110 * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl 2111 * Wa_1408556865:tgl 2112 * 2113 * This covers 4 registers which are next to one another : 2114 * - PS_INVOCATION_COUNT 2115 * - PS_INVOCATION_COUNT_UDW 2116 * - PS_DEPTH_COUNT 2117 * - PS_DEPTH_COUNT_UDW 2118 */ 2119 whitelist_reg_ext(w, PS_INVOCATION_COUNT, 2120 RING_FORCE_TO_NONPRIV_ACCESS_RD | 2121 RING_FORCE_TO_NONPRIV_RANGE_4); 2122 2123 /* 2124 * Wa_1808121037:tgl 2125 * Wa_14012131227:dg1 2126 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p 2127 */ 2128 whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1); 2129 2130 /* Wa_1806527549:tgl */ 2131 whitelist_reg(w, HIZ_CHICKEN); 2132 2133 /* Required by recommended tuning setting (not a workaround) */ 2134 whitelist_reg(w, GEN11_COMMON_SLICE_CHICKEN3); 2135 2136 break; 2137 default: 2138 break; 2139 } 2140 } 2141 2142 static void dg2_whitelist_build(struct intel_engine_cs *engine) 2143 { 2144 struct i915_wa_list *w = &engine->whitelist; 2145 2146 switch (engine->class) { 2147 case RENDER_CLASS: 2148 /* Required by recommended tuning setting (not a workaround) */ 2149 whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3); 2150 2151 break; 2152 default: 2153 break; 2154 } 2155 } 2156 2157 static void blacklist_trtt(struct intel_engine_cs *engine) 2158 { 2159 struct i915_wa_list *w = &engine->whitelist; 2160 2161 /* 2162 * Prevent read/write access to [0x4400, 0x4600) which covers 2163 * the TRTT range across all engines. Note that normally userspace 2164 * cannot access the other engines' trtt control, but for simplicity 2165 * we cover the entire range on each engine. 2166 */ 2167 whitelist_reg_ext(w, _MMIO(0x4400), 2168 RING_FORCE_TO_NONPRIV_DENY | 2169 RING_FORCE_TO_NONPRIV_RANGE_64); 2170 whitelist_reg_ext(w, _MMIO(0x4500), 2171 RING_FORCE_TO_NONPRIV_DENY | 2172 RING_FORCE_TO_NONPRIV_RANGE_64); 2173 } 2174 2175 static void pvc_whitelist_build(struct intel_engine_cs *engine) 2176 { 2177 /* Wa_16014440446:pvc */ 2178 blacklist_trtt(engine); 2179 } 2180 2181 static void xelpg_whitelist_build(struct intel_engine_cs *engine) 2182 { 2183 struct i915_wa_list *w = &engine->whitelist; 2184 2185 switch (engine->class) { 2186 case RENDER_CLASS: 2187 /* Required by recommended tuning setting (not a workaround) */ 2188 whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3); 2189 2190 break; 2191 default: 2192 break; 2193 } 2194 } 2195 2196 void intel_engine_init_whitelist(struct intel_engine_cs *engine) 2197 { 2198 struct drm_i915_private *i915 = engine->i915; 2199 struct i915_wa_list *w = &engine->whitelist; 2200 2201 wa_init_start(w, engine->gt, "whitelist", engine->name); 2202 2203 if (engine->gt->type == GT_MEDIA) 2204 ; /* none yet */ 2205 else if (IS_GFX_GT_IP_RANGE(engine->gt, IP_VER(12, 70), IP_VER(12, 74))) 2206 xelpg_whitelist_build(engine); 2207 else if (IS_PONTEVECCHIO(i915)) 2208 pvc_whitelist_build(engine); 2209 else if (IS_DG2(i915)) 2210 dg2_whitelist_build(engine); 2211 else if (IS_XEHPSDV(i915)) 2212 ; /* none needed */ 2213 else if (GRAPHICS_VER(i915) == 12) 2214 tgl_whitelist_build(engine); 2215 else if (GRAPHICS_VER(i915) == 11) 2216 icl_whitelist_build(engine); 2217 else if (IS_COMETLAKE(i915)) 2218 cml_whitelist_build(engine); 2219 else if (IS_COFFEELAKE(i915)) 2220 cfl_whitelist_build(engine); 2221 else if (IS_GEMINILAKE(i915)) 2222 glk_whitelist_build(engine); 2223 else if (IS_KABYLAKE(i915)) 2224 kbl_whitelist_build(engine); 2225 else if (IS_BROXTON(i915)) 2226 bxt_whitelist_build(engine); 2227 else if (IS_SKYLAKE(i915)) 2228 skl_whitelist_build(engine); 2229 else if (GRAPHICS_VER(i915) <= 8) 2230 ; 2231 else 2232 MISSING_CASE(GRAPHICS_VER(i915)); 2233 2234 wa_init_finish(w); 2235 } 2236 2237 void intel_engine_apply_whitelist(struct intel_engine_cs *engine) 2238 { 2239 const struct i915_wa_list *wal = &engine->whitelist; 2240 struct intel_uncore *uncore = engine->uncore; 2241 const u32 base = engine->mmio_base; 2242 struct i915_wa *wa; 2243 unsigned int i; 2244 2245 if (!wal->count) 2246 return; 2247 2248 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) 2249 intel_uncore_write(uncore, 2250 RING_FORCE_TO_NONPRIV(base, i), 2251 i915_mmio_reg_offset(wa->reg)); 2252 2253 /* And clear the rest just in case of garbage */ 2254 for (; i < RING_MAX_NONPRIV_SLOTS; i++) 2255 intel_uncore_write(uncore, 2256 RING_FORCE_TO_NONPRIV(base, i), 2257 i915_mmio_reg_offset(RING_NOPID(base))); 2258 } 2259 2260 /* 2261 * engine_fake_wa_init(), a place holder to program the registers 2262 * which are not part of an official workaround defined by the 2263 * hardware team. 2264 * Adding programming of those register inside workaround will 2265 * allow utilizing wa framework to proper application and verification. 2266 */ 2267 static void 2268 engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2269 { 2270 u8 mocs_w, mocs_r; 2271 2272 /* 2273 * RING_CMD_CCTL specifies the default MOCS entry that will be used 2274 * by the command streamer when executing commands that don't have 2275 * a way to explicitly specify a MOCS setting. The default should 2276 * usually reference whichever MOCS entry corresponds to uncached 2277 * behavior, although use of a WB cached entry is recommended by the 2278 * spec in certain circumstances on specific platforms. 2279 */ 2280 if (GRAPHICS_VER(engine->i915) >= 12) { 2281 mocs_r = engine->gt->mocs.uc_index; 2282 mocs_w = engine->gt->mocs.uc_index; 2283 2284 if (HAS_L3_CCS_READ(engine->i915) && 2285 engine->class == COMPUTE_CLASS) { 2286 mocs_r = engine->gt->mocs.wb_index; 2287 2288 /* 2289 * Even on the few platforms where MOCS 0 is a 2290 * legitimate table entry, it's never the correct 2291 * setting to use here; we can assume the MOCS init 2292 * just forgot to initialize wb_index. 2293 */ 2294 drm_WARN_ON(&engine->i915->drm, mocs_r == 0); 2295 } 2296 2297 wa_masked_field_set(wal, 2298 RING_CMD_CCTL(engine->mmio_base), 2299 CMD_CCTL_MOCS_MASK, 2300 CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r)); 2301 } 2302 } 2303 2304 static void 2305 rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2306 { 2307 struct drm_i915_private *i915 = engine->i915; 2308 struct intel_gt *gt = engine->gt; 2309 2310 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 2311 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) { 2312 /* Wa_22014600077 */ 2313 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, 2314 ENABLE_EU_COUNT_FOR_TDL_FLUSH); 2315 } 2316 2317 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 2318 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) || 2319 IS_DG2(i915)) { 2320 /* Wa_1509727124 */ 2321 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, 2322 SC_DISABLE_POWER_OPTIMIZATION_EBB); 2323 } 2324 2325 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 2326 IS_DG2(i915)) { 2327 /* Wa_22012856258 */ 2328 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, 2329 GEN12_DISABLE_READ_SUPPRESSION); 2330 } 2331 2332 if (IS_DG2(i915)) { 2333 /* 2334 * Wa_22010960976:dg2 2335 * Wa_14013347512:dg2 2336 */ 2337 wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0, 2338 LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK); 2339 } 2340 2341 if (IS_DG2_G11(i915) || IS_DG2_G10(i915)) { 2342 /* Wa_22014600077:dg2 */ 2343 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0, 2344 _MASKED_BIT_ENABLE(ENABLE_EU_COUNT_FOR_TDL_FLUSH), 2345 0 /* Wa_14012342262 write-only reg, so skip verification */, 2346 true); 2347 } 2348 2349 if (IS_DG2(i915) || IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || 2350 IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) { 2351 /* 2352 * Wa_1606700617:tgl,dg1,adl-p 2353 * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p 2354 * Wa_14010826681:tgl,dg1,rkl,adl-p 2355 * Wa_18019627453:dg2 2356 */ 2357 wa_masked_en(wal, 2358 GEN9_CS_DEBUG_MODE1, 2359 FF_DOP_CLOCK_GATE_DISABLE); 2360 } 2361 2362 if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) || 2363 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) { 2364 /* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */ 2365 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ); 2366 2367 /* 2368 * Wa_1407928979:tgl A* 2369 * Wa_18011464164:tgl[B0+],dg1[B0+] 2370 * Wa_22010931296:tgl[B0+],dg1[B0+] 2371 * Wa_14010919138:rkl,dg1,adl-s,adl-p 2372 */ 2373 wa_write_or(wal, GEN7_FF_THREAD_MODE, 2374 GEN12_FF_TESSELATION_DOP_GATE_DISABLE); 2375 2376 /* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */ 2377 wa_mcr_masked_en(wal, 2378 GEN10_SAMPLER_MODE, 2379 ENABLE_SMALLPL); 2380 } 2381 2382 if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || 2383 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) { 2384 /* Wa_1409804808 */ 2385 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, 2386 GEN12_PUSH_CONST_DEREF_HOLD_DIS); 2387 2388 /* Wa_14010229206 */ 2389 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH); 2390 } 2391 2392 if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) { 2393 /* 2394 * Wa_1607297627 2395 * 2396 * On TGL and RKL there are multiple entries for this WA in the 2397 * BSpec; some indicate this is an A0-only WA, others indicate 2398 * it applies to all steppings so we trust the "all steppings." 2399 */ 2400 wa_masked_en(wal, 2401 RING_PSMI_CTL(RENDER_RING_BASE), 2402 GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE | 2403 GEN8_RC_SEMA_IDLE_MSG_DISABLE); 2404 } 2405 2406 if (GRAPHICS_VER(i915) == 11) { 2407 /* This is not an Wa. Enable for better image quality */ 2408 wa_masked_en(wal, 2409 _3D_CHICKEN3, 2410 _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE); 2411 2412 /* 2413 * Wa_1405543622:icl 2414 * Formerly known as WaGAPZPriorityScheme 2415 */ 2416 wa_write_or(wal, 2417 GEN8_GARBCNTL, 2418 GEN11_ARBITRATION_PRIO_ORDER_MASK); 2419 2420 /* 2421 * Wa_1604223664:icl 2422 * Formerly known as WaL3BankAddressHashing 2423 */ 2424 wa_write_clr_set(wal, 2425 GEN8_GARBCNTL, 2426 GEN11_HASH_CTRL_EXCL_MASK, 2427 GEN11_HASH_CTRL_EXCL_BIT0); 2428 wa_write_clr_set(wal, 2429 GEN11_GLBLINVL, 2430 GEN11_BANK_HASH_ADDR_EXCL_MASK, 2431 GEN11_BANK_HASH_ADDR_EXCL_BIT0); 2432 2433 /* 2434 * Wa_1405733216:icl 2435 * Formerly known as WaDisableCleanEvicts 2436 */ 2437 wa_mcr_write_or(wal, 2438 GEN8_L3SQCREG4, 2439 GEN11_LQSC_CLEAN_EVICT_DISABLE); 2440 2441 /* Wa_1606682166:icl */ 2442 wa_write_or(wal, 2443 GEN7_SARCHKMD, 2444 GEN7_DISABLE_SAMPLER_PREFETCH); 2445 2446 /* Wa_1409178092:icl */ 2447 wa_mcr_write_clr_set(wal, 2448 GEN11_SCRATCH2, 2449 GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE, 2450 0); 2451 2452 /* WaEnable32PlaneMode:icl */ 2453 wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS, 2454 GEN11_ENABLE_32_PLANE_MODE); 2455 2456 /* 2457 * Wa_1408767742:icl[a2..forever],ehl[all] 2458 * Wa_1605460711:icl[a0..c0] 2459 */ 2460 wa_write_or(wal, 2461 GEN7_FF_THREAD_MODE, 2462 GEN12_FF_TESSELATION_DOP_GATE_DISABLE); 2463 2464 /* Wa_22010271021 */ 2465 wa_masked_en(wal, 2466 GEN9_CS_DEBUG_MODE1, 2467 FF_DOP_CLOCK_GATE_DISABLE); 2468 } 2469 2470 /* 2471 * Intel platforms that support fine-grained preemption (i.e., gen9 and 2472 * beyond) allow the kernel-mode driver to choose between two different 2473 * options for controlling preemption granularity and behavior. 2474 * 2475 * Option 1 (hardware default): 2476 * Preemption settings are controlled in a global manner via 2477 * kernel-only register CS_DEBUG_MODE1 (0x20EC). Any granularity 2478 * and settings chosen by the kernel-mode driver will apply to all 2479 * userspace clients. 2480 * 2481 * Option 2: 2482 * Preemption settings are controlled on a per-context basis via 2483 * register CS_CHICKEN1 (0x2580). CS_CHICKEN1 is saved/restored on 2484 * context switch and is writable by userspace (e.g., via 2485 * MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer) 2486 * which allows different userspace drivers/clients to select 2487 * different settings, or to change those settings on the fly in 2488 * response to runtime needs. This option was known by name 2489 * "FtrPerCtxtPreemptionGranularityControl" at one time, although 2490 * that name is somewhat misleading as other non-granularity 2491 * preemption settings are also impacted by this decision. 2492 * 2493 * On Linux, our policy has always been to let userspace drivers 2494 * control preemption granularity/settings (Option 2). This was 2495 * originally mandatory on gen9 to prevent ABI breakage (old gen9 2496 * userspace developed before object-level preemption was enabled would 2497 * not behave well if i915 were to go with Option 1 and enable that 2498 * preemption in a global manner). On gen9 each context would have 2499 * object-level preemption disabled by default (see 2500 * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but 2501 * userspace drivers could opt-in to object-level preemption as they 2502 * saw fit. For post-gen9 platforms, we continue to utilize Option 2; 2503 * even though it is no longer necessary for ABI compatibility when 2504 * enabling a new platform, it does ensure that userspace will be able 2505 * to implement any workarounds that show up requiring temporary 2506 * adjustments to preemption behavior at runtime. 2507 * 2508 * Notes/Workarounds: 2509 * - Wa_14015141709: On DG2 and early steppings of MTL, 2510 * CS_CHICKEN1[0] does not disable object-level preemption as 2511 * it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been 2512 * using Option 1). Effectively this means userspace is unable 2513 * to disable object-level preemption on these platforms/steppings 2514 * despite the setting here. 2515 * 2516 * - Wa_16013994831: May require that userspace program 2517 * CS_CHICKEN1[10] when certain runtime conditions are true. 2518 * Userspace requires Option 2 to be in effect for their update of 2519 * CS_CHICKEN1[10] to be effective. 2520 * 2521 * Other workarounds may appear in the future that will also require 2522 * Option 2 behavior to allow proper userspace implementation. 2523 */ 2524 if (GRAPHICS_VER(i915) >= 9) 2525 wa_masked_en(wal, 2526 GEN7_FF_SLICE_CS_CHICKEN1, 2527 GEN9_FFSC_PERCTX_PREEMPT_CTRL); 2528 2529 if (IS_SKYLAKE(i915) || 2530 IS_KABYLAKE(i915) || 2531 IS_COFFEELAKE(i915) || 2532 IS_COMETLAKE(i915)) { 2533 /* WaEnableGapsTsvCreditFix:skl,kbl,cfl */ 2534 wa_write_or(wal, 2535 GEN8_GARBCNTL, 2536 GEN9_GAPS_TSV_CREDIT_DISABLE); 2537 } 2538 2539 if (IS_BROXTON(i915)) { 2540 /* WaDisablePooledEuLoadBalancingFix:bxt */ 2541 wa_masked_en(wal, 2542 FF_SLICE_CS_CHICKEN2, 2543 GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE); 2544 } 2545 2546 if (GRAPHICS_VER(i915) == 9) { 2547 /* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */ 2548 wa_masked_en(wal, 2549 GEN9_CSFE_CHICKEN1_RCS, 2550 GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE); 2551 2552 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */ 2553 wa_mcr_write_or(wal, 2554 BDW_SCRATCH1, 2555 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE); 2556 2557 /* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */ 2558 if (IS_GEN9_LP(i915)) 2559 wa_mcr_write_clr_set(wal, 2560 GEN8_L3SQCREG1, 2561 L3_PRIO_CREDITS_MASK, 2562 L3_GENERAL_PRIO_CREDITS(62) | 2563 L3_HIGH_PRIO_CREDITS(2)); 2564 2565 /* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */ 2566 wa_mcr_write_or(wal, 2567 GEN8_L3SQCREG4, 2568 GEN8_LQSC_FLUSH_COHERENT_LINES); 2569 2570 /* Disable atomics in L3 to prevent unrecoverable hangs */ 2571 wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1, 2572 GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0); 2573 wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4, 2574 GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0); 2575 wa_mcr_write_clr_set(wal, GEN9_SCRATCH1, 2576 EVICTION_PERF_FIX_ENABLE, 0); 2577 } 2578 2579 if (IS_HASWELL(i915)) { 2580 /* WaSampleCChickenBitEnable:hsw */ 2581 wa_masked_en(wal, 2582 HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE); 2583 2584 wa_masked_dis(wal, 2585 CACHE_MODE_0_GEN7, 2586 /* enable HiZ Raw Stall Optimization */ 2587 HIZ_RAW_STALL_OPT_DISABLE); 2588 } 2589 2590 if (IS_VALLEYVIEW(i915)) { 2591 /* WaDisableEarlyCull:vlv */ 2592 wa_masked_en(wal, 2593 _3D_CHICKEN3, 2594 _3D_CHICKEN_SF_DISABLE_OBJEND_CULL); 2595 2596 /* 2597 * WaVSThreadDispatchOverride:ivb,vlv 2598 * 2599 * This actually overrides the dispatch 2600 * mode for all thread types. 2601 */ 2602 wa_write_clr_set(wal, 2603 GEN7_FF_THREAD_MODE, 2604 GEN7_FF_SCHED_MASK, 2605 GEN7_FF_TS_SCHED_HW | 2606 GEN7_FF_VS_SCHED_HW | 2607 GEN7_FF_DS_SCHED_HW); 2608 2609 /* WaPsdDispatchEnable:vlv */ 2610 /* WaDisablePSDDualDispatchEnable:vlv */ 2611 wa_masked_en(wal, 2612 GEN7_HALF_SLICE_CHICKEN1, 2613 GEN7_MAX_PS_THREAD_DEP | 2614 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE); 2615 } 2616 2617 if (IS_IVYBRIDGE(i915)) { 2618 /* WaDisableEarlyCull:ivb */ 2619 wa_masked_en(wal, 2620 _3D_CHICKEN3, 2621 _3D_CHICKEN_SF_DISABLE_OBJEND_CULL); 2622 2623 if (0) { /* causes HiZ corruption on ivb:gt1 */ 2624 /* enable HiZ Raw Stall Optimization */ 2625 wa_masked_dis(wal, 2626 CACHE_MODE_0_GEN7, 2627 HIZ_RAW_STALL_OPT_DISABLE); 2628 } 2629 2630 /* 2631 * WaVSThreadDispatchOverride:ivb,vlv 2632 * 2633 * This actually overrides the dispatch 2634 * mode for all thread types. 2635 */ 2636 wa_write_clr_set(wal, 2637 GEN7_FF_THREAD_MODE, 2638 GEN7_FF_SCHED_MASK, 2639 GEN7_FF_TS_SCHED_HW | 2640 GEN7_FF_VS_SCHED_HW | 2641 GEN7_FF_DS_SCHED_HW); 2642 2643 /* WaDisablePSDDualDispatchEnable:ivb */ 2644 if (IS_IVB_GT1(i915)) 2645 wa_masked_en(wal, 2646 GEN7_HALF_SLICE_CHICKEN1, 2647 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE); 2648 } 2649 2650 if (GRAPHICS_VER(i915) == 7) { 2651 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */ 2652 wa_masked_en(wal, 2653 RING_MODE_GEN7(RENDER_RING_BASE), 2654 GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE); 2655 2656 /* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */ 2657 wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE); 2658 2659 /* 2660 * BSpec says this must be set, even though 2661 * WaDisable4x2SubspanOptimization:ivb,hsw 2662 * WaDisable4x2SubspanOptimization isn't listed for VLV. 2663 */ 2664 wa_masked_en(wal, 2665 CACHE_MODE_1, 2666 PIXEL_SUBSPAN_COLLECT_OPT_DISABLE); 2667 2668 /* 2669 * BSpec recommends 8x4 when MSAA is used, 2670 * however in practice 16x4 seems fastest. 2671 * 2672 * Note that PS/WM thread counts depend on the WIZ hashing 2673 * disable bit, which we don't touch here, but it's good 2674 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). 2675 */ 2676 wa_masked_field_set(wal, 2677 GEN7_GT_MODE, 2678 GEN6_WIZ_HASHING_MASK, 2679 GEN6_WIZ_HASHING_16x4); 2680 } 2681 2682 if (IS_GRAPHICS_VER(i915, 6, 7)) 2683 /* 2684 * We need to disable the AsyncFlip performance optimisations in 2685 * order to use MI_WAIT_FOR_EVENT within the CS. It should 2686 * already be programmed to '1' on all products. 2687 * 2688 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv 2689 */ 2690 wa_masked_en(wal, 2691 RING_MI_MODE(RENDER_RING_BASE), 2692 ASYNC_FLIP_PERF_DISABLE); 2693 2694 if (GRAPHICS_VER(i915) == 6) { 2695 /* 2696 * Required for the hardware to program scanline values for 2697 * waiting 2698 * WaEnableFlushTlbInvalidationMode:snb 2699 */ 2700 wa_masked_en(wal, 2701 GFX_MODE, 2702 GFX_TLB_INVALIDATE_EXPLICIT); 2703 2704 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */ 2705 wa_masked_en(wal, 2706 _3D_CHICKEN, 2707 _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB); 2708 2709 wa_masked_en(wal, 2710 _3D_CHICKEN3, 2711 /* WaStripsFansDisableFastClipPerformanceFix:snb */ 2712 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL | 2713 /* 2714 * Bspec says: 2715 * "This bit must be set if 3DSTATE_CLIP clip mode is set 2716 * to normal and 3DSTATE_SF number of SF output attributes 2717 * is more than 16." 2718 */ 2719 _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH); 2720 2721 /* 2722 * BSpec recommends 8x4 when MSAA is used, 2723 * however in practice 16x4 seems fastest. 2724 * 2725 * Note that PS/WM thread counts depend on the WIZ hashing 2726 * disable bit, which we don't touch here, but it's good 2727 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). 2728 */ 2729 wa_masked_field_set(wal, 2730 GEN6_GT_MODE, 2731 GEN6_WIZ_HASHING_MASK, 2732 GEN6_WIZ_HASHING_16x4); 2733 2734 /* WaDisable_RenderCache_OperationalFlush:snb */ 2735 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE); 2736 2737 /* 2738 * From the Sandybridge PRM, volume 1 part 3, page 24: 2739 * "If this bit is set, STCunit will have LRA as replacement 2740 * policy. [...] This bit must be reset. LRA replacement 2741 * policy is not supported." 2742 */ 2743 wa_masked_dis(wal, 2744 CACHE_MODE_0, 2745 CM0_STC_EVICT_DISABLE_LRA_SNB); 2746 } 2747 2748 if (IS_GRAPHICS_VER(i915, 4, 6)) 2749 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */ 2750 wa_add(wal, RING_MI_MODE(RENDER_RING_BASE), 2751 0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH), 2752 /* XXX bit doesn't stick on Broadwater */ 2753 IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true); 2754 2755 if (GRAPHICS_VER(i915) == 4) 2756 /* 2757 * Disable CONSTANT_BUFFER before it is loaded from the context 2758 * image. For as it is loaded, it is executed and the stored 2759 * address may no longer be valid, leading to a GPU hang. 2760 * 2761 * This imposes the requirement that userspace reload their 2762 * CONSTANT_BUFFER on every batch, fortunately a requirement 2763 * they are already accustomed to from before contexts were 2764 * enabled. 2765 */ 2766 wa_add(wal, ECOSKPD(RENDER_RING_BASE), 2767 0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE), 2768 0 /* XXX bit doesn't stick on Broadwater */, 2769 true); 2770 } 2771 2772 static void 2773 xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2774 { 2775 struct drm_i915_private *i915 = engine->i915; 2776 2777 /* WaKBLVECSSemaphoreWaitPoll:kbl */ 2778 if (IS_KABYLAKE(i915) && IS_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) { 2779 wa_write(wal, 2780 RING_SEMA_WAIT_POLL(engine->mmio_base), 2781 1); 2782 } 2783 } 2784 2785 static void 2786 ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2787 { 2788 if (IS_PVC_CT_STEP(engine->i915, STEP_A0, STEP_C0)) { 2789 /* Wa_14014999345:pvc */ 2790 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, DISABLE_ECC); 2791 } 2792 } 2793 2794 /* 2795 * The bspec performance guide has recommended MMIO tuning settings. These 2796 * aren't truly "workarounds" but we want to program them with the same 2797 * workaround infrastructure to ensure that they're automatically added to 2798 * the GuC save/restore lists, re-applied at the right times, and checked for 2799 * any conflicting programming requested by real workarounds. 2800 * 2801 * Programming settings should be added here only if their registers are not 2802 * part of an engine's register state context. If a register is part of a 2803 * context, then any tuning settings should be programmed in an appropriate 2804 * function invoked by __intel_engine_init_ctx_wa(). 2805 */ 2806 static void 2807 add_render_compute_tuning_settings(struct intel_gt *gt, 2808 struct i915_wa_list *wal) 2809 { 2810 struct drm_i915_private *i915 = gt->i915; 2811 2812 if (IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 70), IP_VER(12, 74)) || IS_DG2(i915)) 2813 wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512); 2814 2815 /* 2816 * This tuning setting proves beneficial only on ATS-M designs; the 2817 * default "age based" setting is optimal on regular DG2 and other 2818 * platforms. 2819 */ 2820 if (INTEL_INFO(i915)->tuning_thread_rr_after_dep) 2821 wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE, 2822 THREAD_EX_ARB_MODE_RR_AFTER_DEP); 2823 2824 if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) 2825 wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC); 2826 } 2827 2828 static void ccs_engine_wa_mode(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2829 { 2830 struct intel_gt *gt = engine->gt; 2831 u32 mode; 2832 2833 if (!IS_DG2(gt->i915)) 2834 return; 2835 2836 /* 2837 * Wa_14019159160: This workaround, along with others, leads to 2838 * significant challenges in utilizing load balancing among the 2839 * CCS slices. Consequently, an architectural decision has been 2840 * made to completely disable automatic CCS load balancing. 2841 */ 2842 wa_masked_en(wal, GEN12_RCU_MODE, XEHP_RCU_MODE_FIXED_SLICE_CCS_MODE); 2843 2844 /* 2845 * After having disabled automatic load balancing we need to 2846 * assign all slices to a single CCS. We will call it CCS mode 1 2847 */ 2848 mode = intel_gt_apply_ccs_mode(gt); 2849 wa_masked_en(wal, XEHP_CCS_MODE, mode); 2850 } 2851 2852 /* 2853 * The workarounds in this function apply to shared registers in 2854 * the general render reset domain that aren't tied to a 2855 * specific engine. Since all render+compute engines get reset 2856 * together, and the contents of these registers are lost during 2857 * the shared render domain reset, we'll define such workarounds 2858 * here and then add them to just a single RCS or CCS engine's 2859 * workaround list (whichever engine has the XXXX flag). 2860 */ 2861 static void 2862 general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2863 { 2864 struct drm_i915_private *i915 = engine->i915; 2865 struct intel_gt *gt = engine->gt; 2866 2867 add_render_compute_tuning_settings(gt, wal); 2868 2869 if (GRAPHICS_VER(i915) >= 11) { 2870 /* This is not a Wa (although referred to as 2871 * WaSetInidrectStateOverride in places), this allows 2872 * applications that reference sampler states through 2873 * the BindlessSamplerStateBaseAddress to have their 2874 * border color relative to DynamicStateBaseAddress 2875 * rather than BindlessSamplerStateBaseAddress. 2876 * 2877 * Otherwise SAMPLER_STATE border colors have to be 2878 * copied in multiple heaps (DynamicStateBaseAddress & 2879 * BindlessSamplerStateBaseAddress) 2880 * 2881 * BSpec: 46052 2882 */ 2883 wa_mcr_masked_en(wal, 2884 GEN10_SAMPLER_MODE, 2885 GEN11_INDIRECT_STATE_BASE_ADDR_OVERRIDE); 2886 } 2887 2888 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_B0, STEP_FOREVER) || 2889 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_B0, STEP_FOREVER) || 2890 IS_GFX_GT_IP_RANGE(gt, IP_VER(12, 74), IP_VER(12, 74))) 2891 /* Wa_14017856879 */ 2892 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN3, MTL_DISABLE_FIX_FOR_EOT_FLUSH); 2893 2894 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 2895 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) 2896 /* 2897 * Wa_14017066071 2898 * Wa_14017654203 2899 */ 2900 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, 2901 MTL_DISABLE_SAMPLER_SC_OOO); 2902 2903 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0)) 2904 /* Wa_22015279794 */ 2905 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, 2906 DISABLE_PREFETCH_INTO_IC); 2907 2908 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 2909 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) || 2910 IS_DG2(i915)) { 2911 /* Wa_22013037850 */ 2912 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, 2913 DISABLE_128B_EVICTION_COMMAND_UDW); 2914 2915 /* Wa_18017747507 */ 2916 wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE); 2917 } 2918 2919 if (IS_GFX_GT_IP_STEP(gt, IP_VER(12, 70), STEP_A0, STEP_B0) || 2920 IS_GFX_GT_IP_STEP(gt, IP_VER(12, 71), STEP_A0, STEP_B0) || 2921 IS_PONTEVECCHIO(i915) || 2922 IS_DG2(i915)) { 2923 /* Wa_22014226127 */ 2924 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE); 2925 } 2926 2927 if (IS_PONTEVECCHIO(i915) || IS_DG2(i915)) { 2928 /* Wa_14015227452:dg2,pvc */ 2929 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE); 2930 2931 /* Wa_16015675438:dg2,pvc */ 2932 wa_masked_en(wal, FF_SLICE_CS_CHICKEN2, GEN12_PERF_FIX_BALANCING_CFE_DISABLE); 2933 } 2934 2935 if (IS_DG2(i915)) { 2936 /* 2937 * Wa_16011620976:dg2_g11 2938 * Wa_22015475538:dg2 2939 */ 2940 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8); 2941 } 2942 2943 if (IS_DG2_G11(i915)) { 2944 /* 2945 * Wa_22012826095:dg2 2946 * Wa_22013059131:dg2 2947 */ 2948 wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW, 2949 MAXREQS_PER_BANK, 2950 REG_FIELD_PREP(MAXREQS_PER_BANK, 2)); 2951 2952 /* Wa_22013059131:dg2 */ 2953 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, 2954 FORCE_1_SUB_MESSAGE_PER_FRAGMENT); 2955 2956 /* 2957 * Wa_22012654132 2958 * 2959 * Note that register 0xE420 is write-only and cannot be read 2960 * back for verification on DG2 (due to Wa_14012342262), so 2961 * we need to explicitly skip the readback. 2962 */ 2963 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0, 2964 _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC), 2965 0 /* write-only, so skip validation */, 2966 true); 2967 } 2968 2969 if (IS_XEHPSDV(i915)) { 2970 /* Wa_1409954639 */ 2971 wa_mcr_masked_en(wal, 2972 GEN8_ROW_CHICKEN, 2973 SYSTOLIC_DOP_CLOCK_GATING_DIS); 2974 2975 /* Wa_1607196519 */ 2976 wa_mcr_masked_en(wal, 2977 GEN9_ROW_CHICKEN4, 2978 GEN12_DISABLE_GRF_CLEAR); 2979 2980 /* Wa_14010449647:xehpsdv */ 2981 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1, 2982 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE); 2983 } 2984 } 2985 2986 static void 2987 engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2988 { 2989 if (GRAPHICS_VER(engine->i915) < 4) 2990 return; 2991 2992 engine_fake_wa_init(engine, wal); 2993 2994 /* 2995 * These are common workarounds that just need to applied 2996 * to a single RCS/CCS engine's workaround list since 2997 * they're reset as part of the general render domain reset. 2998 */ 2999 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) { 3000 general_render_compute_wa_init(engine, wal); 3001 ccs_engine_wa_mode(engine, wal); 3002 } 3003 3004 if (engine->class == COMPUTE_CLASS) 3005 ccs_engine_wa_init(engine, wal); 3006 else if (engine->class == RENDER_CLASS) 3007 rcs_engine_wa_init(engine, wal); 3008 else 3009 xcs_engine_wa_init(engine, wal); 3010 } 3011 3012 void intel_engine_init_workarounds(struct intel_engine_cs *engine) 3013 { 3014 struct i915_wa_list *wal = &engine->wa_list; 3015 3016 wa_init_start(wal, engine->gt, "engine", engine->name); 3017 engine_init_workarounds(engine, wal); 3018 wa_init_finish(wal); 3019 } 3020 3021 void intel_engine_apply_workarounds(struct intel_engine_cs *engine) 3022 { 3023 wa_list_apply(&engine->wa_list); 3024 } 3025 3026 static const struct i915_range mcr_ranges_gen8[] = { 3027 { .start = 0x5500, .end = 0x55ff }, 3028 { .start = 0x7000, .end = 0x7fff }, 3029 { .start = 0x9400, .end = 0x97ff }, 3030 { .start = 0xb000, .end = 0xb3ff }, 3031 { .start = 0xe000, .end = 0xe7ff }, 3032 {}, 3033 }; 3034 3035 static const struct i915_range mcr_ranges_gen12[] = { 3036 { .start = 0x8150, .end = 0x815f }, 3037 { .start = 0x9520, .end = 0x955f }, 3038 { .start = 0xb100, .end = 0xb3ff }, 3039 { .start = 0xde80, .end = 0xe8ff }, 3040 { .start = 0x24a00, .end = 0x24a7f }, 3041 {}, 3042 }; 3043 3044 static const struct i915_range mcr_ranges_xehp[] = { 3045 { .start = 0x4000, .end = 0x4aff }, 3046 { .start = 0x5200, .end = 0x52ff }, 3047 { .start = 0x5400, .end = 0x7fff }, 3048 { .start = 0x8140, .end = 0x815f }, 3049 { .start = 0x8c80, .end = 0x8dff }, 3050 { .start = 0x94d0, .end = 0x955f }, 3051 { .start = 0x9680, .end = 0x96ff }, 3052 { .start = 0xb000, .end = 0xb3ff }, 3053 { .start = 0xc800, .end = 0xcfff }, 3054 { .start = 0xd800, .end = 0xd8ff }, 3055 { .start = 0xdc00, .end = 0xffff }, 3056 { .start = 0x17000, .end = 0x17fff }, 3057 { .start = 0x24a00, .end = 0x24a7f }, 3058 {}, 3059 }; 3060 3061 static bool mcr_range(struct drm_i915_private *i915, u32 offset) 3062 { 3063 const struct i915_range *mcr_ranges; 3064 int i; 3065 3066 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) 3067 mcr_ranges = mcr_ranges_xehp; 3068 else if (GRAPHICS_VER(i915) >= 12) 3069 mcr_ranges = mcr_ranges_gen12; 3070 else if (GRAPHICS_VER(i915) >= 8) 3071 mcr_ranges = mcr_ranges_gen8; 3072 else 3073 return false; 3074 3075 /* 3076 * Registers in these ranges are affected by the MCR selector 3077 * which only controls CPU initiated MMIO. Routing does not 3078 * work for CS access so we cannot verify them on this path. 3079 */ 3080 for (i = 0; mcr_ranges[i].start; i++) 3081 if (offset >= mcr_ranges[i].start && 3082 offset <= mcr_ranges[i].end) 3083 return true; 3084 3085 return false; 3086 } 3087 3088 static int 3089 wa_list_srm(struct i915_request *rq, 3090 const struct i915_wa_list *wal, 3091 struct i915_vma *vma) 3092 { 3093 struct drm_i915_private *i915 = rq->i915; 3094 unsigned int i, count = 0; 3095 const struct i915_wa *wa; 3096 u32 srm, *cs; 3097 3098 srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT; 3099 if (GRAPHICS_VER(i915) >= 8) 3100 srm++; 3101 3102 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 3103 if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg))) 3104 count++; 3105 } 3106 3107 cs = intel_ring_begin(rq, 4 * count); 3108 if (IS_ERR(cs)) 3109 return PTR_ERR(cs); 3110 3111 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 3112 u32 offset = i915_mmio_reg_offset(wa->reg); 3113 3114 if (mcr_range(i915, offset)) 3115 continue; 3116 3117 *cs++ = srm; 3118 *cs++ = offset; 3119 *cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i; 3120 *cs++ = 0; 3121 } 3122 intel_ring_advance(rq, cs); 3123 3124 return 0; 3125 } 3126 3127 static int engine_wa_list_verify(struct intel_context *ce, 3128 const struct i915_wa_list * const wal, 3129 const char *from) 3130 { 3131 const struct i915_wa *wa; 3132 struct i915_request *rq; 3133 struct i915_vma *vma; 3134 struct i915_gem_ww_ctx ww; 3135 unsigned int i; 3136 u32 *results; 3137 int err; 3138 3139 if (!wal->count) 3140 return 0; 3141 3142 vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm, 3143 wal->count * sizeof(u32)); 3144 if (IS_ERR(vma)) 3145 return PTR_ERR(vma); 3146 3147 intel_engine_pm_get(ce->engine); 3148 i915_gem_ww_ctx_init(&ww, false); 3149 retry: 3150 err = i915_gem_object_lock(vma->obj, &ww); 3151 if (err == 0) 3152 err = intel_context_pin_ww(ce, &ww); 3153 if (err) 3154 goto err_pm; 3155 3156 err = i915_vma_pin_ww(vma, &ww, 0, 0, 3157 i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER); 3158 if (err) 3159 goto err_unpin; 3160 3161 rq = i915_request_create(ce); 3162 if (IS_ERR(rq)) { 3163 err = PTR_ERR(rq); 3164 goto err_vma; 3165 } 3166 3167 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); 3168 if (err == 0) 3169 err = wa_list_srm(rq, wal, vma); 3170 3171 i915_request_get(rq); 3172 if (err) 3173 i915_request_set_error_once(rq, err); 3174 i915_request_add(rq); 3175 3176 if (err) 3177 goto err_rq; 3178 3179 if (i915_request_wait(rq, 0, HZ / 5) < 0) { 3180 err = -ETIME; 3181 goto err_rq; 3182 } 3183 3184 results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); 3185 if (IS_ERR(results)) { 3186 err = PTR_ERR(results); 3187 goto err_rq; 3188 } 3189 3190 err = 0; 3191 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 3192 if (mcr_range(rq->i915, i915_mmio_reg_offset(wa->reg))) 3193 continue; 3194 3195 if (!wa_verify(wal->gt, wa, results[i], wal->name, from)) 3196 err = -ENXIO; 3197 } 3198 3199 i915_gem_object_unpin_map(vma->obj); 3200 3201 err_rq: 3202 i915_request_put(rq); 3203 err_vma: 3204 i915_vma_unpin(vma); 3205 err_unpin: 3206 intel_context_unpin(ce); 3207 err_pm: 3208 if (err == -EDEADLK) { 3209 err = i915_gem_ww_ctx_backoff(&ww); 3210 if (!err) 3211 goto retry; 3212 } 3213 i915_gem_ww_ctx_fini(&ww); 3214 intel_engine_pm_put(ce->engine); 3215 i915_vma_put(vma); 3216 return err; 3217 } 3218 3219 int intel_engine_verify_workarounds(struct intel_engine_cs *engine, 3220 const char *from) 3221 { 3222 return engine_wa_list_verify(engine->kernel_context, 3223 &engine->wa_list, 3224 from); 3225 } 3226 3227 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 3228 #include "selftest_workarounds.c" 3229 #endif 3230