1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2018 Intel Corporation 4 */ 5 6 #include "i915_drv.h" 7 #include "i915_reg.h" 8 #include "intel_context.h" 9 #include "intel_engine_pm.h" 10 #include "intel_engine_regs.h" 11 #include "intel_gpu_commands.h" 12 #include "intel_gt.h" 13 #include "intel_gt_mcr.h" 14 #include "intel_gt_regs.h" 15 #include "intel_ring.h" 16 #include "intel_workarounds.h" 17 18 /** 19 * DOC: Hardware workarounds 20 * 21 * Hardware workarounds are register programming documented to be executed in 22 * the driver that fall outside of the normal programming sequences for a 23 * platform. There are some basic categories of workarounds, depending on 24 * how/when they are applied: 25 * 26 * - Context workarounds: workarounds that touch registers that are 27 * saved/restored to/from the HW context image. The list is emitted (via Load 28 * Register Immediate commands) once when initializing the device and saved in 29 * the default context. That default context is then used on every context 30 * creation to have a "primed golden context", i.e. a context image that 31 * already contains the changes needed to all the registers. 32 * 33 * - Engine workarounds: the list of these WAs is applied whenever the specific 34 * engine is reset. It's also possible that a set of engine classes share a 35 * common power domain and they are reset together. This happens on some 36 * platforms with render and compute engines. In this case (at least) one of 37 * them need to keeep the workaround programming: the approach taken in the 38 * driver is to tie those workarounds to the first compute/render engine that 39 * is registered. When executing with GuC submission, engine resets are 40 * outside of kernel driver control, hence the list of registers involved in 41 * written once, on engine initialization, and then passed to GuC, that 42 * saves/restores their values before/after the reset takes place. See 43 * ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference. 44 * 45 * - GT workarounds: the list of these WAs is applied whenever these registers 46 * revert to their default values: on GPU reset, suspend/resume [1]_, etc. 47 * 48 * - Register whitelist: some workarounds need to be implemented in userspace, 49 * but need to touch privileged registers. The whitelist in the kernel 50 * instructs the hardware to allow the access to happen. From the kernel side, 51 * this is just a special case of a MMIO workaround (as we write the list of 52 * these to/be-whitelisted registers to some special HW registers). 53 * 54 * - Workaround batchbuffers: buffers that get executed automatically by the 55 * hardware on every HW context restore. These buffers are created and 56 * programmed in the default context so the hardware always go through those 57 * programming sequences when switching contexts. The support for workaround 58 * batchbuffers is enabled these hardware mechanisms: 59 * 60 * #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default 61 * context, pointing the hardware to jump to that location when that offset 62 * is reached in the context restore. Workaround batchbuffer in the driver 63 * currently uses this mechanism for all platforms. 64 * 65 * #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context, 66 * pointing the hardware to a buffer to continue executing after the 67 * engine registers are restored in a context restore sequence. This is 68 * currently not used in the driver. 69 * 70 * - Other: There are WAs that, due to their nature, cannot be applied from a 71 * central place. Those are peppered around the rest of the code, as needed. 72 * Workarounds related to the display IP are the main example. 73 * 74 * .. [1] Technically, some registers are powercontext saved & restored, so they 75 * survive a suspend/resume. In practice, writing them again is not too 76 * costly and simplifies things, so it's the approach taken in the driver. 77 */ 78 79 static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt, 80 const char *name, const char *engine_name) 81 { 82 wal->gt = gt; 83 wal->name = name; 84 wal->engine_name = engine_name; 85 } 86 87 #define WA_LIST_CHUNK (1 << 4) 88 89 static void wa_init_finish(struct i915_wa_list *wal) 90 { 91 /* Trim unused entries. */ 92 if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) { 93 struct i915_wa *list = kmemdup(wal->list, 94 wal->count * sizeof(*list), 95 GFP_KERNEL); 96 97 if (list) { 98 kfree(wal->list); 99 wal->list = list; 100 } 101 } 102 103 if (!wal->count) 104 return; 105 106 drm_dbg(&wal->gt->i915->drm, "Initialized %u %s workarounds on %s\n", 107 wal->wa_count, wal->name, wal->engine_name); 108 } 109 110 static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa) 111 { 112 unsigned int addr = i915_mmio_reg_offset(wa->reg); 113 struct drm_i915_private *i915 = wal->gt->i915; 114 unsigned int start = 0, end = wal->count; 115 const unsigned int grow = WA_LIST_CHUNK; 116 struct i915_wa *wa_; 117 118 GEM_BUG_ON(!is_power_of_2(grow)); 119 120 if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */ 121 struct i915_wa *list; 122 123 list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa), 124 GFP_KERNEL); 125 if (!list) { 126 drm_err(&i915->drm, "No space for workaround init!\n"); 127 return; 128 } 129 130 if (wal->list) { 131 memcpy(list, wal->list, sizeof(*wa) * wal->count); 132 kfree(wal->list); 133 } 134 135 wal->list = list; 136 } 137 138 while (start < end) { 139 unsigned int mid = start + (end - start) / 2; 140 141 if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) { 142 start = mid + 1; 143 } else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) { 144 end = mid; 145 } else { 146 wa_ = &wal->list[mid]; 147 148 if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) { 149 drm_err(&i915->drm, 150 "Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n", 151 i915_mmio_reg_offset(wa_->reg), 152 wa_->clr, wa_->set); 153 154 wa_->set &= ~wa->clr; 155 } 156 157 wal->wa_count++; 158 wa_->set |= wa->set; 159 wa_->clr |= wa->clr; 160 wa_->read |= wa->read; 161 return; 162 } 163 } 164 165 wal->wa_count++; 166 wa_ = &wal->list[wal->count++]; 167 *wa_ = *wa; 168 169 while (wa_-- > wal->list) { 170 GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) == 171 i915_mmio_reg_offset(wa_[1].reg)); 172 if (i915_mmio_reg_offset(wa_[1].reg) > 173 i915_mmio_reg_offset(wa_[0].reg)) 174 break; 175 176 swap(wa_[1], wa_[0]); 177 } 178 } 179 180 static void wa_add(struct i915_wa_list *wal, i915_reg_t reg, 181 u32 clear, u32 set, u32 read_mask, bool masked_reg) 182 { 183 struct i915_wa wa = { 184 .reg = reg, 185 .clr = clear, 186 .set = set, 187 .read = read_mask, 188 .masked_reg = masked_reg, 189 }; 190 191 _wa_add(wal, &wa); 192 } 193 194 static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg, 195 u32 clear, u32 set, u32 read_mask, bool masked_reg) 196 { 197 struct i915_wa wa = { 198 .mcr_reg = reg, 199 .clr = clear, 200 .set = set, 201 .read = read_mask, 202 .masked_reg = masked_reg, 203 .is_mcr = 1, 204 }; 205 206 _wa_add(wal, &wa); 207 } 208 209 static void 210 wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set) 211 { 212 wa_add(wal, reg, clear, set, clear, false); 213 } 214 215 static void 216 wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set) 217 { 218 wa_mcr_add(wal, reg, clear, set, clear, false); 219 } 220 221 static void 222 wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set) 223 { 224 wa_write_clr_set(wal, reg, ~0, set); 225 } 226 227 static void 228 wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set) 229 { 230 wa_write_clr_set(wal, reg, set, set); 231 } 232 233 static void 234 wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set) 235 { 236 wa_mcr_write_clr_set(wal, reg, set, set); 237 } 238 239 static void 240 wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr) 241 { 242 wa_write_clr_set(wal, reg, clr, 0); 243 } 244 245 static void 246 wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr) 247 { 248 wa_mcr_write_clr_set(wal, reg, clr, 0); 249 } 250 251 /* 252 * WA operations on "masked register". A masked register has the upper 16 bits 253 * documented as "masked" in b-spec. Its purpose is to allow writing to just a 254 * portion of the register without a rmw: you simply write in the upper 16 bits 255 * the mask of bits you are going to modify. 256 * 257 * The wa_masked_* family of functions already does the necessary operations to 258 * calculate the mask based on the parameters passed, so user only has to 259 * provide the lower 16 bits of that register. 260 */ 261 262 static void 263 wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val) 264 { 265 wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true); 266 } 267 268 static void 269 wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val) 270 { 271 wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true); 272 } 273 274 static void 275 wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val) 276 { 277 wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true); 278 } 279 280 static void 281 wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val) 282 { 283 wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true); 284 } 285 286 static void 287 wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg, 288 u32 mask, u32 val) 289 { 290 wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true); 291 } 292 293 static void 294 wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, 295 u32 mask, u32 val) 296 { 297 wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true); 298 } 299 300 static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine, 301 struct i915_wa_list *wal) 302 { 303 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING); 304 } 305 306 static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine, 307 struct i915_wa_list *wal) 308 { 309 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING); 310 } 311 312 static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine, 313 struct i915_wa_list *wal) 314 { 315 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING); 316 317 /* WaDisableAsyncFlipPerfMode:bdw,chv */ 318 wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE); 319 320 /* WaDisablePartialInstShootdown:bdw,chv */ 321 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, 322 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE); 323 324 /* Use Force Non-Coherent whenever executing a 3D context. This is a 325 * workaround for a possible hang in the unlikely event a TLB 326 * invalidation occurs during a PSD flush. 327 */ 328 /* WaForceEnableNonCoherent:bdw,chv */ 329 /* WaHdcDisableFetchWhenMasked:bdw,chv */ 330 wa_masked_en(wal, HDC_CHICKEN0, 331 HDC_DONOT_FETCH_MEM_WHEN_MASKED | 332 HDC_FORCE_NON_COHERENT); 333 334 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0: 335 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping 336 * polygons in the same 8x4 pixel/sample area to be processed without 337 * stalling waiting for the earlier ones to write to Hierarchical Z 338 * buffer." 339 * 340 * This optimization is off by default for BDW and CHV; turn it on. 341 */ 342 wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE); 343 344 /* Wa4x4STCOptimizationDisable:bdw,chv */ 345 wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE); 346 347 /* 348 * BSpec recommends 8x4 when MSAA is used, 349 * however in practice 16x4 seems fastest. 350 * 351 * Note that PS/WM thread counts depend on the WIZ hashing 352 * disable bit, which we don't touch here, but it's good 353 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). 354 */ 355 wa_masked_field_set(wal, GEN7_GT_MODE, 356 GEN6_WIZ_HASHING_MASK, 357 GEN6_WIZ_HASHING_16x4); 358 } 359 360 static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine, 361 struct i915_wa_list *wal) 362 { 363 struct drm_i915_private *i915 = engine->i915; 364 365 gen8_ctx_workarounds_init(engine, wal); 366 367 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */ 368 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE); 369 370 /* WaDisableDopClockGating:bdw 371 * 372 * Also see the related UCGTCL1 write in bdw_init_clock_gating() 373 * to disable EUTC clock gating. 374 */ 375 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, 376 DOP_CLOCK_GATING_DISABLE); 377 378 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3, 379 GEN8_SAMPLER_POWER_BYPASS_DIS); 380 381 wa_masked_en(wal, HDC_CHICKEN0, 382 /* WaForceContextSaveRestoreNonCoherent:bdw */ 383 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT | 384 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */ 385 (IS_BDW_GT3(i915) ? HDC_FENCE_DEST_SLM_DISABLE : 0)); 386 } 387 388 static void chv_ctx_workarounds_init(struct intel_engine_cs *engine, 389 struct i915_wa_list *wal) 390 { 391 gen8_ctx_workarounds_init(engine, wal); 392 393 /* WaDisableThreadStallDopClockGating:chv */ 394 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE); 395 396 /* Improve HiZ throughput on CHV. */ 397 wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X); 398 } 399 400 static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine, 401 struct i915_wa_list *wal) 402 { 403 struct drm_i915_private *i915 = engine->i915; 404 405 if (HAS_LLC(i915)) { 406 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl 407 * 408 * Must match Display Engine. See 409 * WaCompressedResourceDisplayNewHashMode. 410 */ 411 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 412 GEN9_PBE_COMPRESSED_HASH_SELECTION); 413 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7, 414 GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR); 415 } 416 417 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */ 418 /* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */ 419 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, 420 FLOW_CONTROL_ENABLE | 421 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE); 422 423 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */ 424 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */ 425 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7, 426 GEN9_ENABLE_YV12_BUGFIX | 427 GEN9_ENABLE_GPGPU_PREEMPTION); 428 429 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */ 430 /* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */ 431 wa_masked_en(wal, CACHE_MODE_1, 432 GEN8_4x4_STC_OPTIMIZATION_DISABLE | 433 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE); 434 435 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */ 436 wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5, 437 GEN9_CCS_TLB_PREFETCH_ENABLE); 438 439 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */ 440 wa_masked_en(wal, HDC_CHICKEN0, 441 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT | 442 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE); 443 444 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are 445 * both tied to WaForceContextSaveRestoreNonCoherent 446 * in some hsds for skl. We keep the tie for all gen9. The 447 * documentation is a bit hazy and so we want to get common behaviour, 448 * even though there is no clear evidence we would need both on kbl/bxt. 449 * This area has been source of system hangs so we play it safe 450 * and mimic the skl regardless of what bspec says. 451 * 452 * Use Force Non-Coherent whenever executing a 3D context. This 453 * is a workaround for a possible hang in the unlikely event 454 * a TLB invalidation occurs during a PSD flush. 455 */ 456 457 /* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */ 458 wa_masked_en(wal, HDC_CHICKEN0, 459 HDC_FORCE_NON_COHERENT); 460 461 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */ 462 if (IS_SKYLAKE(i915) || 463 IS_KABYLAKE(i915) || 464 IS_COFFEELAKE(i915) || 465 IS_COMETLAKE(i915)) 466 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3, 467 GEN8_SAMPLER_POWER_BYPASS_DIS); 468 469 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */ 470 wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE); 471 472 /* 473 * Supporting preemption with fine-granularity requires changes in the 474 * batch buffer programming. Since we can't break old userspace, we 475 * need to set our default preemption level to safe value. Userspace is 476 * still able to use more fine-grained preemption levels, since in 477 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the 478 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are 479 * not real HW workarounds, but merely a way to start using preemption 480 * while maintaining old contract with userspace. 481 */ 482 483 /* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */ 484 wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL); 485 486 /* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */ 487 wa_masked_field_set(wal, GEN8_CS_CHICKEN1, 488 GEN9_PREEMPT_GPGPU_LEVEL_MASK, 489 GEN9_PREEMPT_GPGPU_COMMAND_LEVEL); 490 491 /* WaClearHIZ_WM_CHICKEN3:bxt,glk */ 492 if (IS_GEN9_LP(i915)) 493 wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ); 494 } 495 496 static void skl_tune_iz_hashing(struct intel_engine_cs *engine, 497 struct i915_wa_list *wal) 498 { 499 struct intel_gt *gt = engine->gt; 500 u8 vals[3] = { 0, 0, 0 }; 501 unsigned int i; 502 503 for (i = 0; i < 3; i++) { 504 u8 ss; 505 506 /* 507 * Only consider slices where one, and only one, subslice has 7 508 * EUs 509 */ 510 if (!is_power_of_2(gt->info.sseu.subslice_7eu[i])) 511 continue; 512 513 /* 514 * subslice_7eu[i] != 0 (because of the check above) and 515 * ss_max == 4 (maximum number of subslices possible per slice) 516 * 517 * -> 0 <= ss <= 3; 518 */ 519 ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1; 520 vals[i] = 3 - ss; 521 } 522 523 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0) 524 return; 525 526 /* Tune IZ hashing. See intel_device_info_runtime_init() */ 527 wa_masked_field_set(wal, GEN7_GT_MODE, 528 GEN9_IZ_HASHING_MASK(2) | 529 GEN9_IZ_HASHING_MASK(1) | 530 GEN9_IZ_HASHING_MASK(0), 531 GEN9_IZ_HASHING(2, vals[2]) | 532 GEN9_IZ_HASHING(1, vals[1]) | 533 GEN9_IZ_HASHING(0, vals[0])); 534 } 535 536 static void skl_ctx_workarounds_init(struct intel_engine_cs *engine, 537 struct i915_wa_list *wal) 538 { 539 gen9_ctx_workarounds_init(engine, wal); 540 skl_tune_iz_hashing(engine, wal); 541 } 542 543 static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine, 544 struct i915_wa_list *wal) 545 { 546 gen9_ctx_workarounds_init(engine, wal); 547 548 /* WaDisableThreadStallDopClockGating:bxt */ 549 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, 550 STALL_DOP_GATING_DISABLE); 551 552 /* WaToEnableHwFixForPushConstHWBug:bxt */ 553 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 554 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); 555 } 556 557 static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine, 558 struct i915_wa_list *wal) 559 { 560 struct drm_i915_private *i915 = engine->i915; 561 562 gen9_ctx_workarounds_init(engine, wal); 563 564 /* WaToEnableHwFixForPushConstHWBug:kbl */ 565 if (IS_KBL_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER)) 566 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 567 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); 568 569 /* WaDisableSbeCacheDispatchPortSharing:kbl */ 570 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1, 571 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE); 572 } 573 574 static void glk_ctx_workarounds_init(struct intel_engine_cs *engine, 575 struct i915_wa_list *wal) 576 { 577 gen9_ctx_workarounds_init(engine, wal); 578 579 /* WaToEnableHwFixForPushConstHWBug:glk */ 580 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 581 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); 582 } 583 584 static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine, 585 struct i915_wa_list *wal) 586 { 587 gen9_ctx_workarounds_init(engine, wal); 588 589 /* WaToEnableHwFixForPushConstHWBug:cfl */ 590 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 591 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); 592 593 /* WaDisableSbeCacheDispatchPortSharing:cfl */ 594 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1, 595 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE); 596 } 597 598 static void icl_ctx_workarounds_init(struct intel_engine_cs *engine, 599 struct i915_wa_list *wal) 600 { 601 /* Wa_1406697149 (WaDisableBankHangMode:icl) */ 602 wa_write(wal, 603 GEN8_L3CNTLREG, 604 intel_uncore_read(engine->uncore, GEN8_L3CNTLREG) | 605 GEN8_ERRDETBCTRL); 606 607 /* WaForceEnableNonCoherent:icl 608 * This is not the same workaround as in early Gen9 platforms, where 609 * lacking this could cause system hangs, but coherency performance 610 * overhead is high and only a few compute workloads really need it 611 * (the register is whitelisted in hardware now, so UMDs can opt in 612 * for coherency if they have a good reason). 613 */ 614 wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT); 615 616 /* WaEnableFloatBlendOptimization:icl */ 617 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0, 618 _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE), 619 0 /* write-only, so skip validation */, 620 true); 621 622 /* WaDisableGPGPUMidThreadPreemption:icl */ 623 wa_masked_field_set(wal, GEN8_CS_CHICKEN1, 624 GEN9_PREEMPT_GPGPU_LEVEL_MASK, 625 GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL); 626 627 /* allow headerless messages for preemptible GPGPU context */ 628 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, 629 GEN11_SAMPLER_ENABLE_HEADLESS_MSG); 630 631 /* Wa_1604278689:icl,ehl */ 632 wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID); 633 wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER, 634 0, /* write-only register; skip validation */ 635 0xFFFFFFFF); 636 637 /* Wa_1406306137:icl,ehl */ 638 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU); 639 } 640 641 /* 642 * These settings aren't actually workarounds, but general tuning settings that 643 * need to be programmed on dg2 platform. 644 */ 645 static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine, 646 struct i915_wa_list *wal) 647 { 648 wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP); 649 wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK, 650 REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f)); 651 wa_mcr_add(wal, 652 XEHP_FF_MODE2, 653 FF_MODE2_TDS_TIMER_MASK, 654 FF_MODE2_TDS_TIMER_128, 655 0, false); 656 } 657 658 /* 659 * These settings aren't actually workarounds, but general tuning settings that 660 * need to be programmed on several platforms. 661 */ 662 static void gen12_ctx_gt_tuning_init(struct intel_engine_cs *engine, 663 struct i915_wa_list *wal) 664 { 665 /* 666 * Although some platforms refer to it as Wa_1604555607, we need to 667 * program it even on those that don't explicitly list that 668 * workaround. 669 * 670 * Note that the programming of this register is further modified 671 * according to the FF_MODE2 guidance given by Wa_1608008084:gen12. 672 * Wa_1608008084 tells us the FF_MODE2 register will return the wrong 673 * value when read. The default value for this register is zero for all 674 * fields and there are no bit masks. So instead of doing a RMW we 675 * should just write TDS timer value. For the same reason read 676 * verification is ignored. 677 */ 678 wa_add(wal, 679 GEN12_FF_MODE2, 680 FF_MODE2_TDS_TIMER_MASK, 681 FF_MODE2_TDS_TIMER_128, 682 0, false); 683 } 684 685 static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine, 686 struct i915_wa_list *wal) 687 { 688 struct drm_i915_private *i915 = engine->i915; 689 690 gen12_ctx_gt_tuning_init(engine, wal); 691 692 /* 693 * Wa_1409142259:tgl,dg1,adl-p 694 * Wa_1409347922:tgl,dg1,adl-p 695 * Wa_1409252684:tgl,dg1,adl-p 696 * Wa_1409217633:tgl,dg1,adl-p 697 * Wa_1409207793:tgl,dg1,adl-p 698 * Wa_1409178076:tgl,dg1,adl-p 699 * Wa_1408979724:tgl,dg1,adl-p 700 * Wa_14010443199:tgl,rkl,dg1,adl-p 701 * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p 702 * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p 703 */ 704 wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3, 705 GEN12_DISABLE_CPS_AWARE_COLOR_PIPE); 706 707 /* WaDisableGPGPUMidThreadPreemption:gen12 */ 708 wa_masked_field_set(wal, GEN8_CS_CHICKEN1, 709 GEN9_PREEMPT_GPGPU_LEVEL_MASK, 710 GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL); 711 712 /* 713 * Wa_16011163337 714 * 715 * Like in gen12_ctx_gt_tuning_init(), read verification is ignored due 716 * to Wa_1608008084. 717 */ 718 wa_add(wal, 719 GEN12_FF_MODE2, 720 FF_MODE2_GS_TIMER_MASK, 721 FF_MODE2_GS_TIMER_224, 722 0, false); 723 724 if (!IS_DG1(i915)) 725 /* Wa_1806527549 */ 726 wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE); 727 } 728 729 static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine, 730 struct i915_wa_list *wal) 731 { 732 gen12_ctx_workarounds_init(engine, wal); 733 734 /* Wa_1409044764 */ 735 wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3, 736 DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN); 737 738 /* Wa_22010493298 */ 739 wa_masked_en(wal, HIZ_CHICKEN, 740 DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE); 741 } 742 743 static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine, 744 struct i915_wa_list *wal) 745 { 746 dg2_ctx_gt_tuning_init(engine, wal); 747 748 /* Wa_16011186671:dg2_g11 */ 749 if (IS_DG2_GRAPHICS_STEP(engine->i915, G11, STEP_A0, STEP_B0)) { 750 wa_mcr_masked_dis(wal, VFLSKPD, DIS_MULT_MISS_RD_SQUASH); 751 wa_mcr_masked_en(wal, VFLSKPD, DIS_OVER_FETCH_CACHE); 752 } 753 754 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0)) { 755 /* Wa_14010469329:dg2_g10 */ 756 wa_mcr_masked_en(wal, XEHP_COMMON_SLICE_CHICKEN3, 757 XEHP_DUAL_SIMD8_SEQ_MERGE_DISABLE); 758 759 /* 760 * Wa_22010465075:dg2_g10 761 * Wa_22010613112:dg2_g10 762 * Wa_14010698770:dg2_g10 763 */ 764 wa_mcr_masked_en(wal, XEHP_COMMON_SLICE_CHICKEN3, 765 GEN12_DISABLE_CPS_AWARE_COLOR_PIPE); 766 } 767 768 /* Wa_16013271637:dg2 */ 769 wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1, 770 MSC_MSAA_REODER_BUF_BYPASS_DISABLE); 771 772 /* Wa_14014947963:dg2 */ 773 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_B0, STEP_FOREVER) || 774 IS_DG2_G11(engine->i915) || IS_DG2_G12(engine->i915)) 775 wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000); 776 777 /* Wa_18018764978:dg2 */ 778 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_C0, STEP_FOREVER) || 779 IS_DG2_G11(engine->i915) || IS_DG2_G12(engine->i915)) 780 wa_masked_en(wal, PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL); 781 782 /* Wa_15010599737:dg2 */ 783 wa_mcr_masked_en(wal, CHICKEN_RASTER_1, DIS_SF_ROUND_NEAREST_EVEN); 784 785 /* Wa_18019271663:dg2 */ 786 wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE); 787 } 788 789 static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine, 790 struct i915_wa_list *wal) 791 { 792 /* 793 * This is a "fake" workaround defined by software to ensure we 794 * maintain reliable, backward-compatible behavior for userspace with 795 * regards to how nested MI_BATCH_BUFFER_START commands are handled. 796 * 797 * The per-context setting of MI_MODE[12] determines whether the bits 798 * of a nested MI_BATCH_BUFFER_START instruction should be interpreted 799 * in the traditional manner or whether they should instead use a new 800 * tgl+ meaning that breaks backward compatibility, but allows nesting 801 * into 3rd-level batchbuffers. When this new capability was first 802 * added in TGL, it remained off by default unless a context 803 * intentionally opted in to the new behavior. However Xe_HPG now 804 * flips this on by default and requires that we explicitly opt out if 805 * we don't want the new behavior. 806 * 807 * From a SW perspective, we want to maintain the backward-compatible 808 * behavior for userspace, so we'll apply a fake workaround to set it 809 * back to the legacy behavior on platforms where the hardware default 810 * is to break compatibility. At the moment there is no Linux 811 * userspace that utilizes third-level batchbuffers, so this will avoid 812 * userspace from needing to make any changes. using the legacy 813 * meaning is the correct thing to do. If/when we have userspace 814 * consumers that want to utilize third-level batch nesting, we can 815 * provide a context parameter to allow them to opt-in. 816 */ 817 wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN); 818 } 819 820 static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine, 821 struct i915_wa_list *wal) 822 { 823 u8 mocs; 824 825 /* 826 * Some blitter commands do not have a field for MOCS, those 827 * commands will use MOCS index pointed by BLIT_CCTL. 828 * BLIT_CCTL registers are needed to be programmed to un-cached. 829 */ 830 if (engine->class == COPY_ENGINE_CLASS) { 831 mocs = engine->gt->mocs.uc_index; 832 wa_write_clr_set(wal, 833 BLIT_CCTL(engine->mmio_base), 834 BLIT_CCTL_MASK, 835 BLIT_CCTL_MOCS(mocs, mocs)); 836 } 837 } 838 839 /* 840 * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround 841 * defined by the hardware team, but it programming general context registers. 842 * Adding those context register programming in context workaround 843 * allow us to use the wa framework for proper application and validation. 844 */ 845 static void 846 gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine, 847 struct i915_wa_list *wal) 848 { 849 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) 850 fakewa_disable_nestedbb_mode(engine, wal); 851 852 gen12_ctx_gt_mocs_init(engine, wal); 853 } 854 855 static void 856 __intel_engine_init_ctx_wa(struct intel_engine_cs *engine, 857 struct i915_wa_list *wal, 858 const char *name) 859 { 860 struct drm_i915_private *i915 = engine->i915; 861 862 wa_init_start(wal, engine->gt, name, engine->name); 863 864 /* Applies to all engines */ 865 /* 866 * Fake workarounds are not the actual workaround but 867 * programming of context registers using workaround framework. 868 */ 869 if (GRAPHICS_VER(i915) >= 12) 870 gen12_ctx_gt_fake_wa_init(engine, wal); 871 872 if (engine->class != RENDER_CLASS) 873 goto done; 874 875 if (IS_PONTEVECCHIO(i915)) 876 ; /* noop; none at this time */ 877 else if (IS_DG2(i915)) 878 dg2_ctx_workarounds_init(engine, wal); 879 else if (IS_XEHPSDV(i915)) 880 ; /* noop; none at this time */ 881 else if (IS_DG1(i915)) 882 dg1_ctx_workarounds_init(engine, wal); 883 else if (GRAPHICS_VER(i915) == 12) 884 gen12_ctx_workarounds_init(engine, wal); 885 else if (GRAPHICS_VER(i915) == 11) 886 icl_ctx_workarounds_init(engine, wal); 887 else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) 888 cfl_ctx_workarounds_init(engine, wal); 889 else if (IS_GEMINILAKE(i915)) 890 glk_ctx_workarounds_init(engine, wal); 891 else if (IS_KABYLAKE(i915)) 892 kbl_ctx_workarounds_init(engine, wal); 893 else if (IS_BROXTON(i915)) 894 bxt_ctx_workarounds_init(engine, wal); 895 else if (IS_SKYLAKE(i915)) 896 skl_ctx_workarounds_init(engine, wal); 897 else if (IS_CHERRYVIEW(i915)) 898 chv_ctx_workarounds_init(engine, wal); 899 else if (IS_BROADWELL(i915)) 900 bdw_ctx_workarounds_init(engine, wal); 901 else if (GRAPHICS_VER(i915) == 7) 902 gen7_ctx_workarounds_init(engine, wal); 903 else if (GRAPHICS_VER(i915) == 6) 904 gen6_ctx_workarounds_init(engine, wal); 905 else if (GRAPHICS_VER(i915) < 8) 906 ; 907 else 908 MISSING_CASE(GRAPHICS_VER(i915)); 909 910 done: 911 wa_init_finish(wal); 912 } 913 914 void intel_engine_init_ctx_wa(struct intel_engine_cs *engine) 915 { 916 __intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context"); 917 } 918 919 int intel_engine_emit_ctx_wa(struct i915_request *rq) 920 { 921 struct i915_wa_list *wal = &rq->engine->ctx_wa_list; 922 struct i915_wa *wa; 923 unsigned int i; 924 u32 *cs; 925 int ret; 926 927 if (wal->count == 0) 928 return 0; 929 930 ret = rq->engine->emit_flush(rq, EMIT_BARRIER); 931 if (ret) 932 return ret; 933 934 cs = intel_ring_begin(rq, (wal->count * 2 + 2)); 935 if (IS_ERR(cs)) 936 return PTR_ERR(cs); 937 938 *cs++ = MI_LOAD_REGISTER_IMM(wal->count); 939 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 940 *cs++ = i915_mmio_reg_offset(wa->reg); 941 *cs++ = wa->set; 942 } 943 *cs++ = MI_NOOP; 944 945 intel_ring_advance(rq, cs); 946 947 ret = rq->engine->emit_flush(rq, EMIT_BARRIER); 948 if (ret) 949 return ret; 950 951 return 0; 952 } 953 954 static void 955 gen4_gt_workarounds_init(struct intel_gt *gt, 956 struct i915_wa_list *wal) 957 { 958 /* WaDisable_RenderCache_OperationalFlush:gen4,ilk */ 959 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE); 960 } 961 962 static void 963 g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 964 { 965 gen4_gt_workarounds_init(gt, wal); 966 967 /* WaDisableRenderCachePipelinedFlush:g4x,ilk */ 968 wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE); 969 } 970 971 static void 972 ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 973 { 974 g4x_gt_workarounds_init(gt, wal); 975 976 wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED); 977 } 978 979 static void 980 snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 981 { 982 } 983 984 static void 985 ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 986 { 987 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */ 988 wa_masked_dis(wal, 989 GEN7_COMMON_SLICE_CHICKEN1, 990 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC); 991 992 /* WaApplyL3ControlAndL3ChickenMode:ivb */ 993 wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL); 994 wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE); 995 996 /* WaForceL3Serialization:ivb */ 997 wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE); 998 } 999 1000 static void 1001 vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1002 { 1003 /* WaForceL3Serialization:vlv */ 1004 wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE); 1005 1006 /* 1007 * WaIncreaseL3CreditsForVLVB0:vlv 1008 * This is the hardware default actually. 1009 */ 1010 wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE); 1011 } 1012 1013 static void 1014 hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1015 { 1016 /* L3 caching of data atomics doesn't work -- disable it. */ 1017 wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE); 1018 1019 wa_add(wal, 1020 HSW_ROW_CHICKEN3, 0, 1021 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE), 1022 0 /* XXX does this reg exist? */, true); 1023 1024 /* WaVSRefCountFullforceMissDisable:hsw */ 1025 wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME); 1026 } 1027 1028 static void 1029 gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal) 1030 { 1031 const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu; 1032 unsigned int slice, subslice; 1033 u32 mcr, mcr_mask; 1034 1035 GEM_BUG_ON(GRAPHICS_VER(i915) != 9); 1036 1037 /* 1038 * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml 1039 * Before any MMIO read into slice/subslice specific registers, MCR 1040 * packet control register needs to be programmed to point to any 1041 * enabled s/ss pair. Otherwise, incorrect values will be returned. 1042 * This means each subsequent MMIO read will be forwarded to an 1043 * specific s/ss combination, but this is OK since these registers 1044 * are consistent across s/ss in almost all cases. In the rare 1045 * occasions, such as INSTDONE, where this value is dependent 1046 * on s/ss combo, the read should be done with read_subslice_reg. 1047 */ 1048 slice = ffs(sseu->slice_mask) - 1; 1049 GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw)); 1050 subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice)); 1051 GEM_BUG_ON(!subslice); 1052 subslice--; 1053 1054 /* 1055 * We use GEN8_MCR..() macros to calculate the |mcr| value for 1056 * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads 1057 */ 1058 mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice); 1059 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK; 1060 1061 drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr); 1062 1063 wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr); 1064 } 1065 1066 static void 1067 gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1068 { 1069 struct drm_i915_private *i915 = gt->i915; 1070 1071 /* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */ 1072 gen9_wa_init_mcr(i915, wal); 1073 1074 /* WaDisableKillLogic:bxt,skl,kbl */ 1075 if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915)) 1076 wa_write_or(wal, 1077 GAM_ECOCHK, 1078 ECOCHK_DIS_TLB); 1079 1080 if (HAS_LLC(i915)) { 1081 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl 1082 * 1083 * Must match Display Engine. See 1084 * WaCompressedResourceDisplayNewHashMode. 1085 */ 1086 wa_write_or(wal, 1087 MMCD_MISC_CTRL, 1088 MMCD_PCLA | MMCD_HOTSPOT_EN); 1089 } 1090 1091 /* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */ 1092 wa_write_or(wal, 1093 GAM_ECOCHK, 1094 BDW_DISABLE_HDC_INVALIDATION); 1095 } 1096 1097 static void 1098 skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1099 { 1100 gen9_gt_workarounds_init(gt, wal); 1101 1102 /* WaDisableGafsUnitClkGating:skl */ 1103 wa_write_or(wal, 1104 GEN7_UCGCTL4, 1105 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); 1106 1107 /* WaInPlaceDecompressionHang:skl */ 1108 if (IS_SKL_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0)) 1109 wa_write_or(wal, 1110 GEN9_GAMT_ECO_REG_RW_IA, 1111 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS); 1112 } 1113 1114 static void 1115 kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1116 { 1117 gen9_gt_workarounds_init(gt, wal); 1118 1119 /* WaDisableDynamicCreditSharing:kbl */ 1120 if (IS_KBL_GRAPHICS_STEP(gt->i915, 0, STEP_C0)) 1121 wa_write_or(wal, 1122 GAMT_CHKN_BIT_REG, 1123 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING); 1124 1125 /* WaDisableGafsUnitClkGating:kbl */ 1126 wa_write_or(wal, 1127 GEN7_UCGCTL4, 1128 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); 1129 1130 /* WaInPlaceDecompressionHang:kbl */ 1131 wa_write_or(wal, 1132 GEN9_GAMT_ECO_REG_RW_IA, 1133 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS); 1134 } 1135 1136 static void 1137 glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1138 { 1139 gen9_gt_workarounds_init(gt, wal); 1140 } 1141 1142 static void 1143 cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1144 { 1145 gen9_gt_workarounds_init(gt, wal); 1146 1147 /* WaDisableGafsUnitClkGating:cfl */ 1148 wa_write_or(wal, 1149 GEN7_UCGCTL4, 1150 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); 1151 1152 /* WaInPlaceDecompressionHang:cfl */ 1153 wa_write_or(wal, 1154 GEN9_GAMT_ECO_REG_RW_IA, 1155 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS); 1156 } 1157 1158 static void __set_mcr_steering(struct i915_wa_list *wal, 1159 i915_reg_t steering_reg, 1160 unsigned int slice, unsigned int subslice) 1161 { 1162 u32 mcr, mcr_mask; 1163 1164 mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice); 1165 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK; 1166 1167 wa_write_clr_set(wal, steering_reg, mcr_mask, mcr); 1168 } 1169 1170 static void debug_dump_steering(struct intel_gt *gt) 1171 { 1172 struct drm_printer p = drm_debug_printer("MCR Steering:"); 1173 1174 if (drm_debug_enabled(DRM_UT_DRIVER)) 1175 intel_gt_mcr_report_steering(&p, gt, false); 1176 } 1177 1178 static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal, 1179 unsigned int slice, unsigned int subslice) 1180 { 1181 __set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice); 1182 1183 gt->default_steering.groupid = slice; 1184 gt->default_steering.instanceid = subslice; 1185 1186 debug_dump_steering(gt); 1187 } 1188 1189 static void 1190 icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal) 1191 { 1192 const struct sseu_dev_info *sseu = >->info.sseu; 1193 unsigned int subslice; 1194 1195 GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11); 1196 GEM_BUG_ON(hweight8(sseu->slice_mask) > 1); 1197 1198 /* 1199 * Although a platform may have subslices, we need to always steer 1200 * reads to the lowest instance that isn't fused off. When Render 1201 * Power Gating is enabled, grabbing forcewake will only power up a 1202 * single subslice (the "minconfig") if there isn't a real workload 1203 * that needs to be run; this means that if we steer register reads to 1204 * one of the higher subslices, we run the risk of reading back 0's or 1205 * random garbage. 1206 */ 1207 subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0)); 1208 1209 /* 1210 * If the subslice we picked above also steers us to a valid L3 bank, 1211 * then we can just rely on the default steering and won't need to 1212 * worry about explicitly re-steering L3BANK reads later. 1213 */ 1214 if (gt->info.l3bank_mask & BIT(subslice)) 1215 gt->steering_table[L3BANK] = NULL; 1216 1217 __add_mcr_wa(gt, wal, 0, subslice); 1218 } 1219 1220 static void 1221 xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal) 1222 { 1223 const struct sseu_dev_info *sseu = >->info.sseu; 1224 unsigned long slice, subslice = 0, slice_mask = 0; 1225 u32 lncf_mask = 0; 1226 int i; 1227 1228 /* 1229 * On Xe_HP the steering increases in complexity. There are now several 1230 * more units that require steering and we're not guaranteed to be able 1231 * to find a common setting for all of them. These are: 1232 * - GSLICE (fusable) 1233 * - DSS (sub-unit within gslice; fusable) 1234 * - L3 Bank (fusable) 1235 * - MSLICE (fusable) 1236 * - LNCF (sub-unit within mslice; always present if mslice is present) 1237 * 1238 * We'll do our default/implicit steering based on GSLICE (in the 1239 * sliceid field) and DSS (in the subsliceid field). If we can 1240 * find overlap between the valid MSLICE and/or LNCF values with 1241 * a suitable GSLICE, then we can just re-use the default value and 1242 * skip and explicit steering at runtime. 1243 * 1244 * We only need to look for overlap between GSLICE/MSLICE/LNCF to find 1245 * a valid sliceid value. DSS steering is the only type of steering 1246 * that utilizes the 'subsliceid' bits. 1247 * 1248 * Also note that, even though the steering domain is called "GSlice" 1249 * and it is encoded in the register using the gslice format, the spec 1250 * says that the combined (geometry | compute) fuse should be used to 1251 * select the steering. 1252 */ 1253 1254 /* Find the potential gslice candidates */ 1255 slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask, 1256 GEN_DSS_PER_GSLICE); 1257 1258 /* 1259 * Find the potential LNCF candidates. Either LNCF within a valid 1260 * mslice is fine. 1261 */ 1262 for_each_set_bit(i, >->info.mslice_mask, GEN12_MAX_MSLICES) 1263 lncf_mask |= (0x3 << (i * 2)); 1264 1265 /* 1266 * Are there any sliceid values that work for both GSLICE and LNCF 1267 * steering? 1268 */ 1269 if (slice_mask & lncf_mask) { 1270 slice_mask &= lncf_mask; 1271 gt->steering_table[LNCF] = NULL; 1272 } 1273 1274 /* How about sliceid values that also work for MSLICE steering? */ 1275 if (slice_mask & gt->info.mslice_mask) { 1276 slice_mask &= gt->info.mslice_mask; 1277 gt->steering_table[MSLICE] = NULL; 1278 } 1279 1280 if (IS_XEHPSDV(gt->i915) && slice_mask & BIT(0)) 1281 gt->steering_table[GAM] = NULL; 1282 1283 slice = __ffs(slice_mask); 1284 subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) % 1285 GEN_DSS_PER_GSLICE; 1286 1287 __add_mcr_wa(gt, wal, slice, subslice); 1288 1289 /* 1290 * SQIDI ranges are special because they use different steering 1291 * registers than everything else we work with. On XeHP SDV and 1292 * DG2-G10, any value in the steering registers will work fine since 1293 * all instances are present, but DG2-G11 only has SQIDI instances at 1294 * ID's 2 and 3, so we need to steer to one of those. For simplicity 1295 * we'll just steer to a hardcoded "2" since that value will work 1296 * everywhere. 1297 */ 1298 __set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2); 1299 __set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2); 1300 1301 /* 1302 * On DG2, GAM registers have a dedicated steering control register 1303 * and must always be programmed to a hardcoded groupid of "1." 1304 */ 1305 if (IS_DG2(gt->i915)) 1306 __set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0); 1307 } 1308 1309 static void 1310 pvc_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal) 1311 { 1312 unsigned int dss; 1313 1314 /* 1315 * Setup implicit steering for COMPUTE and DSS ranges to the first 1316 * non-fused-off DSS. All other types of MCR registers will be 1317 * explicitly steered. 1318 */ 1319 dss = intel_sseu_find_first_xehp_dss(>->info.sseu, 0, 0); 1320 __add_mcr_wa(gt, wal, dss / GEN_DSS_PER_CSLICE, dss % GEN_DSS_PER_CSLICE); 1321 } 1322 1323 static void 1324 icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1325 { 1326 struct drm_i915_private *i915 = gt->i915; 1327 1328 icl_wa_init_mcr(gt, wal); 1329 1330 /* WaModifyGamTlbPartitioning:icl */ 1331 wa_write_clr_set(wal, 1332 GEN11_GACB_PERF_CTRL, 1333 GEN11_HASH_CTRL_MASK, 1334 GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4); 1335 1336 /* Wa_1405766107:icl 1337 * Formerly known as WaCL2SFHalfMaxAlloc 1338 */ 1339 wa_write_or(wal, 1340 GEN11_LSN_UNSLCVC, 1341 GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC | 1342 GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC); 1343 1344 /* Wa_220166154:icl 1345 * Formerly known as WaDisCtxReload 1346 */ 1347 wa_write_or(wal, 1348 GEN8_GAMW_ECO_DEV_RW_IA, 1349 GAMW_ECO_DEV_CTX_RELOAD_DISABLE); 1350 1351 /* Wa_1406463099:icl 1352 * Formerly known as WaGamTlbPendError 1353 */ 1354 wa_write_or(wal, 1355 GAMT_CHKN_BIT_REG, 1356 GAMT_CHKN_DISABLE_L3_COH_PIPE); 1357 1358 /* Wa_1407352427:icl,ehl */ 1359 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, 1360 PSDUNIT_CLKGATE_DIS); 1361 1362 /* Wa_1406680159:icl,ehl */ 1363 wa_mcr_write_or(wal, 1364 GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE, 1365 GWUNIT_CLKGATE_DIS); 1366 1367 /* Wa_1607087056:icl,ehl,jsl */ 1368 if (IS_ICELAKE(i915) || 1369 IS_JSL_EHL_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)) 1370 wa_write_or(wal, 1371 GEN11_SLICE_UNIT_LEVEL_CLKGATE, 1372 L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS); 1373 1374 /* 1375 * This is not a documented workaround, but rather an optimization 1376 * to reduce sampler power. 1377 */ 1378 wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE); 1379 } 1380 1381 /* 1382 * Though there are per-engine instances of these registers, 1383 * they retain their value through engine resets and should 1384 * only be provided on the GT workaround list rather than 1385 * the engine-specific workaround list. 1386 */ 1387 static void 1388 wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal) 1389 { 1390 struct intel_engine_cs *engine; 1391 int id; 1392 1393 for_each_engine(engine, gt, id) { 1394 if (engine->class != VIDEO_DECODE_CLASS || 1395 (engine->instance % 2)) 1396 continue; 1397 1398 wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base), 1399 IECPUNIT_CLKGATE_DIS); 1400 } 1401 } 1402 1403 static void 1404 gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1405 { 1406 icl_wa_init_mcr(gt, wal); 1407 1408 /* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */ 1409 wa_14011060649(gt, wal); 1410 1411 /* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */ 1412 wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE); 1413 } 1414 1415 static void 1416 tgl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1417 { 1418 struct drm_i915_private *i915 = gt->i915; 1419 1420 gen12_gt_workarounds_init(gt, wal); 1421 1422 /* Wa_1409420604:tgl */ 1423 if (IS_TGL_UY_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)) 1424 wa_mcr_write_or(wal, 1425 SUBSLICE_UNIT_LEVEL_CLKGATE2, 1426 CPSSUNIT_CLKGATE_DIS); 1427 1428 /* Wa_1607087056:tgl also know as BUG:1409180338 */ 1429 if (IS_TGL_UY_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)) 1430 wa_write_or(wal, 1431 GEN11_SLICE_UNIT_LEVEL_CLKGATE, 1432 L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS); 1433 1434 /* Wa_1408615072:tgl[a0] */ 1435 if (IS_TGL_UY_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)) 1436 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, 1437 VSUNIT_CLKGATE_DIS_TGL); 1438 } 1439 1440 static void 1441 dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1442 { 1443 struct drm_i915_private *i915 = gt->i915; 1444 1445 gen12_gt_workarounds_init(gt, wal); 1446 1447 /* Wa_1607087056:dg1 */ 1448 if (IS_DG1_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)) 1449 wa_write_or(wal, 1450 GEN11_SLICE_UNIT_LEVEL_CLKGATE, 1451 L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS); 1452 1453 /* Wa_1409420604:dg1 */ 1454 if (IS_DG1(i915)) 1455 wa_mcr_write_or(wal, 1456 SUBSLICE_UNIT_LEVEL_CLKGATE2, 1457 CPSSUNIT_CLKGATE_DIS); 1458 1459 /* Wa_1408615072:dg1 */ 1460 /* Empirical testing shows this register is unaffected by engine reset. */ 1461 if (IS_DG1(i915)) 1462 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, 1463 VSUNIT_CLKGATE_DIS_TGL); 1464 } 1465 1466 static void 1467 xehpsdv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1468 { 1469 struct drm_i915_private *i915 = gt->i915; 1470 1471 xehp_init_mcr(gt, wal); 1472 1473 /* Wa_1409757795:xehpsdv */ 1474 wa_mcr_write_or(wal, SCCGCTL94DC, CG3DDISURB); 1475 1476 /* Wa_16011155590:xehpsdv */ 1477 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)) 1478 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, 1479 TSGUNIT_CLKGATE_DIS); 1480 1481 /* Wa_14011780169:xehpsdv */ 1482 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_B0, STEP_FOREVER)) { 1483 wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS | 1484 GAMTLBVDBOX7_CLKGATE_DIS | 1485 GAMTLBVDBOX6_CLKGATE_DIS | 1486 GAMTLBVDBOX5_CLKGATE_DIS | 1487 GAMTLBVDBOX4_CLKGATE_DIS | 1488 GAMTLBVDBOX3_CLKGATE_DIS | 1489 GAMTLBVDBOX2_CLKGATE_DIS | 1490 GAMTLBVDBOX1_CLKGATE_DIS | 1491 GAMTLBVDBOX0_CLKGATE_DIS | 1492 GAMTLBKCR_CLKGATE_DIS | 1493 GAMTLBGUC_CLKGATE_DIS | 1494 GAMTLBBLT_CLKGATE_DIS); 1495 wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS | 1496 GAMTLBGFXA1_CLKGATE_DIS | 1497 GAMTLBCOMPA0_CLKGATE_DIS | 1498 GAMTLBCOMPA1_CLKGATE_DIS | 1499 GAMTLBCOMPB0_CLKGATE_DIS | 1500 GAMTLBCOMPB1_CLKGATE_DIS | 1501 GAMTLBCOMPC0_CLKGATE_DIS | 1502 GAMTLBCOMPC1_CLKGATE_DIS | 1503 GAMTLBCOMPD0_CLKGATE_DIS | 1504 GAMTLBCOMPD1_CLKGATE_DIS | 1505 GAMTLBMERT_CLKGATE_DIS | 1506 GAMTLBVEBOX3_CLKGATE_DIS | 1507 GAMTLBVEBOX2_CLKGATE_DIS | 1508 GAMTLBVEBOX1_CLKGATE_DIS | 1509 GAMTLBVEBOX0_CLKGATE_DIS); 1510 } 1511 1512 /* Wa_16012725990:xehpsdv */ 1513 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_FOREVER)) 1514 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, VFUNIT_CLKGATE_DIS); 1515 1516 /* Wa_14011060649:xehpsdv */ 1517 wa_14011060649(gt, wal); 1518 } 1519 1520 static void 1521 dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1522 { 1523 struct intel_engine_cs *engine; 1524 int id; 1525 1526 xehp_init_mcr(gt, wal); 1527 1528 /* Wa_14011060649:dg2 */ 1529 wa_14011060649(gt, wal); 1530 1531 /* 1532 * Although there are per-engine instances of these registers, 1533 * they technically exist outside the engine itself and are not 1534 * impacted by engine resets. Furthermore, they're part of the 1535 * GuC blacklist so trying to treat them as engine workarounds 1536 * will result in GuC initialization failure and a wedged GPU. 1537 */ 1538 for_each_engine(engine, gt, id) { 1539 if (engine->class != VIDEO_DECODE_CLASS) 1540 continue; 1541 1542 /* Wa_16010515920:dg2_g10 */ 1543 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0)) 1544 wa_write_or(wal, VDBOX_CGCTL3F18(engine->mmio_base), 1545 ALNUNIT_CLKGATE_DIS); 1546 } 1547 1548 if (IS_DG2_G10(gt->i915)) { 1549 /* Wa_22010523718:dg2 */ 1550 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, 1551 CG3DDISCFEG_CLKGATE_DIS); 1552 1553 /* Wa_14011006942:dg2 */ 1554 wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE, 1555 DSS_ROUTER_CLKGATE_DIS); 1556 } 1557 1558 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0)) { 1559 /* Wa_14010948348:dg2_g10 */ 1560 wa_write_or(wal, UNSLCGCTL9430, MSQDUNIT_CLKGATE_DIS); 1561 1562 /* Wa_14011037102:dg2_g10 */ 1563 wa_write_or(wal, UNSLCGCTL9444, LTCDD_CLKGATE_DIS); 1564 1565 /* Wa_14011371254:dg2_g10 */ 1566 wa_mcr_write_or(wal, XEHP_SLICE_UNIT_LEVEL_CLKGATE, NODEDSS_CLKGATE_DIS); 1567 1568 /* Wa_14011431319:dg2_g10 */ 1569 wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS | 1570 GAMTLBVDBOX7_CLKGATE_DIS | 1571 GAMTLBVDBOX6_CLKGATE_DIS | 1572 GAMTLBVDBOX5_CLKGATE_DIS | 1573 GAMTLBVDBOX4_CLKGATE_DIS | 1574 GAMTLBVDBOX3_CLKGATE_DIS | 1575 GAMTLBVDBOX2_CLKGATE_DIS | 1576 GAMTLBVDBOX1_CLKGATE_DIS | 1577 GAMTLBVDBOX0_CLKGATE_DIS | 1578 GAMTLBKCR_CLKGATE_DIS | 1579 GAMTLBGUC_CLKGATE_DIS | 1580 GAMTLBBLT_CLKGATE_DIS); 1581 wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS | 1582 GAMTLBGFXA1_CLKGATE_DIS | 1583 GAMTLBCOMPA0_CLKGATE_DIS | 1584 GAMTLBCOMPA1_CLKGATE_DIS | 1585 GAMTLBCOMPB0_CLKGATE_DIS | 1586 GAMTLBCOMPB1_CLKGATE_DIS | 1587 GAMTLBCOMPC0_CLKGATE_DIS | 1588 GAMTLBCOMPC1_CLKGATE_DIS | 1589 GAMTLBCOMPD0_CLKGATE_DIS | 1590 GAMTLBCOMPD1_CLKGATE_DIS | 1591 GAMTLBMERT_CLKGATE_DIS | 1592 GAMTLBVEBOX3_CLKGATE_DIS | 1593 GAMTLBVEBOX2_CLKGATE_DIS | 1594 GAMTLBVEBOX1_CLKGATE_DIS | 1595 GAMTLBVEBOX0_CLKGATE_DIS); 1596 1597 /* Wa_14010569222:dg2_g10 */ 1598 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, 1599 GAMEDIA_CLKGATE_DIS); 1600 1601 /* Wa_14011028019:dg2_g10 */ 1602 wa_mcr_write_or(wal, SSMCGCTL9530, RTFUNIT_CLKGATE_DIS); 1603 } 1604 1605 /* Wa_14014830051:dg2 */ 1606 wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN); 1607 1608 /* 1609 * The following are not actually "workarounds" but rather 1610 * recommended tuning settings documented in the bspec's 1611 * performance guide section. 1612 */ 1613 wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS); 1614 1615 /* Wa_14015795083 */ 1616 wa_mcr_write_clr(wal, GEN8_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE); 1617 } 1618 1619 static void 1620 pvc_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1621 { 1622 pvc_init_mcr(gt, wal); 1623 1624 /* Wa_14015795083 */ 1625 wa_mcr_write_clr(wal, GEN8_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE); 1626 } 1627 1628 static void 1629 xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1630 { 1631 /* FIXME: Actual workarounds will be added in future patch(es) */ 1632 1633 /* 1634 * Unlike older platforms, we no longer setup implicit steering here; 1635 * all MCR accesses are explicitly steered. 1636 */ 1637 debug_dump_steering(gt); 1638 } 1639 1640 static void 1641 xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1642 { 1643 /* FIXME: Actual workarounds will be added in future patch(es) */ 1644 1645 debug_dump_steering(gt); 1646 } 1647 1648 static void 1649 gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal) 1650 { 1651 struct drm_i915_private *i915 = gt->i915; 1652 1653 if (gt->type == GT_MEDIA) { 1654 if (MEDIA_VER(i915) >= 13) 1655 xelpmp_gt_workarounds_init(gt, wal); 1656 else 1657 MISSING_CASE(MEDIA_VER(i915)); 1658 1659 return; 1660 } 1661 1662 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) 1663 xelpg_gt_workarounds_init(gt, wal); 1664 else if (IS_PONTEVECCHIO(i915)) 1665 pvc_gt_workarounds_init(gt, wal); 1666 else if (IS_DG2(i915)) 1667 dg2_gt_workarounds_init(gt, wal); 1668 else if (IS_XEHPSDV(i915)) 1669 xehpsdv_gt_workarounds_init(gt, wal); 1670 else if (IS_DG1(i915)) 1671 dg1_gt_workarounds_init(gt, wal); 1672 else if (IS_TIGERLAKE(i915)) 1673 tgl_gt_workarounds_init(gt, wal); 1674 else if (GRAPHICS_VER(i915) == 12) 1675 gen12_gt_workarounds_init(gt, wal); 1676 else if (GRAPHICS_VER(i915) == 11) 1677 icl_gt_workarounds_init(gt, wal); 1678 else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) 1679 cfl_gt_workarounds_init(gt, wal); 1680 else if (IS_GEMINILAKE(i915)) 1681 glk_gt_workarounds_init(gt, wal); 1682 else if (IS_KABYLAKE(i915)) 1683 kbl_gt_workarounds_init(gt, wal); 1684 else if (IS_BROXTON(i915)) 1685 gen9_gt_workarounds_init(gt, wal); 1686 else if (IS_SKYLAKE(i915)) 1687 skl_gt_workarounds_init(gt, wal); 1688 else if (IS_HASWELL(i915)) 1689 hsw_gt_workarounds_init(gt, wal); 1690 else if (IS_VALLEYVIEW(i915)) 1691 vlv_gt_workarounds_init(gt, wal); 1692 else if (IS_IVYBRIDGE(i915)) 1693 ivb_gt_workarounds_init(gt, wal); 1694 else if (GRAPHICS_VER(i915) == 6) 1695 snb_gt_workarounds_init(gt, wal); 1696 else if (GRAPHICS_VER(i915) == 5) 1697 ilk_gt_workarounds_init(gt, wal); 1698 else if (IS_G4X(i915)) 1699 g4x_gt_workarounds_init(gt, wal); 1700 else if (GRAPHICS_VER(i915) == 4) 1701 gen4_gt_workarounds_init(gt, wal); 1702 else if (GRAPHICS_VER(i915) <= 8) 1703 ; 1704 else 1705 MISSING_CASE(GRAPHICS_VER(i915)); 1706 } 1707 1708 void intel_gt_init_workarounds(struct intel_gt *gt) 1709 { 1710 struct i915_wa_list *wal = >->wa_list; 1711 1712 wa_init_start(wal, gt, "GT", "global"); 1713 gt_init_workarounds(gt, wal); 1714 wa_init_finish(wal); 1715 } 1716 1717 static enum forcewake_domains 1718 wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal) 1719 { 1720 enum forcewake_domains fw = 0; 1721 struct i915_wa *wa; 1722 unsigned int i; 1723 1724 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) 1725 fw |= intel_uncore_forcewake_for_reg(uncore, 1726 wa->reg, 1727 FW_REG_READ | 1728 FW_REG_WRITE); 1729 1730 return fw; 1731 } 1732 1733 static bool 1734 wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur, 1735 const char *name, const char *from) 1736 { 1737 if ((cur ^ wa->set) & wa->read) { 1738 drm_err(>->i915->drm, 1739 "%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n", 1740 name, from, i915_mmio_reg_offset(wa->reg), 1741 cur, cur & wa->read, wa->set & wa->read); 1742 1743 return false; 1744 } 1745 1746 return true; 1747 } 1748 1749 static void wa_list_apply(const struct i915_wa_list *wal) 1750 { 1751 struct intel_gt *gt = wal->gt; 1752 struct intel_uncore *uncore = gt->uncore; 1753 enum forcewake_domains fw; 1754 unsigned long flags; 1755 struct i915_wa *wa; 1756 unsigned int i; 1757 1758 if (!wal->count) 1759 return; 1760 1761 fw = wal_get_fw_for_rmw(uncore, wal); 1762 1763 spin_lock_irqsave(&uncore->lock, flags); 1764 intel_uncore_forcewake_get__locked(uncore, fw); 1765 1766 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 1767 u32 val, old = 0; 1768 1769 /* open-coded rmw due to steering */ 1770 if (wa->clr) 1771 old = wa->is_mcr ? 1772 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) : 1773 intel_uncore_read_fw(uncore, wa->reg); 1774 val = (old & ~wa->clr) | wa->set; 1775 if (val != old || !wa->clr) { 1776 if (wa->is_mcr) 1777 intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val); 1778 else 1779 intel_uncore_write_fw(uncore, wa->reg, val); 1780 } 1781 1782 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) { 1783 u32 val = wa->is_mcr ? 1784 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) : 1785 intel_uncore_read_fw(uncore, wa->reg); 1786 1787 wa_verify(gt, wa, val, wal->name, "application"); 1788 } 1789 } 1790 1791 intel_uncore_forcewake_put__locked(uncore, fw); 1792 spin_unlock_irqrestore(&uncore->lock, flags); 1793 } 1794 1795 void intel_gt_apply_workarounds(struct intel_gt *gt) 1796 { 1797 wa_list_apply(>->wa_list); 1798 } 1799 1800 static bool wa_list_verify(struct intel_gt *gt, 1801 const struct i915_wa_list *wal, 1802 const char *from) 1803 { 1804 struct intel_uncore *uncore = gt->uncore; 1805 struct i915_wa *wa; 1806 enum forcewake_domains fw; 1807 unsigned long flags; 1808 unsigned int i; 1809 bool ok = true; 1810 1811 fw = wal_get_fw_for_rmw(uncore, wal); 1812 1813 spin_lock_irqsave(&uncore->lock, flags); 1814 intel_uncore_forcewake_get__locked(uncore, fw); 1815 1816 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) 1817 ok &= wa_verify(wal->gt, wa, wa->is_mcr ? 1818 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) : 1819 intel_uncore_read_fw(uncore, wa->reg), 1820 wal->name, from); 1821 1822 intel_uncore_forcewake_put__locked(uncore, fw); 1823 spin_unlock_irqrestore(&uncore->lock, flags); 1824 1825 return ok; 1826 } 1827 1828 bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from) 1829 { 1830 return wa_list_verify(gt, >->wa_list, from); 1831 } 1832 1833 __maybe_unused 1834 static bool is_nonpriv_flags_valid(u32 flags) 1835 { 1836 /* Check only valid flag bits are set */ 1837 if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID) 1838 return false; 1839 1840 /* NB: Only 3 out of 4 enum values are valid for access field */ 1841 if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) == 1842 RING_FORCE_TO_NONPRIV_ACCESS_INVALID) 1843 return false; 1844 1845 return true; 1846 } 1847 1848 static void 1849 whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags) 1850 { 1851 struct i915_wa wa = { 1852 .reg = reg 1853 }; 1854 1855 if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS)) 1856 return; 1857 1858 if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags))) 1859 return; 1860 1861 wa.reg.reg |= flags; 1862 _wa_add(wal, &wa); 1863 } 1864 1865 static void 1866 whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags) 1867 { 1868 struct i915_wa wa = { 1869 .mcr_reg = reg, 1870 .is_mcr = 1, 1871 }; 1872 1873 if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS)) 1874 return; 1875 1876 if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags))) 1877 return; 1878 1879 wa.mcr_reg.reg |= flags; 1880 _wa_add(wal, &wa); 1881 } 1882 1883 static void 1884 whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg) 1885 { 1886 whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW); 1887 } 1888 1889 static void 1890 whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg) 1891 { 1892 whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW); 1893 } 1894 1895 static void gen9_whitelist_build(struct i915_wa_list *w) 1896 { 1897 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */ 1898 whitelist_reg(w, GEN9_CTX_PREEMPT_REG); 1899 1900 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */ 1901 whitelist_reg(w, GEN8_CS_CHICKEN1); 1902 1903 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */ 1904 whitelist_reg(w, GEN8_HDC_CHICKEN1); 1905 1906 /* WaSendPushConstantsFromMMIO:skl,bxt */ 1907 whitelist_reg(w, COMMON_SLICE_CHICKEN2); 1908 } 1909 1910 static void skl_whitelist_build(struct intel_engine_cs *engine) 1911 { 1912 struct i915_wa_list *w = &engine->whitelist; 1913 1914 if (engine->class != RENDER_CLASS) 1915 return; 1916 1917 gen9_whitelist_build(w); 1918 1919 /* WaDisableLSQCROPERFforOCL:skl */ 1920 whitelist_mcr_reg(w, GEN8_L3SQCREG4); 1921 } 1922 1923 static void bxt_whitelist_build(struct intel_engine_cs *engine) 1924 { 1925 if (engine->class != RENDER_CLASS) 1926 return; 1927 1928 gen9_whitelist_build(&engine->whitelist); 1929 } 1930 1931 static void kbl_whitelist_build(struct intel_engine_cs *engine) 1932 { 1933 struct i915_wa_list *w = &engine->whitelist; 1934 1935 if (engine->class != RENDER_CLASS) 1936 return; 1937 1938 gen9_whitelist_build(w); 1939 1940 /* WaDisableLSQCROPERFforOCL:kbl */ 1941 whitelist_mcr_reg(w, GEN8_L3SQCREG4); 1942 } 1943 1944 static void glk_whitelist_build(struct intel_engine_cs *engine) 1945 { 1946 struct i915_wa_list *w = &engine->whitelist; 1947 1948 if (engine->class != RENDER_CLASS) 1949 return; 1950 1951 gen9_whitelist_build(w); 1952 1953 /* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */ 1954 whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1); 1955 } 1956 1957 static void cfl_whitelist_build(struct intel_engine_cs *engine) 1958 { 1959 struct i915_wa_list *w = &engine->whitelist; 1960 1961 if (engine->class != RENDER_CLASS) 1962 return; 1963 1964 gen9_whitelist_build(w); 1965 1966 /* 1967 * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml 1968 * 1969 * This covers 4 register which are next to one another : 1970 * - PS_INVOCATION_COUNT 1971 * - PS_INVOCATION_COUNT_UDW 1972 * - PS_DEPTH_COUNT 1973 * - PS_DEPTH_COUNT_UDW 1974 */ 1975 whitelist_reg_ext(w, PS_INVOCATION_COUNT, 1976 RING_FORCE_TO_NONPRIV_ACCESS_RD | 1977 RING_FORCE_TO_NONPRIV_RANGE_4); 1978 } 1979 1980 static void allow_read_ctx_timestamp(struct intel_engine_cs *engine) 1981 { 1982 struct i915_wa_list *w = &engine->whitelist; 1983 1984 if (engine->class != RENDER_CLASS) 1985 whitelist_reg_ext(w, 1986 RING_CTX_TIMESTAMP(engine->mmio_base), 1987 RING_FORCE_TO_NONPRIV_ACCESS_RD); 1988 } 1989 1990 static void cml_whitelist_build(struct intel_engine_cs *engine) 1991 { 1992 allow_read_ctx_timestamp(engine); 1993 1994 cfl_whitelist_build(engine); 1995 } 1996 1997 static void icl_whitelist_build(struct intel_engine_cs *engine) 1998 { 1999 struct i915_wa_list *w = &engine->whitelist; 2000 2001 allow_read_ctx_timestamp(engine); 2002 2003 switch (engine->class) { 2004 case RENDER_CLASS: 2005 /* WaAllowUMDToModifyHalfSliceChicken7:icl */ 2006 whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7); 2007 2008 /* WaAllowUMDToModifySamplerMode:icl */ 2009 whitelist_mcr_reg(w, GEN10_SAMPLER_MODE); 2010 2011 /* WaEnableStateCacheRedirectToCS:icl */ 2012 whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1); 2013 2014 /* 2015 * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl 2016 * 2017 * This covers 4 register which are next to one another : 2018 * - PS_INVOCATION_COUNT 2019 * - PS_INVOCATION_COUNT_UDW 2020 * - PS_DEPTH_COUNT 2021 * - PS_DEPTH_COUNT_UDW 2022 */ 2023 whitelist_reg_ext(w, PS_INVOCATION_COUNT, 2024 RING_FORCE_TO_NONPRIV_ACCESS_RD | 2025 RING_FORCE_TO_NONPRIV_RANGE_4); 2026 break; 2027 2028 case VIDEO_DECODE_CLASS: 2029 /* hucStatusRegOffset */ 2030 whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base), 2031 RING_FORCE_TO_NONPRIV_ACCESS_RD); 2032 /* hucUKernelHdrInfoRegOffset */ 2033 whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base), 2034 RING_FORCE_TO_NONPRIV_ACCESS_RD); 2035 /* hucStatus2RegOffset */ 2036 whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base), 2037 RING_FORCE_TO_NONPRIV_ACCESS_RD); 2038 break; 2039 2040 default: 2041 break; 2042 } 2043 } 2044 2045 static void tgl_whitelist_build(struct intel_engine_cs *engine) 2046 { 2047 struct i915_wa_list *w = &engine->whitelist; 2048 2049 allow_read_ctx_timestamp(engine); 2050 2051 switch (engine->class) { 2052 case RENDER_CLASS: 2053 /* 2054 * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl 2055 * Wa_1408556865:tgl 2056 * 2057 * This covers 4 registers which are next to one another : 2058 * - PS_INVOCATION_COUNT 2059 * - PS_INVOCATION_COUNT_UDW 2060 * - PS_DEPTH_COUNT 2061 * - PS_DEPTH_COUNT_UDW 2062 */ 2063 whitelist_reg_ext(w, PS_INVOCATION_COUNT, 2064 RING_FORCE_TO_NONPRIV_ACCESS_RD | 2065 RING_FORCE_TO_NONPRIV_RANGE_4); 2066 2067 /* 2068 * Wa_1808121037:tgl 2069 * Wa_14012131227:dg1 2070 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p 2071 */ 2072 whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1); 2073 2074 /* Wa_1806527549:tgl */ 2075 whitelist_reg(w, HIZ_CHICKEN); 2076 break; 2077 default: 2078 break; 2079 } 2080 } 2081 2082 static void dg1_whitelist_build(struct intel_engine_cs *engine) 2083 { 2084 struct i915_wa_list *w = &engine->whitelist; 2085 2086 tgl_whitelist_build(engine); 2087 2088 /* GEN:BUG:1409280441:dg1 */ 2089 if (IS_DG1_GRAPHICS_STEP(engine->i915, STEP_A0, STEP_B0) && 2090 (engine->class == RENDER_CLASS || 2091 engine->class == COPY_ENGINE_CLASS)) 2092 whitelist_reg_ext(w, RING_ID(engine->mmio_base), 2093 RING_FORCE_TO_NONPRIV_ACCESS_RD); 2094 } 2095 2096 static void xehpsdv_whitelist_build(struct intel_engine_cs *engine) 2097 { 2098 allow_read_ctx_timestamp(engine); 2099 } 2100 2101 static void dg2_whitelist_build(struct intel_engine_cs *engine) 2102 { 2103 struct i915_wa_list *w = &engine->whitelist; 2104 2105 allow_read_ctx_timestamp(engine); 2106 2107 switch (engine->class) { 2108 case RENDER_CLASS: 2109 /* 2110 * Wa_1507100340:dg2_g10 2111 * 2112 * This covers 4 registers which are next to one another : 2113 * - PS_INVOCATION_COUNT 2114 * - PS_INVOCATION_COUNT_UDW 2115 * - PS_DEPTH_COUNT 2116 * - PS_DEPTH_COUNT_UDW 2117 */ 2118 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0)) 2119 whitelist_reg_ext(w, PS_INVOCATION_COUNT, 2120 RING_FORCE_TO_NONPRIV_ACCESS_RD | 2121 RING_FORCE_TO_NONPRIV_RANGE_4); 2122 2123 break; 2124 case COMPUTE_CLASS: 2125 /* Wa_16011157294:dg2_g10 */ 2126 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0)) 2127 whitelist_reg(w, GEN9_CTX_PREEMPT_REG); 2128 break; 2129 default: 2130 break; 2131 } 2132 } 2133 2134 static void blacklist_trtt(struct intel_engine_cs *engine) 2135 { 2136 struct i915_wa_list *w = &engine->whitelist; 2137 2138 /* 2139 * Prevent read/write access to [0x4400, 0x4600) which covers 2140 * the TRTT range across all engines. Note that normally userspace 2141 * cannot access the other engines' trtt control, but for simplicity 2142 * we cover the entire range on each engine. 2143 */ 2144 whitelist_reg_ext(w, _MMIO(0x4400), 2145 RING_FORCE_TO_NONPRIV_DENY | 2146 RING_FORCE_TO_NONPRIV_RANGE_64); 2147 whitelist_reg_ext(w, _MMIO(0x4500), 2148 RING_FORCE_TO_NONPRIV_DENY | 2149 RING_FORCE_TO_NONPRIV_RANGE_64); 2150 } 2151 2152 static void pvc_whitelist_build(struct intel_engine_cs *engine) 2153 { 2154 allow_read_ctx_timestamp(engine); 2155 2156 /* Wa_16014440446:pvc */ 2157 blacklist_trtt(engine); 2158 } 2159 2160 void intel_engine_init_whitelist(struct intel_engine_cs *engine) 2161 { 2162 struct drm_i915_private *i915 = engine->i915; 2163 struct i915_wa_list *w = &engine->whitelist; 2164 2165 wa_init_start(w, engine->gt, "whitelist", engine->name); 2166 2167 if (IS_PONTEVECCHIO(i915)) 2168 pvc_whitelist_build(engine); 2169 else if (IS_DG2(i915)) 2170 dg2_whitelist_build(engine); 2171 else if (IS_XEHPSDV(i915)) 2172 xehpsdv_whitelist_build(engine); 2173 else if (IS_DG1(i915)) 2174 dg1_whitelist_build(engine); 2175 else if (GRAPHICS_VER(i915) == 12) 2176 tgl_whitelist_build(engine); 2177 else if (GRAPHICS_VER(i915) == 11) 2178 icl_whitelist_build(engine); 2179 else if (IS_COMETLAKE(i915)) 2180 cml_whitelist_build(engine); 2181 else if (IS_COFFEELAKE(i915)) 2182 cfl_whitelist_build(engine); 2183 else if (IS_GEMINILAKE(i915)) 2184 glk_whitelist_build(engine); 2185 else if (IS_KABYLAKE(i915)) 2186 kbl_whitelist_build(engine); 2187 else if (IS_BROXTON(i915)) 2188 bxt_whitelist_build(engine); 2189 else if (IS_SKYLAKE(i915)) 2190 skl_whitelist_build(engine); 2191 else if (GRAPHICS_VER(i915) <= 8) 2192 ; 2193 else 2194 MISSING_CASE(GRAPHICS_VER(i915)); 2195 2196 wa_init_finish(w); 2197 } 2198 2199 void intel_engine_apply_whitelist(struct intel_engine_cs *engine) 2200 { 2201 const struct i915_wa_list *wal = &engine->whitelist; 2202 struct intel_uncore *uncore = engine->uncore; 2203 const u32 base = engine->mmio_base; 2204 struct i915_wa *wa; 2205 unsigned int i; 2206 2207 if (!wal->count) 2208 return; 2209 2210 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) 2211 intel_uncore_write(uncore, 2212 RING_FORCE_TO_NONPRIV(base, i), 2213 i915_mmio_reg_offset(wa->reg)); 2214 2215 /* And clear the rest just in case of garbage */ 2216 for (; i < RING_MAX_NONPRIV_SLOTS; i++) 2217 intel_uncore_write(uncore, 2218 RING_FORCE_TO_NONPRIV(base, i), 2219 i915_mmio_reg_offset(RING_NOPID(base))); 2220 } 2221 2222 /* 2223 * engine_fake_wa_init(), a place holder to program the registers 2224 * which are not part of an official workaround defined by the 2225 * hardware team. 2226 * Adding programming of those register inside workaround will 2227 * allow utilizing wa framework to proper application and verification. 2228 */ 2229 static void 2230 engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2231 { 2232 u8 mocs_w, mocs_r; 2233 2234 /* 2235 * RING_CMD_CCTL specifies the default MOCS entry that will be used 2236 * by the command streamer when executing commands that don't have 2237 * a way to explicitly specify a MOCS setting. The default should 2238 * usually reference whichever MOCS entry corresponds to uncached 2239 * behavior, although use of a WB cached entry is recommended by the 2240 * spec in certain circumstances on specific platforms. 2241 */ 2242 if (GRAPHICS_VER(engine->i915) >= 12) { 2243 mocs_r = engine->gt->mocs.uc_index; 2244 mocs_w = engine->gt->mocs.uc_index; 2245 2246 if (HAS_L3_CCS_READ(engine->i915) && 2247 engine->class == COMPUTE_CLASS) { 2248 mocs_r = engine->gt->mocs.wb_index; 2249 2250 /* 2251 * Even on the few platforms where MOCS 0 is a 2252 * legitimate table entry, it's never the correct 2253 * setting to use here; we can assume the MOCS init 2254 * just forgot to initialize wb_index. 2255 */ 2256 drm_WARN_ON(&engine->i915->drm, mocs_r == 0); 2257 } 2258 2259 wa_masked_field_set(wal, 2260 RING_CMD_CCTL(engine->mmio_base), 2261 CMD_CCTL_MOCS_MASK, 2262 CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r)); 2263 } 2264 } 2265 2266 static bool needs_wa_1308578152(struct intel_engine_cs *engine) 2267 { 2268 return intel_sseu_find_first_xehp_dss(&engine->gt->info.sseu, 0, 0) >= 2269 GEN_DSS_PER_GSLICE; 2270 } 2271 2272 static void 2273 rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2274 { 2275 struct drm_i915_private *i915 = engine->i915; 2276 2277 if (IS_DG2(i915)) { 2278 /* Wa_1509235366:dg2 */ 2279 wa_write_or(wal, GEN12_GAMCNTRL_CTRL, INVALIDATION_BROADCAST_MODE_DIS | 2280 GLOBAL_INVALIDATION_MODE); 2281 } 2282 2283 if (IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0)) { 2284 /* Wa_14013392000:dg2_g11 */ 2285 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_ENABLE_LARGE_GRF_MODE); 2286 } 2287 2288 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) || 2289 IS_DG2_G11(i915) || IS_DG2_G12(i915)) { 2290 /* Wa_1509727124:dg2 */ 2291 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, 2292 SC_DISABLE_POWER_OPTIMIZATION_EBB); 2293 } 2294 2295 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0) || 2296 IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0)) { 2297 /* Wa_14012419201:dg2 */ 2298 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, 2299 GEN12_DISABLE_HDR_PAST_PAYLOAD_HOLD_FIX); 2300 } 2301 2302 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) || 2303 IS_DG2_G11(i915)) { 2304 /* 2305 * Wa_22012826095:dg2 2306 * Wa_22013059131:dg2 2307 */ 2308 wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW, 2309 MAXREQS_PER_BANK, 2310 REG_FIELD_PREP(MAXREQS_PER_BANK, 2)); 2311 2312 /* Wa_22013059131:dg2 */ 2313 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, 2314 FORCE_1_SUB_MESSAGE_PER_FRAGMENT); 2315 } 2316 2317 /* Wa_1308578152:dg2_g10 when first gslice is fused off */ 2318 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) && 2319 needs_wa_1308578152(engine)) { 2320 wa_masked_dis(wal, GEN12_CS_DEBUG_MODE1_CCCSUNIT_BE_COMMON, 2321 GEN12_REPLAY_MODE_GRANULARITY); 2322 } 2323 2324 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) || 2325 IS_DG2_G11(i915) || IS_DG2_G12(i915)) { 2326 /* Wa_22013037850:dg2 */ 2327 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, 2328 DISABLE_128B_EVICTION_COMMAND_UDW); 2329 2330 /* Wa_22012856258:dg2 */ 2331 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, 2332 GEN12_DISABLE_READ_SUPPRESSION); 2333 2334 /* 2335 * Wa_22010960976:dg2 2336 * Wa_14013347512:dg2 2337 */ 2338 wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0, 2339 LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK); 2340 } 2341 2342 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) { 2343 /* 2344 * Wa_1608949956:dg2_g10 2345 * Wa_14010198302:dg2_g10 2346 */ 2347 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, 2348 MDQ_ARBITRATION_MODE | UGM_BACKUP_MODE); 2349 2350 /* 2351 * Wa_14010918519:dg2_g10 2352 * 2353 * LSC_CHICKEN_BIT_0 always reads back as 0 is this stepping, 2354 * so ignoring verification. 2355 */ 2356 wa_mcr_add(wal, LSC_CHICKEN_BIT_0_UDW, 0, 2357 FORCE_SLM_FENCE_SCOPE_TO_TILE | FORCE_UGM_FENCE_SCOPE_TO_TILE, 2358 0, false); 2359 } 2360 2361 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) { 2362 /* Wa_22010430635:dg2 */ 2363 wa_mcr_masked_en(wal, 2364 GEN9_ROW_CHICKEN4, 2365 GEN12_DISABLE_GRF_CLEAR); 2366 2367 /* Wa_14010648519:dg2 */ 2368 wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE); 2369 } 2370 2371 /* Wa_14013202645:dg2 */ 2372 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) || 2373 IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0)) 2374 wa_mcr_write_or(wal, RT_CTRL, DIS_NULL_QUERY); 2375 2376 /* Wa_22012532006:dg2 */ 2377 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_C0) || 2378 IS_DG2_GRAPHICS_STEP(engine->i915, G11, STEP_A0, STEP_B0)) 2379 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7, 2380 DG2_DISABLE_ROUND_ENABLE_ALLOW_FOR_SSLA); 2381 2382 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0)) { 2383 /* Wa_14010680813:dg2_g10 */ 2384 wa_write_or(wal, GEN12_GAMSTLB_CTRL, CONTROL_BLOCK_CLKGATE_DIS | 2385 EGRESS_BLOCK_CLKGATE_DIS | TAG_BLOCK_CLKGATE_DIS); 2386 } 2387 2388 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0) || 2389 IS_DG2_GRAPHICS_STEP(engine->i915, G11, STEP_A0, STEP_B0)) { 2390 /* Wa_14012362059:dg2 */ 2391 wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB); 2392 } 2393 2394 if (IS_DG2_GRAPHICS_STEP(i915, G11, STEP_B0, STEP_FOREVER) || 2395 IS_DG2_G10(i915)) { 2396 /* Wa_22014600077:dg2 */ 2397 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0, 2398 _MASKED_BIT_ENABLE(ENABLE_EU_COUNT_FOR_TDL_FLUSH), 2399 0 /* Wa_14012342262 write-only reg, so skip verification */, 2400 true); 2401 } 2402 2403 if (IS_DG1_GRAPHICS_STEP(i915, STEP_A0, STEP_B0) || 2404 IS_TGL_UY_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)) { 2405 /* 2406 * Wa_1607138336:tgl[a0],dg1[a0] 2407 * Wa_1607063988:tgl[a0],dg1[a0] 2408 */ 2409 wa_write_or(wal, 2410 GEN9_CTX_PREEMPT_REG, 2411 GEN12_DISABLE_POSH_BUSY_FF_DOP_CG); 2412 } 2413 2414 if (IS_TGL_UY_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)) { 2415 /* 2416 * Wa_1606679103:tgl 2417 * (see also Wa_1606682166:icl) 2418 */ 2419 wa_write_or(wal, 2420 GEN7_SARCHKMD, 2421 GEN7_DISABLE_SAMPLER_PREFETCH); 2422 } 2423 2424 if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) || 2425 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) { 2426 /* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */ 2427 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ); 2428 2429 /* 2430 * Wa_1407928979:tgl A* 2431 * Wa_18011464164:tgl[B0+],dg1[B0+] 2432 * Wa_22010931296:tgl[B0+],dg1[B0+] 2433 * Wa_14010919138:rkl,dg1,adl-s,adl-p 2434 */ 2435 wa_write_or(wal, GEN7_FF_THREAD_MODE, 2436 GEN12_FF_TESSELATION_DOP_GATE_DISABLE); 2437 } 2438 2439 if (IS_ALDERLAKE_P(i915) || IS_DG2(i915) || IS_ALDERLAKE_S(i915) || 2440 IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) { 2441 /* 2442 * Wa_1606700617:tgl,dg1,adl-p 2443 * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p 2444 * Wa_14010826681:tgl,dg1,rkl,adl-p 2445 * Wa_18019627453:dg2 2446 */ 2447 wa_masked_en(wal, 2448 GEN9_CS_DEBUG_MODE1, 2449 FF_DOP_CLOCK_GATE_DISABLE); 2450 } 2451 2452 if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || 2453 IS_DG1_GRAPHICS_STEP(i915, STEP_A0, STEP_B0) || 2454 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) { 2455 /* Wa_1409804808:tgl,rkl,dg1[a0],adl-s,adl-p */ 2456 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, 2457 GEN12_PUSH_CONST_DEREF_HOLD_DIS); 2458 2459 /* 2460 * Wa_1409085225:tgl 2461 * Wa_14010229206:tgl,rkl,dg1[a0],adl-s,adl-p 2462 */ 2463 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH); 2464 } 2465 2466 if (IS_DG1_GRAPHICS_STEP(i915, STEP_A0, STEP_B0) || 2467 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) { 2468 /* 2469 * Wa_1607030317:tgl 2470 * Wa_1607186500:tgl 2471 * Wa_1607297627:tgl,rkl,dg1[a0],adlp 2472 * 2473 * On TGL and RKL there are multiple entries for this WA in the 2474 * BSpec; some indicate this is an A0-only WA, others indicate 2475 * it applies to all steppings so we trust the "all steppings." 2476 * For DG1 this only applies to A0. 2477 */ 2478 wa_masked_en(wal, 2479 RING_PSMI_CTL(RENDER_RING_BASE), 2480 GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE | 2481 GEN8_RC_SEMA_IDLE_MSG_DISABLE); 2482 } 2483 2484 if (IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || 2485 IS_ALDERLAKE_S(i915) || IS_ALDERLAKE_P(i915)) { 2486 /* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */ 2487 wa_mcr_masked_en(wal, 2488 GEN10_SAMPLER_MODE, 2489 ENABLE_SMALLPL); 2490 } 2491 2492 if (GRAPHICS_VER(i915) == 11) { 2493 /* This is not an Wa. Enable for better image quality */ 2494 wa_masked_en(wal, 2495 _3D_CHICKEN3, 2496 _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE); 2497 2498 /* 2499 * Wa_1405543622:icl 2500 * Formerly known as WaGAPZPriorityScheme 2501 */ 2502 wa_write_or(wal, 2503 GEN8_GARBCNTL, 2504 GEN11_ARBITRATION_PRIO_ORDER_MASK); 2505 2506 /* 2507 * Wa_1604223664:icl 2508 * Formerly known as WaL3BankAddressHashing 2509 */ 2510 wa_write_clr_set(wal, 2511 GEN8_GARBCNTL, 2512 GEN11_HASH_CTRL_EXCL_MASK, 2513 GEN11_HASH_CTRL_EXCL_BIT0); 2514 wa_write_clr_set(wal, 2515 GEN11_GLBLINVL, 2516 GEN11_BANK_HASH_ADDR_EXCL_MASK, 2517 GEN11_BANK_HASH_ADDR_EXCL_BIT0); 2518 2519 /* 2520 * Wa_1405733216:icl 2521 * Formerly known as WaDisableCleanEvicts 2522 */ 2523 wa_mcr_write_or(wal, 2524 GEN8_L3SQCREG4, 2525 GEN11_LQSC_CLEAN_EVICT_DISABLE); 2526 2527 /* Wa_1606682166:icl */ 2528 wa_write_or(wal, 2529 GEN7_SARCHKMD, 2530 GEN7_DISABLE_SAMPLER_PREFETCH); 2531 2532 /* Wa_1409178092:icl */ 2533 wa_mcr_write_clr_set(wal, 2534 GEN11_SCRATCH2, 2535 GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE, 2536 0); 2537 2538 /* WaEnable32PlaneMode:icl */ 2539 wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS, 2540 GEN11_ENABLE_32_PLANE_MODE); 2541 2542 /* 2543 * Wa_1408615072:icl,ehl (vsunit) 2544 * Wa_1407596294:icl,ehl (hsunit) 2545 */ 2546 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, 2547 VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS); 2548 2549 /* 2550 * Wa_1408767742:icl[a2..forever],ehl[all] 2551 * Wa_1605460711:icl[a0..c0] 2552 */ 2553 wa_write_or(wal, 2554 GEN7_FF_THREAD_MODE, 2555 GEN12_FF_TESSELATION_DOP_GATE_DISABLE); 2556 2557 /* Wa_22010271021 */ 2558 wa_masked_en(wal, 2559 GEN9_CS_DEBUG_MODE1, 2560 FF_DOP_CLOCK_GATE_DISABLE); 2561 } 2562 2563 /* 2564 * Intel platforms that support fine-grained preemption (i.e., gen9 and 2565 * beyond) allow the kernel-mode driver to choose between two different 2566 * options for controlling preemption granularity and behavior. 2567 * 2568 * Option 1 (hardware default): 2569 * Preemption settings are controlled in a global manner via 2570 * kernel-only register CS_DEBUG_MODE1 (0x20EC). Any granularity 2571 * and settings chosen by the kernel-mode driver will apply to all 2572 * userspace clients. 2573 * 2574 * Option 2: 2575 * Preemption settings are controlled on a per-context basis via 2576 * register CS_CHICKEN1 (0x2580). CS_CHICKEN1 is saved/restored on 2577 * context switch and is writable by userspace (e.g., via 2578 * MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer) 2579 * which allows different userspace drivers/clients to select 2580 * different settings, or to change those settings on the fly in 2581 * response to runtime needs. This option was known by name 2582 * "FtrPerCtxtPreemptionGranularityControl" at one time, although 2583 * that name is somewhat misleading as other non-granularity 2584 * preemption settings are also impacted by this decision. 2585 * 2586 * On Linux, our policy has always been to let userspace drivers 2587 * control preemption granularity/settings (Option 2). This was 2588 * originally mandatory on gen9 to prevent ABI breakage (old gen9 2589 * userspace developed before object-level preemption was enabled would 2590 * not behave well if i915 were to go with Option 1 and enable that 2591 * preemption in a global manner). On gen9 each context would have 2592 * object-level preemption disabled by default (see 2593 * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but 2594 * userspace drivers could opt-in to object-level preemption as they 2595 * saw fit. For post-gen9 platforms, we continue to utilize Option 2; 2596 * even though it is no longer necessary for ABI compatibility when 2597 * enabling a new platform, it does ensure that userspace will be able 2598 * to implement any workarounds that show up requiring temporary 2599 * adjustments to preemption behavior at runtime. 2600 * 2601 * Notes/Workarounds: 2602 * - Wa_14015141709: On DG2 and early steppings of MTL, 2603 * CS_CHICKEN1[0] does not disable object-level preemption as 2604 * it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been 2605 * using Option 1). Effectively this means userspace is unable 2606 * to disable object-level preemption on these platforms/steppings 2607 * despite the setting here. 2608 * 2609 * - Wa_16013994831: May require that userspace program 2610 * CS_CHICKEN1[10] when certain runtime conditions are true. 2611 * Userspace requires Option 2 to be in effect for their update of 2612 * CS_CHICKEN1[10] to be effective. 2613 * 2614 * Other workarounds may appear in the future that will also require 2615 * Option 2 behavior to allow proper userspace implementation. 2616 */ 2617 if (GRAPHICS_VER(i915) >= 9) 2618 wa_masked_en(wal, 2619 GEN7_FF_SLICE_CS_CHICKEN1, 2620 GEN9_FFSC_PERCTX_PREEMPT_CTRL); 2621 2622 if (IS_SKYLAKE(i915) || 2623 IS_KABYLAKE(i915) || 2624 IS_COFFEELAKE(i915) || 2625 IS_COMETLAKE(i915)) { 2626 /* WaEnableGapsTsvCreditFix:skl,kbl,cfl */ 2627 wa_write_or(wal, 2628 GEN8_GARBCNTL, 2629 GEN9_GAPS_TSV_CREDIT_DISABLE); 2630 } 2631 2632 if (IS_BROXTON(i915)) { 2633 /* WaDisablePooledEuLoadBalancingFix:bxt */ 2634 wa_masked_en(wal, 2635 FF_SLICE_CS_CHICKEN2, 2636 GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE); 2637 } 2638 2639 if (GRAPHICS_VER(i915) == 9) { 2640 /* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */ 2641 wa_masked_en(wal, 2642 GEN9_CSFE_CHICKEN1_RCS, 2643 GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE); 2644 2645 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */ 2646 wa_mcr_write_or(wal, 2647 BDW_SCRATCH1, 2648 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE); 2649 2650 /* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */ 2651 if (IS_GEN9_LP(i915)) 2652 wa_mcr_write_clr_set(wal, 2653 GEN8_L3SQCREG1, 2654 L3_PRIO_CREDITS_MASK, 2655 L3_GENERAL_PRIO_CREDITS(62) | 2656 L3_HIGH_PRIO_CREDITS(2)); 2657 2658 /* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */ 2659 wa_mcr_write_or(wal, 2660 GEN8_L3SQCREG4, 2661 GEN8_LQSC_FLUSH_COHERENT_LINES); 2662 2663 /* Disable atomics in L3 to prevent unrecoverable hangs */ 2664 wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1, 2665 GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0); 2666 wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4, 2667 GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0); 2668 wa_mcr_write_clr_set(wal, GEN9_SCRATCH1, 2669 EVICTION_PERF_FIX_ENABLE, 0); 2670 } 2671 2672 if (IS_HASWELL(i915)) { 2673 /* WaSampleCChickenBitEnable:hsw */ 2674 wa_masked_en(wal, 2675 HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE); 2676 2677 wa_masked_dis(wal, 2678 CACHE_MODE_0_GEN7, 2679 /* enable HiZ Raw Stall Optimization */ 2680 HIZ_RAW_STALL_OPT_DISABLE); 2681 } 2682 2683 if (IS_VALLEYVIEW(i915)) { 2684 /* WaDisableEarlyCull:vlv */ 2685 wa_masked_en(wal, 2686 _3D_CHICKEN3, 2687 _3D_CHICKEN_SF_DISABLE_OBJEND_CULL); 2688 2689 /* 2690 * WaVSThreadDispatchOverride:ivb,vlv 2691 * 2692 * This actually overrides the dispatch 2693 * mode for all thread types. 2694 */ 2695 wa_write_clr_set(wal, 2696 GEN7_FF_THREAD_MODE, 2697 GEN7_FF_SCHED_MASK, 2698 GEN7_FF_TS_SCHED_HW | 2699 GEN7_FF_VS_SCHED_HW | 2700 GEN7_FF_DS_SCHED_HW); 2701 2702 /* WaPsdDispatchEnable:vlv */ 2703 /* WaDisablePSDDualDispatchEnable:vlv */ 2704 wa_masked_en(wal, 2705 GEN7_HALF_SLICE_CHICKEN1, 2706 GEN7_MAX_PS_THREAD_DEP | 2707 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE); 2708 } 2709 2710 if (IS_IVYBRIDGE(i915)) { 2711 /* WaDisableEarlyCull:ivb */ 2712 wa_masked_en(wal, 2713 _3D_CHICKEN3, 2714 _3D_CHICKEN_SF_DISABLE_OBJEND_CULL); 2715 2716 if (0) { /* causes HiZ corruption on ivb:gt1 */ 2717 /* enable HiZ Raw Stall Optimization */ 2718 wa_masked_dis(wal, 2719 CACHE_MODE_0_GEN7, 2720 HIZ_RAW_STALL_OPT_DISABLE); 2721 } 2722 2723 /* 2724 * WaVSThreadDispatchOverride:ivb,vlv 2725 * 2726 * This actually overrides the dispatch 2727 * mode for all thread types. 2728 */ 2729 wa_write_clr_set(wal, 2730 GEN7_FF_THREAD_MODE, 2731 GEN7_FF_SCHED_MASK, 2732 GEN7_FF_TS_SCHED_HW | 2733 GEN7_FF_VS_SCHED_HW | 2734 GEN7_FF_DS_SCHED_HW); 2735 2736 /* WaDisablePSDDualDispatchEnable:ivb */ 2737 if (IS_IVB_GT1(i915)) 2738 wa_masked_en(wal, 2739 GEN7_HALF_SLICE_CHICKEN1, 2740 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE); 2741 } 2742 2743 if (GRAPHICS_VER(i915) == 7) { 2744 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */ 2745 wa_masked_en(wal, 2746 RING_MODE_GEN7(RENDER_RING_BASE), 2747 GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE); 2748 2749 /* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */ 2750 wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE); 2751 2752 /* 2753 * BSpec says this must be set, even though 2754 * WaDisable4x2SubspanOptimization:ivb,hsw 2755 * WaDisable4x2SubspanOptimization isn't listed for VLV. 2756 */ 2757 wa_masked_en(wal, 2758 CACHE_MODE_1, 2759 PIXEL_SUBSPAN_COLLECT_OPT_DISABLE); 2760 2761 /* 2762 * BSpec recommends 8x4 when MSAA is used, 2763 * however in practice 16x4 seems fastest. 2764 * 2765 * Note that PS/WM thread counts depend on the WIZ hashing 2766 * disable bit, which we don't touch here, but it's good 2767 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). 2768 */ 2769 wa_masked_field_set(wal, 2770 GEN7_GT_MODE, 2771 GEN6_WIZ_HASHING_MASK, 2772 GEN6_WIZ_HASHING_16x4); 2773 } 2774 2775 if (IS_GRAPHICS_VER(i915, 6, 7)) 2776 /* 2777 * We need to disable the AsyncFlip performance optimisations in 2778 * order to use MI_WAIT_FOR_EVENT within the CS. It should 2779 * already be programmed to '1' on all products. 2780 * 2781 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv 2782 */ 2783 wa_masked_en(wal, 2784 RING_MI_MODE(RENDER_RING_BASE), 2785 ASYNC_FLIP_PERF_DISABLE); 2786 2787 if (GRAPHICS_VER(i915) == 6) { 2788 /* 2789 * Required for the hardware to program scanline values for 2790 * waiting 2791 * WaEnableFlushTlbInvalidationMode:snb 2792 */ 2793 wa_masked_en(wal, 2794 GFX_MODE, 2795 GFX_TLB_INVALIDATE_EXPLICIT); 2796 2797 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */ 2798 wa_masked_en(wal, 2799 _3D_CHICKEN, 2800 _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB); 2801 2802 wa_masked_en(wal, 2803 _3D_CHICKEN3, 2804 /* WaStripsFansDisableFastClipPerformanceFix:snb */ 2805 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL | 2806 /* 2807 * Bspec says: 2808 * "This bit must be set if 3DSTATE_CLIP clip mode is set 2809 * to normal and 3DSTATE_SF number of SF output attributes 2810 * is more than 16." 2811 */ 2812 _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH); 2813 2814 /* 2815 * BSpec recommends 8x4 when MSAA is used, 2816 * however in practice 16x4 seems fastest. 2817 * 2818 * Note that PS/WM thread counts depend on the WIZ hashing 2819 * disable bit, which we don't touch here, but it's good 2820 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). 2821 */ 2822 wa_masked_field_set(wal, 2823 GEN6_GT_MODE, 2824 GEN6_WIZ_HASHING_MASK, 2825 GEN6_WIZ_HASHING_16x4); 2826 2827 /* WaDisable_RenderCache_OperationalFlush:snb */ 2828 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE); 2829 2830 /* 2831 * From the Sandybridge PRM, volume 1 part 3, page 24: 2832 * "If this bit is set, STCunit will have LRA as replacement 2833 * policy. [...] This bit must be reset. LRA replacement 2834 * policy is not supported." 2835 */ 2836 wa_masked_dis(wal, 2837 CACHE_MODE_0, 2838 CM0_STC_EVICT_DISABLE_LRA_SNB); 2839 } 2840 2841 if (IS_GRAPHICS_VER(i915, 4, 6)) 2842 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */ 2843 wa_add(wal, RING_MI_MODE(RENDER_RING_BASE), 2844 0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH), 2845 /* XXX bit doesn't stick on Broadwater */ 2846 IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true); 2847 2848 if (GRAPHICS_VER(i915) == 4) 2849 /* 2850 * Disable CONSTANT_BUFFER before it is loaded from the context 2851 * image. For as it is loaded, it is executed and the stored 2852 * address may no longer be valid, leading to a GPU hang. 2853 * 2854 * This imposes the requirement that userspace reload their 2855 * CONSTANT_BUFFER on every batch, fortunately a requirement 2856 * they are already accustomed to from before contexts were 2857 * enabled. 2858 */ 2859 wa_add(wal, ECOSKPD(RENDER_RING_BASE), 2860 0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE), 2861 0 /* XXX bit doesn't stick on Broadwater */, 2862 true); 2863 } 2864 2865 static void 2866 xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2867 { 2868 struct drm_i915_private *i915 = engine->i915; 2869 2870 /* WaKBLVECSSemaphoreWaitPoll:kbl */ 2871 if (IS_KBL_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) { 2872 wa_write(wal, 2873 RING_SEMA_WAIT_POLL(engine->mmio_base), 2874 1); 2875 } 2876 } 2877 2878 static void 2879 ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2880 { 2881 if (IS_PVC_CT_STEP(engine->i915, STEP_A0, STEP_C0)) { 2882 /* Wa_14014999345:pvc */ 2883 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, DISABLE_ECC); 2884 } 2885 } 2886 2887 /* 2888 * The bspec performance guide has recommended MMIO tuning settings. These 2889 * aren't truly "workarounds" but we want to program them with the same 2890 * workaround infrastructure to ensure that they're automatically added to 2891 * the GuC save/restore lists, re-applied at the right times, and checked for 2892 * any conflicting programming requested by real workarounds. 2893 * 2894 * Programming settings should be added here only if their registers are not 2895 * part of an engine's register state context. If a register is part of a 2896 * context, then any tuning settings should be programmed in an appropriate 2897 * function invoked by __intel_engine_init_ctx_wa(). 2898 */ 2899 static void 2900 add_render_compute_tuning_settings(struct drm_i915_private *i915, 2901 struct i915_wa_list *wal) 2902 { 2903 if (IS_PONTEVECCHIO(i915)) { 2904 wa_write(wal, XEHPC_L3SCRUB, 2905 SCRUB_CL_DWNGRADE_SHARED | SCRUB_RATE_4B_PER_CLK); 2906 } 2907 2908 if (IS_DG2(i915)) { 2909 wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS); 2910 wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512); 2911 2912 /* 2913 * This is also listed as Wa_22012654132 for certain DG2 2914 * steppings, but the tuning setting programming is a superset 2915 * since it applies to all DG2 variants and steppings. 2916 * 2917 * Note that register 0xE420 is write-only and cannot be read 2918 * back for verification on DG2 (due to Wa_14012342262), so 2919 * we need to explicitly skip the readback. 2920 */ 2921 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0, 2922 _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC), 2923 0 /* write-only, so skip validation */, 2924 true); 2925 } 2926 2927 /* 2928 * This tuning setting proves beneficial only on ATS-M designs; the 2929 * default "age based" setting is optimal on regular DG2 and other 2930 * platforms. 2931 */ 2932 if (INTEL_INFO(i915)->tuning_thread_rr_after_dep) 2933 wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE, 2934 THREAD_EX_ARB_MODE_RR_AFTER_DEP); 2935 } 2936 2937 /* 2938 * The workarounds in this function apply to shared registers in 2939 * the general render reset domain that aren't tied to a 2940 * specific engine. Since all render+compute engines get reset 2941 * together, and the contents of these registers are lost during 2942 * the shared render domain reset, we'll define such workarounds 2943 * here and then add them to just a single RCS or CCS engine's 2944 * workaround list (whichever engine has the XXXX flag). 2945 */ 2946 static void 2947 general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2948 { 2949 struct drm_i915_private *i915 = engine->i915; 2950 2951 add_render_compute_tuning_settings(i915, wal); 2952 2953 if (IS_PONTEVECCHIO(i915)) { 2954 /* Wa_16016694945 */ 2955 wa_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_OVRLSCCC); 2956 } 2957 2958 if (IS_XEHPSDV(i915)) { 2959 /* Wa_1409954639 */ 2960 wa_mcr_masked_en(wal, 2961 GEN8_ROW_CHICKEN, 2962 SYSTOLIC_DOP_CLOCK_GATING_DIS); 2963 2964 /* Wa_1607196519 */ 2965 wa_mcr_masked_en(wal, 2966 GEN9_ROW_CHICKEN4, 2967 GEN12_DISABLE_GRF_CLEAR); 2968 2969 /* Wa_14010670810:xehpsdv */ 2970 wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE); 2971 2972 /* Wa_14010449647:xehpsdv */ 2973 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1, 2974 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE); 2975 2976 /* Wa_18011725039:xehpsdv */ 2977 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_B0)) { 2978 wa_mcr_masked_dis(wal, MLTICTXCTL, TDONRENDER); 2979 wa_mcr_write_or(wal, L3SQCREG1_CCS0, FLUSHALLNONCOH); 2980 } 2981 2982 /* Wa_14012362059:xehpsdv */ 2983 wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB); 2984 2985 /* Wa_14014368820:xehpsdv */ 2986 wa_write_or(wal, GEN12_GAMCNTRL_CTRL, INVALIDATION_BROADCAST_MODE_DIS | 2987 GLOBAL_INVALIDATION_MODE); 2988 } 2989 2990 if (IS_DG2(i915) || IS_PONTEVECCHIO(i915)) { 2991 /* Wa_14015227452:dg2,pvc */ 2992 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE); 2993 2994 /* Wa_22014226127:dg2,pvc */ 2995 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE); 2996 2997 /* Wa_16015675438:dg2,pvc */ 2998 wa_masked_en(wal, FF_SLICE_CS_CHICKEN2, GEN12_PERF_FIX_BALANCING_CFE_DISABLE); 2999 3000 /* Wa_18018781329:dg2,pvc */ 3001 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB); 3002 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB); 3003 wa_mcr_write_or(wal, VDBX_MOD_CTRL, FORCE_MISS_FTLB); 3004 wa_mcr_write_or(wal, VEBX_MOD_CTRL, FORCE_MISS_FTLB); 3005 } 3006 3007 if (IS_DG2(i915)) { 3008 /* 3009 * Wa_16011620976:dg2_g11 3010 * Wa_22015475538:dg2 3011 */ 3012 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8); 3013 3014 /* Wa_18017747507:dg2 */ 3015 wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE); 3016 } 3017 } 3018 3019 static void 3020 engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal) 3021 { 3022 if (GRAPHICS_VER(engine->i915) < 4) 3023 return; 3024 3025 engine_fake_wa_init(engine, wal); 3026 3027 /* 3028 * These are common workarounds that just need to applied 3029 * to a single RCS/CCS engine's workaround list since 3030 * they're reset as part of the general render domain reset. 3031 */ 3032 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) 3033 general_render_compute_wa_init(engine, wal); 3034 3035 if (engine->class == COMPUTE_CLASS) 3036 ccs_engine_wa_init(engine, wal); 3037 else if (engine->class == RENDER_CLASS) 3038 rcs_engine_wa_init(engine, wal); 3039 else 3040 xcs_engine_wa_init(engine, wal); 3041 } 3042 3043 void intel_engine_init_workarounds(struct intel_engine_cs *engine) 3044 { 3045 struct i915_wa_list *wal = &engine->wa_list; 3046 3047 wa_init_start(wal, engine->gt, "engine", engine->name); 3048 engine_init_workarounds(engine, wal); 3049 wa_init_finish(wal); 3050 } 3051 3052 void intel_engine_apply_workarounds(struct intel_engine_cs *engine) 3053 { 3054 wa_list_apply(&engine->wa_list); 3055 } 3056 3057 static const struct i915_range mcr_ranges_gen8[] = { 3058 { .start = 0x5500, .end = 0x55ff }, 3059 { .start = 0x7000, .end = 0x7fff }, 3060 { .start = 0x9400, .end = 0x97ff }, 3061 { .start = 0xb000, .end = 0xb3ff }, 3062 { .start = 0xe000, .end = 0xe7ff }, 3063 {}, 3064 }; 3065 3066 static const struct i915_range mcr_ranges_gen12[] = { 3067 { .start = 0x8150, .end = 0x815f }, 3068 { .start = 0x9520, .end = 0x955f }, 3069 { .start = 0xb100, .end = 0xb3ff }, 3070 { .start = 0xde80, .end = 0xe8ff }, 3071 { .start = 0x24a00, .end = 0x24a7f }, 3072 {}, 3073 }; 3074 3075 static const struct i915_range mcr_ranges_xehp[] = { 3076 { .start = 0x4000, .end = 0x4aff }, 3077 { .start = 0x5200, .end = 0x52ff }, 3078 { .start = 0x5400, .end = 0x7fff }, 3079 { .start = 0x8140, .end = 0x815f }, 3080 { .start = 0x8c80, .end = 0x8dff }, 3081 { .start = 0x94d0, .end = 0x955f }, 3082 { .start = 0x9680, .end = 0x96ff }, 3083 { .start = 0xb000, .end = 0xb3ff }, 3084 { .start = 0xc800, .end = 0xcfff }, 3085 { .start = 0xd800, .end = 0xd8ff }, 3086 { .start = 0xdc00, .end = 0xffff }, 3087 { .start = 0x17000, .end = 0x17fff }, 3088 { .start = 0x24a00, .end = 0x24a7f }, 3089 {}, 3090 }; 3091 3092 static bool mcr_range(struct drm_i915_private *i915, u32 offset) 3093 { 3094 const struct i915_range *mcr_ranges; 3095 int i; 3096 3097 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) 3098 mcr_ranges = mcr_ranges_xehp; 3099 else if (GRAPHICS_VER(i915) >= 12) 3100 mcr_ranges = mcr_ranges_gen12; 3101 else if (GRAPHICS_VER(i915) >= 8) 3102 mcr_ranges = mcr_ranges_gen8; 3103 else 3104 return false; 3105 3106 /* 3107 * Registers in these ranges are affected by the MCR selector 3108 * which only controls CPU initiated MMIO. Routing does not 3109 * work for CS access so we cannot verify them on this path. 3110 */ 3111 for (i = 0; mcr_ranges[i].start; i++) 3112 if (offset >= mcr_ranges[i].start && 3113 offset <= mcr_ranges[i].end) 3114 return true; 3115 3116 return false; 3117 } 3118 3119 static int 3120 wa_list_srm(struct i915_request *rq, 3121 const struct i915_wa_list *wal, 3122 struct i915_vma *vma) 3123 { 3124 struct drm_i915_private *i915 = rq->engine->i915; 3125 unsigned int i, count = 0; 3126 const struct i915_wa *wa; 3127 u32 srm, *cs; 3128 3129 srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT; 3130 if (GRAPHICS_VER(i915) >= 8) 3131 srm++; 3132 3133 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 3134 if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg))) 3135 count++; 3136 } 3137 3138 cs = intel_ring_begin(rq, 4 * count); 3139 if (IS_ERR(cs)) 3140 return PTR_ERR(cs); 3141 3142 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 3143 u32 offset = i915_mmio_reg_offset(wa->reg); 3144 3145 if (mcr_range(i915, offset)) 3146 continue; 3147 3148 *cs++ = srm; 3149 *cs++ = offset; 3150 *cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i; 3151 *cs++ = 0; 3152 } 3153 intel_ring_advance(rq, cs); 3154 3155 return 0; 3156 } 3157 3158 static int engine_wa_list_verify(struct intel_context *ce, 3159 const struct i915_wa_list * const wal, 3160 const char *from) 3161 { 3162 const struct i915_wa *wa; 3163 struct i915_request *rq; 3164 struct i915_vma *vma; 3165 struct i915_gem_ww_ctx ww; 3166 unsigned int i; 3167 u32 *results; 3168 int err; 3169 3170 if (!wal->count) 3171 return 0; 3172 3173 vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm, 3174 wal->count * sizeof(u32)); 3175 if (IS_ERR(vma)) 3176 return PTR_ERR(vma); 3177 3178 intel_engine_pm_get(ce->engine); 3179 i915_gem_ww_ctx_init(&ww, false); 3180 retry: 3181 err = i915_gem_object_lock(vma->obj, &ww); 3182 if (err == 0) 3183 err = intel_context_pin_ww(ce, &ww); 3184 if (err) 3185 goto err_pm; 3186 3187 err = i915_vma_pin_ww(vma, &ww, 0, 0, 3188 i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER); 3189 if (err) 3190 goto err_unpin; 3191 3192 rq = i915_request_create(ce); 3193 if (IS_ERR(rq)) { 3194 err = PTR_ERR(rq); 3195 goto err_vma; 3196 } 3197 3198 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); 3199 if (err == 0) 3200 err = wa_list_srm(rq, wal, vma); 3201 3202 i915_request_get(rq); 3203 if (err) 3204 i915_request_set_error_once(rq, err); 3205 i915_request_add(rq); 3206 3207 if (err) 3208 goto err_rq; 3209 3210 if (i915_request_wait(rq, 0, HZ / 5) < 0) { 3211 err = -ETIME; 3212 goto err_rq; 3213 } 3214 3215 results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); 3216 if (IS_ERR(results)) { 3217 err = PTR_ERR(results); 3218 goto err_rq; 3219 } 3220 3221 err = 0; 3222 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 3223 if (mcr_range(rq->engine->i915, i915_mmio_reg_offset(wa->reg))) 3224 continue; 3225 3226 if (!wa_verify(wal->gt, wa, results[i], wal->name, from)) 3227 err = -ENXIO; 3228 } 3229 3230 i915_gem_object_unpin_map(vma->obj); 3231 3232 err_rq: 3233 i915_request_put(rq); 3234 err_vma: 3235 i915_vma_unpin(vma); 3236 err_unpin: 3237 intel_context_unpin(ce); 3238 err_pm: 3239 if (err == -EDEADLK) { 3240 err = i915_gem_ww_ctx_backoff(&ww); 3241 if (!err) 3242 goto retry; 3243 } 3244 i915_gem_ww_ctx_fini(&ww); 3245 intel_engine_pm_put(ce->engine); 3246 i915_vma_put(vma); 3247 return err; 3248 } 3249 3250 int intel_engine_verify_workarounds(struct intel_engine_cs *engine, 3251 const char *from) 3252 { 3253 return engine_wa_list_verify(engine->kernel_context, 3254 &engine->wa_list, 3255 from); 3256 } 3257 3258 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 3259 #include "selftest_workarounds.c" 3260 #endif 3261