xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_workarounds.c (revision 6c31c13759272818108a329f166d86846d0e3f7a)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2018 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "intel_context.h"
9 #include "intel_engine_pm.h"
10 #include "intel_engine_regs.h"
11 #include "intel_gpu_commands.h"
12 #include "intel_gt.h"
13 #include "intel_gt_mcr.h"
14 #include "intel_gt_regs.h"
15 #include "intel_ring.h"
16 #include "intel_workarounds.h"
17 
18 /**
19  * DOC: Hardware workarounds
20  *
21  * Hardware workarounds are register programming documented to be executed in
22  * the driver that fall outside of the normal programming sequences for a
23  * platform. There are some basic categories of workarounds, depending on
24  * how/when they are applied:
25  *
26  * - Context workarounds: workarounds that touch registers that are
27  *   saved/restored to/from the HW context image. The list is emitted (via Load
28  *   Register Immediate commands) once when initializing the device and saved in
29  *   the default context. That default context is then used on every context
30  *   creation to have a "primed golden context", i.e. a context image that
31  *   already contains the changes needed to all the registers.
32  *
33  *   Context workarounds should be implemented in the \*_ctx_workarounds_init()
34  *   variants respective to the targeted platforms.
35  *
36  * - Engine workarounds: the list of these WAs is applied whenever the specific
37  *   engine is reset. It's also possible that a set of engine classes share a
38  *   common power domain and they are reset together. This happens on some
39  *   platforms with render and compute engines. In this case (at least) one of
40  *   them need to keeep the workaround programming: the approach taken in the
41  *   driver is to tie those workarounds to the first compute/render engine that
42  *   is registered.  When executing with GuC submission, engine resets are
43  *   outside of kernel driver control, hence the list of registers involved in
44  *   written once, on engine initialization, and then passed to GuC, that
45  *   saves/restores their values before/after the reset takes place. See
46  *   ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference.
47  *
48  *   Workarounds for registers specific to RCS and CCS should be implemented in
49  *   rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for
50  *   registers belonging to BCS, VCS or VECS should be implemented in
51  *   xcs_engine_wa_init(). Workarounds for registers not belonging to a specific
52  *   engine's MMIO range but that are part of of the common RCS/CCS reset domain
53  *   should be implemented in general_render_compute_wa_init().
54  *
55  * - GT workarounds: the list of these WAs is applied whenever these registers
56  *   revert to their default values: on GPU reset, suspend/resume [1]_, etc.
57  *
58  *   GT workarounds should be implemented in the \*_gt_workarounds_init()
59  *   variants respective to the targeted platforms.
60  *
61  * - Register whitelist: some workarounds need to be implemented in userspace,
62  *   but need to touch privileged registers. The whitelist in the kernel
63  *   instructs the hardware to allow the access to happen. From the kernel side,
64  *   this is just a special case of a MMIO workaround (as we write the list of
65  *   these to/be-whitelisted registers to some special HW registers).
66  *
67  *   Register whitelisting should be done in the \*_whitelist_build() variants
68  *   respective to the targeted platforms.
69  *
70  * - Workaround batchbuffers: buffers that get executed automatically by the
71  *   hardware on every HW context restore. These buffers are created and
72  *   programmed in the default context so the hardware always go through those
73  *   programming sequences when switching contexts. The support for workaround
74  *   batchbuffers is enabled these hardware mechanisms:
75  *
76  *   #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default
77  *      context, pointing the hardware to jump to that location when that offset
78  *      is reached in the context restore. Workaround batchbuffer in the driver
79  *      currently uses this mechanism for all platforms.
80  *
81  *   #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context,
82  *      pointing the hardware to a buffer to continue executing after the
83  *      engine registers are restored in a context restore sequence. This is
84  *      currently not used in the driver.
85  *
86  * - Other:  There are WAs that, due to their nature, cannot be applied from a
87  *   central place. Those are peppered around the rest of the code, as needed.
88  *   Workarounds related to the display IP are the main example.
89  *
90  * .. [1] Technically, some registers are powercontext saved & restored, so they
91  *    survive a suspend/resume. In practice, writing them again is not too
92  *    costly and simplifies things, so it's the approach taken in the driver.
93  */
94 
95 static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt,
96 			  const char *name, const char *engine_name)
97 {
98 	wal->gt = gt;
99 	wal->name = name;
100 	wal->engine_name = engine_name;
101 }
102 
103 #define WA_LIST_CHUNK (1 << 4)
104 
105 static void wa_init_finish(struct i915_wa_list *wal)
106 {
107 	/* Trim unused entries. */
108 	if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) {
109 		struct i915_wa *list = kmemdup(wal->list,
110 					       wal->count * sizeof(*list),
111 					       GFP_KERNEL);
112 
113 		if (list) {
114 			kfree(wal->list);
115 			wal->list = list;
116 		}
117 	}
118 
119 	if (!wal->count)
120 		return;
121 
122 	drm_dbg(&wal->gt->i915->drm, "Initialized %u %s workarounds on %s\n",
123 		wal->wa_count, wal->name, wal->engine_name);
124 }
125 
126 static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa)
127 {
128 	unsigned int addr = i915_mmio_reg_offset(wa->reg);
129 	struct drm_i915_private *i915 = wal->gt->i915;
130 	unsigned int start = 0, end = wal->count;
131 	const unsigned int grow = WA_LIST_CHUNK;
132 	struct i915_wa *wa_;
133 
134 	GEM_BUG_ON(!is_power_of_2(grow));
135 
136 	if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */
137 		struct i915_wa *list;
138 
139 		list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa),
140 				     GFP_KERNEL);
141 		if (!list) {
142 			drm_err(&i915->drm, "No space for workaround init!\n");
143 			return;
144 		}
145 
146 		if (wal->list) {
147 			memcpy(list, wal->list, sizeof(*wa) * wal->count);
148 			kfree(wal->list);
149 		}
150 
151 		wal->list = list;
152 	}
153 
154 	while (start < end) {
155 		unsigned int mid = start + (end - start) / 2;
156 
157 		if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) {
158 			start = mid + 1;
159 		} else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) {
160 			end = mid;
161 		} else {
162 			wa_ = &wal->list[mid];
163 
164 			if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) {
165 				drm_err(&i915->drm,
166 					"Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n",
167 					i915_mmio_reg_offset(wa_->reg),
168 					wa_->clr, wa_->set);
169 
170 				wa_->set &= ~wa->clr;
171 			}
172 
173 			wal->wa_count++;
174 			wa_->set |= wa->set;
175 			wa_->clr |= wa->clr;
176 			wa_->read |= wa->read;
177 			return;
178 		}
179 	}
180 
181 	wal->wa_count++;
182 	wa_ = &wal->list[wal->count++];
183 	*wa_ = *wa;
184 
185 	while (wa_-- > wal->list) {
186 		GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) ==
187 			   i915_mmio_reg_offset(wa_[1].reg));
188 		if (i915_mmio_reg_offset(wa_[1].reg) >
189 		    i915_mmio_reg_offset(wa_[0].reg))
190 			break;
191 
192 		swap(wa_[1], wa_[0]);
193 	}
194 }
195 
196 static void wa_add(struct i915_wa_list *wal, i915_reg_t reg,
197 		   u32 clear, u32 set, u32 read_mask, bool masked_reg)
198 {
199 	struct i915_wa wa = {
200 		.reg  = reg,
201 		.clr  = clear,
202 		.set  = set,
203 		.read = read_mask,
204 		.masked_reg = masked_reg,
205 	};
206 
207 	_wa_add(wal, &wa);
208 }
209 
210 static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg,
211 		       u32 clear, u32 set, u32 read_mask, bool masked_reg)
212 {
213 	struct i915_wa wa = {
214 		.mcr_reg = reg,
215 		.clr  = clear,
216 		.set  = set,
217 		.read = read_mask,
218 		.masked_reg = masked_reg,
219 		.is_mcr = 1,
220 	};
221 
222 	_wa_add(wal, &wa);
223 }
224 
225 static void
226 wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set)
227 {
228 	wa_add(wal, reg, clear, set, clear, false);
229 }
230 
231 static void
232 wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set)
233 {
234 	wa_mcr_add(wal, reg, clear, set, clear, false);
235 }
236 
237 static void
238 wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
239 {
240 	wa_write_clr_set(wal, reg, ~0, set);
241 }
242 
243 static void
244 wa_mcr_write(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
245 {
246 	wa_mcr_write_clr_set(wal, reg, ~0, set);
247 }
248 
249 static void
250 wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
251 {
252 	wa_write_clr_set(wal, reg, set, set);
253 }
254 
255 static void
256 wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
257 {
258 	wa_mcr_write_clr_set(wal, reg, set, set);
259 }
260 
261 static void
262 wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr)
263 {
264 	wa_write_clr_set(wal, reg, clr, 0);
265 }
266 
267 static void
268 wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr)
269 {
270 	wa_mcr_write_clr_set(wal, reg, clr, 0);
271 }
272 
273 /*
274  * WA operations on "masked register". A masked register has the upper 16 bits
275  * documented as "masked" in b-spec. Its purpose is to allow writing to just a
276  * portion of the register without a rmw: you simply write in the upper 16 bits
277  * the mask of bits you are going to modify.
278  *
279  * The wa_masked_* family of functions already does the necessary operations to
280  * calculate the mask based on the parameters passed, so user only has to
281  * provide the lower 16 bits of that register.
282  */
283 
284 static void
285 wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
286 {
287 	wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
288 }
289 
290 static void
291 wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
292 {
293 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
294 }
295 
296 static void
297 wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
298 {
299 	wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
300 }
301 
302 static void
303 wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
304 {
305 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
306 }
307 
308 static void
309 wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg,
310 		    u32 mask, u32 val)
311 {
312 	wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
313 }
314 
315 static void
316 wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg,
317 			u32 mask, u32 val)
318 {
319 	wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
320 }
321 
322 static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine,
323 				      struct i915_wa_list *wal)
324 {
325 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
326 }
327 
328 static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine,
329 				      struct i915_wa_list *wal)
330 {
331 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
332 }
333 
334 static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine,
335 				      struct i915_wa_list *wal)
336 {
337 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
338 
339 	/* WaDisableAsyncFlipPerfMode:bdw,chv */
340 	wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE);
341 
342 	/* WaDisablePartialInstShootdown:bdw,chv */
343 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
344 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
345 
346 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
347 	 * workaround for a possible hang in the unlikely event a TLB
348 	 * invalidation occurs during a PSD flush.
349 	 */
350 	/* WaForceEnableNonCoherent:bdw,chv */
351 	/* WaHdcDisableFetchWhenMasked:bdw,chv */
352 	wa_masked_en(wal, HDC_CHICKEN0,
353 		     HDC_DONOT_FETCH_MEM_WHEN_MASKED |
354 		     HDC_FORCE_NON_COHERENT);
355 
356 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
357 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
358 	 *  polygons in the same 8x4 pixel/sample area to be processed without
359 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
360 	 *  buffer."
361 	 *
362 	 * This optimization is off by default for BDW and CHV; turn it on.
363 	 */
364 	wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
365 
366 	/* Wa4x4STCOptimizationDisable:bdw,chv */
367 	wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
368 
369 	/*
370 	 * BSpec recommends 8x4 when MSAA is used,
371 	 * however in practice 16x4 seems fastest.
372 	 *
373 	 * Note that PS/WM thread counts depend on the WIZ hashing
374 	 * disable bit, which we don't touch here, but it's good
375 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
376 	 */
377 	wa_masked_field_set(wal, GEN7_GT_MODE,
378 			    GEN6_WIZ_HASHING_MASK,
379 			    GEN6_WIZ_HASHING_16x4);
380 }
381 
382 static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine,
383 				     struct i915_wa_list *wal)
384 {
385 	struct drm_i915_private *i915 = engine->i915;
386 
387 	gen8_ctx_workarounds_init(engine, wal);
388 
389 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
390 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
391 
392 	/* WaDisableDopClockGating:bdw
393 	 *
394 	 * Also see the related UCGTCL1 write in bdw_init_clock_gating()
395 	 * to disable EUTC clock gating.
396 	 */
397 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
398 			 DOP_CLOCK_GATING_DISABLE);
399 
400 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
401 			 GEN8_SAMPLER_POWER_BYPASS_DIS);
402 
403 	wa_masked_en(wal, HDC_CHICKEN0,
404 		     /* WaForceContextSaveRestoreNonCoherent:bdw */
405 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
406 		     /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
407 		     (IS_BDW_GT3(i915) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
408 }
409 
410 static void chv_ctx_workarounds_init(struct intel_engine_cs *engine,
411 				     struct i915_wa_list *wal)
412 {
413 	gen8_ctx_workarounds_init(engine, wal);
414 
415 	/* WaDisableThreadStallDopClockGating:chv */
416 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
417 
418 	/* Improve HiZ throughput on CHV. */
419 	wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
420 }
421 
422 static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine,
423 				      struct i915_wa_list *wal)
424 {
425 	struct drm_i915_private *i915 = engine->i915;
426 
427 	if (HAS_LLC(i915)) {
428 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
429 		 *
430 		 * Must match Display Engine. See
431 		 * WaCompressedResourceDisplayNewHashMode.
432 		 */
433 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
434 			     GEN9_PBE_COMPRESSED_HASH_SELECTION);
435 		wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
436 				 GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR);
437 	}
438 
439 	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */
440 	/* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */
441 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
442 			 FLOW_CONTROL_ENABLE |
443 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
444 
445 	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */
446 	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */
447 	wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
448 			 GEN9_ENABLE_YV12_BUGFIX |
449 			 GEN9_ENABLE_GPGPU_PREEMPTION);
450 
451 	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */
452 	/* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */
453 	wa_masked_en(wal, CACHE_MODE_1,
454 		     GEN8_4x4_STC_OPTIMIZATION_DISABLE |
455 		     GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
456 
457 	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */
458 	wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5,
459 			  GEN9_CCS_TLB_PREFETCH_ENABLE);
460 
461 	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */
462 	wa_masked_en(wal, HDC_CHICKEN0,
463 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
464 		     HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
465 
466 	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
467 	 * both tied to WaForceContextSaveRestoreNonCoherent
468 	 * in some hsds for skl. We keep the tie for all gen9. The
469 	 * documentation is a bit hazy and so we want to get common behaviour,
470 	 * even though there is no clear evidence we would need both on kbl/bxt.
471 	 * This area has been source of system hangs so we play it safe
472 	 * and mimic the skl regardless of what bspec says.
473 	 *
474 	 * Use Force Non-Coherent whenever executing a 3D context. This
475 	 * is a workaround for a possible hang in the unlikely event
476 	 * a TLB invalidation occurs during a PSD flush.
477 	 */
478 
479 	/* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */
480 	wa_masked_en(wal, HDC_CHICKEN0,
481 		     HDC_FORCE_NON_COHERENT);
482 
483 	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */
484 	if (IS_SKYLAKE(i915) ||
485 	    IS_KABYLAKE(i915) ||
486 	    IS_COFFEELAKE(i915) ||
487 	    IS_COMETLAKE(i915))
488 		wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
489 				 GEN8_SAMPLER_POWER_BYPASS_DIS);
490 
491 	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */
492 	wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
493 
494 	/*
495 	 * Supporting preemption with fine-granularity requires changes in the
496 	 * batch buffer programming. Since we can't break old userspace, we
497 	 * need to set our default preemption level to safe value. Userspace is
498 	 * still able to use more fine-grained preemption levels, since in
499 	 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the
500 	 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are
501 	 * not real HW workarounds, but merely a way to start using preemption
502 	 * while maintaining old contract with userspace.
503 	 */
504 
505 	/* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */
506 	wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);
507 
508 	/* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */
509 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
510 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
511 			    GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);
512 
513 	/* WaClearHIZ_WM_CHICKEN3:bxt,glk */
514 	if (IS_GEN9_LP(i915))
515 		wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ);
516 }
517 
518 static void skl_tune_iz_hashing(struct intel_engine_cs *engine,
519 				struct i915_wa_list *wal)
520 {
521 	struct intel_gt *gt = engine->gt;
522 	u8 vals[3] = { 0, 0, 0 };
523 	unsigned int i;
524 
525 	for (i = 0; i < 3; i++) {
526 		u8 ss;
527 
528 		/*
529 		 * Only consider slices where one, and only one, subslice has 7
530 		 * EUs
531 		 */
532 		if (!is_power_of_2(gt->info.sseu.subslice_7eu[i]))
533 			continue;
534 
535 		/*
536 		 * subslice_7eu[i] != 0 (because of the check above) and
537 		 * ss_max == 4 (maximum number of subslices possible per slice)
538 		 *
539 		 * ->    0 <= ss <= 3;
540 		 */
541 		ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1;
542 		vals[i] = 3 - ss;
543 	}
544 
545 	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
546 		return;
547 
548 	/* Tune IZ hashing. See intel_device_info_runtime_init() */
549 	wa_masked_field_set(wal, GEN7_GT_MODE,
550 			    GEN9_IZ_HASHING_MASK(2) |
551 			    GEN9_IZ_HASHING_MASK(1) |
552 			    GEN9_IZ_HASHING_MASK(0),
553 			    GEN9_IZ_HASHING(2, vals[2]) |
554 			    GEN9_IZ_HASHING(1, vals[1]) |
555 			    GEN9_IZ_HASHING(0, vals[0]));
556 }
557 
558 static void skl_ctx_workarounds_init(struct intel_engine_cs *engine,
559 				     struct i915_wa_list *wal)
560 {
561 	gen9_ctx_workarounds_init(engine, wal);
562 	skl_tune_iz_hashing(engine, wal);
563 }
564 
565 static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine,
566 				     struct i915_wa_list *wal)
567 {
568 	gen9_ctx_workarounds_init(engine, wal);
569 
570 	/* WaDisableThreadStallDopClockGating:bxt */
571 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
572 			 STALL_DOP_GATING_DISABLE);
573 
574 	/* WaToEnableHwFixForPushConstHWBug:bxt */
575 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
576 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
577 }
578 
579 static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine,
580 				     struct i915_wa_list *wal)
581 {
582 	struct drm_i915_private *i915 = engine->i915;
583 
584 	gen9_ctx_workarounds_init(engine, wal);
585 
586 	/* WaToEnableHwFixForPushConstHWBug:kbl */
587 	if (IS_KBL_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER))
588 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
589 			     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
590 
591 	/* WaDisableSbeCacheDispatchPortSharing:kbl */
592 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
593 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
594 }
595 
596 static void glk_ctx_workarounds_init(struct intel_engine_cs *engine,
597 				     struct i915_wa_list *wal)
598 {
599 	gen9_ctx_workarounds_init(engine, wal);
600 
601 	/* WaToEnableHwFixForPushConstHWBug:glk */
602 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
603 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
604 }
605 
606 static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine,
607 				     struct i915_wa_list *wal)
608 {
609 	gen9_ctx_workarounds_init(engine, wal);
610 
611 	/* WaToEnableHwFixForPushConstHWBug:cfl */
612 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
613 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
614 
615 	/* WaDisableSbeCacheDispatchPortSharing:cfl */
616 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
617 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
618 }
619 
620 static void icl_ctx_workarounds_init(struct intel_engine_cs *engine,
621 				     struct i915_wa_list *wal)
622 {
623 	/* Wa_1406697149 (WaDisableBankHangMode:icl) */
624 	wa_write(wal,
625 		 GEN8_L3CNTLREG,
626 		 intel_uncore_read(engine->uncore, GEN8_L3CNTLREG) |
627 		 GEN8_ERRDETBCTRL);
628 
629 	/* WaForceEnableNonCoherent:icl
630 	 * This is not the same workaround as in early Gen9 platforms, where
631 	 * lacking this could cause system hangs, but coherency performance
632 	 * overhead is high and only a few compute workloads really need it
633 	 * (the register is whitelisted in hardware now, so UMDs can opt in
634 	 * for coherency if they have a good reason).
635 	 */
636 	wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT);
637 
638 	/* WaEnableFloatBlendOptimization:icl */
639 	wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
640 		   _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE),
641 		   0 /* write-only, so skip validation */,
642 		   true);
643 
644 	/* WaDisableGPGPUMidThreadPreemption:icl */
645 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
646 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
647 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
648 
649 	/* allow headerless messages for preemptible GPGPU context */
650 	wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
651 			 GEN11_SAMPLER_ENABLE_HEADLESS_MSG);
652 
653 	/* Wa_1604278689:icl,ehl */
654 	wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID);
655 	wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER,
656 			 0, /* write-only register; skip validation */
657 			 0xFFFFFFFF);
658 
659 	/* Wa_1406306137:icl,ehl */
660 	wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU);
661 }
662 
663 /*
664  * These settings aren't actually workarounds, but general tuning settings that
665  * need to be programmed on dg2 platform.
666  */
667 static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine,
668 				   struct i915_wa_list *wal)
669 {
670 	wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP);
671 	wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK,
672 			     REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f));
673 	wa_mcr_add(wal,
674 		   XEHP_FF_MODE2,
675 		   FF_MODE2_TDS_TIMER_MASK,
676 		   FF_MODE2_TDS_TIMER_128,
677 		   0, false);
678 }
679 
680 /*
681  * These settings aren't actually workarounds, but general tuning settings that
682  * need to be programmed on several platforms.
683  */
684 static void gen12_ctx_gt_tuning_init(struct intel_engine_cs *engine,
685 				     struct i915_wa_list *wal)
686 {
687 	/*
688 	 * Although some platforms refer to it as Wa_1604555607, we need to
689 	 * program it even on those that don't explicitly list that
690 	 * workaround.
691 	 *
692 	 * Note that the programming of this register is further modified
693 	 * according to the FF_MODE2 guidance given by Wa_1608008084:gen12.
694 	 * Wa_1608008084 tells us the FF_MODE2 register will return the wrong
695 	 * value when read. The default value for this register is zero for all
696 	 * fields and there are no bit masks. So instead of doing a RMW we
697 	 * should just write TDS timer value. For the same reason read
698 	 * verification is ignored.
699 	 */
700 	wa_add(wal,
701 	       GEN12_FF_MODE2,
702 	       FF_MODE2_TDS_TIMER_MASK,
703 	       FF_MODE2_TDS_TIMER_128,
704 	       0, false);
705 }
706 
707 static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine,
708 				       struct i915_wa_list *wal)
709 {
710 	struct drm_i915_private *i915 = engine->i915;
711 
712 	gen12_ctx_gt_tuning_init(engine, wal);
713 
714 	/*
715 	 * Wa_1409142259:tgl,dg1,adl-p
716 	 * Wa_1409347922:tgl,dg1,adl-p
717 	 * Wa_1409252684:tgl,dg1,adl-p
718 	 * Wa_1409217633:tgl,dg1,adl-p
719 	 * Wa_1409207793:tgl,dg1,adl-p
720 	 * Wa_1409178076:tgl,dg1,adl-p
721 	 * Wa_1408979724:tgl,dg1,adl-p
722 	 * Wa_14010443199:tgl,rkl,dg1,adl-p
723 	 * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p
724 	 * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p
725 	 */
726 	wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3,
727 		     GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
728 
729 	/* WaDisableGPGPUMidThreadPreemption:gen12 */
730 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
731 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
732 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
733 
734 	/*
735 	 * Wa_16011163337
736 	 *
737 	 * Like in gen12_ctx_gt_tuning_init(), read verification is ignored due
738 	 * to Wa_1608008084.
739 	 */
740 	wa_add(wal,
741 	       GEN12_FF_MODE2,
742 	       FF_MODE2_GS_TIMER_MASK,
743 	       FF_MODE2_GS_TIMER_224,
744 	       0, false);
745 
746 	if (!IS_DG1(i915)) {
747 		/* Wa_1806527549 */
748 		wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE);
749 
750 		/* Wa_1606376872 */
751 		wa_masked_en(wal, COMMON_SLICE_CHICKEN4, DISABLE_TDC_LOAD_BALANCING_CALC);
752 	}
753 }
754 
755 static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine,
756 				     struct i915_wa_list *wal)
757 {
758 	gen12_ctx_workarounds_init(engine, wal);
759 
760 	/* Wa_1409044764 */
761 	wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3,
762 		      DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN);
763 
764 	/* Wa_22010493298 */
765 	wa_masked_en(wal, HIZ_CHICKEN,
766 		     DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE);
767 }
768 
769 static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine,
770 				     struct i915_wa_list *wal)
771 {
772 	dg2_ctx_gt_tuning_init(engine, wal);
773 
774 	/* Wa_16011186671:dg2_g11 */
775 	if (IS_DG2_GRAPHICS_STEP(engine->i915, G11, STEP_A0, STEP_B0)) {
776 		wa_mcr_masked_dis(wal, VFLSKPD, DIS_MULT_MISS_RD_SQUASH);
777 		wa_mcr_masked_en(wal, VFLSKPD, DIS_OVER_FETCH_CACHE);
778 	}
779 
780 	if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0)) {
781 		/* Wa_14010469329:dg2_g10 */
782 		wa_mcr_masked_en(wal, XEHP_COMMON_SLICE_CHICKEN3,
783 				 XEHP_DUAL_SIMD8_SEQ_MERGE_DISABLE);
784 
785 		/*
786 		 * Wa_22010465075:dg2_g10
787 		 * Wa_22010613112:dg2_g10
788 		 * Wa_14010698770:dg2_g10
789 		 */
790 		wa_mcr_masked_en(wal, XEHP_COMMON_SLICE_CHICKEN3,
791 				 GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
792 	}
793 
794 	/* Wa_16013271637:dg2 */
795 	wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
796 			 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
797 
798 	/* Wa_14014947963:dg2 */
799 	if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_B0, STEP_FOREVER) ||
800 	    IS_DG2_G11(engine->i915) || IS_DG2_G12(engine->i915))
801 		wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000);
802 
803 	/* Wa_18018764978:dg2 */
804 	if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_C0, STEP_FOREVER) ||
805 	    IS_DG2_G11(engine->i915) || IS_DG2_G12(engine->i915))
806 		wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
807 
808 	/* Wa_15010599737:dg2 */
809 	wa_mcr_masked_en(wal, CHICKEN_RASTER_1, DIS_SF_ROUND_NEAREST_EVEN);
810 
811 	/* Wa_18019271663:dg2 */
812 	wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
813 }
814 
815 static void mtl_ctx_workarounds_init(struct intel_engine_cs *engine,
816 				     struct i915_wa_list *wal)
817 {
818 	struct drm_i915_private *i915 = engine->i915;
819 
820 	if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
821 	    IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0)) {
822 		/* Wa_14014947963 */
823 		wa_masked_field_set(wal, VF_PREEMPTION,
824 				    PREEMPTION_VERTEX_COUNT, 0x4000);
825 
826 		/* Wa_16013271637 */
827 		wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
828 				 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
829 
830 		/* Wa_18019627453 */
831 		wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS);
832 
833 		/* Wa_18018764978 */
834 		wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
835 	}
836 
837 	/* Wa_18019271663 */
838 	wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
839 }
840 
841 static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine,
842 					 struct i915_wa_list *wal)
843 {
844 	/*
845 	 * This is a "fake" workaround defined by software to ensure we
846 	 * maintain reliable, backward-compatible behavior for userspace with
847 	 * regards to how nested MI_BATCH_BUFFER_START commands are handled.
848 	 *
849 	 * The per-context setting of MI_MODE[12] determines whether the bits
850 	 * of a nested MI_BATCH_BUFFER_START instruction should be interpreted
851 	 * in the traditional manner or whether they should instead use a new
852 	 * tgl+ meaning that breaks backward compatibility, but allows nesting
853 	 * into 3rd-level batchbuffers.  When this new capability was first
854 	 * added in TGL, it remained off by default unless a context
855 	 * intentionally opted in to the new behavior.  However Xe_HPG now
856 	 * flips this on by default and requires that we explicitly opt out if
857 	 * we don't want the new behavior.
858 	 *
859 	 * From a SW perspective, we want to maintain the backward-compatible
860 	 * behavior for userspace, so we'll apply a fake workaround to set it
861 	 * back to the legacy behavior on platforms where the hardware default
862 	 * is to break compatibility.  At the moment there is no Linux
863 	 * userspace that utilizes third-level batchbuffers, so this will avoid
864 	 * userspace from needing to make any changes.  using the legacy
865 	 * meaning is the correct thing to do.  If/when we have userspace
866 	 * consumers that want to utilize third-level batch nesting, we can
867 	 * provide a context parameter to allow them to opt-in.
868 	 */
869 	wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN);
870 }
871 
872 static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine,
873 				   struct i915_wa_list *wal)
874 {
875 	u8 mocs;
876 
877 	/*
878 	 * Some blitter commands do not have a field for MOCS, those
879 	 * commands will use MOCS index pointed by BLIT_CCTL.
880 	 * BLIT_CCTL registers are needed to be programmed to un-cached.
881 	 */
882 	if (engine->class == COPY_ENGINE_CLASS) {
883 		mocs = engine->gt->mocs.uc_index;
884 		wa_write_clr_set(wal,
885 				 BLIT_CCTL(engine->mmio_base),
886 				 BLIT_CCTL_MASK,
887 				 BLIT_CCTL_MOCS(mocs, mocs));
888 	}
889 }
890 
891 /*
892  * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround
893  * defined by the hardware team, but it programming general context registers.
894  * Adding those context register programming in context workaround
895  * allow us to use the wa framework for proper application and validation.
896  */
897 static void
898 gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine,
899 			  struct i915_wa_list *wal)
900 {
901 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
902 		fakewa_disable_nestedbb_mode(engine, wal);
903 
904 	gen12_ctx_gt_mocs_init(engine, wal);
905 }
906 
907 static void
908 __intel_engine_init_ctx_wa(struct intel_engine_cs *engine,
909 			   struct i915_wa_list *wal,
910 			   const char *name)
911 {
912 	struct drm_i915_private *i915 = engine->i915;
913 
914 	wa_init_start(wal, engine->gt, name, engine->name);
915 
916 	/* Applies to all engines */
917 	/*
918 	 * Fake workarounds are not the actual workaround but
919 	 * programming of context registers using workaround framework.
920 	 */
921 	if (GRAPHICS_VER(i915) >= 12)
922 		gen12_ctx_gt_fake_wa_init(engine, wal);
923 
924 	if (engine->class != RENDER_CLASS)
925 		goto done;
926 
927 	if (IS_METEORLAKE(i915))
928 		mtl_ctx_workarounds_init(engine, wal);
929 	else if (IS_PONTEVECCHIO(i915))
930 		; /* noop; none at this time */
931 	else if (IS_DG2(i915))
932 		dg2_ctx_workarounds_init(engine, wal);
933 	else if (IS_XEHPSDV(i915))
934 		; /* noop; none at this time */
935 	else if (IS_DG1(i915))
936 		dg1_ctx_workarounds_init(engine, wal);
937 	else if (GRAPHICS_VER(i915) == 12)
938 		gen12_ctx_workarounds_init(engine, wal);
939 	else if (GRAPHICS_VER(i915) == 11)
940 		icl_ctx_workarounds_init(engine, wal);
941 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
942 		cfl_ctx_workarounds_init(engine, wal);
943 	else if (IS_GEMINILAKE(i915))
944 		glk_ctx_workarounds_init(engine, wal);
945 	else if (IS_KABYLAKE(i915))
946 		kbl_ctx_workarounds_init(engine, wal);
947 	else if (IS_BROXTON(i915))
948 		bxt_ctx_workarounds_init(engine, wal);
949 	else if (IS_SKYLAKE(i915))
950 		skl_ctx_workarounds_init(engine, wal);
951 	else if (IS_CHERRYVIEW(i915))
952 		chv_ctx_workarounds_init(engine, wal);
953 	else if (IS_BROADWELL(i915))
954 		bdw_ctx_workarounds_init(engine, wal);
955 	else if (GRAPHICS_VER(i915) == 7)
956 		gen7_ctx_workarounds_init(engine, wal);
957 	else if (GRAPHICS_VER(i915) == 6)
958 		gen6_ctx_workarounds_init(engine, wal);
959 	else if (GRAPHICS_VER(i915) < 8)
960 		;
961 	else
962 		MISSING_CASE(GRAPHICS_VER(i915));
963 
964 done:
965 	wa_init_finish(wal);
966 }
967 
968 void intel_engine_init_ctx_wa(struct intel_engine_cs *engine)
969 {
970 	__intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context");
971 }
972 
973 int intel_engine_emit_ctx_wa(struct i915_request *rq)
974 {
975 	struct i915_wa_list *wal = &rq->engine->ctx_wa_list;
976 	struct i915_wa *wa;
977 	unsigned int i;
978 	u32 *cs;
979 	int ret;
980 
981 	if (wal->count == 0)
982 		return 0;
983 
984 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
985 	if (ret)
986 		return ret;
987 
988 	cs = intel_ring_begin(rq, (wal->count * 2 + 2));
989 	if (IS_ERR(cs))
990 		return PTR_ERR(cs);
991 
992 	*cs++ = MI_LOAD_REGISTER_IMM(wal->count);
993 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
994 		*cs++ = i915_mmio_reg_offset(wa->reg);
995 		*cs++ = wa->set;
996 	}
997 	*cs++ = MI_NOOP;
998 
999 	intel_ring_advance(rq, cs);
1000 
1001 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
1002 	if (ret)
1003 		return ret;
1004 
1005 	return 0;
1006 }
1007 
1008 static void
1009 gen4_gt_workarounds_init(struct intel_gt *gt,
1010 			 struct i915_wa_list *wal)
1011 {
1012 	/* WaDisable_RenderCache_OperationalFlush:gen4,ilk */
1013 	wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
1014 }
1015 
1016 static void
1017 g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1018 {
1019 	gen4_gt_workarounds_init(gt, wal);
1020 
1021 	/* WaDisableRenderCachePipelinedFlush:g4x,ilk */
1022 	wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE);
1023 }
1024 
1025 static void
1026 ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1027 {
1028 	g4x_gt_workarounds_init(gt, wal);
1029 
1030 	wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED);
1031 }
1032 
1033 static void
1034 snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1035 {
1036 }
1037 
1038 static void
1039 ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1040 {
1041 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
1042 	wa_masked_dis(wal,
1043 		      GEN7_COMMON_SLICE_CHICKEN1,
1044 		      GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
1045 
1046 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
1047 	wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
1048 	wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
1049 
1050 	/* WaForceL3Serialization:ivb */
1051 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1052 }
1053 
1054 static void
1055 vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1056 {
1057 	/* WaForceL3Serialization:vlv */
1058 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1059 
1060 	/*
1061 	 * WaIncreaseL3CreditsForVLVB0:vlv
1062 	 * This is the hardware default actually.
1063 	 */
1064 	wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
1065 }
1066 
1067 static void
1068 hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1069 {
1070 	/* L3 caching of data atomics doesn't work -- disable it. */
1071 	wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
1072 
1073 	wa_add(wal,
1074 	       HSW_ROW_CHICKEN3, 0,
1075 	       _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
1076 	       0 /* XXX does this reg exist? */, true);
1077 
1078 	/* WaVSRefCountFullforceMissDisable:hsw */
1079 	wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME);
1080 }
1081 
1082 static void
1083 gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal)
1084 {
1085 	const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu;
1086 	unsigned int slice, subslice;
1087 	u32 mcr, mcr_mask;
1088 
1089 	GEM_BUG_ON(GRAPHICS_VER(i915) != 9);
1090 
1091 	/*
1092 	 * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml
1093 	 * Before any MMIO read into slice/subslice specific registers, MCR
1094 	 * packet control register needs to be programmed to point to any
1095 	 * enabled s/ss pair. Otherwise, incorrect values will be returned.
1096 	 * This means each subsequent MMIO read will be forwarded to an
1097 	 * specific s/ss combination, but this is OK since these registers
1098 	 * are consistent across s/ss in almost all cases. In the rare
1099 	 * occasions, such as INSTDONE, where this value is dependent
1100 	 * on s/ss combo, the read should be done with read_subslice_reg.
1101 	 */
1102 	slice = ffs(sseu->slice_mask) - 1;
1103 	GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw));
1104 	subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice));
1105 	GEM_BUG_ON(!subslice);
1106 	subslice--;
1107 
1108 	/*
1109 	 * We use GEN8_MCR..() macros to calculate the |mcr| value for
1110 	 * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads
1111 	 */
1112 	mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1113 	mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1114 
1115 	drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr);
1116 
1117 	wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr);
1118 }
1119 
1120 static void
1121 gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1122 {
1123 	struct drm_i915_private *i915 = gt->i915;
1124 
1125 	/* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */
1126 	gen9_wa_init_mcr(i915, wal);
1127 
1128 	/* WaDisableKillLogic:bxt,skl,kbl */
1129 	if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915))
1130 		wa_write_or(wal,
1131 			    GAM_ECOCHK,
1132 			    ECOCHK_DIS_TLB);
1133 
1134 	if (HAS_LLC(i915)) {
1135 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
1136 		 *
1137 		 * Must match Display Engine. See
1138 		 * WaCompressedResourceDisplayNewHashMode.
1139 		 */
1140 		wa_write_or(wal,
1141 			    MMCD_MISC_CTRL,
1142 			    MMCD_PCLA | MMCD_HOTSPOT_EN);
1143 	}
1144 
1145 	/* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */
1146 	wa_write_or(wal,
1147 		    GAM_ECOCHK,
1148 		    BDW_DISABLE_HDC_INVALIDATION);
1149 }
1150 
1151 static void
1152 skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1153 {
1154 	gen9_gt_workarounds_init(gt, wal);
1155 
1156 	/* WaDisableGafsUnitClkGating:skl */
1157 	wa_write_or(wal,
1158 		    GEN7_UCGCTL4,
1159 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1160 
1161 	/* WaInPlaceDecompressionHang:skl */
1162 	if (IS_SKL_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0))
1163 		wa_write_or(wal,
1164 			    GEN9_GAMT_ECO_REG_RW_IA,
1165 			    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1166 }
1167 
1168 static void
1169 kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1170 {
1171 	gen9_gt_workarounds_init(gt, wal);
1172 
1173 	/* WaDisableDynamicCreditSharing:kbl */
1174 	if (IS_KBL_GRAPHICS_STEP(gt->i915, 0, STEP_C0))
1175 		wa_write_or(wal,
1176 			    GAMT_CHKN_BIT_REG,
1177 			    GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1178 
1179 	/* WaDisableGafsUnitClkGating:kbl */
1180 	wa_write_or(wal,
1181 		    GEN7_UCGCTL4,
1182 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1183 
1184 	/* WaInPlaceDecompressionHang:kbl */
1185 	wa_write_or(wal,
1186 		    GEN9_GAMT_ECO_REG_RW_IA,
1187 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1188 }
1189 
1190 static void
1191 glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1192 {
1193 	gen9_gt_workarounds_init(gt, wal);
1194 }
1195 
1196 static void
1197 cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1198 {
1199 	gen9_gt_workarounds_init(gt, wal);
1200 
1201 	/* WaDisableGafsUnitClkGating:cfl */
1202 	wa_write_or(wal,
1203 		    GEN7_UCGCTL4,
1204 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1205 
1206 	/* WaInPlaceDecompressionHang:cfl */
1207 	wa_write_or(wal,
1208 		    GEN9_GAMT_ECO_REG_RW_IA,
1209 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1210 }
1211 
1212 static void __set_mcr_steering(struct i915_wa_list *wal,
1213 			       i915_reg_t steering_reg,
1214 			       unsigned int slice, unsigned int subslice)
1215 {
1216 	u32 mcr, mcr_mask;
1217 
1218 	mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1219 	mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1220 
1221 	wa_write_clr_set(wal, steering_reg, mcr_mask, mcr);
1222 }
1223 
1224 static void debug_dump_steering(struct intel_gt *gt)
1225 {
1226 	struct drm_printer p = drm_debug_printer("MCR Steering:");
1227 
1228 	if (drm_debug_enabled(DRM_UT_DRIVER))
1229 		intel_gt_mcr_report_steering(&p, gt, false);
1230 }
1231 
1232 static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal,
1233 			 unsigned int slice, unsigned int subslice)
1234 {
1235 	__set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice);
1236 
1237 	gt->default_steering.groupid = slice;
1238 	gt->default_steering.instanceid = subslice;
1239 
1240 	debug_dump_steering(gt);
1241 }
1242 
1243 static void
1244 icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1245 {
1246 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1247 	unsigned int subslice;
1248 
1249 	GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11);
1250 	GEM_BUG_ON(hweight8(sseu->slice_mask) > 1);
1251 
1252 	/*
1253 	 * Although a platform may have subslices, we need to always steer
1254 	 * reads to the lowest instance that isn't fused off.  When Render
1255 	 * Power Gating is enabled, grabbing forcewake will only power up a
1256 	 * single subslice (the "minconfig") if there isn't a real workload
1257 	 * that needs to be run; this means that if we steer register reads to
1258 	 * one of the higher subslices, we run the risk of reading back 0's or
1259 	 * random garbage.
1260 	 */
1261 	subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0));
1262 
1263 	/*
1264 	 * If the subslice we picked above also steers us to a valid L3 bank,
1265 	 * then we can just rely on the default steering and won't need to
1266 	 * worry about explicitly re-steering L3BANK reads later.
1267 	 */
1268 	if (gt->info.l3bank_mask & BIT(subslice))
1269 		gt->steering_table[L3BANK] = NULL;
1270 
1271 	__add_mcr_wa(gt, wal, 0, subslice);
1272 }
1273 
1274 static void
1275 xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1276 {
1277 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1278 	unsigned long slice, subslice = 0, slice_mask = 0;
1279 	u32 lncf_mask = 0;
1280 	int i;
1281 
1282 	/*
1283 	 * On Xe_HP the steering increases in complexity. There are now several
1284 	 * more units that require steering and we're not guaranteed to be able
1285 	 * to find a common setting for all of them. These are:
1286 	 * - GSLICE (fusable)
1287 	 * - DSS (sub-unit within gslice; fusable)
1288 	 * - L3 Bank (fusable)
1289 	 * - MSLICE (fusable)
1290 	 * - LNCF (sub-unit within mslice; always present if mslice is present)
1291 	 *
1292 	 * We'll do our default/implicit steering based on GSLICE (in the
1293 	 * sliceid field) and DSS (in the subsliceid field).  If we can
1294 	 * find overlap between the valid MSLICE and/or LNCF values with
1295 	 * a suitable GSLICE, then we can just re-use the default value and
1296 	 * skip and explicit steering at runtime.
1297 	 *
1298 	 * We only need to look for overlap between GSLICE/MSLICE/LNCF to find
1299 	 * a valid sliceid value.  DSS steering is the only type of steering
1300 	 * that utilizes the 'subsliceid' bits.
1301 	 *
1302 	 * Also note that, even though the steering domain is called "GSlice"
1303 	 * and it is encoded in the register using the gslice format, the spec
1304 	 * says that the combined (geometry | compute) fuse should be used to
1305 	 * select the steering.
1306 	 */
1307 
1308 	/* Find the potential gslice candidates */
1309 	slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask,
1310 						       GEN_DSS_PER_GSLICE);
1311 
1312 	/*
1313 	 * Find the potential LNCF candidates.  Either LNCF within a valid
1314 	 * mslice is fine.
1315 	 */
1316 	for_each_set_bit(i, &gt->info.mslice_mask, GEN12_MAX_MSLICES)
1317 		lncf_mask |= (0x3 << (i * 2));
1318 
1319 	/*
1320 	 * Are there any sliceid values that work for both GSLICE and LNCF
1321 	 * steering?
1322 	 */
1323 	if (slice_mask & lncf_mask) {
1324 		slice_mask &= lncf_mask;
1325 		gt->steering_table[LNCF] = NULL;
1326 	}
1327 
1328 	/* How about sliceid values that also work for MSLICE steering? */
1329 	if (slice_mask & gt->info.mslice_mask) {
1330 		slice_mask &= gt->info.mslice_mask;
1331 		gt->steering_table[MSLICE] = NULL;
1332 	}
1333 
1334 	if (IS_XEHPSDV(gt->i915) && slice_mask & BIT(0))
1335 		gt->steering_table[GAM] = NULL;
1336 
1337 	slice = __ffs(slice_mask);
1338 	subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) %
1339 		GEN_DSS_PER_GSLICE;
1340 
1341 	__add_mcr_wa(gt, wal, slice, subslice);
1342 
1343 	/*
1344 	 * SQIDI ranges are special because they use different steering
1345 	 * registers than everything else we work with.  On XeHP SDV and
1346 	 * DG2-G10, any value in the steering registers will work fine since
1347 	 * all instances are present, but DG2-G11 only has SQIDI instances at
1348 	 * ID's 2 and 3, so we need to steer to one of those.  For simplicity
1349 	 * we'll just steer to a hardcoded "2" since that value will work
1350 	 * everywhere.
1351 	 */
1352 	__set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2);
1353 	__set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2);
1354 
1355 	/*
1356 	 * On DG2, GAM registers have a dedicated steering control register
1357 	 * and must always be programmed to a hardcoded groupid of "1."
1358 	 */
1359 	if (IS_DG2(gt->i915))
1360 		__set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0);
1361 }
1362 
1363 static void
1364 pvc_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1365 {
1366 	unsigned int dss;
1367 
1368 	/*
1369 	 * Setup implicit steering for COMPUTE and DSS ranges to the first
1370 	 * non-fused-off DSS.  All other types of MCR registers will be
1371 	 * explicitly steered.
1372 	 */
1373 	dss = intel_sseu_find_first_xehp_dss(&gt->info.sseu, 0, 0);
1374 	__add_mcr_wa(gt, wal, dss / GEN_DSS_PER_CSLICE, dss % GEN_DSS_PER_CSLICE);
1375 }
1376 
1377 static void
1378 icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1379 {
1380 	struct drm_i915_private *i915 = gt->i915;
1381 
1382 	icl_wa_init_mcr(gt, wal);
1383 
1384 	/* WaModifyGamTlbPartitioning:icl */
1385 	wa_write_clr_set(wal,
1386 			 GEN11_GACB_PERF_CTRL,
1387 			 GEN11_HASH_CTRL_MASK,
1388 			 GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4);
1389 
1390 	/* Wa_1405766107:icl
1391 	 * Formerly known as WaCL2SFHalfMaxAlloc
1392 	 */
1393 	wa_write_or(wal,
1394 		    GEN11_LSN_UNSLCVC,
1395 		    GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC |
1396 		    GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC);
1397 
1398 	/* Wa_220166154:icl
1399 	 * Formerly known as WaDisCtxReload
1400 	 */
1401 	wa_write_or(wal,
1402 		    GEN8_GAMW_ECO_DEV_RW_IA,
1403 		    GAMW_ECO_DEV_CTX_RELOAD_DISABLE);
1404 
1405 	/* Wa_1406463099:icl
1406 	 * Formerly known as WaGamTlbPendError
1407 	 */
1408 	wa_write_or(wal,
1409 		    GAMT_CHKN_BIT_REG,
1410 		    GAMT_CHKN_DISABLE_L3_COH_PIPE);
1411 
1412 	/*
1413 	 * Wa_1408615072:icl,ehl  (vsunit)
1414 	 * Wa_1407596294:icl,ehl  (hsunit)
1415 	 */
1416 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1417 		    VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);
1418 
1419 	/* Wa_1407352427:icl,ehl */
1420 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1421 		    PSDUNIT_CLKGATE_DIS);
1422 
1423 	/* Wa_1406680159:icl,ehl */
1424 	wa_mcr_write_or(wal,
1425 			GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1426 			GWUNIT_CLKGATE_DIS);
1427 
1428 	/* Wa_1607087056:icl,ehl,jsl */
1429 	if (IS_ICELAKE(i915) ||
1430 	    IS_JSL_EHL_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1431 		wa_write_or(wal,
1432 			    GEN11_SLICE_UNIT_LEVEL_CLKGATE,
1433 			    L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1434 
1435 	/*
1436 	 * This is not a documented workaround, but rather an optimization
1437 	 * to reduce sampler power.
1438 	 */
1439 	wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1440 }
1441 
1442 /*
1443  * Though there are per-engine instances of these registers,
1444  * they retain their value through engine resets and should
1445  * only be provided on the GT workaround list rather than
1446  * the engine-specific workaround list.
1447  */
1448 static void
1449 wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal)
1450 {
1451 	struct intel_engine_cs *engine;
1452 	int id;
1453 
1454 	for_each_engine(engine, gt, id) {
1455 		if (engine->class != VIDEO_DECODE_CLASS ||
1456 		    (engine->instance % 2))
1457 			continue;
1458 
1459 		wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base),
1460 			    IECPUNIT_CLKGATE_DIS);
1461 	}
1462 }
1463 
1464 static void
1465 gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1466 {
1467 	icl_wa_init_mcr(gt, wal);
1468 
1469 	/* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */
1470 	wa_14011060649(gt, wal);
1471 
1472 	/* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */
1473 	wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1474 }
1475 
1476 static void
1477 dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1478 {
1479 	gen12_gt_workarounds_init(gt, wal);
1480 
1481 	/* Wa_1409420604:dg1 */
1482 	wa_mcr_write_or(wal, SUBSLICE_UNIT_LEVEL_CLKGATE2,
1483 			CPSSUNIT_CLKGATE_DIS);
1484 
1485 	/* Wa_1408615072:dg1 */
1486 	/* Empirical testing shows this register is unaffected by engine reset. */
1487 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, VSUNIT_CLKGATE_DIS_TGL);
1488 }
1489 
1490 static void
1491 xehpsdv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1492 {
1493 	struct drm_i915_private *i915 = gt->i915;
1494 
1495 	xehp_init_mcr(gt, wal);
1496 
1497 	/* Wa_1409757795:xehpsdv */
1498 	wa_mcr_write_or(wal, SCCGCTL94DC, CG3DDISURB);
1499 
1500 	/* Wa_18011725039:xehpsdv */
1501 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_B0)) {
1502 		wa_mcr_masked_dis(wal, MLTICTXCTL, TDONRENDER);
1503 		wa_mcr_write_or(wal, L3SQCREG1_CCS0, FLUSHALLNONCOH);
1504 	}
1505 
1506 	/* Wa_16011155590:xehpsdv */
1507 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1508 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1509 			    TSGUNIT_CLKGATE_DIS);
1510 
1511 	/* Wa_14011780169:xehpsdv */
1512 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_B0, STEP_FOREVER)) {
1513 		wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS |
1514 			    GAMTLBVDBOX7_CLKGATE_DIS |
1515 			    GAMTLBVDBOX6_CLKGATE_DIS |
1516 			    GAMTLBVDBOX5_CLKGATE_DIS |
1517 			    GAMTLBVDBOX4_CLKGATE_DIS |
1518 			    GAMTLBVDBOX3_CLKGATE_DIS |
1519 			    GAMTLBVDBOX2_CLKGATE_DIS |
1520 			    GAMTLBVDBOX1_CLKGATE_DIS |
1521 			    GAMTLBVDBOX0_CLKGATE_DIS |
1522 			    GAMTLBKCR_CLKGATE_DIS |
1523 			    GAMTLBGUC_CLKGATE_DIS |
1524 			    GAMTLBBLT_CLKGATE_DIS);
1525 		wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS |
1526 			    GAMTLBGFXA1_CLKGATE_DIS |
1527 			    GAMTLBCOMPA0_CLKGATE_DIS |
1528 			    GAMTLBCOMPA1_CLKGATE_DIS |
1529 			    GAMTLBCOMPB0_CLKGATE_DIS |
1530 			    GAMTLBCOMPB1_CLKGATE_DIS |
1531 			    GAMTLBCOMPC0_CLKGATE_DIS |
1532 			    GAMTLBCOMPC1_CLKGATE_DIS |
1533 			    GAMTLBCOMPD0_CLKGATE_DIS |
1534 			    GAMTLBCOMPD1_CLKGATE_DIS |
1535 			    GAMTLBMERT_CLKGATE_DIS   |
1536 			    GAMTLBVEBOX3_CLKGATE_DIS |
1537 			    GAMTLBVEBOX2_CLKGATE_DIS |
1538 			    GAMTLBVEBOX1_CLKGATE_DIS |
1539 			    GAMTLBVEBOX0_CLKGATE_DIS);
1540 	}
1541 
1542 	/* Wa_16012725990:xehpsdv */
1543 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_FOREVER))
1544 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, VFUNIT_CLKGATE_DIS);
1545 
1546 	/* Wa_14011060649:xehpsdv */
1547 	wa_14011060649(gt, wal);
1548 
1549 	/* Wa_14012362059:xehpsdv */
1550 	wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB);
1551 
1552 	/* Wa_14014368820:xehpsdv */
1553 	wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1554 			INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1555 
1556 	/* Wa_14010670810:xehpsdv */
1557 	wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1558 }
1559 
1560 static void
1561 dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1562 {
1563 	struct intel_engine_cs *engine;
1564 	int id;
1565 
1566 	xehp_init_mcr(gt, wal);
1567 
1568 	/* Wa_14011060649:dg2 */
1569 	wa_14011060649(gt, wal);
1570 
1571 	/*
1572 	 * Although there are per-engine instances of these registers,
1573 	 * they technically exist outside the engine itself and are not
1574 	 * impacted by engine resets.  Furthermore, they're part of the
1575 	 * GuC blacklist so trying to treat them as engine workarounds
1576 	 * will result in GuC initialization failure and a wedged GPU.
1577 	 */
1578 	for_each_engine(engine, gt, id) {
1579 		if (engine->class != VIDEO_DECODE_CLASS)
1580 			continue;
1581 
1582 		/* Wa_16010515920:dg2_g10 */
1583 		if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0))
1584 			wa_write_or(wal, VDBOX_CGCTL3F18(engine->mmio_base),
1585 				    ALNUNIT_CLKGATE_DIS);
1586 	}
1587 
1588 	if (IS_DG2_G10(gt->i915)) {
1589 		/* Wa_22010523718:dg2 */
1590 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1591 			    CG3DDISCFEG_CLKGATE_DIS);
1592 
1593 		/* Wa_14011006942:dg2 */
1594 		wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1595 				DSS_ROUTER_CLKGATE_DIS);
1596 	}
1597 
1598 	if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0) ||
1599 	    IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0)) {
1600 		/* Wa_14012362059:dg2 */
1601 		wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB);
1602 	}
1603 
1604 	if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0)) {
1605 		/* Wa_14010948348:dg2_g10 */
1606 		wa_write_or(wal, UNSLCGCTL9430, MSQDUNIT_CLKGATE_DIS);
1607 
1608 		/* Wa_14011037102:dg2_g10 */
1609 		wa_write_or(wal, UNSLCGCTL9444, LTCDD_CLKGATE_DIS);
1610 
1611 		/* Wa_14011371254:dg2_g10 */
1612 		wa_mcr_write_or(wal, XEHP_SLICE_UNIT_LEVEL_CLKGATE, NODEDSS_CLKGATE_DIS);
1613 
1614 		/* Wa_14011431319:dg2_g10 */
1615 		wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS |
1616 			    GAMTLBVDBOX7_CLKGATE_DIS |
1617 			    GAMTLBVDBOX6_CLKGATE_DIS |
1618 			    GAMTLBVDBOX5_CLKGATE_DIS |
1619 			    GAMTLBVDBOX4_CLKGATE_DIS |
1620 			    GAMTLBVDBOX3_CLKGATE_DIS |
1621 			    GAMTLBVDBOX2_CLKGATE_DIS |
1622 			    GAMTLBVDBOX1_CLKGATE_DIS |
1623 			    GAMTLBVDBOX0_CLKGATE_DIS |
1624 			    GAMTLBKCR_CLKGATE_DIS |
1625 			    GAMTLBGUC_CLKGATE_DIS |
1626 			    GAMTLBBLT_CLKGATE_DIS);
1627 		wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS |
1628 			    GAMTLBGFXA1_CLKGATE_DIS |
1629 			    GAMTLBCOMPA0_CLKGATE_DIS |
1630 			    GAMTLBCOMPA1_CLKGATE_DIS |
1631 			    GAMTLBCOMPB0_CLKGATE_DIS |
1632 			    GAMTLBCOMPB1_CLKGATE_DIS |
1633 			    GAMTLBCOMPC0_CLKGATE_DIS |
1634 			    GAMTLBCOMPC1_CLKGATE_DIS |
1635 			    GAMTLBCOMPD0_CLKGATE_DIS |
1636 			    GAMTLBCOMPD1_CLKGATE_DIS |
1637 			    GAMTLBMERT_CLKGATE_DIS   |
1638 			    GAMTLBVEBOX3_CLKGATE_DIS |
1639 			    GAMTLBVEBOX2_CLKGATE_DIS |
1640 			    GAMTLBVEBOX1_CLKGATE_DIS |
1641 			    GAMTLBVEBOX0_CLKGATE_DIS);
1642 
1643 		/* Wa_14010569222:dg2_g10 */
1644 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1645 			    GAMEDIA_CLKGATE_DIS);
1646 
1647 		/* Wa_14011028019:dg2_g10 */
1648 		wa_mcr_write_or(wal, SSMCGCTL9530, RTFUNIT_CLKGATE_DIS);
1649 
1650 		/* Wa_14010680813:dg2_g10 */
1651 		wa_mcr_write_or(wal, XEHP_GAMSTLB_CTRL,
1652 				CONTROL_BLOCK_CLKGATE_DIS |
1653 				EGRESS_BLOCK_CLKGATE_DIS |
1654 				TAG_BLOCK_CLKGATE_DIS);
1655 	}
1656 
1657 	/* Wa_14014830051:dg2 */
1658 	wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1659 
1660 	/* Wa_14015795083 */
1661 	wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1662 
1663 	/* Wa_18018781329 */
1664 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1665 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1666 	wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1667 	wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1668 
1669 	/* Wa_1509235366:dg2 */
1670 	wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1671 			INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1672 
1673 	/* Wa_14010648519:dg2 */
1674 	wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
1675 }
1676 
1677 static void
1678 pvc_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1679 {
1680 	pvc_init_mcr(gt, wal);
1681 
1682 	/* Wa_14015795083 */
1683 	wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1684 
1685 	/* Wa_18018781329 */
1686 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1687 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1688 	wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1689 	wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1690 
1691 	/* Wa_16016694945 */
1692 	wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_OVRLSCCC);
1693 }
1694 
1695 static void
1696 xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1697 {
1698 	if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) ||
1699 	    IS_MTL_GRAPHICS_STEP(gt->i915, P, STEP_A0, STEP_B0)) {
1700 		/* Wa_14014830051 */
1701 		wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1702 
1703 		/* Wa_18018781329 */
1704 		wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1705 		wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1706 	}
1707 
1708 	/*
1709 	 * Unlike older platforms, we no longer setup implicit steering here;
1710 	 * all MCR accesses are explicitly steered.
1711 	 */
1712 	debug_dump_steering(gt);
1713 }
1714 
1715 static void
1716 xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1717 {
1718 	if (IS_MTL_MEDIA_STEP(gt->i915, STEP_A0, STEP_B0)) {
1719 		/*
1720 		 * Wa_18018781329
1721 		 *
1722 		 * Note that although these registers are MCR on the primary
1723 		 * GT, the media GT's versions are regular singleton registers.
1724 		 */
1725 		wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB);
1726 		wa_write_or(wal, XELPMP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1727 		wa_write_or(wal, XELPMP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1728 	}
1729 
1730 	debug_dump_steering(gt);
1731 }
1732 
1733 /*
1734  * The bspec performance guide has recommended MMIO tuning settings.  These
1735  * aren't truly "workarounds" but we want to program them through the
1736  * workaround infrastructure to make sure they're (re)applied at the proper
1737  * times.
1738  *
1739  * The programming in this function is for settings that persist through
1740  * engine resets and also are not part of any engine's register state context.
1741  * I.e., settings that only need to be re-applied in the event of a full GT
1742  * reset.
1743  */
1744 static void gt_tuning_settings(struct intel_gt *gt, struct i915_wa_list *wal)
1745 {
1746 	if (IS_PONTEVECCHIO(gt->i915)) {
1747 		wa_mcr_write(wal, XEHPC_L3SCRUB,
1748 			     SCRUB_CL_DWNGRADE_SHARED | SCRUB_RATE_4B_PER_CLK);
1749 		wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_HOSTCACHEEN);
1750 	}
1751 
1752 	if (IS_DG2(gt->i915)) {
1753 		wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
1754 		wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1755 	}
1756 }
1757 
1758 static void
1759 gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal)
1760 {
1761 	struct drm_i915_private *i915 = gt->i915;
1762 
1763 	gt_tuning_settings(gt, wal);
1764 
1765 	if (gt->type == GT_MEDIA) {
1766 		if (MEDIA_VER(i915) >= 13)
1767 			xelpmp_gt_workarounds_init(gt, wal);
1768 		else
1769 			MISSING_CASE(MEDIA_VER(i915));
1770 
1771 		return;
1772 	}
1773 
1774 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1775 		xelpg_gt_workarounds_init(gt, wal);
1776 	else if (IS_PONTEVECCHIO(i915))
1777 		pvc_gt_workarounds_init(gt, wal);
1778 	else if (IS_DG2(i915))
1779 		dg2_gt_workarounds_init(gt, wal);
1780 	else if (IS_XEHPSDV(i915))
1781 		xehpsdv_gt_workarounds_init(gt, wal);
1782 	else if (IS_DG1(i915))
1783 		dg1_gt_workarounds_init(gt, wal);
1784 	else if (GRAPHICS_VER(i915) == 12)
1785 		gen12_gt_workarounds_init(gt, wal);
1786 	else if (GRAPHICS_VER(i915) == 11)
1787 		icl_gt_workarounds_init(gt, wal);
1788 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
1789 		cfl_gt_workarounds_init(gt, wal);
1790 	else if (IS_GEMINILAKE(i915))
1791 		glk_gt_workarounds_init(gt, wal);
1792 	else if (IS_KABYLAKE(i915))
1793 		kbl_gt_workarounds_init(gt, wal);
1794 	else if (IS_BROXTON(i915))
1795 		gen9_gt_workarounds_init(gt, wal);
1796 	else if (IS_SKYLAKE(i915))
1797 		skl_gt_workarounds_init(gt, wal);
1798 	else if (IS_HASWELL(i915))
1799 		hsw_gt_workarounds_init(gt, wal);
1800 	else if (IS_VALLEYVIEW(i915))
1801 		vlv_gt_workarounds_init(gt, wal);
1802 	else if (IS_IVYBRIDGE(i915))
1803 		ivb_gt_workarounds_init(gt, wal);
1804 	else if (GRAPHICS_VER(i915) == 6)
1805 		snb_gt_workarounds_init(gt, wal);
1806 	else if (GRAPHICS_VER(i915) == 5)
1807 		ilk_gt_workarounds_init(gt, wal);
1808 	else if (IS_G4X(i915))
1809 		g4x_gt_workarounds_init(gt, wal);
1810 	else if (GRAPHICS_VER(i915) == 4)
1811 		gen4_gt_workarounds_init(gt, wal);
1812 	else if (GRAPHICS_VER(i915) <= 8)
1813 		;
1814 	else
1815 		MISSING_CASE(GRAPHICS_VER(i915));
1816 }
1817 
1818 void intel_gt_init_workarounds(struct intel_gt *gt)
1819 {
1820 	struct i915_wa_list *wal = &gt->wa_list;
1821 
1822 	wa_init_start(wal, gt, "GT", "global");
1823 	gt_init_workarounds(gt, wal);
1824 	wa_init_finish(wal);
1825 }
1826 
1827 static enum forcewake_domains
1828 wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal)
1829 {
1830 	enum forcewake_domains fw = 0;
1831 	struct i915_wa *wa;
1832 	unsigned int i;
1833 
1834 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1835 		fw |= intel_uncore_forcewake_for_reg(uncore,
1836 						     wa->reg,
1837 						     FW_REG_READ |
1838 						     FW_REG_WRITE);
1839 
1840 	return fw;
1841 }
1842 
1843 static bool
1844 wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur,
1845 	  const char *name, const char *from)
1846 {
1847 	if ((cur ^ wa->set) & wa->read) {
1848 		drm_err(&gt->i915->drm,
1849 			"%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n",
1850 			name, from, i915_mmio_reg_offset(wa->reg),
1851 			cur, cur & wa->read, wa->set & wa->read);
1852 
1853 		return false;
1854 	}
1855 
1856 	return true;
1857 }
1858 
1859 static void wa_list_apply(const struct i915_wa_list *wal)
1860 {
1861 	struct intel_gt *gt = wal->gt;
1862 	struct intel_uncore *uncore = gt->uncore;
1863 	enum forcewake_domains fw;
1864 	unsigned long flags;
1865 	struct i915_wa *wa;
1866 	unsigned int i;
1867 
1868 	if (!wal->count)
1869 		return;
1870 
1871 	fw = wal_get_fw_for_rmw(uncore, wal);
1872 
1873 	intel_gt_mcr_lock(gt, &flags);
1874 	spin_lock(&uncore->lock);
1875 	intel_uncore_forcewake_get__locked(uncore, fw);
1876 
1877 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
1878 		u32 val, old = 0;
1879 
1880 		/* open-coded rmw due to steering */
1881 		if (wa->clr)
1882 			old = wa->is_mcr ?
1883 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1884 				intel_uncore_read_fw(uncore, wa->reg);
1885 		val = (old & ~wa->clr) | wa->set;
1886 		if (val != old || !wa->clr) {
1887 			if (wa->is_mcr)
1888 				intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val);
1889 			else
1890 				intel_uncore_write_fw(uncore, wa->reg, val);
1891 		}
1892 
1893 		if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
1894 			u32 val = wa->is_mcr ?
1895 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1896 				intel_uncore_read_fw(uncore, wa->reg);
1897 
1898 			wa_verify(gt, wa, val, wal->name, "application");
1899 		}
1900 	}
1901 
1902 	intel_uncore_forcewake_put__locked(uncore, fw);
1903 	spin_unlock(&uncore->lock);
1904 	intel_gt_mcr_unlock(gt, flags);
1905 }
1906 
1907 void intel_gt_apply_workarounds(struct intel_gt *gt)
1908 {
1909 	wa_list_apply(&gt->wa_list);
1910 }
1911 
1912 static bool wa_list_verify(struct intel_gt *gt,
1913 			   const struct i915_wa_list *wal,
1914 			   const char *from)
1915 {
1916 	struct intel_uncore *uncore = gt->uncore;
1917 	struct i915_wa *wa;
1918 	enum forcewake_domains fw;
1919 	unsigned long flags;
1920 	unsigned int i;
1921 	bool ok = true;
1922 
1923 	fw = wal_get_fw_for_rmw(uncore, wal);
1924 
1925 	intel_gt_mcr_lock(gt, &flags);
1926 	spin_lock(&uncore->lock);
1927 	intel_uncore_forcewake_get__locked(uncore, fw);
1928 
1929 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1930 		ok &= wa_verify(wal->gt, wa, wa->is_mcr ?
1931 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1932 				intel_uncore_read_fw(uncore, wa->reg),
1933 				wal->name, from);
1934 
1935 	intel_uncore_forcewake_put__locked(uncore, fw);
1936 	spin_unlock(&uncore->lock);
1937 	intel_gt_mcr_unlock(gt, flags);
1938 
1939 	return ok;
1940 }
1941 
1942 bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from)
1943 {
1944 	return wa_list_verify(gt, &gt->wa_list, from);
1945 }
1946 
1947 __maybe_unused
1948 static bool is_nonpriv_flags_valid(u32 flags)
1949 {
1950 	/* Check only valid flag bits are set */
1951 	if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID)
1952 		return false;
1953 
1954 	/* NB: Only 3 out of 4 enum values are valid for access field */
1955 	if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) ==
1956 	    RING_FORCE_TO_NONPRIV_ACCESS_INVALID)
1957 		return false;
1958 
1959 	return true;
1960 }
1961 
1962 static void
1963 whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags)
1964 {
1965 	struct i915_wa wa = {
1966 		.reg = reg
1967 	};
1968 
1969 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1970 		return;
1971 
1972 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1973 		return;
1974 
1975 	wa.reg.reg |= flags;
1976 	_wa_add(wal, &wa);
1977 }
1978 
1979 static void
1980 whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags)
1981 {
1982 	struct i915_wa wa = {
1983 		.mcr_reg = reg,
1984 		.is_mcr = 1,
1985 	};
1986 
1987 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1988 		return;
1989 
1990 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1991 		return;
1992 
1993 	wa.mcr_reg.reg |= flags;
1994 	_wa_add(wal, &wa);
1995 }
1996 
1997 static void
1998 whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg)
1999 {
2000 	whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
2001 }
2002 
2003 static void
2004 whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg)
2005 {
2006 	whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
2007 }
2008 
2009 static void gen9_whitelist_build(struct i915_wa_list *w)
2010 {
2011 	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */
2012 	whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
2013 
2014 	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */
2015 	whitelist_reg(w, GEN8_CS_CHICKEN1);
2016 
2017 	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */
2018 	whitelist_reg(w, GEN8_HDC_CHICKEN1);
2019 
2020 	/* WaSendPushConstantsFromMMIO:skl,bxt */
2021 	whitelist_reg(w, COMMON_SLICE_CHICKEN2);
2022 }
2023 
2024 static void skl_whitelist_build(struct intel_engine_cs *engine)
2025 {
2026 	struct i915_wa_list *w = &engine->whitelist;
2027 
2028 	if (engine->class != RENDER_CLASS)
2029 		return;
2030 
2031 	gen9_whitelist_build(w);
2032 
2033 	/* WaDisableLSQCROPERFforOCL:skl */
2034 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
2035 }
2036 
2037 static void bxt_whitelist_build(struct intel_engine_cs *engine)
2038 {
2039 	if (engine->class != RENDER_CLASS)
2040 		return;
2041 
2042 	gen9_whitelist_build(&engine->whitelist);
2043 }
2044 
2045 static void kbl_whitelist_build(struct intel_engine_cs *engine)
2046 {
2047 	struct i915_wa_list *w = &engine->whitelist;
2048 
2049 	if (engine->class != RENDER_CLASS)
2050 		return;
2051 
2052 	gen9_whitelist_build(w);
2053 
2054 	/* WaDisableLSQCROPERFforOCL:kbl */
2055 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
2056 }
2057 
2058 static void glk_whitelist_build(struct intel_engine_cs *engine)
2059 {
2060 	struct i915_wa_list *w = &engine->whitelist;
2061 
2062 	if (engine->class != RENDER_CLASS)
2063 		return;
2064 
2065 	gen9_whitelist_build(w);
2066 
2067 	/* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */
2068 	whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2069 }
2070 
2071 static void cfl_whitelist_build(struct intel_engine_cs *engine)
2072 {
2073 	struct i915_wa_list *w = &engine->whitelist;
2074 
2075 	if (engine->class != RENDER_CLASS)
2076 		return;
2077 
2078 	gen9_whitelist_build(w);
2079 
2080 	/*
2081 	 * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml
2082 	 *
2083 	 * This covers 4 register which are next to one another :
2084 	 *   - PS_INVOCATION_COUNT
2085 	 *   - PS_INVOCATION_COUNT_UDW
2086 	 *   - PS_DEPTH_COUNT
2087 	 *   - PS_DEPTH_COUNT_UDW
2088 	 */
2089 	whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2090 			  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2091 			  RING_FORCE_TO_NONPRIV_RANGE_4);
2092 }
2093 
2094 static void allow_read_ctx_timestamp(struct intel_engine_cs *engine)
2095 {
2096 	struct i915_wa_list *w = &engine->whitelist;
2097 
2098 	if (engine->class != RENDER_CLASS)
2099 		whitelist_reg_ext(w,
2100 				  RING_CTX_TIMESTAMP(engine->mmio_base),
2101 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2102 }
2103 
2104 static void cml_whitelist_build(struct intel_engine_cs *engine)
2105 {
2106 	allow_read_ctx_timestamp(engine);
2107 
2108 	cfl_whitelist_build(engine);
2109 }
2110 
2111 static void icl_whitelist_build(struct intel_engine_cs *engine)
2112 {
2113 	struct i915_wa_list *w = &engine->whitelist;
2114 
2115 	allow_read_ctx_timestamp(engine);
2116 
2117 	switch (engine->class) {
2118 	case RENDER_CLASS:
2119 		/* WaAllowUMDToModifyHalfSliceChicken7:icl */
2120 		whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7);
2121 
2122 		/* WaAllowUMDToModifySamplerMode:icl */
2123 		whitelist_mcr_reg(w, GEN10_SAMPLER_MODE);
2124 
2125 		/* WaEnableStateCacheRedirectToCS:icl */
2126 		whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2127 
2128 		/*
2129 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl
2130 		 *
2131 		 * This covers 4 register which are next to one another :
2132 		 *   - PS_INVOCATION_COUNT
2133 		 *   - PS_INVOCATION_COUNT_UDW
2134 		 *   - PS_DEPTH_COUNT
2135 		 *   - PS_DEPTH_COUNT_UDW
2136 		 */
2137 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2138 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2139 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2140 		break;
2141 
2142 	case VIDEO_DECODE_CLASS:
2143 		/* hucStatusRegOffset */
2144 		whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base),
2145 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2146 		/* hucUKernelHdrInfoRegOffset */
2147 		whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base),
2148 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2149 		/* hucStatus2RegOffset */
2150 		whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base),
2151 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2152 		break;
2153 
2154 	default:
2155 		break;
2156 	}
2157 }
2158 
2159 static void tgl_whitelist_build(struct intel_engine_cs *engine)
2160 {
2161 	struct i915_wa_list *w = &engine->whitelist;
2162 
2163 	allow_read_ctx_timestamp(engine);
2164 
2165 	switch (engine->class) {
2166 	case RENDER_CLASS:
2167 		/*
2168 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl
2169 		 * Wa_1408556865:tgl
2170 		 *
2171 		 * This covers 4 registers which are next to one another :
2172 		 *   - PS_INVOCATION_COUNT
2173 		 *   - PS_INVOCATION_COUNT_UDW
2174 		 *   - PS_DEPTH_COUNT
2175 		 *   - PS_DEPTH_COUNT_UDW
2176 		 */
2177 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2178 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2179 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2180 
2181 		/*
2182 		 * Wa_1808121037:tgl
2183 		 * Wa_14012131227:dg1
2184 		 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p
2185 		 */
2186 		whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2187 
2188 		/* Wa_1806527549:tgl */
2189 		whitelist_reg(w, HIZ_CHICKEN);
2190 
2191 		/* Required by recommended tuning setting (not a workaround) */
2192 		whitelist_reg(w, GEN11_COMMON_SLICE_CHICKEN3);
2193 
2194 		break;
2195 	default:
2196 		break;
2197 	}
2198 }
2199 
2200 static void dg2_whitelist_build(struct intel_engine_cs *engine)
2201 {
2202 	struct i915_wa_list *w = &engine->whitelist;
2203 
2204 	switch (engine->class) {
2205 	case RENDER_CLASS:
2206 		/*
2207 		 * Wa_1507100340:dg2_g10
2208 		 *
2209 		 * This covers 4 registers which are next to one another :
2210 		 *   - PS_INVOCATION_COUNT
2211 		 *   - PS_INVOCATION_COUNT_UDW
2212 		 *   - PS_DEPTH_COUNT
2213 		 *   - PS_DEPTH_COUNT_UDW
2214 		 */
2215 		if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0))
2216 			whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2217 					  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2218 					  RING_FORCE_TO_NONPRIV_RANGE_4);
2219 
2220 		/* Required by recommended tuning setting (not a workaround) */
2221 		whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2222 
2223 		break;
2224 	case COMPUTE_CLASS:
2225 		/* Wa_16011157294:dg2_g10 */
2226 		if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0))
2227 			whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
2228 		break;
2229 	default:
2230 		break;
2231 	}
2232 }
2233 
2234 static void blacklist_trtt(struct intel_engine_cs *engine)
2235 {
2236 	struct i915_wa_list *w = &engine->whitelist;
2237 
2238 	/*
2239 	 * Prevent read/write access to [0x4400, 0x4600) which covers
2240 	 * the TRTT range across all engines. Note that normally userspace
2241 	 * cannot access the other engines' trtt control, but for simplicity
2242 	 * we cover the entire range on each engine.
2243 	 */
2244 	whitelist_reg_ext(w, _MMIO(0x4400),
2245 			  RING_FORCE_TO_NONPRIV_DENY |
2246 			  RING_FORCE_TO_NONPRIV_RANGE_64);
2247 	whitelist_reg_ext(w, _MMIO(0x4500),
2248 			  RING_FORCE_TO_NONPRIV_DENY |
2249 			  RING_FORCE_TO_NONPRIV_RANGE_64);
2250 }
2251 
2252 static void pvc_whitelist_build(struct intel_engine_cs *engine)
2253 {
2254 	/* Wa_16014440446:pvc */
2255 	blacklist_trtt(engine);
2256 }
2257 
2258 static void mtl_whitelist_build(struct intel_engine_cs *engine)
2259 {
2260 	struct i915_wa_list *w = &engine->whitelist;
2261 
2262 	switch (engine->class) {
2263 	case RENDER_CLASS:
2264 		/* Required by recommended tuning setting (not a workaround) */
2265 		whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3);
2266 
2267 		break;
2268 	default:
2269 		break;
2270 	}
2271 }
2272 
2273 void intel_engine_init_whitelist(struct intel_engine_cs *engine)
2274 {
2275 	struct drm_i915_private *i915 = engine->i915;
2276 	struct i915_wa_list *w = &engine->whitelist;
2277 
2278 	wa_init_start(w, engine->gt, "whitelist", engine->name);
2279 
2280 	if (IS_METEORLAKE(i915))
2281 		mtl_whitelist_build(engine);
2282 	else if (IS_PONTEVECCHIO(i915))
2283 		pvc_whitelist_build(engine);
2284 	else if (IS_DG2(i915))
2285 		dg2_whitelist_build(engine);
2286 	else if (IS_XEHPSDV(i915))
2287 		; /* none needed */
2288 	else if (GRAPHICS_VER(i915) == 12)
2289 		tgl_whitelist_build(engine);
2290 	else if (GRAPHICS_VER(i915) == 11)
2291 		icl_whitelist_build(engine);
2292 	else if (IS_COMETLAKE(i915))
2293 		cml_whitelist_build(engine);
2294 	else if (IS_COFFEELAKE(i915))
2295 		cfl_whitelist_build(engine);
2296 	else if (IS_GEMINILAKE(i915))
2297 		glk_whitelist_build(engine);
2298 	else if (IS_KABYLAKE(i915))
2299 		kbl_whitelist_build(engine);
2300 	else if (IS_BROXTON(i915))
2301 		bxt_whitelist_build(engine);
2302 	else if (IS_SKYLAKE(i915))
2303 		skl_whitelist_build(engine);
2304 	else if (GRAPHICS_VER(i915) <= 8)
2305 		;
2306 	else
2307 		MISSING_CASE(GRAPHICS_VER(i915));
2308 
2309 	wa_init_finish(w);
2310 }
2311 
2312 void intel_engine_apply_whitelist(struct intel_engine_cs *engine)
2313 {
2314 	const struct i915_wa_list *wal = &engine->whitelist;
2315 	struct intel_uncore *uncore = engine->uncore;
2316 	const u32 base = engine->mmio_base;
2317 	struct i915_wa *wa;
2318 	unsigned int i;
2319 
2320 	if (!wal->count)
2321 		return;
2322 
2323 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
2324 		intel_uncore_write(uncore,
2325 				   RING_FORCE_TO_NONPRIV(base, i),
2326 				   i915_mmio_reg_offset(wa->reg));
2327 
2328 	/* And clear the rest just in case of garbage */
2329 	for (; i < RING_MAX_NONPRIV_SLOTS; i++)
2330 		intel_uncore_write(uncore,
2331 				   RING_FORCE_TO_NONPRIV(base, i),
2332 				   i915_mmio_reg_offset(RING_NOPID(base)));
2333 }
2334 
2335 /*
2336  * engine_fake_wa_init(), a place holder to program the registers
2337  * which are not part of an official workaround defined by the
2338  * hardware team.
2339  * Adding programming of those register inside workaround will
2340  * allow utilizing wa framework to proper application and verification.
2341  */
2342 static void
2343 engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2344 {
2345 	u8 mocs_w, mocs_r;
2346 
2347 	/*
2348 	 * RING_CMD_CCTL specifies the default MOCS entry that will be used
2349 	 * by the command streamer when executing commands that don't have
2350 	 * a way to explicitly specify a MOCS setting.  The default should
2351 	 * usually reference whichever MOCS entry corresponds to uncached
2352 	 * behavior, although use of a WB cached entry is recommended by the
2353 	 * spec in certain circumstances on specific platforms.
2354 	 */
2355 	if (GRAPHICS_VER(engine->i915) >= 12) {
2356 		mocs_r = engine->gt->mocs.uc_index;
2357 		mocs_w = engine->gt->mocs.uc_index;
2358 
2359 		if (HAS_L3_CCS_READ(engine->i915) &&
2360 		    engine->class == COMPUTE_CLASS) {
2361 			mocs_r = engine->gt->mocs.wb_index;
2362 
2363 			/*
2364 			 * Even on the few platforms where MOCS 0 is a
2365 			 * legitimate table entry, it's never the correct
2366 			 * setting to use here; we can assume the MOCS init
2367 			 * just forgot to initialize wb_index.
2368 			 */
2369 			drm_WARN_ON(&engine->i915->drm, mocs_r == 0);
2370 		}
2371 
2372 		wa_masked_field_set(wal,
2373 				    RING_CMD_CCTL(engine->mmio_base),
2374 				    CMD_CCTL_MOCS_MASK,
2375 				    CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r));
2376 	}
2377 }
2378 
2379 static bool needs_wa_1308578152(struct intel_engine_cs *engine)
2380 {
2381 	return intel_sseu_find_first_xehp_dss(&engine->gt->info.sseu, 0, 0) >=
2382 		GEN_DSS_PER_GSLICE;
2383 }
2384 
2385 static void
2386 rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2387 {
2388 	struct drm_i915_private *i915 = engine->i915;
2389 
2390 	if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
2391 	    IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0)) {
2392 		/* Wa_22014600077 */
2393 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2394 				 ENABLE_EU_COUNT_FOR_TDL_FLUSH);
2395 	}
2396 
2397 	if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
2398 	    IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) ||
2399 	    IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) ||
2400 	    IS_DG2_G11(i915) || IS_DG2_G12(i915)) {
2401 		/* Wa_1509727124 */
2402 		wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2403 				 SC_DISABLE_POWER_OPTIMIZATION_EBB);
2404 	}
2405 
2406 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) ||
2407 	    IS_DG2_G11(i915) || IS_DG2_G12(i915) ||
2408 	    IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0)) {
2409 		/* Wa_22012856258 */
2410 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2411 				 GEN12_DISABLE_READ_SUPPRESSION);
2412 	}
2413 
2414 	if (IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0)) {
2415 		/* Wa_14013392000:dg2_g11 */
2416 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_ENABLE_LARGE_GRF_MODE);
2417 	}
2418 
2419 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0) ||
2420 	    IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0)) {
2421 		/* Wa_14012419201:dg2 */
2422 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4,
2423 				 GEN12_DISABLE_HDR_PAST_PAYLOAD_HOLD_FIX);
2424 	}
2425 
2426 	/* Wa_1308578152:dg2_g10 when first gslice is fused off */
2427 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) &&
2428 	    needs_wa_1308578152(engine)) {
2429 		wa_masked_dis(wal, GEN12_CS_DEBUG_MODE1_CCCSUNIT_BE_COMMON,
2430 			      GEN12_REPLAY_MODE_GRANULARITY);
2431 	}
2432 
2433 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) ||
2434 	    IS_DG2_G11(i915) || IS_DG2_G12(i915)) {
2435 		/*
2436 		 * Wa_22010960976:dg2
2437 		 * Wa_14013347512:dg2
2438 		 */
2439 		wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0,
2440 				  LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK);
2441 	}
2442 
2443 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) {
2444 		/*
2445 		 * Wa_1608949956:dg2_g10
2446 		 * Wa_14010198302:dg2_g10
2447 		 */
2448 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
2449 				 MDQ_ARBITRATION_MODE | UGM_BACKUP_MODE);
2450 	}
2451 
2452 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0))
2453 		/* Wa_22010430635:dg2 */
2454 		wa_mcr_masked_en(wal,
2455 				 GEN9_ROW_CHICKEN4,
2456 				 GEN12_DISABLE_GRF_CLEAR);
2457 
2458 	/* Wa_14013202645:dg2 */
2459 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) ||
2460 	    IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0))
2461 		wa_mcr_write_or(wal, RT_CTRL, DIS_NULL_QUERY);
2462 
2463 	/* Wa_22012532006:dg2 */
2464 	if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_C0) ||
2465 	    IS_DG2_GRAPHICS_STEP(engine->i915, G11, STEP_A0, STEP_B0))
2466 		wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
2467 				 DG2_DISABLE_ROUND_ENABLE_ALLOW_FOR_SSLA);
2468 
2469 	if (IS_DG2_GRAPHICS_STEP(i915, G11, STEP_B0, STEP_FOREVER) ||
2470 	    IS_DG2_G10(i915)) {
2471 		/* Wa_22014600077:dg2 */
2472 		wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
2473 			   _MASKED_BIT_ENABLE(ENABLE_EU_COUNT_FOR_TDL_FLUSH),
2474 			   0 /* Wa_14012342262 write-only reg, so skip verification */,
2475 			   true);
2476 	}
2477 
2478 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) ||
2479 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2480 		/* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */
2481 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ);
2482 
2483 		/*
2484 		 * Wa_1407928979:tgl A*
2485 		 * Wa_18011464164:tgl[B0+],dg1[B0+]
2486 		 * Wa_22010931296:tgl[B0+],dg1[B0+]
2487 		 * Wa_14010919138:rkl,dg1,adl-s,adl-p
2488 		 */
2489 		wa_write_or(wal, GEN7_FF_THREAD_MODE,
2490 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2491 	}
2492 
2493 	if (IS_ALDERLAKE_P(i915) || IS_DG2(i915) || IS_ALDERLAKE_S(i915) ||
2494 	    IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2495 		/*
2496 		 * Wa_1606700617:tgl,dg1,adl-p
2497 		 * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p
2498 		 * Wa_14010826681:tgl,dg1,rkl,adl-p
2499 		 * Wa_18019627453:dg2
2500 		 */
2501 		wa_masked_en(wal,
2502 			     GEN9_CS_DEBUG_MODE1,
2503 			     FF_DOP_CLOCK_GATE_DISABLE);
2504 	}
2505 
2506 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2507 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2508 		/* Wa_1409804808 */
2509 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2510 				 GEN12_PUSH_CONST_DEREF_HOLD_DIS);
2511 
2512 		/* Wa_14010229206 */
2513 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH);
2514 	}
2515 
2516 	if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) {
2517 		/*
2518 		 * Wa_1607297627
2519 		 *
2520 		 * On TGL and RKL there are multiple entries for this WA in the
2521 		 * BSpec; some indicate this is an A0-only WA, others indicate
2522 		 * it applies to all steppings so we trust the "all steppings."
2523 		 */
2524 		wa_masked_en(wal,
2525 			     RING_PSMI_CTL(RENDER_RING_BASE),
2526 			     GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE |
2527 			     GEN8_RC_SEMA_IDLE_MSG_DISABLE);
2528 	}
2529 
2530 	if (IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) ||
2531 	    IS_ALDERLAKE_S(i915) || IS_ALDERLAKE_P(i915)) {
2532 		/* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */
2533 		wa_mcr_masked_en(wal,
2534 				 GEN10_SAMPLER_MODE,
2535 				 ENABLE_SMALLPL);
2536 	}
2537 
2538 	if (GRAPHICS_VER(i915) == 11) {
2539 		/* This is not an Wa. Enable for better image quality */
2540 		wa_masked_en(wal,
2541 			     _3D_CHICKEN3,
2542 			     _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE);
2543 
2544 		/*
2545 		 * Wa_1405543622:icl
2546 		 * Formerly known as WaGAPZPriorityScheme
2547 		 */
2548 		wa_write_or(wal,
2549 			    GEN8_GARBCNTL,
2550 			    GEN11_ARBITRATION_PRIO_ORDER_MASK);
2551 
2552 		/*
2553 		 * Wa_1604223664:icl
2554 		 * Formerly known as WaL3BankAddressHashing
2555 		 */
2556 		wa_write_clr_set(wal,
2557 				 GEN8_GARBCNTL,
2558 				 GEN11_HASH_CTRL_EXCL_MASK,
2559 				 GEN11_HASH_CTRL_EXCL_BIT0);
2560 		wa_write_clr_set(wal,
2561 				 GEN11_GLBLINVL,
2562 				 GEN11_BANK_HASH_ADDR_EXCL_MASK,
2563 				 GEN11_BANK_HASH_ADDR_EXCL_BIT0);
2564 
2565 		/*
2566 		 * Wa_1405733216:icl
2567 		 * Formerly known as WaDisableCleanEvicts
2568 		 */
2569 		wa_mcr_write_or(wal,
2570 				GEN8_L3SQCREG4,
2571 				GEN11_LQSC_CLEAN_EVICT_DISABLE);
2572 
2573 		/* Wa_1606682166:icl */
2574 		wa_write_or(wal,
2575 			    GEN7_SARCHKMD,
2576 			    GEN7_DISABLE_SAMPLER_PREFETCH);
2577 
2578 		/* Wa_1409178092:icl */
2579 		wa_mcr_write_clr_set(wal,
2580 				     GEN11_SCRATCH2,
2581 				     GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE,
2582 				     0);
2583 
2584 		/* WaEnable32PlaneMode:icl */
2585 		wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS,
2586 			     GEN11_ENABLE_32_PLANE_MODE);
2587 
2588 		/*
2589 		 * Wa_1408767742:icl[a2..forever],ehl[all]
2590 		 * Wa_1605460711:icl[a0..c0]
2591 		 */
2592 		wa_write_or(wal,
2593 			    GEN7_FF_THREAD_MODE,
2594 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2595 
2596 		/* Wa_22010271021 */
2597 		wa_masked_en(wal,
2598 			     GEN9_CS_DEBUG_MODE1,
2599 			     FF_DOP_CLOCK_GATE_DISABLE);
2600 	}
2601 
2602 	/*
2603 	 * Intel platforms that support fine-grained preemption (i.e., gen9 and
2604 	 * beyond) allow the kernel-mode driver to choose between two different
2605 	 * options for controlling preemption granularity and behavior.
2606 	 *
2607 	 * Option 1 (hardware default):
2608 	 *   Preemption settings are controlled in a global manner via
2609 	 *   kernel-only register CS_DEBUG_MODE1 (0x20EC).  Any granularity
2610 	 *   and settings chosen by the kernel-mode driver will apply to all
2611 	 *   userspace clients.
2612 	 *
2613 	 * Option 2:
2614 	 *   Preemption settings are controlled on a per-context basis via
2615 	 *   register CS_CHICKEN1 (0x2580).  CS_CHICKEN1 is saved/restored on
2616 	 *   context switch and is writable by userspace (e.g., via
2617 	 *   MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer)
2618 	 *   which allows different userspace drivers/clients to select
2619 	 *   different settings, or to change those settings on the fly in
2620 	 *   response to runtime needs.  This option was known by name
2621 	 *   "FtrPerCtxtPreemptionGranularityControl" at one time, although
2622 	 *   that name is somewhat misleading as other non-granularity
2623 	 *   preemption settings are also impacted by this decision.
2624 	 *
2625 	 * On Linux, our policy has always been to let userspace drivers
2626 	 * control preemption granularity/settings (Option 2).  This was
2627 	 * originally mandatory on gen9 to prevent ABI breakage (old gen9
2628 	 * userspace developed before object-level preemption was enabled would
2629 	 * not behave well if i915 were to go with Option 1 and enable that
2630 	 * preemption in a global manner).  On gen9 each context would have
2631 	 * object-level preemption disabled by default (see
2632 	 * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but
2633 	 * userspace drivers could opt-in to object-level preemption as they
2634 	 * saw fit.  For post-gen9 platforms, we continue to utilize Option 2;
2635 	 * even though it is no longer necessary for ABI compatibility when
2636 	 * enabling a new platform, it does ensure that userspace will be able
2637 	 * to implement any workarounds that show up requiring temporary
2638 	 * adjustments to preemption behavior at runtime.
2639 	 *
2640 	 * Notes/Workarounds:
2641 	 *  - Wa_14015141709:  On DG2 and early steppings of MTL,
2642 	 *      CS_CHICKEN1[0] does not disable object-level preemption as
2643 	 *      it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been
2644 	 *      using Option 1).  Effectively this means userspace is unable
2645 	 *      to disable object-level preemption on these platforms/steppings
2646 	 *      despite the setting here.
2647 	 *
2648 	 *  - Wa_16013994831:  May require that userspace program
2649 	 *      CS_CHICKEN1[10] when certain runtime conditions are true.
2650 	 *      Userspace requires Option 2 to be in effect for their update of
2651 	 *      CS_CHICKEN1[10] to be effective.
2652 	 *
2653 	 * Other workarounds may appear in the future that will also require
2654 	 * Option 2 behavior to allow proper userspace implementation.
2655 	 */
2656 	if (GRAPHICS_VER(i915) >= 9)
2657 		wa_masked_en(wal,
2658 			     GEN7_FF_SLICE_CS_CHICKEN1,
2659 			     GEN9_FFSC_PERCTX_PREEMPT_CTRL);
2660 
2661 	if (IS_SKYLAKE(i915) ||
2662 	    IS_KABYLAKE(i915) ||
2663 	    IS_COFFEELAKE(i915) ||
2664 	    IS_COMETLAKE(i915)) {
2665 		/* WaEnableGapsTsvCreditFix:skl,kbl,cfl */
2666 		wa_write_or(wal,
2667 			    GEN8_GARBCNTL,
2668 			    GEN9_GAPS_TSV_CREDIT_DISABLE);
2669 	}
2670 
2671 	if (IS_BROXTON(i915)) {
2672 		/* WaDisablePooledEuLoadBalancingFix:bxt */
2673 		wa_masked_en(wal,
2674 			     FF_SLICE_CS_CHICKEN2,
2675 			     GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
2676 	}
2677 
2678 	if (GRAPHICS_VER(i915) == 9) {
2679 		/* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */
2680 		wa_masked_en(wal,
2681 			     GEN9_CSFE_CHICKEN1_RCS,
2682 			     GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE);
2683 
2684 		/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */
2685 		wa_mcr_write_or(wal,
2686 				BDW_SCRATCH1,
2687 				GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
2688 
2689 		/* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */
2690 		if (IS_GEN9_LP(i915))
2691 			wa_mcr_write_clr_set(wal,
2692 					     GEN8_L3SQCREG1,
2693 					     L3_PRIO_CREDITS_MASK,
2694 					     L3_GENERAL_PRIO_CREDITS(62) |
2695 					     L3_HIGH_PRIO_CREDITS(2));
2696 
2697 		/* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */
2698 		wa_mcr_write_or(wal,
2699 				GEN8_L3SQCREG4,
2700 				GEN8_LQSC_FLUSH_COHERENT_LINES);
2701 
2702 		/* Disable atomics in L3 to prevent unrecoverable hangs */
2703 		wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1,
2704 				 GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2705 		wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4,
2706 				     GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2707 		wa_mcr_write_clr_set(wal, GEN9_SCRATCH1,
2708 				     EVICTION_PERF_FIX_ENABLE, 0);
2709 	}
2710 
2711 	if (IS_HASWELL(i915)) {
2712 		/* WaSampleCChickenBitEnable:hsw */
2713 		wa_masked_en(wal,
2714 			     HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE);
2715 
2716 		wa_masked_dis(wal,
2717 			      CACHE_MODE_0_GEN7,
2718 			      /* enable HiZ Raw Stall Optimization */
2719 			      HIZ_RAW_STALL_OPT_DISABLE);
2720 	}
2721 
2722 	if (IS_VALLEYVIEW(i915)) {
2723 		/* WaDisableEarlyCull:vlv */
2724 		wa_masked_en(wal,
2725 			     _3D_CHICKEN3,
2726 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2727 
2728 		/*
2729 		 * WaVSThreadDispatchOverride:ivb,vlv
2730 		 *
2731 		 * This actually overrides the dispatch
2732 		 * mode for all thread types.
2733 		 */
2734 		wa_write_clr_set(wal,
2735 				 GEN7_FF_THREAD_MODE,
2736 				 GEN7_FF_SCHED_MASK,
2737 				 GEN7_FF_TS_SCHED_HW |
2738 				 GEN7_FF_VS_SCHED_HW |
2739 				 GEN7_FF_DS_SCHED_HW);
2740 
2741 		/* WaPsdDispatchEnable:vlv */
2742 		/* WaDisablePSDDualDispatchEnable:vlv */
2743 		wa_masked_en(wal,
2744 			     GEN7_HALF_SLICE_CHICKEN1,
2745 			     GEN7_MAX_PS_THREAD_DEP |
2746 			     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2747 	}
2748 
2749 	if (IS_IVYBRIDGE(i915)) {
2750 		/* WaDisableEarlyCull:ivb */
2751 		wa_masked_en(wal,
2752 			     _3D_CHICKEN3,
2753 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2754 
2755 		if (0) { /* causes HiZ corruption on ivb:gt1 */
2756 			/* enable HiZ Raw Stall Optimization */
2757 			wa_masked_dis(wal,
2758 				      CACHE_MODE_0_GEN7,
2759 				      HIZ_RAW_STALL_OPT_DISABLE);
2760 		}
2761 
2762 		/*
2763 		 * WaVSThreadDispatchOverride:ivb,vlv
2764 		 *
2765 		 * This actually overrides the dispatch
2766 		 * mode for all thread types.
2767 		 */
2768 		wa_write_clr_set(wal,
2769 				 GEN7_FF_THREAD_MODE,
2770 				 GEN7_FF_SCHED_MASK,
2771 				 GEN7_FF_TS_SCHED_HW |
2772 				 GEN7_FF_VS_SCHED_HW |
2773 				 GEN7_FF_DS_SCHED_HW);
2774 
2775 		/* WaDisablePSDDualDispatchEnable:ivb */
2776 		if (IS_IVB_GT1(i915))
2777 			wa_masked_en(wal,
2778 				     GEN7_HALF_SLICE_CHICKEN1,
2779 				     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2780 	}
2781 
2782 	if (GRAPHICS_VER(i915) == 7) {
2783 		/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
2784 		wa_masked_en(wal,
2785 			     RING_MODE_GEN7(RENDER_RING_BASE),
2786 			     GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE);
2787 
2788 		/* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */
2789 		wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE);
2790 
2791 		/*
2792 		 * BSpec says this must be set, even though
2793 		 * WaDisable4x2SubspanOptimization:ivb,hsw
2794 		 * WaDisable4x2SubspanOptimization isn't listed for VLV.
2795 		 */
2796 		wa_masked_en(wal,
2797 			     CACHE_MODE_1,
2798 			     PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
2799 
2800 		/*
2801 		 * BSpec recommends 8x4 when MSAA is used,
2802 		 * however in practice 16x4 seems fastest.
2803 		 *
2804 		 * Note that PS/WM thread counts depend on the WIZ hashing
2805 		 * disable bit, which we don't touch here, but it's good
2806 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2807 		 */
2808 		wa_masked_field_set(wal,
2809 				    GEN7_GT_MODE,
2810 				    GEN6_WIZ_HASHING_MASK,
2811 				    GEN6_WIZ_HASHING_16x4);
2812 	}
2813 
2814 	if (IS_GRAPHICS_VER(i915, 6, 7))
2815 		/*
2816 		 * We need to disable the AsyncFlip performance optimisations in
2817 		 * order to use MI_WAIT_FOR_EVENT within the CS. It should
2818 		 * already be programmed to '1' on all products.
2819 		 *
2820 		 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
2821 		 */
2822 		wa_masked_en(wal,
2823 			     RING_MI_MODE(RENDER_RING_BASE),
2824 			     ASYNC_FLIP_PERF_DISABLE);
2825 
2826 	if (GRAPHICS_VER(i915) == 6) {
2827 		/*
2828 		 * Required for the hardware to program scanline values for
2829 		 * waiting
2830 		 * WaEnableFlushTlbInvalidationMode:snb
2831 		 */
2832 		wa_masked_en(wal,
2833 			     GFX_MODE,
2834 			     GFX_TLB_INVALIDATE_EXPLICIT);
2835 
2836 		/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
2837 		wa_masked_en(wal,
2838 			     _3D_CHICKEN,
2839 			     _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB);
2840 
2841 		wa_masked_en(wal,
2842 			     _3D_CHICKEN3,
2843 			     /* WaStripsFansDisableFastClipPerformanceFix:snb */
2844 			     _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL |
2845 			     /*
2846 			      * Bspec says:
2847 			      * "This bit must be set if 3DSTATE_CLIP clip mode is set
2848 			      * to normal and 3DSTATE_SF number of SF output attributes
2849 			      * is more than 16."
2850 			      */
2851 			     _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH);
2852 
2853 		/*
2854 		 * BSpec recommends 8x4 when MSAA is used,
2855 		 * however in practice 16x4 seems fastest.
2856 		 *
2857 		 * Note that PS/WM thread counts depend on the WIZ hashing
2858 		 * disable bit, which we don't touch here, but it's good
2859 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2860 		 */
2861 		wa_masked_field_set(wal,
2862 				    GEN6_GT_MODE,
2863 				    GEN6_WIZ_HASHING_MASK,
2864 				    GEN6_WIZ_HASHING_16x4);
2865 
2866 		/* WaDisable_RenderCache_OperationalFlush:snb */
2867 		wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
2868 
2869 		/*
2870 		 * From the Sandybridge PRM, volume 1 part 3, page 24:
2871 		 * "If this bit is set, STCunit will have LRA as replacement
2872 		 *  policy. [...] This bit must be reset. LRA replacement
2873 		 *  policy is not supported."
2874 		 */
2875 		wa_masked_dis(wal,
2876 			      CACHE_MODE_0,
2877 			      CM0_STC_EVICT_DISABLE_LRA_SNB);
2878 	}
2879 
2880 	if (IS_GRAPHICS_VER(i915, 4, 6))
2881 		/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
2882 		wa_add(wal, RING_MI_MODE(RENDER_RING_BASE),
2883 		       0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH),
2884 		       /* XXX bit doesn't stick on Broadwater */
2885 		       IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true);
2886 
2887 	if (GRAPHICS_VER(i915) == 4)
2888 		/*
2889 		 * Disable CONSTANT_BUFFER before it is loaded from the context
2890 		 * image. For as it is loaded, it is executed and the stored
2891 		 * address may no longer be valid, leading to a GPU hang.
2892 		 *
2893 		 * This imposes the requirement that userspace reload their
2894 		 * CONSTANT_BUFFER on every batch, fortunately a requirement
2895 		 * they are already accustomed to from before contexts were
2896 		 * enabled.
2897 		 */
2898 		wa_add(wal, ECOSKPD(RENDER_RING_BASE),
2899 		       0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE),
2900 		       0 /* XXX bit doesn't stick on Broadwater */,
2901 		       true);
2902 }
2903 
2904 static void
2905 xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2906 {
2907 	struct drm_i915_private *i915 = engine->i915;
2908 
2909 	/* WaKBLVECSSemaphoreWaitPoll:kbl */
2910 	if (IS_KBL_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) {
2911 		wa_write(wal,
2912 			 RING_SEMA_WAIT_POLL(engine->mmio_base),
2913 			 1);
2914 	}
2915 }
2916 
2917 static void
2918 ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2919 {
2920 	if (IS_PVC_CT_STEP(engine->i915, STEP_A0, STEP_C0)) {
2921 		/* Wa_14014999345:pvc */
2922 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, DISABLE_ECC);
2923 	}
2924 }
2925 
2926 /*
2927  * The bspec performance guide has recommended MMIO tuning settings.  These
2928  * aren't truly "workarounds" but we want to program them with the same
2929  * workaround infrastructure to ensure that they're automatically added to
2930  * the GuC save/restore lists, re-applied at the right times, and checked for
2931  * any conflicting programming requested by real workarounds.
2932  *
2933  * Programming settings should be added here only if their registers are not
2934  * part of an engine's register state context.  If a register is part of a
2935  * context, then any tuning settings should be programmed in an appropriate
2936  * function invoked by __intel_engine_init_ctx_wa().
2937  */
2938 static void
2939 add_render_compute_tuning_settings(struct drm_i915_private *i915,
2940 				   struct i915_wa_list *wal)
2941 {
2942 	if (IS_DG2(i915))
2943 		wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512);
2944 
2945 	/*
2946 	 * This tuning setting proves beneficial only on ATS-M designs; the
2947 	 * default "age based" setting is optimal on regular DG2 and other
2948 	 * platforms.
2949 	 */
2950 	if (INTEL_INFO(i915)->tuning_thread_rr_after_dep)
2951 		wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE,
2952 					THREAD_EX_ARB_MODE_RR_AFTER_DEP);
2953 
2954 	if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
2955 		wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC);
2956 }
2957 
2958 /*
2959  * The workarounds in this function apply to shared registers in
2960  * the general render reset domain that aren't tied to a
2961  * specific engine.  Since all render+compute engines get reset
2962  * together, and the contents of these registers are lost during
2963  * the shared render domain reset, we'll define such workarounds
2964  * here and then add them to just a single RCS or CCS engine's
2965  * workaround list (whichever engine has the XXXX flag).
2966  */
2967 static void
2968 general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2969 {
2970 	struct drm_i915_private *i915 = engine->i915;
2971 
2972 	add_render_compute_tuning_settings(i915, wal);
2973 
2974 	if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_B0, STEP_FOREVER) ||
2975 	    IS_MTL_GRAPHICS_STEP(i915, P, STEP_B0, STEP_FOREVER))
2976 		/* Wa_14017856879 */
2977 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN3, MTL_DISABLE_FIX_FOR_EOT_FLUSH);
2978 
2979 	if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
2980 	    IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0))
2981 		/*
2982 		 * Wa_14017066071
2983 		 * Wa_14017654203
2984 		 */
2985 		wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2986 				 MTL_DISABLE_SAMPLER_SC_OOO);
2987 
2988 	if (IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0))
2989 		/* Wa_22015279794 */
2990 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2991 				 DISABLE_PREFETCH_INTO_IC);
2992 
2993 	if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
2994 	    IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) ||
2995 	    IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) ||
2996 	    IS_DG2_G11(i915) || IS_DG2_G12(i915)) {
2997 		/* Wa_22013037850 */
2998 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW,
2999 				DISABLE_128B_EVICTION_COMMAND_UDW);
3000 	}
3001 
3002 	if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
3003 	    IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) ||
3004 	    IS_PONTEVECCHIO(i915) ||
3005 	    IS_DG2(i915)) {
3006 		/* Wa_22014226127 */
3007 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE);
3008 	}
3009 
3010 	if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
3011 	    IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) ||
3012 	    IS_DG2(i915)) {
3013 		/* Wa_18017747507 */
3014 		wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE);
3015 	}
3016 
3017 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) ||
3018 	    IS_DG2_G11(i915)) {
3019 		/*
3020 		 * Wa_22012826095:dg2
3021 		 * Wa_22013059131:dg2
3022 		 */
3023 		wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW,
3024 				     MAXREQS_PER_BANK,
3025 				     REG_FIELD_PREP(MAXREQS_PER_BANK, 2));
3026 
3027 		/* Wa_22013059131:dg2 */
3028 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0,
3029 				FORCE_1_SUB_MESSAGE_PER_FRAGMENT);
3030 	}
3031 
3032 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) {
3033 		/*
3034 		 * Wa_14010918519:dg2_g10
3035 		 *
3036 		 * LSC_CHICKEN_BIT_0 always reads back as 0 is this stepping,
3037 		 * so ignoring verification.
3038 		 */
3039 		wa_mcr_add(wal, LSC_CHICKEN_BIT_0_UDW, 0,
3040 			   FORCE_SLM_FENCE_SCOPE_TO_TILE | FORCE_UGM_FENCE_SCOPE_TO_TILE,
3041 			   0, false);
3042 	}
3043 
3044 	if (IS_XEHPSDV(i915)) {
3045 		/* Wa_1409954639 */
3046 		wa_mcr_masked_en(wal,
3047 				 GEN8_ROW_CHICKEN,
3048 				 SYSTOLIC_DOP_CLOCK_GATING_DIS);
3049 
3050 		/* Wa_1607196519 */
3051 		wa_mcr_masked_en(wal,
3052 				 GEN9_ROW_CHICKEN4,
3053 				 GEN12_DISABLE_GRF_CLEAR);
3054 
3055 		/* Wa_14010449647:xehpsdv */
3056 		wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
3057 				 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
3058 	}
3059 
3060 	if (IS_DG2(i915) || IS_PONTEVECCHIO(i915)) {
3061 		/* Wa_14015227452:dg2,pvc */
3062 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE);
3063 
3064 		/* Wa_16015675438:dg2,pvc */
3065 		wa_masked_en(wal, FF_SLICE_CS_CHICKEN2, GEN12_PERF_FIX_BALANCING_CFE_DISABLE);
3066 	}
3067 
3068 	if (IS_DG2(i915)) {
3069 		/*
3070 		 * Wa_16011620976:dg2_g11
3071 		 * Wa_22015475538:dg2
3072 		 */
3073 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8);
3074 	}
3075 
3076 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_C0) || IS_DG2_G11(i915))
3077 		/*
3078 		 * Wa_22012654132
3079 		 *
3080 		 * Note that register 0xE420 is write-only and cannot be read
3081 		 * back for verification on DG2 (due to Wa_14012342262), so
3082 		 * we need to explicitly skip the readback.
3083 		 */
3084 		wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
3085 			   _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC),
3086 			   0 /* write-only, so skip validation */,
3087 			   true);
3088 }
3089 
3090 static void
3091 engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal)
3092 {
3093 	if (GRAPHICS_VER(engine->i915) < 4)
3094 		return;
3095 
3096 	engine_fake_wa_init(engine, wal);
3097 
3098 	/*
3099 	 * These are common workarounds that just need to applied
3100 	 * to a single RCS/CCS engine's workaround list since
3101 	 * they're reset as part of the general render domain reset.
3102 	 */
3103 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
3104 		general_render_compute_wa_init(engine, wal);
3105 
3106 	if (engine->class == COMPUTE_CLASS)
3107 		ccs_engine_wa_init(engine, wal);
3108 	else if (engine->class == RENDER_CLASS)
3109 		rcs_engine_wa_init(engine, wal);
3110 	else
3111 		xcs_engine_wa_init(engine, wal);
3112 }
3113 
3114 void intel_engine_init_workarounds(struct intel_engine_cs *engine)
3115 {
3116 	struct i915_wa_list *wal = &engine->wa_list;
3117 
3118 	wa_init_start(wal, engine->gt, "engine", engine->name);
3119 	engine_init_workarounds(engine, wal);
3120 	wa_init_finish(wal);
3121 }
3122 
3123 void intel_engine_apply_workarounds(struct intel_engine_cs *engine)
3124 {
3125 	wa_list_apply(&engine->wa_list);
3126 }
3127 
3128 static const struct i915_range mcr_ranges_gen8[] = {
3129 	{ .start = 0x5500, .end = 0x55ff },
3130 	{ .start = 0x7000, .end = 0x7fff },
3131 	{ .start = 0x9400, .end = 0x97ff },
3132 	{ .start = 0xb000, .end = 0xb3ff },
3133 	{ .start = 0xe000, .end = 0xe7ff },
3134 	{},
3135 };
3136 
3137 static const struct i915_range mcr_ranges_gen12[] = {
3138 	{ .start =  0x8150, .end =  0x815f },
3139 	{ .start =  0x9520, .end =  0x955f },
3140 	{ .start =  0xb100, .end =  0xb3ff },
3141 	{ .start =  0xde80, .end =  0xe8ff },
3142 	{ .start = 0x24a00, .end = 0x24a7f },
3143 	{},
3144 };
3145 
3146 static const struct i915_range mcr_ranges_xehp[] = {
3147 	{ .start =  0x4000, .end =  0x4aff },
3148 	{ .start =  0x5200, .end =  0x52ff },
3149 	{ .start =  0x5400, .end =  0x7fff },
3150 	{ .start =  0x8140, .end =  0x815f },
3151 	{ .start =  0x8c80, .end =  0x8dff },
3152 	{ .start =  0x94d0, .end =  0x955f },
3153 	{ .start =  0x9680, .end =  0x96ff },
3154 	{ .start =  0xb000, .end =  0xb3ff },
3155 	{ .start =  0xc800, .end =  0xcfff },
3156 	{ .start =  0xd800, .end =  0xd8ff },
3157 	{ .start =  0xdc00, .end =  0xffff },
3158 	{ .start = 0x17000, .end = 0x17fff },
3159 	{ .start = 0x24a00, .end = 0x24a7f },
3160 	{},
3161 };
3162 
3163 static bool mcr_range(struct drm_i915_private *i915, u32 offset)
3164 {
3165 	const struct i915_range *mcr_ranges;
3166 	int i;
3167 
3168 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
3169 		mcr_ranges = mcr_ranges_xehp;
3170 	else if (GRAPHICS_VER(i915) >= 12)
3171 		mcr_ranges = mcr_ranges_gen12;
3172 	else if (GRAPHICS_VER(i915) >= 8)
3173 		mcr_ranges = mcr_ranges_gen8;
3174 	else
3175 		return false;
3176 
3177 	/*
3178 	 * Registers in these ranges are affected by the MCR selector
3179 	 * which only controls CPU initiated MMIO. Routing does not
3180 	 * work for CS access so we cannot verify them on this path.
3181 	 */
3182 	for (i = 0; mcr_ranges[i].start; i++)
3183 		if (offset >= mcr_ranges[i].start &&
3184 		    offset <= mcr_ranges[i].end)
3185 			return true;
3186 
3187 	return false;
3188 }
3189 
3190 static int
3191 wa_list_srm(struct i915_request *rq,
3192 	    const struct i915_wa_list *wal,
3193 	    struct i915_vma *vma)
3194 {
3195 	struct drm_i915_private *i915 = rq->engine->i915;
3196 	unsigned int i, count = 0;
3197 	const struct i915_wa *wa;
3198 	u32 srm, *cs;
3199 
3200 	srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
3201 	if (GRAPHICS_VER(i915) >= 8)
3202 		srm++;
3203 
3204 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3205 		if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg)))
3206 			count++;
3207 	}
3208 
3209 	cs = intel_ring_begin(rq, 4 * count);
3210 	if (IS_ERR(cs))
3211 		return PTR_ERR(cs);
3212 
3213 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3214 		u32 offset = i915_mmio_reg_offset(wa->reg);
3215 
3216 		if (mcr_range(i915, offset))
3217 			continue;
3218 
3219 		*cs++ = srm;
3220 		*cs++ = offset;
3221 		*cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i;
3222 		*cs++ = 0;
3223 	}
3224 	intel_ring_advance(rq, cs);
3225 
3226 	return 0;
3227 }
3228 
3229 static int engine_wa_list_verify(struct intel_context *ce,
3230 				 const struct i915_wa_list * const wal,
3231 				 const char *from)
3232 {
3233 	const struct i915_wa *wa;
3234 	struct i915_request *rq;
3235 	struct i915_vma *vma;
3236 	struct i915_gem_ww_ctx ww;
3237 	unsigned int i;
3238 	u32 *results;
3239 	int err;
3240 
3241 	if (!wal->count)
3242 		return 0;
3243 
3244 	vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm,
3245 					   wal->count * sizeof(u32));
3246 	if (IS_ERR(vma))
3247 		return PTR_ERR(vma);
3248 
3249 	intel_engine_pm_get(ce->engine);
3250 	i915_gem_ww_ctx_init(&ww, false);
3251 retry:
3252 	err = i915_gem_object_lock(vma->obj, &ww);
3253 	if (err == 0)
3254 		err = intel_context_pin_ww(ce, &ww);
3255 	if (err)
3256 		goto err_pm;
3257 
3258 	err = i915_vma_pin_ww(vma, &ww, 0, 0,
3259 			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
3260 	if (err)
3261 		goto err_unpin;
3262 
3263 	rq = i915_request_create(ce);
3264 	if (IS_ERR(rq)) {
3265 		err = PTR_ERR(rq);
3266 		goto err_vma;
3267 	}
3268 
3269 	err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
3270 	if (err == 0)
3271 		err = wa_list_srm(rq, wal, vma);
3272 
3273 	i915_request_get(rq);
3274 	if (err)
3275 		i915_request_set_error_once(rq, err);
3276 	i915_request_add(rq);
3277 
3278 	if (err)
3279 		goto err_rq;
3280 
3281 	if (i915_request_wait(rq, 0, HZ / 5) < 0) {
3282 		err = -ETIME;
3283 		goto err_rq;
3284 	}
3285 
3286 	results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
3287 	if (IS_ERR(results)) {
3288 		err = PTR_ERR(results);
3289 		goto err_rq;
3290 	}
3291 
3292 	err = 0;
3293 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3294 		if (mcr_range(rq->engine->i915, i915_mmio_reg_offset(wa->reg)))
3295 			continue;
3296 
3297 		if (!wa_verify(wal->gt, wa, results[i], wal->name, from))
3298 			err = -ENXIO;
3299 	}
3300 
3301 	i915_gem_object_unpin_map(vma->obj);
3302 
3303 err_rq:
3304 	i915_request_put(rq);
3305 err_vma:
3306 	i915_vma_unpin(vma);
3307 err_unpin:
3308 	intel_context_unpin(ce);
3309 err_pm:
3310 	if (err == -EDEADLK) {
3311 		err = i915_gem_ww_ctx_backoff(&ww);
3312 		if (!err)
3313 			goto retry;
3314 	}
3315 	i915_gem_ww_ctx_fini(&ww);
3316 	intel_engine_pm_put(ce->engine);
3317 	i915_vma_put(vma);
3318 	return err;
3319 }
3320 
3321 int intel_engine_verify_workarounds(struct intel_engine_cs *engine,
3322 				    const char *from)
3323 {
3324 	return engine_wa_list_verify(engine->kernel_context,
3325 				     &engine->wa_list,
3326 				     from);
3327 }
3328 
3329 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3330 #include "selftest_workarounds.c"
3331 #endif
3332