1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2018 Intel Corporation 4 */ 5 6 #include "i915_drv.h" 7 #include "i915_reg.h" 8 #include "intel_context.h" 9 #include "intel_engine_pm.h" 10 #include "intel_engine_regs.h" 11 #include "intel_gpu_commands.h" 12 #include "intel_gt.h" 13 #include "intel_gt_mcr.h" 14 #include "intel_gt_regs.h" 15 #include "intel_ring.h" 16 #include "intel_workarounds.h" 17 18 /** 19 * DOC: Hardware workarounds 20 * 21 * Hardware workarounds are register programming documented to be executed in 22 * the driver that fall outside of the normal programming sequences for a 23 * platform. There are some basic categories of workarounds, depending on 24 * how/when they are applied: 25 * 26 * - Context workarounds: workarounds that touch registers that are 27 * saved/restored to/from the HW context image. The list is emitted (via Load 28 * Register Immediate commands) once when initializing the device and saved in 29 * the default context. That default context is then used on every context 30 * creation to have a "primed golden context", i.e. a context image that 31 * already contains the changes needed to all the registers. 32 * 33 * Context workarounds should be implemented in the \*_ctx_workarounds_init() 34 * variants respective to the targeted platforms. 35 * 36 * - Engine workarounds: the list of these WAs is applied whenever the specific 37 * engine is reset. It's also possible that a set of engine classes share a 38 * common power domain and they are reset together. This happens on some 39 * platforms with render and compute engines. In this case (at least) one of 40 * them need to keeep the workaround programming: the approach taken in the 41 * driver is to tie those workarounds to the first compute/render engine that 42 * is registered. When executing with GuC submission, engine resets are 43 * outside of kernel driver control, hence the list of registers involved in 44 * written once, on engine initialization, and then passed to GuC, that 45 * saves/restores their values before/after the reset takes place. See 46 * ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference. 47 * 48 * Workarounds for registers specific to RCS and CCS should be implemented in 49 * rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for 50 * registers belonging to BCS, VCS or VECS should be implemented in 51 * xcs_engine_wa_init(). Workarounds for registers not belonging to a specific 52 * engine's MMIO range but that are part of of the common RCS/CCS reset domain 53 * should be implemented in general_render_compute_wa_init(). 54 * 55 * - GT workarounds: the list of these WAs is applied whenever these registers 56 * revert to their default values: on GPU reset, suspend/resume [1]_, etc. 57 * 58 * GT workarounds should be implemented in the \*_gt_workarounds_init() 59 * variants respective to the targeted platforms. 60 * 61 * - Register whitelist: some workarounds need to be implemented in userspace, 62 * but need to touch privileged registers. The whitelist in the kernel 63 * instructs the hardware to allow the access to happen. From the kernel side, 64 * this is just a special case of a MMIO workaround (as we write the list of 65 * these to/be-whitelisted registers to some special HW registers). 66 * 67 * Register whitelisting should be done in the \*_whitelist_build() variants 68 * respective to the targeted platforms. 69 * 70 * - Workaround batchbuffers: buffers that get executed automatically by the 71 * hardware on every HW context restore. These buffers are created and 72 * programmed in the default context so the hardware always go through those 73 * programming sequences when switching contexts. The support for workaround 74 * batchbuffers is enabled these hardware mechanisms: 75 * 76 * #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default 77 * context, pointing the hardware to jump to that location when that offset 78 * is reached in the context restore. Workaround batchbuffer in the driver 79 * currently uses this mechanism for all platforms. 80 * 81 * #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context, 82 * pointing the hardware to a buffer to continue executing after the 83 * engine registers are restored in a context restore sequence. This is 84 * currently not used in the driver. 85 * 86 * - Other: There are WAs that, due to their nature, cannot be applied from a 87 * central place. Those are peppered around the rest of the code, as needed. 88 * Workarounds related to the display IP are the main example. 89 * 90 * .. [1] Technically, some registers are powercontext saved & restored, so they 91 * survive a suspend/resume. In practice, writing them again is not too 92 * costly and simplifies things, so it's the approach taken in the driver. 93 */ 94 95 static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt, 96 const char *name, const char *engine_name) 97 { 98 wal->gt = gt; 99 wal->name = name; 100 wal->engine_name = engine_name; 101 } 102 103 #define WA_LIST_CHUNK (1 << 4) 104 105 static void wa_init_finish(struct i915_wa_list *wal) 106 { 107 /* Trim unused entries. */ 108 if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) { 109 struct i915_wa *list = kmemdup(wal->list, 110 wal->count * sizeof(*list), 111 GFP_KERNEL); 112 113 if (list) { 114 kfree(wal->list); 115 wal->list = list; 116 } 117 } 118 119 if (!wal->count) 120 return; 121 122 drm_dbg(&wal->gt->i915->drm, "Initialized %u %s workarounds on %s\n", 123 wal->wa_count, wal->name, wal->engine_name); 124 } 125 126 static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa) 127 { 128 unsigned int addr = i915_mmio_reg_offset(wa->reg); 129 struct drm_i915_private *i915 = wal->gt->i915; 130 unsigned int start = 0, end = wal->count; 131 const unsigned int grow = WA_LIST_CHUNK; 132 struct i915_wa *wa_; 133 134 GEM_BUG_ON(!is_power_of_2(grow)); 135 136 if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */ 137 struct i915_wa *list; 138 139 list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa), 140 GFP_KERNEL); 141 if (!list) { 142 drm_err(&i915->drm, "No space for workaround init!\n"); 143 return; 144 } 145 146 if (wal->list) { 147 memcpy(list, wal->list, sizeof(*wa) * wal->count); 148 kfree(wal->list); 149 } 150 151 wal->list = list; 152 } 153 154 while (start < end) { 155 unsigned int mid = start + (end - start) / 2; 156 157 if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) { 158 start = mid + 1; 159 } else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) { 160 end = mid; 161 } else { 162 wa_ = &wal->list[mid]; 163 164 if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) { 165 drm_err(&i915->drm, 166 "Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n", 167 i915_mmio_reg_offset(wa_->reg), 168 wa_->clr, wa_->set); 169 170 wa_->set &= ~wa->clr; 171 } 172 173 wal->wa_count++; 174 wa_->set |= wa->set; 175 wa_->clr |= wa->clr; 176 wa_->read |= wa->read; 177 return; 178 } 179 } 180 181 wal->wa_count++; 182 wa_ = &wal->list[wal->count++]; 183 *wa_ = *wa; 184 185 while (wa_-- > wal->list) { 186 GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) == 187 i915_mmio_reg_offset(wa_[1].reg)); 188 if (i915_mmio_reg_offset(wa_[1].reg) > 189 i915_mmio_reg_offset(wa_[0].reg)) 190 break; 191 192 swap(wa_[1], wa_[0]); 193 } 194 } 195 196 static void wa_add(struct i915_wa_list *wal, i915_reg_t reg, 197 u32 clear, u32 set, u32 read_mask, bool masked_reg) 198 { 199 struct i915_wa wa = { 200 .reg = reg, 201 .clr = clear, 202 .set = set, 203 .read = read_mask, 204 .masked_reg = masked_reg, 205 }; 206 207 _wa_add(wal, &wa); 208 } 209 210 static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg, 211 u32 clear, u32 set, u32 read_mask, bool masked_reg) 212 { 213 struct i915_wa wa = { 214 .mcr_reg = reg, 215 .clr = clear, 216 .set = set, 217 .read = read_mask, 218 .masked_reg = masked_reg, 219 .is_mcr = 1, 220 }; 221 222 _wa_add(wal, &wa); 223 } 224 225 static void 226 wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set) 227 { 228 wa_add(wal, reg, clear, set, clear, false); 229 } 230 231 static void 232 wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set) 233 { 234 wa_mcr_add(wal, reg, clear, set, clear, false); 235 } 236 237 static void 238 wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set) 239 { 240 wa_write_clr_set(wal, reg, ~0, set); 241 } 242 243 static void 244 wa_mcr_write(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set) 245 { 246 wa_mcr_write_clr_set(wal, reg, ~0, set); 247 } 248 249 static void 250 wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set) 251 { 252 wa_write_clr_set(wal, reg, set, set); 253 } 254 255 static void 256 wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set) 257 { 258 wa_mcr_write_clr_set(wal, reg, set, set); 259 } 260 261 static void 262 wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr) 263 { 264 wa_write_clr_set(wal, reg, clr, 0); 265 } 266 267 static void 268 wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr) 269 { 270 wa_mcr_write_clr_set(wal, reg, clr, 0); 271 } 272 273 /* 274 * WA operations on "masked register". A masked register has the upper 16 bits 275 * documented as "masked" in b-spec. Its purpose is to allow writing to just a 276 * portion of the register without a rmw: you simply write in the upper 16 bits 277 * the mask of bits you are going to modify. 278 * 279 * The wa_masked_* family of functions already does the necessary operations to 280 * calculate the mask based on the parameters passed, so user only has to 281 * provide the lower 16 bits of that register. 282 */ 283 284 static void 285 wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val) 286 { 287 wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true); 288 } 289 290 static void 291 wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val) 292 { 293 wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true); 294 } 295 296 static void 297 wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val) 298 { 299 wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true); 300 } 301 302 static void 303 wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val) 304 { 305 wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true); 306 } 307 308 static void 309 wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg, 310 u32 mask, u32 val) 311 { 312 wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true); 313 } 314 315 static void 316 wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, 317 u32 mask, u32 val) 318 { 319 wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true); 320 } 321 322 static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine, 323 struct i915_wa_list *wal) 324 { 325 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING); 326 } 327 328 static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine, 329 struct i915_wa_list *wal) 330 { 331 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING); 332 } 333 334 static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine, 335 struct i915_wa_list *wal) 336 { 337 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING); 338 339 /* WaDisableAsyncFlipPerfMode:bdw,chv */ 340 wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE); 341 342 /* WaDisablePartialInstShootdown:bdw,chv */ 343 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, 344 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE); 345 346 /* Use Force Non-Coherent whenever executing a 3D context. This is a 347 * workaround for a possible hang in the unlikely event a TLB 348 * invalidation occurs during a PSD flush. 349 */ 350 /* WaForceEnableNonCoherent:bdw,chv */ 351 /* WaHdcDisableFetchWhenMasked:bdw,chv */ 352 wa_masked_en(wal, HDC_CHICKEN0, 353 HDC_DONOT_FETCH_MEM_WHEN_MASKED | 354 HDC_FORCE_NON_COHERENT); 355 356 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0: 357 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping 358 * polygons in the same 8x4 pixel/sample area to be processed without 359 * stalling waiting for the earlier ones to write to Hierarchical Z 360 * buffer." 361 * 362 * This optimization is off by default for BDW and CHV; turn it on. 363 */ 364 wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE); 365 366 /* Wa4x4STCOptimizationDisable:bdw,chv */ 367 wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE); 368 369 /* 370 * BSpec recommends 8x4 when MSAA is used, 371 * however in practice 16x4 seems fastest. 372 * 373 * Note that PS/WM thread counts depend on the WIZ hashing 374 * disable bit, which we don't touch here, but it's good 375 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). 376 */ 377 wa_masked_field_set(wal, GEN7_GT_MODE, 378 GEN6_WIZ_HASHING_MASK, 379 GEN6_WIZ_HASHING_16x4); 380 } 381 382 static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine, 383 struct i915_wa_list *wal) 384 { 385 struct drm_i915_private *i915 = engine->i915; 386 387 gen8_ctx_workarounds_init(engine, wal); 388 389 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */ 390 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE); 391 392 /* WaDisableDopClockGating:bdw 393 * 394 * Also see the related UCGTCL1 write in bdw_init_clock_gating() 395 * to disable EUTC clock gating. 396 */ 397 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, 398 DOP_CLOCK_GATING_DISABLE); 399 400 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3, 401 GEN8_SAMPLER_POWER_BYPASS_DIS); 402 403 wa_masked_en(wal, HDC_CHICKEN0, 404 /* WaForceContextSaveRestoreNonCoherent:bdw */ 405 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT | 406 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */ 407 (IS_BDW_GT3(i915) ? HDC_FENCE_DEST_SLM_DISABLE : 0)); 408 } 409 410 static void chv_ctx_workarounds_init(struct intel_engine_cs *engine, 411 struct i915_wa_list *wal) 412 { 413 gen8_ctx_workarounds_init(engine, wal); 414 415 /* WaDisableThreadStallDopClockGating:chv */ 416 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE); 417 418 /* Improve HiZ throughput on CHV. */ 419 wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X); 420 } 421 422 static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine, 423 struct i915_wa_list *wal) 424 { 425 struct drm_i915_private *i915 = engine->i915; 426 427 if (HAS_LLC(i915)) { 428 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl 429 * 430 * Must match Display Engine. See 431 * WaCompressedResourceDisplayNewHashMode. 432 */ 433 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 434 GEN9_PBE_COMPRESSED_HASH_SELECTION); 435 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7, 436 GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR); 437 } 438 439 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */ 440 /* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */ 441 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, 442 FLOW_CONTROL_ENABLE | 443 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE); 444 445 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */ 446 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */ 447 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7, 448 GEN9_ENABLE_YV12_BUGFIX | 449 GEN9_ENABLE_GPGPU_PREEMPTION); 450 451 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */ 452 /* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */ 453 wa_masked_en(wal, CACHE_MODE_1, 454 GEN8_4x4_STC_OPTIMIZATION_DISABLE | 455 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE); 456 457 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */ 458 wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5, 459 GEN9_CCS_TLB_PREFETCH_ENABLE); 460 461 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */ 462 wa_masked_en(wal, HDC_CHICKEN0, 463 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT | 464 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE); 465 466 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are 467 * both tied to WaForceContextSaveRestoreNonCoherent 468 * in some hsds for skl. We keep the tie for all gen9. The 469 * documentation is a bit hazy and so we want to get common behaviour, 470 * even though there is no clear evidence we would need both on kbl/bxt. 471 * This area has been source of system hangs so we play it safe 472 * and mimic the skl regardless of what bspec says. 473 * 474 * Use Force Non-Coherent whenever executing a 3D context. This 475 * is a workaround for a possible hang in the unlikely event 476 * a TLB invalidation occurs during a PSD flush. 477 */ 478 479 /* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */ 480 wa_masked_en(wal, HDC_CHICKEN0, 481 HDC_FORCE_NON_COHERENT); 482 483 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */ 484 if (IS_SKYLAKE(i915) || 485 IS_KABYLAKE(i915) || 486 IS_COFFEELAKE(i915) || 487 IS_COMETLAKE(i915)) 488 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3, 489 GEN8_SAMPLER_POWER_BYPASS_DIS); 490 491 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */ 492 wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE); 493 494 /* 495 * Supporting preemption with fine-granularity requires changes in the 496 * batch buffer programming. Since we can't break old userspace, we 497 * need to set our default preemption level to safe value. Userspace is 498 * still able to use more fine-grained preemption levels, since in 499 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the 500 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are 501 * not real HW workarounds, but merely a way to start using preemption 502 * while maintaining old contract with userspace. 503 */ 504 505 /* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */ 506 wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL); 507 508 /* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */ 509 wa_masked_field_set(wal, GEN8_CS_CHICKEN1, 510 GEN9_PREEMPT_GPGPU_LEVEL_MASK, 511 GEN9_PREEMPT_GPGPU_COMMAND_LEVEL); 512 513 /* WaClearHIZ_WM_CHICKEN3:bxt,glk */ 514 if (IS_GEN9_LP(i915)) 515 wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ); 516 } 517 518 static void skl_tune_iz_hashing(struct intel_engine_cs *engine, 519 struct i915_wa_list *wal) 520 { 521 struct intel_gt *gt = engine->gt; 522 u8 vals[3] = { 0, 0, 0 }; 523 unsigned int i; 524 525 for (i = 0; i < 3; i++) { 526 u8 ss; 527 528 /* 529 * Only consider slices where one, and only one, subslice has 7 530 * EUs 531 */ 532 if (!is_power_of_2(gt->info.sseu.subslice_7eu[i])) 533 continue; 534 535 /* 536 * subslice_7eu[i] != 0 (because of the check above) and 537 * ss_max == 4 (maximum number of subslices possible per slice) 538 * 539 * -> 0 <= ss <= 3; 540 */ 541 ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1; 542 vals[i] = 3 - ss; 543 } 544 545 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0) 546 return; 547 548 /* Tune IZ hashing. See intel_device_info_runtime_init() */ 549 wa_masked_field_set(wal, GEN7_GT_MODE, 550 GEN9_IZ_HASHING_MASK(2) | 551 GEN9_IZ_HASHING_MASK(1) | 552 GEN9_IZ_HASHING_MASK(0), 553 GEN9_IZ_HASHING(2, vals[2]) | 554 GEN9_IZ_HASHING(1, vals[1]) | 555 GEN9_IZ_HASHING(0, vals[0])); 556 } 557 558 static void skl_ctx_workarounds_init(struct intel_engine_cs *engine, 559 struct i915_wa_list *wal) 560 { 561 gen9_ctx_workarounds_init(engine, wal); 562 skl_tune_iz_hashing(engine, wal); 563 } 564 565 static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine, 566 struct i915_wa_list *wal) 567 { 568 gen9_ctx_workarounds_init(engine, wal); 569 570 /* WaDisableThreadStallDopClockGating:bxt */ 571 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, 572 STALL_DOP_GATING_DISABLE); 573 574 /* WaToEnableHwFixForPushConstHWBug:bxt */ 575 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 576 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); 577 } 578 579 static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine, 580 struct i915_wa_list *wal) 581 { 582 struct drm_i915_private *i915 = engine->i915; 583 584 gen9_ctx_workarounds_init(engine, wal); 585 586 /* WaToEnableHwFixForPushConstHWBug:kbl */ 587 if (IS_KBL_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER)) 588 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 589 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); 590 591 /* WaDisableSbeCacheDispatchPortSharing:kbl */ 592 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1, 593 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE); 594 } 595 596 static void glk_ctx_workarounds_init(struct intel_engine_cs *engine, 597 struct i915_wa_list *wal) 598 { 599 gen9_ctx_workarounds_init(engine, wal); 600 601 /* WaToEnableHwFixForPushConstHWBug:glk */ 602 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 603 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); 604 } 605 606 static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine, 607 struct i915_wa_list *wal) 608 { 609 gen9_ctx_workarounds_init(engine, wal); 610 611 /* WaToEnableHwFixForPushConstHWBug:cfl */ 612 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 613 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); 614 615 /* WaDisableSbeCacheDispatchPortSharing:cfl */ 616 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1, 617 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE); 618 } 619 620 static void icl_ctx_workarounds_init(struct intel_engine_cs *engine, 621 struct i915_wa_list *wal) 622 { 623 /* Wa_1406697149 (WaDisableBankHangMode:icl) */ 624 wa_write(wal, 625 GEN8_L3CNTLREG, 626 intel_uncore_read(engine->uncore, GEN8_L3CNTLREG) | 627 GEN8_ERRDETBCTRL); 628 629 /* WaForceEnableNonCoherent:icl 630 * This is not the same workaround as in early Gen9 platforms, where 631 * lacking this could cause system hangs, but coherency performance 632 * overhead is high and only a few compute workloads really need it 633 * (the register is whitelisted in hardware now, so UMDs can opt in 634 * for coherency if they have a good reason). 635 */ 636 wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT); 637 638 /* WaEnableFloatBlendOptimization:icl */ 639 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0, 640 _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE), 641 0 /* write-only, so skip validation */, 642 true); 643 644 /* WaDisableGPGPUMidThreadPreemption:icl */ 645 wa_masked_field_set(wal, GEN8_CS_CHICKEN1, 646 GEN9_PREEMPT_GPGPU_LEVEL_MASK, 647 GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL); 648 649 /* allow headerless messages for preemptible GPGPU context */ 650 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, 651 GEN11_SAMPLER_ENABLE_HEADLESS_MSG); 652 653 /* Wa_1604278689:icl,ehl */ 654 wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID); 655 wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER, 656 0, /* write-only register; skip validation */ 657 0xFFFFFFFF); 658 659 /* Wa_1406306137:icl,ehl */ 660 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU); 661 } 662 663 /* 664 * These settings aren't actually workarounds, but general tuning settings that 665 * need to be programmed on dg2 platform. 666 */ 667 static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine, 668 struct i915_wa_list *wal) 669 { 670 wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP); 671 wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK, 672 REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f)); 673 wa_mcr_add(wal, 674 XEHP_FF_MODE2, 675 FF_MODE2_TDS_TIMER_MASK, 676 FF_MODE2_TDS_TIMER_128, 677 0, false); 678 } 679 680 /* 681 * These settings aren't actually workarounds, but general tuning settings that 682 * need to be programmed on several platforms. 683 */ 684 static void gen12_ctx_gt_tuning_init(struct intel_engine_cs *engine, 685 struct i915_wa_list *wal) 686 { 687 /* 688 * Although some platforms refer to it as Wa_1604555607, we need to 689 * program it even on those that don't explicitly list that 690 * workaround. 691 * 692 * Note that the programming of this register is further modified 693 * according to the FF_MODE2 guidance given by Wa_1608008084:gen12. 694 * Wa_1608008084 tells us the FF_MODE2 register will return the wrong 695 * value when read. The default value for this register is zero for all 696 * fields and there are no bit masks. So instead of doing a RMW we 697 * should just write TDS timer value. For the same reason read 698 * verification is ignored. 699 */ 700 wa_add(wal, 701 GEN12_FF_MODE2, 702 FF_MODE2_TDS_TIMER_MASK, 703 FF_MODE2_TDS_TIMER_128, 704 0, false); 705 } 706 707 static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine, 708 struct i915_wa_list *wal) 709 { 710 struct drm_i915_private *i915 = engine->i915; 711 712 gen12_ctx_gt_tuning_init(engine, wal); 713 714 /* 715 * Wa_1409142259:tgl,dg1,adl-p 716 * Wa_1409347922:tgl,dg1,adl-p 717 * Wa_1409252684:tgl,dg1,adl-p 718 * Wa_1409217633:tgl,dg1,adl-p 719 * Wa_1409207793:tgl,dg1,adl-p 720 * Wa_1409178076:tgl,dg1,adl-p 721 * Wa_1408979724:tgl,dg1,adl-p 722 * Wa_14010443199:tgl,rkl,dg1,adl-p 723 * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p 724 * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p 725 */ 726 wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3, 727 GEN12_DISABLE_CPS_AWARE_COLOR_PIPE); 728 729 /* WaDisableGPGPUMidThreadPreemption:gen12 */ 730 wa_masked_field_set(wal, GEN8_CS_CHICKEN1, 731 GEN9_PREEMPT_GPGPU_LEVEL_MASK, 732 GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL); 733 734 /* 735 * Wa_16011163337 736 * 737 * Like in gen12_ctx_gt_tuning_init(), read verification is ignored due 738 * to Wa_1608008084. 739 */ 740 wa_add(wal, 741 GEN12_FF_MODE2, 742 FF_MODE2_GS_TIMER_MASK, 743 FF_MODE2_GS_TIMER_224, 744 0, false); 745 746 if (!IS_DG1(i915)) { 747 /* Wa_1806527549 */ 748 wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE); 749 750 /* Wa_1606376872 */ 751 wa_masked_en(wal, COMMON_SLICE_CHICKEN4, DISABLE_TDC_LOAD_BALANCING_CALC); 752 } 753 } 754 755 static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine, 756 struct i915_wa_list *wal) 757 { 758 gen12_ctx_workarounds_init(engine, wal); 759 760 /* Wa_1409044764 */ 761 wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3, 762 DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN); 763 764 /* Wa_22010493298 */ 765 wa_masked_en(wal, HIZ_CHICKEN, 766 DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE); 767 } 768 769 static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine, 770 struct i915_wa_list *wal) 771 { 772 dg2_ctx_gt_tuning_init(engine, wal); 773 774 /* Wa_16011186671:dg2_g11 */ 775 if (IS_DG2_GRAPHICS_STEP(engine->i915, G11, STEP_A0, STEP_B0)) { 776 wa_mcr_masked_dis(wal, VFLSKPD, DIS_MULT_MISS_RD_SQUASH); 777 wa_mcr_masked_en(wal, VFLSKPD, DIS_OVER_FETCH_CACHE); 778 } 779 780 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0)) { 781 /* Wa_14010469329:dg2_g10 */ 782 wa_mcr_masked_en(wal, XEHP_COMMON_SLICE_CHICKEN3, 783 XEHP_DUAL_SIMD8_SEQ_MERGE_DISABLE); 784 785 /* 786 * Wa_22010465075:dg2_g10 787 * Wa_22010613112:dg2_g10 788 * Wa_14010698770:dg2_g10 789 */ 790 wa_mcr_masked_en(wal, XEHP_COMMON_SLICE_CHICKEN3, 791 GEN12_DISABLE_CPS_AWARE_COLOR_PIPE); 792 } 793 794 /* Wa_16013271637:dg2 */ 795 wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1, 796 MSC_MSAA_REODER_BUF_BYPASS_DISABLE); 797 798 /* Wa_14014947963:dg2 */ 799 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_B0, STEP_FOREVER) || 800 IS_DG2_G11(engine->i915) || IS_DG2_G12(engine->i915)) 801 wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000); 802 803 /* Wa_18018764978:dg2 */ 804 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_C0, STEP_FOREVER) || 805 IS_DG2_G11(engine->i915) || IS_DG2_G12(engine->i915)) 806 wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL); 807 808 /* Wa_15010599737:dg2 */ 809 wa_mcr_masked_en(wal, CHICKEN_RASTER_1, DIS_SF_ROUND_NEAREST_EVEN); 810 811 /* Wa_18019271663:dg2 */ 812 wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE); 813 } 814 815 static void mtl_ctx_workarounds_init(struct intel_engine_cs *engine, 816 struct i915_wa_list *wal) 817 { 818 struct drm_i915_private *i915 = engine->i915; 819 820 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) || 821 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0)) { 822 /* Wa_14014947963 */ 823 wa_masked_field_set(wal, VF_PREEMPTION, 824 PREEMPTION_VERTEX_COUNT, 0x4000); 825 826 /* Wa_16013271637 */ 827 wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1, 828 MSC_MSAA_REODER_BUF_BYPASS_DISABLE); 829 830 /* Wa_18019627453 */ 831 wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS); 832 833 /* Wa_18018764978 */ 834 wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL); 835 } 836 837 /* Wa_18019271663 */ 838 wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE); 839 } 840 841 static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine, 842 struct i915_wa_list *wal) 843 { 844 /* 845 * This is a "fake" workaround defined by software to ensure we 846 * maintain reliable, backward-compatible behavior for userspace with 847 * regards to how nested MI_BATCH_BUFFER_START commands are handled. 848 * 849 * The per-context setting of MI_MODE[12] determines whether the bits 850 * of a nested MI_BATCH_BUFFER_START instruction should be interpreted 851 * in the traditional manner or whether they should instead use a new 852 * tgl+ meaning that breaks backward compatibility, but allows nesting 853 * into 3rd-level batchbuffers. When this new capability was first 854 * added in TGL, it remained off by default unless a context 855 * intentionally opted in to the new behavior. However Xe_HPG now 856 * flips this on by default and requires that we explicitly opt out if 857 * we don't want the new behavior. 858 * 859 * From a SW perspective, we want to maintain the backward-compatible 860 * behavior for userspace, so we'll apply a fake workaround to set it 861 * back to the legacy behavior on platforms where the hardware default 862 * is to break compatibility. At the moment there is no Linux 863 * userspace that utilizes third-level batchbuffers, so this will avoid 864 * userspace from needing to make any changes. using the legacy 865 * meaning is the correct thing to do. If/when we have userspace 866 * consumers that want to utilize third-level batch nesting, we can 867 * provide a context parameter to allow them to opt-in. 868 */ 869 wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN); 870 } 871 872 static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine, 873 struct i915_wa_list *wal) 874 { 875 u8 mocs; 876 877 /* 878 * Some blitter commands do not have a field for MOCS, those 879 * commands will use MOCS index pointed by BLIT_CCTL. 880 * BLIT_CCTL registers are needed to be programmed to un-cached. 881 */ 882 if (engine->class == COPY_ENGINE_CLASS) { 883 mocs = engine->gt->mocs.uc_index; 884 wa_write_clr_set(wal, 885 BLIT_CCTL(engine->mmio_base), 886 BLIT_CCTL_MASK, 887 BLIT_CCTL_MOCS(mocs, mocs)); 888 } 889 } 890 891 /* 892 * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround 893 * defined by the hardware team, but it programming general context registers. 894 * Adding those context register programming in context workaround 895 * allow us to use the wa framework for proper application and validation. 896 */ 897 static void 898 gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine, 899 struct i915_wa_list *wal) 900 { 901 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) 902 fakewa_disable_nestedbb_mode(engine, wal); 903 904 gen12_ctx_gt_mocs_init(engine, wal); 905 } 906 907 static void 908 __intel_engine_init_ctx_wa(struct intel_engine_cs *engine, 909 struct i915_wa_list *wal, 910 const char *name) 911 { 912 struct drm_i915_private *i915 = engine->i915; 913 914 wa_init_start(wal, engine->gt, name, engine->name); 915 916 /* Applies to all engines */ 917 /* 918 * Fake workarounds are not the actual workaround but 919 * programming of context registers using workaround framework. 920 */ 921 if (GRAPHICS_VER(i915) >= 12) 922 gen12_ctx_gt_fake_wa_init(engine, wal); 923 924 if (engine->class != RENDER_CLASS) 925 goto done; 926 927 if (IS_METEORLAKE(i915)) 928 mtl_ctx_workarounds_init(engine, wal); 929 else if (IS_PONTEVECCHIO(i915)) 930 ; /* noop; none at this time */ 931 else if (IS_DG2(i915)) 932 dg2_ctx_workarounds_init(engine, wal); 933 else if (IS_XEHPSDV(i915)) 934 ; /* noop; none at this time */ 935 else if (IS_DG1(i915)) 936 dg1_ctx_workarounds_init(engine, wal); 937 else if (GRAPHICS_VER(i915) == 12) 938 gen12_ctx_workarounds_init(engine, wal); 939 else if (GRAPHICS_VER(i915) == 11) 940 icl_ctx_workarounds_init(engine, wal); 941 else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) 942 cfl_ctx_workarounds_init(engine, wal); 943 else if (IS_GEMINILAKE(i915)) 944 glk_ctx_workarounds_init(engine, wal); 945 else if (IS_KABYLAKE(i915)) 946 kbl_ctx_workarounds_init(engine, wal); 947 else if (IS_BROXTON(i915)) 948 bxt_ctx_workarounds_init(engine, wal); 949 else if (IS_SKYLAKE(i915)) 950 skl_ctx_workarounds_init(engine, wal); 951 else if (IS_CHERRYVIEW(i915)) 952 chv_ctx_workarounds_init(engine, wal); 953 else if (IS_BROADWELL(i915)) 954 bdw_ctx_workarounds_init(engine, wal); 955 else if (GRAPHICS_VER(i915) == 7) 956 gen7_ctx_workarounds_init(engine, wal); 957 else if (GRAPHICS_VER(i915) == 6) 958 gen6_ctx_workarounds_init(engine, wal); 959 else if (GRAPHICS_VER(i915) < 8) 960 ; 961 else 962 MISSING_CASE(GRAPHICS_VER(i915)); 963 964 done: 965 wa_init_finish(wal); 966 } 967 968 void intel_engine_init_ctx_wa(struct intel_engine_cs *engine) 969 { 970 __intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context"); 971 } 972 973 int intel_engine_emit_ctx_wa(struct i915_request *rq) 974 { 975 struct i915_wa_list *wal = &rq->engine->ctx_wa_list; 976 struct i915_wa *wa; 977 unsigned int i; 978 u32 *cs; 979 int ret; 980 981 if (wal->count == 0) 982 return 0; 983 984 ret = rq->engine->emit_flush(rq, EMIT_BARRIER); 985 if (ret) 986 return ret; 987 988 cs = intel_ring_begin(rq, (wal->count * 2 + 2)); 989 if (IS_ERR(cs)) 990 return PTR_ERR(cs); 991 992 *cs++ = MI_LOAD_REGISTER_IMM(wal->count); 993 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 994 *cs++ = i915_mmio_reg_offset(wa->reg); 995 *cs++ = wa->set; 996 } 997 *cs++ = MI_NOOP; 998 999 intel_ring_advance(rq, cs); 1000 1001 ret = rq->engine->emit_flush(rq, EMIT_BARRIER); 1002 if (ret) 1003 return ret; 1004 1005 return 0; 1006 } 1007 1008 static void 1009 gen4_gt_workarounds_init(struct intel_gt *gt, 1010 struct i915_wa_list *wal) 1011 { 1012 /* WaDisable_RenderCache_OperationalFlush:gen4,ilk */ 1013 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE); 1014 } 1015 1016 static void 1017 g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1018 { 1019 gen4_gt_workarounds_init(gt, wal); 1020 1021 /* WaDisableRenderCachePipelinedFlush:g4x,ilk */ 1022 wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE); 1023 } 1024 1025 static void 1026 ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1027 { 1028 g4x_gt_workarounds_init(gt, wal); 1029 1030 wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED); 1031 } 1032 1033 static void 1034 snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1035 { 1036 } 1037 1038 static void 1039 ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1040 { 1041 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */ 1042 wa_masked_dis(wal, 1043 GEN7_COMMON_SLICE_CHICKEN1, 1044 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC); 1045 1046 /* WaApplyL3ControlAndL3ChickenMode:ivb */ 1047 wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL); 1048 wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE); 1049 1050 /* WaForceL3Serialization:ivb */ 1051 wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE); 1052 } 1053 1054 static void 1055 vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1056 { 1057 /* WaForceL3Serialization:vlv */ 1058 wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE); 1059 1060 /* 1061 * WaIncreaseL3CreditsForVLVB0:vlv 1062 * This is the hardware default actually. 1063 */ 1064 wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE); 1065 } 1066 1067 static void 1068 hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1069 { 1070 /* L3 caching of data atomics doesn't work -- disable it. */ 1071 wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE); 1072 1073 wa_add(wal, 1074 HSW_ROW_CHICKEN3, 0, 1075 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE), 1076 0 /* XXX does this reg exist? */, true); 1077 1078 /* WaVSRefCountFullforceMissDisable:hsw */ 1079 wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME); 1080 } 1081 1082 static void 1083 gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal) 1084 { 1085 const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu; 1086 unsigned int slice, subslice; 1087 u32 mcr, mcr_mask; 1088 1089 GEM_BUG_ON(GRAPHICS_VER(i915) != 9); 1090 1091 /* 1092 * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml 1093 * Before any MMIO read into slice/subslice specific registers, MCR 1094 * packet control register needs to be programmed to point to any 1095 * enabled s/ss pair. Otherwise, incorrect values will be returned. 1096 * This means each subsequent MMIO read will be forwarded to an 1097 * specific s/ss combination, but this is OK since these registers 1098 * are consistent across s/ss in almost all cases. In the rare 1099 * occasions, such as INSTDONE, where this value is dependent 1100 * on s/ss combo, the read should be done with read_subslice_reg. 1101 */ 1102 slice = ffs(sseu->slice_mask) - 1; 1103 GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw)); 1104 subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice)); 1105 GEM_BUG_ON(!subslice); 1106 subslice--; 1107 1108 /* 1109 * We use GEN8_MCR..() macros to calculate the |mcr| value for 1110 * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads 1111 */ 1112 mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice); 1113 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK; 1114 1115 drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr); 1116 1117 wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr); 1118 } 1119 1120 static void 1121 gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1122 { 1123 struct drm_i915_private *i915 = gt->i915; 1124 1125 /* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */ 1126 gen9_wa_init_mcr(i915, wal); 1127 1128 /* WaDisableKillLogic:bxt,skl,kbl */ 1129 if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915)) 1130 wa_write_or(wal, 1131 GAM_ECOCHK, 1132 ECOCHK_DIS_TLB); 1133 1134 if (HAS_LLC(i915)) { 1135 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl 1136 * 1137 * Must match Display Engine. See 1138 * WaCompressedResourceDisplayNewHashMode. 1139 */ 1140 wa_write_or(wal, 1141 MMCD_MISC_CTRL, 1142 MMCD_PCLA | MMCD_HOTSPOT_EN); 1143 } 1144 1145 /* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */ 1146 wa_write_or(wal, 1147 GAM_ECOCHK, 1148 BDW_DISABLE_HDC_INVALIDATION); 1149 } 1150 1151 static void 1152 skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1153 { 1154 gen9_gt_workarounds_init(gt, wal); 1155 1156 /* WaDisableGafsUnitClkGating:skl */ 1157 wa_write_or(wal, 1158 GEN7_UCGCTL4, 1159 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); 1160 1161 /* WaInPlaceDecompressionHang:skl */ 1162 if (IS_SKL_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0)) 1163 wa_write_or(wal, 1164 GEN9_GAMT_ECO_REG_RW_IA, 1165 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS); 1166 } 1167 1168 static void 1169 kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1170 { 1171 gen9_gt_workarounds_init(gt, wal); 1172 1173 /* WaDisableDynamicCreditSharing:kbl */ 1174 if (IS_KBL_GRAPHICS_STEP(gt->i915, 0, STEP_C0)) 1175 wa_write_or(wal, 1176 GAMT_CHKN_BIT_REG, 1177 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING); 1178 1179 /* WaDisableGafsUnitClkGating:kbl */ 1180 wa_write_or(wal, 1181 GEN7_UCGCTL4, 1182 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); 1183 1184 /* WaInPlaceDecompressionHang:kbl */ 1185 wa_write_or(wal, 1186 GEN9_GAMT_ECO_REG_RW_IA, 1187 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS); 1188 } 1189 1190 static void 1191 glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1192 { 1193 gen9_gt_workarounds_init(gt, wal); 1194 } 1195 1196 static void 1197 cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1198 { 1199 gen9_gt_workarounds_init(gt, wal); 1200 1201 /* WaDisableGafsUnitClkGating:cfl */ 1202 wa_write_or(wal, 1203 GEN7_UCGCTL4, 1204 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); 1205 1206 /* WaInPlaceDecompressionHang:cfl */ 1207 wa_write_or(wal, 1208 GEN9_GAMT_ECO_REG_RW_IA, 1209 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS); 1210 } 1211 1212 static void __set_mcr_steering(struct i915_wa_list *wal, 1213 i915_reg_t steering_reg, 1214 unsigned int slice, unsigned int subslice) 1215 { 1216 u32 mcr, mcr_mask; 1217 1218 mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice); 1219 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK; 1220 1221 wa_write_clr_set(wal, steering_reg, mcr_mask, mcr); 1222 } 1223 1224 static void debug_dump_steering(struct intel_gt *gt) 1225 { 1226 struct drm_printer p = drm_debug_printer("MCR Steering:"); 1227 1228 if (drm_debug_enabled(DRM_UT_DRIVER)) 1229 intel_gt_mcr_report_steering(&p, gt, false); 1230 } 1231 1232 static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal, 1233 unsigned int slice, unsigned int subslice) 1234 { 1235 __set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice); 1236 1237 gt->default_steering.groupid = slice; 1238 gt->default_steering.instanceid = subslice; 1239 1240 debug_dump_steering(gt); 1241 } 1242 1243 static void 1244 icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal) 1245 { 1246 const struct sseu_dev_info *sseu = >->info.sseu; 1247 unsigned int subslice; 1248 1249 GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11); 1250 GEM_BUG_ON(hweight8(sseu->slice_mask) > 1); 1251 1252 /* 1253 * Although a platform may have subslices, we need to always steer 1254 * reads to the lowest instance that isn't fused off. When Render 1255 * Power Gating is enabled, grabbing forcewake will only power up a 1256 * single subslice (the "minconfig") if there isn't a real workload 1257 * that needs to be run; this means that if we steer register reads to 1258 * one of the higher subslices, we run the risk of reading back 0's or 1259 * random garbage. 1260 */ 1261 subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0)); 1262 1263 /* 1264 * If the subslice we picked above also steers us to a valid L3 bank, 1265 * then we can just rely on the default steering and won't need to 1266 * worry about explicitly re-steering L3BANK reads later. 1267 */ 1268 if (gt->info.l3bank_mask & BIT(subslice)) 1269 gt->steering_table[L3BANK] = NULL; 1270 1271 __add_mcr_wa(gt, wal, 0, subslice); 1272 } 1273 1274 static void 1275 xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal) 1276 { 1277 const struct sseu_dev_info *sseu = >->info.sseu; 1278 unsigned long slice, subslice = 0, slice_mask = 0; 1279 u32 lncf_mask = 0; 1280 int i; 1281 1282 /* 1283 * On Xe_HP the steering increases in complexity. There are now several 1284 * more units that require steering and we're not guaranteed to be able 1285 * to find a common setting for all of them. These are: 1286 * - GSLICE (fusable) 1287 * - DSS (sub-unit within gslice; fusable) 1288 * - L3 Bank (fusable) 1289 * - MSLICE (fusable) 1290 * - LNCF (sub-unit within mslice; always present if mslice is present) 1291 * 1292 * We'll do our default/implicit steering based on GSLICE (in the 1293 * sliceid field) and DSS (in the subsliceid field). If we can 1294 * find overlap between the valid MSLICE and/or LNCF values with 1295 * a suitable GSLICE, then we can just re-use the default value and 1296 * skip and explicit steering at runtime. 1297 * 1298 * We only need to look for overlap between GSLICE/MSLICE/LNCF to find 1299 * a valid sliceid value. DSS steering is the only type of steering 1300 * that utilizes the 'subsliceid' bits. 1301 * 1302 * Also note that, even though the steering domain is called "GSlice" 1303 * and it is encoded in the register using the gslice format, the spec 1304 * says that the combined (geometry | compute) fuse should be used to 1305 * select the steering. 1306 */ 1307 1308 /* Find the potential gslice candidates */ 1309 slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask, 1310 GEN_DSS_PER_GSLICE); 1311 1312 /* 1313 * Find the potential LNCF candidates. Either LNCF within a valid 1314 * mslice is fine. 1315 */ 1316 for_each_set_bit(i, >->info.mslice_mask, GEN12_MAX_MSLICES) 1317 lncf_mask |= (0x3 << (i * 2)); 1318 1319 /* 1320 * Are there any sliceid values that work for both GSLICE and LNCF 1321 * steering? 1322 */ 1323 if (slice_mask & lncf_mask) { 1324 slice_mask &= lncf_mask; 1325 gt->steering_table[LNCF] = NULL; 1326 } 1327 1328 /* How about sliceid values that also work for MSLICE steering? */ 1329 if (slice_mask & gt->info.mslice_mask) { 1330 slice_mask &= gt->info.mslice_mask; 1331 gt->steering_table[MSLICE] = NULL; 1332 } 1333 1334 if (IS_XEHPSDV(gt->i915) && slice_mask & BIT(0)) 1335 gt->steering_table[GAM] = NULL; 1336 1337 slice = __ffs(slice_mask); 1338 subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) % 1339 GEN_DSS_PER_GSLICE; 1340 1341 __add_mcr_wa(gt, wal, slice, subslice); 1342 1343 /* 1344 * SQIDI ranges are special because they use different steering 1345 * registers than everything else we work with. On XeHP SDV and 1346 * DG2-G10, any value in the steering registers will work fine since 1347 * all instances are present, but DG2-G11 only has SQIDI instances at 1348 * ID's 2 and 3, so we need to steer to one of those. For simplicity 1349 * we'll just steer to a hardcoded "2" since that value will work 1350 * everywhere. 1351 */ 1352 __set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2); 1353 __set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2); 1354 1355 /* 1356 * On DG2, GAM registers have a dedicated steering control register 1357 * and must always be programmed to a hardcoded groupid of "1." 1358 */ 1359 if (IS_DG2(gt->i915)) 1360 __set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0); 1361 } 1362 1363 static void 1364 pvc_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal) 1365 { 1366 unsigned int dss; 1367 1368 /* 1369 * Setup implicit steering for COMPUTE and DSS ranges to the first 1370 * non-fused-off DSS. All other types of MCR registers will be 1371 * explicitly steered. 1372 */ 1373 dss = intel_sseu_find_first_xehp_dss(>->info.sseu, 0, 0); 1374 __add_mcr_wa(gt, wal, dss / GEN_DSS_PER_CSLICE, dss % GEN_DSS_PER_CSLICE); 1375 } 1376 1377 static void 1378 icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1379 { 1380 struct drm_i915_private *i915 = gt->i915; 1381 1382 icl_wa_init_mcr(gt, wal); 1383 1384 /* WaModifyGamTlbPartitioning:icl */ 1385 wa_write_clr_set(wal, 1386 GEN11_GACB_PERF_CTRL, 1387 GEN11_HASH_CTRL_MASK, 1388 GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4); 1389 1390 /* Wa_1405766107:icl 1391 * Formerly known as WaCL2SFHalfMaxAlloc 1392 */ 1393 wa_write_or(wal, 1394 GEN11_LSN_UNSLCVC, 1395 GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC | 1396 GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC); 1397 1398 /* Wa_220166154:icl 1399 * Formerly known as WaDisCtxReload 1400 */ 1401 wa_write_or(wal, 1402 GEN8_GAMW_ECO_DEV_RW_IA, 1403 GAMW_ECO_DEV_CTX_RELOAD_DISABLE); 1404 1405 /* Wa_1406463099:icl 1406 * Formerly known as WaGamTlbPendError 1407 */ 1408 wa_write_or(wal, 1409 GAMT_CHKN_BIT_REG, 1410 GAMT_CHKN_DISABLE_L3_COH_PIPE); 1411 1412 /* 1413 * Wa_1408615072:icl,ehl (vsunit) 1414 * Wa_1407596294:icl,ehl (hsunit) 1415 */ 1416 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, 1417 VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS); 1418 1419 /* Wa_1407352427:icl,ehl */ 1420 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, 1421 PSDUNIT_CLKGATE_DIS); 1422 1423 /* Wa_1406680159:icl,ehl */ 1424 wa_mcr_write_or(wal, 1425 GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE, 1426 GWUNIT_CLKGATE_DIS); 1427 1428 /* Wa_1607087056:icl,ehl,jsl */ 1429 if (IS_ICELAKE(i915) || 1430 IS_JSL_EHL_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)) 1431 wa_write_or(wal, 1432 GEN11_SLICE_UNIT_LEVEL_CLKGATE, 1433 L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS); 1434 1435 /* 1436 * This is not a documented workaround, but rather an optimization 1437 * to reduce sampler power. 1438 */ 1439 wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE); 1440 } 1441 1442 /* 1443 * Though there are per-engine instances of these registers, 1444 * they retain their value through engine resets and should 1445 * only be provided on the GT workaround list rather than 1446 * the engine-specific workaround list. 1447 */ 1448 static void 1449 wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal) 1450 { 1451 struct intel_engine_cs *engine; 1452 int id; 1453 1454 for_each_engine(engine, gt, id) { 1455 if (engine->class != VIDEO_DECODE_CLASS || 1456 (engine->instance % 2)) 1457 continue; 1458 1459 wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base), 1460 IECPUNIT_CLKGATE_DIS); 1461 } 1462 } 1463 1464 static void 1465 gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1466 { 1467 icl_wa_init_mcr(gt, wal); 1468 1469 /* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */ 1470 wa_14011060649(gt, wal); 1471 1472 /* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */ 1473 wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE); 1474 } 1475 1476 static void 1477 dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1478 { 1479 gen12_gt_workarounds_init(gt, wal); 1480 1481 /* Wa_1409420604:dg1 */ 1482 wa_mcr_write_or(wal, SUBSLICE_UNIT_LEVEL_CLKGATE2, 1483 CPSSUNIT_CLKGATE_DIS); 1484 1485 /* Wa_1408615072:dg1 */ 1486 /* Empirical testing shows this register is unaffected by engine reset. */ 1487 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, VSUNIT_CLKGATE_DIS_TGL); 1488 } 1489 1490 static void 1491 xehpsdv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1492 { 1493 struct drm_i915_private *i915 = gt->i915; 1494 1495 xehp_init_mcr(gt, wal); 1496 1497 /* Wa_1409757795:xehpsdv */ 1498 wa_mcr_write_or(wal, SCCGCTL94DC, CG3DDISURB); 1499 1500 /* Wa_18011725039:xehpsdv */ 1501 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_B0)) { 1502 wa_mcr_masked_dis(wal, MLTICTXCTL, TDONRENDER); 1503 wa_mcr_write_or(wal, L3SQCREG1_CCS0, FLUSHALLNONCOH); 1504 } 1505 1506 /* Wa_16011155590:xehpsdv */ 1507 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)) 1508 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, 1509 TSGUNIT_CLKGATE_DIS); 1510 1511 /* Wa_14011780169:xehpsdv */ 1512 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_B0, STEP_FOREVER)) { 1513 wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS | 1514 GAMTLBVDBOX7_CLKGATE_DIS | 1515 GAMTLBVDBOX6_CLKGATE_DIS | 1516 GAMTLBVDBOX5_CLKGATE_DIS | 1517 GAMTLBVDBOX4_CLKGATE_DIS | 1518 GAMTLBVDBOX3_CLKGATE_DIS | 1519 GAMTLBVDBOX2_CLKGATE_DIS | 1520 GAMTLBVDBOX1_CLKGATE_DIS | 1521 GAMTLBVDBOX0_CLKGATE_DIS | 1522 GAMTLBKCR_CLKGATE_DIS | 1523 GAMTLBGUC_CLKGATE_DIS | 1524 GAMTLBBLT_CLKGATE_DIS); 1525 wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS | 1526 GAMTLBGFXA1_CLKGATE_DIS | 1527 GAMTLBCOMPA0_CLKGATE_DIS | 1528 GAMTLBCOMPA1_CLKGATE_DIS | 1529 GAMTLBCOMPB0_CLKGATE_DIS | 1530 GAMTLBCOMPB1_CLKGATE_DIS | 1531 GAMTLBCOMPC0_CLKGATE_DIS | 1532 GAMTLBCOMPC1_CLKGATE_DIS | 1533 GAMTLBCOMPD0_CLKGATE_DIS | 1534 GAMTLBCOMPD1_CLKGATE_DIS | 1535 GAMTLBMERT_CLKGATE_DIS | 1536 GAMTLBVEBOX3_CLKGATE_DIS | 1537 GAMTLBVEBOX2_CLKGATE_DIS | 1538 GAMTLBVEBOX1_CLKGATE_DIS | 1539 GAMTLBVEBOX0_CLKGATE_DIS); 1540 } 1541 1542 /* Wa_16012725990:xehpsdv */ 1543 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_FOREVER)) 1544 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, VFUNIT_CLKGATE_DIS); 1545 1546 /* Wa_14011060649:xehpsdv */ 1547 wa_14011060649(gt, wal); 1548 1549 /* Wa_14012362059:xehpsdv */ 1550 wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB); 1551 1552 /* Wa_14014368820:xehpsdv */ 1553 wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL, 1554 INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE); 1555 1556 /* Wa_14010670810:xehpsdv */ 1557 wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE); 1558 } 1559 1560 static void 1561 dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1562 { 1563 struct intel_engine_cs *engine; 1564 int id; 1565 1566 xehp_init_mcr(gt, wal); 1567 1568 /* Wa_14011060649:dg2 */ 1569 wa_14011060649(gt, wal); 1570 1571 /* 1572 * Although there are per-engine instances of these registers, 1573 * they technically exist outside the engine itself and are not 1574 * impacted by engine resets. Furthermore, they're part of the 1575 * GuC blacklist so trying to treat them as engine workarounds 1576 * will result in GuC initialization failure and a wedged GPU. 1577 */ 1578 for_each_engine(engine, gt, id) { 1579 if (engine->class != VIDEO_DECODE_CLASS) 1580 continue; 1581 1582 /* Wa_16010515920:dg2_g10 */ 1583 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0)) 1584 wa_write_or(wal, VDBOX_CGCTL3F18(engine->mmio_base), 1585 ALNUNIT_CLKGATE_DIS); 1586 } 1587 1588 if (IS_DG2_G10(gt->i915)) { 1589 /* Wa_22010523718:dg2 */ 1590 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, 1591 CG3DDISCFEG_CLKGATE_DIS); 1592 1593 /* Wa_14011006942:dg2 */ 1594 wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE, 1595 DSS_ROUTER_CLKGATE_DIS); 1596 } 1597 1598 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0) || 1599 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0)) { 1600 /* Wa_14012362059:dg2 */ 1601 wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB); 1602 } 1603 1604 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0)) { 1605 /* Wa_14010948348:dg2_g10 */ 1606 wa_write_or(wal, UNSLCGCTL9430, MSQDUNIT_CLKGATE_DIS); 1607 1608 /* Wa_14011037102:dg2_g10 */ 1609 wa_write_or(wal, UNSLCGCTL9444, LTCDD_CLKGATE_DIS); 1610 1611 /* Wa_14011371254:dg2_g10 */ 1612 wa_mcr_write_or(wal, XEHP_SLICE_UNIT_LEVEL_CLKGATE, NODEDSS_CLKGATE_DIS); 1613 1614 /* Wa_14011431319:dg2_g10 */ 1615 wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS | 1616 GAMTLBVDBOX7_CLKGATE_DIS | 1617 GAMTLBVDBOX6_CLKGATE_DIS | 1618 GAMTLBVDBOX5_CLKGATE_DIS | 1619 GAMTLBVDBOX4_CLKGATE_DIS | 1620 GAMTLBVDBOX3_CLKGATE_DIS | 1621 GAMTLBVDBOX2_CLKGATE_DIS | 1622 GAMTLBVDBOX1_CLKGATE_DIS | 1623 GAMTLBVDBOX0_CLKGATE_DIS | 1624 GAMTLBKCR_CLKGATE_DIS | 1625 GAMTLBGUC_CLKGATE_DIS | 1626 GAMTLBBLT_CLKGATE_DIS); 1627 wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS | 1628 GAMTLBGFXA1_CLKGATE_DIS | 1629 GAMTLBCOMPA0_CLKGATE_DIS | 1630 GAMTLBCOMPA1_CLKGATE_DIS | 1631 GAMTLBCOMPB0_CLKGATE_DIS | 1632 GAMTLBCOMPB1_CLKGATE_DIS | 1633 GAMTLBCOMPC0_CLKGATE_DIS | 1634 GAMTLBCOMPC1_CLKGATE_DIS | 1635 GAMTLBCOMPD0_CLKGATE_DIS | 1636 GAMTLBCOMPD1_CLKGATE_DIS | 1637 GAMTLBMERT_CLKGATE_DIS | 1638 GAMTLBVEBOX3_CLKGATE_DIS | 1639 GAMTLBVEBOX2_CLKGATE_DIS | 1640 GAMTLBVEBOX1_CLKGATE_DIS | 1641 GAMTLBVEBOX0_CLKGATE_DIS); 1642 1643 /* Wa_14010569222:dg2_g10 */ 1644 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, 1645 GAMEDIA_CLKGATE_DIS); 1646 1647 /* Wa_14011028019:dg2_g10 */ 1648 wa_mcr_write_or(wal, SSMCGCTL9530, RTFUNIT_CLKGATE_DIS); 1649 1650 /* Wa_14010680813:dg2_g10 */ 1651 wa_mcr_write_or(wal, XEHP_GAMSTLB_CTRL, 1652 CONTROL_BLOCK_CLKGATE_DIS | 1653 EGRESS_BLOCK_CLKGATE_DIS | 1654 TAG_BLOCK_CLKGATE_DIS); 1655 } 1656 1657 /* Wa_14014830051:dg2 */ 1658 wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN); 1659 1660 /* Wa_14015795083 */ 1661 wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE); 1662 1663 /* Wa_18018781329 */ 1664 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB); 1665 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB); 1666 wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB); 1667 wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB); 1668 1669 /* Wa_1509235366:dg2 */ 1670 wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL, 1671 INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE); 1672 1673 /* Wa_14010648519:dg2 */ 1674 wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE); 1675 } 1676 1677 static void 1678 pvc_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1679 { 1680 pvc_init_mcr(gt, wal); 1681 1682 /* Wa_14015795083 */ 1683 wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE); 1684 1685 /* Wa_18018781329 */ 1686 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB); 1687 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB); 1688 wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB); 1689 wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB); 1690 1691 /* Wa_16016694945 */ 1692 wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_OVRLSCCC); 1693 } 1694 1695 static void 1696 xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1697 { 1698 if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) || 1699 IS_MTL_GRAPHICS_STEP(gt->i915, P, STEP_A0, STEP_B0)) { 1700 /* Wa_14014830051 */ 1701 wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN); 1702 1703 /* Wa_18018781329 */ 1704 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB); 1705 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB); 1706 } 1707 1708 /* 1709 * Unlike older platforms, we no longer setup implicit steering here; 1710 * all MCR accesses are explicitly steered. 1711 */ 1712 debug_dump_steering(gt); 1713 } 1714 1715 static void 1716 xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1717 { 1718 if (IS_MTL_MEDIA_STEP(gt->i915, STEP_A0, STEP_B0)) { 1719 /* 1720 * Wa_18018781329 1721 * 1722 * Note that although these registers are MCR on the primary 1723 * GT, the media GT's versions are regular singleton registers. 1724 */ 1725 wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB); 1726 wa_write_or(wal, XELPMP_VDBX_MOD_CTRL, FORCE_MISS_FTLB); 1727 wa_write_or(wal, XELPMP_VEBX_MOD_CTRL, FORCE_MISS_FTLB); 1728 } 1729 1730 debug_dump_steering(gt); 1731 } 1732 1733 /* 1734 * The bspec performance guide has recommended MMIO tuning settings. These 1735 * aren't truly "workarounds" but we want to program them through the 1736 * workaround infrastructure to make sure they're (re)applied at the proper 1737 * times. 1738 * 1739 * The programming in this function is for settings that persist through 1740 * engine resets and also are not part of any engine's register state context. 1741 * I.e., settings that only need to be re-applied in the event of a full GT 1742 * reset. 1743 */ 1744 static void gt_tuning_settings(struct intel_gt *gt, struct i915_wa_list *wal) 1745 { 1746 if (IS_PONTEVECCHIO(gt->i915)) { 1747 wa_mcr_write(wal, XEHPC_L3SCRUB, 1748 SCRUB_CL_DWNGRADE_SHARED | SCRUB_RATE_4B_PER_CLK); 1749 wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_HOSTCACHEEN); 1750 } 1751 1752 if (IS_DG2(gt->i915)) { 1753 wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS); 1754 wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS); 1755 } 1756 } 1757 1758 static void 1759 gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal) 1760 { 1761 struct drm_i915_private *i915 = gt->i915; 1762 1763 gt_tuning_settings(gt, wal); 1764 1765 if (gt->type == GT_MEDIA) { 1766 if (MEDIA_VER(i915) >= 13) 1767 xelpmp_gt_workarounds_init(gt, wal); 1768 else 1769 MISSING_CASE(MEDIA_VER(i915)); 1770 1771 return; 1772 } 1773 1774 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) 1775 xelpg_gt_workarounds_init(gt, wal); 1776 else if (IS_PONTEVECCHIO(i915)) 1777 pvc_gt_workarounds_init(gt, wal); 1778 else if (IS_DG2(i915)) 1779 dg2_gt_workarounds_init(gt, wal); 1780 else if (IS_XEHPSDV(i915)) 1781 xehpsdv_gt_workarounds_init(gt, wal); 1782 else if (IS_DG1(i915)) 1783 dg1_gt_workarounds_init(gt, wal); 1784 else if (GRAPHICS_VER(i915) == 12) 1785 gen12_gt_workarounds_init(gt, wal); 1786 else if (GRAPHICS_VER(i915) == 11) 1787 icl_gt_workarounds_init(gt, wal); 1788 else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) 1789 cfl_gt_workarounds_init(gt, wal); 1790 else if (IS_GEMINILAKE(i915)) 1791 glk_gt_workarounds_init(gt, wal); 1792 else if (IS_KABYLAKE(i915)) 1793 kbl_gt_workarounds_init(gt, wal); 1794 else if (IS_BROXTON(i915)) 1795 gen9_gt_workarounds_init(gt, wal); 1796 else if (IS_SKYLAKE(i915)) 1797 skl_gt_workarounds_init(gt, wal); 1798 else if (IS_HASWELL(i915)) 1799 hsw_gt_workarounds_init(gt, wal); 1800 else if (IS_VALLEYVIEW(i915)) 1801 vlv_gt_workarounds_init(gt, wal); 1802 else if (IS_IVYBRIDGE(i915)) 1803 ivb_gt_workarounds_init(gt, wal); 1804 else if (GRAPHICS_VER(i915) == 6) 1805 snb_gt_workarounds_init(gt, wal); 1806 else if (GRAPHICS_VER(i915) == 5) 1807 ilk_gt_workarounds_init(gt, wal); 1808 else if (IS_G4X(i915)) 1809 g4x_gt_workarounds_init(gt, wal); 1810 else if (GRAPHICS_VER(i915) == 4) 1811 gen4_gt_workarounds_init(gt, wal); 1812 else if (GRAPHICS_VER(i915) <= 8) 1813 ; 1814 else 1815 MISSING_CASE(GRAPHICS_VER(i915)); 1816 } 1817 1818 void intel_gt_init_workarounds(struct intel_gt *gt) 1819 { 1820 struct i915_wa_list *wal = >->wa_list; 1821 1822 wa_init_start(wal, gt, "GT", "global"); 1823 gt_init_workarounds(gt, wal); 1824 wa_init_finish(wal); 1825 } 1826 1827 static enum forcewake_domains 1828 wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal) 1829 { 1830 enum forcewake_domains fw = 0; 1831 struct i915_wa *wa; 1832 unsigned int i; 1833 1834 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) 1835 fw |= intel_uncore_forcewake_for_reg(uncore, 1836 wa->reg, 1837 FW_REG_READ | 1838 FW_REG_WRITE); 1839 1840 return fw; 1841 } 1842 1843 static bool 1844 wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur, 1845 const char *name, const char *from) 1846 { 1847 if ((cur ^ wa->set) & wa->read) { 1848 drm_err(>->i915->drm, 1849 "%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n", 1850 name, from, i915_mmio_reg_offset(wa->reg), 1851 cur, cur & wa->read, wa->set & wa->read); 1852 1853 return false; 1854 } 1855 1856 return true; 1857 } 1858 1859 static void wa_list_apply(const struct i915_wa_list *wal) 1860 { 1861 struct intel_gt *gt = wal->gt; 1862 struct intel_uncore *uncore = gt->uncore; 1863 enum forcewake_domains fw; 1864 unsigned long flags; 1865 struct i915_wa *wa; 1866 unsigned int i; 1867 1868 if (!wal->count) 1869 return; 1870 1871 fw = wal_get_fw_for_rmw(uncore, wal); 1872 1873 intel_gt_mcr_lock(gt, &flags); 1874 spin_lock(&uncore->lock); 1875 intel_uncore_forcewake_get__locked(uncore, fw); 1876 1877 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 1878 u32 val, old = 0; 1879 1880 /* open-coded rmw due to steering */ 1881 if (wa->clr) 1882 old = wa->is_mcr ? 1883 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) : 1884 intel_uncore_read_fw(uncore, wa->reg); 1885 val = (old & ~wa->clr) | wa->set; 1886 if (val != old || !wa->clr) { 1887 if (wa->is_mcr) 1888 intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val); 1889 else 1890 intel_uncore_write_fw(uncore, wa->reg, val); 1891 } 1892 1893 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) { 1894 u32 val = wa->is_mcr ? 1895 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) : 1896 intel_uncore_read_fw(uncore, wa->reg); 1897 1898 wa_verify(gt, wa, val, wal->name, "application"); 1899 } 1900 } 1901 1902 intel_uncore_forcewake_put__locked(uncore, fw); 1903 spin_unlock(&uncore->lock); 1904 intel_gt_mcr_unlock(gt, flags); 1905 } 1906 1907 void intel_gt_apply_workarounds(struct intel_gt *gt) 1908 { 1909 wa_list_apply(>->wa_list); 1910 } 1911 1912 static bool wa_list_verify(struct intel_gt *gt, 1913 const struct i915_wa_list *wal, 1914 const char *from) 1915 { 1916 struct intel_uncore *uncore = gt->uncore; 1917 struct i915_wa *wa; 1918 enum forcewake_domains fw; 1919 unsigned long flags; 1920 unsigned int i; 1921 bool ok = true; 1922 1923 fw = wal_get_fw_for_rmw(uncore, wal); 1924 1925 intel_gt_mcr_lock(gt, &flags); 1926 spin_lock(&uncore->lock); 1927 intel_uncore_forcewake_get__locked(uncore, fw); 1928 1929 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) 1930 ok &= wa_verify(wal->gt, wa, wa->is_mcr ? 1931 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) : 1932 intel_uncore_read_fw(uncore, wa->reg), 1933 wal->name, from); 1934 1935 intel_uncore_forcewake_put__locked(uncore, fw); 1936 spin_unlock(&uncore->lock); 1937 intel_gt_mcr_unlock(gt, flags); 1938 1939 return ok; 1940 } 1941 1942 bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from) 1943 { 1944 return wa_list_verify(gt, >->wa_list, from); 1945 } 1946 1947 __maybe_unused 1948 static bool is_nonpriv_flags_valid(u32 flags) 1949 { 1950 /* Check only valid flag bits are set */ 1951 if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID) 1952 return false; 1953 1954 /* NB: Only 3 out of 4 enum values are valid for access field */ 1955 if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) == 1956 RING_FORCE_TO_NONPRIV_ACCESS_INVALID) 1957 return false; 1958 1959 return true; 1960 } 1961 1962 static void 1963 whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags) 1964 { 1965 struct i915_wa wa = { 1966 .reg = reg 1967 }; 1968 1969 if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS)) 1970 return; 1971 1972 if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags))) 1973 return; 1974 1975 wa.reg.reg |= flags; 1976 _wa_add(wal, &wa); 1977 } 1978 1979 static void 1980 whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags) 1981 { 1982 struct i915_wa wa = { 1983 .mcr_reg = reg, 1984 .is_mcr = 1, 1985 }; 1986 1987 if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS)) 1988 return; 1989 1990 if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags))) 1991 return; 1992 1993 wa.mcr_reg.reg |= flags; 1994 _wa_add(wal, &wa); 1995 } 1996 1997 static void 1998 whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg) 1999 { 2000 whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW); 2001 } 2002 2003 static void 2004 whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg) 2005 { 2006 whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW); 2007 } 2008 2009 static void gen9_whitelist_build(struct i915_wa_list *w) 2010 { 2011 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */ 2012 whitelist_reg(w, GEN9_CTX_PREEMPT_REG); 2013 2014 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */ 2015 whitelist_reg(w, GEN8_CS_CHICKEN1); 2016 2017 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */ 2018 whitelist_reg(w, GEN8_HDC_CHICKEN1); 2019 2020 /* WaSendPushConstantsFromMMIO:skl,bxt */ 2021 whitelist_reg(w, COMMON_SLICE_CHICKEN2); 2022 } 2023 2024 static void skl_whitelist_build(struct intel_engine_cs *engine) 2025 { 2026 struct i915_wa_list *w = &engine->whitelist; 2027 2028 if (engine->class != RENDER_CLASS) 2029 return; 2030 2031 gen9_whitelist_build(w); 2032 2033 /* WaDisableLSQCROPERFforOCL:skl */ 2034 whitelist_mcr_reg(w, GEN8_L3SQCREG4); 2035 } 2036 2037 static void bxt_whitelist_build(struct intel_engine_cs *engine) 2038 { 2039 if (engine->class != RENDER_CLASS) 2040 return; 2041 2042 gen9_whitelist_build(&engine->whitelist); 2043 } 2044 2045 static void kbl_whitelist_build(struct intel_engine_cs *engine) 2046 { 2047 struct i915_wa_list *w = &engine->whitelist; 2048 2049 if (engine->class != RENDER_CLASS) 2050 return; 2051 2052 gen9_whitelist_build(w); 2053 2054 /* WaDisableLSQCROPERFforOCL:kbl */ 2055 whitelist_mcr_reg(w, GEN8_L3SQCREG4); 2056 } 2057 2058 static void glk_whitelist_build(struct intel_engine_cs *engine) 2059 { 2060 struct i915_wa_list *w = &engine->whitelist; 2061 2062 if (engine->class != RENDER_CLASS) 2063 return; 2064 2065 gen9_whitelist_build(w); 2066 2067 /* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */ 2068 whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1); 2069 } 2070 2071 static void cfl_whitelist_build(struct intel_engine_cs *engine) 2072 { 2073 struct i915_wa_list *w = &engine->whitelist; 2074 2075 if (engine->class != RENDER_CLASS) 2076 return; 2077 2078 gen9_whitelist_build(w); 2079 2080 /* 2081 * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml 2082 * 2083 * This covers 4 register which are next to one another : 2084 * - PS_INVOCATION_COUNT 2085 * - PS_INVOCATION_COUNT_UDW 2086 * - PS_DEPTH_COUNT 2087 * - PS_DEPTH_COUNT_UDW 2088 */ 2089 whitelist_reg_ext(w, PS_INVOCATION_COUNT, 2090 RING_FORCE_TO_NONPRIV_ACCESS_RD | 2091 RING_FORCE_TO_NONPRIV_RANGE_4); 2092 } 2093 2094 static void allow_read_ctx_timestamp(struct intel_engine_cs *engine) 2095 { 2096 struct i915_wa_list *w = &engine->whitelist; 2097 2098 if (engine->class != RENDER_CLASS) 2099 whitelist_reg_ext(w, 2100 RING_CTX_TIMESTAMP(engine->mmio_base), 2101 RING_FORCE_TO_NONPRIV_ACCESS_RD); 2102 } 2103 2104 static void cml_whitelist_build(struct intel_engine_cs *engine) 2105 { 2106 allow_read_ctx_timestamp(engine); 2107 2108 cfl_whitelist_build(engine); 2109 } 2110 2111 static void icl_whitelist_build(struct intel_engine_cs *engine) 2112 { 2113 struct i915_wa_list *w = &engine->whitelist; 2114 2115 allow_read_ctx_timestamp(engine); 2116 2117 switch (engine->class) { 2118 case RENDER_CLASS: 2119 /* WaAllowUMDToModifyHalfSliceChicken7:icl */ 2120 whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7); 2121 2122 /* WaAllowUMDToModifySamplerMode:icl */ 2123 whitelist_mcr_reg(w, GEN10_SAMPLER_MODE); 2124 2125 /* WaEnableStateCacheRedirectToCS:icl */ 2126 whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1); 2127 2128 /* 2129 * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl 2130 * 2131 * This covers 4 register which are next to one another : 2132 * - PS_INVOCATION_COUNT 2133 * - PS_INVOCATION_COUNT_UDW 2134 * - PS_DEPTH_COUNT 2135 * - PS_DEPTH_COUNT_UDW 2136 */ 2137 whitelist_reg_ext(w, PS_INVOCATION_COUNT, 2138 RING_FORCE_TO_NONPRIV_ACCESS_RD | 2139 RING_FORCE_TO_NONPRIV_RANGE_4); 2140 break; 2141 2142 case VIDEO_DECODE_CLASS: 2143 /* hucStatusRegOffset */ 2144 whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base), 2145 RING_FORCE_TO_NONPRIV_ACCESS_RD); 2146 /* hucUKernelHdrInfoRegOffset */ 2147 whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base), 2148 RING_FORCE_TO_NONPRIV_ACCESS_RD); 2149 /* hucStatus2RegOffset */ 2150 whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base), 2151 RING_FORCE_TO_NONPRIV_ACCESS_RD); 2152 break; 2153 2154 default: 2155 break; 2156 } 2157 } 2158 2159 static void tgl_whitelist_build(struct intel_engine_cs *engine) 2160 { 2161 struct i915_wa_list *w = &engine->whitelist; 2162 2163 allow_read_ctx_timestamp(engine); 2164 2165 switch (engine->class) { 2166 case RENDER_CLASS: 2167 /* 2168 * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl 2169 * Wa_1408556865:tgl 2170 * 2171 * This covers 4 registers which are next to one another : 2172 * - PS_INVOCATION_COUNT 2173 * - PS_INVOCATION_COUNT_UDW 2174 * - PS_DEPTH_COUNT 2175 * - PS_DEPTH_COUNT_UDW 2176 */ 2177 whitelist_reg_ext(w, PS_INVOCATION_COUNT, 2178 RING_FORCE_TO_NONPRIV_ACCESS_RD | 2179 RING_FORCE_TO_NONPRIV_RANGE_4); 2180 2181 /* 2182 * Wa_1808121037:tgl 2183 * Wa_14012131227:dg1 2184 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p 2185 */ 2186 whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1); 2187 2188 /* Wa_1806527549:tgl */ 2189 whitelist_reg(w, HIZ_CHICKEN); 2190 2191 /* Required by recommended tuning setting (not a workaround) */ 2192 whitelist_reg(w, GEN11_COMMON_SLICE_CHICKEN3); 2193 2194 break; 2195 default: 2196 break; 2197 } 2198 } 2199 2200 static void dg2_whitelist_build(struct intel_engine_cs *engine) 2201 { 2202 struct i915_wa_list *w = &engine->whitelist; 2203 2204 switch (engine->class) { 2205 case RENDER_CLASS: 2206 /* 2207 * Wa_1507100340:dg2_g10 2208 * 2209 * This covers 4 registers which are next to one another : 2210 * - PS_INVOCATION_COUNT 2211 * - PS_INVOCATION_COUNT_UDW 2212 * - PS_DEPTH_COUNT 2213 * - PS_DEPTH_COUNT_UDW 2214 */ 2215 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0)) 2216 whitelist_reg_ext(w, PS_INVOCATION_COUNT, 2217 RING_FORCE_TO_NONPRIV_ACCESS_RD | 2218 RING_FORCE_TO_NONPRIV_RANGE_4); 2219 2220 /* Required by recommended tuning setting (not a workaround) */ 2221 whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3); 2222 2223 break; 2224 case COMPUTE_CLASS: 2225 /* Wa_16011157294:dg2_g10 */ 2226 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0)) 2227 whitelist_reg(w, GEN9_CTX_PREEMPT_REG); 2228 break; 2229 default: 2230 break; 2231 } 2232 } 2233 2234 static void blacklist_trtt(struct intel_engine_cs *engine) 2235 { 2236 struct i915_wa_list *w = &engine->whitelist; 2237 2238 /* 2239 * Prevent read/write access to [0x4400, 0x4600) which covers 2240 * the TRTT range across all engines. Note that normally userspace 2241 * cannot access the other engines' trtt control, but for simplicity 2242 * we cover the entire range on each engine. 2243 */ 2244 whitelist_reg_ext(w, _MMIO(0x4400), 2245 RING_FORCE_TO_NONPRIV_DENY | 2246 RING_FORCE_TO_NONPRIV_RANGE_64); 2247 whitelist_reg_ext(w, _MMIO(0x4500), 2248 RING_FORCE_TO_NONPRIV_DENY | 2249 RING_FORCE_TO_NONPRIV_RANGE_64); 2250 } 2251 2252 static void pvc_whitelist_build(struct intel_engine_cs *engine) 2253 { 2254 /* Wa_16014440446:pvc */ 2255 blacklist_trtt(engine); 2256 } 2257 2258 static void mtl_whitelist_build(struct intel_engine_cs *engine) 2259 { 2260 struct i915_wa_list *w = &engine->whitelist; 2261 2262 switch (engine->class) { 2263 case RENDER_CLASS: 2264 /* Required by recommended tuning setting (not a workaround) */ 2265 whitelist_mcr_reg(w, XEHP_COMMON_SLICE_CHICKEN3); 2266 2267 break; 2268 default: 2269 break; 2270 } 2271 } 2272 2273 void intel_engine_init_whitelist(struct intel_engine_cs *engine) 2274 { 2275 struct drm_i915_private *i915 = engine->i915; 2276 struct i915_wa_list *w = &engine->whitelist; 2277 2278 wa_init_start(w, engine->gt, "whitelist", engine->name); 2279 2280 if (IS_METEORLAKE(i915)) 2281 mtl_whitelist_build(engine); 2282 else if (IS_PONTEVECCHIO(i915)) 2283 pvc_whitelist_build(engine); 2284 else if (IS_DG2(i915)) 2285 dg2_whitelist_build(engine); 2286 else if (IS_XEHPSDV(i915)) 2287 ; /* none needed */ 2288 else if (GRAPHICS_VER(i915) == 12) 2289 tgl_whitelist_build(engine); 2290 else if (GRAPHICS_VER(i915) == 11) 2291 icl_whitelist_build(engine); 2292 else if (IS_COMETLAKE(i915)) 2293 cml_whitelist_build(engine); 2294 else if (IS_COFFEELAKE(i915)) 2295 cfl_whitelist_build(engine); 2296 else if (IS_GEMINILAKE(i915)) 2297 glk_whitelist_build(engine); 2298 else if (IS_KABYLAKE(i915)) 2299 kbl_whitelist_build(engine); 2300 else if (IS_BROXTON(i915)) 2301 bxt_whitelist_build(engine); 2302 else if (IS_SKYLAKE(i915)) 2303 skl_whitelist_build(engine); 2304 else if (GRAPHICS_VER(i915) <= 8) 2305 ; 2306 else 2307 MISSING_CASE(GRAPHICS_VER(i915)); 2308 2309 wa_init_finish(w); 2310 } 2311 2312 void intel_engine_apply_whitelist(struct intel_engine_cs *engine) 2313 { 2314 const struct i915_wa_list *wal = &engine->whitelist; 2315 struct intel_uncore *uncore = engine->uncore; 2316 const u32 base = engine->mmio_base; 2317 struct i915_wa *wa; 2318 unsigned int i; 2319 2320 if (!wal->count) 2321 return; 2322 2323 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) 2324 intel_uncore_write(uncore, 2325 RING_FORCE_TO_NONPRIV(base, i), 2326 i915_mmio_reg_offset(wa->reg)); 2327 2328 /* And clear the rest just in case of garbage */ 2329 for (; i < RING_MAX_NONPRIV_SLOTS; i++) 2330 intel_uncore_write(uncore, 2331 RING_FORCE_TO_NONPRIV(base, i), 2332 i915_mmio_reg_offset(RING_NOPID(base))); 2333 } 2334 2335 /* 2336 * engine_fake_wa_init(), a place holder to program the registers 2337 * which are not part of an official workaround defined by the 2338 * hardware team. 2339 * Adding programming of those register inside workaround will 2340 * allow utilizing wa framework to proper application and verification. 2341 */ 2342 static void 2343 engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2344 { 2345 u8 mocs_w, mocs_r; 2346 2347 /* 2348 * RING_CMD_CCTL specifies the default MOCS entry that will be used 2349 * by the command streamer when executing commands that don't have 2350 * a way to explicitly specify a MOCS setting. The default should 2351 * usually reference whichever MOCS entry corresponds to uncached 2352 * behavior, although use of a WB cached entry is recommended by the 2353 * spec in certain circumstances on specific platforms. 2354 */ 2355 if (GRAPHICS_VER(engine->i915) >= 12) { 2356 mocs_r = engine->gt->mocs.uc_index; 2357 mocs_w = engine->gt->mocs.uc_index; 2358 2359 if (HAS_L3_CCS_READ(engine->i915) && 2360 engine->class == COMPUTE_CLASS) { 2361 mocs_r = engine->gt->mocs.wb_index; 2362 2363 /* 2364 * Even on the few platforms where MOCS 0 is a 2365 * legitimate table entry, it's never the correct 2366 * setting to use here; we can assume the MOCS init 2367 * just forgot to initialize wb_index. 2368 */ 2369 drm_WARN_ON(&engine->i915->drm, mocs_r == 0); 2370 } 2371 2372 wa_masked_field_set(wal, 2373 RING_CMD_CCTL(engine->mmio_base), 2374 CMD_CCTL_MOCS_MASK, 2375 CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r)); 2376 } 2377 } 2378 2379 static bool needs_wa_1308578152(struct intel_engine_cs *engine) 2380 { 2381 return intel_sseu_find_first_xehp_dss(&engine->gt->info.sseu, 0, 0) >= 2382 GEN_DSS_PER_GSLICE; 2383 } 2384 2385 static void 2386 rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2387 { 2388 struct drm_i915_private *i915 = engine->i915; 2389 2390 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) || 2391 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0)) { 2392 /* Wa_22014600077 */ 2393 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, 2394 ENABLE_EU_COUNT_FOR_TDL_FLUSH); 2395 } 2396 2397 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) || 2398 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) || 2399 IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) || 2400 IS_DG2_G11(i915) || IS_DG2_G12(i915)) { 2401 /* Wa_1509727124 */ 2402 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, 2403 SC_DISABLE_POWER_OPTIMIZATION_EBB); 2404 } 2405 2406 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) || 2407 IS_DG2_G11(i915) || IS_DG2_G12(i915) || 2408 IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0)) { 2409 /* Wa_22012856258 */ 2410 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, 2411 GEN12_DISABLE_READ_SUPPRESSION); 2412 } 2413 2414 if (IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0)) { 2415 /* Wa_14013392000:dg2_g11 */ 2416 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_ENABLE_LARGE_GRF_MODE); 2417 } 2418 2419 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0) || 2420 IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0)) { 2421 /* Wa_14012419201:dg2 */ 2422 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, 2423 GEN12_DISABLE_HDR_PAST_PAYLOAD_HOLD_FIX); 2424 } 2425 2426 /* Wa_1308578152:dg2_g10 when first gslice is fused off */ 2427 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) && 2428 needs_wa_1308578152(engine)) { 2429 wa_masked_dis(wal, GEN12_CS_DEBUG_MODE1_CCCSUNIT_BE_COMMON, 2430 GEN12_REPLAY_MODE_GRANULARITY); 2431 } 2432 2433 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) || 2434 IS_DG2_G11(i915) || IS_DG2_G12(i915)) { 2435 /* 2436 * Wa_22010960976:dg2 2437 * Wa_14013347512:dg2 2438 */ 2439 wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0, 2440 LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK); 2441 } 2442 2443 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) { 2444 /* 2445 * Wa_1608949956:dg2_g10 2446 * Wa_14010198302:dg2_g10 2447 */ 2448 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, 2449 MDQ_ARBITRATION_MODE | UGM_BACKUP_MODE); 2450 } 2451 2452 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) 2453 /* Wa_22010430635:dg2 */ 2454 wa_mcr_masked_en(wal, 2455 GEN9_ROW_CHICKEN4, 2456 GEN12_DISABLE_GRF_CLEAR); 2457 2458 /* Wa_14013202645:dg2 */ 2459 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) || 2460 IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0)) 2461 wa_mcr_write_or(wal, RT_CTRL, DIS_NULL_QUERY); 2462 2463 /* Wa_22012532006:dg2 */ 2464 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_C0) || 2465 IS_DG2_GRAPHICS_STEP(engine->i915, G11, STEP_A0, STEP_B0)) 2466 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7, 2467 DG2_DISABLE_ROUND_ENABLE_ALLOW_FOR_SSLA); 2468 2469 if (IS_DG2_GRAPHICS_STEP(i915, G11, STEP_B0, STEP_FOREVER) || 2470 IS_DG2_G10(i915)) { 2471 /* Wa_22014600077:dg2 */ 2472 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0, 2473 _MASKED_BIT_ENABLE(ENABLE_EU_COUNT_FOR_TDL_FLUSH), 2474 0 /* Wa_14012342262 write-only reg, so skip verification */, 2475 true); 2476 } 2477 2478 if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) || 2479 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) { 2480 /* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */ 2481 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ); 2482 2483 /* 2484 * Wa_1407928979:tgl A* 2485 * Wa_18011464164:tgl[B0+],dg1[B0+] 2486 * Wa_22010931296:tgl[B0+],dg1[B0+] 2487 * Wa_14010919138:rkl,dg1,adl-s,adl-p 2488 */ 2489 wa_write_or(wal, GEN7_FF_THREAD_MODE, 2490 GEN12_FF_TESSELATION_DOP_GATE_DISABLE); 2491 } 2492 2493 if (IS_ALDERLAKE_P(i915) || IS_DG2(i915) || IS_ALDERLAKE_S(i915) || 2494 IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) { 2495 /* 2496 * Wa_1606700617:tgl,dg1,adl-p 2497 * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p 2498 * Wa_14010826681:tgl,dg1,rkl,adl-p 2499 * Wa_18019627453:dg2 2500 */ 2501 wa_masked_en(wal, 2502 GEN9_CS_DEBUG_MODE1, 2503 FF_DOP_CLOCK_GATE_DISABLE); 2504 } 2505 2506 if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || 2507 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) { 2508 /* Wa_1409804808 */ 2509 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, 2510 GEN12_PUSH_CONST_DEREF_HOLD_DIS); 2511 2512 /* Wa_14010229206 */ 2513 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH); 2514 } 2515 2516 if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) { 2517 /* 2518 * Wa_1607297627 2519 * 2520 * On TGL and RKL there are multiple entries for this WA in the 2521 * BSpec; some indicate this is an A0-only WA, others indicate 2522 * it applies to all steppings so we trust the "all steppings." 2523 */ 2524 wa_masked_en(wal, 2525 RING_PSMI_CTL(RENDER_RING_BASE), 2526 GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE | 2527 GEN8_RC_SEMA_IDLE_MSG_DISABLE); 2528 } 2529 2530 if (IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || 2531 IS_ALDERLAKE_S(i915) || IS_ALDERLAKE_P(i915)) { 2532 /* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */ 2533 wa_mcr_masked_en(wal, 2534 GEN10_SAMPLER_MODE, 2535 ENABLE_SMALLPL); 2536 } 2537 2538 if (GRAPHICS_VER(i915) == 11) { 2539 /* This is not an Wa. Enable for better image quality */ 2540 wa_masked_en(wal, 2541 _3D_CHICKEN3, 2542 _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE); 2543 2544 /* 2545 * Wa_1405543622:icl 2546 * Formerly known as WaGAPZPriorityScheme 2547 */ 2548 wa_write_or(wal, 2549 GEN8_GARBCNTL, 2550 GEN11_ARBITRATION_PRIO_ORDER_MASK); 2551 2552 /* 2553 * Wa_1604223664:icl 2554 * Formerly known as WaL3BankAddressHashing 2555 */ 2556 wa_write_clr_set(wal, 2557 GEN8_GARBCNTL, 2558 GEN11_HASH_CTRL_EXCL_MASK, 2559 GEN11_HASH_CTRL_EXCL_BIT0); 2560 wa_write_clr_set(wal, 2561 GEN11_GLBLINVL, 2562 GEN11_BANK_HASH_ADDR_EXCL_MASK, 2563 GEN11_BANK_HASH_ADDR_EXCL_BIT0); 2564 2565 /* 2566 * Wa_1405733216:icl 2567 * Formerly known as WaDisableCleanEvicts 2568 */ 2569 wa_mcr_write_or(wal, 2570 GEN8_L3SQCREG4, 2571 GEN11_LQSC_CLEAN_EVICT_DISABLE); 2572 2573 /* Wa_1606682166:icl */ 2574 wa_write_or(wal, 2575 GEN7_SARCHKMD, 2576 GEN7_DISABLE_SAMPLER_PREFETCH); 2577 2578 /* Wa_1409178092:icl */ 2579 wa_mcr_write_clr_set(wal, 2580 GEN11_SCRATCH2, 2581 GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE, 2582 0); 2583 2584 /* WaEnable32PlaneMode:icl */ 2585 wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS, 2586 GEN11_ENABLE_32_PLANE_MODE); 2587 2588 /* 2589 * Wa_1408767742:icl[a2..forever],ehl[all] 2590 * Wa_1605460711:icl[a0..c0] 2591 */ 2592 wa_write_or(wal, 2593 GEN7_FF_THREAD_MODE, 2594 GEN12_FF_TESSELATION_DOP_GATE_DISABLE); 2595 2596 /* Wa_22010271021 */ 2597 wa_masked_en(wal, 2598 GEN9_CS_DEBUG_MODE1, 2599 FF_DOP_CLOCK_GATE_DISABLE); 2600 } 2601 2602 /* 2603 * Intel platforms that support fine-grained preemption (i.e., gen9 and 2604 * beyond) allow the kernel-mode driver to choose between two different 2605 * options for controlling preemption granularity and behavior. 2606 * 2607 * Option 1 (hardware default): 2608 * Preemption settings are controlled in a global manner via 2609 * kernel-only register CS_DEBUG_MODE1 (0x20EC). Any granularity 2610 * and settings chosen by the kernel-mode driver will apply to all 2611 * userspace clients. 2612 * 2613 * Option 2: 2614 * Preemption settings are controlled on a per-context basis via 2615 * register CS_CHICKEN1 (0x2580). CS_CHICKEN1 is saved/restored on 2616 * context switch and is writable by userspace (e.g., via 2617 * MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer) 2618 * which allows different userspace drivers/clients to select 2619 * different settings, or to change those settings on the fly in 2620 * response to runtime needs. This option was known by name 2621 * "FtrPerCtxtPreemptionGranularityControl" at one time, although 2622 * that name is somewhat misleading as other non-granularity 2623 * preemption settings are also impacted by this decision. 2624 * 2625 * On Linux, our policy has always been to let userspace drivers 2626 * control preemption granularity/settings (Option 2). This was 2627 * originally mandatory on gen9 to prevent ABI breakage (old gen9 2628 * userspace developed before object-level preemption was enabled would 2629 * not behave well if i915 were to go with Option 1 and enable that 2630 * preemption in a global manner). On gen9 each context would have 2631 * object-level preemption disabled by default (see 2632 * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but 2633 * userspace drivers could opt-in to object-level preemption as they 2634 * saw fit. For post-gen9 platforms, we continue to utilize Option 2; 2635 * even though it is no longer necessary for ABI compatibility when 2636 * enabling a new platform, it does ensure that userspace will be able 2637 * to implement any workarounds that show up requiring temporary 2638 * adjustments to preemption behavior at runtime. 2639 * 2640 * Notes/Workarounds: 2641 * - Wa_14015141709: On DG2 and early steppings of MTL, 2642 * CS_CHICKEN1[0] does not disable object-level preemption as 2643 * it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been 2644 * using Option 1). Effectively this means userspace is unable 2645 * to disable object-level preemption on these platforms/steppings 2646 * despite the setting here. 2647 * 2648 * - Wa_16013994831: May require that userspace program 2649 * CS_CHICKEN1[10] when certain runtime conditions are true. 2650 * Userspace requires Option 2 to be in effect for their update of 2651 * CS_CHICKEN1[10] to be effective. 2652 * 2653 * Other workarounds may appear in the future that will also require 2654 * Option 2 behavior to allow proper userspace implementation. 2655 */ 2656 if (GRAPHICS_VER(i915) >= 9) 2657 wa_masked_en(wal, 2658 GEN7_FF_SLICE_CS_CHICKEN1, 2659 GEN9_FFSC_PERCTX_PREEMPT_CTRL); 2660 2661 if (IS_SKYLAKE(i915) || 2662 IS_KABYLAKE(i915) || 2663 IS_COFFEELAKE(i915) || 2664 IS_COMETLAKE(i915)) { 2665 /* WaEnableGapsTsvCreditFix:skl,kbl,cfl */ 2666 wa_write_or(wal, 2667 GEN8_GARBCNTL, 2668 GEN9_GAPS_TSV_CREDIT_DISABLE); 2669 } 2670 2671 if (IS_BROXTON(i915)) { 2672 /* WaDisablePooledEuLoadBalancingFix:bxt */ 2673 wa_masked_en(wal, 2674 FF_SLICE_CS_CHICKEN2, 2675 GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE); 2676 } 2677 2678 if (GRAPHICS_VER(i915) == 9) { 2679 /* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */ 2680 wa_masked_en(wal, 2681 GEN9_CSFE_CHICKEN1_RCS, 2682 GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE); 2683 2684 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */ 2685 wa_mcr_write_or(wal, 2686 BDW_SCRATCH1, 2687 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE); 2688 2689 /* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */ 2690 if (IS_GEN9_LP(i915)) 2691 wa_mcr_write_clr_set(wal, 2692 GEN8_L3SQCREG1, 2693 L3_PRIO_CREDITS_MASK, 2694 L3_GENERAL_PRIO_CREDITS(62) | 2695 L3_HIGH_PRIO_CREDITS(2)); 2696 2697 /* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */ 2698 wa_mcr_write_or(wal, 2699 GEN8_L3SQCREG4, 2700 GEN8_LQSC_FLUSH_COHERENT_LINES); 2701 2702 /* Disable atomics in L3 to prevent unrecoverable hangs */ 2703 wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1, 2704 GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0); 2705 wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4, 2706 GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0); 2707 wa_mcr_write_clr_set(wal, GEN9_SCRATCH1, 2708 EVICTION_PERF_FIX_ENABLE, 0); 2709 } 2710 2711 if (IS_HASWELL(i915)) { 2712 /* WaSampleCChickenBitEnable:hsw */ 2713 wa_masked_en(wal, 2714 HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE); 2715 2716 wa_masked_dis(wal, 2717 CACHE_MODE_0_GEN7, 2718 /* enable HiZ Raw Stall Optimization */ 2719 HIZ_RAW_STALL_OPT_DISABLE); 2720 } 2721 2722 if (IS_VALLEYVIEW(i915)) { 2723 /* WaDisableEarlyCull:vlv */ 2724 wa_masked_en(wal, 2725 _3D_CHICKEN3, 2726 _3D_CHICKEN_SF_DISABLE_OBJEND_CULL); 2727 2728 /* 2729 * WaVSThreadDispatchOverride:ivb,vlv 2730 * 2731 * This actually overrides the dispatch 2732 * mode for all thread types. 2733 */ 2734 wa_write_clr_set(wal, 2735 GEN7_FF_THREAD_MODE, 2736 GEN7_FF_SCHED_MASK, 2737 GEN7_FF_TS_SCHED_HW | 2738 GEN7_FF_VS_SCHED_HW | 2739 GEN7_FF_DS_SCHED_HW); 2740 2741 /* WaPsdDispatchEnable:vlv */ 2742 /* WaDisablePSDDualDispatchEnable:vlv */ 2743 wa_masked_en(wal, 2744 GEN7_HALF_SLICE_CHICKEN1, 2745 GEN7_MAX_PS_THREAD_DEP | 2746 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE); 2747 } 2748 2749 if (IS_IVYBRIDGE(i915)) { 2750 /* WaDisableEarlyCull:ivb */ 2751 wa_masked_en(wal, 2752 _3D_CHICKEN3, 2753 _3D_CHICKEN_SF_DISABLE_OBJEND_CULL); 2754 2755 if (0) { /* causes HiZ corruption on ivb:gt1 */ 2756 /* enable HiZ Raw Stall Optimization */ 2757 wa_masked_dis(wal, 2758 CACHE_MODE_0_GEN7, 2759 HIZ_RAW_STALL_OPT_DISABLE); 2760 } 2761 2762 /* 2763 * WaVSThreadDispatchOverride:ivb,vlv 2764 * 2765 * This actually overrides the dispatch 2766 * mode for all thread types. 2767 */ 2768 wa_write_clr_set(wal, 2769 GEN7_FF_THREAD_MODE, 2770 GEN7_FF_SCHED_MASK, 2771 GEN7_FF_TS_SCHED_HW | 2772 GEN7_FF_VS_SCHED_HW | 2773 GEN7_FF_DS_SCHED_HW); 2774 2775 /* WaDisablePSDDualDispatchEnable:ivb */ 2776 if (IS_IVB_GT1(i915)) 2777 wa_masked_en(wal, 2778 GEN7_HALF_SLICE_CHICKEN1, 2779 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE); 2780 } 2781 2782 if (GRAPHICS_VER(i915) == 7) { 2783 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */ 2784 wa_masked_en(wal, 2785 RING_MODE_GEN7(RENDER_RING_BASE), 2786 GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE); 2787 2788 /* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */ 2789 wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE); 2790 2791 /* 2792 * BSpec says this must be set, even though 2793 * WaDisable4x2SubspanOptimization:ivb,hsw 2794 * WaDisable4x2SubspanOptimization isn't listed for VLV. 2795 */ 2796 wa_masked_en(wal, 2797 CACHE_MODE_1, 2798 PIXEL_SUBSPAN_COLLECT_OPT_DISABLE); 2799 2800 /* 2801 * BSpec recommends 8x4 when MSAA is used, 2802 * however in practice 16x4 seems fastest. 2803 * 2804 * Note that PS/WM thread counts depend on the WIZ hashing 2805 * disable bit, which we don't touch here, but it's good 2806 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). 2807 */ 2808 wa_masked_field_set(wal, 2809 GEN7_GT_MODE, 2810 GEN6_WIZ_HASHING_MASK, 2811 GEN6_WIZ_HASHING_16x4); 2812 } 2813 2814 if (IS_GRAPHICS_VER(i915, 6, 7)) 2815 /* 2816 * We need to disable the AsyncFlip performance optimisations in 2817 * order to use MI_WAIT_FOR_EVENT within the CS. It should 2818 * already be programmed to '1' on all products. 2819 * 2820 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv 2821 */ 2822 wa_masked_en(wal, 2823 RING_MI_MODE(RENDER_RING_BASE), 2824 ASYNC_FLIP_PERF_DISABLE); 2825 2826 if (GRAPHICS_VER(i915) == 6) { 2827 /* 2828 * Required for the hardware to program scanline values for 2829 * waiting 2830 * WaEnableFlushTlbInvalidationMode:snb 2831 */ 2832 wa_masked_en(wal, 2833 GFX_MODE, 2834 GFX_TLB_INVALIDATE_EXPLICIT); 2835 2836 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */ 2837 wa_masked_en(wal, 2838 _3D_CHICKEN, 2839 _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB); 2840 2841 wa_masked_en(wal, 2842 _3D_CHICKEN3, 2843 /* WaStripsFansDisableFastClipPerformanceFix:snb */ 2844 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL | 2845 /* 2846 * Bspec says: 2847 * "This bit must be set if 3DSTATE_CLIP clip mode is set 2848 * to normal and 3DSTATE_SF number of SF output attributes 2849 * is more than 16." 2850 */ 2851 _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH); 2852 2853 /* 2854 * BSpec recommends 8x4 when MSAA is used, 2855 * however in practice 16x4 seems fastest. 2856 * 2857 * Note that PS/WM thread counts depend on the WIZ hashing 2858 * disable bit, which we don't touch here, but it's good 2859 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). 2860 */ 2861 wa_masked_field_set(wal, 2862 GEN6_GT_MODE, 2863 GEN6_WIZ_HASHING_MASK, 2864 GEN6_WIZ_HASHING_16x4); 2865 2866 /* WaDisable_RenderCache_OperationalFlush:snb */ 2867 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE); 2868 2869 /* 2870 * From the Sandybridge PRM, volume 1 part 3, page 24: 2871 * "If this bit is set, STCunit will have LRA as replacement 2872 * policy. [...] This bit must be reset. LRA replacement 2873 * policy is not supported." 2874 */ 2875 wa_masked_dis(wal, 2876 CACHE_MODE_0, 2877 CM0_STC_EVICT_DISABLE_LRA_SNB); 2878 } 2879 2880 if (IS_GRAPHICS_VER(i915, 4, 6)) 2881 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */ 2882 wa_add(wal, RING_MI_MODE(RENDER_RING_BASE), 2883 0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH), 2884 /* XXX bit doesn't stick on Broadwater */ 2885 IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true); 2886 2887 if (GRAPHICS_VER(i915) == 4) 2888 /* 2889 * Disable CONSTANT_BUFFER before it is loaded from the context 2890 * image. For as it is loaded, it is executed and the stored 2891 * address may no longer be valid, leading to a GPU hang. 2892 * 2893 * This imposes the requirement that userspace reload their 2894 * CONSTANT_BUFFER on every batch, fortunately a requirement 2895 * they are already accustomed to from before contexts were 2896 * enabled. 2897 */ 2898 wa_add(wal, ECOSKPD(RENDER_RING_BASE), 2899 0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE), 2900 0 /* XXX bit doesn't stick on Broadwater */, 2901 true); 2902 } 2903 2904 static void 2905 xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2906 { 2907 struct drm_i915_private *i915 = engine->i915; 2908 2909 /* WaKBLVECSSemaphoreWaitPoll:kbl */ 2910 if (IS_KBL_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) { 2911 wa_write(wal, 2912 RING_SEMA_WAIT_POLL(engine->mmio_base), 2913 1); 2914 } 2915 } 2916 2917 static void 2918 ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2919 { 2920 if (IS_PVC_CT_STEP(engine->i915, STEP_A0, STEP_C0)) { 2921 /* Wa_14014999345:pvc */ 2922 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, DISABLE_ECC); 2923 } 2924 } 2925 2926 /* 2927 * The bspec performance guide has recommended MMIO tuning settings. These 2928 * aren't truly "workarounds" but we want to program them with the same 2929 * workaround infrastructure to ensure that they're automatically added to 2930 * the GuC save/restore lists, re-applied at the right times, and checked for 2931 * any conflicting programming requested by real workarounds. 2932 * 2933 * Programming settings should be added here only if their registers are not 2934 * part of an engine's register state context. If a register is part of a 2935 * context, then any tuning settings should be programmed in an appropriate 2936 * function invoked by __intel_engine_init_ctx_wa(). 2937 */ 2938 static void 2939 add_render_compute_tuning_settings(struct drm_i915_private *i915, 2940 struct i915_wa_list *wal) 2941 { 2942 if (IS_DG2(i915)) 2943 wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512); 2944 2945 /* 2946 * This tuning setting proves beneficial only on ATS-M designs; the 2947 * default "age based" setting is optimal on regular DG2 and other 2948 * platforms. 2949 */ 2950 if (INTEL_INFO(i915)->tuning_thread_rr_after_dep) 2951 wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE, 2952 THREAD_EX_ARB_MODE_RR_AFTER_DEP); 2953 2954 if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) 2955 wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC); 2956 } 2957 2958 /* 2959 * The workarounds in this function apply to shared registers in 2960 * the general render reset domain that aren't tied to a 2961 * specific engine. Since all render+compute engines get reset 2962 * together, and the contents of these registers are lost during 2963 * the shared render domain reset, we'll define such workarounds 2964 * here and then add them to just a single RCS or CCS engine's 2965 * workaround list (whichever engine has the XXXX flag). 2966 */ 2967 static void 2968 general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2969 { 2970 struct drm_i915_private *i915 = engine->i915; 2971 2972 add_render_compute_tuning_settings(i915, wal); 2973 2974 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_B0, STEP_FOREVER) || 2975 IS_MTL_GRAPHICS_STEP(i915, P, STEP_B0, STEP_FOREVER)) 2976 /* Wa_14017856879 */ 2977 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN3, MTL_DISABLE_FIX_FOR_EOT_FLUSH); 2978 2979 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) || 2980 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0)) 2981 /* 2982 * Wa_14017066071 2983 * Wa_14017654203 2984 */ 2985 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, 2986 MTL_DISABLE_SAMPLER_SC_OOO); 2987 2988 if (IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0)) 2989 /* Wa_22015279794 */ 2990 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, 2991 DISABLE_PREFETCH_INTO_IC); 2992 2993 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) || 2994 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) || 2995 IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) || 2996 IS_DG2_G11(i915) || IS_DG2_G12(i915)) { 2997 /* Wa_22013037850 */ 2998 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, 2999 DISABLE_128B_EVICTION_COMMAND_UDW); 3000 } 3001 3002 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) || 3003 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) || 3004 IS_PONTEVECCHIO(i915) || 3005 IS_DG2(i915)) { 3006 /* Wa_22014226127 */ 3007 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE); 3008 } 3009 3010 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) || 3011 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) || 3012 IS_DG2(i915)) { 3013 /* Wa_18017747507 */ 3014 wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE); 3015 } 3016 3017 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) || 3018 IS_DG2_G11(i915)) { 3019 /* 3020 * Wa_22012826095:dg2 3021 * Wa_22013059131:dg2 3022 */ 3023 wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW, 3024 MAXREQS_PER_BANK, 3025 REG_FIELD_PREP(MAXREQS_PER_BANK, 2)); 3026 3027 /* Wa_22013059131:dg2 */ 3028 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, 3029 FORCE_1_SUB_MESSAGE_PER_FRAGMENT); 3030 } 3031 3032 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) { 3033 /* 3034 * Wa_14010918519:dg2_g10 3035 * 3036 * LSC_CHICKEN_BIT_0 always reads back as 0 is this stepping, 3037 * so ignoring verification. 3038 */ 3039 wa_mcr_add(wal, LSC_CHICKEN_BIT_0_UDW, 0, 3040 FORCE_SLM_FENCE_SCOPE_TO_TILE | FORCE_UGM_FENCE_SCOPE_TO_TILE, 3041 0, false); 3042 } 3043 3044 if (IS_XEHPSDV(i915)) { 3045 /* Wa_1409954639 */ 3046 wa_mcr_masked_en(wal, 3047 GEN8_ROW_CHICKEN, 3048 SYSTOLIC_DOP_CLOCK_GATING_DIS); 3049 3050 /* Wa_1607196519 */ 3051 wa_mcr_masked_en(wal, 3052 GEN9_ROW_CHICKEN4, 3053 GEN12_DISABLE_GRF_CLEAR); 3054 3055 /* Wa_14010449647:xehpsdv */ 3056 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1, 3057 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE); 3058 } 3059 3060 if (IS_DG2(i915) || IS_PONTEVECCHIO(i915)) { 3061 /* Wa_14015227452:dg2,pvc */ 3062 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE); 3063 3064 /* Wa_16015675438:dg2,pvc */ 3065 wa_masked_en(wal, FF_SLICE_CS_CHICKEN2, GEN12_PERF_FIX_BALANCING_CFE_DISABLE); 3066 } 3067 3068 if (IS_DG2(i915)) { 3069 /* 3070 * Wa_16011620976:dg2_g11 3071 * Wa_22015475538:dg2 3072 */ 3073 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8); 3074 } 3075 3076 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_C0) || IS_DG2_G11(i915)) 3077 /* 3078 * Wa_22012654132 3079 * 3080 * Note that register 0xE420 is write-only and cannot be read 3081 * back for verification on DG2 (due to Wa_14012342262), so 3082 * we need to explicitly skip the readback. 3083 */ 3084 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0, 3085 _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC), 3086 0 /* write-only, so skip validation */, 3087 true); 3088 } 3089 3090 static void 3091 engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal) 3092 { 3093 if (GRAPHICS_VER(engine->i915) < 4) 3094 return; 3095 3096 engine_fake_wa_init(engine, wal); 3097 3098 /* 3099 * These are common workarounds that just need to applied 3100 * to a single RCS/CCS engine's workaround list since 3101 * they're reset as part of the general render domain reset. 3102 */ 3103 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) 3104 general_render_compute_wa_init(engine, wal); 3105 3106 if (engine->class == COMPUTE_CLASS) 3107 ccs_engine_wa_init(engine, wal); 3108 else if (engine->class == RENDER_CLASS) 3109 rcs_engine_wa_init(engine, wal); 3110 else 3111 xcs_engine_wa_init(engine, wal); 3112 } 3113 3114 void intel_engine_init_workarounds(struct intel_engine_cs *engine) 3115 { 3116 struct i915_wa_list *wal = &engine->wa_list; 3117 3118 wa_init_start(wal, engine->gt, "engine", engine->name); 3119 engine_init_workarounds(engine, wal); 3120 wa_init_finish(wal); 3121 } 3122 3123 void intel_engine_apply_workarounds(struct intel_engine_cs *engine) 3124 { 3125 wa_list_apply(&engine->wa_list); 3126 } 3127 3128 static const struct i915_range mcr_ranges_gen8[] = { 3129 { .start = 0x5500, .end = 0x55ff }, 3130 { .start = 0x7000, .end = 0x7fff }, 3131 { .start = 0x9400, .end = 0x97ff }, 3132 { .start = 0xb000, .end = 0xb3ff }, 3133 { .start = 0xe000, .end = 0xe7ff }, 3134 {}, 3135 }; 3136 3137 static const struct i915_range mcr_ranges_gen12[] = { 3138 { .start = 0x8150, .end = 0x815f }, 3139 { .start = 0x9520, .end = 0x955f }, 3140 { .start = 0xb100, .end = 0xb3ff }, 3141 { .start = 0xde80, .end = 0xe8ff }, 3142 { .start = 0x24a00, .end = 0x24a7f }, 3143 {}, 3144 }; 3145 3146 static const struct i915_range mcr_ranges_xehp[] = { 3147 { .start = 0x4000, .end = 0x4aff }, 3148 { .start = 0x5200, .end = 0x52ff }, 3149 { .start = 0x5400, .end = 0x7fff }, 3150 { .start = 0x8140, .end = 0x815f }, 3151 { .start = 0x8c80, .end = 0x8dff }, 3152 { .start = 0x94d0, .end = 0x955f }, 3153 { .start = 0x9680, .end = 0x96ff }, 3154 { .start = 0xb000, .end = 0xb3ff }, 3155 { .start = 0xc800, .end = 0xcfff }, 3156 { .start = 0xd800, .end = 0xd8ff }, 3157 { .start = 0xdc00, .end = 0xffff }, 3158 { .start = 0x17000, .end = 0x17fff }, 3159 { .start = 0x24a00, .end = 0x24a7f }, 3160 {}, 3161 }; 3162 3163 static bool mcr_range(struct drm_i915_private *i915, u32 offset) 3164 { 3165 const struct i915_range *mcr_ranges; 3166 int i; 3167 3168 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) 3169 mcr_ranges = mcr_ranges_xehp; 3170 else if (GRAPHICS_VER(i915) >= 12) 3171 mcr_ranges = mcr_ranges_gen12; 3172 else if (GRAPHICS_VER(i915) >= 8) 3173 mcr_ranges = mcr_ranges_gen8; 3174 else 3175 return false; 3176 3177 /* 3178 * Registers in these ranges are affected by the MCR selector 3179 * which only controls CPU initiated MMIO. Routing does not 3180 * work for CS access so we cannot verify them on this path. 3181 */ 3182 for (i = 0; mcr_ranges[i].start; i++) 3183 if (offset >= mcr_ranges[i].start && 3184 offset <= mcr_ranges[i].end) 3185 return true; 3186 3187 return false; 3188 } 3189 3190 static int 3191 wa_list_srm(struct i915_request *rq, 3192 const struct i915_wa_list *wal, 3193 struct i915_vma *vma) 3194 { 3195 struct drm_i915_private *i915 = rq->engine->i915; 3196 unsigned int i, count = 0; 3197 const struct i915_wa *wa; 3198 u32 srm, *cs; 3199 3200 srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT; 3201 if (GRAPHICS_VER(i915) >= 8) 3202 srm++; 3203 3204 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 3205 if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg))) 3206 count++; 3207 } 3208 3209 cs = intel_ring_begin(rq, 4 * count); 3210 if (IS_ERR(cs)) 3211 return PTR_ERR(cs); 3212 3213 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 3214 u32 offset = i915_mmio_reg_offset(wa->reg); 3215 3216 if (mcr_range(i915, offset)) 3217 continue; 3218 3219 *cs++ = srm; 3220 *cs++ = offset; 3221 *cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i; 3222 *cs++ = 0; 3223 } 3224 intel_ring_advance(rq, cs); 3225 3226 return 0; 3227 } 3228 3229 static int engine_wa_list_verify(struct intel_context *ce, 3230 const struct i915_wa_list * const wal, 3231 const char *from) 3232 { 3233 const struct i915_wa *wa; 3234 struct i915_request *rq; 3235 struct i915_vma *vma; 3236 struct i915_gem_ww_ctx ww; 3237 unsigned int i; 3238 u32 *results; 3239 int err; 3240 3241 if (!wal->count) 3242 return 0; 3243 3244 vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm, 3245 wal->count * sizeof(u32)); 3246 if (IS_ERR(vma)) 3247 return PTR_ERR(vma); 3248 3249 intel_engine_pm_get(ce->engine); 3250 i915_gem_ww_ctx_init(&ww, false); 3251 retry: 3252 err = i915_gem_object_lock(vma->obj, &ww); 3253 if (err == 0) 3254 err = intel_context_pin_ww(ce, &ww); 3255 if (err) 3256 goto err_pm; 3257 3258 err = i915_vma_pin_ww(vma, &ww, 0, 0, 3259 i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER); 3260 if (err) 3261 goto err_unpin; 3262 3263 rq = i915_request_create(ce); 3264 if (IS_ERR(rq)) { 3265 err = PTR_ERR(rq); 3266 goto err_vma; 3267 } 3268 3269 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); 3270 if (err == 0) 3271 err = wa_list_srm(rq, wal, vma); 3272 3273 i915_request_get(rq); 3274 if (err) 3275 i915_request_set_error_once(rq, err); 3276 i915_request_add(rq); 3277 3278 if (err) 3279 goto err_rq; 3280 3281 if (i915_request_wait(rq, 0, HZ / 5) < 0) { 3282 err = -ETIME; 3283 goto err_rq; 3284 } 3285 3286 results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); 3287 if (IS_ERR(results)) { 3288 err = PTR_ERR(results); 3289 goto err_rq; 3290 } 3291 3292 err = 0; 3293 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 3294 if (mcr_range(rq->engine->i915, i915_mmio_reg_offset(wa->reg))) 3295 continue; 3296 3297 if (!wa_verify(wal->gt, wa, results[i], wal->name, from)) 3298 err = -ENXIO; 3299 } 3300 3301 i915_gem_object_unpin_map(vma->obj); 3302 3303 err_rq: 3304 i915_request_put(rq); 3305 err_vma: 3306 i915_vma_unpin(vma); 3307 err_unpin: 3308 intel_context_unpin(ce); 3309 err_pm: 3310 if (err == -EDEADLK) { 3311 err = i915_gem_ww_ctx_backoff(&ww); 3312 if (!err) 3313 goto retry; 3314 } 3315 i915_gem_ww_ctx_fini(&ww); 3316 intel_engine_pm_put(ce->engine); 3317 i915_vma_put(vma); 3318 return err; 3319 } 3320 3321 int intel_engine_verify_workarounds(struct intel_engine_cs *engine, 3322 const char *from) 3323 { 3324 return engine_wa_list_verify(engine->kernel_context, 3325 &engine->wa_list, 3326 from); 3327 } 3328 3329 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 3330 #include "selftest_workarounds.c" 3331 #endif 3332