xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_workarounds.c (revision 447395e18ae084b1ac96d4efeca43a711cf5a36b)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2018 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "intel_context.h"
9 #include "intel_engine_pm.h"
10 #include "intel_engine_regs.h"
11 #include "intel_gpu_commands.h"
12 #include "intel_gt.h"
13 #include "intel_gt_mcr.h"
14 #include "intel_gt_regs.h"
15 #include "intel_ring.h"
16 #include "intel_workarounds.h"
17 
18 /**
19  * DOC: Hardware workarounds
20  *
21  * Hardware workarounds are register programming documented to be executed in
22  * the driver that fall outside of the normal programming sequences for a
23  * platform. There are some basic categories of workarounds, depending on
24  * how/when they are applied:
25  *
26  * - Context workarounds: workarounds that touch registers that are
27  *   saved/restored to/from the HW context image. The list is emitted (via Load
28  *   Register Immediate commands) once when initializing the device and saved in
29  *   the default context. That default context is then used on every context
30  *   creation to have a "primed golden context", i.e. a context image that
31  *   already contains the changes needed to all the registers.
32  *
33  * - Engine workarounds: the list of these WAs is applied whenever the specific
34  *   engine is reset. It's also possible that a set of engine classes share a
35  *   common power domain and they are reset together. This happens on some
36  *   platforms with render and compute engines. In this case (at least) one of
37  *   them need to keeep the workaround programming: the approach taken in the
38  *   driver is to tie those workarounds to the first compute/render engine that
39  *   is registered.  When executing with GuC submission, engine resets are
40  *   outside of kernel driver control, hence the list of registers involved in
41  *   written once, on engine initialization, and then passed to GuC, that
42  *   saves/restores their values before/after the reset takes place. See
43  *   ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference.
44  *
45  * - GT workarounds: the list of these WAs is applied whenever these registers
46  *   revert to their default values: on GPU reset, suspend/resume [1]_, etc.
47  *
48  * - Register whitelist: some workarounds need to be implemented in userspace,
49  *   but need to touch privileged registers. The whitelist in the kernel
50  *   instructs the hardware to allow the access to happen. From the kernel side,
51  *   this is just a special case of a MMIO workaround (as we write the list of
52  *   these to/be-whitelisted registers to some special HW registers).
53  *
54  * - Workaround batchbuffers: buffers that get executed automatically by the
55  *   hardware on every HW context restore. These buffers are created and
56  *   programmed in the default context so the hardware always go through those
57  *   programming sequences when switching contexts. The support for workaround
58  *   batchbuffers is enabled these hardware mechanisms:
59  *
60  *   #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default
61  *      context, pointing the hardware to jump to that location when that offset
62  *      is reached in the context restore. Workaround batchbuffer in the driver
63  *      currently uses this mechanism for all platforms.
64  *
65  *   #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context,
66  *      pointing the hardware to a buffer to continue executing after the
67  *      engine registers are restored in a context restore sequence. This is
68  *      currently not used in the driver.
69  *
70  * - Other:  There are WAs that, due to their nature, cannot be applied from a
71  *   central place. Those are peppered around the rest of the code, as needed.
72  *   Workarounds related to the display IP are the main example.
73  *
74  * .. [1] Technically, some registers are powercontext saved & restored, so they
75  *    survive a suspend/resume. In practice, writing them again is not too
76  *    costly and simplifies things, so it's the approach taken in the driver.
77  */
78 
79 static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt,
80 			  const char *name, const char *engine_name)
81 {
82 	wal->gt = gt;
83 	wal->name = name;
84 	wal->engine_name = engine_name;
85 }
86 
87 #define WA_LIST_CHUNK (1 << 4)
88 
89 static void wa_init_finish(struct i915_wa_list *wal)
90 {
91 	/* Trim unused entries. */
92 	if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) {
93 		struct i915_wa *list = kmemdup(wal->list,
94 					       wal->count * sizeof(*list),
95 					       GFP_KERNEL);
96 
97 		if (list) {
98 			kfree(wal->list);
99 			wal->list = list;
100 		}
101 	}
102 
103 	if (!wal->count)
104 		return;
105 
106 	drm_dbg(&wal->gt->i915->drm, "Initialized %u %s workarounds on %s\n",
107 		wal->wa_count, wal->name, wal->engine_name);
108 }
109 
110 static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa)
111 {
112 	unsigned int addr = i915_mmio_reg_offset(wa->reg);
113 	struct drm_i915_private *i915 = wal->gt->i915;
114 	unsigned int start = 0, end = wal->count;
115 	const unsigned int grow = WA_LIST_CHUNK;
116 	struct i915_wa *wa_;
117 
118 	GEM_BUG_ON(!is_power_of_2(grow));
119 
120 	if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */
121 		struct i915_wa *list;
122 
123 		list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa),
124 				     GFP_KERNEL);
125 		if (!list) {
126 			drm_err(&i915->drm, "No space for workaround init!\n");
127 			return;
128 		}
129 
130 		if (wal->list) {
131 			memcpy(list, wal->list, sizeof(*wa) * wal->count);
132 			kfree(wal->list);
133 		}
134 
135 		wal->list = list;
136 	}
137 
138 	while (start < end) {
139 		unsigned int mid = start + (end - start) / 2;
140 
141 		if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) {
142 			start = mid + 1;
143 		} else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) {
144 			end = mid;
145 		} else {
146 			wa_ = &wal->list[mid];
147 
148 			if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) {
149 				drm_err(&i915->drm,
150 					"Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n",
151 					i915_mmio_reg_offset(wa_->reg),
152 					wa_->clr, wa_->set);
153 
154 				wa_->set &= ~wa->clr;
155 			}
156 
157 			wal->wa_count++;
158 			wa_->set |= wa->set;
159 			wa_->clr |= wa->clr;
160 			wa_->read |= wa->read;
161 			return;
162 		}
163 	}
164 
165 	wal->wa_count++;
166 	wa_ = &wal->list[wal->count++];
167 	*wa_ = *wa;
168 
169 	while (wa_-- > wal->list) {
170 		GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) ==
171 			   i915_mmio_reg_offset(wa_[1].reg));
172 		if (i915_mmio_reg_offset(wa_[1].reg) >
173 		    i915_mmio_reg_offset(wa_[0].reg))
174 			break;
175 
176 		swap(wa_[1], wa_[0]);
177 	}
178 }
179 
180 static void wa_add(struct i915_wa_list *wal, i915_reg_t reg,
181 		   u32 clear, u32 set, u32 read_mask, bool masked_reg)
182 {
183 	struct i915_wa wa = {
184 		.reg  = reg,
185 		.clr  = clear,
186 		.set  = set,
187 		.read = read_mask,
188 		.masked_reg = masked_reg,
189 	};
190 
191 	_wa_add(wal, &wa);
192 }
193 
194 static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg,
195 		       u32 clear, u32 set, u32 read_mask, bool masked_reg)
196 {
197 	struct i915_wa wa = {
198 		.mcr_reg = reg,
199 		.clr  = clear,
200 		.set  = set,
201 		.read = read_mask,
202 		.masked_reg = masked_reg,
203 		.is_mcr = 1,
204 	};
205 
206 	_wa_add(wal, &wa);
207 }
208 
209 static void
210 wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set)
211 {
212 	wa_add(wal, reg, clear, set, clear, false);
213 }
214 
215 static void
216 wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set)
217 {
218 	wa_mcr_add(wal, reg, clear, set, clear, false);
219 }
220 
221 static void
222 wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
223 {
224 	wa_write_clr_set(wal, reg, ~0, set);
225 }
226 
227 static void
228 wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
229 {
230 	wa_write_clr_set(wal, reg, set, set);
231 }
232 
233 static void
234 wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
235 {
236 	wa_mcr_write_clr_set(wal, reg, set, set);
237 }
238 
239 static void
240 wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr)
241 {
242 	wa_write_clr_set(wal, reg, clr, 0);
243 }
244 
245 static void
246 wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr)
247 {
248 	wa_mcr_write_clr_set(wal, reg, clr, 0);
249 }
250 
251 /*
252  * WA operations on "masked register". A masked register has the upper 16 bits
253  * documented as "masked" in b-spec. Its purpose is to allow writing to just a
254  * portion of the register without a rmw: you simply write in the upper 16 bits
255  * the mask of bits you are going to modify.
256  *
257  * The wa_masked_* family of functions already does the necessary operations to
258  * calculate the mask based on the parameters passed, so user only has to
259  * provide the lower 16 bits of that register.
260  */
261 
262 static void
263 wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
264 {
265 	wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
266 }
267 
268 static void
269 wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
270 {
271 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
272 }
273 
274 static void
275 wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
276 {
277 	wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
278 }
279 
280 static void
281 wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
282 {
283 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
284 }
285 
286 static void
287 wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg,
288 		    u32 mask, u32 val)
289 {
290 	wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
291 }
292 
293 static void
294 wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg,
295 			u32 mask, u32 val)
296 {
297 	wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
298 }
299 
300 static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine,
301 				      struct i915_wa_list *wal)
302 {
303 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
304 }
305 
306 static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine,
307 				      struct i915_wa_list *wal)
308 {
309 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
310 }
311 
312 static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine,
313 				      struct i915_wa_list *wal)
314 {
315 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
316 
317 	/* WaDisableAsyncFlipPerfMode:bdw,chv */
318 	wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE);
319 
320 	/* WaDisablePartialInstShootdown:bdw,chv */
321 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
322 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
323 
324 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
325 	 * workaround for a possible hang in the unlikely event a TLB
326 	 * invalidation occurs during a PSD flush.
327 	 */
328 	/* WaForceEnableNonCoherent:bdw,chv */
329 	/* WaHdcDisableFetchWhenMasked:bdw,chv */
330 	wa_masked_en(wal, HDC_CHICKEN0,
331 		     HDC_DONOT_FETCH_MEM_WHEN_MASKED |
332 		     HDC_FORCE_NON_COHERENT);
333 
334 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
335 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
336 	 *  polygons in the same 8x4 pixel/sample area to be processed without
337 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
338 	 *  buffer."
339 	 *
340 	 * This optimization is off by default for BDW and CHV; turn it on.
341 	 */
342 	wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
343 
344 	/* Wa4x4STCOptimizationDisable:bdw,chv */
345 	wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
346 
347 	/*
348 	 * BSpec recommends 8x4 when MSAA is used,
349 	 * however in practice 16x4 seems fastest.
350 	 *
351 	 * Note that PS/WM thread counts depend on the WIZ hashing
352 	 * disable bit, which we don't touch here, but it's good
353 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
354 	 */
355 	wa_masked_field_set(wal, GEN7_GT_MODE,
356 			    GEN6_WIZ_HASHING_MASK,
357 			    GEN6_WIZ_HASHING_16x4);
358 }
359 
360 static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine,
361 				     struct i915_wa_list *wal)
362 {
363 	struct drm_i915_private *i915 = engine->i915;
364 
365 	gen8_ctx_workarounds_init(engine, wal);
366 
367 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
368 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
369 
370 	/* WaDisableDopClockGating:bdw
371 	 *
372 	 * Also see the related UCGTCL1 write in bdw_init_clock_gating()
373 	 * to disable EUTC clock gating.
374 	 */
375 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
376 			 DOP_CLOCK_GATING_DISABLE);
377 
378 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
379 			 GEN8_SAMPLER_POWER_BYPASS_DIS);
380 
381 	wa_masked_en(wal, HDC_CHICKEN0,
382 		     /* WaForceContextSaveRestoreNonCoherent:bdw */
383 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
384 		     /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
385 		     (IS_BDW_GT3(i915) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
386 }
387 
388 static void chv_ctx_workarounds_init(struct intel_engine_cs *engine,
389 				     struct i915_wa_list *wal)
390 {
391 	gen8_ctx_workarounds_init(engine, wal);
392 
393 	/* WaDisableThreadStallDopClockGating:chv */
394 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
395 
396 	/* Improve HiZ throughput on CHV. */
397 	wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
398 }
399 
400 static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine,
401 				      struct i915_wa_list *wal)
402 {
403 	struct drm_i915_private *i915 = engine->i915;
404 
405 	if (HAS_LLC(i915)) {
406 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
407 		 *
408 		 * Must match Display Engine. See
409 		 * WaCompressedResourceDisplayNewHashMode.
410 		 */
411 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
412 			     GEN9_PBE_COMPRESSED_HASH_SELECTION);
413 		wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
414 				 GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR);
415 	}
416 
417 	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */
418 	/* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */
419 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
420 			 FLOW_CONTROL_ENABLE |
421 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
422 
423 	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */
424 	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */
425 	wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
426 			 GEN9_ENABLE_YV12_BUGFIX |
427 			 GEN9_ENABLE_GPGPU_PREEMPTION);
428 
429 	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */
430 	/* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */
431 	wa_masked_en(wal, CACHE_MODE_1,
432 		     GEN8_4x4_STC_OPTIMIZATION_DISABLE |
433 		     GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
434 
435 	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */
436 	wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5,
437 			  GEN9_CCS_TLB_PREFETCH_ENABLE);
438 
439 	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */
440 	wa_masked_en(wal, HDC_CHICKEN0,
441 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
442 		     HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
443 
444 	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
445 	 * both tied to WaForceContextSaveRestoreNonCoherent
446 	 * in some hsds for skl. We keep the tie for all gen9. The
447 	 * documentation is a bit hazy and so we want to get common behaviour,
448 	 * even though there is no clear evidence we would need both on kbl/bxt.
449 	 * This area has been source of system hangs so we play it safe
450 	 * and mimic the skl regardless of what bspec says.
451 	 *
452 	 * Use Force Non-Coherent whenever executing a 3D context. This
453 	 * is a workaround for a possible hang in the unlikely event
454 	 * a TLB invalidation occurs during a PSD flush.
455 	 */
456 
457 	/* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */
458 	wa_masked_en(wal, HDC_CHICKEN0,
459 		     HDC_FORCE_NON_COHERENT);
460 
461 	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */
462 	if (IS_SKYLAKE(i915) ||
463 	    IS_KABYLAKE(i915) ||
464 	    IS_COFFEELAKE(i915) ||
465 	    IS_COMETLAKE(i915))
466 		wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
467 				 GEN8_SAMPLER_POWER_BYPASS_DIS);
468 
469 	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */
470 	wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
471 
472 	/*
473 	 * Supporting preemption with fine-granularity requires changes in the
474 	 * batch buffer programming. Since we can't break old userspace, we
475 	 * need to set our default preemption level to safe value. Userspace is
476 	 * still able to use more fine-grained preemption levels, since in
477 	 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the
478 	 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are
479 	 * not real HW workarounds, but merely a way to start using preemption
480 	 * while maintaining old contract with userspace.
481 	 */
482 
483 	/* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */
484 	wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);
485 
486 	/* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */
487 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
488 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
489 			    GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);
490 
491 	/* WaClearHIZ_WM_CHICKEN3:bxt,glk */
492 	if (IS_GEN9_LP(i915))
493 		wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ);
494 }
495 
496 static void skl_tune_iz_hashing(struct intel_engine_cs *engine,
497 				struct i915_wa_list *wal)
498 {
499 	struct intel_gt *gt = engine->gt;
500 	u8 vals[3] = { 0, 0, 0 };
501 	unsigned int i;
502 
503 	for (i = 0; i < 3; i++) {
504 		u8 ss;
505 
506 		/*
507 		 * Only consider slices where one, and only one, subslice has 7
508 		 * EUs
509 		 */
510 		if (!is_power_of_2(gt->info.sseu.subslice_7eu[i]))
511 			continue;
512 
513 		/*
514 		 * subslice_7eu[i] != 0 (because of the check above) and
515 		 * ss_max == 4 (maximum number of subslices possible per slice)
516 		 *
517 		 * ->    0 <= ss <= 3;
518 		 */
519 		ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1;
520 		vals[i] = 3 - ss;
521 	}
522 
523 	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
524 		return;
525 
526 	/* Tune IZ hashing. See intel_device_info_runtime_init() */
527 	wa_masked_field_set(wal, GEN7_GT_MODE,
528 			    GEN9_IZ_HASHING_MASK(2) |
529 			    GEN9_IZ_HASHING_MASK(1) |
530 			    GEN9_IZ_HASHING_MASK(0),
531 			    GEN9_IZ_HASHING(2, vals[2]) |
532 			    GEN9_IZ_HASHING(1, vals[1]) |
533 			    GEN9_IZ_HASHING(0, vals[0]));
534 }
535 
536 static void skl_ctx_workarounds_init(struct intel_engine_cs *engine,
537 				     struct i915_wa_list *wal)
538 {
539 	gen9_ctx_workarounds_init(engine, wal);
540 	skl_tune_iz_hashing(engine, wal);
541 }
542 
543 static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine,
544 				     struct i915_wa_list *wal)
545 {
546 	gen9_ctx_workarounds_init(engine, wal);
547 
548 	/* WaDisableThreadStallDopClockGating:bxt */
549 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
550 			 STALL_DOP_GATING_DISABLE);
551 
552 	/* WaToEnableHwFixForPushConstHWBug:bxt */
553 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
554 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
555 }
556 
557 static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine,
558 				     struct i915_wa_list *wal)
559 {
560 	struct drm_i915_private *i915 = engine->i915;
561 
562 	gen9_ctx_workarounds_init(engine, wal);
563 
564 	/* WaToEnableHwFixForPushConstHWBug:kbl */
565 	if (IS_KBL_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER))
566 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
567 			     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
568 
569 	/* WaDisableSbeCacheDispatchPortSharing:kbl */
570 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
571 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
572 }
573 
574 static void glk_ctx_workarounds_init(struct intel_engine_cs *engine,
575 				     struct i915_wa_list *wal)
576 {
577 	gen9_ctx_workarounds_init(engine, wal);
578 
579 	/* WaToEnableHwFixForPushConstHWBug:glk */
580 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
581 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
582 }
583 
584 static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine,
585 				     struct i915_wa_list *wal)
586 {
587 	gen9_ctx_workarounds_init(engine, wal);
588 
589 	/* WaToEnableHwFixForPushConstHWBug:cfl */
590 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
591 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
592 
593 	/* WaDisableSbeCacheDispatchPortSharing:cfl */
594 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
595 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
596 }
597 
598 static void icl_ctx_workarounds_init(struct intel_engine_cs *engine,
599 				     struct i915_wa_list *wal)
600 {
601 	/* Wa_1406697149 (WaDisableBankHangMode:icl) */
602 	wa_write(wal,
603 		 GEN8_L3CNTLREG,
604 		 intel_uncore_read(engine->uncore, GEN8_L3CNTLREG) |
605 		 GEN8_ERRDETBCTRL);
606 
607 	/* WaForceEnableNonCoherent:icl
608 	 * This is not the same workaround as in early Gen9 platforms, where
609 	 * lacking this could cause system hangs, but coherency performance
610 	 * overhead is high and only a few compute workloads really need it
611 	 * (the register is whitelisted in hardware now, so UMDs can opt in
612 	 * for coherency if they have a good reason).
613 	 */
614 	wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT);
615 
616 	/* WaEnableFloatBlendOptimization:icl */
617 	wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
618 		   _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE),
619 		   0 /* write-only, so skip validation */,
620 		   true);
621 
622 	/* WaDisableGPGPUMidThreadPreemption:icl */
623 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
624 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
625 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
626 
627 	/* allow headerless messages for preemptible GPGPU context */
628 	wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
629 			 GEN11_SAMPLER_ENABLE_HEADLESS_MSG);
630 
631 	/* Wa_1604278689:icl,ehl */
632 	wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID);
633 	wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER,
634 			 0, /* write-only register; skip validation */
635 			 0xFFFFFFFF);
636 
637 	/* Wa_1406306137:icl,ehl */
638 	wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU);
639 }
640 
641 /*
642  * These settings aren't actually workarounds, but general tuning settings that
643  * need to be programmed on dg2 platform.
644  */
645 static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine,
646 				   struct i915_wa_list *wal)
647 {
648 	wa_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP);
649 	wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK,
650 			     REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f));
651 	wa_mcr_add(wal,
652 		   XEHP_FF_MODE2,
653 		   FF_MODE2_TDS_TIMER_MASK,
654 		   FF_MODE2_TDS_TIMER_128,
655 		   0, false);
656 }
657 
658 /*
659  * These settings aren't actually workarounds, but general tuning settings that
660  * need to be programmed on several platforms.
661  */
662 static void gen12_ctx_gt_tuning_init(struct intel_engine_cs *engine,
663 				     struct i915_wa_list *wal)
664 {
665 	/*
666 	 * Although some platforms refer to it as Wa_1604555607, we need to
667 	 * program it even on those that don't explicitly list that
668 	 * workaround.
669 	 *
670 	 * Note that the programming of this register is further modified
671 	 * according to the FF_MODE2 guidance given by Wa_1608008084:gen12.
672 	 * Wa_1608008084 tells us the FF_MODE2 register will return the wrong
673 	 * value when read. The default value for this register is zero for all
674 	 * fields and there are no bit masks. So instead of doing a RMW we
675 	 * should just write TDS timer value. For the same reason read
676 	 * verification is ignored.
677 	 */
678 	wa_add(wal,
679 	       GEN12_FF_MODE2,
680 	       FF_MODE2_TDS_TIMER_MASK,
681 	       FF_MODE2_TDS_TIMER_128,
682 	       0, false);
683 }
684 
685 static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine,
686 				       struct i915_wa_list *wal)
687 {
688 	struct drm_i915_private *i915 = engine->i915;
689 
690 	gen12_ctx_gt_tuning_init(engine, wal);
691 
692 	/*
693 	 * Wa_1409142259:tgl,dg1,adl-p
694 	 * Wa_1409347922:tgl,dg1,adl-p
695 	 * Wa_1409252684:tgl,dg1,adl-p
696 	 * Wa_1409217633:tgl,dg1,adl-p
697 	 * Wa_1409207793:tgl,dg1,adl-p
698 	 * Wa_1409178076:tgl,dg1,adl-p
699 	 * Wa_1408979724:tgl,dg1,adl-p
700 	 * Wa_14010443199:tgl,rkl,dg1,adl-p
701 	 * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p
702 	 * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p
703 	 */
704 	wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3,
705 		     GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
706 
707 	/* WaDisableGPGPUMidThreadPreemption:gen12 */
708 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
709 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
710 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
711 
712 	/*
713 	 * Wa_16011163337
714 	 *
715 	 * Like in gen12_ctx_gt_tuning_init(), read verification is ignored due
716 	 * to Wa_1608008084.
717 	 */
718 	wa_add(wal,
719 	       GEN12_FF_MODE2,
720 	       FF_MODE2_GS_TIMER_MASK,
721 	       FF_MODE2_GS_TIMER_224,
722 	       0, false);
723 
724 	if (!IS_DG1(i915))
725 		/* Wa_1806527549 */
726 		wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE);
727 }
728 
729 static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine,
730 				     struct i915_wa_list *wal)
731 {
732 	gen12_ctx_workarounds_init(engine, wal);
733 
734 	/* Wa_1409044764 */
735 	wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3,
736 		      DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN);
737 
738 	/* Wa_22010493298 */
739 	wa_masked_en(wal, HIZ_CHICKEN,
740 		     DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE);
741 }
742 
743 static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine,
744 				     struct i915_wa_list *wal)
745 {
746 	dg2_ctx_gt_tuning_init(engine, wal);
747 
748 	/* Wa_16011186671:dg2_g11 */
749 	if (IS_DG2_GRAPHICS_STEP(engine->i915, G11, STEP_A0, STEP_B0)) {
750 		wa_mcr_masked_dis(wal, VFLSKPD, DIS_MULT_MISS_RD_SQUASH);
751 		wa_mcr_masked_en(wal, VFLSKPD, DIS_OVER_FETCH_CACHE);
752 	}
753 
754 	if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0)) {
755 		/* Wa_14010469329:dg2_g10 */
756 		wa_mcr_masked_en(wal, XEHP_COMMON_SLICE_CHICKEN3,
757 				 XEHP_DUAL_SIMD8_SEQ_MERGE_DISABLE);
758 
759 		/*
760 		 * Wa_22010465075:dg2_g10
761 		 * Wa_22010613112:dg2_g10
762 		 * Wa_14010698770:dg2_g10
763 		 */
764 		wa_mcr_masked_en(wal, XEHP_COMMON_SLICE_CHICKEN3,
765 				 GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
766 	}
767 
768 	/* Wa_16013271637:dg2 */
769 	wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
770 			 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
771 
772 	/* Wa_14014947963:dg2 */
773 	if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_B0, STEP_FOREVER) ||
774 		IS_DG2_G11(engine->i915) || IS_DG2_G12(engine->i915))
775 		wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000);
776 
777 	/* Wa_15010599737:dg2 */
778 	wa_masked_en(wal, CHICKEN_RASTER_1, DIS_SF_ROUND_NEAREST_EVEN);
779 }
780 
781 static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine,
782 					 struct i915_wa_list *wal)
783 {
784 	/*
785 	 * This is a "fake" workaround defined by software to ensure we
786 	 * maintain reliable, backward-compatible behavior for userspace with
787 	 * regards to how nested MI_BATCH_BUFFER_START commands are handled.
788 	 *
789 	 * The per-context setting of MI_MODE[12] determines whether the bits
790 	 * of a nested MI_BATCH_BUFFER_START instruction should be interpreted
791 	 * in the traditional manner or whether they should instead use a new
792 	 * tgl+ meaning that breaks backward compatibility, but allows nesting
793 	 * into 3rd-level batchbuffers.  When this new capability was first
794 	 * added in TGL, it remained off by default unless a context
795 	 * intentionally opted in to the new behavior.  However Xe_HPG now
796 	 * flips this on by default and requires that we explicitly opt out if
797 	 * we don't want the new behavior.
798 	 *
799 	 * From a SW perspective, we want to maintain the backward-compatible
800 	 * behavior for userspace, so we'll apply a fake workaround to set it
801 	 * back to the legacy behavior on platforms where the hardware default
802 	 * is to break compatibility.  At the moment there is no Linux
803 	 * userspace that utilizes third-level batchbuffers, so this will avoid
804 	 * userspace from needing to make any changes.  using the legacy
805 	 * meaning is the correct thing to do.  If/when we have userspace
806 	 * consumers that want to utilize third-level batch nesting, we can
807 	 * provide a context parameter to allow them to opt-in.
808 	 */
809 	wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN);
810 }
811 
812 static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine,
813 				   struct i915_wa_list *wal)
814 {
815 	u8 mocs;
816 
817 	/*
818 	 * Some blitter commands do not have a field for MOCS, those
819 	 * commands will use MOCS index pointed by BLIT_CCTL.
820 	 * BLIT_CCTL registers are needed to be programmed to un-cached.
821 	 */
822 	if (engine->class == COPY_ENGINE_CLASS) {
823 		mocs = engine->gt->mocs.uc_index;
824 		wa_write_clr_set(wal,
825 				 BLIT_CCTL(engine->mmio_base),
826 				 BLIT_CCTL_MASK,
827 				 BLIT_CCTL_MOCS(mocs, mocs));
828 	}
829 }
830 
831 /*
832  * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround
833  * defined by the hardware team, but it programming general context registers.
834  * Adding those context register programming in context workaround
835  * allow us to use the wa framework for proper application and validation.
836  */
837 static void
838 gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine,
839 			  struct i915_wa_list *wal)
840 {
841 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
842 		fakewa_disable_nestedbb_mode(engine, wal);
843 
844 	gen12_ctx_gt_mocs_init(engine, wal);
845 }
846 
847 static void
848 __intel_engine_init_ctx_wa(struct intel_engine_cs *engine,
849 			   struct i915_wa_list *wal,
850 			   const char *name)
851 {
852 	struct drm_i915_private *i915 = engine->i915;
853 
854 	wa_init_start(wal, engine->gt, name, engine->name);
855 
856 	/* Applies to all engines */
857 	/*
858 	 * Fake workarounds are not the actual workaround but
859 	 * programming of context registers using workaround framework.
860 	 */
861 	if (GRAPHICS_VER(i915) >= 12)
862 		gen12_ctx_gt_fake_wa_init(engine, wal);
863 
864 	if (engine->class != RENDER_CLASS)
865 		goto done;
866 
867 	if (IS_PONTEVECCHIO(i915))
868 		; /* noop; none at this time */
869 	else if (IS_DG2(i915))
870 		dg2_ctx_workarounds_init(engine, wal);
871 	else if (IS_XEHPSDV(i915))
872 		; /* noop; none at this time */
873 	else if (IS_DG1(i915))
874 		dg1_ctx_workarounds_init(engine, wal);
875 	else if (GRAPHICS_VER(i915) == 12)
876 		gen12_ctx_workarounds_init(engine, wal);
877 	else if (GRAPHICS_VER(i915) == 11)
878 		icl_ctx_workarounds_init(engine, wal);
879 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
880 		cfl_ctx_workarounds_init(engine, wal);
881 	else if (IS_GEMINILAKE(i915))
882 		glk_ctx_workarounds_init(engine, wal);
883 	else if (IS_KABYLAKE(i915))
884 		kbl_ctx_workarounds_init(engine, wal);
885 	else if (IS_BROXTON(i915))
886 		bxt_ctx_workarounds_init(engine, wal);
887 	else if (IS_SKYLAKE(i915))
888 		skl_ctx_workarounds_init(engine, wal);
889 	else if (IS_CHERRYVIEW(i915))
890 		chv_ctx_workarounds_init(engine, wal);
891 	else if (IS_BROADWELL(i915))
892 		bdw_ctx_workarounds_init(engine, wal);
893 	else if (GRAPHICS_VER(i915) == 7)
894 		gen7_ctx_workarounds_init(engine, wal);
895 	else if (GRAPHICS_VER(i915) == 6)
896 		gen6_ctx_workarounds_init(engine, wal);
897 	else if (GRAPHICS_VER(i915) < 8)
898 		;
899 	else
900 		MISSING_CASE(GRAPHICS_VER(i915));
901 
902 done:
903 	wa_init_finish(wal);
904 }
905 
906 void intel_engine_init_ctx_wa(struct intel_engine_cs *engine)
907 {
908 	__intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context");
909 }
910 
911 int intel_engine_emit_ctx_wa(struct i915_request *rq)
912 {
913 	struct i915_wa_list *wal = &rq->engine->ctx_wa_list;
914 	struct i915_wa *wa;
915 	unsigned int i;
916 	u32 *cs;
917 	int ret;
918 
919 	if (wal->count == 0)
920 		return 0;
921 
922 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
923 	if (ret)
924 		return ret;
925 
926 	cs = intel_ring_begin(rq, (wal->count * 2 + 2));
927 	if (IS_ERR(cs))
928 		return PTR_ERR(cs);
929 
930 	*cs++ = MI_LOAD_REGISTER_IMM(wal->count);
931 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
932 		*cs++ = i915_mmio_reg_offset(wa->reg);
933 		*cs++ = wa->set;
934 	}
935 	*cs++ = MI_NOOP;
936 
937 	intel_ring_advance(rq, cs);
938 
939 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
940 	if (ret)
941 		return ret;
942 
943 	return 0;
944 }
945 
946 static void
947 gen4_gt_workarounds_init(struct intel_gt *gt,
948 			 struct i915_wa_list *wal)
949 {
950 	/* WaDisable_RenderCache_OperationalFlush:gen4,ilk */
951 	wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
952 }
953 
954 static void
955 g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
956 {
957 	gen4_gt_workarounds_init(gt, wal);
958 
959 	/* WaDisableRenderCachePipelinedFlush:g4x,ilk */
960 	wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE);
961 }
962 
963 static void
964 ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
965 {
966 	g4x_gt_workarounds_init(gt, wal);
967 
968 	wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED);
969 }
970 
971 static void
972 snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
973 {
974 }
975 
976 static void
977 ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
978 {
979 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
980 	wa_masked_dis(wal,
981 		      GEN7_COMMON_SLICE_CHICKEN1,
982 		      GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
983 
984 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
985 	wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
986 	wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
987 
988 	/* WaForceL3Serialization:ivb */
989 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
990 }
991 
992 static void
993 vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
994 {
995 	/* WaForceL3Serialization:vlv */
996 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
997 
998 	/*
999 	 * WaIncreaseL3CreditsForVLVB0:vlv
1000 	 * This is the hardware default actually.
1001 	 */
1002 	wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
1003 }
1004 
1005 static void
1006 hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1007 {
1008 	/* L3 caching of data atomics doesn't work -- disable it. */
1009 	wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
1010 
1011 	wa_add(wal,
1012 	       HSW_ROW_CHICKEN3, 0,
1013 	       _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
1014 	       0 /* XXX does this reg exist? */, true);
1015 
1016 	/* WaVSRefCountFullforceMissDisable:hsw */
1017 	wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME);
1018 }
1019 
1020 static void
1021 gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal)
1022 {
1023 	const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu;
1024 	unsigned int slice, subslice;
1025 	u32 mcr, mcr_mask;
1026 
1027 	GEM_BUG_ON(GRAPHICS_VER(i915) != 9);
1028 
1029 	/*
1030 	 * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml
1031 	 * Before any MMIO read into slice/subslice specific registers, MCR
1032 	 * packet control register needs to be programmed to point to any
1033 	 * enabled s/ss pair. Otherwise, incorrect values will be returned.
1034 	 * This means each subsequent MMIO read will be forwarded to an
1035 	 * specific s/ss combination, but this is OK since these registers
1036 	 * are consistent across s/ss in almost all cases. In the rare
1037 	 * occasions, such as INSTDONE, where this value is dependent
1038 	 * on s/ss combo, the read should be done with read_subslice_reg.
1039 	 */
1040 	slice = ffs(sseu->slice_mask) - 1;
1041 	GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw));
1042 	subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice));
1043 	GEM_BUG_ON(!subslice);
1044 	subslice--;
1045 
1046 	/*
1047 	 * We use GEN8_MCR..() macros to calculate the |mcr| value for
1048 	 * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads
1049 	 */
1050 	mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1051 	mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1052 
1053 	drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr);
1054 
1055 	wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr);
1056 }
1057 
1058 static void
1059 gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1060 {
1061 	struct drm_i915_private *i915 = gt->i915;
1062 
1063 	/* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */
1064 	gen9_wa_init_mcr(i915, wal);
1065 
1066 	/* WaDisableKillLogic:bxt,skl,kbl */
1067 	if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915))
1068 		wa_write_or(wal,
1069 			    GAM_ECOCHK,
1070 			    ECOCHK_DIS_TLB);
1071 
1072 	if (HAS_LLC(i915)) {
1073 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
1074 		 *
1075 		 * Must match Display Engine. See
1076 		 * WaCompressedResourceDisplayNewHashMode.
1077 		 */
1078 		wa_write_or(wal,
1079 			    MMCD_MISC_CTRL,
1080 			    MMCD_PCLA | MMCD_HOTSPOT_EN);
1081 	}
1082 
1083 	/* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */
1084 	wa_write_or(wal,
1085 		    GAM_ECOCHK,
1086 		    BDW_DISABLE_HDC_INVALIDATION);
1087 }
1088 
1089 static void
1090 skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1091 {
1092 	gen9_gt_workarounds_init(gt, wal);
1093 
1094 	/* WaDisableGafsUnitClkGating:skl */
1095 	wa_write_or(wal,
1096 		    GEN7_UCGCTL4,
1097 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1098 
1099 	/* WaInPlaceDecompressionHang:skl */
1100 	if (IS_SKL_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0))
1101 		wa_write_or(wal,
1102 			    GEN9_GAMT_ECO_REG_RW_IA,
1103 			    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1104 }
1105 
1106 static void
1107 kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1108 {
1109 	gen9_gt_workarounds_init(gt, wal);
1110 
1111 	/* WaDisableDynamicCreditSharing:kbl */
1112 	if (IS_KBL_GRAPHICS_STEP(gt->i915, 0, STEP_C0))
1113 		wa_write_or(wal,
1114 			    GAMT_CHKN_BIT_REG,
1115 			    GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1116 
1117 	/* WaDisableGafsUnitClkGating:kbl */
1118 	wa_write_or(wal,
1119 		    GEN7_UCGCTL4,
1120 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1121 
1122 	/* WaInPlaceDecompressionHang:kbl */
1123 	wa_write_or(wal,
1124 		    GEN9_GAMT_ECO_REG_RW_IA,
1125 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1126 }
1127 
1128 static void
1129 glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1130 {
1131 	gen9_gt_workarounds_init(gt, wal);
1132 }
1133 
1134 static void
1135 cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1136 {
1137 	gen9_gt_workarounds_init(gt, wal);
1138 
1139 	/* WaDisableGafsUnitClkGating:cfl */
1140 	wa_write_or(wal,
1141 		    GEN7_UCGCTL4,
1142 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1143 
1144 	/* WaInPlaceDecompressionHang:cfl */
1145 	wa_write_or(wal,
1146 		    GEN9_GAMT_ECO_REG_RW_IA,
1147 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1148 }
1149 
1150 static void __set_mcr_steering(struct i915_wa_list *wal,
1151 			       i915_reg_t steering_reg,
1152 			       unsigned int slice, unsigned int subslice)
1153 {
1154 	u32 mcr, mcr_mask;
1155 
1156 	mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1157 	mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1158 
1159 	wa_write_clr_set(wal, steering_reg, mcr_mask, mcr);
1160 }
1161 
1162 static void debug_dump_steering(struct intel_gt *gt)
1163 {
1164 	struct drm_printer p = drm_debug_printer("MCR Steering:");
1165 
1166 	if (drm_debug_enabled(DRM_UT_DRIVER))
1167 		intel_gt_mcr_report_steering(&p, gt, false);
1168 }
1169 
1170 static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal,
1171 			 unsigned int slice, unsigned int subslice)
1172 {
1173 	__set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice);
1174 
1175 	gt->default_steering.groupid = slice;
1176 	gt->default_steering.instanceid = subslice;
1177 
1178 	debug_dump_steering(gt);
1179 }
1180 
1181 static void
1182 icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1183 {
1184 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1185 	unsigned int subslice;
1186 
1187 	GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11);
1188 	GEM_BUG_ON(hweight8(sseu->slice_mask) > 1);
1189 
1190 	/*
1191 	 * Although a platform may have subslices, we need to always steer
1192 	 * reads to the lowest instance that isn't fused off.  When Render
1193 	 * Power Gating is enabled, grabbing forcewake will only power up a
1194 	 * single subslice (the "minconfig") if there isn't a real workload
1195 	 * that needs to be run; this means that if we steer register reads to
1196 	 * one of the higher subslices, we run the risk of reading back 0's or
1197 	 * random garbage.
1198 	 */
1199 	subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0));
1200 
1201 	/*
1202 	 * If the subslice we picked above also steers us to a valid L3 bank,
1203 	 * then we can just rely on the default steering and won't need to
1204 	 * worry about explicitly re-steering L3BANK reads later.
1205 	 */
1206 	if (gt->info.l3bank_mask & BIT(subslice))
1207 		gt->steering_table[L3BANK] = NULL;
1208 
1209 	__add_mcr_wa(gt, wal, 0, subslice);
1210 }
1211 
1212 static void
1213 xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1214 {
1215 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1216 	unsigned long slice, subslice = 0, slice_mask = 0;
1217 	u32 lncf_mask = 0;
1218 	int i;
1219 
1220 	/*
1221 	 * On Xe_HP the steering increases in complexity. There are now several
1222 	 * more units that require steering and we're not guaranteed to be able
1223 	 * to find a common setting for all of them. These are:
1224 	 * - GSLICE (fusable)
1225 	 * - DSS (sub-unit within gslice; fusable)
1226 	 * - L3 Bank (fusable)
1227 	 * - MSLICE (fusable)
1228 	 * - LNCF (sub-unit within mslice; always present if mslice is present)
1229 	 *
1230 	 * We'll do our default/implicit steering based on GSLICE (in the
1231 	 * sliceid field) and DSS (in the subsliceid field).  If we can
1232 	 * find overlap between the valid MSLICE and/or LNCF values with
1233 	 * a suitable GSLICE, then we can just re-use the default value and
1234 	 * skip and explicit steering at runtime.
1235 	 *
1236 	 * We only need to look for overlap between GSLICE/MSLICE/LNCF to find
1237 	 * a valid sliceid value.  DSS steering is the only type of steering
1238 	 * that utilizes the 'subsliceid' bits.
1239 	 *
1240 	 * Also note that, even though the steering domain is called "GSlice"
1241 	 * and it is encoded in the register using the gslice format, the spec
1242 	 * says that the combined (geometry | compute) fuse should be used to
1243 	 * select the steering.
1244 	 */
1245 
1246 	/* Find the potential gslice candidates */
1247 	slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask,
1248 						       GEN_DSS_PER_GSLICE);
1249 
1250 	/*
1251 	 * Find the potential LNCF candidates.  Either LNCF within a valid
1252 	 * mslice is fine.
1253 	 */
1254 	for_each_set_bit(i, &gt->info.mslice_mask, GEN12_MAX_MSLICES)
1255 		lncf_mask |= (0x3 << (i * 2));
1256 
1257 	/*
1258 	 * Are there any sliceid values that work for both GSLICE and LNCF
1259 	 * steering?
1260 	 */
1261 	if (slice_mask & lncf_mask) {
1262 		slice_mask &= lncf_mask;
1263 		gt->steering_table[LNCF] = NULL;
1264 	}
1265 
1266 	/* How about sliceid values that also work for MSLICE steering? */
1267 	if (slice_mask & gt->info.mslice_mask) {
1268 		slice_mask &= gt->info.mslice_mask;
1269 		gt->steering_table[MSLICE] = NULL;
1270 	}
1271 
1272 	if (IS_XEHPSDV(gt->i915) && slice_mask & BIT(0))
1273 		gt->steering_table[GAM] = NULL;
1274 
1275 	slice = __ffs(slice_mask);
1276 	subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) %
1277 		GEN_DSS_PER_GSLICE;
1278 
1279 	__add_mcr_wa(gt, wal, slice, subslice);
1280 
1281 	/*
1282 	 * SQIDI ranges are special because they use different steering
1283 	 * registers than everything else we work with.  On XeHP SDV and
1284 	 * DG2-G10, any value in the steering registers will work fine since
1285 	 * all instances are present, but DG2-G11 only has SQIDI instances at
1286 	 * ID's 2 and 3, so we need to steer to one of those.  For simplicity
1287 	 * we'll just steer to a hardcoded "2" since that value will work
1288 	 * everywhere.
1289 	 */
1290 	__set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2);
1291 	__set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2);
1292 
1293 	/*
1294 	 * On DG2, GAM registers have a dedicated steering control register
1295 	 * and must always be programmed to a hardcoded groupid of "1."
1296 	 */
1297 	if (IS_DG2(gt->i915))
1298 		__set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0);
1299 }
1300 
1301 static void
1302 pvc_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1303 {
1304 	unsigned int dss;
1305 
1306 	/*
1307 	 * Setup implicit steering for COMPUTE and DSS ranges to the first
1308 	 * non-fused-off DSS.  All other types of MCR registers will be
1309 	 * explicitly steered.
1310 	 */
1311 	dss = intel_sseu_find_first_xehp_dss(&gt->info.sseu, 0, 0);
1312 	__add_mcr_wa(gt, wal, dss / GEN_DSS_PER_CSLICE, dss % GEN_DSS_PER_CSLICE);
1313 }
1314 
1315 static void
1316 icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1317 {
1318 	struct drm_i915_private *i915 = gt->i915;
1319 
1320 	icl_wa_init_mcr(gt, wal);
1321 
1322 	/* WaModifyGamTlbPartitioning:icl */
1323 	wa_write_clr_set(wal,
1324 			 GEN11_GACB_PERF_CTRL,
1325 			 GEN11_HASH_CTRL_MASK,
1326 			 GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4);
1327 
1328 	/* Wa_1405766107:icl
1329 	 * Formerly known as WaCL2SFHalfMaxAlloc
1330 	 */
1331 	wa_write_or(wal,
1332 		    GEN11_LSN_UNSLCVC,
1333 		    GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC |
1334 		    GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC);
1335 
1336 	/* Wa_220166154:icl
1337 	 * Formerly known as WaDisCtxReload
1338 	 */
1339 	wa_write_or(wal,
1340 		    GEN8_GAMW_ECO_DEV_RW_IA,
1341 		    GAMW_ECO_DEV_CTX_RELOAD_DISABLE);
1342 
1343 	/* Wa_1406463099:icl
1344 	 * Formerly known as WaGamTlbPendError
1345 	 */
1346 	wa_write_or(wal,
1347 		    GAMT_CHKN_BIT_REG,
1348 		    GAMT_CHKN_DISABLE_L3_COH_PIPE);
1349 
1350 	/* Wa_1407352427:icl,ehl */
1351 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1352 		    PSDUNIT_CLKGATE_DIS);
1353 
1354 	/* Wa_1406680159:icl,ehl */
1355 	wa_mcr_write_or(wal,
1356 			GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1357 			GWUNIT_CLKGATE_DIS);
1358 
1359 	/* Wa_1607087056:icl,ehl,jsl */
1360 	if (IS_ICELAKE(i915) ||
1361 	    IS_JSL_EHL_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1362 		wa_write_or(wal,
1363 			    GEN11_SLICE_UNIT_LEVEL_CLKGATE,
1364 			    L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1365 
1366 	/*
1367 	 * This is not a documented workaround, but rather an optimization
1368 	 * to reduce sampler power.
1369 	 */
1370 	wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1371 }
1372 
1373 /*
1374  * Though there are per-engine instances of these registers,
1375  * they retain their value through engine resets and should
1376  * only be provided on the GT workaround list rather than
1377  * the engine-specific workaround list.
1378  */
1379 static void
1380 wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal)
1381 {
1382 	struct intel_engine_cs *engine;
1383 	int id;
1384 
1385 	for_each_engine(engine, gt, id) {
1386 		if (engine->class != VIDEO_DECODE_CLASS ||
1387 		    (engine->instance % 2))
1388 			continue;
1389 
1390 		wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base),
1391 			    IECPUNIT_CLKGATE_DIS);
1392 	}
1393 }
1394 
1395 static void
1396 gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1397 {
1398 	icl_wa_init_mcr(gt, wal);
1399 
1400 	/* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */
1401 	wa_14011060649(gt, wal);
1402 
1403 	/* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */
1404 	wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1405 }
1406 
1407 static void
1408 tgl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1409 {
1410 	struct drm_i915_private *i915 = gt->i915;
1411 
1412 	gen12_gt_workarounds_init(gt, wal);
1413 
1414 	/* Wa_1409420604:tgl */
1415 	if (IS_TGL_UY_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1416 		wa_mcr_write_or(wal,
1417 				SUBSLICE_UNIT_LEVEL_CLKGATE2,
1418 				CPSSUNIT_CLKGATE_DIS);
1419 
1420 	/* Wa_1607087056:tgl also know as BUG:1409180338 */
1421 	if (IS_TGL_UY_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1422 		wa_write_or(wal,
1423 			    GEN11_SLICE_UNIT_LEVEL_CLKGATE,
1424 			    L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1425 
1426 	/* Wa_1408615072:tgl[a0] */
1427 	if (IS_TGL_UY_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1428 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1429 			    VSUNIT_CLKGATE_DIS_TGL);
1430 }
1431 
1432 static void
1433 dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1434 {
1435 	struct drm_i915_private *i915 = gt->i915;
1436 
1437 	gen12_gt_workarounds_init(gt, wal);
1438 
1439 	/* Wa_1607087056:dg1 */
1440 	if (IS_DG1_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1441 		wa_write_or(wal,
1442 			    GEN11_SLICE_UNIT_LEVEL_CLKGATE,
1443 			    L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1444 
1445 	/* Wa_1409420604:dg1 */
1446 	if (IS_DG1(i915))
1447 		wa_mcr_write_or(wal,
1448 				SUBSLICE_UNIT_LEVEL_CLKGATE2,
1449 				CPSSUNIT_CLKGATE_DIS);
1450 
1451 	/* Wa_1408615072:dg1 */
1452 	/* Empirical testing shows this register is unaffected by engine reset. */
1453 	if (IS_DG1(i915))
1454 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1455 			    VSUNIT_CLKGATE_DIS_TGL);
1456 }
1457 
1458 static void
1459 xehpsdv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1460 {
1461 	struct drm_i915_private *i915 = gt->i915;
1462 
1463 	xehp_init_mcr(gt, wal);
1464 
1465 	/* Wa_1409757795:xehpsdv */
1466 	wa_mcr_write_or(wal, SCCGCTL94DC, CG3DDISURB);
1467 
1468 	/* Wa_16011155590:xehpsdv */
1469 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1470 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1471 			    TSGUNIT_CLKGATE_DIS);
1472 
1473 	/* Wa_14011780169:xehpsdv */
1474 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_B0, STEP_FOREVER)) {
1475 		wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS |
1476 			    GAMTLBVDBOX7_CLKGATE_DIS |
1477 			    GAMTLBVDBOX6_CLKGATE_DIS |
1478 			    GAMTLBVDBOX5_CLKGATE_DIS |
1479 			    GAMTLBVDBOX4_CLKGATE_DIS |
1480 			    GAMTLBVDBOX3_CLKGATE_DIS |
1481 			    GAMTLBVDBOX2_CLKGATE_DIS |
1482 			    GAMTLBVDBOX1_CLKGATE_DIS |
1483 			    GAMTLBVDBOX0_CLKGATE_DIS |
1484 			    GAMTLBKCR_CLKGATE_DIS |
1485 			    GAMTLBGUC_CLKGATE_DIS |
1486 			    GAMTLBBLT_CLKGATE_DIS);
1487 		wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS |
1488 			    GAMTLBGFXA1_CLKGATE_DIS |
1489 			    GAMTLBCOMPA0_CLKGATE_DIS |
1490 			    GAMTLBCOMPA1_CLKGATE_DIS |
1491 			    GAMTLBCOMPB0_CLKGATE_DIS |
1492 			    GAMTLBCOMPB1_CLKGATE_DIS |
1493 			    GAMTLBCOMPC0_CLKGATE_DIS |
1494 			    GAMTLBCOMPC1_CLKGATE_DIS |
1495 			    GAMTLBCOMPD0_CLKGATE_DIS |
1496 			    GAMTLBCOMPD1_CLKGATE_DIS |
1497 			    GAMTLBMERT_CLKGATE_DIS   |
1498 			    GAMTLBVEBOX3_CLKGATE_DIS |
1499 			    GAMTLBVEBOX2_CLKGATE_DIS |
1500 			    GAMTLBVEBOX1_CLKGATE_DIS |
1501 			    GAMTLBVEBOX0_CLKGATE_DIS);
1502 	}
1503 
1504 	/* Wa_16012725990:xehpsdv */
1505 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_FOREVER))
1506 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, VFUNIT_CLKGATE_DIS);
1507 
1508 	/* Wa_14011060649:xehpsdv */
1509 	wa_14011060649(gt, wal);
1510 }
1511 
1512 static void
1513 dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1514 {
1515 	struct intel_engine_cs *engine;
1516 	int id;
1517 
1518 	xehp_init_mcr(gt, wal);
1519 
1520 	/* Wa_14011060649:dg2 */
1521 	wa_14011060649(gt, wal);
1522 
1523 	/*
1524 	 * Although there are per-engine instances of these registers,
1525 	 * they technically exist outside the engine itself and are not
1526 	 * impacted by engine resets.  Furthermore, they're part of the
1527 	 * GuC blacklist so trying to treat them as engine workarounds
1528 	 * will result in GuC initialization failure and a wedged GPU.
1529 	 */
1530 	for_each_engine(engine, gt, id) {
1531 		if (engine->class != VIDEO_DECODE_CLASS)
1532 			continue;
1533 
1534 		/* Wa_16010515920:dg2_g10 */
1535 		if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0))
1536 			wa_write_or(wal, VDBOX_CGCTL3F18(engine->mmio_base),
1537 				    ALNUNIT_CLKGATE_DIS);
1538 	}
1539 
1540 	if (IS_DG2_G10(gt->i915)) {
1541 		/* Wa_22010523718:dg2 */
1542 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1543 			    CG3DDISCFEG_CLKGATE_DIS);
1544 
1545 		/* Wa_14011006942:dg2 */
1546 		wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1547 				DSS_ROUTER_CLKGATE_DIS);
1548 	}
1549 
1550 	if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0)) {
1551 		/* Wa_14010948348:dg2_g10 */
1552 		wa_write_or(wal, UNSLCGCTL9430, MSQDUNIT_CLKGATE_DIS);
1553 
1554 		/* Wa_14011037102:dg2_g10 */
1555 		wa_write_or(wal, UNSLCGCTL9444, LTCDD_CLKGATE_DIS);
1556 
1557 		/* Wa_14011371254:dg2_g10 */
1558 		wa_mcr_write_or(wal, XEHP_SLICE_UNIT_LEVEL_CLKGATE, NODEDSS_CLKGATE_DIS);
1559 
1560 		/* Wa_14011431319:dg2_g10 */
1561 		wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS |
1562 			    GAMTLBVDBOX7_CLKGATE_DIS |
1563 			    GAMTLBVDBOX6_CLKGATE_DIS |
1564 			    GAMTLBVDBOX5_CLKGATE_DIS |
1565 			    GAMTLBVDBOX4_CLKGATE_DIS |
1566 			    GAMTLBVDBOX3_CLKGATE_DIS |
1567 			    GAMTLBVDBOX2_CLKGATE_DIS |
1568 			    GAMTLBVDBOX1_CLKGATE_DIS |
1569 			    GAMTLBVDBOX0_CLKGATE_DIS |
1570 			    GAMTLBKCR_CLKGATE_DIS |
1571 			    GAMTLBGUC_CLKGATE_DIS |
1572 			    GAMTLBBLT_CLKGATE_DIS);
1573 		wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS |
1574 			    GAMTLBGFXA1_CLKGATE_DIS |
1575 			    GAMTLBCOMPA0_CLKGATE_DIS |
1576 			    GAMTLBCOMPA1_CLKGATE_DIS |
1577 			    GAMTLBCOMPB0_CLKGATE_DIS |
1578 			    GAMTLBCOMPB1_CLKGATE_DIS |
1579 			    GAMTLBCOMPC0_CLKGATE_DIS |
1580 			    GAMTLBCOMPC1_CLKGATE_DIS |
1581 			    GAMTLBCOMPD0_CLKGATE_DIS |
1582 			    GAMTLBCOMPD1_CLKGATE_DIS |
1583 			    GAMTLBMERT_CLKGATE_DIS   |
1584 			    GAMTLBVEBOX3_CLKGATE_DIS |
1585 			    GAMTLBVEBOX2_CLKGATE_DIS |
1586 			    GAMTLBVEBOX1_CLKGATE_DIS |
1587 			    GAMTLBVEBOX0_CLKGATE_DIS);
1588 
1589 		/* Wa_14010569222:dg2_g10 */
1590 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1591 			    GAMEDIA_CLKGATE_DIS);
1592 
1593 		/* Wa_14011028019:dg2_g10 */
1594 		wa_mcr_write_or(wal, SSMCGCTL9530, RTFUNIT_CLKGATE_DIS);
1595 	}
1596 
1597 	/* Wa_14014830051:dg2 */
1598 	wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1599 
1600 	/*
1601 	 * The following are not actually "workarounds" but rather
1602 	 * recommended tuning settings documented in the bspec's
1603 	 * performance guide section.
1604 	 */
1605 	wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1606 
1607 	/* Wa_14015795083 */
1608 	wa_mcr_write_clr(wal, GEN8_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1609 }
1610 
1611 static void
1612 pvc_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1613 {
1614 	pvc_init_mcr(gt, wal);
1615 
1616 	/* Wa_14015795083 */
1617 	wa_mcr_write_clr(wal, GEN8_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1618 }
1619 
1620 static void
1621 xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1622 {
1623 	/* FIXME: Actual workarounds will be added in future patch(es) */
1624 
1625 	/*
1626 	 * Unlike older platforms, we no longer setup implicit steering here;
1627 	 * all MCR accesses are explicitly steered.
1628 	 */
1629 	debug_dump_steering(gt);
1630 }
1631 
1632 static void
1633 xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1634 {
1635 	/* FIXME: Actual workarounds will be added in future patch(es) */
1636 
1637 	debug_dump_steering(gt);
1638 }
1639 
1640 static void
1641 gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal)
1642 {
1643 	struct drm_i915_private *i915 = gt->i915;
1644 
1645 	if (gt->type == GT_MEDIA) {
1646 		if (MEDIA_VER(i915) >= 13)
1647 			xelpmp_gt_workarounds_init(gt, wal);
1648 		else
1649 			MISSING_CASE(MEDIA_VER(i915));
1650 
1651 		return;
1652 	}
1653 
1654 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1655 		xelpg_gt_workarounds_init(gt, wal);
1656 	else if (IS_PONTEVECCHIO(i915))
1657 		pvc_gt_workarounds_init(gt, wal);
1658 	else if (IS_DG2(i915))
1659 		dg2_gt_workarounds_init(gt, wal);
1660 	else if (IS_XEHPSDV(i915))
1661 		xehpsdv_gt_workarounds_init(gt, wal);
1662 	else if (IS_DG1(i915))
1663 		dg1_gt_workarounds_init(gt, wal);
1664 	else if (IS_TIGERLAKE(i915))
1665 		tgl_gt_workarounds_init(gt, wal);
1666 	else if (GRAPHICS_VER(i915) == 12)
1667 		gen12_gt_workarounds_init(gt, wal);
1668 	else if (GRAPHICS_VER(i915) == 11)
1669 		icl_gt_workarounds_init(gt, wal);
1670 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
1671 		cfl_gt_workarounds_init(gt, wal);
1672 	else if (IS_GEMINILAKE(i915))
1673 		glk_gt_workarounds_init(gt, wal);
1674 	else if (IS_KABYLAKE(i915))
1675 		kbl_gt_workarounds_init(gt, wal);
1676 	else if (IS_BROXTON(i915))
1677 		gen9_gt_workarounds_init(gt, wal);
1678 	else if (IS_SKYLAKE(i915))
1679 		skl_gt_workarounds_init(gt, wal);
1680 	else if (IS_HASWELL(i915))
1681 		hsw_gt_workarounds_init(gt, wal);
1682 	else if (IS_VALLEYVIEW(i915))
1683 		vlv_gt_workarounds_init(gt, wal);
1684 	else if (IS_IVYBRIDGE(i915))
1685 		ivb_gt_workarounds_init(gt, wal);
1686 	else if (GRAPHICS_VER(i915) == 6)
1687 		snb_gt_workarounds_init(gt, wal);
1688 	else if (GRAPHICS_VER(i915) == 5)
1689 		ilk_gt_workarounds_init(gt, wal);
1690 	else if (IS_G4X(i915))
1691 		g4x_gt_workarounds_init(gt, wal);
1692 	else if (GRAPHICS_VER(i915) == 4)
1693 		gen4_gt_workarounds_init(gt, wal);
1694 	else if (GRAPHICS_VER(i915) <= 8)
1695 		;
1696 	else
1697 		MISSING_CASE(GRAPHICS_VER(i915));
1698 }
1699 
1700 void intel_gt_init_workarounds(struct intel_gt *gt)
1701 {
1702 	struct i915_wa_list *wal = &gt->wa_list;
1703 
1704 	wa_init_start(wal, gt, "GT", "global");
1705 	gt_init_workarounds(gt, wal);
1706 	wa_init_finish(wal);
1707 }
1708 
1709 static enum forcewake_domains
1710 wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal)
1711 {
1712 	enum forcewake_domains fw = 0;
1713 	struct i915_wa *wa;
1714 	unsigned int i;
1715 
1716 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1717 		fw |= intel_uncore_forcewake_for_reg(uncore,
1718 						     wa->reg,
1719 						     FW_REG_READ |
1720 						     FW_REG_WRITE);
1721 
1722 	return fw;
1723 }
1724 
1725 static bool
1726 wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur,
1727 	  const char *name, const char *from)
1728 {
1729 	if ((cur ^ wa->set) & wa->read) {
1730 		drm_err(&gt->i915->drm,
1731 			"%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n",
1732 			name, from, i915_mmio_reg_offset(wa->reg),
1733 			cur, cur & wa->read, wa->set & wa->read);
1734 
1735 		return false;
1736 	}
1737 
1738 	return true;
1739 }
1740 
1741 static void wa_list_apply(const struct i915_wa_list *wal)
1742 {
1743 	struct intel_gt *gt = wal->gt;
1744 	struct intel_uncore *uncore = gt->uncore;
1745 	enum forcewake_domains fw;
1746 	unsigned long flags;
1747 	struct i915_wa *wa;
1748 	unsigned int i;
1749 
1750 	if (!wal->count)
1751 		return;
1752 
1753 	fw = wal_get_fw_for_rmw(uncore, wal);
1754 
1755 	spin_lock_irqsave(&uncore->lock, flags);
1756 	intel_uncore_forcewake_get__locked(uncore, fw);
1757 
1758 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
1759 		u32 val, old = 0;
1760 
1761 		/* open-coded rmw due to steering */
1762 		if (wa->clr)
1763 			old = wa->is_mcr ?
1764 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1765 				intel_uncore_read_fw(uncore, wa->reg);
1766 		val = (old & ~wa->clr) | wa->set;
1767 		if (val != old || !wa->clr) {
1768 			if (wa->is_mcr)
1769 				intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val);
1770 			else
1771 				intel_uncore_write_fw(uncore, wa->reg, val);
1772 		}
1773 
1774 		if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
1775 			u32 val = wa->is_mcr ?
1776 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1777 				intel_uncore_read_fw(uncore, wa->reg);
1778 
1779 			wa_verify(gt, wa, val, wal->name, "application");
1780 		}
1781 	}
1782 
1783 	intel_uncore_forcewake_put__locked(uncore, fw);
1784 	spin_unlock_irqrestore(&uncore->lock, flags);
1785 }
1786 
1787 void intel_gt_apply_workarounds(struct intel_gt *gt)
1788 {
1789 	wa_list_apply(&gt->wa_list);
1790 }
1791 
1792 static bool wa_list_verify(struct intel_gt *gt,
1793 			   const struct i915_wa_list *wal,
1794 			   const char *from)
1795 {
1796 	struct intel_uncore *uncore = gt->uncore;
1797 	struct i915_wa *wa;
1798 	enum forcewake_domains fw;
1799 	unsigned long flags;
1800 	unsigned int i;
1801 	bool ok = true;
1802 
1803 	fw = wal_get_fw_for_rmw(uncore, wal);
1804 
1805 	spin_lock_irqsave(&uncore->lock, flags);
1806 	intel_uncore_forcewake_get__locked(uncore, fw);
1807 
1808 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1809 		ok &= wa_verify(wal->gt, wa, wa->is_mcr ?
1810 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1811 				intel_uncore_read_fw(uncore, wa->reg),
1812 				wal->name, from);
1813 
1814 	intel_uncore_forcewake_put__locked(uncore, fw);
1815 	spin_unlock_irqrestore(&uncore->lock, flags);
1816 
1817 	return ok;
1818 }
1819 
1820 bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from)
1821 {
1822 	return wa_list_verify(gt, &gt->wa_list, from);
1823 }
1824 
1825 __maybe_unused
1826 static bool is_nonpriv_flags_valid(u32 flags)
1827 {
1828 	/* Check only valid flag bits are set */
1829 	if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID)
1830 		return false;
1831 
1832 	/* NB: Only 3 out of 4 enum values are valid for access field */
1833 	if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) ==
1834 	    RING_FORCE_TO_NONPRIV_ACCESS_INVALID)
1835 		return false;
1836 
1837 	return true;
1838 }
1839 
1840 static void
1841 whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags)
1842 {
1843 	struct i915_wa wa = {
1844 		.reg = reg
1845 	};
1846 
1847 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1848 		return;
1849 
1850 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1851 		return;
1852 
1853 	wa.reg.reg |= flags;
1854 	_wa_add(wal, &wa);
1855 }
1856 
1857 static void
1858 whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags)
1859 {
1860 	struct i915_wa wa = {
1861 		.mcr_reg = reg,
1862 		.is_mcr = 1,
1863 	};
1864 
1865 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1866 		return;
1867 
1868 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1869 		return;
1870 
1871 	wa.mcr_reg.reg |= flags;
1872 	_wa_add(wal, &wa);
1873 }
1874 
1875 static void
1876 whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg)
1877 {
1878 	whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1879 }
1880 
1881 static void
1882 whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg)
1883 {
1884 	whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1885 }
1886 
1887 static void gen9_whitelist_build(struct i915_wa_list *w)
1888 {
1889 	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */
1890 	whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
1891 
1892 	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */
1893 	whitelist_reg(w, GEN8_CS_CHICKEN1);
1894 
1895 	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */
1896 	whitelist_reg(w, GEN8_HDC_CHICKEN1);
1897 
1898 	/* WaSendPushConstantsFromMMIO:skl,bxt */
1899 	whitelist_reg(w, COMMON_SLICE_CHICKEN2);
1900 }
1901 
1902 static void skl_whitelist_build(struct intel_engine_cs *engine)
1903 {
1904 	struct i915_wa_list *w = &engine->whitelist;
1905 
1906 	if (engine->class != RENDER_CLASS)
1907 		return;
1908 
1909 	gen9_whitelist_build(w);
1910 
1911 	/* WaDisableLSQCROPERFforOCL:skl */
1912 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
1913 }
1914 
1915 static void bxt_whitelist_build(struct intel_engine_cs *engine)
1916 {
1917 	if (engine->class != RENDER_CLASS)
1918 		return;
1919 
1920 	gen9_whitelist_build(&engine->whitelist);
1921 }
1922 
1923 static void kbl_whitelist_build(struct intel_engine_cs *engine)
1924 {
1925 	struct i915_wa_list *w = &engine->whitelist;
1926 
1927 	if (engine->class != RENDER_CLASS)
1928 		return;
1929 
1930 	gen9_whitelist_build(w);
1931 
1932 	/* WaDisableLSQCROPERFforOCL:kbl */
1933 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
1934 }
1935 
1936 static void glk_whitelist_build(struct intel_engine_cs *engine)
1937 {
1938 	struct i915_wa_list *w = &engine->whitelist;
1939 
1940 	if (engine->class != RENDER_CLASS)
1941 		return;
1942 
1943 	gen9_whitelist_build(w);
1944 
1945 	/* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */
1946 	whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
1947 }
1948 
1949 static void cfl_whitelist_build(struct intel_engine_cs *engine)
1950 {
1951 	struct i915_wa_list *w = &engine->whitelist;
1952 
1953 	if (engine->class != RENDER_CLASS)
1954 		return;
1955 
1956 	gen9_whitelist_build(w);
1957 
1958 	/*
1959 	 * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml
1960 	 *
1961 	 * This covers 4 register which are next to one another :
1962 	 *   - PS_INVOCATION_COUNT
1963 	 *   - PS_INVOCATION_COUNT_UDW
1964 	 *   - PS_DEPTH_COUNT
1965 	 *   - PS_DEPTH_COUNT_UDW
1966 	 */
1967 	whitelist_reg_ext(w, PS_INVOCATION_COUNT,
1968 			  RING_FORCE_TO_NONPRIV_ACCESS_RD |
1969 			  RING_FORCE_TO_NONPRIV_RANGE_4);
1970 }
1971 
1972 static void allow_read_ctx_timestamp(struct intel_engine_cs *engine)
1973 {
1974 	struct i915_wa_list *w = &engine->whitelist;
1975 
1976 	if (engine->class != RENDER_CLASS)
1977 		whitelist_reg_ext(w,
1978 				  RING_CTX_TIMESTAMP(engine->mmio_base),
1979 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
1980 }
1981 
1982 static void cml_whitelist_build(struct intel_engine_cs *engine)
1983 {
1984 	allow_read_ctx_timestamp(engine);
1985 
1986 	cfl_whitelist_build(engine);
1987 }
1988 
1989 static void icl_whitelist_build(struct intel_engine_cs *engine)
1990 {
1991 	struct i915_wa_list *w = &engine->whitelist;
1992 
1993 	allow_read_ctx_timestamp(engine);
1994 
1995 	switch (engine->class) {
1996 	case RENDER_CLASS:
1997 		/* WaAllowUMDToModifyHalfSliceChicken7:icl */
1998 		whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7);
1999 
2000 		/* WaAllowUMDToModifySamplerMode:icl */
2001 		whitelist_mcr_reg(w, GEN10_SAMPLER_MODE);
2002 
2003 		/* WaEnableStateCacheRedirectToCS:icl */
2004 		whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2005 
2006 		/*
2007 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl
2008 		 *
2009 		 * This covers 4 register which are next to one another :
2010 		 *   - PS_INVOCATION_COUNT
2011 		 *   - PS_INVOCATION_COUNT_UDW
2012 		 *   - PS_DEPTH_COUNT
2013 		 *   - PS_DEPTH_COUNT_UDW
2014 		 */
2015 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2016 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2017 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2018 		break;
2019 
2020 	case VIDEO_DECODE_CLASS:
2021 		/* hucStatusRegOffset */
2022 		whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base),
2023 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2024 		/* hucUKernelHdrInfoRegOffset */
2025 		whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base),
2026 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2027 		/* hucStatus2RegOffset */
2028 		whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base),
2029 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2030 		break;
2031 
2032 	default:
2033 		break;
2034 	}
2035 }
2036 
2037 static void tgl_whitelist_build(struct intel_engine_cs *engine)
2038 {
2039 	struct i915_wa_list *w = &engine->whitelist;
2040 
2041 	allow_read_ctx_timestamp(engine);
2042 
2043 	switch (engine->class) {
2044 	case RENDER_CLASS:
2045 		/*
2046 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl
2047 		 * Wa_1408556865:tgl
2048 		 *
2049 		 * This covers 4 registers which are next to one another :
2050 		 *   - PS_INVOCATION_COUNT
2051 		 *   - PS_INVOCATION_COUNT_UDW
2052 		 *   - PS_DEPTH_COUNT
2053 		 *   - PS_DEPTH_COUNT_UDW
2054 		 */
2055 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2056 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2057 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2058 
2059 		/*
2060 		 * Wa_1808121037:tgl
2061 		 * Wa_14012131227:dg1
2062 		 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p
2063 		 */
2064 		whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2065 
2066 		/* Wa_1806527549:tgl */
2067 		whitelist_reg(w, HIZ_CHICKEN);
2068 		break;
2069 	default:
2070 		break;
2071 	}
2072 }
2073 
2074 static void dg1_whitelist_build(struct intel_engine_cs *engine)
2075 {
2076 	struct i915_wa_list *w = &engine->whitelist;
2077 
2078 	tgl_whitelist_build(engine);
2079 
2080 	/* GEN:BUG:1409280441:dg1 */
2081 	if (IS_DG1_GRAPHICS_STEP(engine->i915, STEP_A0, STEP_B0) &&
2082 	    (engine->class == RENDER_CLASS ||
2083 	     engine->class == COPY_ENGINE_CLASS))
2084 		whitelist_reg_ext(w, RING_ID(engine->mmio_base),
2085 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2086 }
2087 
2088 static void xehpsdv_whitelist_build(struct intel_engine_cs *engine)
2089 {
2090 	allow_read_ctx_timestamp(engine);
2091 }
2092 
2093 static void dg2_whitelist_build(struct intel_engine_cs *engine)
2094 {
2095 	struct i915_wa_list *w = &engine->whitelist;
2096 
2097 	allow_read_ctx_timestamp(engine);
2098 
2099 	switch (engine->class) {
2100 	case RENDER_CLASS:
2101 		/*
2102 		 * Wa_1507100340:dg2_g10
2103 		 *
2104 		 * This covers 4 registers which are next to one another :
2105 		 *   - PS_INVOCATION_COUNT
2106 		 *   - PS_INVOCATION_COUNT_UDW
2107 		 *   - PS_DEPTH_COUNT
2108 		 *   - PS_DEPTH_COUNT_UDW
2109 		 */
2110 		if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0))
2111 			whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2112 					  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2113 					  RING_FORCE_TO_NONPRIV_RANGE_4);
2114 
2115 		break;
2116 	case COMPUTE_CLASS:
2117 		/* Wa_16011157294:dg2_g10 */
2118 		if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0))
2119 			whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
2120 		break;
2121 	default:
2122 		break;
2123 	}
2124 }
2125 
2126 static void blacklist_trtt(struct intel_engine_cs *engine)
2127 {
2128 	struct i915_wa_list *w = &engine->whitelist;
2129 
2130 	/*
2131 	 * Prevent read/write access to [0x4400, 0x4600) which covers
2132 	 * the TRTT range across all engines. Note that normally userspace
2133 	 * cannot access the other engines' trtt control, but for simplicity
2134 	 * we cover the entire range on each engine.
2135 	 */
2136 	whitelist_reg_ext(w, _MMIO(0x4400),
2137 			  RING_FORCE_TO_NONPRIV_DENY |
2138 			  RING_FORCE_TO_NONPRIV_RANGE_64);
2139 	whitelist_reg_ext(w, _MMIO(0x4500),
2140 			  RING_FORCE_TO_NONPRIV_DENY |
2141 			  RING_FORCE_TO_NONPRIV_RANGE_64);
2142 }
2143 
2144 static void pvc_whitelist_build(struct intel_engine_cs *engine)
2145 {
2146 	allow_read_ctx_timestamp(engine);
2147 
2148 	/* Wa_16014440446:pvc */
2149 	blacklist_trtt(engine);
2150 }
2151 
2152 void intel_engine_init_whitelist(struct intel_engine_cs *engine)
2153 {
2154 	struct drm_i915_private *i915 = engine->i915;
2155 	struct i915_wa_list *w = &engine->whitelist;
2156 
2157 	wa_init_start(w, engine->gt, "whitelist", engine->name);
2158 
2159 	if (IS_PONTEVECCHIO(i915))
2160 		pvc_whitelist_build(engine);
2161 	else if (IS_DG2(i915))
2162 		dg2_whitelist_build(engine);
2163 	else if (IS_XEHPSDV(i915))
2164 		xehpsdv_whitelist_build(engine);
2165 	else if (IS_DG1(i915))
2166 		dg1_whitelist_build(engine);
2167 	else if (GRAPHICS_VER(i915) == 12)
2168 		tgl_whitelist_build(engine);
2169 	else if (GRAPHICS_VER(i915) == 11)
2170 		icl_whitelist_build(engine);
2171 	else if (IS_COMETLAKE(i915))
2172 		cml_whitelist_build(engine);
2173 	else if (IS_COFFEELAKE(i915))
2174 		cfl_whitelist_build(engine);
2175 	else if (IS_GEMINILAKE(i915))
2176 		glk_whitelist_build(engine);
2177 	else if (IS_KABYLAKE(i915))
2178 		kbl_whitelist_build(engine);
2179 	else if (IS_BROXTON(i915))
2180 		bxt_whitelist_build(engine);
2181 	else if (IS_SKYLAKE(i915))
2182 		skl_whitelist_build(engine);
2183 	else if (GRAPHICS_VER(i915) <= 8)
2184 		;
2185 	else
2186 		MISSING_CASE(GRAPHICS_VER(i915));
2187 
2188 	wa_init_finish(w);
2189 }
2190 
2191 void intel_engine_apply_whitelist(struct intel_engine_cs *engine)
2192 {
2193 	const struct i915_wa_list *wal = &engine->whitelist;
2194 	struct intel_uncore *uncore = engine->uncore;
2195 	const u32 base = engine->mmio_base;
2196 	struct i915_wa *wa;
2197 	unsigned int i;
2198 
2199 	if (!wal->count)
2200 		return;
2201 
2202 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
2203 		intel_uncore_write(uncore,
2204 				   RING_FORCE_TO_NONPRIV(base, i),
2205 				   i915_mmio_reg_offset(wa->reg));
2206 
2207 	/* And clear the rest just in case of garbage */
2208 	for (; i < RING_MAX_NONPRIV_SLOTS; i++)
2209 		intel_uncore_write(uncore,
2210 				   RING_FORCE_TO_NONPRIV(base, i),
2211 				   i915_mmio_reg_offset(RING_NOPID(base)));
2212 }
2213 
2214 /*
2215  * engine_fake_wa_init(), a place holder to program the registers
2216  * which are not part of an official workaround defined by the
2217  * hardware team.
2218  * Adding programming of those register inside workaround will
2219  * allow utilizing wa framework to proper application and verification.
2220  */
2221 static void
2222 engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2223 {
2224 	u8 mocs_w, mocs_r;
2225 
2226 	/*
2227 	 * RING_CMD_CCTL specifies the default MOCS entry that will be used
2228 	 * by the command streamer when executing commands that don't have
2229 	 * a way to explicitly specify a MOCS setting.  The default should
2230 	 * usually reference whichever MOCS entry corresponds to uncached
2231 	 * behavior, although use of a WB cached entry is recommended by the
2232 	 * spec in certain circumstances on specific platforms.
2233 	 */
2234 	if (GRAPHICS_VER(engine->i915) >= 12) {
2235 		mocs_r = engine->gt->mocs.uc_index;
2236 		mocs_w = engine->gt->mocs.uc_index;
2237 
2238 		if (HAS_L3_CCS_READ(engine->i915) &&
2239 		    engine->class == COMPUTE_CLASS) {
2240 			mocs_r = engine->gt->mocs.wb_index;
2241 
2242 			/*
2243 			 * Even on the few platforms where MOCS 0 is a
2244 			 * legitimate table entry, it's never the correct
2245 			 * setting to use here; we can assume the MOCS init
2246 			 * just forgot to initialize wb_index.
2247 			 */
2248 			drm_WARN_ON(&engine->i915->drm, mocs_r == 0);
2249 		}
2250 
2251 		wa_masked_field_set(wal,
2252 				    RING_CMD_CCTL(engine->mmio_base),
2253 				    CMD_CCTL_MOCS_MASK,
2254 				    CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r));
2255 	}
2256 }
2257 
2258 static bool needs_wa_1308578152(struct intel_engine_cs *engine)
2259 {
2260 	return intel_sseu_find_first_xehp_dss(&engine->gt->info.sseu, 0, 0) >=
2261 		GEN_DSS_PER_GSLICE;
2262 }
2263 
2264 static void
2265 rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2266 {
2267 	struct drm_i915_private *i915 = engine->i915;
2268 
2269 	if (IS_DG2(i915)) {
2270 		/* Wa_1509235366:dg2 */
2271 		wa_write_or(wal, GEN12_GAMCNTRL_CTRL, INVALIDATION_BROADCAST_MODE_DIS |
2272 			    GLOBAL_INVALIDATION_MODE);
2273 	}
2274 
2275 	if (IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0)) {
2276 		/* Wa_14013392000:dg2_g11 */
2277 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_ENABLE_LARGE_GRF_MODE);
2278 	}
2279 
2280 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) ||
2281 	    IS_DG2_G11(i915) || IS_DG2_G12(i915)) {
2282 		/* Wa_1509727124:dg2 */
2283 		wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2284 				 SC_DISABLE_POWER_OPTIMIZATION_EBB);
2285 	}
2286 
2287 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0) ||
2288 	    IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0)) {
2289 		/* Wa_14012419201:dg2 */
2290 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4,
2291 				 GEN12_DISABLE_HDR_PAST_PAYLOAD_HOLD_FIX);
2292 	}
2293 
2294 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) ||
2295 	    IS_DG2_G11(i915)) {
2296 		/*
2297 		 * Wa_22012826095:dg2
2298 		 * Wa_22013059131:dg2
2299 		 */
2300 		wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW,
2301 				     MAXREQS_PER_BANK,
2302 				     REG_FIELD_PREP(MAXREQS_PER_BANK, 2));
2303 
2304 		/* Wa_22013059131:dg2 */
2305 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0,
2306 				FORCE_1_SUB_MESSAGE_PER_FRAGMENT);
2307 	}
2308 
2309 	/* Wa_1308578152:dg2_g10 when first gslice is fused off */
2310 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) &&
2311 	    needs_wa_1308578152(engine)) {
2312 		wa_masked_dis(wal, GEN12_CS_DEBUG_MODE1_CCCSUNIT_BE_COMMON,
2313 			      GEN12_REPLAY_MODE_GRANULARITY);
2314 	}
2315 
2316 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) ||
2317 	    IS_DG2_G11(i915) || IS_DG2_G12(i915)) {
2318 		/* Wa_22013037850:dg2 */
2319 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW,
2320 				DISABLE_128B_EVICTION_COMMAND_UDW);
2321 
2322 		/* Wa_22012856258:dg2 */
2323 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2324 				 GEN12_DISABLE_READ_SUPPRESSION);
2325 
2326 		/*
2327 		 * Wa_22010960976:dg2
2328 		 * Wa_14013347512:dg2
2329 		 */
2330 		wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0,
2331 				  LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK);
2332 	}
2333 
2334 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) {
2335 		/*
2336 		 * Wa_1608949956:dg2_g10
2337 		 * Wa_14010198302:dg2_g10
2338 		 */
2339 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
2340 				 MDQ_ARBITRATION_MODE | UGM_BACKUP_MODE);
2341 
2342 		/*
2343 		 * Wa_14010918519:dg2_g10
2344 		 *
2345 		 * LSC_CHICKEN_BIT_0 always reads back as 0 is this stepping,
2346 		 * so ignoring verification.
2347 		 */
2348 		wa_mcr_add(wal, LSC_CHICKEN_BIT_0_UDW, 0,
2349 			   FORCE_SLM_FENCE_SCOPE_TO_TILE | FORCE_UGM_FENCE_SCOPE_TO_TILE,
2350 			   0, false);
2351 	}
2352 
2353 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) {
2354 		/* Wa_22010430635:dg2 */
2355 		wa_mcr_masked_en(wal,
2356 				 GEN9_ROW_CHICKEN4,
2357 				 GEN12_DISABLE_GRF_CLEAR);
2358 
2359 		/* Wa_14010648519:dg2 */
2360 		wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
2361 	}
2362 
2363 	/* Wa_14013202645:dg2 */
2364 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) ||
2365 	    IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0))
2366 		wa_mcr_write_or(wal, RT_CTRL, DIS_NULL_QUERY);
2367 
2368 	/* Wa_22012532006:dg2 */
2369 	if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_C0) ||
2370 	    IS_DG2_GRAPHICS_STEP(engine->i915, G11, STEP_A0, STEP_B0))
2371 		wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
2372 				 DG2_DISABLE_ROUND_ENABLE_ALLOW_FOR_SSLA);
2373 
2374 	if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0)) {
2375 		/* Wa_14010680813:dg2_g10 */
2376 		wa_write_or(wal, GEN12_GAMSTLB_CTRL, CONTROL_BLOCK_CLKGATE_DIS |
2377 			    EGRESS_BLOCK_CLKGATE_DIS | TAG_BLOCK_CLKGATE_DIS);
2378 	}
2379 
2380 	if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0) ||
2381 	    IS_DG2_GRAPHICS_STEP(engine->i915, G11, STEP_A0, STEP_B0)) {
2382 		/* Wa_14012362059:dg2 */
2383 		wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB);
2384 	}
2385 
2386 	if (IS_DG2_GRAPHICS_STEP(i915, G11, STEP_B0, STEP_FOREVER) ||
2387 	    IS_DG2_G10(i915)) {
2388 		/* Wa_22014600077:dg2 */
2389 		wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
2390 			   _MASKED_BIT_ENABLE(ENABLE_EU_COUNT_FOR_TDL_FLUSH),
2391 			   0 /* Wa_14012342262 write-only reg, so skip verification */,
2392 			   true);
2393 	}
2394 
2395 	if (IS_DG1_GRAPHICS_STEP(i915, STEP_A0, STEP_B0) ||
2396 	    IS_TGL_UY_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)) {
2397 		/*
2398 		 * Wa_1607138336:tgl[a0],dg1[a0]
2399 		 * Wa_1607063988:tgl[a0],dg1[a0]
2400 		 */
2401 		wa_write_or(wal,
2402 			    GEN9_CTX_PREEMPT_REG,
2403 			    GEN12_DISABLE_POSH_BUSY_FF_DOP_CG);
2404 	}
2405 
2406 	if (IS_TGL_UY_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)) {
2407 		/*
2408 		 * Wa_1606679103:tgl
2409 		 * (see also Wa_1606682166:icl)
2410 		 */
2411 		wa_write_or(wal,
2412 			    GEN7_SARCHKMD,
2413 			    GEN7_DISABLE_SAMPLER_PREFETCH);
2414 	}
2415 
2416 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) ||
2417 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2418 		/* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */
2419 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ);
2420 
2421 		/*
2422 		 * Wa_1407928979:tgl A*
2423 		 * Wa_18011464164:tgl[B0+],dg1[B0+]
2424 		 * Wa_22010931296:tgl[B0+],dg1[B0+]
2425 		 * Wa_14010919138:rkl,dg1,adl-s,adl-p
2426 		 */
2427 		wa_write_or(wal, GEN7_FF_THREAD_MODE,
2428 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2429 	}
2430 
2431 	if (IS_ALDERLAKE_P(i915) || IS_DG2(i915) || IS_ALDERLAKE_S(i915) ||
2432 	    IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2433 		/*
2434 		 * Wa_1606700617:tgl,dg1,adl-p
2435 		 * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p
2436 		 * Wa_14010826681:tgl,dg1,rkl,adl-p
2437 		 * Wa_18019627453:dg2
2438 		 */
2439 		wa_masked_en(wal,
2440 			     GEN9_CS_DEBUG_MODE1,
2441 			     FF_DOP_CLOCK_GATE_DISABLE);
2442 	}
2443 
2444 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2445 	    IS_DG1_GRAPHICS_STEP(i915, STEP_A0, STEP_B0) ||
2446 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2447 		/* Wa_1409804808:tgl,rkl,dg1[a0],adl-s,adl-p */
2448 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2449 				 GEN12_PUSH_CONST_DEREF_HOLD_DIS);
2450 
2451 		/*
2452 		 * Wa_1409085225:tgl
2453 		 * Wa_14010229206:tgl,rkl,dg1[a0],adl-s,adl-p
2454 		 */
2455 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH);
2456 	}
2457 
2458 	if (IS_DG1_GRAPHICS_STEP(i915, STEP_A0, STEP_B0) ||
2459 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) {
2460 		/*
2461 		 * Wa_1607030317:tgl
2462 		 * Wa_1607186500:tgl
2463 		 * Wa_1607297627:tgl,rkl,dg1[a0],adlp
2464 		 *
2465 		 * On TGL and RKL there are multiple entries for this WA in the
2466 		 * BSpec; some indicate this is an A0-only WA, others indicate
2467 		 * it applies to all steppings so we trust the "all steppings."
2468 		 * For DG1 this only applies to A0.
2469 		 */
2470 		wa_masked_en(wal,
2471 			     RING_PSMI_CTL(RENDER_RING_BASE),
2472 			     GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE |
2473 			     GEN8_RC_SEMA_IDLE_MSG_DISABLE);
2474 	}
2475 
2476 	if (IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) ||
2477 	    IS_ALDERLAKE_S(i915) || IS_ALDERLAKE_P(i915)) {
2478 		/* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */
2479 		wa_mcr_masked_en(wal,
2480 				 GEN10_SAMPLER_MODE,
2481 				 ENABLE_SMALLPL);
2482 	}
2483 
2484 	if (GRAPHICS_VER(i915) == 11) {
2485 		/* This is not an Wa. Enable for better image quality */
2486 		wa_masked_en(wal,
2487 			     _3D_CHICKEN3,
2488 			     _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE);
2489 
2490 		/*
2491 		 * Wa_1405543622:icl
2492 		 * Formerly known as WaGAPZPriorityScheme
2493 		 */
2494 		wa_write_or(wal,
2495 			    GEN8_GARBCNTL,
2496 			    GEN11_ARBITRATION_PRIO_ORDER_MASK);
2497 
2498 		/*
2499 		 * Wa_1604223664:icl
2500 		 * Formerly known as WaL3BankAddressHashing
2501 		 */
2502 		wa_write_clr_set(wal,
2503 				 GEN8_GARBCNTL,
2504 				 GEN11_HASH_CTRL_EXCL_MASK,
2505 				 GEN11_HASH_CTRL_EXCL_BIT0);
2506 		wa_write_clr_set(wal,
2507 				 GEN11_GLBLINVL,
2508 				 GEN11_BANK_HASH_ADDR_EXCL_MASK,
2509 				 GEN11_BANK_HASH_ADDR_EXCL_BIT0);
2510 
2511 		/*
2512 		 * Wa_1405733216:icl
2513 		 * Formerly known as WaDisableCleanEvicts
2514 		 */
2515 		wa_mcr_write_or(wal,
2516 				GEN8_L3SQCREG4,
2517 				GEN11_LQSC_CLEAN_EVICT_DISABLE);
2518 
2519 		/* Wa_1606682166:icl */
2520 		wa_write_or(wal,
2521 			    GEN7_SARCHKMD,
2522 			    GEN7_DISABLE_SAMPLER_PREFETCH);
2523 
2524 		/* Wa_1409178092:icl */
2525 		wa_mcr_write_clr_set(wal,
2526 				     GEN11_SCRATCH2,
2527 				     GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE,
2528 				     0);
2529 
2530 		/* WaEnable32PlaneMode:icl */
2531 		wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS,
2532 			     GEN11_ENABLE_32_PLANE_MODE);
2533 
2534 		/*
2535 		 * Wa_1408615072:icl,ehl  (vsunit)
2536 		 * Wa_1407596294:icl,ehl  (hsunit)
2537 		 */
2538 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
2539 			    VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);
2540 
2541 		/*
2542 		 * Wa_1408767742:icl[a2..forever],ehl[all]
2543 		 * Wa_1605460711:icl[a0..c0]
2544 		 */
2545 		wa_write_or(wal,
2546 			    GEN7_FF_THREAD_MODE,
2547 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2548 
2549 		/* Wa_22010271021 */
2550 		wa_masked_en(wal,
2551 			     GEN9_CS_DEBUG_MODE1,
2552 			     FF_DOP_CLOCK_GATE_DISABLE);
2553 	}
2554 
2555 	/*
2556 	 * Intel platforms that support fine-grained preemption (i.e., gen9 and
2557 	 * beyond) allow the kernel-mode driver to choose between two different
2558 	 * options for controlling preemption granularity and behavior.
2559 	 *
2560 	 * Option 1 (hardware default):
2561 	 *   Preemption settings are controlled in a global manner via
2562 	 *   kernel-only register CS_DEBUG_MODE1 (0x20EC).  Any granularity
2563 	 *   and settings chosen by the kernel-mode driver will apply to all
2564 	 *   userspace clients.
2565 	 *
2566 	 * Option 2:
2567 	 *   Preemption settings are controlled on a per-context basis via
2568 	 *   register CS_CHICKEN1 (0x2580).  CS_CHICKEN1 is saved/restored on
2569 	 *   context switch and is writable by userspace (e.g., via
2570 	 *   MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer)
2571 	 *   which allows different userspace drivers/clients to select
2572 	 *   different settings, or to change those settings on the fly in
2573 	 *   response to runtime needs.  This option was known by name
2574 	 *   "FtrPerCtxtPreemptionGranularityControl" at one time, although
2575 	 *   that name is somewhat misleading as other non-granularity
2576 	 *   preemption settings are also impacted by this decision.
2577 	 *
2578 	 * On Linux, our policy has always been to let userspace drivers
2579 	 * control preemption granularity/settings (Option 2).  This was
2580 	 * originally mandatory on gen9 to prevent ABI breakage (old gen9
2581 	 * userspace developed before object-level preemption was enabled would
2582 	 * not behave well if i915 were to go with Option 1 and enable that
2583 	 * preemption in a global manner).  On gen9 each context would have
2584 	 * object-level preemption disabled by default (see
2585 	 * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but
2586 	 * userspace drivers could opt-in to object-level preemption as they
2587 	 * saw fit.  For post-gen9 platforms, we continue to utilize Option 2;
2588 	 * even though it is no longer necessary for ABI compatibility when
2589 	 * enabling a new platform, it does ensure that userspace will be able
2590 	 * to implement any workarounds that show up requiring temporary
2591 	 * adjustments to preemption behavior at runtime.
2592 	 *
2593 	 * Notes/Workarounds:
2594 	 *  - Wa_14015141709:  On DG2 and early steppings of MTL,
2595 	 *      CS_CHICKEN1[0] does not disable object-level preemption as
2596 	 *      it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been
2597 	 *      using Option 1).  Effectively this means userspace is unable
2598 	 *      to disable object-level preemption on these platforms/steppings
2599 	 *      despite the setting here.
2600 	 *
2601 	 *  - Wa_16013994831:  May require that userspace program
2602 	 *      CS_CHICKEN1[10] when certain runtime conditions are true.
2603 	 *      Userspace requires Option 2 to be in effect for their update of
2604 	 *      CS_CHICKEN1[10] to be effective.
2605 	 *
2606 	 * Other workarounds may appear in the future that will also require
2607 	 * Option 2 behavior to allow proper userspace implementation.
2608 	 */
2609 	if (GRAPHICS_VER(i915) >= 9)
2610 		wa_masked_en(wal,
2611 			     GEN7_FF_SLICE_CS_CHICKEN1,
2612 			     GEN9_FFSC_PERCTX_PREEMPT_CTRL);
2613 
2614 	if (IS_SKYLAKE(i915) ||
2615 	    IS_KABYLAKE(i915) ||
2616 	    IS_COFFEELAKE(i915) ||
2617 	    IS_COMETLAKE(i915)) {
2618 		/* WaEnableGapsTsvCreditFix:skl,kbl,cfl */
2619 		wa_write_or(wal,
2620 			    GEN8_GARBCNTL,
2621 			    GEN9_GAPS_TSV_CREDIT_DISABLE);
2622 	}
2623 
2624 	if (IS_BROXTON(i915)) {
2625 		/* WaDisablePooledEuLoadBalancingFix:bxt */
2626 		wa_masked_en(wal,
2627 			     FF_SLICE_CS_CHICKEN2,
2628 			     GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
2629 	}
2630 
2631 	if (GRAPHICS_VER(i915) == 9) {
2632 		/* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */
2633 		wa_masked_en(wal,
2634 			     GEN9_CSFE_CHICKEN1_RCS,
2635 			     GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE);
2636 
2637 		/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */
2638 		wa_mcr_write_or(wal,
2639 				BDW_SCRATCH1,
2640 				GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
2641 
2642 		/* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */
2643 		if (IS_GEN9_LP(i915))
2644 			wa_mcr_write_clr_set(wal,
2645 					     GEN8_L3SQCREG1,
2646 					     L3_PRIO_CREDITS_MASK,
2647 					     L3_GENERAL_PRIO_CREDITS(62) |
2648 					     L3_HIGH_PRIO_CREDITS(2));
2649 
2650 		/* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */
2651 		wa_mcr_write_or(wal,
2652 				GEN8_L3SQCREG4,
2653 				GEN8_LQSC_FLUSH_COHERENT_LINES);
2654 
2655 		/* Disable atomics in L3 to prevent unrecoverable hangs */
2656 		wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1,
2657 				 GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2658 		wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4,
2659 				     GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2660 		wa_mcr_write_clr_set(wal, GEN9_SCRATCH1,
2661 				     EVICTION_PERF_FIX_ENABLE, 0);
2662 	}
2663 
2664 	if (IS_HASWELL(i915)) {
2665 		/* WaSampleCChickenBitEnable:hsw */
2666 		wa_masked_en(wal,
2667 			     HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE);
2668 
2669 		wa_masked_dis(wal,
2670 			      CACHE_MODE_0_GEN7,
2671 			      /* enable HiZ Raw Stall Optimization */
2672 			      HIZ_RAW_STALL_OPT_DISABLE);
2673 	}
2674 
2675 	if (IS_VALLEYVIEW(i915)) {
2676 		/* WaDisableEarlyCull:vlv */
2677 		wa_masked_en(wal,
2678 			     _3D_CHICKEN3,
2679 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2680 
2681 		/*
2682 		 * WaVSThreadDispatchOverride:ivb,vlv
2683 		 *
2684 		 * This actually overrides the dispatch
2685 		 * mode for all thread types.
2686 		 */
2687 		wa_write_clr_set(wal,
2688 				 GEN7_FF_THREAD_MODE,
2689 				 GEN7_FF_SCHED_MASK,
2690 				 GEN7_FF_TS_SCHED_HW |
2691 				 GEN7_FF_VS_SCHED_HW |
2692 				 GEN7_FF_DS_SCHED_HW);
2693 
2694 		/* WaPsdDispatchEnable:vlv */
2695 		/* WaDisablePSDDualDispatchEnable:vlv */
2696 		wa_masked_en(wal,
2697 			     GEN7_HALF_SLICE_CHICKEN1,
2698 			     GEN7_MAX_PS_THREAD_DEP |
2699 			     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2700 	}
2701 
2702 	if (IS_IVYBRIDGE(i915)) {
2703 		/* WaDisableEarlyCull:ivb */
2704 		wa_masked_en(wal,
2705 			     _3D_CHICKEN3,
2706 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2707 
2708 		if (0) { /* causes HiZ corruption on ivb:gt1 */
2709 			/* enable HiZ Raw Stall Optimization */
2710 			wa_masked_dis(wal,
2711 				      CACHE_MODE_0_GEN7,
2712 				      HIZ_RAW_STALL_OPT_DISABLE);
2713 		}
2714 
2715 		/*
2716 		 * WaVSThreadDispatchOverride:ivb,vlv
2717 		 *
2718 		 * This actually overrides the dispatch
2719 		 * mode for all thread types.
2720 		 */
2721 		wa_write_clr_set(wal,
2722 				 GEN7_FF_THREAD_MODE,
2723 				 GEN7_FF_SCHED_MASK,
2724 				 GEN7_FF_TS_SCHED_HW |
2725 				 GEN7_FF_VS_SCHED_HW |
2726 				 GEN7_FF_DS_SCHED_HW);
2727 
2728 		/* WaDisablePSDDualDispatchEnable:ivb */
2729 		if (IS_IVB_GT1(i915))
2730 			wa_masked_en(wal,
2731 				     GEN7_HALF_SLICE_CHICKEN1,
2732 				     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2733 	}
2734 
2735 	if (GRAPHICS_VER(i915) == 7) {
2736 		/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
2737 		wa_masked_en(wal,
2738 			     RING_MODE_GEN7(RENDER_RING_BASE),
2739 			     GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE);
2740 
2741 		/* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */
2742 		wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE);
2743 
2744 		/*
2745 		 * BSpec says this must be set, even though
2746 		 * WaDisable4x2SubspanOptimization:ivb,hsw
2747 		 * WaDisable4x2SubspanOptimization isn't listed for VLV.
2748 		 */
2749 		wa_masked_en(wal,
2750 			     CACHE_MODE_1,
2751 			     PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
2752 
2753 		/*
2754 		 * BSpec recommends 8x4 when MSAA is used,
2755 		 * however in practice 16x4 seems fastest.
2756 		 *
2757 		 * Note that PS/WM thread counts depend on the WIZ hashing
2758 		 * disable bit, which we don't touch here, but it's good
2759 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2760 		 */
2761 		wa_masked_field_set(wal,
2762 				    GEN7_GT_MODE,
2763 				    GEN6_WIZ_HASHING_MASK,
2764 				    GEN6_WIZ_HASHING_16x4);
2765 	}
2766 
2767 	if (IS_GRAPHICS_VER(i915, 6, 7))
2768 		/*
2769 		 * We need to disable the AsyncFlip performance optimisations in
2770 		 * order to use MI_WAIT_FOR_EVENT within the CS. It should
2771 		 * already be programmed to '1' on all products.
2772 		 *
2773 		 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
2774 		 */
2775 		wa_masked_en(wal,
2776 			     RING_MI_MODE(RENDER_RING_BASE),
2777 			     ASYNC_FLIP_PERF_DISABLE);
2778 
2779 	if (GRAPHICS_VER(i915) == 6) {
2780 		/*
2781 		 * Required for the hardware to program scanline values for
2782 		 * waiting
2783 		 * WaEnableFlushTlbInvalidationMode:snb
2784 		 */
2785 		wa_masked_en(wal,
2786 			     GFX_MODE,
2787 			     GFX_TLB_INVALIDATE_EXPLICIT);
2788 
2789 		/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
2790 		wa_masked_en(wal,
2791 			     _3D_CHICKEN,
2792 			     _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB);
2793 
2794 		wa_masked_en(wal,
2795 			     _3D_CHICKEN3,
2796 			     /* WaStripsFansDisableFastClipPerformanceFix:snb */
2797 			     _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL |
2798 			     /*
2799 			      * Bspec says:
2800 			      * "This bit must be set if 3DSTATE_CLIP clip mode is set
2801 			      * to normal and 3DSTATE_SF number of SF output attributes
2802 			      * is more than 16."
2803 			      */
2804 			     _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH);
2805 
2806 		/*
2807 		 * BSpec recommends 8x4 when MSAA is used,
2808 		 * however in practice 16x4 seems fastest.
2809 		 *
2810 		 * Note that PS/WM thread counts depend on the WIZ hashing
2811 		 * disable bit, which we don't touch here, but it's good
2812 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2813 		 */
2814 		wa_masked_field_set(wal,
2815 				    GEN6_GT_MODE,
2816 				    GEN6_WIZ_HASHING_MASK,
2817 				    GEN6_WIZ_HASHING_16x4);
2818 
2819 		/* WaDisable_RenderCache_OperationalFlush:snb */
2820 		wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
2821 
2822 		/*
2823 		 * From the Sandybridge PRM, volume 1 part 3, page 24:
2824 		 * "If this bit is set, STCunit will have LRA as replacement
2825 		 *  policy. [...] This bit must be reset. LRA replacement
2826 		 *  policy is not supported."
2827 		 */
2828 		wa_masked_dis(wal,
2829 			      CACHE_MODE_0,
2830 			      CM0_STC_EVICT_DISABLE_LRA_SNB);
2831 	}
2832 
2833 	if (IS_GRAPHICS_VER(i915, 4, 6))
2834 		/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
2835 		wa_add(wal, RING_MI_MODE(RENDER_RING_BASE),
2836 		       0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH),
2837 		       /* XXX bit doesn't stick on Broadwater */
2838 		       IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true);
2839 
2840 	if (GRAPHICS_VER(i915) == 4)
2841 		/*
2842 		 * Disable CONSTANT_BUFFER before it is loaded from the context
2843 		 * image. For as it is loaded, it is executed and the stored
2844 		 * address may no longer be valid, leading to a GPU hang.
2845 		 *
2846 		 * This imposes the requirement that userspace reload their
2847 		 * CONSTANT_BUFFER on every batch, fortunately a requirement
2848 		 * they are already accustomed to from before contexts were
2849 		 * enabled.
2850 		 */
2851 		wa_add(wal, ECOSKPD(RENDER_RING_BASE),
2852 		       0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE),
2853 		       0 /* XXX bit doesn't stick on Broadwater */,
2854 		       true);
2855 }
2856 
2857 static void
2858 xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2859 {
2860 	struct drm_i915_private *i915 = engine->i915;
2861 
2862 	/* WaKBLVECSSemaphoreWaitPoll:kbl */
2863 	if (IS_KBL_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) {
2864 		wa_write(wal,
2865 			 RING_SEMA_WAIT_POLL(engine->mmio_base),
2866 			 1);
2867 	}
2868 }
2869 
2870 static void
2871 ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2872 {
2873 	if (IS_PVC_CT_STEP(engine->i915, STEP_A0, STEP_C0)) {
2874 		/* Wa_14014999345:pvc */
2875 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, DISABLE_ECC);
2876 	}
2877 }
2878 
2879 /*
2880  * The bspec performance guide has recommended MMIO tuning settings.  These
2881  * aren't truly "workarounds" but we want to program them with the same
2882  * workaround infrastructure to ensure that they're automatically added to
2883  * the GuC save/restore lists, re-applied at the right times, and checked for
2884  * any conflicting programming requested by real workarounds.
2885  *
2886  * Programming settings should be added here only if their registers are not
2887  * part of an engine's register state context.  If a register is part of a
2888  * context, then any tuning settings should be programmed in an appropriate
2889  * function invoked by __intel_engine_init_ctx_wa().
2890  */
2891 static void
2892 add_render_compute_tuning_settings(struct drm_i915_private *i915,
2893 				   struct i915_wa_list *wal)
2894 {
2895 	if (IS_PONTEVECCHIO(i915)) {
2896 		wa_write(wal, XEHPC_L3SCRUB,
2897 			 SCRUB_CL_DWNGRADE_SHARED | SCRUB_RATE_4B_PER_CLK);
2898 	}
2899 
2900 	if (IS_DG2(i915)) {
2901 		wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
2902 		wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512);
2903 
2904 		/*
2905 		 * This is also listed as Wa_22012654132 for certain DG2
2906 		 * steppings, but the tuning setting programming is a superset
2907 		 * since it applies to all DG2 variants and steppings.
2908 		 *
2909 		 * Note that register 0xE420 is write-only and cannot be read
2910 		 * back for verification on DG2 (due to Wa_14012342262), so
2911 		 * we need to explicitly skip the readback.
2912 		 */
2913 		wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
2914 			   _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC),
2915 			   0 /* write-only, so skip validation */,
2916 			   true);
2917 	}
2918 
2919 	/*
2920 	 * This tuning setting proves beneficial only on ATS-M designs; the
2921 	 * default "age based" setting is optimal on regular DG2 and other
2922 	 * platforms.
2923 	 */
2924 	if (INTEL_INFO(i915)->tuning_thread_rr_after_dep)
2925 		wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE,
2926 					THREAD_EX_ARB_MODE_RR_AFTER_DEP);
2927 }
2928 
2929 /*
2930  * The workarounds in this function apply to shared registers in
2931  * the general render reset domain that aren't tied to a
2932  * specific engine.  Since all render+compute engines get reset
2933  * together, and the contents of these registers are lost during
2934  * the shared render domain reset, we'll define such workarounds
2935  * here and then add them to just a single RCS or CCS engine's
2936  * workaround list (whichever engine has the XXXX flag).
2937  */
2938 static void
2939 general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2940 {
2941 	struct drm_i915_private *i915 = engine->i915;
2942 
2943 	add_render_compute_tuning_settings(i915, wal);
2944 
2945 	if (IS_PONTEVECCHIO(i915)) {
2946 		/* Wa_16016694945 */
2947 		wa_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_OVRLSCCC);
2948 	}
2949 
2950 	if (IS_XEHPSDV(i915)) {
2951 		/* Wa_1409954639 */
2952 		wa_mcr_masked_en(wal,
2953 				 GEN8_ROW_CHICKEN,
2954 				 SYSTOLIC_DOP_CLOCK_GATING_DIS);
2955 
2956 		/* Wa_1607196519 */
2957 		wa_mcr_masked_en(wal,
2958 				 GEN9_ROW_CHICKEN4,
2959 				 GEN12_DISABLE_GRF_CLEAR);
2960 
2961 		/* Wa_14010670810:xehpsdv */
2962 		wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
2963 
2964 		/* Wa_14010449647:xehpsdv */
2965 		wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
2966 				 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2967 
2968 		/* Wa_18011725039:xehpsdv */
2969 		if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_B0)) {
2970 			wa_mcr_masked_dis(wal, MLTICTXCTL, TDONRENDER);
2971 			wa_mcr_write_or(wal, L3SQCREG1_CCS0, FLUSHALLNONCOH);
2972 		}
2973 
2974 		/* Wa_14012362059:xehpsdv */
2975 		wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB);
2976 
2977 		/* Wa_14014368820:xehpsdv */
2978 		wa_write_or(wal, GEN12_GAMCNTRL_CTRL, INVALIDATION_BROADCAST_MODE_DIS |
2979 				GLOBAL_INVALIDATION_MODE);
2980 	}
2981 
2982 	if (IS_DG2(i915) || IS_PONTEVECCHIO(i915)) {
2983 		/* Wa_14015227452:dg2,pvc */
2984 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE);
2985 
2986 		/* Wa_22014226127:dg2,pvc */
2987 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE);
2988 
2989 		/* Wa_16015675438:dg2,pvc */
2990 		wa_masked_en(wal, FF_SLICE_CS_CHICKEN2, GEN12_PERF_FIX_BALANCING_CFE_DISABLE);
2991 
2992 		/* Wa_18018781329:dg2,pvc */
2993 		wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
2994 		wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
2995 		wa_mcr_write_or(wal, VDBX_MOD_CTRL, FORCE_MISS_FTLB);
2996 		wa_mcr_write_or(wal, VEBX_MOD_CTRL, FORCE_MISS_FTLB);
2997 	}
2998 
2999 	if (IS_DG2(i915)) {
3000 		/*
3001 		 * Wa_16011620976:dg2_g11
3002 		 * Wa_22015475538:dg2
3003 		 */
3004 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8);
3005 
3006 		/* Wa_18017747507:dg2 */
3007 		wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE);
3008 	}
3009 }
3010 
3011 static void
3012 engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal)
3013 {
3014 	if (GRAPHICS_VER(engine->i915) < 4)
3015 		return;
3016 
3017 	engine_fake_wa_init(engine, wal);
3018 
3019 	/*
3020 	 * These are common workarounds that just need to applied
3021 	 * to a single RCS/CCS engine's workaround list since
3022 	 * they're reset as part of the general render domain reset.
3023 	 */
3024 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
3025 		general_render_compute_wa_init(engine, wal);
3026 
3027 	if (engine->class == COMPUTE_CLASS)
3028 		ccs_engine_wa_init(engine, wal);
3029 	else if (engine->class == RENDER_CLASS)
3030 		rcs_engine_wa_init(engine, wal);
3031 	else
3032 		xcs_engine_wa_init(engine, wal);
3033 }
3034 
3035 void intel_engine_init_workarounds(struct intel_engine_cs *engine)
3036 {
3037 	struct i915_wa_list *wal = &engine->wa_list;
3038 
3039 	wa_init_start(wal, engine->gt, "engine", engine->name);
3040 	engine_init_workarounds(engine, wal);
3041 	wa_init_finish(wal);
3042 }
3043 
3044 void intel_engine_apply_workarounds(struct intel_engine_cs *engine)
3045 {
3046 	wa_list_apply(&engine->wa_list);
3047 }
3048 
3049 static const struct i915_range mcr_ranges_gen8[] = {
3050 	{ .start = 0x5500, .end = 0x55ff },
3051 	{ .start = 0x7000, .end = 0x7fff },
3052 	{ .start = 0x9400, .end = 0x97ff },
3053 	{ .start = 0xb000, .end = 0xb3ff },
3054 	{ .start = 0xe000, .end = 0xe7ff },
3055 	{},
3056 };
3057 
3058 static const struct i915_range mcr_ranges_gen12[] = {
3059 	{ .start =  0x8150, .end =  0x815f },
3060 	{ .start =  0x9520, .end =  0x955f },
3061 	{ .start =  0xb100, .end =  0xb3ff },
3062 	{ .start =  0xde80, .end =  0xe8ff },
3063 	{ .start = 0x24a00, .end = 0x24a7f },
3064 	{},
3065 };
3066 
3067 static const struct i915_range mcr_ranges_xehp[] = {
3068 	{ .start =  0x4000, .end =  0x4aff },
3069 	{ .start =  0x5200, .end =  0x52ff },
3070 	{ .start =  0x5400, .end =  0x7fff },
3071 	{ .start =  0x8140, .end =  0x815f },
3072 	{ .start =  0x8c80, .end =  0x8dff },
3073 	{ .start =  0x94d0, .end =  0x955f },
3074 	{ .start =  0x9680, .end =  0x96ff },
3075 	{ .start =  0xb000, .end =  0xb3ff },
3076 	{ .start =  0xc800, .end =  0xcfff },
3077 	{ .start =  0xd800, .end =  0xd8ff },
3078 	{ .start =  0xdc00, .end =  0xffff },
3079 	{ .start = 0x17000, .end = 0x17fff },
3080 	{ .start = 0x24a00, .end = 0x24a7f },
3081 	{},
3082 };
3083 
3084 static bool mcr_range(struct drm_i915_private *i915, u32 offset)
3085 {
3086 	const struct i915_range *mcr_ranges;
3087 	int i;
3088 
3089 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
3090 		mcr_ranges = mcr_ranges_xehp;
3091 	else if (GRAPHICS_VER(i915) >= 12)
3092 		mcr_ranges = mcr_ranges_gen12;
3093 	else if (GRAPHICS_VER(i915) >= 8)
3094 		mcr_ranges = mcr_ranges_gen8;
3095 	else
3096 		return false;
3097 
3098 	/*
3099 	 * Registers in these ranges are affected by the MCR selector
3100 	 * which only controls CPU initiated MMIO. Routing does not
3101 	 * work for CS access so we cannot verify them on this path.
3102 	 */
3103 	for (i = 0; mcr_ranges[i].start; i++)
3104 		if (offset >= mcr_ranges[i].start &&
3105 		    offset <= mcr_ranges[i].end)
3106 			return true;
3107 
3108 	return false;
3109 }
3110 
3111 static int
3112 wa_list_srm(struct i915_request *rq,
3113 	    const struct i915_wa_list *wal,
3114 	    struct i915_vma *vma)
3115 {
3116 	struct drm_i915_private *i915 = rq->engine->i915;
3117 	unsigned int i, count = 0;
3118 	const struct i915_wa *wa;
3119 	u32 srm, *cs;
3120 
3121 	srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
3122 	if (GRAPHICS_VER(i915) >= 8)
3123 		srm++;
3124 
3125 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3126 		if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg)))
3127 			count++;
3128 	}
3129 
3130 	cs = intel_ring_begin(rq, 4 * count);
3131 	if (IS_ERR(cs))
3132 		return PTR_ERR(cs);
3133 
3134 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3135 		u32 offset = i915_mmio_reg_offset(wa->reg);
3136 
3137 		if (mcr_range(i915, offset))
3138 			continue;
3139 
3140 		*cs++ = srm;
3141 		*cs++ = offset;
3142 		*cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i;
3143 		*cs++ = 0;
3144 	}
3145 	intel_ring_advance(rq, cs);
3146 
3147 	return 0;
3148 }
3149 
3150 static int engine_wa_list_verify(struct intel_context *ce,
3151 				 const struct i915_wa_list * const wal,
3152 				 const char *from)
3153 {
3154 	const struct i915_wa *wa;
3155 	struct i915_request *rq;
3156 	struct i915_vma *vma;
3157 	struct i915_gem_ww_ctx ww;
3158 	unsigned int i;
3159 	u32 *results;
3160 	int err;
3161 
3162 	if (!wal->count)
3163 		return 0;
3164 
3165 	vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm,
3166 					   wal->count * sizeof(u32));
3167 	if (IS_ERR(vma))
3168 		return PTR_ERR(vma);
3169 
3170 	intel_engine_pm_get(ce->engine);
3171 	i915_gem_ww_ctx_init(&ww, false);
3172 retry:
3173 	err = i915_gem_object_lock(vma->obj, &ww);
3174 	if (err == 0)
3175 		err = intel_context_pin_ww(ce, &ww);
3176 	if (err)
3177 		goto err_pm;
3178 
3179 	err = i915_vma_pin_ww(vma, &ww, 0, 0,
3180 			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
3181 	if (err)
3182 		goto err_unpin;
3183 
3184 	rq = i915_request_create(ce);
3185 	if (IS_ERR(rq)) {
3186 		err = PTR_ERR(rq);
3187 		goto err_vma;
3188 	}
3189 
3190 	err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
3191 	if (err == 0)
3192 		err = wa_list_srm(rq, wal, vma);
3193 
3194 	i915_request_get(rq);
3195 	if (err)
3196 		i915_request_set_error_once(rq, err);
3197 	i915_request_add(rq);
3198 
3199 	if (err)
3200 		goto err_rq;
3201 
3202 	if (i915_request_wait(rq, 0, HZ / 5) < 0) {
3203 		err = -ETIME;
3204 		goto err_rq;
3205 	}
3206 
3207 	results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
3208 	if (IS_ERR(results)) {
3209 		err = PTR_ERR(results);
3210 		goto err_rq;
3211 	}
3212 
3213 	err = 0;
3214 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3215 		if (mcr_range(rq->engine->i915, i915_mmio_reg_offset(wa->reg)))
3216 			continue;
3217 
3218 		if (!wa_verify(wal->gt, wa, results[i], wal->name, from))
3219 			err = -ENXIO;
3220 	}
3221 
3222 	i915_gem_object_unpin_map(vma->obj);
3223 
3224 err_rq:
3225 	i915_request_put(rq);
3226 err_vma:
3227 	i915_vma_unpin(vma);
3228 err_unpin:
3229 	intel_context_unpin(ce);
3230 err_pm:
3231 	if (err == -EDEADLK) {
3232 		err = i915_gem_ww_ctx_backoff(&ww);
3233 		if (!err)
3234 			goto retry;
3235 	}
3236 	i915_gem_ww_ctx_fini(&ww);
3237 	intel_engine_pm_put(ce->engine);
3238 	i915_vma_put(vma);
3239 	return err;
3240 }
3241 
3242 int intel_engine_verify_workarounds(struct intel_engine_cs *engine,
3243 				    const char *from)
3244 {
3245 	return engine_wa_list_verify(engine->kernel_context,
3246 				     &engine->wa_list,
3247 				     from);
3248 }
3249 
3250 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3251 #include "selftest_workarounds.c"
3252 #endif
3253