1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2014-2018 Intel Corporation 4 */ 5 6 #include "i915_drv.h" 7 #include "i915_reg.h" 8 #include "intel_context.h" 9 #include "intel_engine_pm.h" 10 #include "intel_engine_regs.h" 11 #include "intel_gpu_commands.h" 12 #include "intel_gt.h" 13 #include "intel_gt_mcr.h" 14 #include "intel_gt_regs.h" 15 #include "intel_ring.h" 16 #include "intel_workarounds.h" 17 18 /** 19 * DOC: Hardware workarounds 20 * 21 * Hardware workarounds are register programming documented to be executed in 22 * the driver that fall outside of the normal programming sequences for a 23 * platform. There are some basic categories of workarounds, depending on 24 * how/when they are applied: 25 * 26 * - Context workarounds: workarounds that touch registers that are 27 * saved/restored to/from the HW context image. The list is emitted (via Load 28 * Register Immediate commands) once when initializing the device and saved in 29 * the default context. That default context is then used on every context 30 * creation to have a "primed golden context", i.e. a context image that 31 * already contains the changes needed to all the registers. 32 * 33 * Context workarounds should be implemented in the \*_ctx_workarounds_init() 34 * variants respective to the targeted platforms. 35 * 36 * - Engine workarounds: the list of these WAs is applied whenever the specific 37 * engine is reset. It's also possible that a set of engine classes share a 38 * common power domain and they are reset together. This happens on some 39 * platforms with render and compute engines. In this case (at least) one of 40 * them need to keeep the workaround programming: the approach taken in the 41 * driver is to tie those workarounds to the first compute/render engine that 42 * is registered. When executing with GuC submission, engine resets are 43 * outside of kernel driver control, hence the list of registers involved in 44 * written once, on engine initialization, and then passed to GuC, that 45 * saves/restores their values before/after the reset takes place. See 46 * ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference. 47 * 48 * Workarounds for registers specific to RCS and CCS should be implemented in 49 * rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for 50 * registers belonging to BCS, VCS or VECS should be implemented in 51 * xcs_engine_wa_init(). Workarounds for registers not belonging to a specific 52 * engine's MMIO range but that are part of of the common RCS/CCS reset domain 53 * should be implemented in general_render_compute_wa_init(). 54 * 55 * - GT workarounds: the list of these WAs is applied whenever these registers 56 * revert to their default values: on GPU reset, suspend/resume [1]_, etc. 57 * 58 * GT workarounds should be implemented in the \*_gt_workarounds_init() 59 * variants respective to the targeted platforms. 60 * 61 * - Register whitelist: some workarounds need to be implemented in userspace, 62 * but need to touch privileged registers. The whitelist in the kernel 63 * instructs the hardware to allow the access to happen. From the kernel side, 64 * this is just a special case of a MMIO workaround (as we write the list of 65 * these to/be-whitelisted registers to some special HW registers). 66 * 67 * Register whitelisting should be done in the \*_whitelist_build() variants 68 * respective to the targeted platforms. 69 * 70 * - Workaround batchbuffers: buffers that get executed automatically by the 71 * hardware on every HW context restore. These buffers are created and 72 * programmed in the default context so the hardware always go through those 73 * programming sequences when switching contexts. The support for workaround 74 * batchbuffers is enabled these hardware mechanisms: 75 * 76 * #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default 77 * context, pointing the hardware to jump to that location when that offset 78 * is reached in the context restore. Workaround batchbuffer in the driver 79 * currently uses this mechanism for all platforms. 80 * 81 * #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context, 82 * pointing the hardware to a buffer to continue executing after the 83 * engine registers are restored in a context restore sequence. This is 84 * currently not used in the driver. 85 * 86 * - Other: There are WAs that, due to their nature, cannot be applied from a 87 * central place. Those are peppered around the rest of the code, as needed. 88 * Workarounds related to the display IP are the main example. 89 * 90 * .. [1] Technically, some registers are powercontext saved & restored, so they 91 * survive a suspend/resume. In practice, writing them again is not too 92 * costly and simplifies things, so it's the approach taken in the driver. 93 */ 94 95 static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt, 96 const char *name, const char *engine_name) 97 { 98 wal->gt = gt; 99 wal->name = name; 100 wal->engine_name = engine_name; 101 } 102 103 #define WA_LIST_CHUNK (1 << 4) 104 105 static void wa_init_finish(struct i915_wa_list *wal) 106 { 107 /* Trim unused entries. */ 108 if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) { 109 struct i915_wa *list = kmemdup(wal->list, 110 wal->count * sizeof(*list), 111 GFP_KERNEL); 112 113 if (list) { 114 kfree(wal->list); 115 wal->list = list; 116 } 117 } 118 119 if (!wal->count) 120 return; 121 122 drm_dbg(&wal->gt->i915->drm, "Initialized %u %s workarounds on %s\n", 123 wal->wa_count, wal->name, wal->engine_name); 124 } 125 126 static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa) 127 { 128 unsigned int addr = i915_mmio_reg_offset(wa->reg); 129 struct drm_i915_private *i915 = wal->gt->i915; 130 unsigned int start = 0, end = wal->count; 131 const unsigned int grow = WA_LIST_CHUNK; 132 struct i915_wa *wa_; 133 134 GEM_BUG_ON(!is_power_of_2(grow)); 135 136 if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */ 137 struct i915_wa *list; 138 139 list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa), 140 GFP_KERNEL); 141 if (!list) { 142 drm_err(&i915->drm, "No space for workaround init!\n"); 143 return; 144 } 145 146 if (wal->list) { 147 memcpy(list, wal->list, sizeof(*wa) * wal->count); 148 kfree(wal->list); 149 } 150 151 wal->list = list; 152 } 153 154 while (start < end) { 155 unsigned int mid = start + (end - start) / 2; 156 157 if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) { 158 start = mid + 1; 159 } else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) { 160 end = mid; 161 } else { 162 wa_ = &wal->list[mid]; 163 164 if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) { 165 drm_err(&i915->drm, 166 "Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n", 167 i915_mmio_reg_offset(wa_->reg), 168 wa_->clr, wa_->set); 169 170 wa_->set &= ~wa->clr; 171 } 172 173 wal->wa_count++; 174 wa_->set |= wa->set; 175 wa_->clr |= wa->clr; 176 wa_->read |= wa->read; 177 return; 178 } 179 } 180 181 wal->wa_count++; 182 wa_ = &wal->list[wal->count++]; 183 *wa_ = *wa; 184 185 while (wa_-- > wal->list) { 186 GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) == 187 i915_mmio_reg_offset(wa_[1].reg)); 188 if (i915_mmio_reg_offset(wa_[1].reg) > 189 i915_mmio_reg_offset(wa_[0].reg)) 190 break; 191 192 swap(wa_[1], wa_[0]); 193 } 194 } 195 196 static void wa_add(struct i915_wa_list *wal, i915_reg_t reg, 197 u32 clear, u32 set, u32 read_mask, bool masked_reg) 198 { 199 struct i915_wa wa = { 200 .reg = reg, 201 .clr = clear, 202 .set = set, 203 .read = read_mask, 204 .masked_reg = masked_reg, 205 }; 206 207 _wa_add(wal, &wa); 208 } 209 210 static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg, 211 u32 clear, u32 set, u32 read_mask, bool masked_reg) 212 { 213 struct i915_wa wa = { 214 .mcr_reg = reg, 215 .clr = clear, 216 .set = set, 217 .read = read_mask, 218 .masked_reg = masked_reg, 219 .is_mcr = 1, 220 }; 221 222 _wa_add(wal, &wa); 223 } 224 225 static void 226 wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set) 227 { 228 wa_add(wal, reg, clear, set, clear, false); 229 } 230 231 static void 232 wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set) 233 { 234 wa_mcr_add(wal, reg, clear, set, clear, false); 235 } 236 237 static void 238 wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set) 239 { 240 wa_write_clr_set(wal, reg, ~0, set); 241 } 242 243 static void 244 wa_mcr_write(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set) 245 { 246 wa_mcr_write_clr_set(wal, reg, ~0, set); 247 } 248 249 static void 250 wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set) 251 { 252 wa_write_clr_set(wal, reg, set, set); 253 } 254 255 static void 256 wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set) 257 { 258 wa_mcr_write_clr_set(wal, reg, set, set); 259 } 260 261 static void 262 wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr) 263 { 264 wa_write_clr_set(wal, reg, clr, 0); 265 } 266 267 static void 268 wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr) 269 { 270 wa_mcr_write_clr_set(wal, reg, clr, 0); 271 } 272 273 /* 274 * WA operations on "masked register". A masked register has the upper 16 bits 275 * documented as "masked" in b-spec. Its purpose is to allow writing to just a 276 * portion of the register without a rmw: you simply write in the upper 16 bits 277 * the mask of bits you are going to modify. 278 * 279 * The wa_masked_* family of functions already does the necessary operations to 280 * calculate the mask based on the parameters passed, so user only has to 281 * provide the lower 16 bits of that register. 282 */ 283 284 static void 285 wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val) 286 { 287 wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true); 288 } 289 290 static void 291 wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val) 292 { 293 wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true); 294 } 295 296 static void 297 wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val) 298 { 299 wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true); 300 } 301 302 static void 303 wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val) 304 { 305 wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true); 306 } 307 308 static void 309 wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg, 310 u32 mask, u32 val) 311 { 312 wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true); 313 } 314 315 static void 316 wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, 317 u32 mask, u32 val) 318 { 319 wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true); 320 } 321 322 static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine, 323 struct i915_wa_list *wal) 324 { 325 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING); 326 } 327 328 static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine, 329 struct i915_wa_list *wal) 330 { 331 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING); 332 } 333 334 static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine, 335 struct i915_wa_list *wal) 336 { 337 wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING); 338 339 /* WaDisableAsyncFlipPerfMode:bdw,chv */ 340 wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE); 341 342 /* WaDisablePartialInstShootdown:bdw,chv */ 343 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, 344 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE); 345 346 /* Use Force Non-Coherent whenever executing a 3D context. This is a 347 * workaround for a possible hang in the unlikely event a TLB 348 * invalidation occurs during a PSD flush. 349 */ 350 /* WaForceEnableNonCoherent:bdw,chv */ 351 /* WaHdcDisableFetchWhenMasked:bdw,chv */ 352 wa_masked_en(wal, HDC_CHICKEN0, 353 HDC_DONOT_FETCH_MEM_WHEN_MASKED | 354 HDC_FORCE_NON_COHERENT); 355 356 /* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0: 357 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping 358 * polygons in the same 8x4 pixel/sample area to be processed without 359 * stalling waiting for the earlier ones to write to Hierarchical Z 360 * buffer." 361 * 362 * This optimization is off by default for BDW and CHV; turn it on. 363 */ 364 wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE); 365 366 /* Wa4x4STCOptimizationDisable:bdw,chv */ 367 wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE); 368 369 /* 370 * BSpec recommends 8x4 when MSAA is used, 371 * however in practice 16x4 seems fastest. 372 * 373 * Note that PS/WM thread counts depend on the WIZ hashing 374 * disable bit, which we don't touch here, but it's good 375 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). 376 */ 377 wa_masked_field_set(wal, GEN7_GT_MODE, 378 GEN6_WIZ_HASHING_MASK, 379 GEN6_WIZ_HASHING_16x4); 380 } 381 382 static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine, 383 struct i915_wa_list *wal) 384 { 385 struct drm_i915_private *i915 = engine->i915; 386 387 gen8_ctx_workarounds_init(engine, wal); 388 389 /* WaDisableThreadStallDopClockGating:bdw (pre-production) */ 390 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE); 391 392 /* WaDisableDopClockGating:bdw 393 * 394 * Also see the related UCGTCL1 write in bdw_init_clock_gating() 395 * to disable EUTC clock gating. 396 */ 397 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, 398 DOP_CLOCK_GATING_DISABLE); 399 400 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3, 401 GEN8_SAMPLER_POWER_BYPASS_DIS); 402 403 wa_masked_en(wal, HDC_CHICKEN0, 404 /* WaForceContextSaveRestoreNonCoherent:bdw */ 405 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT | 406 /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */ 407 (IS_BDW_GT3(i915) ? HDC_FENCE_DEST_SLM_DISABLE : 0)); 408 } 409 410 static void chv_ctx_workarounds_init(struct intel_engine_cs *engine, 411 struct i915_wa_list *wal) 412 { 413 gen8_ctx_workarounds_init(engine, wal); 414 415 /* WaDisableThreadStallDopClockGating:chv */ 416 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE); 417 418 /* Improve HiZ throughput on CHV. */ 419 wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X); 420 } 421 422 static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine, 423 struct i915_wa_list *wal) 424 { 425 struct drm_i915_private *i915 = engine->i915; 426 427 if (HAS_LLC(i915)) { 428 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl 429 * 430 * Must match Display Engine. See 431 * WaCompressedResourceDisplayNewHashMode. 432 */ 433 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 434 GEN9_PBE_COMPRESSED_HASH_SELECTION); 435 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7, 436 GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR); 437 } 438 439 /* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */ 440 /* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */ 441 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, 442 FLOW_CONTROL_ENABLE | 443 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE); 444 445 /* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */ 446 /* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */ 447 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7, 448 GEN9_ENABLE_YV12_BUGFIX | 449 GEN9_ENABLE_GPGPU_PREEMPTION); 450 451 /* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */ 452 /* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */ 453 wa_masked_en(wal, CACHE_MODE_1, 454 GEN8_4x4_STC_OPTIMIZATION_DISABLE | 455 GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE); 456 457 /* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */ 458 wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5, 459 GEN9_CCS_TLB_PREFETCH_ENABLE); 460 461 /* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */ 462 wa_masked_en(wal, HDC_CHICKEN0, 463 HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT | 464 HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE); 465 466 /* WaForceEnableNonCoherent and WaDisableHDCInvalidation are 467 * both tied to WaForceContextSaveRestoreNonCoherent 468 * in some hsds for skl. We keep the tie for all gen9. The 469 * documentation is a bit hazy and so we want to get common behaviour, 470 * even though there is no clear evidence we would need both on kbl/bxt. 471 * This area has been source of system hangs so we play it safe 472 * and mimic the skl regardless of what bspec says. 473 * 474 * Use Force Non-Coherent whenever executing a 3D context. This 475 * is a workaround for a possible hang in the unlikely event 476 * a TLB invalidation occurs during a PSD flush. 477 */ 478 479 /* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */ 480 wa_masked_en(wal, HDC_CHICKEN0, 481 HDC_FORCE_NON_COHERENT); 482 483 /* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */ 484 if (IS_SKYLAKE(i915) || 485 IS_KABYLAKE(i915) || 486 IS_COFFEELAKE(i915) || 487 IS_COMETLAKE(i915)) 488 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3, 489 GEN8_SAMPLER_POWER_BYPASS_DIS); 490 491 /* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */ 492 wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE); 493 494 /* 495 * Supporting preemption with fine-granularity requires changes in the 496 * batch buffer programming. Since we can't break old userspace, we 497 * need to set our default preemption level to safe value. Userspace is 498 * still able to use more fine-grained preemption levels, since in 499 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the 500 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are 501 * not real HW workarounds, but merely a way to start using preemption 502 * while maintaining old contract with userspace. 503 */ 504 505 /* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */ 506 wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL); 507 508 /* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */ 509 wa_masked_field_set(wal, GEN8_CS_CHICKEN1, 510 GEN9_PREEMPT_GPGPU_LEVEL_MASK, 511 GEN9_PREEMPT_GPGPU_COMMAND_LEVEL); 512 513 /* WaClearHIZ_WM_CHICKEN3:bxt,glk */ 514 if (IS_GEN9_LP(i915)) 515 wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ); 516 } 517 518 static void skl_tune_iz_hashing(struct intel_engine_cs *engine, 519 struct i915_wa_list *wal) 520 { 521 struct intel_gt *gt = engine->gt; 522 u8 vals[3] = { 0, 0, 0 }; 523 unsigned int i; 524 525 for (i = 0; i < 3; i++) { 526 u8 ss; 527 528 /* 529 * Only consider slices where one, and only one, subslice has 7 530 * EUs 531 */ 532 if (!is_power_of_2(gt->info.sseu.subslice_7eu[i])) 533 continue; 534 535 /* 536 * subslice_7eu[i] != 0 (because of the check above) and 537 * ss_max == 4 (maximum number of subslices possible per slice) 538 * 539 * -> 0 <= ss <= 3; 540 */ 541 ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1; 542 vals[i] = 3 - ss; 543 } 544 545 if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0) 546 return; 547 548 /* Tune IZ hashing. See intel_device_info_runtime_init() */ 549 wa_masked_field_set(wal, GEN7_GT_MODE, 550 GEN9_IZ_HASHING_MASK(2) | 551 GEN9_IZ_HASHING_MASK(1) | 552 GEN9_IZ_HASHING_MASK(0), 553 GEN9_IZ_HASHING(2, vals[2]) | 554 GEN9_IZ_HASHING(1, vals[1]) | 555 GEN9_IZ_HASHING(0, vals[0])); 556 } 557 558 static void skl_ctx_workarounds_init(struct intel_engine_cs *engine, 559 struct i915_wa_list *wal) 560 { 561 gen9_ctx_workarounds_init(engine, wal); 562 skl_tune_iz_hashing(engine, wal); 563 } 564 565 static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine, 566 struct i915_wa_list *wal) 567 { 568 gen9_ctx_workarounds_init(engine, wal); 569 570 /* WaDisableThreadStallDopClockGating:bxt */ 571 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, 572 STALL_DOP_GATING_DISABLE); 573 574 /* WaToEnableHwFixForPushConstHWBug:bxt */ 575 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 576 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); 577 } 578 579 static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine, 580 struct i915_wa_list *wal) 581 { 582 struct drm_i915_private *i915 = engine->i915; 583 584 gen9_ctx_workarounds_init(engine, wal); 585 586 /* WaToEnableHwFixForPushConstHWBug:kbl */ 587 if (IS_KBL_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER)) 588 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 589 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); 590 591 /* WaDisableSbeCacheDispatchPortSharing:kbl */ 592 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1, 593 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE); 594 } 595 596 static void glk_ctx_workarounds_init(struct intel_engine_cs *engine, 597 struct i915_wa_list *wal) 598 { 599 gen9_ctx_workarounds_init(engine, wal); 600 601 /* WaToEnableHwFixForPushConstHWBug:glk */ 602 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 603 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); 604 } 605 606 static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine, 607 struct i915_wa_list *wal) 608 { 609 gen9_ctx_workarounds_init(engine, wal); 610 611 /* WaToEnableHwFixForPushConstHWBug:cfl */ 612 wa_masked_en(wal, COMMON_SLICE_CHICKEN2, 613 GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION); 614 615 /* WaDisableSbeCacheDispatchPortSharing:cfl */ 616 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1, 617 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE); 618 } 619 620 static void icl_ctx_workarounds_init(struct intel_engine_cs *engine, 621 struct i915_wa_list *wal) 622 { 623 /* Wa_1406697149 (WaDisableBankHangMode:icl) */ 624 wa_write(wal, 625 GEN8_L3CNTLREG, 626 intel_uncore_read(engine->uncore, GEN8_L3CNTLREG) | 627 GEN8_ERRDETBCTRL); 628 629 /* WaForceEnableNonCoherent:icl 630 * This is not the same workaround as in early Gen9 platforms, where 631 * lacking this could cause system hangs, but coherency performance 632 * overhead is high and only a few compute workloads really need it 633 * (the register is whitelisted in hardware now, so UMDs can opt in 634 * for coherency if they have a good reason). 635 */ 636 wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT); 637 638 /* WaEnableFloatBlendOptimization:icl */ 639 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0, 640 _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE), 641 0 /* write-only, so skip validation */, 642 true); 643 644 /* WaDisableGPGPUMidThreadPreemption:icl */ 645 wa_masked_field_set(wal, GEN8_CS_CHICKEN1, 646 GEN9_PREEMPT_GPGPU_LEVEL_MASK, 647 GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL); 648 649 /* allow headerless messages for preemptible GPGPU context */ 650 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, 651 GEN11_SAMPLER_ENABLE_HEADLESS_MSG); 652 653 /* Wa_1604278689:icl,ehl */ 654 wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID); 655 wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER, 656 0, /* write-only register; skip validation */ 657 0xFFFFFFFF); 658 659 /* Wa_1406306137:icl,ehl */ 660 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU); 661 } 662 663 /* 664 * These settings aren't actually workarounds, but general tuning settings that 665 * need to be programmed on dg2 platform. 666 */ 667 static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine, 668 struct i915_wa_list *wal) 669 { 670 wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP); 671 wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK, 672 REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f)); 673 wa_mcr_add(wal, 674 XEHP_FF_MODE2, 675 FF_MODE2_TDS_TIMER_MASK, 676 FF_MODE2_TDS_TIMER_128, 677 0, false); 678 } 679 680 /* 681 * These settings aren't actually workarounds, but general tuning settings that 682 * need to be programmed on several platforms. 683 */ 684 static void gen12_ctx_gt_tuning_init(struct intel_engine_cs *engine, 685 struct i915_wa_list *wal) 686 { 687 /* 688 * Although some platforms refer to it as Wa_1604555607, we need to 689 * program it even on those that don't explicitly list that 690 * workaround. 691 * 692 * Note that the programming of this register is further modified 693 * according to the FF_MODE2 guidance given by Wa_1608008084:gen12. 694 * Wa_1608008084 tells us the FF_MODE2 register will return the wrong 695 * value when read. The default value for this register is zero for all 696 * fields and there are no bit masks. So instead of doing a RMW we 697 * should just write TDS timer value. For the same reason read 698 * verification is ignored. 699 */ 700 wa_add(wal, 701 GEN12_FF_MODE2, 702 FF_MODE2_TDS_TIMER_MASK, 703 FF_MODE2_TDS_TIMER_128, 704 0, false); 705 } 706 707 static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine, 708 struct i915_wa_list *wal) 709 { 710 struct drm_i915_private *i915 = engine->i915; 711 712 gen12_ctx_gt_tuning_init(engine, wal); 713 714 /* 715 * Wa_1409142259:tgl,dg1,adl-p 716 * Wa_1409347922:tgl,dg1,adl-p 717 * Wa_1409252684:tgl,dg1,adl-p 718 * Wa_1409217633:tgl,dg1,adl-p 719 * Wa_1409207793:tgl,dg1,adl-p 720 * Wa_1409178076:tgl,dg1,adl-p 721 * Wa_1408979724:tgl,dg1,adl-p 722 * Wa_14010443199:tgl,rkl,dg1,adl-p 723 * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p 724 * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p 725 */ 726 wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3, 727 GEN12_DISABLE_CPS_AWARE_COLOR_PIPE); 728 729 /* WaDisableGPGPUMidThreadPreemption:gen12 */ 730 wa_masked_field_set(wal, GEN8_CS_CHICKEN1, 731 GEN9_PREEMPT_GPGPU_LEVEL_MASK, 732 GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL); 733 734 /* 735 * Wa_16011163337 736 * 737 * Like in gen12_ctx_gt_tuning_init(), read verification is ignored due 738 * to Wa_1608008084. 739 */ 740 wa_add(wal, 741 GEN12_FF_MODE2, 742 FF_MODE2_GS_TIMER_MASK, 743 FF_MODE2_GS_TIMER_224, 744 0, false); 745 746 if (!IS_DG1(i915)) 747 /* Wa_1806527549 */ 748 wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE); 749 } 750 751 static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine, 752 struct i915_wa_list *wal) 753 { 754 gen12_ctx_workarounds_init(engine, wal); 755 756 /* Wa_1409044764 */ 757 wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3, 758 DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN); 759 760 /* Wa_22010493298 */ 761 wa_masked_en(wal, HIZ_CHICKEN, 762 DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE); 763 } 764 765 static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine, 766 struct i915_wa_list *wal) 767 { 768 dg2_ctx_gt_tuning_init(engine, wal); 769 770 /* Wa_16011186671:dg2_g11 */ 771 if (IS_DG2_GRAPHICS_STEP(engine->i915, G11, STEP_A0, STEP_B0)) { 772 wa_mcr_masked_dis(wal, VFLSKPD, DIS_MULT_MISS_RD_SQUASH); 773 wa_mcr_masked_en(wal, VFLSKPD, DIS_OVER_FETCH_CACHE); 774 } 775 776 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0)) { 777 /* Wa_14010469329:dg2_g10 */ 778 wa_mcr_masked_en(wal, XEHP_COMMON_SLICE_CHICKEN3, 779 XEHP_DUAL_SIMD8_SEQ_MERGE_DISABLE); 780 781 /* 782 * Wa_22010465075:dg2_g10 783 * Wa_22010613112:dg2_g10 784 * Wa_14010698770:dg2_g10 785 */ 786 wa_mcr_masked_en(wal, XEHP_COMMON_SLICE_CHICKEN3, 787 GEN12_DISABLE_CPS_AWARE_COLOR_PIPE); 788 } 789 790 /* Wa_16013271637:dg2 */ 791 wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1, 792 MSC_MSAA_REODER_BUF_BYPASS_DISABLE); 793 794 /* Wa_14014947963:dg2 */ 795 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_B0, STEP_FOREVER) || 796 IS_DG2_G11(engine->i915) || IS_DG2_G12(engine->i915)) 797 wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000); 798 799 /* Wa_18018764978:dg2 */ 800 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_C0, STEP_FOREVER) || 801 IS_DG2_G11(engine->i915) || IS_DG2_G12(engine->i915)) 802 wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL); 803 804 /* Wa_15010599737:dg2 */ 805 wa_mcr_masked_en(wal, CHICKEN_RASTER_1, DIS_SF_ROUND_NEAREST_EVEN); 806 807 /* Wa_18019271663:dg2 */ 808 wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE); 809 } 810 811 static void mtl_ctx_workarounds_init(struct intel_engine_cs *engine, 812 struct i915_wa_list *wal) 813 { 814 struct drm_i915_private *i915 = engine->i915; 815 816 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) || 817 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0)) { 818 /* Wa_14014947963 */ 819 wa_masked_field_set(wal, VF_PREEMPTION, 820 PREEMPTION_VERTEX_COUNT, 0x4000); 821 822 /* Wa_16013271637 */ 823 wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1, 824 MSC_MSAA_REODER_BUF_BYPASS_DISABLE); 825 826 /* Wa_18019627453 */ 827 wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS); 828 829 /* Wa_18018764978 */ 830 wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL); 831 } 832 833 /* Wa_18019271663 */ 834 wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE); 835 } 836 837 static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine, 838 struct i915_wa_list *wal) 839 { 840 /* 841 * This is a "fake" workaround defined by software to ensure we 842 * maintain reliable, backward-compatible behavior for userspace with 843 * regards to how nested MI_BATCH_BUFFER_START commands are handled. 844 * 845 * The per-context setting of MI_MODE[12] determines whether the bits 846 * of a nested MI_BATCH_BUFFER_START instruction should be interpreted 847 * in the traditional manner or whether they should instead use a new 848 * tgl+ meaning that breaks backward compatibility, but allows nesting 849 * into 3rd-level batchbuffers. When this new capability was first 850 * added in TGL, it remained off by default unless a context 851 * intentionally opted in to the new behavior. However Xe_HPG now 852 * flips this on by default and requires that we explicitly opt out if 853 * we don't want the new behavior. 854 * 855 * From a SW perspective, we want to maintain the backward-compatible 856 * behavior for userspace, so we'll apply a fake workaround to set it 857 * back to the legacy behavior on platforms where the hardware default 858 * is to break compatibility. At the moment there is no Linux 859 * userspace that utilizes third-level batchbuffers, so this will avoid 860 * userspace from needing to make any changes. using the legacy 861 * meaning is the correct thing to do. If/when we have userspace 862 * consumers that want to utilize third-level batch nesting, we can 863 * provide a context parameter to allow them to opt-in. 864 */ 865 wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN); 866 } 867 868 static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine, 869 struct i915_wa_list *wal) 870 { 871 u8 mocs; 872 873 /* 874 * Some blitter commands do not have a field for MOCS, those 875 * commands will use MOCS index pointed by BLIT_CCTL. 876 * BLIT_CCTL registers are needed to be programmed to un-cached. 877 */ 878 if (engine->class == COPY_ENGINE_CLASS) { 879 mocs = engine->gt->mocs.uc_index; 880 wa_write_clr_set(wal, 881 BLIT_CCTL(engine->mmio_base), 882 BLIT_CCTL_MASK, 883 BLIT_CCTL_MOCS(mocs, mocs)); 884 } 885 } 886 887 /* 888 * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround 889 * defined by the hardware team, but it programming general context registers. 890 * Adding those context register programming in context workaround 891 * allow us to use the wa framework for proper application and validation. 892 */ 893 static void 894 gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine, 895 struct i915_wa_list *wal) 896 { 897 if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55)) 898 fakewa_disable_nestedbb_mode(engine, wal); 899 900 gen12_ctx_gt_mocs_init(engine, wal); 901 } 902 903 static void 904 __intel_engine_init_ctx_wa(struct intel_engine_cs *engine, 905 struct i915_wa_list *wal, 906 const char *name) 907 { 908 struct drm_i915_private *i915 = engine->i915; 909 910 wa_init_start(wal, engine->gt, name, engine->name); 911 912 /* Applies to all engines */ 913 /* 914 * Fake workarounds are not the actual workaround but 915 * programming of context registers using workaround framework. 916 */ 917 if (GRAPHICS_VER(i915) >= 12) 918 gen12_ctx_gt_fake_wa_init(engine, wal); 919 920 if (engine->class != RENDER_CLASS) 921 goto done; 922 923 if (IS_METEORLAKE(i915)) 924 mtl_ctx_workarounds_init(engine, wal); 925 else if (IS_PONTEVECCHIO(i915)) 926 ; /* noop; none at this time */ 927 else if (IS_DG2(i915)) 928 dg2_ctx_workarounds_init(engine, wal); 929 else if (IS_XEHPSDV(i915)) 930 ; /* noop; none at this time */ 931 else if (IS_DG1(i915)) 932 dg1_ctx_workarounds_init(engine, wal); 933 else if (GRAPHICS_VER(i915) == 12) 934 gen12_ctx_workarounds_init(engine, wal); 935 else if (GRAPHICS_VER(i915) == 11) 936 icl_ctx_workarounds_init(engine, wal); 937 else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) 938 cfl_ctx_workarounds_init(engine, wal); 939 else if (IS_GEMINILAKE(i915)) 940 glk_ctx_workarounds_init(engine, wal); 941 else if (IS_KABYLAKE(i915)) 942 kbl_ctx_workarounds_init(engine, wal); 943 else if (IS_BROXTON(i915)) 944 bxt_ctx_workarounds_init(engine, wal); 945 else if (IS_SKYLAKE(i915)) 946 skl_ctx_workarounds_init(engine, wal); 947 else if (IS_CHERRYVIEW(i915)) 948 chv_ctx_workarounds_init(engine, wal); 949 else if (IS_BROADWELL(i915)) 950 bdw_ctx_workarounds_init(engine, wal); 951 else if (GRAPHICS_VER(i915) == 7) 952 gen7_ctx_workarounds_init(engine, wal); 953 else if (GRAPHICS_VER(i915) == 6) 954 gen6_ctx_workarounds_init(engine, wal); 955 else if (GRAPHICS_VER(i915) < 8) 956 ; 957 else 958 MISSING_CASE(GRAPHICS_VER(i915)); 959 960 done: 961 wa_init_finish(wal); 962 } 963 964 void intel_engine_init_ctx_wa(struct intel_engine_cs *engine) 965 { 966 __intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context"); 967 } 968 969 int intel_engine_emit_ctx_wa(struct i915_request *rq) 970 { 971 struct i915_wa_list *wal = &rq->engine->ctx_wa_list; 972 struct i915_wa *wa; 973 unsigned int i; 974 u32 *cs; 975 int ret; 976 977 if (wal->count == 0) 978 return 0; 979 980 ret = rq->engine->emit_flush(rq, EMIT_BARRIER); 981 if (ret) 982 return ret; 983 984 cs = intel_ring_begin(rq, (wal->count * 2 + 2)); 985 if (IS_ERR(cs)) 986 return PTR_ERR(cs); 987 988 *cs++ = MI_LOAD_REGISTER_IMM(wal->count); 989 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 990 *cs++ = i915_mmio_reg_offset(wa->reg); 991 *cs++ = wa->set; 992 } 993 *cs++ = MI_NOOP; 994 995 intel_ring_advance(rq, cs); 996 997 ret = rq->engine->emit_flush(rq, EMIT_BARRIER); 998 if (ret) 999 return ret; 1000 1001 return 0; 1002 } 1003 1004 static void 1005 gen4_gt_workarounds_init(struct intel_gt *gt, 1006 struct i915_wa_list *wal) 1007 { 1008 /* WaDisable_RenderCache_OperationalFlush:gen4,ilk */ 1009 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE); 1010 } 1011 1012 static void 1013 g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1014 { 1015 gen4_gt_workarounds_init(gt, wal); 1016 1017 /* WaDisableRenderCachePipelinedFlush:g4x,ilk */ 1018 wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE); 1019 } 1020 1021 static void 1022 ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1023 { 1024 g4x_gt_workarounds_init(gt, wal); 1025 1026 wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED); 1027 } 1028 1029 static void 1030 snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1031 { 1032 } 1033 1034 static void 1035 ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1036 { 1037 /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */ 1038 wa_masked_dis(wal, 1039 GEN7_COMMON_SLICE_CHICKEN1, 1040 GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC); 1041 1042 /* WaApplyL3ControlAndL3ChickenMode:ivb */ 1043 wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL); 1044 wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE); 1045 1046 /* WaForceL3Serialization:ivb */ 1047 wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE); 1048 } 1049 1050 static void 1051 vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1052 { 1053 /* WaForceL3Serialization:vlv */ 1054 wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE); 1055 1056 /* 1057 * WaIncreaseL3CreditsForVLVB0:vlv 1058 * This is the hardware default actually. 1059 */ 1060 wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE); 1061 } 1062 1063 static void 1064 hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1065 { 1066 /* L3 caching of data atomics doesn't work -- disable it. */ 1067 wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE); 1068 1069 wa_add(wal, 1070 HSW_ROW_CHICKEN3, 0, 1071 _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE), 1072 0 /* XXX does this reg exist? */, true); 1073 1074 /* WaVSRefCountFullforceMissDisable:hsw */ 1075 wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME); 1076 } 1077 1078 static void 1079 gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal) 1080 { 1081 const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu; 1082 unsigned int slice, subslice; 1083 u32 mcr, mcr_mask; 1084 1085 GEM_BUG_ON(GRAPHICS_VER(i915) != 9); 1086 1087 /* 1088 * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml 1089 * Before any MMIO read into slice/subslice specific registers, MCR 1090 * packet control register needs to be programmed to point to any 1091 * enabled s/ss pair. Otherwise, incorrect values will be returned. 1092 * This means each subsequent MMIO read will be forwarded to an 1093 * specific s/ss combination, but this is OK since these registers 1094 * are consistent across s/ss in almost all cases. In the rare 1095 * occasions, such as INSTDONE, where this value is dependent 1096 * on s/ss combo, the read should be done with read_subslice_reg. 1097 */ 1098 slice = ffs(sseu->slice_mask) - 1; 1099 GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw)); 1100 subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice)); 1101 GEM_BUG_ON(!subslice); 1102 subslice--; 1103 1104 /* 1105 * We use GEN8_MCR..() macros to calculate the |mcr| value for 1106 * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads 1107 */ 1108 mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice); 1109 mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK; 1110 1111 drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr); 1112 1113 wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr); 1114 } 1115 1116 static void 1117 gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1118 { 1119 struct drm_i915_private *i915 = gt->i915; 1120 1121 /* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */ 1122 gen9_wa_init_mcr(i915, wal); 1123 1124 /* WaDisableKillLogic:bxt,skl,kbl */ 1125 if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915)) 1126 wa_write_or(wal, 1127 GAM_ECOCHK, 1128 ECOCHK_DIS_TLB); 1129 1130 if (HAS_LLC(i915)) { 1131 /* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl 1132 * 1133 * Must match Display Engine. See 1134 * WaCompressedResourceDisplayNewHashMode. 1135 */ 1136 wa_write_or(wal, 1137 MMCD_MISC_CTRL, 1138 MMCD_PCLA | MMCD_HOTSPOT_EN); 1139 } 1140 1141 /* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */ 1142 wa_write_or(wal, 1143 GAM_ECOCHK, 1144 BDW_DISABLE_HDC_INVALIDATION); 1145 } 1146 1147 static void 1148 skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1149 { 1150 gen9_gt_workarounds_init(gt, wal); 1151 1152 /* WaDisableGafsUnitClkGating:skl */ 1153 wa_write_or(wal, 1154 GEN7_UCGCTL4, 1155 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); 1156 1157 /* WaInPlaceDecompressionHang:skl */ 1158 if (IS_SKL_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0)) 1159 wa_write_or(wal, 1160 GEN9_GAMT_ECO_REG_RW_IA, 1161 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS); 1162 } 1163 1164 static void 1165 kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1166 { 1167 gen9_gt_workarounds_init(gt, wal); 1168 1169 /* WaDisableDynamicCreditSharing:kbl */ 1170 if (IS_KBL_GRAPHICS_STEP(gt->i915, 0, STEP_C0)) 1171 wa_write_or(wal, 1172 GAMT_CHKN_BIT_REG, 1173 GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING); 1174 1175 /* WaDisableGafsUnitClkGating:kbl */ 1176 wa_write_or(wal, 1177 GEN7_UCGCTL4, 1178 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); 1179 1180 /* WaInPlaceDecompressionHang:kbl */ 1181 wa_write_or(wal, 1182 GEN9_GAMT_ECO_REG_RW_IA, 1183 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS); 1184 } 1185 1186 static void 1187 glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1188 { 1189 gen9_gt_workarounds_init(gt, wal); 1190 } 1191 1192 static void 1193 cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1194 { 1195 gen9_gt_workarounds_init(gt, wal); 1196 1197 /* WaDisableGafsUnitClkGating:cfl */ 1198 wa_write_or(wal, 1199 GEN7_UCGCTL4, 1200 GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE); 1201 1202 /* WaInPlaceDecompressionHang:cfl */ 1203 wa_write_or(wal, 1204 GEN9_GAMT_ECO_REG_RW_IA, 1205 GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS); 1206 } 1207 1208 static void __set_mcr_steering(struct i915_wa_list *wal, 1209 i915_reg_t steering_reg, 1210 unsigned int slice, unsigned int subslice) 1211 { 1212 u32 mcr, mcr_mask; 1213 1214 mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice); 1215 mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK; 1216 1217 wa_write_clr_set(wal, steering_reg, mcr_mask, mcr); 1218 } 1219 1220 static void debug_dump_steering(struct intel_gt *gt) 1221 { 1222 struct drm_printer p = drm_debug_printer("MCR Steering:"); 1223 1224 if (drm_debug_enabled(DRM_UT_DRIVER)) 1225 intel_gt_mcr_report_steering(&p, gt, false); 1226 } 1227 1228 static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal, 1229 unsigned int slice, unsigned int subslice) 1230 { 1231 __set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice); 1232 1233 gt->default_steering.groupid = slice; 1234 gt->default_steering.instanceid = subslice; 1235 1236 debug_dump_steering(gt); 1237 } 1238 1239 static void 1240 icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal) 1241 { 1242 const struct sseu_dev_info *sseu = >->info.sseu; 1243 unsigned int subslice; 1244 1245 GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11); 1246 GEM_BUG_ON(hweight8(sseu->slice_mask) > 1); 1247 1248 /* 1249 * Although a platform may have subslices, we need to always steer 1250 * reads to the lowest instance that isn't fused off. When Render 1251 * Power Gating is enabled, grabbing forcewake will only power up a 1252 * single subslice (the "minconfig") if there isn't a real workload 1253 * that needs to be run; this means that if we steer register reads to 1254 * one of the higher subslices, we run the risk of reading back 0's or 1255 * random garbage. 1256 */ 1257 subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0)); 1258 1259 /* 1260 * If the subslice we picked above also steers us to a valid L3 bank, 1261 * then we can just rely on the default steering and won't need to 1262 * worry about explicitly re-steering L3BANK reads later. 1263 */ 1264 if (gt->info.l3bank_mask & BIT(subslice)) 1265 gt->steering_table[L3BANK] = NULL; 1266 1267 __add_mcr_wa(gt, wal, 0, subslice); 1268 } 1269 1270 static void 1271 xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal) 1272 { 1273 const struct sseu_dev_info *sseu = >->info.sseu; 1274 unsigned long slice, subslice = 0, slice_mask = 0; 1275 u32 lncf_mask = 0; 1276 int i; 1277 1278 /* 1279 * On Xe_HP the steering increases in complexity. There are now several 1280 * more units that require steering and we're not guaranteed to be able 1281 * to find a common setting for all of them. These are: 1282 * - GSLICE (fusable) 1283 * - DSS (sub-unit within gslice; fusable) 1284 * - L3 Bank (fusable) 1285 * - MSLICE (fusable) 1286 * - LNCF (sub-unit within mslice; always present if mslice is present) 1287 * 1288 * We'll do our default/implicit steering based on GSLICE (in the 1289 * sliceid field) and DSS (in the subsliceid field). If we can 1290 * find overlap between the valid MSLICE and/or LNCF values with 1291 * a suitable GSLICE, then we can just re-use the default value and 1292 * skip and explicit steering at runtime. 1293 * 1294 * We only need to look for overlap between GSLICE/MSLICE/LNCF to find 1295 * a valid sliceid value. DSS steering is the only type of steering 1296 * that utilizes the 'subsliceid' bits. 1297 * 1298 * Also note that, even though the steering domain is called "GSlice" 1299 * and it is encoded in the register using the gslice format, the spec 1300 * says that the combined (geometry | compute) fuse should be used to 1301 * select the steering. 1302 */ 1303 1304 /* Find the potential gslice candidates */ 1305 slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask, 1306 GEN_DSS_PER_GSLICE); 1307 1308 /* 1309 * Find the potential LNCF candidates. Either LNCF within a valid 1310 * mslice is fine. 1311 */ 1312 for_each_set_bit(i, >->info.mslice_mask, GEN12_MAX_MSLICES) 1313 lncf_mask |= (0x3 << (i * 2)); 1314 1315 /* 1316 * Are there any sliceid values that work for both GSLICE and LNCF 1317 * steering? 1318 */ 1319 if (slice_mask & lncf_mask) { 1320 slice_mask &= lncf_mask; 1321 gt->steering_table[LNCF] = NULL; 1322 } 1323 1324 /* How about sliceid values that also work for MSLICE steering? */ 1325 if (slice_mask & gt->info.mslice_mask) { 1326 slice_mask &= gt->info.mslice_mask; 1327 gt->steering_table[MSLICE] = NULL; 1328 } 1329 1330 if (IS_XEHPSDV(gt->i915) && slice_mask & BIT(0)) 1331 gt->steering_table[GAM] = NULL; 1332 1333 slice = __ffs(slice_mask); 1334 subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) % 1335 GEN_DSS_PER_GSLICE; 1336 1337 __add_mcr_wa(gt, wal, slice, subslice); 1338 1339 /* 1340 * SQIDI ranges are special because they use different steering 1341 * registers than everything else we work with. On XeHP SDV and 1342 * DG2-G10, any value in the steering registers will work fine since 1343 * all instances are present, but DG2-G11 only has SQIDI instances at 1344 * ID's 2 and 3, so we need to steer to one of those. For simplicity 1345 * we'll just steer to a hardcoded "2" since that value will work 1346 * everywhere. 1347 */ 1348 __set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2); 1349 __set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2); 1350 1351 /* 1352 * On DG2, GAM registers have a dedicated steering control register 1353 * and must always be programmed to a hardcoded groupid of "1." 1354 */ 1355 if (IS_DG2(gt->i915)) 1356 __set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0); 1357 } 1358 1359 static void 1360 pvc_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal) 1361 { 1362 unsigned int dss; 1363 1364 /* 1365 * Setup implicit steering for COMPUTE and DSS ranges to the first 1366 * non-fused-off DSS. All other types of MCR registers will be 1367 * explicitly steered. 1368 */ 1369 dss = intel_sseu_find_first_xehp_dss(>->info.sseu, 0, 0); 1370 __add_mcr_wa(gt, wal, dss / GEN_DSS_PER_CSLICE, dss % GEN_DSS_PER_CSLICE); 1371 } 1372 1373 static void 1374 icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1375 { 1376 struct drm_i915_private *i915 = gt->i915; 1377 1378 icl_wa_init_mcr(gt, wal); 1379 1380 /* WaModifyGamTlbPartitioning:icl */ 1381 wa_write_clr_set(wal, 1382 GEN11_GACB_PERF_CTRL, 1383 GEN11_HASH_CTRL_MASK, 1384 GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4); 1385 1386 /* Wa_1405766107:icl 1387 * Formerly known as WaCL2SFHalfMaxAlloc 1388 */ 1389 wa_write_or(wal, 1390 GEN11_LSN_UNSLCVC, 1391 GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC | 1392 GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC); 1393 1394 /* Wa_220166154:icl 1395 * Formerly known as WaDisCtxReload 1396 */ 1397 wa_write_or(wal, 1398 GEN8_GAMW_ECO_DEV_RW_IA, 1399 GAMW_ECO_DEV_CTX_RELOAD_DISABLE); 1400 1401 /* Wa_1406463099:icl 1402 * Formerly known as WaGamTlbPendError 1403 */ 1404 wa_write_or(wal, 1405 GAMT_CHKN_BIT_REG, 1406 GAMT_CHKN_DISABLE_L3_COH_PIPE); 1407 1408 /* 1409 * Wa_1408615072:icl,ehl (vsunit) 1410 * Wa_1407596294:icl,ehl (hsunit) 1411 */ 1412 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, 1413 VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS); 1414 1415 /* Wa_1407352427:icl,ehl */ 1416 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, 1417 PSDUNIT_CLKGATE_DIS); 1418 1419 /* Wa_1406680159:icl,ehl */ 1420 wa_mcr_write_or(wal, 1421 GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE, 1422 GWUNIT_CLKGATE_DIS); 1423 1424 /* Wa_1607087056:icl,ehl,jsl */ 1425 if (IS_ICELAKE(i915) || 1426 IS_JSL_EHL_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)) 1427 wa_write_or(wal, 1428 GEN11_SLICE_UNIT_LEVEL_CLKGATE, 1429 L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS); 1430 1431 /* 1432 * This is not a documented workaround, but rather an optimization 1433 * to reduce sampler power. 1434 */ 1435 wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE); 1436 } 1437 1438 /* 1439 * Though there are per-engine instances of these registers, 1440 * they retain their value through engine resets and should 1441 * only be provided on the GT workaround list rather than 1442 * the engine-specific workaround list. 1443 */ 1444 static void 1445 wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal) 1446 { 1447 struct intel_engine_cs *engine; 1448 int id; 1449 1450 for_each_engine(engine, gt, id) { 1451 if (engine->class != VIDEO_DECODE_CLASS || 1452 (engine->instance % 2)) 1453 continue; 1454 1455 wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base), 1456 IECPUNIT_CLKGATE_DIS); 1457 } 1458 } 1459 1460 static void 1461 gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1462 { 1463 icl_wa_init_mcr(gt, wal); 1464 1465 /* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */ 1466 wa_14011060649(gt, wal); 1467 1468 /* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */ 1469 wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE); 1470 } 1471 1472 static void 1473 dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1474 { 1475 struct drm_i915_private *i915 = gt->i915; 1476 1477 gen12_gt_workarounds_init(gt, wal); 1478 1479 /* Wa_1409420604:dg1 */ 1480 if (IS_DG1(i915)) 1481 wa_mcr_write_or(wal, 1482 SUBSLICE_UNIT_LEVEL_CLKGATE2, 1483 CPSSUNIT_CLKGATE_DIS); 1484 1485 /* Wa_1408615072:dg1 */ 1486 /* Empirical testing shows this register is unaffected by engine reset. */ 1487 if (IS_DG1(i915)) 1488 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2, 1489 VSUNIT_CLKGATE_DIS_TGL); 1490 } 1491 1492 static void 1493 xehpsdv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1494 { 1495 struct drm_i915_private *i915 = gt->i915; 1496 1497 xehp_init_mcr(gt, wal); 1498 1499 /* Wa_1409757795:xehpsdv */ 1500 wa_mcr_write_or(wal, SCCGCTL94DC, CG3DDISURB); 1501 1502 /* Wa_16011155590:xehpsdv */ 1503 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A0, STEP_B0)) 1504 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, 1505 TSGUNIT_CLKGATE_DIS); 1506 1507 /* Wa_14011780169:xehpsdv */ 1508 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_B0, STEP_FOREVER)) { 1509 wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS | 1510 GAMTLBVDBOX7_CLKGATE_DIS | 1511 GAMTLBVDBOX6_CLKGATE_DIS | 1512 GAMTLBVDBOX5_CLKGATE_DIS | 1513 GAMTLBVDBOX4_CLKGATE_DIS | 1514 GAMTLBVDBOX3_CLKGATE_DIS | 1515 GAMTLBVDBOX2_CLKGATE_DIS | 1516 GAMTLBVDBOX1_CLKGATE_DIS | 1517 GAMTLBVDBOX0_CLKGATE_DIS | 1518 GAMTLBKCR_CLKGATE_DIS | 1519 GAMTLBGUC_CLKGATE_DIS | 1520 GAMTLBBLT_CLKGATE_DIS); 1521 wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS | 1522 GAMTLBGFXA1_CLKGATE_DIS | 1523 GAMTLBCOMPA0_CLKGATE_DIS | 1524 GAMTLBCOMPA1_CLKGATE_DIS | 1525 GAMTLBCOMPB0_CLKGATE_DIS | 1526 GAMTLBCOMPB1_CLKGATE_DIS | 1527 GAMTLBCOMPC0_CLKGATE_DIS | 1528 GAMTLBCOMPC1_CLKGATE_DIS | 1529 GAMTLBCOMPD0_CLKGATE_DIS | 1530 GAMTLBCOMPD1_CLKGATE_DIS | 1531 GAMTLBMERT_CLKGATE_DIS | 1532 GAMTLBVEBOX3_CLKGATE_DIS | 1533 GAMTLBVEBOX2_CLKGATE_DIS | 1534 GAMTLBVEBOX1_CLKGATE_DIS | 1535 GAMTLBVEBOX0_CLKGATE_DIS); 1536 } 1537 1538 /* Wa_16012725990:xehpsdv */ 1539 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_FOREVER)) 1540 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, VFUNIT_CLKGATE_DIS); 1541 1542 /* Wa_14011060649:xehpsdv */ 1543 wa_14011060649(gt, wal); 1544 1545 /* Wa_14012362059:xehpsdv */ 1546 wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB); 1547 1548 /* Wa_14014368820:xehpsdv */ 1549 wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL, 1550 INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE); 1551 } 1552 1553 static void 1554 dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1555 { 1556 struct intel_engine_cs *engine; 1557 int id; 1558 1559 xehp_init_mcr(gt, wal); 1560 1561 /* Wa_14011060649:dg2 */ 1562 wa_14011060649(gt, wal); 1563 1564 /* 1565 * Although there are per-engine instances of these registers, 1566 * they technically exist outside the engine itself and are not 1567 * impacted by engine resets. Furthermore, they're part of the 1568 * GuC blacklist so trying to treat them as engine workarounds 1569 * will result in GuC initialization failure and a wedged GPU. 1570 */ 1571 for_each_engine(engine, gt, id) { 1572 if (engine->class != VIDEO_DECODE_CLASS) 1573 continue; 1574 1575 /* Wa_16010515920:dg2_g10 */ 1576 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0)) 1577 wa_write_or(wal, VDBOX_CGCTL3F18(engine->mmio_base), 1578 ALNUNIT_CLKGATE_DIS); 1579 } 1580 1581 if (IS_DG2_G10(gt->i915)) { 1582 /* Wa_22010523718:dg2 */ 1583 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, 1584 CG3DDISCFEG_CLKGATE_DIS); 1585 1586 /* Wa_14011006942:dg2 */ 1587 wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE, 1588 DSS_ROUTER_CLKGATE_DIS); 1589 } 1590 1591 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0) || 1592 IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0)) { 1593 /* Wa_14012362059:dg2 */ 1594 wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB); 1595 } 1596 1597 if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0)) { 1598 /* Wa_14010948348:dg2_g10 */ 1599 wa_write_or(wal, UNSLCGCTL9430, MSQDUNIT_CLKGATE_DIS); 1600 1601 /* Wa_14011037102:dg2_g10 */ 1602 wa_write_or(wal, UNSLCGCTL9444, LTCDD_CLKGATE_DIS); 1603 1604 /* Wa_14011371254:dg2_g10 */ 1605 wa_mcr_write_or(wal, XEHP_SLICE_UNIT_LEVEL_CLKGATE, NODEDSS_CLKGATE_DIS); 1606 1607 /* Wa_14011431319:dg2_g10 */ 1608 wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS | 1609 GAMTLBVDBOX7_CLKGATE_DIS | 1610 GAMTLBVDBOX6_CLKGATE_DIS | 1611 GAMTLBVDBOX5_CLKGATE_DIS | 1612 GAMTLBVDBOX4_CLKGATE_DIS | 1613 GAMTLBVDBOX3_CLKGATE_DIS | 1614 GAMTLBVDBOX2_CLKGATE_DIS | 1615 GAMTLBVDBOX1_CLKGATE_DIS | 1616 GAMTLBVDBOX0_CLKGATE_DIS | 1617 GAMTLBKCR_CLKGATE_DIS | 1618 GAMTLBGUC_CLKGATE_DIS | 1619 GAMTLBBLT_CLKGATE_DIS); 1620 wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS | 1621 GAMTLBGFXA1_CLKGATE_DIS | 1622 GAMTLBCOMPA0_CLKGATE_DIS | 1623 GAMTLBCOMPA1_CLKGATE_DIS | 1624 GAMTLBCOMPB0_CLKGATE_DIS | 1625 GAMTLBCOMPB1_CLKGATE_DIS | 1626 GAMTLBCOMPC0_CLKGATE_DIS | 1627 GAMTLBCOMPC1_CLKGATE_DIS | 1628 GAMTLBCOMPD0_CLKGATE_DIS | 1629 GAMTLBCOMPD1_CLKGATE_DIS | 1630 GAMTLBMERT_CLKGATE_DIS | 1631 GAMTLBVEBOX3_CLKGATE_DIS | 1632 GAMTLBVEBOX2_CLKGATE_DIS | 1633 GAMTLBVEBOX1_CLKGATE_DIS | 1634 GAMTLBVEBOX0_CLKGATE_DIS); 1635 1636 /* Wa_14010569222:dg2_g10 */ 1637 wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, 1638 GAMEDIA_CLKGATE_DIS); 1639 1640 /* Wa_14011028019:dg2_g10 */ 1641 wa_mcr_write_or(wal, SSMCGCTL9530, RTFUNIT_CLKGATE_DIS); 1642 1643 /* Wa_14010680813:dg2_g10 */ 1644 wa_mcr_write_or(wal, XEHP_GAMSTLB_CTRL, 1645 CONTROL_BLOCK_CLKGATE_DIS | 1646 EGRESS_BLOCK_CLKGATE_DIS | 1647 TAG_BLOCK_CLKGATE_DIS); 1648 } 1649 1650 /* Wa_14014830051:dg2 */ 1651 wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN); 1652 1653 /* 1654 * The following are not actually "workarounds" but rather 1655 * recommended tuning settings documented in the bspec's 1656 * performance guide section. 1657 */ 1658 wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS); 1659 1660 /* Wa_14015795083 */ 1661 wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE); 1662 1663 /* Wa_18018781329 */ 1664 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB); 1665 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB); 1666 wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB); 1667 wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB); 1668 1669 /* Wa_1509235366:dg2 */ 1670 wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL, 1671 INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE); 1672 } 1673 1674 static void 1675 pvc_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1676 { 1677 pvc_init_mcr(gt, wal); 1678 1679 /* Wa_14015795083 */ 1680 wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE); 1681 1682 /* Wa_18018781329 */ 1683 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB); 1684 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB); 1685 wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB); 1686 wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB); 1687 } 1688 1689 static void 1690 xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1691 { 1692 if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) || 1693 IS_MTL_GRAPHICS_STEP(gt->i915, P, STEP_A0, STEP_B0)) { 1694 /* Wa_14014830051 */ 1695 wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN); 1696 1697 /* Wa_18018781329 */ 1698 wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB); 1699 wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB); 1700 } 1701 1702 /* 1703 * Unlike older platforms, we no longer setup implicit steering here; 1704 * all MCR accesses are explicitly steered. 1705 */ 1706 debug_dump_steering(gt); 1707 } 1708 1709 static void 1710 xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal) 1711 { 1712 if (IS_MTL_MEDIA_STEP(gt->i915, STEP_A0, STEP_B0)) { 1713 /* 1714 * Wa_18018781329 1715 * 1716 * Note that although these registers are MCR on the primary 1717 * GT, the media GT's versions are regular singleton registers. 1718 */ 1719 wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB); 1720 wa_write_or(wal, XELPMP_VDBX_MOD_CTRL, FORCE_MISS_FTLB); 1721 wa_write_or(wal, XELPMP_VEBX_MOD_CTRL, FORCE_MISS_FTLB); 1722 } 1723 1724 debug_dump_steering(gt); 1725 } 1726 1727 static void 1728 gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal) 1729 { 1730 struct drm_i915_private *i915 = gt->i915; 1731 1732 if (gt->type == GT_MEDIA) { 1733 if (MEDIA_VER(i915) >= 13) 1734 xelpmp_gt_workarounds_init(gt, wal); 1735 else 1736 MISSING_CASE(MEDIA_VER(i915)); 1737 1738 return; 1739 } 1740 1741 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70)) 1742 xelpg_gt_workarounds_init(gt, wal); 1743 else if (IS_PONTEVECCHIO(i915)) 1744 pvc_gt_workarounds_init(gt, wal); 1745 else if (IS_DG2(i915)) 1746 dg2_gt_workarounds_init(gt, wal); 1747 else if (IS_XEHPSDV(i915)) 1748 xehpsdv_gt_workarounds_init(gt, wal); 1749 else if (IS_DG1(i915)) 1750 dg1_gt_workarounds_init(gt, wal); 1751 else if (GRAPHICS_VER(i915) == 12) 1752 gen12_gt_workarounds_init(gt, wal); 1753 else if (GRAPHICS_VER(i915) == 11) 1754 icl_gt_workarounds_init(gt, wal); 1755 else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915)) 1756 cfl_gt_workarounds_init(gt, wal); 1757 else if (IS_GEMINILAKE(i915)) 1758 glk_gt_workarounds_init(gt, wal); 1759 else if (IS_KABYLAKE(i915)) 1760 kbl_gt_workarounds_init(gt, wal); 1761 else if (IS_BROXTON(i915)) 1762 gen9_gt_workarounds_init(gt, wal); 1763 else if (IS_SKYLAKE(i915)) 1764 skl_gt_workarounds_init(gt, wal); 1765 else if (IS_HASWELL(i915)) 1766 hsw_gt_workarounds_init(gt, wal); 1767 else if (IS_VALLEYVIEW(i915)) 1768 vlv_gt_workarounds_init(gt, wal); 1769 else if (IS_IVYBRIDGE(i915)) 1770 ivb_gt_workarounds_init(gt, wal); 1771 else if (GRAPHICS_VER(i915) == 6) 1772 snb_gt_workarounds_init(gt, wal); 1773 else if (GRAPHICS_VER(i915) == 5) 1774 ilk_gt_workarounds_init(gt, wal); 1775 else if (IS_G4X(i915)) 1776 g4x_gt_workarounds_init(gt, wal); 1777 else if (GRAPHICS_VER(i915) == 4) 1778 gen4_gt_workarounds_init(gt, wal); 1779 else if (GRAPHICS_VER(i915) <= 8) 1780 ; 1781 else 1782 MISSING_CASE(GRAPHICS_VER(i915)); 1783 } 1784 1785 void intel_gt_init_workarounds(struct intel_gt *gt) 1786 { 1787 struct i915_wa_list *wal = >->wa_list; 1788 1789 wa_init_start(wal, gt, "GT", "global"); 1790 gt_init_workarounds(gt, wal); 1791 wa_init_finish(wal); 1792 } 1793 1794 static enum forcewake_domains 1795 wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal) 1796 { 1797 enum forcewake_domains fw = 0; 1798 struct i915_wa *wa; 1799 unsigned int i; 1800 1801 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) 1802 fw |= intel_uncore_forcewake_for_reg(uncore, 1803 wa->reg, 1804 FW_REG_READ | 1805 FW_REG_WRITE); 1806 1807 return fw; 1808 } 1809 1810 static bool 1811 wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur, 1812 const char *name, const char *from) 1813 { 1814 if ((cur ^ wa->set) & wa->read) { 1815 drm_err(>->i915->drm, 1816 "%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n", 1817 name, from, i915_mmio_reg_offset(wa->reg), 1818 cur, cur & wa->read, wa->set & wa->read); 1819 1820 return false; 1821 } 1822 1823 return true; 1824 } 1825 1826 static void wa_list_apply(const struct i915_wa_list *wal) 1827 { 1828 struct intel_gt *gt = wal->gt; 1829 struct intel_uncore *uncore = gt->uncore; 1830 enum forcewake_domains fw; 1831 unsigned long flags; 1832 struct i915_wa *wa; 1833 unsigned int i; 1834 1835 if (!wal->count) 1836 return; 1837 1838 fw = wal_get_fw_for_rmw(uncore, wal); 1839 1840 intel_gt_mcr_lock(gt, &flags); 1841 spin_lock(&uncore->lock); 1842 intel_uncore_forcewake_get__locked(uncore, fw); 1843 1844 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 1845 u32 val, old = 0; 1846 1847 /* open-coded rmw due to steering */ 1848 if (wa->clr) 1849 old = wa->is_mcr ? 1850 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) : 1851 intel_uncore_read_fw(uncore, wa->reg); 1852 val = (old & ~wa->clr) | wa->set; 1853 if (val != old || !wa->clr) { 1854 if (wa->is_mcr) 1855 intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val); 1856 else 1857 intel_uncore_write_fw(uncore, wa->reg, val); 1858 } 1859 1860 if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) { 1861 u32 val = wa->is_mcr ? 1862 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) : 1863 intel_uncore_read_fw(uncore, wa->reg); 1864 1865 wa_verify(gt, wa, val, wal->name, "application"); 1866 } 1867 } 1868 1869 intel_uncore_forcewake_put__locked(uncore, fw); 1870 spin_unlock(&uncore->lock); 1871 intel_gt_mcr_unlock(gt, flags); 1872 } 1873 1874 void intel_gt_apply_workarounds(struct intel_gt *gt) 1875 { 1876 wa_list_apply(>->wa_list); 1877 } 1878 1879 static bool wa_list_verify(struct intel_gt *gt, 1880 const struct i915_wa_list *wal, 1881 const char *from) 1882 { 1883 struct intel_uncore *uncore = gt->uncore; 1884 struct i915_wa *wa; 1885 enum forcewake_domains fw; 1886 unsigned long flags; 1887 unsigned int i; 1888 bool ok = true; 1889 1890 fw = wal_get_fw_for_rmw(uncore, wal); 1891 1892 intel_gt_mcr_lock(gt, &flags); 1893 spin_lock(&uncore->lock); 1894 intel_uncore_forcewake_get__locked(uncore, fw); 1895 1896 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) 1897 ok &= wa_verify(wal->gt, wa, wa->is_mcr ? 1898 intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) : 1899 intel_uncore_read_fw(uncore, wa->reg), 1900 wal->name, from); 1901 1902 intel_uncore_forcewake_put__locked(uncore, fw); 1903 spin_unlock(&uncore->lock); 1904 intel_gt_mcr_unlock(gt, flags); 1905 1906 return ok; 1907 } 1908 1909 bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from) 1910 { 1911 return wa_list_verify(gt, >->wa_list, from); 1912 } 1913 1914 __maybe_unused 1915 static bool is_nonpriv_flags_valid(u32 flags) 1916 { 1917 /* Check only valid flag bits are set */ 1918 if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID) 1919 return false; 1920 1921 /* NB: Only 3 out of 4 enum values are valid for access field */ 1922 if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) == 1923 RING_FORCE_TO_NONPRIV_ACCESS_INVALID) 1924 return false; 1925 1926 return true; 1927 } 1928 1929 static void 1930 whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags) 1931 { 1932 struct i915_wa wa = { 1933 .reg = reg 1934 }; 1935 1936 if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS)) 1937 return; 1938 1939 if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags))) 1940 return; 1941 1942 wa.reg.reg |= flags; 1943 _wa_add(wal, &wa); 1944 } 1945 1946 static void 1947 whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags) 1948 { 1949 struct i915_wa wa = { 1950 .mcr_reg = reg, 1951 .is_mcr = 1, 1952 }; 1953 1954 if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS)) 1955 return; 1956 1957 if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags))) 1958 return; 1959 1960 wa.mcr_reg.reg |= flags; 1961 _wa_add(wal, &wa); 1962 } 1963 1964 static void 1965 whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg) 1966 { 1967 whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW); 1968 } 1969 1970 static void 1971 whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg) 1972 { 1973 whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW); 1974 } 1975 1976 static void gen9_whitelist_build(struct i915_wa_list *w) 1977 { 1978 /* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */ 1979 whitelist_reg(w, GEN9_CTX_PREEMPT_REG); 1980 1981 /* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */ 1982 whitelist_reg(w, GEN8_CS_CHICKEN1); 1983 1984 /* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */ 1985 whitelist_reg(w, GEN8_HDC_CHICKEN1); 1986 1987 /* WaSendPushConstantsFromMMIO:skl,bxt */ 1988 whitelist_reg(w, COMMON_SLICE_CHICKEN2); 1989 } 1990 1991 static void skl_whitelist_build(struct intel_engine_cs *engine) 1992 { 1993 struct i915_wa_list *w = &engine->whitelist; 1994 1995 if (engine->class != RENDER_CLASS) 1996 return; 1997 1998 gen9_whitelist_build(w); 1999 2000 /* WaDisableLSQCROPERFforOCL:skl */ 2001 whitelist_mcr_reg(w, GEN8_L3SQCREG4); 2002 } 2003 2004 static void bxt_whitelist_build(struct intel_engine_cs *engine) 2005 { 2006 if (engine->class != RENDER_CLASS) 2007 return; 2008 2009 gen9_whitelist_build(&engine->whitelist); 2010 } 2011 2012 static void kbl_whitelist_build(struct intel_engine_cs *engine) 2013 { 2014 struct i915_wa_list *w = &engine->whitelist; 2015 2016 if (engine->class != RENDER_CLASS) 2017 return; 2018 2019 gen9_whitelist_build(w); 2020 2021 /* WaDisableLSQCROPERFforOCL:kbl */ 2022 whitelist_mcr_reg(w, GEN8_L3SQCREG4); 2023 } 2024 2025 static void glk_whitelist_build(struct intel_engine_cs *engine) 2026 { 2027 struct i915_wa_list *w = &engine->whitelist; 2028 2029 if (engine->class != RENDER_CLASS) 2030 return; 2031 2032 gen9_whitelist_build(w); 2033 2034 /* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */ 2035 whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1); 2036 } 2037 2038 static void cfl_whitelist_build(struct intel_engine_cs *engine) 2039 { 2040 struct i915_wa_list *w = &engine->whitelist; 2041 2042 if (engine->class != RENDER_CLASS) 2043 return; 2044 2045 gen9_whitelist_build(w); 2046 2047 /* 2048 * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml 2049 * 2050 * This covers 4 register which are next to one another : 2051 * - PS_INVOCATION_COUNT 2052 * - PS_INVOCATION_COUNT_UDW 2053 * - PS_DEPTH_COUNT 2054 * - PS_DEPTH_COUNT_UDW 2055 */ 2056 whitelist_reg_ext(w, PS_INVOCATION_COUNT, 2057 RING_FORCE_TO_NONPRIV_ACCESS_RD | 2058 RING_FORCE_TO_NONPRIV_RANGE_4); 2059 } 2060 2061 static void allow_read_ctx_timestamp(struct intel_engine_cs *engine) 2062 { 2063 struct i915_wa_list *w = &engine->whitelist; 2064 2065 if (engine->class != RENDER_CLASS) 2066 whitelist_reg_ext(w, 2067 RING_CTX_TIMESTAMP(engine->mmio_base), 2068 RING_FORCE_TO_NONPRIV_ACCESS_RD); 2069 } 2070 2071 static void cml_whitelist_build(struct intel_engine_cs *engine) 2072 { 2073 allow_read_ctx_timestamp(engine); 2074 2075 cfl_whitelist_build(engine); 2076 } 2077 2078 static void icl_whitelist_build(struct intel_engine_cs *engine) 2079 { 2080 struct i915_wa_list *w = &engine->whitelist; 2081 2082 allow_read_ctx_timestamp(engine); 2083 2084 switch (engine->class) { 2085 case RENDER_CLASS: 2086 /* WaAllowUMDToModifyHalfSliceChicken7:icl */ 2087 whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7); 2088 2089 /* WaAllowUMDToModifySamplerMode:icl */ 2090 whitelist_mcr_reg(w, GEN10_SAMPLER_MODE); 2091 2092 /* WaEnableStateCacheRedirectToCS:icl */ 2093 whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1); 2094 2095 /* 2096 * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl 2097 * 2098 * This covers 4 register which are next to one another : 2099 * - PS_INVOCATION_COUNT 2100 * - PS_INVOCATION_COUNT_UDW 2101 * - PS_DEPTH_COUNT 2102 * - PS_DEPTH_COUNT_UDW 2103 */ 2104 whitelist_reg_ext(w, PS_INVOCATION_COUNT, 2105 RING_FORCE_TO_NONPRIV_ACCESS_RD | 2106 RING_FORCE_TO_NONPRIV_RANGE_4); 2107 break; 2108 2109 case VIDEO_DECODE_CLASS: 2110 /* hucStatusRegOffset */ 2111 whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base), 2112 RING_FORCE_TO_NONPRIV_ACCESS_RD); 2113 /* hucUKernelHdrInfoRegOffset */ 2114 whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base), 2115 RING_FORCE_TO_NONPRIV_ACCESS_RD); 2116 /* hucStatus2RegOffset */ 2117 whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base), 2118 RING_FORCE_TO_NONPRIV_ACCESS_RD); 2119 break; 2120 2121 default: 2122 break; 2123 } 2124 } 2125 2126 static void tgl_whitelist_build(struct intel_engine_cs *engine) 2127 { 2128 struct i915_wa_list *w = &engine->whitelist; 2129 2130 allow_read_ctx_timestamp(engine); 2131 2132 switch (engine->class) { 2133 case RENDER_CLASS: 2134 /* 2135 * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl 2136 * Wa_1408556865:tgl 2137 * 2138 * This covers 4 registers which are next to one another : 2139 * - PS_INVOCATION_COUNT 2140 * - PS_INVOCATION_COUNT_UDW 2141 * - PS_DEPTH_COUNT 2142 * - PS_DEPTH_COUNT_UDW 2143 */ 2144 whitelist_reg_ext(w, PS_INVOCATION_COUNT, 2145 RING_FORCE_TO_NONPRIV_ACCESS_RD | 2146 RING_FORCE_TO_NONPRIV_RANGE_4); 2147 2148 /* 2149 * Wa_1808121037:tgl 2150 * Wa_14012131227:dg1 2151 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p 2152 */ 2153 whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1); 2154 2155 /* Wa_1806527549:tgl */ 2156 whitelist_reg(w, HIZ_CHICKEN); 2157 break; 2158 default: 2159 break; 2160 } 2161 } 2162 2163 static void xehpsdv_whitelist_build(struct intel_engine_cs *engine) 2164 { 2165 allow_read_ctx_timestamp(engine); 2166 } 2167 2168 static void dg2_whitelist_build(struct intel_engine_cs *engine) 2169 { 2170 struct i915_wa_list *w = &engine->whitelist; 2171 2172 allow_read_ctx_timestamp(engine); 2173 2174 switch (engine->class) { 2175 case RENDER_CLASS: 2176 /* 2177 * Wa_1507100340:dg2_g10 2178 * 2179 * This covers 4 registers which are next to one another : 2180 * - PS_INVOCATION_COUNT 2181 * - PS_INVOCATION_COUNT_UDW 2182 * - PS_DEPTH_COUNT 2183 * - PS_DEPTH_COUNT_UDW 2184 */ 2185 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0)) 2186 whitelist_reg_ext(w, PS_INVOCATION_COUNT, 2187 RING_FORCE_TO_NONPRIV_ACCESS_RD | 2188 RING_FORCE_TO_NONPRIV_RANGE_4); 2189 2190 break; 2191 case COMPUTE_CLASS: 2192 /* Wa_16011157294:dg2_g10 */ 2193 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0)) 2194 whitelist_reg(w, GEN9_CTX_PREEMPT_REG); 2195 break; 2196 default: 2197 break; 2198 } 2199 } 2200 2201 static void blacklist_trtt(struct intel_engine_cs *engine) 2202 { 2203 struct i915_wa_list *w = &engine->whitelist; 2204 2205 /* 2206 * Prevent read/write access to [0x4400, 0x4600) which covers 2207 * the TRTT range across all engines. Note that normally userspace 2208 * cannot access the other engines' trtt control, but for simplicity 2209 * we cover the entire range on each engine. 2210 */ 2211 whitelist_reg_ext(w, _MMIO(0x4400), 2212 RING_FORCE_TO_NONPRIV_DENY | 2213 RING_FORCE_TO_NONPRIV_RANGE_64); 2214 whitelist_reg_ext(w, _MMIO(0x4500), 2215 RING_FORCE_TO_NONPRIV_DENY | 2216 RING_FORCE_TO_NONPRIV_RANGE_64); 2217 } 2218 2219 static void pvc_whitelist_build(struct intel_engine_cs *engine) 2220 { 2221 allow_read_ctx_timestamp(engine); 2222 2223 /* Wa_16014440446:pvc */ 2224 blacklist_trtt(engine); 2225 } 2226 2227 void intel_engine_init_whitelist(struct intel_engine_cs *engine) 2228 { 2229 struct drm_i915_private *i915 = engine->i915; 2230 struct i915_wa_list *w = &engine->whitelist; 2231 2232 wa_init_start(w, engine->gt, "whitelist", engine->name); 2233 2234 if (IS_METEORLAKE(i915)) 2235 ; /* noop; none at this time */ 2236 else if (IS_PONTEVECCHIO(i915)) 2237 pvc_whitelist_build(engine); 2238 else if (IS_DG2(i915)) 2239 dg2_whitelist_build(engine); 2240 else if (IS_XEHPSDV(i915)) 2241 xehpsdv_whitelist_build(engine); 2242 else if (GRAPHICS_VER(i915) == 12) 2243 tgl_whitelist_build(engine); 2244 else if (GRAPHICS_VER(i915) == 11) 2245 icl_whitelist_build(engine); 2246 else if (IS_COMETLAKE(i915)) 2247 cml_whitelist_build(engine); 2248 else if (IS_COFFEELAKE(i915)) 2249 cfl_whitelist_build(engine); 2250 else if (IS_GEMINILAKE(i915)) 2251 glk_whitelist_build(engine); 2252 else if (IS_KABYLAKE(i915)) 2253 kbl_whitelist_build(engine); 2254 else if (IS_BROXTON(i915)) 2255 bxt_whitelist_build(engine); 2256 else if (IS_SKYLAKE(i915)) 2257 skl_whitelist_build(engine); 2258 else if (GRAPHICS_VER(i915) <= 8) 2259 ; 2260 else 2261 MISSING_CASE(GRAPHICS_VER(i915)); 2262 2263 wa_init_finish(w); 2264 } 2265 2266 void intel_engine_apply_whitelist(struct intel_engine_cs *engine) 2267 { 2268 const struct i915_wa_list *wal = &engine->whitelist; 2269 struct intel_uncore *uncore = engine->uncore; 2270 const u32 base = engine->mmio_base; 2271 struct i915_wa *wa; 2272 unsigned int i; 2273 2274 if (!wal->count) 2275 return; 2276 2277 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) 2278 intel_uncore_write(uncore, 2279 RING_FORCE_TO_NONPRIV(base, i), 2280 i915_mmio_reg_offset(wa->reg)); 2281 2282 /* And clear the rest just in case of garbage */ 2283 for (; i < RING_MAX_NONPRIV_SLOTS; i++) 2284 intel_uncore_write(uncore, 2285 RING_FORCE_TO_NONPRIV(base, i), 2286 i915_mmio_reg_offset(RING_NOPID(base))); 2287 } 2288 2289 /* 2290 * engine_fake_wa_init(), a place holder to program the registers 2291 * which are not part of an official workaround defined by the 2292 * hardware team. 2293 * Adding programming of those register inside workaround will 2294 * allow utilizing wa framework to proper application and verification. 2295 */ 2296 static void 2297 engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2298 { 2299 u8 mocs_w, mocs_r; 2300 2301 /* 2302 * RING_CMD_CCTL specifies the default MOCS entry that will be used 2303 * by the command streamer when executing commands that don't have 2304 * a way to explicitly specify a MOCS setting. The default should 2305 * usually reference whichever MOCS entry corresponds to uncached 2306 * behavior, although use of a WB cached entry is recommended by the 2307 * spec in certain circumstances on specific platforms. 2308 */ 2309 if (GRAPHICS_VER(engine->i915) >= 12) { 2310 mocs_r = engine->gt->mocs.uc_index; 2311 mocs_w = engine->gt->mocs.uc_index; 2312 2313 if (HAS_L3_CCS_READ(engine->i915) && 2314 engine->class == COMPUTE_CLASS) { 2315 mocs_r = engine->gt->mocs.wb_index; 2316 2317 /* 2318 * Even on the few platforms where MOCS 0 is a 2319 * legitimate table entry, it's never the correct 2320 * setting to use here; we can assume the MOCS init 2321 * just forgot to initialize wb_index. 2322 */ 2323 drm_WARN_ON(&engine->i915->drm, mocs_r == 0); 2324 } 2325 2326 wa_masked_field_set(wal, 2327 RING_CMD_CCTL(engine->mmio_base), 2328 CMD_CCTL_MOCS_MASK, 2329 CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r)); 2330 } 2331 } 2332 2333 static bool needs_wa_1308578152(struct intel_engine_cs *engine) 2334 { 2335 return intel_sseu_find_first_xehp_dss(&engine->gt->info.sseu, 0, 0) >= 2336 GEN_DSS_PER_GSLICE; 2337 } 2338 2339 static void 2340 rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2341 { 2342 struct drm_i915_private *i915 = engine->i915; 2343 2344 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) || 2345 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0)) { 2346 /* Wa_22014600077 */ 2347 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, 2348 ENABLE_EU_COUNT_FOR_TDL_FLUSH); 2349 } 2350 2351 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) || 2352 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) || 2353 IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) || 2354 IS_DG2_G11(i915) || IS_DG2_G12(i915)) { 2355 /* Wa_1509727124 */ 2356 wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE, 2357 SC_DISABLE_POWER_OPTIMIZATION_EBB); 2358 } 2359 2360 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) || 2361 IS_DG2_G11(i915) || IS_DG2_G12(i915) || 2362 IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0)) { 2363 /* Wa_22012856258 */ 2364 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, 2365 GEN12_DISABLE_READ_SUPPRESSION); 2366 } 2367 2368 if (IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0)) { 2369 /* Wa_14013392000:dg2_g11 */ 2370 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_ENABLE_LARGE_GRF_MODE); 2371 } 2372 2373 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0) || 2374 IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0)) { 2375 /* Wa_14012419201:dg2 */ 2376 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, 2377 GEN12_DISABLE_HDR_PAST_PAYLOAD_HOLD_FIX); 2378 } 2379 2380 /* Wa_1308578152:dg2_g10 when first gslice is fused off */ 2381 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) && 2382 needs_wa_1308578152(engine)) { 2383 wa_masked_dis(wal, GEN12_CS_DEBUG_MODE1_CCCSUNIT_BE_COMMON, 2384 GEN12_REPLAY_MODE_GRANULARITY); 2385 } 2386 2387 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) || 2388 IS_DG2_G11(i915) || IS_DG2_G12(i915)) { 2389 /* 2390 * Wa_22010960976:dg2 2391 * Wa_14013347512:dg2 2392 */ 2393 wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0, 2394 LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK); 2395 } 2396 2397 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) { 2398 /* 2399 * Wa_1608949956:dg2_g10 2400 * Wa_14010198302:dg2_g10 2401 */ 2402 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, 2403 MDQ_ARBITRATION_MODE | UGM_BACKUP_MODE); 2404 } 2405 2406 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) { 2407 /* Wa_22010430635:dg2 */ 2408 wa_mcr_masked_en(wal, 2409 GEN9_ROW_CHICKEN4, 2410 GEN12_DISABLE_GRF_CLEAR); 2411 2412 /* Wa_14010648519:dg2 */ 2413 wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE); 2414 } 2415 2416 /* Wa_14013202645:dg2 */ 2417 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) || 2418 IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0)) 2419 wa_mcr_write_or(wal, RT_CTRL, DIS_NULL_QUERY); 2420 2421 /* Wa_22012532006:dg2 */ 2422 if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_C0) || 2423 IS_DG2_GRAPHICS_STEP(engine->i915, G11, STEP_A0, STEP_B0)) 2424 wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7, 2425 DG2_DISABLE_ROUND_ENABLE_ALLOW_FOR_SSLA); 2426 2427 if (IS_DG2_GRAPHICS_STEP(i915, G11, STEP_B0, STEP_FOREVER) || 2428 IS_DG2_G10(i915)) { 2429 /* Wa_22014600077:dg2 */ 2430 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0, 2431 _MASKED_BIT_ENABLE(ENABLE_EU_COUNT_FOR_TDL_FLUSH), 2432 0 /* Wa_14012342262 write-only reg, so skip verification */, 2433 true); 2434 } 2435 2436 if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) || 2437 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) { 2438 /* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */ 2439 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ); 2440 2441 /* 2442 * Wa_1407928979:tgl A* 2443 * Wa_18011464164:tgl[B0+],dg1[B0+] 2444 * Wa_22010931296:tgl[B0+],dg1[B0+] 2445 * Wa_14010919138:rkl,dg1,adl-s,adl-p 2446 */ 2447 wa_write_or(wal, GEN7_FF_THREAD_MODE, 2448 GEN12_FF_TESSELATION_DOP_GATE_DISABLE); 2449 } 2450 2451 if (IS_ALDERLAKE_P(i915) || IS_DG2(i915) || IS_ALDERLAKE_S(i915) || 2452 IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) { 2453 /* 2454 * Wa_1606700617:tgl,dg1,adl-p 2455 * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p 2456 * Wa_14010826681:tgl,dg1,rkl,adl-p 2457 * Wa_18019627453:dg2 2458 */ 2459 wa_masked_en(wal, 2460 GEN9_CS_DEBUG_MODE1, 2461 FF_DOP_CLOCK_GATE_DISABLE); 2462 } 2463 2464 if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || 2465 IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) { 2466 /* Wa_1409804808 */ 2467 wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, 2468 GEN12_PUSH_CONST_DEREF_HOLD_DIS); 2469 2470 /* Wa_14010229206 */ 2471 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH); 2472 } 2473 2474 if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) { 2475 /* 2476 * Wa_1607297627 2477 * 2478 * On TGL and RKL there are multiple entries for this WA in the 2479 * BSpec; some indicate this is an A0-only WA, others indicate 2480 * it applies to all steppings so we trust the "all steppings." 2481 */ 2482 wa_masked_en(wal, 2483 RING_PSMI_CTL(RENDER_RING_BASE), 2484 GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE | 2485 GEN8_RC_SEMA_IDLE_MSG_DISABLE); 2486 } 2487 2488 if (IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || 2489 IS_ALDERLAKE_S(i915) || IS_ALDERLAKE_P(i915)) { 2490 /* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */ 2491 wa_mcr_masked_en(wal, 2492 GEN10_SAMPLER_MODE, 2493 ENABLE_SMALLPL); 2494 } 2495 2496 if (GRAPHICS_VER(i915) == 11) { 2497 /* This is not an Wa. Enable for better image quality */ 2498 wa_masked_en(wal, 2499 _3D_CHICKEN3, 2500 _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE); 2501 2502 /* 2503 * Wa_1405543622:icl 2504 * Formerly known as WaGAPZPriorityScheme 2505 */ 2506 wa_write_or(wal, 2507 GEN8_GARBCNTL, 2508 GEN11_ARBITRATION_PRIO_ORDER_MASK); 2509 2510 /* 2511 * Wa_1604223664:icl 2512 * Formerly known as WaL3BankAddressHashing 2513 */ 2514 wa_write_clr_set(wal, 2515 GEN8_GARBCNTL, 2516 GEN11_HASH_CTRL_EXCL_MASK, 2517 GEN11_HASH_CTRL_EXCL_BIT0); 2518 wa_write_clr_set(wal, 2519 GEN11_GLBLINVL, 2520 GEN11_BANK_HASH_ADDR_EXCL_MASK, 2521 GEN11_BANK_HASH_ADDR_EXCL_BIT0); 2522 2523 /* 2524 * Wa_1405733216:icl 2525 * Formerly known as WaDisableCleanEvicts 2526 */ 2527 wa_mcr_write_or(wal, 2528 GEN8_L3SQCREG4, 2529 GEN11_LQSC_CLEAN_EVICT_DISABLE); 2530 2531 /* Wa_1606682166:icl */ 2532 wa_write_or(wal, 2533 GEN7_SARCHKMD, 2534 GEN7_DISABLE_SAMPLER_PREFETCH); 2535 2536 /* Wa_1409178092:icl */ 2537 wa_mcr_write_clr_set(wal, 2538 GEN11_SCRATCH2, 2539 GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE, 2540 0); 2541 2542 /* WaEnable32PlaneMode:icl */ 2543 wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS, 2544 GEN11_ENABLE_32_PLANE_MODE); 2545 2546 /* 2547 * Wa_1408767742:icl[a2..forever],ehl[all] 2548 * Wa_1605460711:icl[a0..c0] 2549 */ 2550 wa_write_or(wal, 2551 GEN7_FF_THREAD_MODE, 2552 GEN12_FF_TESSELATION_DOP_GATE_DISABLE); 2553 2554 /* Wa_22010271021 */ 2555 wa_masked_en(wal, 2556 GEN9_CS_DEBUG_MODE1, 2557 FF_DOP_CLOCK_GATE_DISABLE); 2558 } 2559 2560 /* 2561 * Intel platforms that support fine-grained preemption (i.e., gen9 and 2562 * beyond) allow the kernel-mode driver to choose between two different 2563 * options for controlling preemption granularity and behavior. 2564 * 2565 * Option 1 (hardware default): 2566 * Preemption settings are controlled in a global manner via 2567 * kernel-only register CS_DEBUG_MODE1 (0x20EC). Any granularity 2568 * and settings chosen by the kernel-mode driver will apply to all 2569 * userspace clients. 2570 * 2571 * Option 2: 2572 * Preemption settings are controlled on a per-context basis via 2573 * register CS_CHICKEN1 (0x2580). CS_CHICKEN1 is saved/restored on 2574 * context switch and is writable by userspace (e.g., via 2575 * MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer) 2576 * which allows different userspace drivers/clients to select 2577 * different settings, or to change those settings on the fly in 2578 * response to runtime needs. This option was known by name 2579 * "FtrPerCtxtPreemptionGranularityControl" at one time, although 2580 * that name is somewhat misleading as other non-granularity 2581 * preemption settings are also impacted by this decision. 2582 * 2583 * On Linux, our policy has always been to let userspace drivers 2584 * control preemption granularity/settings (Option 2). This was 2585 * originally mandatory on gen9 to prevent ABI breakage (old gen9 2586 * userspace developed before object-level preemption was enabled would 2587 * not behave well if i915 were to go with Option 1 and enable that 2588 * preemption in a global manner). On gen9 each context would have 2589 * object-level preemption disabled by default (see 2590 * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but 2591 * userspace drivers could opt-in to object-level preemption as they 2592 * saw fit. For post-gen9 platforms, we continue to utilize Option 2; 2593 * even though it is no longer necessary for ABI compatibility when 2594 * enabling a new platform, it does ensure that userspace will be able 2595 * to implement any workarounds that show up requiring temporary 2596 * adjustments to preemption behavior at runtime. 2597 * 2598 * Notes/Workarounds: 2599 * - Wa_14015141709: On DG2 and early steppings of MTL, 2600 * CS_CHICKEN1[0] does not disable object-level preemption as 2601 * it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been 2602 * using Option 1). Effectively this means userspace is unable 2603 * to disable object-level preemption on these platforms/steppings 2604 * despite the setting here. 2605 * 2606 * - Wa_16013994831: May require that userspace program 2607 * CS_CHICKEN1[10] when certain runtime conditions are true. 2608 * Userspace requires Option 2 to be in effect for their update of 2609 * CS_CHICKEN1[10] to be effective. 2610 * 2611 * Other workarounds may appear in the future that will also require 2612 * Option 2 behavior to allow proper userspace implementation. 2613 */ 2614 if (GRAPHICS_VER(i915) >= 9) 2615 wa_masked_en(wal, 2616 GEN7_FF_SLICE_CS_CHICKEN1, 2617 GEN9_FFSC_PERCTX_PREEMPT_CTRL); 2618 2619 if (IS_SKYLAKE(i915) || 2620 IS_KABYLAKE(i915) || 2621 IS_COFFEELAKE(i915) || 2622 IS_COMETLAKE(i915)) { 2623 /* WaEnableGapsTsvCreditFix:skl,kbl,cfl */ 2624 wa_write_or(wal, 2625 GEN8_GARBCNTL, 2626 GEN9_GAPS_TSV_CREDIT_DISABLE); 2627 } 2628 2629 if (IS_BROXTON(i915)) { 2630 /* WaDisablePooledEuLoadBalancingFix:bxt */ 2631 wa_masked_en(wal, 2632 FF_SLICE_CS_CHICKEN2, 2633 GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE); 2634 } 2635 2636 if (GRAPHICS_VER(i915) == 9) { 2637 /* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */ 2638 wa_masked_en(wal, 2639 GEN9_CSFE_CHICKEN1_RCS, 2640 GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE); 2641 2642 /* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */ 2643 wa_mcr_write_or(wal, 2644 BDW_SCRATCH1, 2645 GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE); 2646 2647 /* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */ 2648 if (IS_GEN9_LP(i915)) 2649 wa_mcr_write_clr_set(wal, 2650 GEN8_L3SQCREG1, 2651 L3_PRIO_CREDITS_MASK, 2652 L3_GENERAL_PRIO_CREDITS(62) | 2653 L3_HIGH_PRIO_CREDITS(2)); 2654 2655 /* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */ 2656 wa_mcr_write_or(wal, 2657 GEN8_L3SQCREG4, 2658 GEN8_LQSC_FLUSH_COHERENT_LINES); 2659 2660 /* Disable atomics in L3 to prevent unrecoverable hangs */ 2661 wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1, 2662 GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0); 2663 wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4, 2664 GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0); 2665 wa_mcr_write_clr_set(wal, GEN9_SCRATCH1, 2666 EVICTION_PERF_FIX_ENABLE, 0); 2667 } 2668 2669 if (IS_HASWELL(i915)) { 2670 /* WaSampleCChickenBitEnable:hsw */ 2671 wa_masked_en(wal, 2672 HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE); 2673 2674 wa_masked_dis(wal, 2675 CACHE_MODE_0_GEN7, 2676 /* enable HiZ Raw Stall Optimization */ 2677 HIZ_RAW_STALL_OPT_DISABLE); 2678 } 2679 2680 if (IS_VALLEYVIEW(i915)) { 2681 /* WaDisableEarlyCull:vlv */ 2682 wa_masked_en(wal, 2683 _3D_CHICKEN3, 2684 _3D_CHICKEN_SF_DISABLE_OBJEND_CULL); 2685 2686 /* 2687 * WaVSThreadDispatchOverride:ivb,vlv 2688 * 2689 * This actually overrides the dispatch 2690 * mode for all thread types. 2691 */ 2692 wa_write_clr_set(wal, 2693 GEN7_FF_THREAD_MODE, 2694 GEN7_FF_SCHED_MASK, 2695 GEN7_FF_TS_SCHED_HW | 2696 GEN7_FF_VS_SCHED_HW | 2697 GEN7_FF_DS_SCHED_HW); 2698 2699 /* WaPsdDispatchEnable:vlv */ 2700 /* WaDisablePSDDualDispatchEnable:vlv */ 2701 wa_masked_en(wal, 2702 GEN7_HALF_SLICE_CHICKEN1, 2703 GEN7_MAX_PS_THREAD_DEP | 2704 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE); 2705 } 2706 2707 if (IS_IVYBRIDGE(i915)) { 2708 /* WaDisableEarlyCull:ivb */ 2709 wa_masked_en(wal, 2710 _3D_CHICKEN3, 2711 _3D_CHICKEN_SF_DISABLE_OBJEND_CULL); 2712 2713 if (0) { /* causes HiZ corruption on ivb:gt1 */ 2714 /* enable HiZ Raw Stall Optimization */ 2715 wa_masked_dis(wal, 2716 CACHE_MODE_0_GEN7, 2717 HIZ_RAW_STALL_OPT_DISABLE); 2718 } 2719 2720 /* 2721 * WaVSThreadDispatchOverride:ivb,vlv 2722 * 2723 * This actually overrides the dispatch 2724 * mode for all thread types. 2725 */ 2726 wa_write_clr_set(wal, 2727 GEN7_FF_THREAD_MODE, 2728 GEN7_FF_SCHED_MASK, 2729 GEN7_FF_TS_SCHED_HW | 2730 GEN7_FF_VS_SCHED_HW | 2731 GEN7_FF_DS_SCHED_HW); 2732 2733 /* WaDisablePSDDualDispatchEnable:ivb */ 2734 if (IS_IVB_GT1(i915)) 2735 wa_masked_en(wal, 2736 GEN7_HALF_SLICE_CHICKEN1, 2737 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE); 2738 } 2739 2740 if (GRAPHICS_VER(i915) == 7) { 2741 /* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */ 2742 wa_masked_en(wal, 2743 RING_MODE_GEN7(RENDER_RING_BASE), 2744 GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE); 2745 2746 /* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */ 2747 wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE); 2748 2749 /* 2750 * BSpec says this must be set, even though 2751 * WaDisable4x2SubspanOptimization:ivb,hsw 2752 * WaDisable4x2SubspanOptimization isn't listed for VLV. 2753 */ 2754 wa_masked_en(wal, 2755 CACHE_MODE_1, 2756 PIXEL_SUBSPAN_COLLECT_OPT_DISABLE); 2757 2758 /* 2759 * BSpec recommends 8x4 when MSAA is used, 2760 * however in practice 16x4 seems fastest. 2761 * 2762 * Note that PS/WM thread counts depend on the WIZ hashing 2763 * disable bit, which we don't touch here, but it's good 2764 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). 2765 */ 2766 wa_masked_field_set(wal, 2767 GEN7_GT_MODE, 2768 GEN6_WIZ_HASHING_MASK, 2769 GEN6_WIZ_HASHING_16x4); 2770 } 2771 2772 if (IS_GRAPHICS_VER(i915, 6, 7)) 2773 /* 2774 * We need to disable the AsyncFlip performance optimisations in 2775 * order to use MI_WAIT_FOR_EVENT within the CS. It should 2776 * already be programmed to '1' on all products. 2777 * 2778 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv 2779 */ 2780 wa_masked_en(wal, 2781 RING_MI_MODE(RENDER_RING_BASE), 2782 ASYNC_FLIP_PERF_DISABLE); 2783 2784 if (GRAPHICS_VER(i915) == 6) { 2785 /* 2786 * Required for the hardware to program scanline values for 2787 * waiting 2788 * WaEnableFlushTlbInvalidationMode:snb 2789 */ 2790 wa_masked_en(wal, 2791 GFX_MODE, 2792 GFX_TLB_INVALIDATE_EXPLICIT); 2793 2794 /* WaDisableHiZPlanesWhenMSAAEnabled:snb */ 2795 wa_masked_en(wal, 2796 _3D_CHICKEN, 2797 _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB); 2798 2799 wa_masked_en(wal, 2800 _3D_CHICKEN3, 2801 /* WaStripsFansDisableFastClipPerformanceFix:snb */ 2802 _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL | 2803 /* 2804 * Bspec says: 2805 * "This bit must be set if 3DSTATE_CLIP clip mode is set 2806 * to normal and 3DSTATE_SF number of SF output attributes 2807 * is more than 16." 2808 */ 2809 _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH); 2810 2811 /* 2812 * BSpec recommends 8x4 when MSAA is used, 2813 * however in practice 16x4 seems fastest. 2814 * 2815 * Note that PS/WM thread counts depend on the WIZ hashing 2816 * disable bit, which we don't touch here, but it's good 2817 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM). 2818 */ 2819 wa_masked_field_set(wal, 2820 GEN6_GT_MODE, 2821 GEN6_WIZ_HASHING_MASK, 2822 GEN6_WIZ_HASHING_16x4); 2823 2824 /* WaDisable_RenderCache_OperationalFlush:snb */ 2825 wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE); 2826 2827 /* 2828 * From the Sandybridge PRM, volume 1 part 3, page 24: 2829 * "If this bit is set, STCunit will have LRA as replacement 2830 * policy. [...] This bit must be reset. LRA replacement 2831 * policy is not supported." 2832 */ 2833 wa_masked_dis(wal, 2834 CACHE_MODE_0, 2835 CM0_STC_EVICT_DISABLE_LRA_SNB); 2836 } 2837 2838 if (IS_GRAPHICS_VER(i915, 4, 6)) 2839 /* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */ 2840 wa_add(wal, RING_MI_MODE(RENDER_RING_BASE), 2841 0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH), 2842 /* XXX bit doesn't stick on Broadwater */ 2843 IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true); 2844 2845 if (GRAPHICS_VER(i915) == 4) 2846 /* 2847 * Disable CONSTANT_BUFFER before it is loaded from the context 2848 * image. For as it is loaded, it is executed and the stored 2849 * address may no longer be valid, leading to a GPU hang. 2850 * 2851 * This imposes the requirement that userspace reload their 2852 * CONSTANT_BUFFER on every batch, fortunately a requirement 2853 * they are already accustomed to from before contexts were 2854 * enabled. 2855 */ 2856 wa_add(wal, ECOSKPD(RENDER_RING_BASE), 2857 0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE), 2858 0 /* XXX bit doesn't stick on Broadwater */, 2859 true); 2860 } 2861 2862 static void 2863 xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2864 { 2865 struct drm_i915_private *i915 = engine->i915; 2866 2867 /* WaKBLVECSSemaphoreWaitPoll:kbl */ 2868 if (IS_KBL_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) { 2869 wa_write(wal, 2870 RING_SEMA_WAIT_POLL(engine->mmio_base), 2871 1); 2872 } 2873 } 2874 2875 static void 2876 ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2877 { 2878 if (IS_PVC_CT_STEP(engine->i915, STEP_A0, STEP_C0)) { 2879 /* Wa_14014999345:pvc */ 2880 wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, DISABLE_ECC); 2881 } 2882 } 2883 2884 /* 2885 * The bspec performance guide has recommended MMIO tuning settings. These 2886 * aren't truly "workarounds" but we want to program them with the same 2887 * workaround infrastructure to ensure that they're automatically added to 2888 * the GuC save/restore lists, re-applied at the right times, and checked for 2889 * any conflicting programming requested by real workarounds. 2890 * 2891 * Programming settings should be added here only if their registers are not 2892 * part of an engine's register state context. If a register is part of a 2893 * context, then any tuning settings should be programmed in an appropriate 2894 * function invoked by __intel_engine_init_ctx_wa(). 2895 */ 2896 static void 2897 add_render_compute_tuning_settings(struct drm_i915_private *i915, 2898 struct i915_wa_list *wal) 2899 { 2900 if (IS_PONTEVECCHIO(i915)) { 2901 wa_mcr_write(wal, XEHPC_L3SCRUB, 2902 SCRUB_CL_DWNGRADE_SHARED | SCRUB_RATE_4B_PER_CLK); 2903 wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_HOSTCACHEEN); 2904 } 2905 2906 if (IS_DG2(i915)) { 2907 wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS); 2908 wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512); 2909 } 2910 2911 /* 2912 * This tuning setting proves beneficial only on ATS-M designs; the 2913 * default "age based" setting is optimal on regular DG2 and other 2914 * platforms. 2915 */ 2916 if (INTEL_INFO(i915)->tuning_thread_rr_after_dep) 2917 wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE, 2918 THREAD_EX_ARB_MODE_RR_AFTER_DEP); 2919 2920 if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50)) 2921 wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC); 2922 } 2923 2924 /* 2925 * The workarounds in this function apply to shared registers in 2926 * the general render reset domain that aren't tied to a 2927 * specific engine. Since all render+compute engines get reset 2928 * together, and the contents of these registers are lost during 2929 * the shared render domain reset, we'll define such workarounds 2930 * here and then add them to just a single RCS or CCS engine's 2931 * workaround list (whichever engine has the XXXX flag). 2932 */ 2933 static void 2934 general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal) 2935 { 2936 struct drm_i915_private *i915 = engine->i915; 2937 2938 add_render_compute_tuning_settings(i915, wal); 2939 2940 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) || 2941 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) || 2942 IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) || 2943 IS_DG2_G11(i915) || IS_DG2_G12(i915)) { 2944 /* Wa_22013037850 */ 2945 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, 2946 DISABLE_128B_EVICTION_COMMAND_UDW); 2947 } 2948 2949 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) || 2950 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) || 2951 IS_PONTEVECCHIO(i915) || 2952 IS_DG2(i915)) { 2953 /* Wa_22014226127 */ 2954 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE); 2955 } 2956 2957 if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) || 2958 IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) || 2959 IS_DG2(i915)) { 2960 /* Wa_18017747507 */ 2961 wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE); 2962 } 2963 2964 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) || 2965 IS_DG2_G11(i915)) { 2966 /* 2967 * Wa_22012826095:dg2 2968 * Wa_22013059131:dg2 2969 */ 2970 wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW, 2971 MAXREQS_PER_BANK, 2972 REG_FIELD_PREP(MAXREQS_PER_BANK, 2)); 2973 2974 /* Wa_22013059131:dg2 */ 2975 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, 2976 FORCE_1_SUB_MESSAGE_PER_FRAGMENT); 2977 } 2978 2979 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) { 2980 /* 2981 * Wa_14010918519:dg2_g10 2982 * 2983 * LSC_CHICKEN_BIT_0 always reads back as 0 is this stepping, 2984 * so ignoring verification. 2985 */ 2986 wa_mcr_add(wal, LSC_CHICKEN_BIT_0_UDW, 0, 2987 FORCE_SLM_FENCE_SCOPE_TO_TILE | FORCE_UGM_FENCE_SCOPE_TO_TILE, 2988 0, false); 2989 } 2990 2991 if (IS_PONTEVECCHIO(i915)) { 2992 /* Wa_16016694945 */ 2993 wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_OVRLSCCC); 2994 } 2995 2996 if (IS_XEHPSDV(i915)) { 2997 /* Wa_1409954639 */ 2998 wa_mcr_masked_en(wal, 2999 GEN8_ROW_CHICKEN, 3000 SYSTOLIC_DOP_CLOCK_GATING_DIS); 3001 3002 /* Wa_1607196519 */ 3003 wa_mcr_masked_en(wal, 3004 GEN9_ROW_CHICKEN4, 3005 GEN12_DISABLE_GRF_CLEAR); 3006 3007 /* Wa_14010670810:xehpsdv */ 3008 wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE); 3009 3010 /* Wa_14010449647:xehpsdv */ 3011 wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1, 3012 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE); 3013 3014 /* Wa_18011725039:xehpsdv */ 3015 if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_B0)) { 3016 wa_mcr_masked_dis(wal, MLTICTXCTL, TDONRENDER); 3017 wa_mcr_write_or(wal, L3SQCREG1_CCS0, FLUSHALLNONCOH); 3018 } 3019 } 3020 3021 if (IS_DG2(i915) || IS_PONTEVECCHIO(i915)) { 3022 /* Wa_14015227452:dg2,pvc */ 3023 wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE); 3024 3025 /* Wa_16015675438:dg2,pvc */ 3026 wa_masked_en(wal, FF_SLICE_CS_CHICKEN2, GEN12_PERF_FIX_BALANCING_CFE_DISABLE); 3027 } 3028 3029 if (IS_DG2(i915)) { 3030 /* 3031 * Wa_16011620976:dg2_g11 3032 * Wa_22015475538:dg2 3033 */ 3034 wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8); 3035 } 3036 3037 if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_C0) || IS_DG2_G11(i915)) 3038 /* 3039 * Wa_22012654132 3040 * 3041 * Note that register 0xE420 is write-only and cannot be read 3042 * back for verification on DG2 (due to Wa_14012342262), so 3043 * we need to explicitly skip the readback. 3044 */ 3045 wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0, 3046 _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC), 3047 0 /* write-only, so skip validation */, 3048 true); 3049 } 3050 3051 static void 3052 engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal) 3053 { 3054 if (GRAPHICS_VER(engine->i915) < 4) 3055 return; 3056 3057 engine_fake_wa_init(engine, wal); 3058 3059 /* 3060 * These are common workarounds that just need to applied 3061 * to a single RCS/CCS engine's workaround list since 3062 * they're reset as part of the general render domain reset. 3063 */ 3064 if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE) 3065 general_render_compute_wa_init(engine, wal); 3066 3067 if (engine->class == COMPUTE_CLASS) 3068 ccs_engine_wa_init(engine, wal); 3069 else if (engine->class == RENDER_CLASS) 3070 rcs_engine_wa_init(engine, wal); 3071 else 3072 xcs_engine_wa_init(engine, wal); 3073 } 3074 3075 void intel_engine_init_workarounds(struct intel_engine_cs *engine) 3076 { 3077 struct i915_wa_list *wal = &engine->wa_list; 3078 3079 wa_init_start(wal, engine->gt, "engine", engine->name); 3080 engine_init_workarounds(engine, wal); 3081 wa_init_finish(wal); 3082 } 3083 3084 void intel_engine_apply_workarounds(struct intel_engine_cs *engine) 3085 { 3086 wa_list_apply(&engine->wa_list); 3087 } 3088 3089 static const struct i915_range mcr_ranges_gen8[] = { 3090 { .start = 0x5500, .end = 0x55ff }, 3091 { .start = 0x7000, .end = 0x7fff }, 3092 { .start = 0x9400, .end = 0x97ff }, 3093 { .start = 0xb000, .end = 0xb3ff }, 3094 { .start = 0xe000, .end = 0xe7ff }, 3095 {}, 3096 }; 3097 3098 static const struct i915_range mcr_ranges_gen12[] = { 3099 { .start = 0x8150, .end = 0x815f }, 3100 { .start = 0x9520, .end = 0x955f }, 3101 { .start = 0xb100, .end = 0xb3ff }, 3102 { .start = 0xde80, .end = 0xe8ff }, 3103 { .start = 0x24a00, .end = 0x24a7f }, 3104 {}, 3105 }; 3106 3107 static const struct i915_range mcr_ranges_xehp[] = { 3108 { .start = 0x4000, .end = 0x4aff }, 3109 { .start = 0x5200, .end = 0x52ff }, 3110 { .start = 0x5400, .end = 0x7fff }, 3111 { .start = 0x8140, .end = 0x815f }, 3112 { .start = 0x8c80, .end = 0x8dff }, 3113 { .start = 0x94d0, .end = 0x955f }, 3114 { .start = 0x9680, .end = 0x96ff }, 3115 { .start = 0xb000, .end = 0xb3ff }, 3116 { .start = 0xc800, .end = 0xcfff }, 3117 { .start = 0xd800, .end = 0xd8ff }, 3118 { .start = 0xdc00, .end = 0xffff }, 3119 { .start = 0x17000, .end = 0x17fff }, 3120 { .start = 0x24a00, .end = 0x24a7f }, 3121 {}, 3122 }; 3123 3124 static bool mcr_range(struct drm_i915_private *i915, u32 offset) 3125 { 3126 const struct i915_range *mcr_ranges; 3127 int i; 3128 3129 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) 3130 mcr_ranges = mcr_ranges_xehp; 3131 else if (GRAPHICS_VER(i915) >= 12) 3132 mcr_ranges = mcr_ranges_gen12; 3133 else if (GRAPHICS_VER(i915) >= 8) 3134 mcr_ranges = mcr_ranges_gen8; 3135 else 3136 return false; 3137 3138 /* 3139 * Registers in these ranges are affected by the MCR selector 3140 * which only controls CPU initiated MMIO. Routing does not 3141 * work for CS access so we cannot verify them on this path. 3142 */ 3143 for (i = 0; mcr_ranges[i].start; i++) 3144 if (offset >= mcr_ranges[i].start && 3145 offset <= mcr_ranges[i].end) 3146 return true; 3147 3148 return false; 3149 } 3150 3151 static int 3152 wa_list_srm(struct i915_request *rq, 3153 const struct i915_wa_list *wal, 3154 struct i915_vma *vma) 3155 { 3156 struct drm_i915_private *i915 = rq->engine->i915; 3157 unsigned int i, count = 0; 3158 const struct i915_wa *wa; 3159 u32 srm, *cs; 3160 3161 srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT; 3162 if (GRAPHICS_VER(i915) >= 8) 3163 srm++; 3164 3165 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 3166 if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg))) 3167 count++; 3168 } 3169 3170 cs = intel_ring_begin(rq, 4 * count); 3171 if (IS_ERR(cs)) 3172 return PTR_ERR(cs); 3173 3174 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 3175 u32 offset = i915_mmio_reg_offset(wa->reg); 3176 3177 if (mcr_range(i915, offset)) 3178 continue; 3179 3180 *cs++ = srm; 3181 *cs++ = offset; 3182 *cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i; 3183 *cs++ = 0; 3184 } 3185 intel_ring_advance(rq, cs); 3186 3187 return 0; 3188 } 3189 3190 static int engine_wa_list_verify(struct intel_context *ce, 3191 const struct i915_wa_list * const wal, 3192 const char *from) 3193 { 3194 const struct i915_wa *wa; 3195 struct i915_request *rq; 3196 struct i915_vma *vma; 3197 struct i915_gem_ww_ctx ww; 3198 unsigned int i; 3199 u32 *results; 3200 int err; 3201 3202 if (!wal->count) 3203 return 0; 3204 3205 vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm, 3206 wal->count * sizeof(u32)); 3207 if (IS_ERR(vma)) 3208 return PTR_ERR(vma); 3209 3210 intel_engine_pm_get(ce->engine); 3211 i915_gem_ww_ctx_init(&ww, false); 3212 retry: 3213 err = i915_gem_object_lock(vma->obj, &ww); 3214 if (err == 0) 3215 err = intel_context_pin_ww(ce, &ww); 3216 if (err) 3217 goto err_pm; 3218 3219 err = i915_vma_pin_ww(vma, &ww, 0, 0, 3220 i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER); 3221 if (err) 3222 goto err_unpin; 3223 3224 rq = i915_request_create(ce); 3225 if (IS_ERR(rq)) { 3226 err = PTR_ERR(rq); 3227 goto err_vma; 3228 } 3229 3230 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE); 3231 if (err == 0) 3232 err = wa_list_srm(rq, wal, vma); 3233 3234 i915_request_get(rq); 3235 if (err) 3236 i915_request_set_error_once(rq, err); 3237 i915_request_add(rq); 3238 3239 if (err) 3240 goto err_rq; 3241 3242 if (i915_request_wait(rq, 0, HZ / 5) < 0) { 3243 err = -ETIME; 3244 goto err_rq; 3245 } 3246 3247 results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB); 3248 if (IS_ERR(results)) { 3249 err = PTR_ERR(results); 3250 goto err_rq; 3251 } 3252 3253 err = 0; 3254 for (i = 0, wa = wal->list; i < wal->count; i++, wa++) { 3255 if (mcr_range(rq->engine->i915, i915_mmio_reg_offset(wa->reg))) 3256 continue; 3257 3258 if (!wa_verify(wal->gt, wa, results[i], wal->name, from)) 3259 err = -ENXIO; 3260 } 3261 3262 i915_gem_object_unpin_map(vma->obj); 3263 3264 err_rq: 3265 i915_request_put(rq); 3266 err_vma: 3267 i915_vma_unpin(vma); 3268 err_unpin: 3269 intel_context_unpin(ce); 3270 err_pm: 3271 if (err == -EDEADLK) { 3272 err = i915_gem_ww_ctx_backoff(&ww); 3273 if (!err) 3274 goto retry; 3275 } 3276 i915_gem_ww_ctx_fini(&ww); 3277 intel_engine_pm_put(ce->engine); 3278 i915_vma_put(vma); 3279 return err; 3280 } 3281 3282 int intel_engine_verify_workarounds(struct intel_engine_cs *engine, 3283 const char *from) 3284 { 3285 return engine_wa_list_verify(engine->kernel_context, 3286 &engine->wa_list, 3287 from); 3288 } 3289 3290 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 3291 #include "selftest_workarounds.c" 3292 #endif 3293