xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_workarounds.c (revision 25ebbc57ca56df3cf9149e9da6b1d3169c8487db)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2014-2018 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "i915_reg.h"
8 #include "intel_context.h"
9 #include "intel_engine_pm.h"
10 #include "intel_engine_regs.h"
11 #include "intel_gpu_commands.h"
12 #include "intel_gt.h"
13 #include "intel_gt_mcr.h"
14 #include "intel_gt_regs.h"
15 #include "intel_ring.h"
16 #include "intel_workarounds.h"
17 
18 /**
19  * DOC: Hardware workarounds
20  *
21  * Hardware workarounds are register programming documented to be executed in
22  * the driver that fall outside of the normal programming sequences for a
23  * platform. There are some basic categories of workarounds, depending on
24  * how/when they are applied:
25  *
26  * - Context workarounds: workarounds that touch registers that are
27  *   saved/restored to/from the HW context image. The list is emitted (via Load
28  *   Register Immediate commands) once when initializing the device and saved in
29  *   the default context. That default context is then used on every context
30  *   creation to have a "primed golden context", i.e. a context image that
31  *   already contains the changes needed to all the registers.
32  *
33  *   Context workarounds should be implemented in the \*_ctx_workarounds_init()
34  *   variants respective to the targeted platforms.
35  *
36  * - Engine workarounds: the list of these WAs is applied whenever the specific
37  *   engine is reset. It's also possible that a set of engine classes share a
38  *   common power domain and they are reset together. This happens on some
39  *   platforms with render and compute engines. In this case (at least) one of
40  *   them need to keeep the workaround programming: the approach taken in the
41  *   driver is to tie those workarounds to the first compute/render engine that
42  *   is registered.  When executing with GuC submission, engine resets are
43  *   outside of kernel driver control, hence the list of registers involved in
44  *   written once, on engine initialization, and then passed to GuC, that
45  *   saves/restores their values before/after the reset takes place. See
46  *   ``drivers/gpu/drm/i915/gt/uc/intel_guc_ads.c`` for reference.
47  *
48  *   Workarounds for registers specific to RCS and CCS should be implemented in
49  *   rcs_engine_wa_init() and ccs_engine_wa_init(), respectively; those for
50  *   registers belonging to BCS, VCS or VECS should be implemented in
51  *   xcs_engine_wa_init(). Workarounds for registers not belonging to a specific
52  *   engine's MMIO range but that are part of of the common RCS/CCS reset domain
53  *   should be implemented in general_render_compute_wa_init().
54  *
55  * - GT workarounds: the list of these WAs is applied whenever these registers
56  *   revert to their default values: on GPU reset, suspend/resume [1]_, etc.
57  *
58  *   GT workarounds should be implemented in the \*_gt_workarounds_init()
59  *   variants respective to the targeted platforms.
60  *
61  * - Register whitelist: some workarounds need to be implemented in userspace,
62  *   but need to touch privileged registers. The whitelist in the kernel
63  *   instructs the hardware to allow the access to happen. From the kernel side,
64  *   this is just a special case of a MMIO workaround (as we write the list of
65  *   these to/be-whitelisted registers to some special HW registers).
66  *
67  *   Register whitelisting should be done in the \*_whitelist_build() variants
68  *   respective to the targeted platforms.
69  *
70  * - Workaround batchbuffers: buffers that get executed automatically by the
71  *   hardware on every HW context restore. These buffers are created and
72  *   programmed in the default context so the hardware always go through those
73  *   programming sequences when switching contexts. The support for workaround
74  *   batchbuffers is enabled these hardware mechanisms:
75  *
76  *   #. INDIRECT_CTX: A batchbuffer and an offset are provided in the default
77  *      context, pointing the hardware to jump to that location when that offset
78  *      is reached in the context restore. Workaround batchbuffer in the driver
79  *      currently uses this mechanism for all platforms.
80  *
81  *   #. BB_PER_CTX_PTR: A batchbuffer is provided in the default context,
82  *      pointing the hardware to a buffer to continue executing after the
83  *      engine registers are restored in a context restore sequence. This is
84  *      currently not used in the driver.
85  *
86  * - Other:  There are WAs that, due to their nature, cannot be applied from a
87  *   central place. Those are peppered around the rest of the code, as needed.
88  *   Workarounds related to the display IP are the main example.
89  *
90  * .. [1] Technically, some registers are powercontext saved & restored, so they
91  *    survive a suspend/resume. In practice, writing them again is not too
92  *    costly and simplifies things, so it's the approach taken in the driver.
93  */
94 
95 static void wa_init_start(struct i915_wa_list *wal, struct intel_gt *gt,
96 			  const char *name, const char *engine_name)
97 {
98 	wal->gt = gt;
99 	wal->name = name;
100 	wal->engine_name = engine_name;
101 }
102 
103 #define WA_LIST_CHUNK (1 << 4)
104 
105 static void wa_init_finish(struct i915_wa_list *wal)
106 {
107 	/* Trim unused entries. */
108 	if (!IS_ALIGNED(wal->count, WA_LIST_CHUNK)) {
109 		struct i915_wa *list = kmemdup(wal->list,
110 					       wal->count * sizeof(*list),
111 					       GFP_KERNEL);
112 
113 		if (list) {
114 			kfree(wal->list);
115 			wal->list = list;
116 		}
117 	}
118 
119 	if (!wal->count)
120 		return;
121 
122 	drm_dbg(&wal->gt->i915->drm, "Initialized %u %s workarounds on %s\n",
123 		wal->wa_count, wal->name, wal->engine_name);
124 }
125 
126 static void _wa_add(struct i915_wa_list *wal, const struct i915_wa *wa)
127 {
128 	unsigned int addr = i915_mmio_reg_offset(wa->reg);
129 	struct drm_i915_private *i915 = wal->gt->i915;
130 	unsigned int start = 0, end = wal->count;
131 	const unsigned int grow = WA_LIST_CHUNK;
132 	struct i915_wa *wa_;
133 
134 	GEM_BUG_ON(!is_power_of_2(grow));
135 
136 	if (IS_ALIGNED(wal->count, grow)) { /* Either uninitialized or full. */
137 		struct i915_wa *list;
138 
139 		list = kmalloc_array(ALIGN(wal->count + 1, grow), sizeof(*wa),
140 				     GFP_KERNEL);
141 		if (!list) {
142 			drm_err(&i915->drm, "No space for workaround init!\n");
143 			return;
144 		}
145 
146 		if (wal->list) {
147 			memcpy(list, wal->list, sizeof(*wa) * wal->count);
148 			kfree(wal->list);
149 		}
150 
151 		wal->list = list;
152 	}
153 
154 	while (start < end) {
155 		unsigned int mid = start + (end - start) / 2;
156 
157 		if (i915_mmio_reg_offset(wal->list[mid].reg) < addr) {
158 			start = mid + 1;
159 		} else if (i915_mmio_reg_offset(wal->list[mid].reg) > addr) {
160 			end = mid;
161 		} else {
162 			wa_ = &wal->list[mid];
163 
164 			if ((wa->clr | wa_->clr) && !(wa->clr & ~wa_->clr)) {
165 				drm_err(&i915->drm,
166 					"Discarding overwritten w/a for reg %04x (clear: %08x, set: %08x)\n",
167 					i915_mmio_reg_offset(wa_->reg),
168 					wa_->clr, wa_->set);
169 
170 				wa_->set &= ~wa->clr;
171 			}
172 
173 			wal->wa_count++;
174 			wa_->set |= wa->set;
175 			wa_->clr |= wa->clr;
176 			wa_->read |= wa->read;
177 			return;
178 		}
179 	}
180 
181 	wal->wa_count++;
182 	wa_ = &wal->list[wal->count++];
183 	*wa_ = *wa;
184 
185 	while (wa_-- > wal->list) {
186 		GEM_BUG_ON(i915_mmio_reg_offset(wa_[0].reg) ==
187 			   i915_mmio_reg_offset(wa_[1].reg));
188 		if (i915_mmio_reg_offset(wa_[1].reg) >
189 		    i915_mmio_reg_offset(wa_[0].reg))
190 			break;
191 
192 		swap(wa_[1], wa_[0]);
193 	}
194 }
195 
196 static void wa_add(struct i915_wa_list *wal, i915_reg_t reg,
197 		   u32 clear, u32 set, u32 read_mask, bool masked_reg)
198 {
199 	struct i915_wa wa = {
200 		.reg  = reg,
201 		.clr  = clear,
202 		.set  = set,
203 		.read = read_mask,
204 		.masked_reg = masked_reg,
205 	};
206 
207 	_wa_add(wal, &wa);
208 }
209 
210 static void wa_mcr_add(struct i915_wa_list *wal, i915_mcr_reg_t reg,
211 		       u32 clear, u32 set, u32 read_mask, bool masked_reg)
212 {
213 	struct i915_wa wa = {
214 		.mcr_reg = reg,
215 		.clr  = clear,
216 		.set  = set,
217 		.read = read_mask,
218 		.masked_reg = masked_reg,
219 		.is_mcr = 1,
220 	};
221 
222 	_wa_add(wal, &wa);
223 }
224 
225 static void
226 wa_write_clr_set(struct i915_wa_list *wal, i915_reg_t reg, u32 clear, u32 set)
227 {
228 	wa_add(wal, reg, clear, set, clear, false);
229 }
230 
231 static void
232 wa_mcr_write_clr_set(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clear, u32 set)
233 {
234 	wa_mcr_add(wal, reg, clear, set, clear, false);
235 }
236 
237 static void
238 wa_write(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
239 {
240 	wa_write_clr_set(wal, reg, ~0, set);
241 }
242 
243 static void
244 wa_mcr_write(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
245 {
246 	wa_mcr_write_clr_set(wal, reg, ~0, set);
247 }
248 
249 static void
250 wa_write_or(struct i915_wa_list *wal, i915_reg_t reg, u32 set)
251 {
252 	wa_write_clr_set(wal, reg, set, set);
253 }
254 
255 static void
256 wa_mcr_write_or(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 set)
257 {
258 	wa_mcr_write_clr_set(wal, reg, set, set);
259 }
260 
261 static void
262 wa_write_clr(struct i915_wa_list *wal, i915_reg_t reg, u32 clr)
263 {
264 	wa_write_clr_set(wal, reg, clr, 0);
265 }
266 
267 static void
268 wa_mcr_write_clr(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 clr)
269 {
270 	wa_mcr_write_clr_set(wal, reg, clr, 0);
271 }
272 
273 /*
274  * WA operations on "masked register". A masked register has the upper 16 bits
275  * documented as "masked" in b-spec. Its purpose is to allow writing to just a
276  * portion of the register without a rmw: you simply write in the upper 16 bits
277  * the mask of bits you are going to modify.
278  *
279  * The wa_masked_* family of functions already does the necessary operations to
280  * calculate the mask based on the parameters passed, so user only has to
281  * provide the lower 16 bits of that register.
282  */
283 
284 static void
285 wa_masked_en(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
286 {
287 	wa_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
288 }
289 
290 static void
291 wa_mcr_masked_en(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
292 {
293 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_ENABLE(val), val, true);
294 }
295 
296 static void
297 wa_masked_dis(struct i915_wa_list *wal, i915_reg_t reg, u32 val)
298 {
299 	wa_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
300 }
301 
302 static void
303 wa_mcr_masked_dis(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 val)
304 {
305 	wa_mcr_add(wal, reg, 0, _MASKED_BIT_DISABLE(val), val, true);
306 }
307 
308 static void
309 wa_masked_field_set(struct i915_wa_list *wal, i915_reg_t reg,
310 		    u32 mask, u32 val)
311 {
312 	wa_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
313 }
314 
315 static void
316 wa_mcr_masked_field_set(struct i915_wa_list *wal, i915_mcr_reg_t reg,
317 			u32 mask, u32 val)
318 {
319 	wa_mcr_add(wal, reg, 0, _MASKED_FIELD(mask, val), mask, true);
320 }
321 
322 static void gen6_ctx_workarounds_init(struct intel_engine_cs *engine,
323 				      struct i915_wa_list *wal)
324 {
325 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
326 }
327 
328 static void gen7_ctx_workarounds_init(struct intel_engine_cs *engine,
329 				      struct i915_wa_list *wal)
330 {
331 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
332 }
333 
334 static void gen8_ctx_workarounds_init(struct intel_engine_cs *engine,
335 				      struct i915_wa_list *wal)
336 {
337 	wa_masked_en(wal, INSTPM, INSTPM_FORCE_ORDERING);
338 
339 	/* WaDisableAsyncFlipPerfMode:bdw,chv */
340 	wa_masked_en(wal, RING_MI_MODE(RENDER_RING_BASE), ASYNC_FLIP_PERF_DISABLE);
341 
342 	/* WaDisablePartialInstShootdown:bdw,chv */
343 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
344 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
345 
346 	/* Use Force Non-Coherent whenever executing a 3D context. This is a
347 	 * workaround for a possible hang in the unlikely event a TLB
348 	 * invalidation occurs during a PSD flush.
349 	 */
350 	/* WaForceEnableNonCoherent:bdw,chv */
351 	/* WaHdcDisableFetchWhenMasked:bdw,chv */
352 	wa_masked_en(wal, HDC_CHICKEN0,
353 		     HDC_DONOT_FETCH_MEM_WHEN_MASKED |
354 		     HDC_FORCE_NON_COHERENT);
355 
356 	/* From the Haswell PRM, Command Reference: Registers, CACHE_MODE_0:
357 	 * "The Hierarchical Z RAW Stall Optimization allows non-overlapping
358 	 *  polygons in the same 8x4 pixel/sample area to be processed without
359 	 *  stalling waiting for the earlier ones to write to Hierarchical Z
360 	 *  buffer."
361 	 *
362 	 * This optimization is off by default for BDW and CHV; turn it on.
363 	 */
364 	wa_masked_dis(wal, CACHE_MODE_0_GEN7, HIZ_RAW_STALL_OPT_DISABLE);
365 
366 	/* Wa4x4STCOptimizationDisable:bdw,chv */
367 	wa_masked_en(wal, CACHE_MODE_1, GEN8_4x4_STC_OPTIMIZATION_DISABLE);
368 
369 	/*
370 	 * BSpec recommends 8x4 when MSAA is used,
371 	 * however in practice 16x4 seems fastest.
372 	 *
373 	 * Note that PS/WM thread counts depend on the WIZ hashing
374 	 * disable bit, which we don't touch here, but it's good
375 	 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
376 	 */
377 	wa_masked_field_set(wal, GEN7_GT_MODE,
378 			    GEN6_WIZ_HASHING_MASK,
379 			    GEN6_WIZ_HASHING_16x4);
380 }
381 
382 static void bdw_ctx_workarounds_init(struct intel_engine_cs *engine,
383 				     struct i915_wa_list *wal)
384 {
385 	struct drm_i915_private *i915 = engine->i915;
386 
387 	gen8_ctx_workarounds_init(engine, wal);
388 
389 	/* WaDisableThreadStallDopClockGating:bdw (pre-production) */
390 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
391 
392 	/* WaDisableDopClockGating:bdw
393 	 *
394 	 * Also see the related UCGTCL1 write in bdw_init_clock_gating()
395 	 * to disable EUTC clock gating.
396 	 */
397 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
398 			 DOP_CLOCK_GATING_DISABLE);
399 
400 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
401 			 GEN8_SAMPLER_POWER_BYPASS_DIS);
402 
403 	wa_masked_en(wal, HDC_CHICKEN0,
404 		     /* WaForceContextSaveRestoreNonCoherent:bdw */
405 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
406 		     /* WaDisableFenceDestinationToSLM:bdw (pre-prod) */
407 		     (IS_BDW_GT3(i915) ? HDC_FENCE_DEST_SLM_DISABLE : 0));
408 }
409 
410 static void chv_ctx_workarounds_init(struct intel_engine_cs *engine,
411 				     struct i915_wa_list *wal)
412 {
413 	gen8_ctx_workarounds_init(engine, wal);
414 
415 	/* WaDisableThreadStallDopClockGating:chv */
416 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN, STALL_DOP_GATING_DISABLE);
417 
418 	/* Improve HiZ throughput on CHV. */
419 	wa_masked_en(wal, HIZ_CHICKEN, CHV_HZ_8X8_MODE_IN_1X);
420 }
421 
422 static void gen9_ctx_workarounds_init(struct intel_engine_cs *engine,
423 				      struct i915_wa_list *wal)
424 {
425 	struct drm_i915_private *i915 = engine->i915;
426 
427 	if (HAS_LLC(i915)) {
428 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
429 		 *
430 		 * Must match Display Engine. See
431 		 * WaCompressedResourceDisplayNewHashMode.
432 		 */
433 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
434 			     GEN9_PBE_COMPRESSED_HASH_SELECTION);
435 		wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
436 				 GEN9_SAMPLER_HASH_COMPRESSED_READ_ADDR);
437 	}
438 
439 	/* WaClearFlowControlGpgpuContextSave:skl,bxt,kbl,glk,cfl */
440 	/* WaDisablePartialInstShootdown:skl,bxt,kbl,glk,cfl */
441 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
442 			 FLOW_CONTROL_ENABLE |
443 			 PARTIAL_INSTRUCTION_SHOOTDOWN_DISABLE);
444 
445 	/* WaEnableYV12BugFixInHalfSliceChicken7:skl,bxt,kbl,glk,cfl */
446 	/* WaEnableSamplerGPGPUPreemptionSupport:skl,bxt,kbl,cfl */
447 	wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
448 			 GEN9_ENABLE_YV12_BUGFIX |
449 			 GEN9_ENABLE_GPGPU_PREEMPTION);
450 
451 	/* Wa4x4STCOptimizationDisable:skl,bxt,kbl,glk,cfl */
452 	/* WaDisablePartialResolveInVc:skl,bxt,kbl,cfl */
453 	wa_masked_en(wal, CACHE_MODE_1,
454 		     GEN8_4x4_STC_OPTIMIZATION_DISABLE |
455 		     GEN9_PARTIAL_RESOLVE_IN_VC_DISABLE);
456 
457 	/* WaCcsTlbPrefetchDisable:skl,bxt,kbl,glk,cfl */
458 	wa_mcr_masked_dis(wal, GEN9_HALF_SLICE_CHICKEN5,
459 			  GEN9_CCS_TLB_PREFETCH_ENABLE);
460 
461 	/* WaForceContextSaveRestoreNonCoherent:skl,bxt,kbl,cfl */
462 	wa_masked_en(wal, HDC_CHICKEN0,
463 		     HDC_FORCE_CONTEXT_SAVE_RESTORE_NON_COHERENT |
464 		     HDC_FORCE_CSR_NON_COHERENT_OVR_DISABLE);
465 
466 	/* WaForceEnableNonCoherent and WaDisableHDCInvalidation are
467 	 * both tied to WaForceContextSaveRestoreNonCoherent
468 	 * in some hsds for skl. We keep the tie for all gen9. The
469 	 * documentation is a bit hazy and so we want to get common behaviour,
470 	 * even though there is no clear evidence we would need both on kbl/bxt.
471 	 * This area has been source of system hangs so we play it safe
472 	 * and mimic the skl regardless of what bspec says.
473 	 *
474 	 * Use Force Non-Coherent whenever executing a 3D context. This
475 	 * is a workaround for a possible hang in the unlikely event
476 	 * a TLB invalidation occurs during a PSD flush.
477 	 */
478 
479 	/* WaForceEnableNonCoherent:skl,bxt,kbl,cfl */
480 	wa_masked_en(wal, HDC_CHICKEN0,
481 		     HDC_FORCE_NON_COHERENT);
482 
483 	/* WaDisableSamplerPowerBypassForSOPingPong:skl,bxt,kbl,cfl */
484 	if (IS_SKYLAKE(i915) ||
485 	    IS_KABYLAKE(i915) ||
486 	    IS_COFFEELAKE(i915) ||
487 	    IS_COMETLAKE(i915))
488 		wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN3,
489 				 GEN8_SAMPLER_POWER_BYPASS_DIS);
490 
491 	/* WaDisableSTUnitPowerOptimization:skl,bxt,kbl,glk,cfl */
492 	wa_mcr_masked_en(wal, HALF_SLICE_CHICKEN2, GEN8_ST_PO_DISABLE);
493 
494 	/*
495 	 * Supporting preemption with fine-granularity requires changes in the
496 	 * batch buffer programming. Since we can't break old userspace, we
497 	 * need to set our default preemption level to safe value. Userspace is
498 	 * still able to use more fine-grained preemption levels, since in
499 	 * WaEnablePreemptionGranularityControlByUMD we're whitelisting the
500 	 * per-ctx register. As such, WaDisable{3D,GPGPU}MidCmdPreemption are
501 	 * not real HW workarounds, but merely a way to start using preemption
502 	 * while maintaining old contract with userspace.
503 	 */
504 
505 	/* WaDisable3DMidCmdPreemption:skl,bxt,glk,cfl,[cnl] */
506 	wa_masked_dis(wal, GEN8_CS_CHICKEN1, GEN9_PREEMPT_3D_OBJECT_LEVEL);
507 
508 	/* WaDisableGPGPUMidCmdPreemption:skl,bxt,blk,cfl,[cnl] */
509 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
510 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
511 			    GEN9_PREEMPT_GPGPU_COMMAND_LEVEL);
512 
513 	/* WaClearHIZ_WM_CHICKEN3:bxt,glk */
514 	if (IS_GEN9_LP(i915))
515 		wa_masked_en(wal, GEN9_WM_CHICKEN3, GEN9_FACTOR_IN_CLR_VAL_HIZ);
516 }
517 
518 static void skl_tune_iz_hashing(struct intel_engine_cs *engine,
519 				struct i915_wa_list *wal)
520 {
521 	struct intel_gt *gt = engine->gt;
522 	u8 vals[3] = { 0, 0, 0 };
523 	unsigned int i;
524 
525 	for (i = 0; i < 3; i++) {
526 		u8 ss;
527 
528 		/*
529 		 * Only consider slices where one, and only one, subslice has 7
530 		 * EUs
531 		 */
532 		if (!is_power_of_2(gt->info.sseu.subslice_7eu[i]))
533 			continue;
534 
535 		/*
536 		 * subslice_7eu[i] != 0 (because of the check above) and
537 		 * ss_max == 4 (maximum number of subslices possible per slice)
538 		 *
539 		 * ->    0 <= ss <= 3;
540 		 */
541 		ss = ffs(gt->info.sseu.subslice_7eu[i]) - 1;
542 		vals[i] = 3 - ss;
543 	}
544 
545 	if (vals[0] == 0 && vals[1] == 0 && vals[2] == 0)
546 		return;
547 
548 	/* Tune IZ hashing. See intel_device_info_runtime_init() */
549 	wa_masked_field_set(wal, GEN7_GT_MODE,
550 			    GEN9_IZ_HASHING_MASK(2) |
551 			    GEN9_IZ_HASHING_MASK(1) |
552 			    GEN9_IZ_HASHING_MASK(0),
553 			    GEN9_IZ_HASHING(2, vals[2]) |
554 			    GEN9_IZ_HASHING(1, vals[1]) |
555 			    GEN9_IZ_HASHING(0, vals[0]));
556 }
557 
558 static void skl_ctx_workarounds_init(struct intel_engine_cs *engine,
559 				     struct i915_wa_list *wal)
560 {
561 	gen9_ctx_workarounds_init(engine, wal);
562 	skl_tune_iz_hashing(engine, wal);
563 }
564 
565 static void bxt_ctx_workarounds_init(struct intel_engine_cs *engine,
566 				     struct i915_wa_list *wal)
567 {
568 	gen9_ctx_workarounds_init(engine, wal);
569 
570 	/* WaDisableThreadStallDopClockGating:bxt */
571 	wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
572 			 STALL_DOP_GATING_DISABLE);
573 
574 	/* WaToEnableHwFixForPushConstHWBug:bxt */
575 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
576 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
577 }
578 
579 static void kbl_ctx_workarounds_init(struct intel_engine_cs *engine,
580 				     struct i915_wa_list *wal)
581 {
582 	struct drm_i915_private *i915 = engine->i915;
583 
584 	gen9_ctx_workarounds_init(engine, wal);
585 
586 	/* WaToEnableHwFixForPushConstHWBug:kbl */
587 	if (IS_KBL_GRAPHICS_STEP(i915, STEP_C0, STEP_FOREVER))
588 		wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
589 			     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
590 
591 	/* WaDisableSbeCacheDispatchPortSharing:kbl */
592 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
593 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
594 }
595 
596 static void glk_ctx_workarounds_init(struct intel_engine_cs *engine,
597 				     struct i915_wa_list *wal)
598 {
599 	gen9_ctx_workarounds_init(engine, wal);
600 
601 	/* WaToEnableHwFixForPushConstHWBug:glk */
602 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
603 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
604 }
605 
606 static void cfl_ctx_workarounds_init(struct intel_engine_cs *engine,
607 				     struct i915_wa_list *wal)
608 {
609 	gen9_ctx_workarounds_init(engine, wal);
610 
611 	/* WaToEnableHwFixForPushConstHWBug:cfl */
612 	wa_masked_en(wal, COMMON_SLICE_CHICKEN2,
613 		     GEN8_SBE_DISABLE_REPLAY_BUF_OPTIMIZATION);
614 
615 	/* WaDisableSbeCacheDispatchPortSharing:cfl */
616 	wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
617 			 GEN7_SBE_SS_CACHE_DISPATCH_PORT_SHARING_DISABLE);
618 }
619 
620 static void icl_ctx_workarounds_init(struct intel_engine_cs *engine,
621 				     struct i915_wa_list *wal)
622 {
623 	/* Wa_1406697149 (WaDisableBankHangMode:icl) */
624 	wa_write(wal,
625 		 GEN8_L3CNTLREG,
626 		 intel_uncore_read(engine->uncore, GEN8_L3CNTLREG) |
627 		 GEN8_ERRDETBCTRL);
628 
629 	/* WaForceEnableNonCoherent:icl
630 	 * This is not the same workaround as in early Gen9 platforms, where
631 	 * lacking this could cause system hangs, but coherency performance
632 	 * overhead is high and only a few compute workloads really need it
633 	 * (the register is whitelisted in hardware now, so UMDs can opt in
634 	 * for coherency if they have a good reason).
635 	 */
636 	wa_mcr_masked_en(wal, ICL_HDC_MODE, HDC_FORCE_NON_COHERENT);
637 
638 	/* WaEnableFloatBlendOptimization:icl */
639 	wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
640 		   _MASKED_BIT_ENABLE(FLOAT_BLEND_OPTIMIZATION_ENABLE),
641 		   0 /* write-only, so skip validation */,
642 		   true);
643 
644 	/* WaDisableGPGPUMidThreadPreemption:icl */
645 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
646 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
647 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
648 
649 	/* allow headerless messages for preemptible GPGPU context */
650 	wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
651 			 GEN11_SAMPLER_ENABLE_HEADLESS_MSG);
652 
653 	/* Wa_1604278689:icl,ehl */
654 	wa_write(wal, IVB_FBC_RT_BASE, 0xFFFFFFFF & ~ILK_FBC_RT_VALID);
655 	wa_write_clr_set(wal, IVB_FBC_RT_BASE_UPPER,
656 			 0, /* write-only register; skip validation */
657 			 0xFFFFFFFF);
658 
659 	/* Wa_1406306137:icl,ehl */
660 	wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN11_DIS_PICK_2ND_EU);
661 }
662 
663 /*
664  * These settings aren't actually workarounds, but general tuning settings that
665  * need to be programmed on dg2 platform.
666  */
667 static void dg2_ctx_gt_tuning_init(struct intel_engine_cs *engine,
668 				   struct i915_wa_list *wal)
669 {
670 	wa_mcr_masked_en(wal, CHICKEN_RASTER_2, TBIMR_FAST_CLIP);
671 	wa_mcr_write_clr_set(wal, XEHP_L3SQCREG5, L3_PWM_TIMER_INIT_VAL_MASK,
672 			     REG_FIELD_PREP(L3_PWM_TIMER_INIT_VAL_MASK, 0x7f));
673 	wa_mcr_add(wal,
674 		   XEHP_FF_MODE2,
675 		   FF_MODE2_TDS_TIMER_MASK,
676 		   FF_MODE2_TDS_TIMER_128,
677 		   0, false);
678 }
679 
680 /*
681  * These settings aren't actually workarounds, but general tuning settings that
682  * need to be programmed on several platforms.
683  */
684 static void gen12_ctx_gt_tuning_init(struct intel_engine_cs *engine,
685 				     struct i915_wa_list *wal)
686 {
687 	/*
688 	 * Although some platforms refer to it as Wa_1604555607, we need to
689 	 * program it even on those that don't explicitly list that
690 	 * workaround.
691 	 *
692 	 * Note that the programming of this register is further modified
693 	 * according to the FF_MODE2 guidance given by Wa_1608008084:gen12.
694 	 * Wa_1608008084 tells us the FF_MODE2 register will return the wrong
695 	 * value when read. The default value for this register is zero for all
696 	 * fields and there are no bit masks. So instead of doing a RMW we
697 	 * should just write TDS timer value. For the same reason read
698 	 * verification is ignored.
699 	 */
700 	wa_add(wal,
701 	       GEN12_FF_MODE2,
702 	       FF_MODE2_TDS_TIMER_MASK,
703 	       FF_MODE2_TDS_TIMER_128,
704 	       0, false);
705 }
706 
707 static void gen12_ctx_workarounds_init(struct intel_engine_cs *engine,
708 				       struct i915_wa_list *wal)
709 {
710 	struct drm_i915_private *i915 = engine->i915;
711 
712 	gen12_ctx_gt_tuning_init(engine, wal);
713 
714 	/*
715 	 * Wa_1409142259:tgl,dg1,adl-p
716 	 * Wa_1409347922:tgl,dg1,adl-p
717 	 * Wa_1409252684:tgl,dg1,adl-p
718 	 * Wa_1409217633:tgl,dg1,adl-p
719 	 * Wa_1409207793:tgl,dg1,adl-p
720 	 * Wa_1409178076:tgl,dg1,adl-p
721 	 * Wa_1408979724:tgl,dg1,adl-p
722 	 * Wa_14010443199:tgl,rkl,dg1,adl-p
723 	 * Wa_14010698770:tgl,rkl,dg1,adl-s,adl-p
724 	 * Wa_1409342910:tgl,rkl,dg1,adl-s,adl-p
725 	 */
726 	wa_masked_en(wal, GEN11_COMMON_SLICE_CHICKEN3,
727 		     GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
728 
729 	/* WaDisableGPGPUMidThreadPreemption:gen12 */
730 	wa_masked_field_set(wal, GEN8_CS_CHICKEN1,
731 			    GEN9_PREEMPT_GPGPU_LEVEL_MASK,
732 			    GEN9_PREEMPT_GPGPU_THREAD_GROUP_LEVEL);
733 
734 	/*
735 	 * Wa_16011163337
736 	 *
737 	 * Like in gen12_ctx_gt_tuning_init(), read verification is ignored due
738 	 * to Wa_1608008084.
739 	 */
740 	wa_add(wal,
741 	       GEN12_FF_MODE2,
742 	       FF_MODE2_GS_TIMER_MASK,
743 	       FF_MODE2_GS_TIMER_224,
744 	       0, false);
745 
746 	if (!IS_DG1(i915))
747 		/* Wa_1806527549 */
748 		wa_masked_en(wal, HIZ_CHICKEN, HZ_DEPTH_TEST_LE_GE_OPT_DISABLE);
749 }
750 
751 static void dg1_ctx_workarounds_init(struct intel_engine_cs *engine,
752 				     struct i915_wa_list *wal)
753 {
754 	gen12_ctx_workarounds_init(engine, wal);
755 
756 	/* Wa_1409044764 */
757 	wa_masked_dis(wal, GEN11_COMMON_SLICE_CHICKEN3,
758 		      DG1_FLOAT_POINT_BLEND_OPT_STRICT_MODE_EN);
759 
760 	/* Wa_22010493298 */
761 	wa_masked_en(wal, HIZ_CHICKEN,
762 		     DG1_HZ_READ_SUPPRESSION_OPTIMIZATION_DISABLE);
763 }
764 
765 static void dg2_ctx_workarounds_init(struct intel_engine_cs *engine,
766 				     struct i915_wa_list *wal)
767 {
768 	dg2_ctx_gt_tuning_init(engine, wal);
769 
770 	/* Wa_16011186671:dg2_g11 */
771 	if (IS_DG2_GRAPHICS_STEP(engine->i915, G11, STEP_A0, STEP_B0)) {
772 		wa_mcr_masked_dis(wal, VFLSKPD, DIS_MULT_MISS_RD_SQUASH);
773 		wa_mcr_masked_en(wal, VFLSKPD, DIS_OVER_FETCH_CACHE);
774 	}
775 
776 	if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0)) {
777 		/* Wa_14010469329:dg2_g10 */
778 		wa_mcr_masked_en(wal, XEHP_COMMON_SLICE_CHICKEN3,
779 				 XEHP_DUAL_SIMD8_SEQ_MERGE_DISABLE);
780 
781 		/*
782 		 * Wa_22010465075:dg2_g10
783 		 * Wa_22010613112:dg2_g10
784 		 * Wa_14010698770:dg2_g10
785 		 */
786 		wa_mcr_masked_en(wal, XEHP_COMMON_SLICE_CHICKEN3,
787 				 GEN12_DISABLE_CPS_AWARE_COLOR_PIPE);
788 	}
789 
790 	/* Wa_16013271637:dg2 */
791 	wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
792 			 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
793 
794 	/* Wa_14014947963:dg2 */
795 	if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_B0, STEP_FOREVER) ||
796 	    IS_DG2_G11(engine->i915) || IS_DG2_G12(engine->i915))
797 		wa_masked_field_set(wal, VF_PREEMPTION, PREEMPTION_VERTEX_COUNT, 0x4000);
798 
799 	/* Wa_18018764978:dg2 */
800 	if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_C0, STEP_FOREVER) ||
801 	    IS_DG2_G11(engine->i915) || IS_DG2_G12(engine->i915))
802 		wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
803 
804 	/* Wa_15010599737:dg2 */
805 	wa_mcr_masked_en(wal, CHICKEN_RASTER_1, DIS_SF_ROUND_NEAREST_EVEN);
806 
807 	/* Wa_18019271663:dg2 */
808 	wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
809 }
810 
811 static void mtl_ctx_workarounds_init(struct intel_engine_cs *engine,
812 				     struct i915_wa_list *wal)
813 {
814 	struct drm_i915_private *i915 = engine->i915;
815 
816 	if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
817 	    IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0)) {
818 		/* Wa_14014947963 */
819 		wa_masked_field_set(wal, VF_PREEMPTION,
820 				    PREEMPTION_VERTEX_COUNT, 0x4000);
821 
822 		/* Wa_16013271637 */
823 		wa_mcr_masked_en(wal, XEHP_SLICE_COMMON_ECO_CHICKEN1,
824 				 MSC_MSAA_REODER_BUF_BYPASS_DISABLE);
825 
826 		/* Wa_18019627453 */
827 		wa_mcr_masked_en(wal, VFLSKPD, VF_PREFETCH_TLB_DIS);
828 
829 		/* Wa_18018764978 */
830 		wa_mcr_masked_en(wal, XEHP_PSS_MODE2, SCOREBOARD_STALL_FLUSH_CONTROL);
831 	}
832 
833 	/* Wa_18019271663 */
834 	wa_masked_en(wal, CACHE_MODE_1, MSAA_OPTIMIZATION_REDUC_DISABLE);
835 }
836 
837 static void fakewa_disable_nestedbb_mode(struct intel_engine_cs *engine,
838 					 struct i915_wa_list *wal)
839 {
840 	/*
841 	 * This is a "fake" workaround defined by software to ensure we
842 	 * maintain reliable, backward-compatible behavior for userspace with
843 	 * regards to how nested MI_BATCH_BUFFER_START commands are handled.
844 	 *
845 	 * The per-context setting of MI_MODE[12] determines whether the bits
846 	 * of a nested MI_BATCH_BUFFER_START instruction should be interpreted
847 	 * in the traditional manner or whether they should instead use a new
848 	 * tgl+ meaning that breaks backward compatibility, but allows nesting
849 	 * into 3rd-level batchbuffers.  When this new capability was first
850 	 * added in TGL, it remained off by default unless a context
851 	 * intentionally opted in to the new behavior.  However Xe_HPG now
852 	 * flips this on by default and requires that we explicitly opt out if
853 	 * we don't want the new behavior.
854 	 *
855 	 * From a SW perspective, we want to maintain the backward-compatible
856 	 * behavior for userspace, so we'll apply a fake workaround to set it
857 	 * back to the legacy behavior on platforms where the hardware default
858 	 * is to break compatibility.  At the moment there is no Linux
859 	 * userspace that utilizes third-level batchbuffers, so this will avoid
860 	 * userspace from needing to make any changes.  using the legacy
861 	 * meaning is the correct thing to do.  If/when we have userspace
862 	 * consumers that want to utilize third-level batch nesting, we can
863 	 * provide a context parameter to allow them to opt-in.
864 	 */
865 	wa_masked_dis(wal, RING_MI_MODE(engine->mmio_base), TGL_NESTED_BB_EN);
866 }
867 
868 static void gen12_ctx_gt_mocs_init(struct intel_engine_cs *engine,
869 				   struct i915_wa_list *wal)
870 {
871 	u8 mocs;
872 
873 	/*
874 	 * Some blitter commands do not have a field for MOCS, those
875 	 * commands will use MOCS index pointed by BLIT_CCTL.
876 	 * BLIT_CCTL registers are needed to be programmed to un-cached.
877 	 */
878 	if (engine->class == COPY_ENGINE_CLASS) {
879 		mocs = engine->gt->mocs.uc_index;
880 		wa_write_clr_set(wal,
881 				 BLIT_CCTL(engine->mmio_base),
882 				 BLIT_CCTL_MASK,
883 				 BLIT_CCTL_MOCS(mocs, mocs));
884 	}
885 }
886 
887 /*
888  * gen12_ctx_gt_fake_wa_init() aren't programmingan official workaround
889  * defined by the hardware team, but it programming general context registers.
890  * Adding those context register programming in context workaround
891  * allow us to use the wa framework for proper application and validation.
892  */
893 static void
894 gen12_ctx_gt_fake_wa_init(struct intel_engine_cs *engine,
895 			  struct i915_wa_list *wal)
896 {
897 	if (GRAPHICS_VER_FULL(engine->i915) >= IP_VER(12, 55))
898 		fakewa_disable_nestedbb_mode(engine, wal);
899 
900 	gen12_ctx_gt_mocs_init(engine, wal);
901 }
902 
903 static void
904 __intel_engine_init_ctx_wa(struct intel_engine_cs *engine,
905 			   struct i915_wa_list *wal,
906 			   const char *name)
907 {
908 	struct drm_i915_private *i915 = engine->i915;
909 
910 	wa_init_start(wal, engine->gt, name, engine->name);
911 
912 	/* Applies to all engines */
913 	/*
914 	 * Fake workarounds are not the actual workaround but
915 	 * programming of context registers using workaround framework.
916 	 */
917 	if (GRAPHICS_VER(i915) >= 12)
918 		gen12_ctx_gt_fake_wa_init(engine, wal);
919 
920 	if (engine->class != RENDER_CLASS)
921 		goto done;
922 
923 	if (IS_METEORLAKE(i915))
924 		mtl_ctx_workarounds_init(engine, wal);
925 	else if (IS_PONTEVECCHIO(i915))
926 		; /* noop; none at this time */
927 	else if (IS_DG2(i915))
928 		dg2_ctx_workarounds_init(engine, wal);
929 	else if (IS_XEHPSDV(i915))
930 		; /* noop; none at this time */
931 	else if (IS_DG1(i915))
932 		dg1_ctx_workarounds_init(engine, wal);
933 	else if (GRAPHICS_VER(i915) == 12)
934 		gen12_ctx_workarounds_init(engine, wal);
935 	else if (GRAPHICS_VER(i915) == 11)
936 		icl_ctx_workarounds_init(engine, wal);
937 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
938 		cfl_ctx_workarounds_init(engine, wal);
939 	else if (IS_GEMINILAKE(i915))
940 		glk_ctx_workarounds_init(engine, wal);
941 	else if (IS_KABYLAKE(i915))
942 		kbl_ctx_workarounds_init(engine, wal);
943 	else if (IS_BROXTON(i915))
944 		bxt_ctx_workarounds_init(engine, wal);
945 	else if (IS_SKYLAKE(i915))
946 		skl_ctx_workarounds_init(engine, wal);
947 	else if (IS_CHERRYVIEW(i915))
948 		chv_ctx_workarounds_init(engine, wal);
949 	else if (IS_BROADWELL(i915))
950 		bdw_ctx_workarounds_init(engine, wal);
951 	else if (GRAPHICS_VER(i915) == 7)
952 		gen7_ctx_workarounds_init(engine, wal);
953 	else if (GRAPHICS_VER(i915) == 6)
954 		gen6_ctx_workarounds_init(engine, wal);
955 	else if (GRAPHICS_VER(i915) < 8)
956 		;
957 	else
958 		MISSING_CASE(GRAPHICS_VER(i915));
959 
960 done:
961 	wa_init_finish(wal);
962 }
963 
964 void intel_engine_init_ctx_wa(struct intel_engine_cs *engine)
965 {
966 	__intel_engine_init_ctx_wa(engine, &engine->ctx_wa_list, "context");
967 }
968 
969 int intel_engine_emit_ctx_wa(struct i915_request *rq)
970 {
971 	struct i915_wa_list *wal = &rq->engine->ctx_wa_list;
972 	struct i915_wa *wa;
973 	unsigned int i;
974 	u32 *cs;
975 	int ret;
976 
977 	if (wal->count == 0)
978 		return 0;
979 
980 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
981 	if (ret)
982 		return ret;
983 
984 	cs = intel_ring_begin(rq, (wal->count * 2 + 2));
985 	if (IS_ERR(cs))
986 		return PTR_ERR(cs);
987 
988 	*cs++ = MI_LOAD_REGISTER_IMM(wal->count);
989 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
990 		*cs++ = i915_mmio_reg_offset(wa->reg);
991 		*cs++ = wa->set;
992 	}
993 	*cs++ = MI_NOOP;
994 
995 	intel_ring_advance(rq, cs);
996 
997 	ret = rq->engine->emit_flush(rq, EMIT_BARRIER);
998 	if (ret)
999 		return ret;
1000 
1001 	return 0;
1002 }
1003 
1004 static void
1005 gen4_gt_workarounds_init(struct intel_gt *gt,
1006 			 struct i915_wa_list *wal)
1007 {
1008 	/* WaDisable_RenderCache_OperationalFlush:gen4,ilk */
1009 	wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
1010 }
1011 
1012 static void
1013 g4x_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1014 {
1015 	gen4_gt_workarounds_init(gt, wal);
1016 
1017 	/* WaDisableRenderCachePipelinedFlush:g4x,ilk */
1018 	wa_masked_en(wal, CACHE_MODE_0, CM0_PIPELINED_RENDER_FLUSH_DISABLE);
1019 }
1020 
1021 static void
1022 ilk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1023 {
1024 	g4x_gt_workarounds_init(gt, wal);
1025 
1026 	wa_masked_en(wal, _3D_CHICKEN2, _3D_CHICKEN2_WM_READ_PIPELINED);
1027 }
1028 
1029 static void
1030 snb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1031 {
1032 }
1033 
1034 static void
1035 ivb_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1036 {
1037 	/* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
1038 	wa_masked_dis(wal,
1039 		      GEN7_COMMON_SLICE_CHICKEN1,
1040 		      GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
1041 
1042 	/* WaApplyL3ControlAndL3ChickenMode:ivb */
1043 	wa_write(wal, GEN7_L3CNTLREG1, GEN7_WA_FOR_GEN7_L3_CONTROL);
1044 	wa_write(wal, GEN7_L3_CHICKEN_MODE_REGISTER, GEN7_WA_L3_CHICKEN_MODE);
1045 
1046 	/* WaForceL3Serialization:ivb */
1047 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1048 }
1049 
1050 static void
1051 vlv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1052 {
1053 	/* WaForceL3Serialization:vlv */
1054 	wa_write_clr(wal, GEN7_L3SQCREG4, L3SQ_URB_READ_CAM_MATCH_DISABLE);
1055 
1056 	/*
1057 	 * WaIncreaseL3CreditsForVLVB0:vlv
1058 	 * This is the hardware default actually.
1059 	 */
1060 	wa_write(wal, GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
1061 }
1062 
1063 static void
1064 hsw_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1065 {
1066 	/* L3 caching of data atomics doesn't work -- disable it. */
1067 	wa_write(wal, HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
1068 
1069 	wa_add(wal,
1070 	       HSW_ROW_CHICKEN3, 0,
1071 	       _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE),
1072 	       0 /* XXX does this reg exist? */, true);
1073 
1074 	/* WaVSRefCountFullforceMissDisable:hsw */
1075 	wa_write_clr(wal, GEN7_FF_THREAD_MODE, GEN7_FF_VS_REF_CNT_FFME);
1076 }
1077 
1078 static void
1079 gen9_wa_init_mcr(struct drm_i915_private *i915, struct i915_wa_list *wal)
1080 {
1081 	const struct sseu_dev_info *sseu = &to_gt(i915)->info.sseu;
1082 	unsigned int slice, subslice;
1083 	u32 mcr, mcr_mask;
1084 
1085 	GEM_BUG_ON(GRAPHICS_VER(i915) != 9);
1086 
1087 	/*
1088 	 * WaProgramMgsrForCorrectSliceSpecificMmioReads:gen9,glk,kbl,cml
1089 	 * Before any MMIO read into slice/subslice specific registers, MCR
1090 	 * packet control register needs to be programmed to point to any
1091 	 * enabled s/ss pair. Otherwise, incorrect values will be returned.
1092 	 * This means each subsequent MMIO read will be forwarded to an
1093 	 * specific s/ss combination, but this is OK since these registers
1094 	 * are consistent across s/ss in almost all cases. In the rare
1095 	 * occasions, such as INSTDONE, where this value is dependent
1096 	 * on s/ss combo, the read should be done with read_subslice_reg.
1097 	 */
1098 	slice = ffs(sseu->slice_mask) - 1;
1099 	GEM_BUG_ON(slice >= ARRAY_SIZE(sseu->subslice_mask.hsw));
1100 	subslice = ffs(intel_sseu_get_hsw_subslices(sseu, slice));
1101 	GEM_BUG_ON(!subslice);
1102 	subslice--;
1103 
1104 	/*
1105 	 * We use GEN8_MCR..() macros to calculate the |mcr| value for
1106 	 * Gen9 to address WaProgramMgsrForCorrectSliceSpecificMmioReads
1107 	 */
1108 	mcr = GEN8_MCR_SLICE(slice) | GEN8_MCR_SUBSLICE(subslice);
1109 	mcr_mask = GEN8_MCR_SLICE_MASK | GEN8_MCR_SUBSLICE_MASK;
1110 
1111 	drm_dbg(&i915->drm, "MCR slice:%d/subslice:%d = %x\n", slice, subslice, mcr);
1112 
1113 	wa_write_clr_set(wal, GEN8_MCR_SELECTOR, mcr_mask, mcr);
1114 }
1115 
1116 static void
1117 gen9_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1118 {
1119 	struct drm_i915_private *i915 = gt->i915;
1120 
1121 	/* WaProgramMgsrForCorrectSliceSpecificMmioReads:glk,kbl,cml,gen9 */
1122 	gen9_wa_init_mcr(i915, wal);
1123 
1124 	/* WaDisableKillLogic:bxt,skl,kbl */
1125 	if (!IS_COFFEELAKE(i915) && !IS_COMETLAKE(i915))
1126 		wa_write_or(wal,
1127 			    GAM_ECOCHK,
1128 			    ECOCHK_DIS_TLB);
1129 
1130 	if (HAS_LLC(i915)) {
1131 		/* WaCompressedResourceSamplerPbeMediaNewHashMode:skl,kbl
1132 		 *
1133 		 * Must match Display Engine. See
1134 		 * WaCompressedResourceDisplayNewHashMode.
1135 		 */
1136 		wa_write_or(wal,
1137 			    MMCD_MISC_CTRL,
1138 			    MMCD_PCLA | MMCD_HOTSPOT_EN);
1139 	}
1140 
1141 	/* WaDisableHDCInvalidation:skl,bxt,kbl,cfl */
1142 	wa_write_or(wal,
1143 		    GAM_ECOCHK,
1144 		    BDW_DISABLE_HDC_INVALIDATION);
1145 }
1146 
1147 static void
1148 skl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1149 {
1150 	gen9_gt_workarounds_init(gt, wal);
1151 
1152 	/* WaDisableGafsUnitClkGating:skl */
1153 	wa_write_or(wal,
1154 		    GEN7_UCGCTL4,
1155 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1156 
1157 	/* WaInPlaceDecompressionHang:skl */
1158 	if (IS_SKL_GRAPHICS_STEP(gt->i915, STEP_A0, STEP_H0))
1159 		wa_write_or(wal,
1160 			    GEN9_GAMT_ECO_REG_RW_IA,
1161 			    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1162 }
1163 
1164 static void
1165 kbl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1166 {
1167 	gen9_gt_workarounds_init(gt, wal);
1168 
1169 	/* WaDisableDynamicCreditSharing:kbl */
1170 	if (IS_KBL_GRAPHICS_STEP(gt->i915, 0, STEP_C0))
1171 		wa_write_or(wal,
1172 			    GAMT_CHKN_BIT_REG,
1173 			    GAMT_CHKN_DISABLE_DYNAMIC_CREDIT_SHARING);
1174 
1175 	/* WaDisableGafsUnitClkGating:kbl */
1176 	wa_write_or(wal,
1177 		    GEN7_UCGCTL4,
1178 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1179 
1180 	/* WaInPlaceDecompressionHang:kbl */
1181 	wa_write_or(wal,
1182 		    GEN9_GAMT_ECO_REG_RW_IA,
1183 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1184 }
1185 
1186 static void
1187 glk_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1188 {
1189 	gen9_gt_workarounds_init(gt, wal);
1190 }
1191 
1192 static void
1193 cfl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1194 {
1195 	gen9_gt_workarounds_init(gt, wal);
1196 
1197 	/* WaDisableGafsUnitClkGating:cfl */
1198 	wa_write_or(wal,
1199 		    GEN7_UCGCTL4,
1200 		    GEN8_EU_GAUNIT_CLOCK_GATE_DISABLE);
1201 
1202 	/* WaInPlaceDecompressionHang:cfl */
1203 	wa_write_or(wal,
1204 		    GEN9_GAMT_ECO_REG_RW_IA,
1205 		    GAMT_ECO_ENABLE_IN_PLACE_DECOMPRESS);
1206 }
1207 
1208 static void __set_mcr_steering(struct i915_wa_list *wal,
1209 			       i915_reg_t steering_reg,
1210 			       unsigned int slice, unsigned int subslice)
1211 {
1212 	u32 mcr, mcr_mask;
1213 
1214 	mcr = GEN11_MCR_SLICE(slice) | GEN11_MCR_SUBSLICE(subslice);
1215 	mcr_mask = GEN11_MCR_SLICE_MASK | GEN11_MCR_SUBSLICE_MASK;
1216 
1217 	wa_write_clr_set(wal, steering_reg, mcr_mask, mcr);
1218 }
1219 
1220 static void debug_dump_steering(struct intel_gt *gt)
1221 {
1222 	struct drm_printer p = drm_debug_printer("MCR Steering:");
1223 
1224 	if (drm_debug_enabled(DRM_UT_DRIVER))
1225 		intel_gt_mcr_report_steering(&p, gt, false);
1226 }
1227 
1228 static void __add_mcr_wa(struct intel_gt *gt, struct i915_wa_list *wal,
1229 			 unsigned int slice, unsigned int subslice)
1230 {
1231 	__set_mcr_steering(wal, GEN8_MCR_SELECTOR, slice, subslice);
1232 
1233 	gt->default_steering.groupid = slice;
1234 	gt->default_steering.instanceid = subslice;
1235 
1236 	debug_dump_steering(gt);
1237 }
1238 
1239 static void
1240 icl_wa_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1241 {
1242 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1243 	unsigned int subslice;
1244 
1245 	GEM_BUG_ON(GRAPHICS_VER(gt->i915) < 11);
1246 	GEM_BUG_ON(hweight8(sseu->slice_mask) > 1);
1247 
1248 	/*
1249 	 * Although a platform may have subslices, we need to always steer
1250 	 * reads to the lowest instance that isn't fused off.  When Render
1251 	 * Power Gating is enabled, grabbing forcewake will only power up a
1252 	 * single subslice (the "minconfig") if there isn't a real workload
1253 	 * that needs to be run; this means that if we steer register reads to
1254 	 * one of the higher subslices, we run the risk of reading back 0's or
1255 	 * random garbage.
1256 	 */
1257 	subslice = __ffs(intel_sseu_get_hsw_subslices(sseu, 0));
1258 
1259 	/*
1260 	 * If the subslice we picked above also steers us to a valid L3 bank,
1261 	 * then we can just rely on the default steering and won't need to
1262 	 * worry about explicitly re-steering L3BANK reads later.
1263 	 */
1264 	if (gt->info.l3bank_mask & BIT(subslice))
1265 		gt->steering_table[L3BANK] = NULL;
1266 
1267 	__add_mcr_wa(gt, wal, 0, subslice);
1268 }
1269 
1270 static void
1271 xehp_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1272 {
1273 	const struct sseu_dev_info *sseu = &gt->info.sseu;
1274 	unsigned long slice, subslice = 0, slice_mask = 0;
1275 	u32 lncf_mask = 0;
1276 	int i;
1277 
1278 	/*
1279 	 * On Xe_HP the steering increases in complexity. There are now several
1280 	 * more units that require steering and we're not guaranteed to be able
1281 	 * to find a common setting for all of them. These are:
1282 	 * - GSLICE (fusable)
1283 	 * - DSS (sub-unit within gslice; fusable)
1284 	 * - L3 Bank (fusable)
1285 	 * - MSLICE (fusable)
1286 	 * - LNCF (sub-unit within mslice; always present if mslice is present)
1287 	 *
1288 	 * We'll do our default/implicit steering based on GSLICE (in the
1289 	 * sliceid field) and DSS (in the subsliceid field).  If we can
1290 	 * find overlap between the valid MSLICE and/or LNCF values with
1291 	 * a suitable GSLICE, then we can just re-use the default value and
1292 	 * skip and explicit steering at runtime.
1293 	 *
1294 	 * We only need to look for overlap between GSLICE/MSLICE/LNCF to find
1295 	 * a valid sliceid value.  DSS steering is the only type of steering
1296 	 * that utilizes the 'subsliceid' bits.
1297 	 *
1298 	 * Also note that, even though the steering domain is called "GSlice"
1299 	 * and it is encoded in the register using the gslice format, the spec
1300 	 * says that the combined (geometry | compute) fuse should be used to
1301 	 * select the steering.
1302 	 */
1303 
1304 	/* Find the potential gslice candidates */
1305 	slice_mask = intel_slicemask_from_xehp_dssmask(sseu->subslice_mask,
1306 						       GEN_DSS_PER_GSLICE);
1307 
1308 	/*
1309 	 * Find the potential LNCF candidates.  Either LNCF within a valid
1310 	 * mslice is fine.
1311 	 */
1312 	for_each_set_bit(i, &gt->info.mslice_mask, GEN12_MAX_MSLICES)
1313 		lncf_mask |= (0x3 << (i * 2));
1314 
1315 	/*
1316 	 * Are there any sliceid values that work for both GSLICE and LNCF
1317 	 * steering?
1318 	 */
1319 	if (slice_mask & lncf_mask) {
1320 		slice_mask &= lncf_mask;
1321 		gt->steering_table[LNCF] = NULL;
1322 	}
1323 
1324 	/* How about sliceid values that also work for MSLICE steering? */
1325 	if (slice_mask & gt->info.mslice_mask) {
1326 		slice_mask &= gt->info.mslice_mask;
1327 		gt->steering_table[MSLICE] = NULL;
1328 	}
1329 
1330 	if (IS_XEHPSDV(gt->i915) && slice_mask & BIT(0))
1331 		gt->steering_table[GAM] = NULL;
1332 
1333 	slice = __ffs(slice_mask);
1334 	subslice = intel_sseu_find_first_xehp_dss(sseu, GEN_DSS_PER_GSLICE, slice) %
1335 		GEN_DSS_PER_GSLICE;
1336 
1337 	__add_mcr_wa(gt, wal, slice, subslice);
1338 
1339 	/*
1340 	 * SQIDI ranges are special because they use different steering
1341 	 * registers than everything else we work with.  On XeHP SDV and
1342 	 * DG2-G10, any value in the steering registers will work fine since
1343 	 * all instances are present, but DG2-G11 only has SQIDI instances at
1344 	 * ID's 2 and 3, so we need to steer to one of those.  For simplicity
1345 	 * we'll just steer to a hardcoded "2" since that value will work
1346 	 * everywhere.
1347 	 */
1348 	__set_mcr_steering(wal, MCFG_MCR_SELECTOR, 0, 2);
1349 	__set_mcr_steering(wal, SF_MCR_SELECTOR, 0, 2);
1350 
1351 	/*
1352 	 * On DG2, GAM registers have a dedicated steering control register
1353 	 * and must always be programmed to a hardcoded groupid of "1."
1354 	 */
1355 	if (IS_DG2(gt->i915))
1356 		__set_mcr_steering(wal, GAM_MCR_SELECTOR, 1, 0);
1357 }
1358 
1359 static void
1360 pvc_init_mcr(struct intel_gt *gt, struct i915_wa_list *wal)
1361 {
1362 	unsigned int dss;
1363 
1364 	/*
1365 	 * Setup implicit steering for COMPUTE and DSS ranges to the first
1366 	 * non-fused-off DSS.  All other types of MCR registers will be
1367 	 * explicitly steered.
1368 	 */
1369 	dss = intel_sseu_find_first_xehp_dss(&gt->info.sseu, 0, 0);
1370 	__add_mcr_wa(gt, wal, dss / GEN_DSS_PER_CSLICE, dss % GEN_DSS_PER_CSLICE);
1371 }
1372 
1373 static void
1374 icl_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1375 {
1376 	struct drm_i915_private *i915 = gt->i915;
1377 
1378 	icl_wa_init_mcr(gt, wal);
1379 
1380 	/* WaModifyGamTlbPartitioning:icl */
1381 	wa_write_clr_set(wal,
1382 			 GEN11_GACB_PERF_CTRL,
1383 			 GEN11_HASH_CTRL_MASK,
1384 			 GEN11_HASH_CTRL_BIT0 | GEN11_HASH_CTRL_BIT4);
1385 
1386 	/* Wa_1405766107:icl
1387 	 * Formerly known as WaCL2SFHalfMaxAlloc
1388 	 */
1389 	wa_write_or(wal,
1390 		    GEN11_LSN_UNSLCVC,
1391 		    GEN11_LSN_UNSLCVC_GAFS_HALF_SF_MAXALLOC |
1392 		    GEN11_LSN_UNSLCVC_GAFS_HALF_CL2_MAXALLOC);
1393 
1394 	/* Wa_220166154:icl
1395 	 * Formerly known as WaDisCtxReload
1396 	 */
1397 	wa_write_or(wal,
1398 		    GEN8_GAMW_ECO_DEV_RW_IA,
1399 		    GAMW_ECO_DEV_CTX_RELOAD_DISABLE);
1400 
1401 	/* Wa_1406463099:icl
1402 	 * Formerly known as WaGamTlbPendError
1403 	 */
1404 	wa_write_or(wal,
1405 		    GAMT_CHKN_BIT_REG,
1406 		    GAMT_CHKN_DISABLE_L3_COH_PIPE);
1407 
1408 	/*
1409 	 * Wa_1408615072:icl,ehl  (vsunit)
1410 	 * Wa_1407596294:icl,ehl  (hsunit)
1411 	 */
1412 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1413 		    VSUNIT_CLKGATE_DIS | HSUNIT_CLKGATE_DIS);
1414 
1415 	/* Wa_1407352427:icl,ehl */
1416 	wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1417 		    PSDUNIT_CLKGATE_DIS);
1418 
1419 	/* Wa_1406680159:icl,ehl */
1420 	wa_mcr_write_or(wal,
1421 			GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1422 			GWUNIT_CLKGATE_DIS);
1423 
1424 	/* Wa_1607087056:icl,ehl,jsl */
1425 	if (IS_ICELAKE(i915) ||
1426 	    IS_JSL_EHL_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1427 		wa_write_or(wal,
1428 			    GEN11_SLICE_UNIT_LEVEL_CLKGATE,
1429 			    L3_CLKGATE_DIS | L3_CR2X_CLKGATE_DIS);
1430 
1431 	/*
1432 	 * This is not a documented workaround, but rather an optimization
1433 	 * to reduce sampler power.
1434 	 */
1435 	wa_mcr_write_clr(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1436 }
1437 
1438 /*
1439  * Though there are per-engine instances of these registers,
1440  * they retain their value through engine resets and should
1441  * only be provided on the GT workaround list rather than
1442  * the engine-specific workaround list.
1443  */
1444 static void
1445 wa_14011060649(struct intel_gt *gt, struct i915_wa_list *wal)
1446 {
1447 	struct intel_engine_cs *engine;
1448 	int id;
1449 
1450 	for_each_engine(engine, gt, id) {
1451 		if (engine->class != VIDEO_DECODE_CLASS ||
1452 		    (engine->instance % 2))
1453 			continue;
1454 
1455 		wa_write_or(wal, VDBOX_CGCTL3F10(engine->mmio_base),
1456 			    IECPUNIT_CLKGATE_DIS);
1457 	}
1458 }
1459 
1460 static void
1461 gen12_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1462 {
1463 	icl_wa_init_mcr(gt, wal);
1464 
1465 	/* Wa_14011060649:tgl,rkl,dg1,adl-s,adl-p */
1466 	wa_14011060649(gt, wal);
1467 
1468 	/* Wa_14011059788:tgl,rkl,adl-s,dg1,adl-p */
1469 	wa_mcr_write_or(wal, GEN10_DFR_RATIO_EN_AND_CHICKEN, DFR_DISABLE);
1470 }
1471 
1472 static void
1473 dg1_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1474 {
1475 	struct drm_i915_private *i915 = gt->i915;
1476 
1477 	gen12_gt_workarounds_init(gt, wal);
1478 
1479 	/* Wa_1409420604:dg1 */
1480 	if (IS_DG1(i915))
1481 		wa_mcr_write_or(wal,
1482 				SUBSLICE_UNIT_LEVEL_CLKGATE2,
1483 				CPSSUNIT_CLKGATE_DIS);
1484 
1485 	/* Wa_1408615072:dg1 */
1486 	/* Empirical testing shows this register is unaffected by engine reset. */
1487 	if (IS_DG1(i915))
1488 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE2,
1489 			    VSUNIT_CLKGATE_DIS_TGL);
1490 }
1491 
1492 static void
1493 xehpsdv_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1494 {
1495 	struct drm_i915_private *i915 = gt->i915;
1496 
1497 	xehp_init_mcr(gt, wal);
1498 
1499 	/* Wa_1409757795:xehpsdv */
1500 	wa_mcr_write_or(wal, SCCGCTL94DC, CG3DDISURB);
1501 
1502 	/* Wa_16011155590:xehpsdv */
1503 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A0, STEP_B0))
1504 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1505 			    TSGUNIT_CLKGATE_DIS);
1506 
1507 	/* Wa_14011780169:xehpsdv */
1508 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_B0, STEP_FOREVER)) {
1509 		wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS |
1510 			    GAMTLBVDBOX7_CLKGATE_DIS |
1511 			    GAMTLBVDBOX6_CLKGATE_DIS |
1512 			    GAMTLBVDBOX5_CLKGATE_DIS |
1513 			    GAMTLBVDBOX4_CLKGATE_DIS |
1514 			    GAMTLBVDBOX3_CLKGATE_DIS |
1515 			    GAMTLBVDBOX2_CLKGATE_DIS |
1516 			    GAMTLBVDBOX1_CLKGATE_DIS |
1517 			    GAMTLBVDBOX0_CLKGATE_DIS |
1518 			    GAMTLBKCR_CLKGATE_DIS |
1519 			    GAMTLBGUC_CLKGATE_DIS |
1520 			    GAMTLBBLT_CLKGATE_DIS);
1521 		wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS |
1522 			    GAMTLBGFXA1_CLKGATE_DIS |
1523 			    GAMTLBCOMPA0_CLKGATE_DIS |
1524 			    GAMTLBCOMPA1_CLKGATE_DIS |
1525 			    GAMTLBCOMPB0_CLKGATE_DIS |
1526 			    GAMTLBCOMPB1_CLKGATE_DIS |
1527 			    GAMTLBCOMPC0_CLKGATE_DIS |
1528 			    GAMTLBCOMPC1_CLKGATE_DIS |
1529 			    GAMTLBCOMPD0_CLKGATE_DIS |
1530 			    GAMTLBCOMPD1_CLKGATE_DIS |
1531 			    GAMTLBMERT_CLKGATE_DIS   |
1532 			    GAMTLBVEBOX3_CLKGATE_DIS |
1533 			    GAMTLBVEBOX2_CLKGATE_DIS |
1534 			    GAMTLBVEBOX1_CLKGATE_DIS |
1535 			    GAMTLBVEBOX0_CLKGATE_DIS);
1536 	}
1537 
1538 	/* Wa_16012725990:xehpsdv */
1539 	if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_FOREVER))
1540 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE, VFUNIT_CLKGATE_DIS);
1541 
1542 	/* Wa_14011060649:xehpsdv */
1543 	wa_14011060649(gt, wal);
1544 
1545 	/* Wa_14012362059:xehpsdv */
1546 	wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB);
1547 
1548 	/* Wa_14014368820:xehpsdv */
1549 	wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1550 			INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1551 }
1552 
1553 static void
1554 dg2_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1555 {
1556 	struct intel_engine_cs *engine;
1557 	int id;
1558 
1559 	xehp_init_mcr(gt, wal);
1560 
1561 	/* Wa_14011060649:dg2 */
1562 	wa_14011060649(gt, wal);
1563 
1564 	/*
1565 	 * Although there are per-engine instances of these registers,
1566 	 * they technically exist outside the engine itself and are not
1567 	 * impacted by engine resets.  Furthermore, they're part of the
1568 	 * GuC blacklist so trying to treat them as engine workarounds
1569 	 * will result in GuC initialization failure and a wedged GPU.
1570 	 */
1571 	for_each_engine(engine, gt, id) {
1572 		if (engine->class != VIDEO_DECODE_CLASS)
1573 			continue;
1574 
1575 		/* Wa_16010515920:dg2_g10 */
1576 		if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0))
1577 			wa_write_or(wal, VDBOX_CGCTL3F18(engine->mmio_base),
1578 				    ALNUNIT_CLKGATE_DIS);
1579 	}
1580 
1581 	if (IS_DG2_G10(gt->i915)) {
1582 		/* Wa_22010523718:dg2 */
1583 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1584 			    CG3DDISCFEG_CLKGATE_DIS);
1585 
1586 		/* Wa_14011006942:dg2 */
1587 		wa_mcr_write_or(wal, GEN11_SUBSLICE_UNIT_LEVEL_CLKGATE,
1588 				DSS_ROUTER_CLKGATE_DIS);
1589 	}
1590 
1591 	if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0) ||
1592 	    IS_DG2_GRAPHICS_STEP(gt->i915, G11, STEP_A0, STEP_B0)) {
1593 		/* Wa_14012362059:dg2 */
1594 		wa_mcr_write_or(wal, XEHP_MERT_MOD_CTRL, FORCE_MISS_FTLB);
1595 	}
1596 
1597 	if (IS_DG2_GRAPHICS_STEP(gt->i915, G10, STEP_A0, STEP_B0)) {
1598 		/* Wa_14010948348:dg2_g10 */
1599 		wa_write_or(wal, UNSLCGCTL9430, MSQDUNIT_CLKGATE_DIS);
1600 
1601 		/* Wa_14011037102:dg2_g10 */
1602 		wa_write_or(wal, UNSLCGCTL9444, LTCDD_CLKGATE_DIS);
1603 
1604 		/* Wa_14011371254:dg2_g10 */
1605 		wa_mcr_write_or(wal, XEHP_SLICE_UNIT_LEVEL_CLKGATE, NODEDSS_CLKGATE_DIS);
1606 
1607 		/* Wa_14011431319:dg2_g10 */
1608 		wa_write_or(wal, UNSLCGCTL9440, GAMTLBOACS_CLKGATE_DIS |
1609 			    GAMTLBVDBOX7_CLKGATE_DIS |
1610 			    GAMTLBVDBOX6_CLKGATE_DIS |
1611 			    GAMTLBVDBOX5_CLKGATE_DIS |
1612 			    GAMTLBVDBOX4_CLKGATE_DIS |
1613 			    GAMTLBVDBOX3_CLKGATE_DIS |
1614 			    GAMTLBVDBOX2_CLKGATE_DIS |
1615 			    GAMTLBVDBOX1_CLKGATE_DIS |
1616 			    GAMTLBVDBOX0_CLKGATE_DIS |
1617 			    GAMTLBKCR_CLKGATE_DIS |
1618 			    GAMTLBGUC_CLKGATE_DIS |
1619 			    GAMTLBBLT_CLKGATE_DIS);
1620 		wa_write_or(wal, UNSLCGCTL9444, GAMTLBGFXA0_CLKGATE_DIS |
1621 			    GAMTLBGFXA1_CLKGATE_DIS |
1622 			    GAMTLBCOMPA0_CLKGATE_DIS |
1623 			    GAMTLBCOMPA1_CLKGATE_DIS |
1624 			    GAMTLBCOMPB0_CLKGATE_DIS |
1625 			    GAMTLBCOMPB1_CLKGATE_DIS |
1626 			    GAMTLBCOMPC0_CLKGATE_DIS |
1627 			    GAMTLBCOMPC1_CLKGATE_DIS |
1628 			    GAMTLBCOMPD0_CLKGATE_DIS |
1629 			    GAMTLBCOMPD1_CLKGATE_DIS |
1630 			    GAMTLBMERT_CLKGATE_DIS   |
1631 			    GAMTLBVEBOX3_CLKGATE_DIS |
1632 			    GAMTLBVEBOX2_CLKGATE_DIS |
1633 			    GAMTLBVEBOX1_CLKGATE_DIS |
1634 			    GAMTLBVEBOX0_CLKGATE_DIS);
1635 
1636 		/* Wa_14010569222:dg2_g10 */
1637 		wa_write_or(wal, UNSLICE_UNIT_LEVEL_CLKGATE,
1638 			    GAMEDIA_CLKGATE_DIS);
1639 
1640 		/* Wa_14011028019:dg2_g10 */
1641 		wa_mcr_write_or(wal, SSMCGCTL9530, RTFUNIT_CLKGATE_DIS);
1642 
1643 		/* Wa_14010680813:dg2_g10 */
1644 		wa_mcr_write_or(wal, XEHP_GAMSTLB_CTRL,
1645 				CONTROL_BLOCK_CLKGATE_DIS |
1646 				EGRESS_BLOCK_CLKGATE_DIS |
1647 				TAG_BLOCK_CLKGATE_DIS);
1648 	}
1649 
1650 	/* Wa_14014830051:dg2 */
1651 	wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1652 
1653 	/*
1654 	 * The following are not actually "workarounds" but rather
1655 	 * recommended tuning settings documented in the bspec's
1656 	 * performance guide section.
1657 	 */
1658 	wa_mcr_write_or(wal, XEHP_SQCM, EN_32B_ACCESS);
1659 
1660 	/* Wa_14015795083 */
1661 	wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1662 
1663 	/* Wa_18018781329 */
1664 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1665 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1666 	wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1667 	wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1668 
1669 	/* Wa_1509235366:dg2 */
1670 	wa_mcr_write_or(wal, XEHP_GAMCNTRL_CTRL,
1671 			INVALIDATION_BROADCAST_MODE_DIS | GLOBAL_INVALIDATION_MODE);
1672 }
1673 
1674 static void
1675 pvc_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1676 {
1677 	pvc_init_mcr(gt, wal);
1678 
1679 	/* Wa_14015795083 */
1680 	wa_write_clr(wal, GEN7_MISCCPCTL, GEN12_DOP_CLOCK_GATE_RENDER_ENABLE);
1681 
1682 	/* Wa_18018781329 */
1683 	wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1684 	wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1685 	wa_mcr_write_or(wal, XEHP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1686 	wa_mcr_write_or(wal, XEHP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1687 }
1688 
1689 static void
1690 xelpg_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1691 {
1692 	if (IS_MTL_GRAPHICS_STEP(gt->i915, M, STEP_A0, STEP_B0) ||
1693 	    IS_MTL_GRAPHICS_STEP(gt->i915, P, STEP_A0, STEP_B0)) {
1694 		/* Wa_14014830051 */
1695 		wa_mcr_write_clr(wal, SARB_CHICKEN1, COMP_CKN_IN);
1696 
1697 		/* Wa_18018781329 */
1698 		wa_mcr_write_or(wal, RENDER_MOD_CTRL, FORCE_MISS_FTLB);
1699 		wa_mcr_write_or(wal, COMP_MOD_CTRL, FORCE_MISS_FTLB);
1700 	}
1701 
1702 	/*
1703 	 * Unlike older platforms, we no longer setup implicit steering here;
1704 	 * all MCR accesses are explicitly steered.
1705 	 */
1706 	debug_dump_steering(gt);
1707 }
1708 
1709 static void
1710 xelpmp_gt_workarounds_init(struct intel_gt *gt, struct i915_wa_list *wal)
1711 {
1712 	if (IS_MTL_MEDIA_STEP(gt->i915, STEP_A0, STEP_B0)) {
1713 		/*
1714 		 * Wa_18018781329
1715 		 *
1716 		 * Note that although these registers are MCR on the primary
1717 		 * GT, the media GT's versions are regular singleton registers.
1718 		 */
1719 		wa_write_or(wal, XELPMP_GSC_MOD_CTRL, FORCE_MISS_FTLB);
1720 		wa_write_or(wal, XELPMP_VDBX_MOD_CTRL, FORCE_MISS_FTLB);
1721 		wa_write_or(wal, XELPMP_VEBX_MOD_CTRL, FORCE_MISS_FTLB);
1722 	}
1723 
1724 	debug_dump_steering(gt);
1725 }
1726 
1727 static void
1728 gt_init_workarounds(struct intel_gt *gt, struct i915_wa_list *wal)
1729 {
1730 	struct drm_i915_private *i915 = gt->i915;
1731 
1732 	if (gt->type == GT_MEDIA) {
1733 		if (MEDIA_VER(i915) >= 13)
1734 			xelpmp_gt_workarounds_init(gt, wal);
1735 		else
1736 			MISSING_CASE(MEDIA_VER(i915));
1737 
1738 		return;
1739 	}
1740 
1741 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 70))
1742 		xelpg_gt_workarounds_init(gt, wal);
1743 	else if (IS_PONTEVECCHIO(i915))
1744 		pvc_gt_workarounds_init(gt, wal);
1745 	else if (IS_DG2(i915))
1746 		dg2_gt_workarounds_init(gt, wal);
1747 	else if (IS_XEHPSDV(i915))
1748 		xehpsdv_gt_workarounds_init(gt, wal);
1749 	else if (IS_DG1(i915))
1750 		dg1_gt_workarounds_init(gt, wal);
1751 	else if (GRAPHICS_VER(i915) == 12)
1752 		gen12_gt_workarounds_init(gt, wal);
1753 	else if (GRAPHICS_VER(i915) == 11)
1754 		icl_gt_workarounds_init(gt, wal);
1755 	else if (IS_COFFEELAKE(i915) || IS_COMETLAKE(i915))
1756 		cfl_gt_workarounds_init(gt, wal);
1757 	else if (IS_GEMINILAKE(i915))
1758 		glk_gt_workarounds_init(gt, wal);
1759 	else if (IS_KABYLAKE(i915))
1760 		kbl_gt_workarounds_init(gt, wal);
1761 	else if (IS_BROXTON(i915))
1762 		gen9_gt_workarounds_init(gt, wal);
1763 	else if (IS_SKYLAKE(i915))
1764 		skl_gt_workarounds_init(gt, wal);
1765 	else if (IS_HASWELL(i915))
1766 		hsw_gt_workarounds_init(gt, wal);
1767 	else if (IS_VALLEYVIEW(i915))
1768 		vlv_gt_workarounds_init(gt, wal);
1769 	else if (IS_IVYBRIDGE(i915))
1770 		ivb_gt_workarounds_init(gt, wal);
1771 	else if (GRAPHICS_VER(i915) == 6)
1772 		snb_gt_workarounds_init(gt, wal);
1773 	else if (GRAPHICS_VER(i915) == 5)
1774 		ilk_gt_workarounds_init(gt, wal);
1775 	else if (IS_G4X(i915))
1776 		g4x_gt_workarounds_init(gt, wal);
1777 	else if (GRAPHICS_VER(i915) == 4)
1778 		gen4_gt_workarounds_init(gt, wal);
1779 	else if (GRAPHICS_VER(i915) <= 8)
1780 		;
1781 	else
1782 		MISSING_CASE(GRAPHICS_VER(i915));
1783 }
1784 
1785 void intel_gt_init_workarounds(struct intel_gt *gt)
1786 {
1787 	struct i915_wa_list *wal = &gt->wa_list;
1788 
1789 	wa_init_start(wal, gt, "GT", "global");
1790 	gt_init_workarounds(gt, wal);
1791 	wa_init_finish(wal);
1792 }
1793 
1794 static enum forcewake_domains
1795 wal_get_fw_for_rmw(struct intel_uncore *uncore, const struct i915_wa_list *wal)
1796 {
1797 	enum forcewake_domains fw = 0;
1798 	struct i915_wa *wa;
1799 	unsigned int i;
1800 
1801 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1802 		fw |= intel_uncore_forcewake_for_reg(uncore,
1803 						     wa->reg,
1804 						     FW_REG_READ |
1805 						     FW_REG_WRITE);
1806 
1807 	return fw;
1808 }
1809 
1810 static bool
1811 wa_verify(struct intel_gt *gt, const struct i915_wa *wa, u32 cur,
1812 	  const char *name, const char *from)
1813 {
1814 	if ((cur ^ wa->set) & wa->read) {
1815 		drm_err(&gt->i915->drm,
1816 			"%s workaround lost on %s! (reg[%x]=0x%x, relevant bits were 0x%x vs expected 0x%x)\n",
1817 			name, from, i915_mmio_reg_offset(wa->reg),
1818 			cur, cur & wa->read, wa->set & wa->read);
1819 
1820 		return false;
1821 	}
1822 
1823 	return true;
1824 }
1825 
1826 static void wa_list_apply(const struct i915_wa_list *wal)
1827 {
1828 	struct intel_gt *gt = wal->gt;
1829 	struct intel_uncore *uncore = gt->uncore;
1830 	enum forcewake_domains fw;
1831 	unsigned long flags;
1832 	struct i915_wa *wa;
1833 	unsigned int i;
1834 
1835 	if (!wal->count)
1836 		return;
1837 
1838 	fw = wal_get_fw_for_rmw(uncore, wal);
1839 
1840 	intel_gt_mcr_lock(gt, &flags);
1841 	spin_lock(&uncore->lock);
1842 	intel_uncore_forcewake_get__locked(uncore, fw);
1843 
1844 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
1845 		u32 val, old = 0;
1846 
1847 		/* open-coded rmw due to steering */
1848 		if (wa->clr)
1849 			old = wa->is_mcr ?
1850 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1851 				intel_uncore_read_fw(uncore, wa->reg);
1852 		val = (old & ~wa->clr) | wa->set;
1853 		if (val != old || !wa->clr) {
1854 			if (wa->is_mcr)
1855 				intel_gt_mcr_multicast_write_fw(gt, wa->mcr_reg, val);
1856 			else
1857 				intel_uncore_write_fw(uncore, wa->reg, val);
1858 		}
1859 
1860 		if (IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)) {
1861 			u32 val = wa->is_mcr ?
1862 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1863 				intel_uncore_read_fw(uncore, wa->reg);
1864 
1865 			wa_verify(gt, wa, val, wal->name, "application");
1866 		}
1867 	}
1868 
1869 	intel_uncore_forcewake_put__locked(uncore, fw);
1870 	spin_unlock(&uncore->lock);
1871 	intel_gt_mcr_unlock(gt, flags);
1872 }
1873 
1874 void intel_gt_apply_workarounds(struct intel_gt *gt)
1875 {
1876 	wa_list_apply(&gt->wa_list);
1877 }
1878 
1879 static bool wa_list_verify(struct intel_gt *gt,
1880 			   const struct i915_wa_list *wal,
1881 			   const char *from)
1882 {
1883 	struct intel_uncore *uncore = gt->uncore;
1884 	struct i915_wa *wa;
1885 	enum forcewake_domains fw;
1886 	unsigned long flags;
1887 	unsigned int i;
1888 	bool ok = true;
1889 
1890 	fw = wal_get_fw_for_rmw(uncore, wal);
1891 
1892 	intel_gt_mcr_lock(gt, &flags);
1893 	spin_lock(&uncore->lock);
1894 	intel_uncore_forcewake_get__locked(uncore, fw);
1895 
1896 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
1897 		ok &= wa_verify(wal->gt, wa, wa->is_mcr ?
1898 				intel_gt_mcr_read_any_fw(gt, wa->mcr_reg) :
1899 				intel_uncore_read_fw(uncore, wa->reg),
1900 				wal->name, from);
1901 
1902 	intel_uncore_forcewake_put__locked(uncore, fw);
1903 	spin_unlock(&uncore->lock);
1904 	intel_gt_mcr_unlock(gt, flags);
1905 
1906 	return ok;
1907 }
1908 
1909 bool intel_gt_verify_workarounds(struct intel_gt *gt, const char *from)
1910 {
1911 	return wa_list_verify(gt, &gt->wa_list, from);
1912 }
1913 
1914 __maybe_unused
1915 static bool is_nonpriv_flags_valid(u32 flags)
1916 {
1917 	/* Check only valid flag bits are set */
1918 	if (flags & ~RING_FORCE_TO_NONPRIV_MASK_VALID)
1919 		return false;
1920 
1921 	/* NB: Only 3 out of 4 enum values are valid for access field */
1922 	if ((flags & RING_FORCE_TO_NONPRIV_ACCESS_MASK) ==
1923 	    RING_FORCE_TO_NONPRIV_ACCESS_INVALID)
1924 		return false;
1925 
1926 	return true;
1927 }
1928 
1929 static void
1930 whitelist_reg_ext(struct i915_wa_list *wal, i915_reg_t reg, u32 flags)
1931 {
1932 	struct i915_wa wa = {
1933 		.reg = reg
1934 	};
1935 
1936 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1937 		return;
1938 
1939 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1940 		return;
1941 
1942 	wa.reg.reg |= flags;
1943 	_wa_add(wal, &wa);
1944 }
1945 
1946 static void
1947 whitelist_mcr_reg_ext(struct i915_wa_list *wal, i915_mcr_reg_t reg, u32 flags)
1948 {
1949 	struct i915_wa wa = {
1950 		.mcr_reg = reg,
1951 		.is_mcr = 1,
1952 	};
1953 
1954 	if (GEM_DEBUG_WARN_ON(wal->count >= RING_MAX_NONPRIV_SLOTS))
1955 		return;
1956 
1957 	if (GEM_DEBUG_WARN_ON(!is_nonpriv_flags_valid(flags)))
1958 		return;
1959 
1960 	wa.mcr_reg.reg |= flags;
1961 	_wa_add(wal, &wa);
1962 }
1963 
1964 static void
1965 whitelist_reg(struct i915_wa_list *wal, i915_reg_t reg)
1966 {
1967 	whitelist_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1968 }
1969 
1970 static void
1971 whitelist_mcr_reg(struct i915_wa_list *wal, i915_mcr_reg_t reg)
1972 {
1973 	whitelist_mcr_reg_ext(wal, reg, RING_FORCE_TO_NONPRIV_ACCESS_RW);
1974 }
1975 
1976 static void gen9_whitelist_build(struct i915_wa_list *w)
1977 {
1978 	/* WaVFEStateAfterPipeControlwithMediaStateClear:skl,bxt,glk,cfl */
1979 	whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
1980 
1981 	/* WaEnablePreemptionGranularityControlByUMD:skl,bxt,kbl,cfl,[cnl] */
1982 	whitelist_reg(w, GEN8_CS_CHICKEN1);
1983 
1984 	/* WaAllowUMDToModifyHDCChicken1:skl,bxt,kbl,glk,cfl */
1985 	whitelist_reg(w, GEN8_HDC_CHICKEN1);
1986 
1987 	/* WaSendPushConstantsFromMMIO:skl,bxt */
1988 	whitelist_reg(w, COMMON_SLICE_CHICKEN2);
1989 }
1990 
1991 static void skl_whitelist_build(struct intel_engine_cs *engine)
1992 {
1993 	struct i915_wa_list *w = &engine->whitelist;
1994 
1995 	if (engine->class != RENDER_CLASS)
1996 		return;
1997 
1998 	gen9_whitelist_build(w);
1999 
2000 	/* WaDisableLSQCROPERFforOCL:skl */
2001 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
2002 }
2003 
2004 static void bxt_whitelist_build(struct intel_engine_cs *engine)
2005 {
2006 	if (engine->class != RENDER_CLASS)
2007 		return;
2008 
2009 	gen9_whitelist_build(&engine->whitelist);
2010 }
2011 
2012 static void kbl_whitelist_build(struct intel_engine_cs *engine)
2013 {
2014 	struct i915_wa_list *w = &engine->whitelist;
2015 
2016 	if (engine->class != RENDER_CLASS)
2017 		return;
2018 
2019 	gen9_whitelist_build(w);
2020 
2021 	/* WaDisableLSQCROPERFforOCL:kbl */
2022 	whitelist_mcr_reg(w, GEN8_L3SQCREG4);
2023 }
2024 
2025 static void glk_whitelist_build(struct intel_engine_cs *engine)
2026 {
2027 	struct i915_wa_list *w = &engine->whitelist;
2028 
2029 	if (engine->class != RENDER_CLASS)
2030 		return;
2031 
2032 	gen9_whitelist_build(w);
2033 
2034 	/* WA #0862: Userspace has to set "Barrier Mode" to avoid hangs. */
2035 	whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2036 }
2037 
2038 static void cfl_whitelist_build(struct intel_engine_cs *engine)
2039 {
2040 	struct i915_wa_list *w = &engine->whitelist;
2041 
2042 	if (engine->class != RENDER_CLASS)
2043 		return;
2044 
2045 	gen9_whitelist_build(w);
2046 
2047 	/*
2048 	 * WaAllowPMDepthAndInvocationCountAccessFromUMD:cfl,whl,cml,aml
2049 	 *
2050 	 * This covers 4 register which are next to one another :
2051 	 *   - PS_INVOCATION_COUNT
2052 	 *   - PS_INVOCATION_COUNT_UDW
2053 	 *   - PS_DEPTH_COUNT
2054 	 *   - PS_DEPTH_COUNT_UDW
2055 	 */
2056 	whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2057 			  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2058 			  RING_FORCE_TO_NONPRIV_RANGE_4);
2059 }
2060 
2061 static void allow_read_ctx_timestamp(struct intel_engine_cs *engine)
2062 {
2063 	struct i915_wa_list *w = &engine->whitelist;
2064 
2065 	if (engine->class != RENDER_CLASS)
2066 		whitelist_reg_ext(w,
2067 				  RING_CTX_TIMESTAMP(engine->mmio_base),
2068 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2069 }
2070 
2071 static void cml_whitelist_build(struct intel_engine_cs *engine)
2072 {
2073 	allow_read_ctx_timestamp(engine);
2074 
2075 	cfl_whitelist_build(engine);
2076 }
2077 
2078 static void icl_whitelist_build(struct intel_engine_cs *engine)
2079 {
2080 	struct i915_wa_list *w = &engine->whitelist;
2081 
2082 	allow_read_ctx_timestamp(engine);
2083 
2084 	switch (engine->class) {
2085 	case RENDER_CLASS:
2086 		/* WaAllowUMDToModifyHalfSliceChicken7:icl */
2087 		whitelist_mcr_reg(w, GEN9_HALF_SLICE_CHICKEN7);
2088 
2089 		/* WaAllowUMDToModifySamplerMode:icl */
2090 		whitelist_mcr_reg(w, GEN10_SAMPLER_MODE);
2091 
2092 		/* WaEnableStateCacheRedirectToCS:icl */
2093 		whitelist_reg(w, GEN9_SLICE_COMMON_ECO_CHICKEN1);
2094 
2095 		/*
2096 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:icl
2097 		 *
2098 		 * This covers 4 register which are next to one another :
2099 		 *   - PS_INVOCATION_COUNT
2100 		 *   - PS_INVOCATION_COUNT_UDW
2101 		 *   - PS_DEPTH_COUNT
2102 		 *   - PS_DEPTH_COUNT_UDW
2103 		 */
2104 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2105 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2106 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2107 		break;
2108 
2109 	case VIDEO_DECODE_CLASS:
2110 		/* hucStatusRegOffset */
2111 		whitelist_reg_ext(w, _MMIO(0x2000 + engine->mmio_base),
2112 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2113 		/* hucUKernelHdrInfoRegOffset */
2114 		whitelist_reg_ext(w, _MMIO(0x2014 + engine->mmio_base),
2115 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2116 		/* hucStatus2RegOffset */
2117 		whitelist_reg_ext(w, _MMIO(0x23B0 + engine->mmio_base),
2118 				  RING_FORCE_TO_NONPRIV_ACCESS_RD);
2119 		break;
2120 
2121 	default:
2122 		break;
2123 	}
2124 }
2125 
2126 static void tgl_whitelist_build(struct intel_engine_cs *engine)
2127 {
2128 	struct i915_wa_list *w = &engine->whitelist;
2129 
2130 	allow_read_ctx_timestamp(engine);
2131 
2132 	switch (engine->class) {
2133 	case RENDER_CLASS:
2134 		/*
2135 		 * WaAllowPMDepthAndInvocationCountAccessFromUMD:tgl
2136 		 * Wa_1408556865:tgl
2137 		 *
2138 		 * This covers 4 registers which are next to one another :
2139 		 *   - PS_INVOCATION_COUNT
2140 		 *   - PS_INVOCATION_COUNT_UDW
2141 		 *   - PS_DEPTH_COUNT
2142 		 *   - PS_DEPTH_COUNT_UDW
2143 		 */
2144 		whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2145 				  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2146 				  RING_FORCE_TO_NONPRIV_RANGE_4);
2147 
2148 		/*
2149 		 * Wa_1808121037:tgl
2150 		 * Wa_14012131227:dg1
2151 		 * Wa_1508744258:tgl,rkl,dg1,adl-s,adl-p
2152 		 */
2153 		whitelist_reg(w, GEN7_COMMON_SLICE_CHICKEN1);
2154 
2155 		/* Wa_1806527549:tgl */
2156 		whitelist_reg(w, HIZ_CHICKEN);
2157 		break;
2158 	default:
2159 		break;
2160 	}
2161 }
2162 
2163 static void xehpsdv_whitelist_build(struct intel_engine_cs *engine)
2164 {
2165 	allow_read_ctx_timestamp(engine);
2166 }
2167 
2168 static void dg2_whitelist_build(struct intel_engine_cs *engine)
2169 {
2170 	struct i915_wa_list *w = &engine->whitelist;
2171 
2172 	allow_read_ctx_timestamp(engine);
2173 
2174 	switch (engine->class) {
2175 	case RENDER_CLASS:
2176 		/*
2177 		 * Wa_1507100340:dg2_g10
2178 		 *
2179 		 * This covers 4 registers which are next to one another :
2180 		 *   - PS_INVOCATION_COUNT
2181 		 *   - PS_INVOCATION_COUNT_UDW
2182 		 *   - PS_DEPTH_COUNT
2183 		 *   - PS_DEPTH_COUNT_UDW
2184 		 */
2185 		if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0))
2186 			whitelist_reg_ext(w, PS_INVOCATION_COUNT,
2187 					  RING_FORCE_TO_NONPRIV_ACCESS_RD |
2188 					  RING_FORCE_TO_NONPRIV_RANGE_4);
2189 
2190 		break;
2191 	case COMPUTE_CLASS:
2192 		/* Wa_16011157294:dg2_g10 */
2193 		if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_B0))
2194 			whitelist_reg(w, GEN9_CTX_PREEMPT_REG);
2195 		break;
2196 	default:
2197 		break;
2198 	}
2199 }
2200 
2201 static void blacklist_trtt(struct intel_engine_cs *engine)
2202 {
2203 	struct i915_wa_list *w = &engine->whitelist;
2204 
2205 	/*
2206 	 * Prevent read/write access to [0x4400, 0x4600) which covers
2207 	 * the TRTT range across all engines. Note that normally userspace
2208 	 * cannot access the other engines' trtt control, but for simplicity
2209 	 * we cover the entire range on each engine.
2210 	 */
2211 	whitelist_reg_ext(w, _MMIO(0x4400),
2212 			  RING_FORCE_TO_NONPRIV_DENY |
2213 			  RING_FORCE_TO_NONPRIV_RANGE_64);
2214 	whitelist_reg_ext(w, _MMIO(0x4500),
2215 			  RING_FORCE_TO_NONPRIV_DENY |
2216 			  RING_FORCE_TO_NONPRIV_RANGE_64);
2217 }
2218 
2219 static void pvc_whitelist_build(struct intel_engine_cs *engine)
2220 {
2221 	allow_read_ctx_timestamp(engine);
2222 
2223 	/* Wa_16014440446:pvc */
2224 	blacklist_trtt(engine);
2225 }
2226 
2227 void intel_engine_init_whitelist(struct intel_engine_cs *engine)
2228 {
2229 	struct drm_i915_private *i915 = engine->i915;
2230 	struct i915_wa_list *w = &engine->whitelist;
2231 
2232 	wa_init_start(w, engine->gt, "whitelist", engine->name);
2233 
2234 	if (IS_METEORLAKE(i915))
2235 		; /* noop; none at this time */
2236 	else if (IS_PONTEVECCHIO(i915))
2237 		pvc_whitelist_build(engine);
2238 	else if (IS_DG2(i915))
2239 		dg2_whitelist_build(engine);
2240 	else if (IS_XEHPSDV(i915))
2241 		xehpsdv_whitelist_build(engine);
2242 	else if (GRAPHICS_VER(i915) == 12)
2243 		tgl_whitelist_build(engine);
2244 	else if (GRAPHICS_VER(i915) == 11)
2245 		icl_whitelist_build(engine);
2246 	else if (IS_COMETLAKE(i915))
2247 		cml_whitelist_build(engine);
2248 	else if (IS_COFFEELAKE(i915))
2249 		cfl_whitelist_build(engine);
2250 	else if (IS_GEMINILAKE(i915))
2251 		glk_whitelist_build(engine);
2252 	else if (IS_KABYLAKE(i915))
2253 		kbl_whitelist_build(engine);
2254 	else if (IS_BROXTON(i915))
2255 		bxt_whitelist_build(engine);
2256 	else if (IS_SKYLAKE(i915))
2257 		skl_whitelist_build(engine);
2258 	else if (GRAPHICS_VER(i915) <= 8)
2259 		;
2260 	else
2261 		MISSING_CASE(GRAPHICS_VER(i915));
2262 
2263 	wa_init_finish(w);
2264 }
2265 
2266 void intel_engine_apply_whitelist(struct intel_engine_cs *engine)
2267 {
2268 	const struct i915_wa_list *wal = &engine->whitelist;
2269 	struct intel_uncore *uncore = engine->uncore;
2270 	const u32 base = engine->mmio_base;
2271 	struct i915_wa *wa;
2272 	unsigned int i;
2273 
2274 	if (!wal->count)
2275 		return;
2276 
2277 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++)
2278 		intel_uncore_write(uncore,
2279 				   RING_FORCE_TO_NONPRIV(base, i),
2280 				   i915_mmio_reg_offset(wa->reg));
2281 
2282 	/* And clear the rest just in case of garbage */
2283 	for (; i < RING_MAX_NONPRIV_SLOTS; i++)
2284 		intel_uncore_write(uncore,
2285 				   RING_FORCE_TO_NONPRIV(base, i),
2286 				   i915_mmio_reg_offset(RING_NOPID(base)));
2287 }
2288 
2289 /*
2290  * engine_fake_wa_init(), a place holder to program the registers
2291  * which are not part of an official workaround defined by the
2292  * hardware team.
2293  * Adding programming of those register inside workaround will
2294  * allow utilizing wa framework to proper application and verification.
2295  */
2296 static void
2297 engine_fake_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2298 {
2299 	u8 mocs_w, mocs_r;
2300 
2301 	/*
2302 	 * RING_CMD_CCTL specifies the default MOCS entry that will be used
2303 	 * by the command streamer when executing commands that don't have
2304 	 * a way to explicitly specify a MOCS setting.  The default should
2305 	 * usually reference whichever MOCS entry corresponds to uncached
2306 	 * behavior, although use of a WB cached entry is recommended by the
2307 	 * spec in certain circumstances on specific platforms.
2308 	 */
2309 	if (GRAPHICS_VER(engine->i915) >= 12) {
2310 		mocs_r = engine->gt->mocs.uc_index;
2311 		mocs_w = engine->gt->mocs.uc_index;
2312 
2313 		if (HAS_L3_CCS_READ(engine->i915) &&
2314 		    engine->class == COMPUTE_CLASS) {
2315 			mocs_r = engine->gt->mocs.wb_index;
2316 
2317 			/*
2318 			 * Even on the few platforms where MOCS 0 is a
2319 			 * legitimate table entry, it's never the correct
2320 			 * setting to use here; we can assume the MOCS init
2321 			 * just forgot to initialize wb_index.
2322 			 */
2323 			drm_WARN_ON(&engine->i915->drm, mocs_r == 0);
2324 		}
2325 
2326 		wa_masked_field_set(wal,
2327 				    RING_CMD_CCTL(engine->mmio_base),
2328 				    CMD_CCTL_MOCS_MASK,
2329 				    CMD_CCTL_MOCS_OVERRIDE(mocs_w, mocs_r));
2330 	}
2331 }
2332 
2333 static bool needs_wa_1308578152(struct intel_engine_cs *engine)
2334 {
2335 	return intel_sseu_find_first_xehp_dss(&engine->gt->info.sseu, 0, 0) >=
2336 		GEN_DSS_PER_GSLICE;
2337 }
2338 
2339 static void
2340 rcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2341 {
2342 	struct drm_i915_private *i915 = engine->i915;
2343 
2344 	if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
2345 	    IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0)) {
2346 		/* Wa_22014600077 */
2347 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS,
2348 				 ENABLE_EU_COUNT_FOR_TDL_FLUSH);
2349 	}
2350 
2351 	if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
2352 	    IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) ||
2353 	    IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) ||
2354 	    IS_DG2_G11(i915) || IS_DG2_G12(i915)) {
2355 		/* Wa_1509727124 */
2356 		wa_mcr_masked_en(wal, GEN10_SAMPLER_MODE,
2357 				 SC_DISABLE_POWER_OPTIMIZATION_EBB);
2358 	}
2359 
2360 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) ||
2361 	    IS_DG2_G11(i915) || IS_DG2_G12(i915) ||
2362 	    IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0)) {
2363 		/* Wa_22012856258 */
2364 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2365 				 GEN12_DISABLE_READ_SUPPRESSION);
2366 	}
2367 
2368 	if (IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0)) {
2369 		/* Wa_14013392000:dg2_g11 */
2370 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_ENABLE_LARGE_GRF_MODE);
2371 	}
2372 
2373 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0) ||
2374 	    IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0)) {
2375 		/* Wa_14012419201:dg2 */
2376 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4,
2377 				 GEN12_DISABLE_HDR_PAST_PAYLOAD_HOLD_FIX);
2378 	}
2379 
2380 	/* Wa_1308578152:dg2_g10 when first gslice is fused off */
2381 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) &&
2382 	    needs_wa_1308578152(engine)) {
2383 		wa_masked_dis(wal, GEN12_CS_DEBUG_MODE1_CCCSUNIT_BE_COMMON,
2384 			      GEN12_REPLAY_MODE_GRANULARITY);
2385 	}
2386 
2387 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) ||
2388 	    IS_DG2_G11(i915) || IS_DG2_G12(i915)) {
2389 		/*
2390 		 * Wa_22010960976:dg2
2391 		 * Wa_14013347512:dg2
2392 		 */
2393 		wa_mcr_masked_dis(wal, XEHP_HDC_CHICKEN0,
2394 				  LSC_L1_FLUSH_CTL_3D_DATAPORT_FLUSH_EVENTS_MASK);
2395 	}
2396 
2397 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) {
2398 		/*
2399 		 * Wa_1608949956:dg2_g10
2400 		 * Wa_14010198302:dg2_g10
2401 		 */
2402 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN,
2403 				 MDQ_ARBITRATION_MODE | UGM_BACKUP_MODE);
2404 	}
2405 
2406 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) {
2407 		/* Wa_22010430635:dg2 */
2408 		wa_mcr_masked_en(wal,
2409 				 GEN9_ROW_CHICKEN4,
2410 				 GEN12_DISABLE_GRF_CLEAR);
2411 
2412 		/* Wa_14010648519:dg2 */
2413 		wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
2414 	}
2415 
2416 	/* Wa_14013202645:dg2 */
2417 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) ||
2418 	    IS_DG2_GRAPHICS_STEP(i915, G11, STEP_A0, STEP_B0))
2419 		wa_mcr_write_or(wal, RT_CTRL, DIS_NULL_QUERY);
2420 
2421 	/* Wa_22012532006:dg2 */
2422 	if (IS_DG2_GRAPHICS_STEP(engine->i915, G10, STEP_A0, STEP_C0) ||
2423 	    IS_DG2_GRAPHICS_STEP(engine->i915, G11, STEP_A0, STEP_B0))
2424 		wa_mcr_masked_en(wal, GEN9_HALF_SLICE_CHICKEN7,
2425 				 DG2_DISABLE_ROUND_ENABLE_ALLOW_FOR_SSLA);
2426 
2427 	if (IS_DG2_GRAPHICS_STEP(i915, G11, STEP_B0, STEP_FOREVER) ||
2428 	    IS_DG2_G10(i915)) {
2429 		/* Wa_22014600077:dg2 */
2430 		wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
2431 			   _MASKED_BIT_ENABLE(ENABLE_EU_COUNT_FOR_TDL_FLUSH),
2432 			   0 /* Wa_14012342262 write-only reg, so skip verification */,
2433 			   true);
2434 	}
2435 
2436 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) || IS_DG1(i915) ||
2437 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2438 		/* Wa_1606931601:tgl,rkl,dg1,adl-s,adl-p */
2439 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2, GEN12_DISABLE_EARLY_READ);
2440 
2441 		/*
2442 		 * Wa_1407928979:tgl A*
2443 		 * Wa_18011464164:tgl[B0+],dg1[B0+]
2444 		 * Wa_22010931296:tgl[B0+],dg1[B0+]
2445 		 * Wa_14010919138:rkl,dg1,adl-s,adl-p
2446 		 */
2447 		wa_write_or(wal, GEN7_FF_THREAD_MODE,
2448 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2449 	}
2450 
2451 	if (IS_ALDERLAKE_P(i915) || IS_DG2(i915) || IS_ALDERLAKE_S(i915) ||
2452 	    IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2453 		/*
2454 		 * Wa_1606700617:tgl,dg1,adl-p
2455 		 * Wa_22010271021:tgl,rkl,dg1,adl-s,adl-p
2456 		 * Wa_14010826681:tgl,dg1,rkl,adl-p
2457 		 * Wa_18019627453:dg2
2458 		 */
2459 		wa_masked_en(wal,
2460 			     GEN9_CS_DEBUG_MODE1,
2461 			     FF_DOP_CLOCK_GATE_DISABLE);
2462 	}
2463 
2464 	if (IS_ALDERLAKE_P(i915) || IS_ALDERLAKE_S(i915) ||
2465 	    IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915)) {
2466 		/* Wa_1409804808 */
2467 		wa_mcr_masked_en(wal, GEN8_ROW_CHICKEN2,
2468 				 GEN12_PUSH_CONST_DEREF_HOLD_DIS);
2469 
2470 		/* Wa_14010229206 */
2471 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, GEN12_DISABLE_TDL_PUSH);
2472 	}
2473 
2474 	if (IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) || IS_ALDERLAKE_P(i915)) {
2475 		/*
2476 		 * Wa_1607297627
2477 		 *
2478 		 * On TGL and RKL there are multiple entries for this WA in the
2479 		 * BSpec; some indicate this is an A0-only WA, others indicate
2480 		 * it applies to all steppings so we trust the "all steppings."
2481 		 */
2482 		wa_masked_en(wal,
2483 			     RING_PSMI_CTL(RENDER_RING_BASE),
2484 			     GEN12_WAIT_FOR_EVENT_POWER_DOWN_DISABLE |
2485 			     GEN8_RC_SEMA_IDLE_MSG_DISABLE);
2486 	}
2487 
2488 	if (IS_DG1(i915) || IS_ROCKETLAKE(i915) || IS_TIGERLAKE(i915) ||
2489 	    IS_ALDERLAKE_S(i915) || IS_ALDERLAKE_P(i915)) {
2490 		/* Wa_1406941453:tgl,rkl,dg1,adl-s,adl-p */
2491 		wa_mcr_masked_en(wal,
2492 				 GEN10_SAMPLER_MODE,
2493 				 ENABLE_SMALLPL);
2494 	}
2495 
2496 	if (GRAPHICS_VER(i915) == 11) {
2497 		/* This is not an Wa. Enable for better image quality */
2498 		wa_masked_en(wal,
2499 			     _3D_CHICKEN3,
2500 			     _3D_CHICKEN3_AA_LINE_QUALITY_FIX_ENABLE);
2501 
2502 		/*
2503 		 * Wa_1405543622:icl
2504 		 * Formerly known as WaGAPZPriorityScheme
2505 		 */
2506 		wa_write_or(wal,
2507 			    GEN8_GARBCNTL,
2508 			    GEN11_ARBITRATION_PRIO_ORDER_MASK);
2509 
2510 		/*
2511 		 * Wa_1604223664:icl
2512 		 * Formerly known as WaL3BankAddressHashing
2513 		 */
2514 		wa_write_clr_set(wal,
2515 				 GEN8_GARBCNTL,
2516 				 GEN11_HASH_CTRL_EXCL_MASK,
2517 				 GEN11_HASH_CTRL_EXCL_BIT0);
2518 		wa_write_clr_set(wal,
2519 				 GEN11_GLBLINVL,
2520 				 GEN11_BANK_HASH_ADDR_EXCL_MASK,
2521 				 GEN11_BANK_HASH_ADDR_EXCL_BIT0);
2522 
2523 		/*
2524 		 * Wa_1405733216:icl
2525 		 * Formerly known as WaDisableCleanEvicts
2526 		 */
2527 		wa_mcr_write_or(wal,
2528 				GEN8_L3SQCREG4,
2529 				GEN11_LQSC_CLEAN_EVICT_DISABLE);
2530 
2531 		/* Wa_1606682166:icl */
2532 		wa_write_or(wal,
2533 			    GEN7_SARCHKMD,
2534 			    GEN7_DISABLE_SAMPLER_PREFETCH);
2535 
2536 		/* Wa_1409178092:icl */
2537 		wa_mcr_write_clr_set(wal,
2538 				     GEN11_SCRATCH2,
2539 				     GEN11_COHERENT_PARTIAL_WRITE_MERGE_ENABLE,
2540 				     0);
2541 
2542 		/* WaEnable32PlaneMode:icl */
2543 		wa_masked_en(wal, GEN9_CSFE_CHICKEN1_RCS,
2544 			     GEN11_ENABLE_32_PLANE_MODE);
2545 
2546 		/*
2547 		 * Wa_1408767742:icl[a2..forever],ehl[all]
2548 		 * Wa_1605460711:icl[a0..c0]
2549 		 */
2550 		wa_write_or(wal,
2551 			    GEN7_FF_THREAD_MODE,
2552 			    GEN12_FF_TESSELATION_DOP_GATE_DISABLE);
2553 
2554 		/* Wa_22010271021 */
2555 		wa_masked_en(wal,
2556 			     GEN9_CS_DEBUG_MODE1,
2557 			     FF_DOP_CLOCK_GATE_DISABLE);
2558 	}
2559 
2560 	/*
2561 	 * Intel platforms that support fine-grained preemption (i.e., gen9 and
2562 	 * beyond) allow the kernel-mode driver to choose between two different
2563 	 * options for controlling preemption granularity and behavior.
2564 	 *
2565 	 * Option 1 (hardware default):
2566 	 *   Preemption settings are controlled in a global manner via
2567 	 *   kernel-only register CS_DEBUG_MODE1 (0x20EC).  Any granularity
2568 	 *   and settings chosen by the kernel-mode driver will apply to all
2569 	 *   userspace clients.
2570 	 *
2571 	 * Option 2:
2572 	 *   Preemption settings are controlled on a per-context basis via
2573 	 *   register CS_CHICKEN1 (0x2580).  CS_CHICKEN1 is saved/restored on
2574 	 *   context switch and is writable by userspace (e.g., via
2575 	 *   MI_LOAD_REGISTER_IMMEDIATE instructions placed in a batch buffer)
2576 	 *   which allows different userspace drivers/clients to select
2577 	 *   different settings, or to change those settings on the fly in
2578 	 *   response to runtime needs.  This option was known by name
2579 	 *   "FtrPerCtxtPreemptionGranularityControl" at one time, although
2580 	 *   that name is somewhat misleading as other non-granularity
2581 	 *   preemption settings are also impacted by this decision.
2582 	 *
2583 	 * On Linux, our policy has always been to let userspace drivers
2584 	 * control preemption granularity/settings (Option 2).  This was
2585 	 * originally mandatory on gen9 to prevent ABI breakage (old gen9
2586 	 * userspace developed before object-level preemption was enabled would
2587 	 * not behave well if i915 were to go with Option 1 and enable that
2588 	 * preemption in a global manner).  On gen9 each context would have
2589 	 * object-level preemption disabled by default (see
2590 	 * WaDisable3DMidCmdPreemption in gen9_ctx_workarounds_init), but
2591 	 * userspace drivers could opt-in to object-level preemption as they
2592 	 * saw fit.  For post-gen9 platforms, we continue to utilize Option 2;
2593 	 * even though it is no longer necessary for ABI compatibility when
2594 	 * enabling a new platform, it does ensure that userspace will be able
2595 	 * to implement any workarounds that show up requiring temporary
2596 	 * adjustments to preemption behavior at runtime.
2597 	 *
2598 	 * Notes/Workarounds:
2599 	 *  - Wa_14015141709:  On DG2 and early steppings of MTL,
2600 	 *      CS_CHICKEN1[0] does not disable object-level preemption as
2601 	 *      it is supposed to (nor does CS_DEBUG_MODE1[0] if we had been
2602 	 *      using Option 1).  Effectively this means userspace is unable
2603 	 *      to disable object-level preemption on these platforms/steppings
2604 	 *      despite the setting here.
2605 	 *
2606 	 *  - Wa_16013994831:  May require that userspace program
2607 	 *      CS_CHICKEN1[10] when certain runtime conditions are true.
2608 	 *      Userspace requires Option 2 to be in effect for their update of
2609 	 *      CS_CHICKEN1[10] to be effective.
2610 	 *
2611 	 * Other workarounds may appear in the future that will also require
2612 	 * Option 2 behavior to allow proper userspace implementation.
2613 	 */
2614 	if (GRAPHICS_VER(i915) >= 9)
2615 		wa_masked_en(wal,
2616 			     GEN7_FF_SLICE_CS_CHICKEN1,
2617 			     GEN9_FFSC_PERCTX_PREEMPT_CTRL);
2618 
2619 	if (IS_SKYLAKE(i915) ||
2620 	    IS_KABYLAKE(i915) ||
2621 	    IS_COFFEELAKE(i915) ||
2622 	    IS_COMETLAKE(i915)) {
2623 		/* WaEnableGapsTsvCreditFix:skl,kbl,cfl */
2624 		wa_write_or(wal,
2625 			    GEN8_GARBCNTL,
2626 			    GEN9_GAPS_TSV_CREDIT_DISABLE);
2627 	}
2628 
2629 	if (IS_BROXTON(i915)) {
2630 		/* WaDisablePooledEuLoadBalancingFix:bxt */
2631 		wa_masked_en(wal,
2632 			     FF_SLICE_CS_CHICKEN2,
2633 			     GEN9_POOLED_EU_LOAD_BALANCING_FIX_DISABLE);
2634 	}
2635 
2636 	if (GRAPHICS_VER(i915) == 9) {
2637 		/* WaContextSwitchWithConcurrentTLBInvalidate:skl,bxt,kbl,glk,cfl */
2638 		wa_masked_en(wal,
2639 			     GEN9_CSFE_CHICKEN1_RCS,
2640 			     GEN9_PREEMPT_GPGPU_SYNC_SWITCH_DISABLE);
2641 
2642 		/* WaEnableLbsSlaRetryTimerDecrement:skl,bxt,kbl,glk,cfl */
2643 		wa_mcr_write_or(wal,
2644 				BDW_SCRATCH1,
2645 				GEN9_LBS_SLA_RETRY_TIMER_DECREMENT_ENABLE);
2646 
2647 		/* WaProgramL3SqcReg1DefaultForPerf:bxt,glk */
2648 		if (IS_GEN9_LP(i915))
2649 			wa_mcr_write_clr_set(wal,
2650 					     GEN8_L3SQCREG1,
2651 					     L3_PRIO_CREDITS_MASK,
2652 					     L3_GENERAL_PRIO_CREDITS(62) |
2653 					     L3_HIGH_PRIO_CREDITS(2));
2654 
2655 		/* WaOCLCoherentLineFlush:skl,bxt,kbl,cfl */
2656 		wa_mcr_write_or(wal,
2657 				GEN8_L3SQCREG4,
2658 				GEN8_LQSC_FLUSH_COHERENT_LINES);
2659 
2660 		/* Disable atomics in L3 to prevent unrecoverable hangs */
2661 		wa_write_clr_set(wal, GEN9_SCRATCH_LNCF1,
2662 				 GEN9_LNCF_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2663 		wa_mcr_write_clr_set(wal, GEN8_L3SQCREG4,
2664 				     GEN8_LQSQ_NONIA_COHERENT_ATOMICS_ENABLE, 0);
2665 		wa_mcr_write_clr_set(wal, GEN9_SCRATCH1,
2666 				     EVICTION_PERF_FIX_ENABLE, 0);
2667 	}
2668 
2669 	if (IS_HASWELL(i915)) {
2670 		/* WaSampleCChickenBitEnable:hsw */
2671 		wa_masked_en(wal,
2672 			     HSW_HALF_SLICE_CHICKEN3, HSW_SAMPLE_C_PERFORMANCE);
2673 
2674 		wa_masked_dis(wal,
2675 			      CACHE_MODE_0_GEN7,
2676 			      /* enable HiZ Raw Stall Optimization */
2677 			      HIZ_RAW_STALL_OPT_DISABLE);
2678 	}
2679 
2680 	if (IS_VALLEYVIEW(i915)) {
2681 		/* WaDisableEarlyCull:vlv */
2682 		wa_masked_en(wal,
2683 			     _3D_CHICKEN3,
2684 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2685 
2686 		/*
2687 		 * WaVSThreadDispatchOverride:ivb,vlv
2688 		 *
2689 		 * This actually overrides the dispatch
2690 		 * mode for all thread types.
2691 		 */
2692 		wa_write_clr_set(wal,
2693 				 GEN7_FF_THREAD_MODE,
2694 				 GEN7_FF_SCHED_MASK,
2695 				 GEN7_FF_TS_SCHED_HW |
2696 				 GEN7_FF_VS_SCHED_HW |
2697 				 GEN7_FF_DS_SCHED_HW);
2698 
2699 		/* WaPsdDispatchEnable:vlv */
2700 		/* WaDisablePSDDualDispatchEnable:vlv */
2701 		wa_masked_en(wal,
2702 			     GEN7_HALF_SLICE_CHICKEN1,
2703 			     GEN7_MAX_PS_THREAD_DEP |
2704 			     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2705 	}
2706 
2707 	if (IS_IVYBRIDGE(i915)) {
2708 		/* WaDisableEarlyCull:ivb */
2709 		wa_masked_en(wal,
2710 			     _3D_CHICKEN3,
2711 			     _3D_CHICKEN_SF_DISABLE_OBJEND_CULL);
2712 
2713 		if (0) { /* causes HiZ corruption on ivb:gt1 */
2714 			/* enable HiZ Raw Stall Optimization */
2715 			wa_masked_dis(wal,
2716 				      CACHE_MODE_0_GEN7,
2717 				      HIZ_RAW_STALL_OPT_DISABLE);
2718 		}
2719 
2720 		/*
2721 		 * WaVSThreadDispatchOverride:ivb,vlv
2722 		 *
2723 		 * This actually overrides the dispatch
2724 		 * mode for all thread types.
2725 		 */
2726 		wa_write_clr_set(wal,
2727 				 GEN7_FF_THREAD_MODE,
2728 				 GEN7_FF_SCHED_MASK,
2729 				 GEN7_FF_TS_SCHED_HW |
2730 				 GEN7_FF_VS_SCHED_HW |
2731 				 GEN7_FF_DS_SCHED_HW);
2732 
2733 		/* WaDisablePSDDualDispatchEnable:ivb */
2734 		if (IS_IVB_GT1(i915))
2735 			wa_masked_en(wal,
2736 				     GEN7_HALF_SLICE_CHICKEN1,
2737 				     GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
2738 	}
2739 
2740 	if (GRAPHICS_VER(i915) == 7) {
2741 		/* WaBCSVCSTlbInvalidationMode:ivb,vlv,hsw */
2742 		wa_masked_en(wal,
2743 			     RING_MODE_GEN7(RENDER_RING_BASE),
2744 			     GFX_TLB_INVALIDATE_EXPLICIT | GFX_REPLAY_MODE);
2745 
2746 		/* WaDisable_RenderCache_OperationalFlush:ivb,vlv,hsw */
2747 		wa_masked_dis(wal, CACHE_MODE_0_GEN7, RC_OP_FLUSH_ENABLE);
2748 
2749 		/*
2750 		 * BSpec says this must be set, even though
2751 		 * WaDisable4x2SubspanOptimization:ivb,hsw
2752 		 * WaDisable4x2SubspanOptimization isn't listed for VLV.
2753 		 */
2754 		wa_masked_en(wal,
2755 			     CACHE_MODE_1,
2756 			     PIXEL_SUBSPAN_COLLECT_OPT_DISABLE);
2757 
2758 		/*
2759 		 * BSpec recommends 8x4 when MSAA is used,
2760 		 * however in practice 16x4 seems fastest.
2761 		 *
2762 		 * Note that PS/WM thread counts depend on the WIZ hashing
2763 		 * disable bit, which we don't touch here, but it's good
2764 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2765 		 */
2766 		wa_masked_field_set(wal,
2767 				    GEN7_GT_MODE,
2768 				    GEN6_WIZ_HASHING_MASK,
2769 				    GEN6_WIZ_HASHING_16x4);
2770 	}
2771 
2772 	if (IS_GRAPHICS_VER(i915, 6, 7))
2773 		/*
2774 		 * We need to disable the AsyncFlip performance optimisations in
2775 		 * order to use MI_WAIT_FOR_EVENT within the CS. It should
2776 		 * already be programmed to '1' on all products.
2777 		 *
2778 		 * WaDisableAsyncFlipPerfMode:snb,ivb,hsw,vlv
2779 		 */
2780 		wa_masked_en(wal,
2781 			     RING_MI_MODE(RENDER_RING_BASE),
2782 			     ASYNC_FLIP_PERF_DISABLE);
2783 
2784 	if (GRAPHICS_VER(i915) == 6) {
2785 		/*
2786 		 * Required for the hardware to program scanline values for
2787 		 * waiting
2788 		 * WaEnableFlushTlbInvalidationMode:snb
2789 		 */
2790 		wa_masked_en(wal,
2791 			     GFX_MODE,
2792 			     GFX_TLB_INVALIDATE_EXPLICIT);
2793 
2794 		/* WaDisableHiZPlanesWhenMSAAEnabled:snb */
2795 		wa_masked_en(wal,
2796 			     _3D_CHICKEN,
2797 			     _3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB);
2798 
2799 		wa_masked_en(wal,
2800 			     _3D_CHICKEN3,
2801 			     /* WaStripsFansDisableFastClipPerformanceFix:snb */
2802 			     _3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL |
2803 			     /*
2804 			      * Bspec says:
2805 			      * "This bit must be set if 3DSTATE_CLIP clip mode is set
2806 			      * to normal and 3DSTATE_SF number of SF output attributes
2807 			      * is more than 16."
2808 			      */
2809 			     _3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH);
2810 
2811 		/*
2812 		 * BSpec recommends 8x4 when MSAA is used,
2813 		 * however in practice 16x4 seems fastest.
2814 		 *
2815 		 * Note that PS/WM thread counts depend on the WIZ hashing
2816 		 * disable bit, which we don't touch here, but it's good
2817 		 * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
2818 		 */
2819 		wa_masked_field_set(wal,
2820 				    GEN6_GT_MODE,
2821 				    GEN6_WIZ_HASHING_MASK,
2822 				    GEN6_WIZ_HASHING_16x4);
2823 
2824 		/* WaDisable_RenderCache_OperationalFlush:snb */
2825 		wa_masked_dis(wal, CACHE_MODE_0, RC_OP_FLUSH_ENABLE);
2826 
2827 		/*
2828 		 * From the Sandybridge PRM, volume 1 part 3, page 24:
2829 		 * "If this bit is set, STCunit will have LRA as replacement
2830 		 *  policy. [...] This bit must be reset. LRA replacement
2831 		 *  policy is not supported."
2832 		 */
2833 		wa_masked_dis(wal,
2834 			      CACHE_MODE_0,
2835 			      CM0_STC_EVICT_DISABLE_LRA_SNB);
2836 	}
2837 
2838 	if (IS_GRAPHICS_VER(i915, 4, 6))
2839 		/* WaTimedSingleVertexDispatch:cl,bw,ctg,elk,ilk,snb */
2840 		wa_add(wal, RING_MI_MODE(RENDER_RING_BASE),
2841 		       0, _MASKED_BIT_ENABLE(VS_TIMER_DISPATCH),
2842 		       /* XXX bit doesn't stick on Broadwater */
2843 		       IS_I965G(i915) ? 0 : VS_TIMER_DISPATCH, true);
2844 
2845 	if (GRAPHICS_VER(i915) == 4)
2846 		/*
2847 		 * Disable CONSTANT_BUFFER before it is loaded from the context
2848 		 * image. For as it is loaded, it is executed and the stored
2849 		 * address may no longer be valid, leading to a GPU hang.
2850 		 *
2851 		 * This imposes the requirement that userspace reload their
2852 		 * CONSTANT_BUFFER on every batch, fortunately a requirement
2853 		 * they are already accustomed to from before contexts were
2854 		 * enabled.
2855 		 */
2856 		wa_add(wal, ECOSKPD(RENDER_RING_BASE),
2857 		       0, _MASKED_BIT_ENABLE(ECO_CONSTANT_BUFFER_SR_DISABLE),
2858 		       0 /* XXX bit doesn't stick on Broadwater */,
2859 		       true);
2860 }
2861 
2862 static void
2863 xcs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2864 {
2865 	struct drm_i915_private *i915 = engine->i915;
2866 
2867 	/* WaKBLVECSSemaphoreWaitPoll:kbl */
2868 	if (IS_KBL_GRAPHICS_STEP(i915, STEP_A0, STEP_F0)) {
2869 		wa_write(wal,
2870 			 RING_SEMA_WAIT_POLL(engine->mmio_base),
2871 			 1);
2872 	}
2873 }
2874 
2875 static void
2876 ccs_engine_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2877 {
2878 	if (IS_PVC_CT_STEP(engine->i915, STEP_A0, STEP_C0)) {
2879 		/* Wa_14014999345:pvc */
2880 		wa_mcr_masked_en(wal, GEN10_CACHE_MODE_SS, DISABLE_ECC);
2881 	}
2882 }
2883 
2884 /*
2885  * The bspec performance guide has recommended MMIO tuning settings.  These
2886  * aren't truly "workarounds" but we want to program them with the same
2887  * workaround infrastructure to ensure that they're automatically added to
2888  * the GuC save/restore lists, re-applied at the right times, and checked for
2889  * any conflicting programming requested by real workarounds.
2890  *
2891  * Programming settings should be added here only if their registers are not
2892  * part of an engine's register state context.  If a register is part of a
2893  * context, then any tuning settings should be programmed in an appropriate
2894  * function invoked by __intel_engine_init_ctx_wa().
2895  */
2896 static void
2897 add_render_compute_tuning_settings(struct drm_i915_private *i915,
2898 				   struct i915_wa_list *wal)
2899 {
2900 	if (IS_PONTEVECCHIO(i915)) {
2901 		wa_mcr_write(wal, XEHPC_L3SCRUB,
2902 			     SCRUB_CL_DWNGRADE_SHARED | SCRUB_RATE_4B_PER_CLK);
2903 		wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_HOSTCACHEEN);
2904 	}
2905 
2906 	if (IS_DG2(i915)) {
2907 		wa_mcr_write_or(wal, XEHP_L3SCQREG7, BLEND_FILL_CACHING_OPT_DIS);
2908 		wa_mcr_write_clr_set(wal, RT_CTRL, STACKID_CTRL, STACKID_CTRL_512);
2909 	}
2910 
2911 	/*
2912 	 * This tuning setting proves beneficial only on ATS-M designs; the
2913 	 * default "age based" setting is optimal on regular DG2 and other
2914 	 * platforms.
2915 	 */
2916 	if (INTEL_INFO(i915)->tuning_thread_rr_after_dep)
2917 		wa_mcr_masked_field_set(wal, GEN9_ROW_CHICKEN4, THREAD_EX_ARB_MODE,
2918 					THREAD_EX_ARB_MODE_RR_AFTER_DEP);
2919 
2920 	if (GRAPHICS_VER(i915) == 12 && GRAPHICS_VER_FULL(i915) < IP_VER(12, 50))
2921 		wa_write_clr(wal, GEN8_GARBCNTL, GEN12_BUS_HASH_CTL_BIT_EXC);
2922 }
2923 
2924 /*
2925  * The workarounds in this function apply to shared registers in
2926  * the general render reset domain that aren't tied to a
2927  * specific engine.  Since all render+compute engines get reset
2928  * together, and the contents of these registers are lost during
2929  * the shared render domain reset, we'll define such workarounds
2930  * here and then add them to just a single RCS or CCS engine's
2931  * workaround list (whichever engine has the XXXX flag).
2932  */
2933 static void
2934 general_render_compute_wa_init(struct intel_engine_cs *engine, struct i915_wa_list *wal)
2935 {
2936 	struct drm_i915_private *i915 = engine->i915;
2937 
2938 	add_render_compute_tuning_settings(i915, wal);
2939 
2940 	if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
2941 	    IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) ||
2942 	    IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_FOREVER) ||
2943 	    IS_DG2_G11(i915) || IS_DG2_G12(i915)) {
2944 		/* Wa_22013037850 */
2945 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW,
2946 				DISABLE_128B_EVICTION_COMMAND_UDW);
2947 	}
2948 
2949 	if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
2950 	    IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) ||
2951 	    IS_PONTEVECCHIO(i915) ||
2952 	    IS_DG2(i915)) {
2953 		/* Wa_22014226127 */
2954 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0, DISABLE_D8_D16_COASLESCE);
2955 	}
2956 
2957 	if (IS_MTL_GRAPHICS_STEP(i915, M, STEP_A0, STEP_B0) ||
2958 	    IS_MTL_GRAPHICS_STEP(i915, P, STEP_A0, STEP_B0) ||
2959 	    IS_DG2(i915)) {
2960 		/* Wa_18017747507 */
2961 		wa_masked_en(wal, VFG_PREEMPTION_CHICKEN, POLYGON_TRIFAN_LINELOOP_DISABLE);
2962 	}
2963 
2964 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_B0, STEP_C0) ||
2965 	    IS_DG2_G11(i915)) {
2966 		/*
2967 		 * Wa_22012826095:dg2
2968 		 * Wa_22013059131:dg2
2969 		 */
2970 		wa_mcr_write_clr_set(wal, LSC_CHICKEN_BIT_0_UDW,
2971 				     MAXREQS_PER_BANK,
2972 				     REG_FIELD_PREP(MAXREQS_PER_BANK, 2));
2973 
2974 		/* Wa_22013059131:dg2 */
2975 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0,
2976 				FORCE_1_SUB_MESSAGE_PER_FRAGMENT);
2977 	}
2978 
2979 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_B0)) {
2980 		/*
2981 		 * Wa_14010918519:dg2_g10
2982 		 *
2983 		 * LSC_CHICKEN_BIT_0 always reads back as 0 is this stepping,
2984 		 * so ignoring verification.
2985 		 */
2986 		wa_mcr_add(wal, LSC_CHICKEN_BIT_0_UDW, 0,
2987 			   FORCE_SLM_FENCE_SCOPE_TO_TILE | FORCE_UGM_FENCE_SCOPE_TO_TILE,
2988 			   0, false);
2989 	}
2990 
2991 	if (IS_PONTEVECCHIO(i915)) {
2992 		/* Wa_16016694945 */
2993 		wa_mcr_masked_en(wal, XEHPC_LNCFMISCCFGREG0, XEHPC_OVRLSCCC);
2994 	}
2995 
2996 	if (IS_XEHPSDV(i915)) {
2997 		/* Wa_1409954639 */
2998 		wa_mcr_masked_en(wal,
2999 				 GEN8_ROW_CHICKEN,
3000 				 SYSTOLIC_DOP_CLOCK_GATING_DIS);
3001 
3002 		/* Wa_1607196519 */
3003 		wa_mcr_masked_en(wal,
3004 				 GEN9_ROW_CHICKEN4,
3005 				 GEN12_DISABLE_GRF_CLEAR);
3006 
3007 		/* Wa_14010670810:xehpsdv */
3008 		wa_mcr_write_or(wal, XEHP_L3NODEARBCFG, XEHP_LNESPARE);
3009 
3010 		/* Wa_14010449647:xehpsdv */
3011 		wa_mcr_masked_en(wal, GEN8_HALF_SLICE_CHICKEN1,
3012 				 GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE);
3013 
3014 		/* Wa_18011725039:xehpsdv */
3015 		if (IS_XEHPSDV_GRAPHICS_STEP(i915, STEP_A1, STEP_B0)) {
3016 			wa_mcr_masked_dis(wal, MLTICTXCTL, TDONRENDER);
3017 			wa_mcr_write_or(wal, L3SQCREG1_CCS0, FLUSHALLNONCOH);
3018 		}
3019 	}
3020 
3021 	if (IS_DG2(i915) || IS_PONTEVECCHIO(i915)) {
3022 		/* Wa_14015227452:dg2,pvc */
3023 		wa_mcr_masked_en(wal, GEN9_ROW_CHICKEN4, XEHP_DIS_BBL_SYSPIPE);
3024 
3025 		/* Wa_16015675438:dg2,pvc */
3026 		wa_masked_en(wal, FF_SLICE_CS_CHICKEN2, GEN12_PERF_FIX_BALANCING_CFE_DISABLE);
3027 	}
3028 
3029 	if (IS_DG2(i915)) {
3030 		/*
3031 		 * Wa_16011620976:dg2_g11
3032 		 * Wa_22015475538:dg2
3033 		 */
3034 		wa_mcr_write_or(wal, LSC_CHICKEN_BIT_0_UDW, DIS_CHAIN_2XSIMD8);
3035 	}
3036 
3037 	if (IS_DG2_GRAPHICS_STEP(i915, G10, STEP_A0, STEP_C0) || IS_DG2_G11(i915))
3038 		/*
3039 		 * Wa_22012654132
3040 		 *
3041 		 * Note that register 0xE420 is write-only and cannot be read
3042 		 * back for verification on DG2 (due to Wa_14012342262), so
3043 		 * we need to explicitly skip the readback.
3044 		 */
3045 		wa_mcr_add(wal, GEN10_CACHE_MODE_SS, 0,
3046 			   _MASKED_BIT_ENABLE(ENABLE_PREFETCH_INTO_IC),
3047 			   0 /* write-only, so skip validation */,
3048 			   true);
3049 }
3050 
3051 static void
3052 engine_init_workarounds(struct intel_engine_cs *engine, struct i915_wa_list *wal)
3053 {
3054 	if (GRAPHICS_VER(engine->i915) < 4)
3055 		return;
3056 
3057 	engine_fake_wa_init(engine, wal);
3058 
3059 	/*
3060 	 * These are common workarounds that just need to applied
3061 	 * to a single RCS/CCS engine's workaround list since
3062 	 * they're reset as part of the general render domain reset.
3063 	 */
3064 	if (engine->flags & I915_ENGINE_FIRST_RENDER_COMPUTE)
3065 		general_render_compute_wa_init(engine, wal);
3066 
3067 	if (engine->class == COMPUTE_CLASS)
3068 		ccs_engine_wa_init(engine, wal);
3069 	else if (engine->class == RENDER_CLASS)
3070 		rcs_engine_wa_init(engine, wal);
3071 	else
3072 		xcs_engine_wa_init(engine, wal);
3073 }
3074 
3075 void intel_engine_init_workarounds(struct intel_engine_cs *engine)
3076 {
3077 	struct i915_wa_list *wal = &engine->wa_list;
3078 
3079 	wa_init_start(wal, engine->gt, "engine", engine->name);
3080 	engine_init_workarounds(engine, wal);
3081 	wa_init_finish(wal);
3082 }
3083 
3084 void intel_engine_apply_workarounds(struct intel_engine_cs *engine)
3085 {
3086 	wa_list_apply(&engine->wa_list);
3087 }
3088 
3089 static const struct i915_range mcr_ranges_gen8[] = {
3090 	{ .start = 0x5500, .end = 0x55ff },
3091 	{ .start = 0x7000, .end = 0x7fff },
3092 	{ .start = 0x9400, .end = 0x97ff },
3093 	{ .start = 0xb000, .end = 0xb3ff },
3094 	{ .start = 0xe000, .end = 0xe7ff },
3095 	{},
3096 };
3097 
3098 static const struct i915_range mcr_ranges_gen12[] = {
3099 	{ .start =  0x8150, .end =  0x815f },
3100 	{ .start =  0x9520, .end =  0x955f },
3101 	{ .start =  0xb100, .end =  0xb3ff },
3102 	{ .start =  0xde80, .end =  0xe8ff },
3103 	{ .start = 0x24a00, .end = 0x24a7f },
3104 	{},
3105 };
3106 
3107 static const struct i915_range mcr_ranges_xehp[] = {
3108 	{ .start =  0x4000, .end =  0x4aff },
3109 	{ .start =  0x5200, .end =  0x52ff },
3110 	{ .start =  0x5400, .end =  0x7fff },
3111 	{ .start =  0x8140, .end =  0x815f },
3112 	{ .start =  0x8c80, .end =  0x8dff },
3113 	{ .start =  0x94d0, .end =  0x955f },
3114 	{ .start =  0x9680, .end =  0x96ff },
3115 	{ .start =  0xb000, .end =  0xb3ff },
3116 	{ .start =  0xc800, .end =  0xcfff },
3117 	{ .start =  0xd800, .end =  0xd8ff },
3118 	{ .start =  0xdc00, .end =  0xffff },
3119 	{ .start = 0x17000, .end = 0x17fff },
3120 	{ .start = 0x24a00, .end = 0x24a7f },
3121 	{},
3122 };
3123 
3124 static bool mcr_range(struct drm_i915_private *i915, u32 offset)
3125 {
3126 	const struct i915_range *mcr_ranges;
3127 	int i;
3128 
3129 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
3130 		mcr_ranges = mcr_ranges_xehp;
3131 	else if (GRAPHICS_VER(i915) >= 12)
3132 		mcr_ranges = mcr_ranges_gen12;
3133 	else if (GRAPHICS_VER(i915) >= 8)
3134 		mcr_ranges = mcr_ranges_gen8;
3135 	else
3136 		return false;
3137 
3138 	/*
3139 	 * Registers in these ranges are affected by the MCR selector
3140 	 * which only controls CPU initiated MMIO. Routing does not
3141 	 * work for CS access so we cannot verify them on this path.
3142 	 */
3143 	for (i = 0; mcr_ranges[i].start; i++)
3144 		if (offset >= mcr_ranges[i].start &&
3145 		    offset <= mcr_ranges[i].end)
3146 			return true;
3147 
3148 	return false;
3149 }
3150 
3151 static int
3152 wa_list_srm(struct i915_request *rq,
3153 	    const struct i915_wa_list *wal,
3154 	    struct i915_vma *vma)
3155 {
3156 	struct drm_i915_private *i915 = rq->engine->i915;
3157 	unsigned int i, count = 0;
3158 	const struct i915_wa *wa;
3159 	u32 srm, *cs;
3160 
3161 	srm = MI_STORE_REGISTER_MEM | MI_SRM_LRM_GLOBAL_GTT;
3162 	if (GRAPHICS_VER(i915) >= 8)
3163 		srm++;
3164 
3165 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3166 		if (!mcr_range(i915, i915_mmio_reg_offset(wa->reg)))
3167 			count++;
3168 	}
3169 
3170 	cs = intel_ring_begin(rq, 4 * count);
3171 	if (IS_ERR(cs))
3172 		return PTR_ERR(cs);
3173 
3174 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3175 		u32 offset = i915_mmio_reg_offset(wa->reg);
3176 
3177 		if (mcr_range(i915, offset))
3178 			continue;
3179 
3180 		*cs++ = srm;
3181 		*cs++ = offset;
3182 		*cs++ = i915_ggtt_offset(vma) + sizeof(u32) * i;
3183 		*cs++ = 0;
3184 	}
3185 	intel_ring_advance(rq, cs);
3186 
3187 	return 0;
3188 }
3189 
3190 static int engine_wa_list_verify(struct intel_context *ce,
3191 				 const struct i915_wa_list * const wal,
3192 				 const char *from)
3193 {
3194 	const struct i915_wa *wa;
3195 	struct i915_request *rq;
3196 	struct i915_vma *vma;
3197 	struct i915_gem_ww_ctx ww;
3198 	unsigned int i;
3199 	u32 *results;
3200 	int err;
3201 
3202 	if (!wal->count)
3203 		return 0;
3204 
3205 	vma = __vm_create_scratch_for_read(&ce->engine->gt->ggtt->vm,
3206 					   wal->count * sizeof(u32));
3207 	if (IS_ERR(vma))
3208 		return PTR_ERR(vma);
3209 
3210 	intel_engine_pm_get(ce->engine);
3211 	i915_gem_ww_ctx_init(&ww, false);
3212 retry:
3213 	err = i915_gem_object_lock(vma->obj, &ww);
3214 	if (err == 0)
3215 		err = intel_context_pin_ww(ce, &ww);
3216 	if (err)
3217 		goto err_pm;
3218 
3219 	err = i915_vma_pin_ww(vma, &ww, 0, 0,
3220 			   i915_vma_is_ggtt(vma) ? PIN_GLOBAL : PIN_USER);
3221 	if (err)
3222 		goto err_unpin;
3223 
3224 	rq = i915_request_create(ce);
3225 	if (IS_ERR(rq)) {
3226 		err = PTR_ERR(rq);
3227 		goto err_vma;
3228 	}
3229 
3230 	err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
3231 	if (err == 0)
3232 		err = wa_list_srm(rq, wal, vma);
3233 
3234 	i915_request_get(rq);
3235 	if (err)
3236 		i915_request_set_error_once(rq, err);
3237 	i915_request_add(rq);
3238 
3239 	if (err)
3240 		goto err_rq;
3241 
3242 	if (i915_request_wait(rq, 0, HZ / 5) < 0) {
3243 		err = -ETIME;
3244 		goto err_rq;
3245 	}
3246 
3247 	results = i915_gem_object_pin_map(vma->obj, I915_MAP_WB);
3248 	if (IS_ERR(results)) {
3249 		err = PTR_ERR(results);
3250 		goto err_rq;
3251 	}
3252 
3253 	err = 0;
3254 	for (i = 0, wa = wal->list; i < wal->count; i++, wa++) {
3255 		if (mcr_range(rq->engine->i915, i915_mmio_reg_offset(wa->reg)))
3256 			continue;
3257 
3258 		if (!wa_verify(wal->gt, wa, results[i], wal->name, from))
3259 			err = -ENXIO;
3260 	}
3261 
3262 	i915_gem_object_unpin_map(vma->obj);
3263 
3264 err_rq:
3265 	i915_request_put(rq);
3266 err_vma:
3267 	i915_vma_unpin(vma);
3268 err_unpin:
3269 	intel_context_unpin(ce);
3270 err_pm:
3271 	if (err == -EDEADLK) {
3272 		err = i915_gem_ww_ctx_backoff(&ww);
3273 		if (!err)
3274 			goto retry;
3275 	}
3276 	i915_gem_ww_ctx_fini(&ww);
3277 	intel_engine_pm_put(ce->engine);
3278 	i915_vma_put(vma);
3279 	return err;
3280 }
3281 
3282 int intel_engine_verify_workarounds(struct intel_engine_cs *engine,
3283 				    const char *from)
3284 {
3285 	return engine_wa_list_verify(engine->kernel_context,
3286 				     &engine->wa_list,
3287 				     from);
3288 }
3289 
3290 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
3291 #include "selftest_workarounds.c"
3292 #endif
3293