1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2016-2018 Intel Corporation
5  */
6 
7 #include "i915_drv.h"
8 
9 #include "i915_active.h"
10 #include "i915_syncmap.h"
11 #include "intel_gt.h"
12 #include "intel_ring.h"
13 #include "intel_timeline.h"
14 
15 #define ptr_set_bit(ptr, bit) ((typeof(ptr))((unsigned long)(ptr) | BIT(bit)))
16 #define ptr_test_bit(ptr, bit) ((unsigned long)(ptr) & BIT(bit))
17 
18 #define CACHELINE_BITS 6
19 #define CACHELINE_FREE CACHELINE_BITS
20 
21 struct intel_timeline_hwsp {
22 	struct intel_gt *gt;
23 	struct intel_gt_timelines *gt_timelines;
24 	struct list_head free_link;
25 	struct i915_vma *vma;
26 	u64 free_bitmap;
27 };
28 
29 static struct i915_vma *__hwsp_alloc(struct intel_gt *gt)
30 {
31 	struct drm_i915_private *i915 = gt->i915;
32 	struct drm_i915_gem_object *obj;
33 	struct i915_vma *vma;
34 
35 	obj = i915_gem_object_create_internal(i915, PAGE_SIZE);
36 	if (IS_ERR(obj))
37 		return ERR_CAST(obj);
38 
39 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
40 
41 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
42 	if (IS_ERR(vma))
43 		i915_gem_object_put(obj);
44 
45 	return vma;
46 }
47 
48 static struct i915_vma *
49 hwsp_alloc(struct intel_timeline *timeline, unsigned int *cacheline)
50 {
51 	struct intel_gt_timelines *gt = &timeline->gt->timelines;
52 	struct intel_timeline_hwsp *hwsp;
53 
54 	BUILD_BUG_ON(BITS_PER_TYPE(u64) * CACHELINE_BYTES > PAGE_SIZE);
55 
56 	spin_lock_irq(&gt->hwsp_lock);
57 
58 	/* hwsp_free_list only contains HWSP that have available cachelines */
59 	hwsp = list_first_entry_or_null(&gt->hwsp_free_list,
60 					typeof(*hwsp), free_link);
61 	if (!hwsp) {
62 		struct i915_vma *vma;
63 
64 		spin_unlock_irq(&gt->hwsp_lock);
65 
66 		hwsp = kmalloc(sizeof(*hwsp), GFP_KERNEL);
67 		if (!hwsp)
68 			return ERR_PTR(-ENOMEM);
69 
70 		vma = __hwsp_alloc(timeline->gt);
71 		if (IS_ERR(vma)) {
72 			kfree(hwsp);
73 			return vma;
74 		}
75 
76 		GT_TRACE(timeline->gt, "new HWSP allocated\n");
77 
78 		vma->private = hwsp;
79 		hwsp->gt = timeline->gt;
80 		hwsp->vma = vma;
81 		hwsp->free_bitmap = ~0ull;
82 		hwsp->gt_timelines = gt;
83 
84 		spin_lock_irq(&gt->hwsp_lock);
85 		list_add(&hwsp->free_link, &gt->hwsp_free_list);
86 	}
87 
88 	GEM_BUG_ON(!hwsp->free_bitmap);
89 	*cacheline = __ffs64(hwsp->free_bitmap);
90 	hwsp->free_bitmap &= ~BIT_ULL(*cacheline);
91 	if (!hwsp->free_bitmap)
92 		list_del(&hwsp->free_link);
93 
94 	spin_unlock_irq(&gt->hwsp_lock);
95 
96 	GEM_BUG_ON(hwsp->vma->private != hwsp);
97 	return hwsp->vma;
98 }
99 
100 static void __idle_hwsp_free(struct intel_timeline_hwsp *hwsp, int cacheline)
101 {
102 	struct intel_gt_timelines *gt = hwsp->gt_timelines;
103 	unsigned long flags;
104 
105 	spin_lock_irqsave(&gt->hwsp_lock, flags);
106 
107 	/* As a cacheline becomes available, publish the HWSP on the freelist */
108 	if (!hwsp->free_bitmap)
109 		list_add_tail(&hwsp->free_link, &gt->hwsp_free_list);
110 
111 	GEM_BUG_ON(cacheline >= BITS_PER_TYPE(hwsp->free_bitmap));
112 	hwsp->free_bitmap |= BIT_ULL(cacheline);
113 
114 	/* And if no one is left using it, give the page back to the system */
115 	if (hwsp->free_bitmap == ~0ull) {
116 		i915_vma_put(hwsp->vma);
117 		list_del(&hwsp->free_link);
118 		kfree(hwsp);
119 	}
120 
121 	spin_unlock_irqrestore(&gt->hwsp_lock, flags);
122 }
123 
124 static void __rcu_cacheline_free(struct rcu_head *rcu)
125 {
126 	struct intel_timeline_cacheline *cl =
127 		container_of(rcu, typeof(*cl), rcu);
128 
129 	i915_active_fini(&cl->active);
130 	kfree(cl);
131 }
132 
133 static void __idle_cacheline_free(struct intel_timeline_cacheline *cl)
134 {
135 	GEM_BUG_ON(!i915_active_is_idle(&cl->active));
136 
137 	i915_gem_object_unpin_map(cl->hwsp->vma->obj);
138 	i915_vma_put(cl->hwsp->vma);
139 	__idle_hwsp_free(cl->hwsp, ptr_unmask_bits(cl->vaddr, CACHELINE_BITS));
140 
141 	call_rcu(&cl->rcu, __rcu_cacheline_free);
142 }
143 
144 __i915_active_call
145 static void __cacheline_retire(struct i915_active *active)
146 {
147 	struct intel_timeline_cacheline *cl =
148 		container_of(active, typeof(*cl), active);
149 
150 	i915_vma_unpin(cl->hwsp->vma);
151 	if (ptr_test_bit(cl->vaddr, CACHELINE_FREE))
152 		__idle_cacheline_free(cl);
153 }
154 
155 static int __cacheline_active(struct i915_active *active)
156 {
157 	struct intel_timeline_cacheline *cl =
158 		container_of(active, typeof(*cl), active);
159 
160 	__i915_vma_pin(cl->hwsp->vma);
161 	return 0;
162 }
163 
164 static struct intel_timeline_cacheline *
165 cacheline_alloc(struct intel_timeline_hwsp *hwsp, unsigned int cacheline)
166 {
167 	struct intel_timeline_cacheline *cl;
168 	void *vaddr;
169 
170 	GEM_BUG_ON(cacheline >= BIT(CACHELINE_BITS));
171 
172 	cl = kmalloc(sizeof(*cl), GFP_KERNEL);
173 	if (!cl)
174 		return ERR_PTR(-ENOMEM);
175 
176 	vaddr = i915_gem_object_pin_map(hwsp->vma->obj, I915_MAP_WB);
177 	if (IS_ERR(vaddr)) {
178 		kfree(cl);
179 		return ERR_CAST(vaddr);
180 	}
181 
182 	i915_vma_get(hwsp->vma);
183 	cl->hwsp = hwsp;
184 	cl->vaddr = page_pack_bits(vaddr, cacheline);
185 
186 	i915_active_init(&cl->active, __cacheline_active, __cacheline_retire);
187 
188 	return cl;
189 }
190 
191 static void cacheline_acquire(struct intel_timeline_cacheline *cl,
192 			      u32 ggtt_offset)
193 {
194 	if (!cl)
195 		return;
196 
197 	cl->ggtt_offset = ggtt_offset;
198 	i915_active_acquire(&cl->active);
199 }
200 
201 static void cacheline_release(struct intel_timeline_cacheline *cl)
202 {
203 	if (cl)
204 		i915_active_release(&cl->active);
205 }
206 
207 static void cacheline_free(struct intel_timeline_cacheline *cl)
208 {
209 	if (!i915_active_acquire_if_busy(&cl->active)) {
210 		__idle_cacheline_free(cl);
211 		return;
212 	}
213 
214 	GEM_BUG_ON(ptr_test_bit(cl->vaddr, CACHELINE_FREE));
215 	cl->vaddr = ptr_set_bit(cl->vaddr, CACHELINE_FREE);
216 
217 	i915_active_release(&cl->active);
218 }
219 
220 static int intel_timeline_init(struct intel_timeline *timeline,
221 			       struct intel_gt *gt,
222 			       struct i915_vma *hwsp,
223 			       unsigned int offset)
224 {
225 	void *vaddr;
226 
227 	kref_init(&timeline->kref);
228 	atomic_set(&timeline->pin_count, 0);
229 
230 	timeline->gt = gt;
231 
232 	timeline->has_initial_breadcrumb = !hwsp;
233 	timeline->hwsp_cacheline = NULL;
234 
235 	if (!hwsp) {
236 		struct intel_timeline_cacheline *cl;
237 		unsigned int cacheline;
238 
239 		hwsp = hwsp_alloc(timeline, &cacheline);
240 		if (IS_ERR(hwsp))
241 			return PTR_ERR(hwsp);
242 
243 		cl = cacheline_alloc(hwsp->private, cacheline);
244 		if (IS_ERR(cl)) {
245 			__idle_hwsp_free(hwsp->private, cacheline);
246 			return PTR_ERR(cl);
247 		}
248 
249 		timeline->hwsp_cacheline = cl;
250 		timeline->hwsp_offset = cacheline * CACHELINE_BYTES;
251 
252 		vaddr = page_mask_bits(cl->vaddr);
253 	} else {
254 		timeline->hwsp_offset = offset;
255 		vaddr = i915_gem_object_pin_map(hwsp->obj, I915_MAP_WB);
256 		if (IS_ERR(vaddr))
257 			return PTR_ERR(vaddr);
258 	}
259 
260 	timeline->hwsp_seqno =
261 		memset(vaddr + timeline->hwsp_offset, 0, CACHELINE_BYTES);
262 
263 	timeline->hwsp_ggtt = i915_vma_get(hwsp);
264 	GEM_BUG_ON(timeline->hwsp_offset >= hwsp->size);
265 
266 	timeline->fence_context = dma_fence_context_alloc(1);
267 
268 	mutex_init(&timeline->mutex);
269 
270 	INIT_ACTIVE_FENCE(&timeline->last_request);
271 	INIT_LIST_HEAD(&timeline->requests);
272 
273 	i915_syncmap_init(&timeline->sync);
274 
275 	return 0;
276 }
277 
278 void intel_gt_init_timelines(struct intel_gt *gt)
279 {
280 	struct intel_gt_timelines *timelines = &gt->timelines;
281 
282 	spin_lock_init(&timelines->lock);
283 	INIT_LIST_HEAD(&timelines->active_list);
284 
285 	spin_lock_init(&timelines->hwsp_lock);
286 	INIT_LIST_HEAD(&timelines->hwsp_free_list);
287 }
288 
289 static void intel_timeline_fini(struct intel_timeline *timeline)
290 {
291 	GEM_BUG_ON(atomic_read(&timeline->pin_count));
292 	GEM_BUG_ON(!list_empty(&timeline->requests));
293 	GEM_BUG_ON(timeline->retire);
294 
295 	if (timeline->hwsp_cacheline)
296 		cacheline_free(timeline->hwsp_cacheline);
297 	else
298 		i915_gem_object_unpin_map(timeline->hwsp_ggtt->obj);
299 
300 	i915_vma_put(timeline->hwsp_ggtt);
301 }
302 
303 struct intel_timeline *
304 __intel_timeline_create(struct intel_gt *gt,
305 			struct i915_vma *global_hwsp,
306 			unsigned int offset)
307 {
308 	struct intel_timeline *timeline;
309 	int err;
310 
311 	timeline = kzalloc(sizeof(*timeline), GFP_KERNEL);
312 	if (!timeline)
313 		return ERR_PTR(-ENOMEM);
314 
315 	err = intel_timeline_init(timeline, gt, global_hwsp, offset);
316 	if (err) {
317 		kfree(timeline);
318 		return ERR_PTR(err);
319 	}
320 
321 	return timeline;
322 }
323 
324 void __intel_timeline_pin(struct intel_timeline *tl)
325 {
326 	GEM_BUG_ON(!atomic_read(&tl->pin_count));
327 	atomic_inc(&tl->pin_count);
328 }
329 
330 int intel_timeline_pin(struct intel_timeline *tl, struct i915_gem_ww_ctx *ww)
331 {
332 	int err;
333 
334 	if (atomic_add_unless(&tl->pin_count, 1, 0))
335 		return 0;
336 
337 	err = i915_ggtt_pin(tl->hwsp_ggtt, ww, 0, PIN_HIGH);
338 	if (err)
339 		return err;
340 
341 	tl->hwsp_offset =
342 		i915_ggtt_offset(tl->hwsp_ggtt) +
343 		offset_in_page(tl->hwsp_offset);
344 	GT_TRACE(tl->gt, "timeline:%llx using HWSP offset:%x\n",
345 		 tl->fence_context, tl->hwsp_offset);
346 
347 	cacheline_acquire(tl->hwsp_cacheline, tl->hwsp_offset);
348 	if (atomic_fetch_inc(&tl->pin_count)) {
349 		cacheline_release(tl->hwsp_cacheline);
350 		__i915_vma_unpin(tl->hwsp_ggtt);
351 	}
352 
353 	return 0;
354 }
355 
356 void intel_timeline_reset_seqno(const struct intel_timeline *tl)
357 {
358 	/* Must be pinned to be writable, and no requests in flight. */
359 	GEM_BUG_ON(!atomic_read(&tl->pin_count));
360 	WRITE_ONCE(*(u32 *)tl->hwsp_seqno, tl->seqno);
361 }
362 
363 void intel_timeline_enter(struct intel_timeline *tl)
364 {
365 	struct intel_gt_timelines *timelines = &tl->gt->timelines;
366 
367 	/*
368 	 * Pretend we are serialised by the timeline->mutex.
369 	 *
370 	 * While generally true, there are a few exceptions to the rule
371 	 * for the engine->kernel_context being used to manage power
372 	 * transitions. As the engine_park may be called from under any
373 	 * timeline, it uses the power mutex as a global serialisation
374 	 * lock to prevent any other request entering its timeline.
375 	 *
376 	 * The rule is generally tl->mutex, otherwise engine->wakeref.mutex.
377 	 *
378 	 * However, intel_gt_retire_request() does not know which engine
379 	 * it is retiring along and so cannot partake in the engine-pm
380 	 * barrier, and there we use the tl->active_count as a means to
381 	 * pin the timeline in the active_list while the locks are dropped.
382 	 * Ergo, as that is outside of the engine-pm barrier, we need to
383 	 * use atomic to manipulate tl->active_count.
384 	 */
385 	lockdep_assert_held(&tl->mutex);
386 
387 	if (atomic_add_unless(&tl->active_count, 1, 0))
388 		return;
389 
390 	spin_lock(&timelines->lock);
391 	if (!atomic_fetch_inc(&tl->active_count)) {
392 		/*
393 		 * The HWSP is volatile, and may have been lost while inactive,
394 		 * e.g. across suspend/resume. Be paranoid, and ensure that
395 		 * the HWSP value matches our seqno so we don't proclaim
396 		 * the next request as already complete.
397 		 */
398 		intel_timeline_reset_seqno(tl);
399 		list_add_tail(&tl->link, &timelines->active_list);
400 	}
401 	spin_unlock(&timelines->lock);
402 }
403 
404 void intel_timeline_exit(struct intel_timeline *tl)
405 {
406 	struct intel_gt_timelines *timelines = &tl->gt->timelines;
407 
408 	/* See intel_timeline_enter() */
409 	lockdep_assert_held(&tl->mutex);
410 
411 	GEM_BUG_ON(!atomic_read(&tl->active_count));
412 	if (atomic_add_unless(&tl->active_count, -1, 1))
413 		return;
414 
415 	spin_lock(&timelines->lock);
416 	if (atomic_dec_and_test(&tl->active_count))
417 		list_del(&tl->link);
418 	spin_unlock(&timelines->lock);
419 
420 	/*
421 	 * Since this timeline is idle, all bariers upon which we were waiting
422 	 * must also be complete and so we can discard the last used barriers
423 	 * without loss of information.
424 	 */
425 	i915_syncmap_free(&tl->sync);
426 }
427 
428 static u32 timeline_advance(struct intel_timeline *tl)
429 {
430 	GEM_BUG_ON(!atomic_read(&tl->pin_count));
431 	GEM_BUG_ON(tl->seqno & tl->has_initial_breadcrumb);
432 
433 	return tl->seqno += 1 + tl->has_initial_breadcrumb;
434 }
435 
436 static void timeline_rollback(struct intel_timeline *tl)
437 {
438 	tl->seqno -= 1 + tl->has_initial_breadcrumb;
439 }
440 
441 static noinline int
442 __intel_timeline_get_seqno(struct intel_timeline *tl,
443 			   struct i915_request *rq,
444 			   u32 *seqno)
445 {
446 	struct intel_timeline_cacheline *cl;
447 	unsigned int cacheline;
448 	struct i915_vma *vma;
449 	void *vaddr;
450 	int err;
451 
452 	might_lock(&tl->gt->ggtt->vm.mutex);
453 	GT_TRACE(tl->gt, "timeline:%llx wrapped\n", tl->fence_context);
454 
455 	/*
456 	 * If there is an outstanding GPU reference to this cacheline,
457 	 * such as it being sampled by a HW semaphore on another timeline,
458 	 * we cannot wraparound our seqno value (the HW semaphore does
459 	 * a strict greater-than-or-equals compare, not i915_seqno_passed).
460 	 * So if the cacheline is still busy, we must detach ourselves
461 	 * from it and leave it inflight alongside its users.
462 	 *
463 	 * However, if nobody is watching and we can guarantee that nobody
464 	 * will, we could simply reuse the same cacheline.
465 	 *
466 	 * if (i915_active_request_is_signaled(&tl->last_request) &&
467 	 *     i915_active_is_signaled(&tl->hwsp_cacheline->active))
468 	 *	return 0;
469 	 *
470 	 * That seems unlikely for a busy timeline that needed to wrap in
471 	 * the first place, so just replace the cacheline.
472 	 */
473 
474 	vma = hwsp_alloc(tl, &cacheline);
475 	if (IS_ERR(vma)) {
476 		err = PTR_ERR(vma);
477 		goto err_rollback;
478 	}
479 
480 	err = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
481 	if (err) {
482 		__idle_hwsp_free(vma->private, cacheline);
483 		goto err_rollback;
484 	}
485 
486 	cl = cacheline_alloc(vma->private, cacheline);
487 	if (IS_ERR(cl)) {
488 		err = PTR_ERR(cl);
489 		__idle_hwsp_free(vma->private, cacheline);
490 		goto err_unpin;
491 	}
492 	GEM_BUG_ON(cl->hwsp->vma != vma);
493 
494 	/*
495 	 * Attach the old cacheline to the current request, so that we only
496 	 * free it after the current request is retired, which ensures that
497 	 * all writes into the cacheline from previous requests are complete.
498 	 */
499 	err = i915_active_ref(&tl->hwsp_cacheline->active,
500 			      tl->fence_context,
501 			      &rq->fence);
502 	if (err)
503 		goto err_cacheline;
504 
505 	cacheline_release(tl->hwsp_cacheline); /* ownership now xfered to rq */
506 	cacheline_free(tl->hwsp_cacheline);
507 
508 	i915_vma_unpin(tl->hwsp_ggtt); /* binding kept alive by old cacheline */
509 	i915_vma_put(tl->hwsp_ggtt);
510 
511 	tl->hwsp_ggtt = i915_vma_get(vma);
512 
513 	vaddr = page_mask_bits(cl->vaddr);
514 	tl->hwsp_offset = cacheline * CACHELINE_BYTES;
515 	tl->hwsp_seqno =
516 		memset(vaddr + tl->hwsp_offset, 0, CACHELINE_BYTES);
517 
518 	tl->hwsp_offset += i915_ggtt_offset(vma);
519 	GT_TRACE(tl->gt, "timeline:%llx using HWSP offset:%x\n",
520 		 tl->fence_context, tl->hwsp_offset);
521 
522 	cacheline_acquire(cl, tl->hwsp_offset);
523 	tl->hwsp_cacheline = cl;
524 
525 	*seqno = timeline_advance(tl);
526 	GEM_BUG_ON(i915_seqno_passed(*tl->hwsp_seqno, *seqno));
527 	return 0;
528 
529 err_cacheline:
530 	cacheline_free(cl);
531 err_unpin:
532 	i915_vma_unpin(vma);
533 err_rollback:
534 	timeline_rollback(tl);
535 	return err;
536 }
537 
538 int intel_timeline_get_seqno(struct intel_timeline *tl,
539 			     struct i915_request *rq,
540 			     u32 *seqno)
541 {
542 	*seqno = timeline_advance(tl);
543 
544 	/* Replace the HWSP on wraparound for HW semaphores */
545 	if (unlikely(!*seqno && tl->hwsp_cacheline))
546 		return __intel_timeline_get_seqno(tl, rq, seqno);
547 
548 	return 0;
549 }
550 
551 static int cacheline_ref(struct intel_timeline_cacheline *cl,
552 			 struct i915_request *rq)
553 {
554 	return i915_active_add_request(&cl->active, rq);
555 }
556 
557 int intel_timeline_read_hwsp(struct i915_request *from,
558 			     struct i915_request *to,
559 			     u32 *hwsp)
560 {
561 	struct intel_timeline_cacheline *cl;
562 	int err;
563 
564 	GEM_BUG_ON(!rcu_access_pointer(from->hwsp_cacheline));
565 
566 	rcu_read_lock();
567 	cl = rcu_dereference(from->hwsp_cacheline);
568 	if (i915_request_completed(from)) /* confirm cacheline is valid */
569 		goto unlock;
570 	if (unlikely(!i915_active_acquire_if_busy(&cl->active)))
571 		goto unlock; /* seqno wrapped and completed! */
572 	if (unlikely(i915_request_completed(from)))
573 		goto release;
574 	rcu_read_unlock();
575 
576 	err = cacheline_ref(cl, to);
577 	if (err)
578 		goto out;
579 
580 	*hwsp = cl->ggtt_offset;
581 out:
582 	i915_active_release(&cl->active);
583 	return err;
584 
585 release:
586 	i915_active_release(&cl->active);
587 unlock:
588 	rcu_read_unlock();
589 	return 1;
590 }
591 
592 void intel_timeline_unpin(struct intel_timeline *tl)
593 {
594 	GEM_BUG_ON(!atomic_read(&tl->pin_count));
595 	if (!atomic_dec_and_test(&tl->pin_count))
596 		return;
597 
598 	cacheline_release(tl->hwsp_cacheline);
599 
600 	__i915_vma_unpin(tl->hwsp_ggtt);
601 }
602 
603 void __intel_timeline_free(struct kref *kref)
604 {
605 	struct intel_timeline *timeline =
606 		container_of(kref, typeof(*timeline), kref);
607 
608 	intel_timeline_fini(timeline);
609 	kfree_rcu(timeline, rcu);
610 }
611 
612 void intel_gt_fini_timelines(struct intel_gt *gt)
613 {
614 	struct intel_gt_timelines *timelines = &gt->timelines;
615 
616 	GEM_BUG_ON(!list_empty(&timelines->active_list));
617 	GEM_BUG_ON(!list_empty(&timelines->hwsp_free_list));
618 }
619 
620 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
621 #include "gt/selftests/mock_timeline.c"
622 #include "gt/selftest_timeline.c"
623 #endif
624