1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2016-2018 Intel Corporation
5  */
6 
7 #include "i915_drv.h"
8 
9 #include "i915_active.h"
10 #include "i915_syncmap.h"
11 #include "intel_gt.h"
12 #include "intel_ring.h"
13 #include "intel_timeline.h"
14 
15 #define ptr_set_bit(ptr, bit) ((typeof(ptr))((unsigned long)(ptr) | BIT(bit)))
16 #define ptr_test_bit(ptr, bit) ((unsigned long)(ptr) & BIT(bit))
17 
18 #define CACHELINE_BITS 6
19 #define CACHELINE_FREE CACHELINE_BITS
20 
21 struct intel_timeline_hwsp {
22 	struct intel_gt *gt;
23 	struct intel_gt_timelines *gt_timelines;
24 	struct list_head free_link;
25 	struct i915_vma *vma;
26 	u64 free_bitmap;
27 };
28 
29 static struct i915_vma *__hwsp_alloc(struct intel_gt *gt)
30 {
31 	struct drm_i915_private *i915 = gt->i915;
32 	struct drm_i915_gem_object *obj;
33 	struct i915_vma *vma;
34 
35 	obj = i915_gem_object_create_internal(i915, PAGE_SIZE);
36 	if (IS_ERR(obj))
37 		return ERR_CAST(obj);
38 
39 	i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC);
40 
41 	vma = i915_vma_instance(obj, &gt->ggtt->vm, NULL);
42 	if (IS_ERR(vma))
43 		i915_gem_object_put(obj);
44 
45 	return vma;
46 }
47 
48 static struct i915_vma *
49 hwsp_alloc(struct intel_timeline *timeline, unsigned int *cacheline)
50 {
51 	struct intel_gt_timelines *gt = &timeline->gt->timelines;
52 	struct intel_timeline_hwsp *hwsp;
53 
54 	BUILD_BUG_ON(BITS_PER_TYPE(u64) * CACHELINE_BYTES > PAGE_SIZE);
55 
56 	spin_lock_irq(&gt->hwsp_lock);
57 
58 	/* hwsp_free_list only contains HWSP that have available cachelines */
59 	hwsp = list_first_entry_or_null(&gt->hwsp_free_list,
60 					typeof(*hwsp), free_link);
61 	if (!hwsp) {
62 		struct i915_vma *vma;
63 
64 		spin_unlock_irq(&gt->hwsp_lock);
65 
66 		hwsp = kmalloc(sizeof(*hwsp), GFP_KERNEL);
67 		if (!hwsp)
68 			return ERR_PTR(-ENOMEM);
69 
70 		vma = __hwsp_alloc(timeline->gt);
71 		if (IS_ERR(vma)) {
72 			kfree(hwsp);
73 			return vma;
74 		}
75 
76 		GT_TRACE(timeline->gt, "new HWSP allocated\n");
77 
78 		vma->private = hwsp;
79 		hwsp->gt = timeline->gt;
80 		hwsp->vma = vma;
81 		hwsp->free_bitmap = ~0ull;
82 		hwsp->gt_timelines = gt;
83 
84 		spin_lock_irq(&gt->hwsp_lock);
85 		list_add(&hwsp->free_link, &gt->hwsp_free_list);
86 	}
87 
88 	GEM_BUG_ON(!hwsp->free_bitmap);
89 	*cacheline = __ffs64(hwsp->free_bitmap);
90 	hwsp->free_bitmap &= ~BIT_ULL(*cacheline);
91 	if (!hwsp->free_bitmap)
92 		list_del(&hwsp->free_link);
93 
94 	spin_unlock_irq(&gt->hwsp_lock);
95 
96 	GEM_BUG_ON(hwsp->vma->private != hwsp);
97 	return hwsp->vma;
98 }
99 
100 static void __idle_hwsp_free(struct intel_timeline_hwsp *hwsp, int cacheline)
101 {
102 	struct intel_gt_timelines *gt = hwsp->gt_timelines;
103 	unsigned long flags;
104 
105 	spin_lock_irqsave(&gt->hwsp_lock, flags);
106 
107 	/* As a cacheline becomes available, publish the HWSP on the freelist */
108 	if (!hwsp->free_bitmap)
109 		list_add_tail(&hwsp->free_link, &gt->hwsp_free_list);
110 
111 	GEM_BUG_ON(cacheline >= BITS_PER_TYPE(hwsp->free_bitmap));
112 	hwsp->free_bitmap |= BIT_ULL(cacheline);
113 
114 	/* And if no one is left using it, give the page back to the system */
115 	if (hwsp->free_bitmap == ~0ull) {
116 		i915_vma_put(hwsp->vma);
117 		list_del(&hwsp->free_link);
118 		kfree(hwsp);
119 	}
120 
121 	spin_unlock_irqrestore(&gt->hwsp_lock, flags);
122 }
123 
124 static void __rcu_cacheline_free(struct rcu_head *rcu)
125 {
126 	struct intel_timeline_cacheline *cl =
127 		container_of(rcu, typeof(*cl), rcu);
128 
129 	/* Must wait until after all *rq->hwsp are complete before removing */
130 	i915_gem_object_unpin_map(cl->hwsp->vma->obj);
131 	__idle_hwsp_free(cl->hwsp, ptr_unmask_bits(cl->vaddr, CACHELINE_BITS));
132 
133 	i915_active_fini(&cl->active);
134 	kfree(cl);
135 }
136 
137 static void __idle_cacheline_free(struct intel_timeline_cacheline *cl)
138 {
139 	GEM_BUG_ON(!i915_active_is_idle(&cl->active));
140 	call_rcu(&cl->rcu, __rcu_cacheline_free);
141 }
142 
143 __i915_active_call
144 static void __cacheline_retire(struct i915_active *active)
145 {
146 	struct intel_timeline_cacheline *cl =
147 		container_of(active, typeof(*cl), active);
148 
149 	i915_vma_unpin(cl->hwsp->vma);
150 	if (ptr_test_bit(cl->vaddr, CACHELINE_FREE))
151 		__idle_cacheline_free(cl);
152 }
153 
154 static int __cacheline_active(struct i915_active *active)
155 {
156 	struct intel_timeline_cacheline *cl =
157 		container_of(active, typeof(*cl), active);
158 
159 	__i915_vma_pin(cl->hwsp->vma);
160 	return 0;
161 }
162 
163 static struct intel_timeline_cacheline *
164 cacheline_alloc(struct intel_timeline_hwsp *hwsp, unsigned int cacheline)
165 {
166 	struct intel_timeline_cacheline *cl;
167 	void *vaddr;
168 
169 	GEM_BUG_ON(cacheline >= BIT(CACHELINE_BITS));
170 
171 	cl = kmalloc(sizeof(*cl), GFP_KERNEL);
172 	if (!cl)
173 		return ERR_PTR(-ENOMEM);
174 
175 	vaddr = i915_gem_object_pin_map(hwsp->vma->obj, I915_MAP_WB);
176 	if (IS_ERR(vaddr)) {
177 		kfree(cl);
178 		return ERR_CAST(vaddr);
179 	}
180 
181 	cl->hwsp = hwsp;
182 	cl->vaddr = page_pack_bits(vaddr, cacheline);
183 
184 	i915_active_init(&cl->active, __cacheline_active, __cacheline_retire);
185 
186 	return cl;
187 }
188 
189 static void cacheline_acquire(struct intel_timeline_cacheline *cl,
190 			      u32 ggtt_offset)
191 {
192 	if (!cl)
193 		return;
194 
195 	cl->ggtt_offset = ggtt_offset;
196 	i915_active_acquire(&cl->active);
197 }
198 
199 static void cacheline_release(struct intel_timeline_cacheline *cl)
200 {
201 	if (cl)
202 		i915_active_release(&cl->active);
203 }
204 
205 static void cacheline_free(struct intel_timeline_cacheline *cl)
206 {
207 	if (!i915_active_acquire_if_busy(&cl->active)) {
208 		__idle_cacheline_free(cl);
209 		return;
210 	}
211 
212 	GEM_BUG_ON(ptr_test_bit(cl->vaddr, CACHELINE_FREE));
213 	cl->vaddr = ptr_set_bit(cl->vaddr, CACHELINE_FREE);
214 
215 	i915_active_release(&cl->active);
216 }
217 
218 static int intel_timeline_init(struct intel_timeline *timeline,
219 			       struct intel_gt *gt,
220 			       struct i915_vma *hwsp,
221 			       unsigned int offset)
222 {
223 	void *vaddr;
224 
225 	kref_init(&timeline->kref);
226 	atomic_set(&timeline->pin_count, 0);
227 
228 	timeline->gt = gt;
229 
230 	timeline->has_initial_breadcrumb = !hwsp;
231 	timeline->hwsp_cacheline = NULL;
232 
233 	if (!hwsp) {
234 		struct intel_timeline_cacheline *cl;
235 		unsigned int cacheline;
236 
237 		hwsp = hwsp_alloc(timeline, &cacheline);
238 		if (IS_ERR(hwsp))
239 			return PTR_ERR(hwsp);
240 
241 		cl = cacheline_alloc(hwsp->private, cacheline);
242 		if (IS_ERR(cl)) {
243 			__idle_hwsp_free(hwsp->private, cacheline);
244 			return PTR_ERR(cl);
245 		}
246 
247 		timeline->hwsp_cacheline = cl;
248 		timeline->hwsp_offset = cacheline * CACHELINE_BYTES;
249 
250 		vaddr = page_mask_bits(cl->vaddr);
251 	} else {
252 		timeline->hwsp_offset = offset;
253 		vaddr = i915_gem_object_pin_map(hwsp->obj, I915_MAP_WB);
254 		if (IS_ERR(vaddr))
255 			return PTR_ERR(vaddr);
256 	}
257 
258 	timeline->hwsp_seqno =
259 		memset(vaddr + timeline->hwsp_offset, 0, CACHELINE_BYTES);
260 
261 	timeline->hwsp_ggtt = i915_vma_get(hwsp);
262 	GEM_BUG_ON(timeline->hwsp_offset >= hwsp->size);
263 
264 	timeline->fence_context = dma_fence_context_alloc(1);
265 
266 	mutex_init(&timeline->mutex);
267 
268 	INIT_ACTIVE_FENCE(&timeline->last_request);
269 	INIT_LIST_HEAD(&timeline->requests);
270 
271 	i915_syncmap_init(&timeline->sync);
272 
273 	return 0;
274 }
275 
276 void intel_gt_init_timelines(struct intel_gt *gt)
277 {
278 	struct intel_gt_timelines *timelines = &gt->timelines;
279 
280 	spin_lock_init(&timelines->lock);
281 	INIT_LIST_HEAD(&timelines->active_list);
282 
283 	spin_lock_init(&timelines->hwsp_lock);
284 	INIT_LIST_HEAD(&timelines->hwsp_free_list);
285 }
286 
287 static void intel_timeline_fini(struct intel_timeline *timeline)
288 {
289 	GEM_BUG_ON(atomic_read(&timeline->pin_count));
290 	GEM_BUG_ON(!list_empty(&timeline->requests));
291 	GEM_BUG_ON(timeline->retire);
292 
293 	if (timeline->hwsp_cacheline)
294 		cacheline_free(timeline->hwsp_cacheline);
295 	else
296 		i915_gem_object_unpin_map(timeline->hwsp_ggtt->obj);
297 
298 	i915_vma_put(timeline->hwsp_ggtt);
299 }
300 
301 struct intel_timeline *
302 __intel_timeline_create(struct intel_gt *gt,
303 			struct i915_vma *global_hwsp,
304 			unsigned int offset)
305 {
306 	struct intel_timeline *timeline;
307 	int err;
308 
309 	timeline = kzalloc(sizeof(*timeline), GFP_KERNEL);
310 	if (!timeline)
311 		return ERR_PTR(-ENOMEM);
312 
313 	err = intel_timeline_init(timeline, gt, global_hwsp, offset);
314 	if (err) {
315 		kfree(timeline);
316 		return ERR_PTR(err);
317 	}
318 
319 	return timeline;
320 }
321 
322 void __intel_timeline_pin(struct intel_timeline *tl)
323 {
324 	GEM_BUG_ON(!atomic_read(&tl->pin_count));
325 	atomic_inc(&tl->pin_count);
326 }
327 
328 int intel_timeline_pin(struct intel_timeline *tl, struct i915_gem_ww_ctx *ww)
329 {
330 	int err;
331 
332 	if (atomic_add_unless(&tl->pin_count, 1, 0))
333 		return 0;
334 
335 	err = i915_ggtt_pin(tl->hwsp_ggtt, ww, 0, PIN_HIGH);
336 	if (err)
337 		return err;
338 
339 	tl->hwsp_offset =
340 		i915_ggtt_offset(tl->hwsp_ggtt) +
341 		offset_in_page(tl->hwsp_offset);
342 	GT_TRACE(tl->gt, "timeline:%llx using HWSP offset:%x\n",
343 		 tl->fence_context, tl->hwsp_offset);
344 
345 	cacheline_acquire(tl->hwsp_cacheline, tl->hwsp_offset);
346 	if (atomic_fetch_inc(&tl->pin_count)) {
347 		cacheline_release(tl->hwsp_cacheline);
348 		__i915_vma_unpin(tl->hwsp_ggtt);
349 	}
350 
351 	return 0;
352 }
353 
354 void intel_timeline_reset_seqno(const struct intel_timeline *tl)
355 {
356 	/* Must be pinned to be writable, and no requests in flight. */
357 	GEM_BUG_ON(!atomic_read(&tl->pin_count));
358 	WRITE_ONCE(*(u32 *)tl->hwsp_seqno, tl->seqno);
359 }
360 
361 void intel_timeline_enter(struct intel_timeline *tl)
362 {
363 	struct intel_gt_timelines *timelines = &tl->gt->timelines;
364 
365 	/*
366 	 * Pretend we are serialised by the timeline->mutex.
367 	 *
368 	 * While generally true, there are a few exceptions to the rule
369 	 * for the engine->kernel_context being used to manage power
370 	 * transitions. As the engine_park may be called from under any
371 	 * timeline, it uses the power mutex as a global serialisation
372 	 * lock to prevent any other request entering its timeline.
373 	 *
374 	 * The rule is generally tl->mutex, otherwise engine->wakeref.mutex.
375 	 *
376 	 * However, intel_gt_retire_request() does not know which engine
377 	 * it is retiring along and so cannot partake in the engine-pm
378 	 * barrier, and there we use the tl->active_count as a means to
379 	 * pin the timeline in the active_list while the locks are dropped.
380 	 * Ergo, as that is outside of the engine-pm barrier, we need to
381 	 * use atomic to manipulate tl->active_count.
382 	 */
383 	lockdep_assert_held(&tl->mutex);
384 
385 	if (atomic_add_unless(&tl->active_count, 1, 0))
386 		return;
387 
388 	spin_lock(&timelines->lock);
389 	if (!atomic_fetch_inc(&tl->active_count)) {
390 		/*
391 		 * The HWSP is volatile, and may have been lost while inactive,
392 		 * e.g. across suspend/resume. Be paranoid, and ensure that
393 		 * the HWSP value matches our seqno so we don't proclaim
394 		 * the next request as already complete.
395 		 */
396 		intel_timeline_reset_seqno(tl);
397 		list_add_tail(&tl->link, &timelines->active_list);
398 	}
399 	spin_unlock(&timelines->lock);
400 }
401 
402 void intel_timeline_exit(struct intel_timeline *tl)
403 {
404 	struct intel_gt_timelines *timelines = &tl->gt->timelines;
405 
406 	/* See intel_timeline_enter() */
407 	lockdep_assert_held(&tl->mutex);
408 
409 	GEM_BUG_ON(!atomic_read(&tl->active_count));
410 	if (atomic_add_unless(&tl->active_count, -1, 1))
411 		return;
412 
413 	spin_lock(&timelines->lock);
414 	if (atomic_dec_and_test(&tl->active_count))
415 		list_del(&tl->link);
416 	spin_unlock(&timelines->lock);
417 
418 	/*
419 	 * Since this timeline is idle, all bariers upon which we were waiting
420 	 * must also be complete and so we can discard the last used barriers
421 	 * without loss of information.
422 	 */
423 	i915_syncmap_free(&tl->sync);
424 }
425 
426 static u32 timeline_advance(struct intel_timeline *tl)
427 {
428 	GEM_BUG_ON(!atomic_read(&tl->pin_count));
429 	GEM_BUG_ON(tl->seqno & tl->has_initial_breadcrumb);
430 
431 	return tl->seqno += 1 + tl->has_initial_breadcrumb;
432 }
433 
434 static void timeline_rollback(struct intel_timeline *tl)
435 {
436 	tl->seqno -= 1 + tl->has_initial_breadcrumb;
437 }
438 
439 static noinline int
440 __intel_timeline_get_seqno(struct intel_timeline *tl,
441 			   struct i915_request *rq,
442 			   u32 *seqno)
443 {
444 	struct intel_timeline_cacheline *cl;
445 	unsigned int cacheline;
446 	struct i915_vma *vma;
447 	void *vaddr;
448 	int err;
449 
450 	might_lock(&tl->gt->ggtt->vm.mutex);
451 	GT_TRACE(tl->gt, "timeline:%llx wrapped\n", tl->fence_context);
452 
453 	/*
454 	 * If there is an outstanding GPU reference to this cacheline,
455 	 * such as it being sampled by a HW semaphore on another timeline,
456 	 * we cannot wraparound our seqno value (the HW semaphore does
457 	 * a strict greater-than-or-equals compare, not i915_seqno_passed).
458 	 * So if the cacheline is still busy, we must detach ourselves
459 	 * from it and leave it inflight alongside its users.
460 	 *
461 	 * However, if nobody is watching and we can guarantee that nobody
462 	 * will, we could simply reuse the same cacheline.
463 	 *
464 	 * if (i915_active_request_is_signaled(&tl->last_request) &&
465 	 *     i915_active_is_signaled(&tl->hwsp_cacheline->active))
466 	 *	return 0;
467 	 *
468 	 * That seems unlikely for a busy timeline that needed to wrap in
469 	 * the first place, so just replace the cacheline.
470 	 */
471 
472 	vma = hwsp_alloc(tl, &cacheline);
473 	if (IS_ERR(vma)) {
474 		err = PTR_ERR(vma);
475 		goto err_rollback;
476 	}
477 
478 	err = i915_ggtt_pin(vma, NULL, 0, PIN_HIGH);
479 	if (err) {
480 		__idle_hwsp_free(vma->private, cacheline);
481 		goto err_rollback;
482 	}
483 
484 	cl = cacheline_alloc(vma->private, cacheline);
485 	if (IS_ERR(cl)) {
486 		err = PTR_ERR(cl);
487 		__idle_hwsp_free(vma->private, cacheline);
488 		goto err_unpin;
489 	}
490 	GEM_BUG_ON(cl->hwsp->vma != vma);
491 
492 	/*
493 	 * Attach the old cacheline to the current request, so that we only
494 	 * free it after the current request is retired, which ensures that
495 	 * all writes into the cacheline from previous requests are complete.
496 	 */
497 	err = i915_active_ref(&tl->hwsp_cacheline->active,
498 			      tl->fence_context,
499 			      &rq->fence);
500 	if (err)
501 		goto err_cacheline;
502 
503 	cacheline_release(tl->hwsp_cacheline); /* ownership now xfered to rq */
504 	cacheline_free(tl->hwsp_cacheline);
505 
506 	i915_vma_unpin(tl->hwsp_ggtt); /* binding kept alive by old cacheline */
507 	i915_vma_put(tl->hwsp_ggtt);
508 
509 	tl->hwsp_ggtt = i915_vma_get(vma);
510 
511 	vaddr = page_mask_bits(cl->vaddr);
512 	tl->hwsp_offset = cacheline * CACHELINE_BYTES;
513 	tl->hwsp_seqno =
514 		memset(vaddr + tl->hwsp_offset, 0, CACHELINE_BYTES);
515 
516 	tl->hwsp_offset += i915_ggtt_offset(vma);
517 	GT_TRACE(tl->gt, "timeline:%llx using HWSP offset:%x\n",
518 		 tl->fence_context, tl->hwsp_offset);
519 
520 	cacheline_acquire(cl, tl->hwsp_offset);
521 	tl->hwsp_cacheline = cl;
522 
523 	*seqno = timeline_advance(tl);
524 	GEM_BUG_ON(i915_seqno_passed(*tl->hwsp_seqno, *seqno));
525 	return 0;
526 
527 err_cacheline:
528 	cacheline_free(cl);
529 err_unpin:
530 	i915_vma_unpin(vma);
531 err_rollback:
532 	timeline_rollback(tl);
533 	return err;
534 }
535 
536 int intel_timeline_get_seqno(struct intel_timeline *tl,
537 			     struct i915_request *rq,
538 			     u32 *seqno)
539 {
540 	*seqno = timeline_advance(tl);
541 
542 	/* Replace the HWSP on wraparound for HW semaphores */
543 	if (unlikely(!*seqno && tl->hwsp_cacheline))
544 		return __intel_timeline_get_seqno(tl, rq, seqno);
545 
546 	return 0;
547 }
548 
549 static int cacheline_ref(struct intel_timeline_cacheline *cl,
550 			 struct i915_request *rq)
551 {
552 	return i915_active_add_request(&cl->active, rq);
553 }
554 
555 int intel_timeline_read_hwsp(struct i915_request *from,
556 			     struct i915_request *to,
557 			     u32 *hwsp)
558 {
559 	struct intel_timeline_cacheline *cl;
560 	int err;
561 
562 	GEM_BUG_ON(!rcu_access_pointer(from->hwsp_cacheline));
563 
564 	rcu_read_lock();
565 	cl = rcu_dereference(from->hwsp_cacheline);
566 	if (i915_request_completed(from)) /* confirm cacheline is valid */
567 		goto unlock;
568 	if (unlikely(!i915_active_acquire_if_busy(&cl->active)))
569 		goto unlock; /* seqno wrapped and completed! */
570 	if (unlikely(i915_request_completed(from)))
571 		goto release;
572 	rcu_read_unlock();
573 
574 	err = cacheline_ref(cl, to);
575 	if (err)
576 		goto out;
577 
578 	*hwsp = cl->ggtt_offset;
579 out:
580 	i915_active_release(&cl->active);
581 	return err;
582 
583 release:
584 	i915_active_release(&cl->active);
585 unlock:
586 	rcu_read_unlock();
587 	return 1;
588 }
589 
590 void intel_timeline_unpin(struct intel_timeline *tl)
591 {
592 	GEM_BUG_ON(!atomic_read(&tl->pin_count));
593 	if (!atomic_dec_and_test(&tl->pin_count))
594 		return;
595 
596 	cacheline_release(tl->hwsp_cacheline);
597 
598 	__i915_vma_unpin(tl->hwsp_ggtt);
599 }
600 
601 void __intel_timeline_free(struct kref *kref)
602 {
603 	struct intel_timeline *timeline =
604 		container_of(kref, typeof(*timeline), kref);
605 
606 	intel_timeline_fini(timeline);
607 	kfree_rcu(timeline, rcu);
608 }
609 
610 void intel_gt_fini_timelines(struct intel_gt *gt)
611 {
612 	struct intel_gt_timelines *timelines = &gt->timelines;
613 
614 	GEM_BUG_ON(!list_empty(&timelines->active_list));
615 	GEM_BUG_ON(!list_empty(&timelines->hwsp_free_list));
616 }
617 
618 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
619 #include "gt/selftests/mock_timeline.c"
620 #include "gt/selftest_timeline.c"
621 #endif
622