1 /* 2 * SPDX-License-Identifier: MIT 3 * 4 * Copyright © 2016-2018 Intel Corporation 5 */ 6 7 #include "i915_drv.h" 8 9 #include "i915_active.h" 10 #include "i915_syncmap.h" 11 #include "intel_gt.h" 12 #include "intel_ring.h" 13 #include "intel_timeline.h" 14 15 #define ptr_set_bit(ptr, bit) ((typeof(ptr))((unsigned long)(ptr) | BIT(bit))) 16 #define ptr_test_bit(ptr, bit) ((unsigned long)(ptr) & BIT(bit)) 17 18 #define CACHELINE_BITS 6 19 #define CACHELINE_FREE CACHELINE_BITS 20 21 struct intel_timeline_hwsp { 22 struct intel_gt *gt; 23 struct intel_gt_timelines *gt_timelines; 24 struct list_head free_link; 25 struct i915_vma *vma; 26 u64 free_bitmap; 27 }; 28 29 static struct i915_vma *__hwsp_alloc(struct intel_gt *gt) 30 { 31 struct drm_i915_private *i915 = gt->i915; 32 struct drm_i915_gem_object *obj; 33 struct i915_vma *vma; 34 35 obj = i915_gem_object_create_internal(i915, PAGE_SIZE); 36 if (IS_ERR(obj)) 37 return ERR_CAST(obj); 38 39 i915_gem_object_set_cache_coherency(obj, I915_CACHE_LLC); 40 41 vma = i915_vma_instance(obj, >->ggtt->vm, NULL); 42 if (IS_ERR(vma)) 43 i915_gem_object_put(obj); 44 45 return vma; 46 } 47 48 static struct i915_vma * 49 hwsp_alloc(struct intel_timeline *timeline, unsigned int *cacheline) 50 { 51 struct intel_gt_timelines *gt = &timeline->gt->timelines; 52 struct intel_timeline_hwsp *hwsp; 53 54 BUILD_BUG_ON(BITS_PER_TYPE(u64) * CACHELINE_BYTES > PAGE_SIZE); 55 56 spin_lock_irq(>->hwsp_lock); 57 58 /* hwsp_free_list only contains HWSP that have available cachelines */ 59 hwsp = list_first_entry_or_null(>->hwsp_free_list, 60 typeof(*hwsp), free_link); 61 if (!hwsp) { 62 struct i915_vma *vma; 63 64 spin_unlock_irq(>->hwsp_lock); 65 66 hwsp = kmalloc(sizeof(*hwsp), GFP_KERNEL); 67 if (!hwsp) 68 return ERR_PTR(-ENOMEM); 69 70 vma = __hwsp_alloc(timeline->gt); 71 if (IS_ERR(vma)) { 72 kfree(hwsp); 73 return vma; 74 } 75 76 vma->private = hwsp; 77 hwsp->gt = timeline->gt; 78 hwsp->vma = vma; 79 hwsp->free_bitmap = ~0ull; 80 hwsp->gt_timelines = gt; 81 82 spin_lock_irq(>->hwsp_lock); 83 list_add(&hwsp->free_link, >->hwsp_free_list); 84 } 85 86 GEM_BUG_ON(!hwsp->free_bitmap); 87 *cacheline = __ffs64(hwsp->free_bitmap); 88 hwsp->free_bitmap &= ~BIT_ULL(*cacheline); 89 if (!hwsp->free_bitmap) 90 list_del(&hwsp->free_link); 91 92 spin_unlock_irq(>->hwsp_lock); 93 94 GEM_BUG_ON(hwsp->vma->private != hwsp); 95 return hwsp->vma; 96 } 97 98 static void __idle_hwsp_free(struct intel_timeline_hwsp *hwsp, int cacheline) 99 { 100 struct intel_gt_timelines *gt = hwsp->gt_timelines; 101 unsigned long flags; 102 103 spin_lock_irqsave(>->hwsp_lock, flags); 104 105 /* As a cacheline becomes available, publish the HWSP on the freelist */ 106 if (!hwsp->free_bitmap) 107 list_add_tail(&hwsp->free_link, >->hwsp_free_list); 108 109 GEM_BUG_ON(cacheline >= BITS_PER_TYPE(hwsp->free_bitmap)); 110 hwsp->free_bitmap |= BIT_ULL(cacheline); 111 112 /* And if no one is left using it, give the page back to the system */ 113 if (hwsp->free_bitmap == ~0ull) { 114 i915_vma_put(hwsp->vma); 115 list_del(&hwsp->free_link); 116 kfree(hwsp); 117 } 118 119 spin_unlock_irqrestore(>->hwsp_lock, flags); 120 } 121 122 static void __idle_cacheline_free(struct intel_timeline_cacheline *cl) 123 { 124 GEM_BUG_ON(!i915_active_is_idle(&cl->active)); 125 126 i915_gem_object_unpin_map(cl->hwsp->vma->obj); 127 i915_vma_put(cl->hwsp->vma); 128 __idle_hwsp_free(cl->hwsp, ptr_unmask_bits(cl->vaddr, CACHELINE_BITS)); 129 130 i915_active_fini(&cl->active); 131 kfree_rcu(cl, rcu); 132 } 133 134 __i915_active_call 135 static void __cacheline_retire(struct i915_active *active) 136 { 137 struct intel_timeline_cacheline *cl = 138 container_of(active, typeof(*cl), active); 139 140 i915_vma_unpin(cl->hwsp->vma); 141 if (ptr_test_bit(cl->vaddr, CACHELINE_FREE)) 142 __idle_cacheline_free(cl); 143 } 144 145 static int __cacheline_active(struct i915_active *active) 146 { 147 struct intel_timeline_cacheline *cl = 148 container_of(active, typeof(*cl), active); 149 150 __i915_vma_pin(cl->hwsp->vma); 151 return 0; 152 } 153 154 static struct intel_timeline_cacheline * 155 cacheline_alloc(struct intel_timeline_hwsp *hwsp, unsigned int cacheline) 156 { 157 struct intel_timeline_cacheline *cl; 158 void *vaddr; 159 160 GEM_BUG_ON(cacheline >= BIT(CACHELINE_BITS)); 161 162 cl = kmalloc(sizeof(*cl), GFP_KERNEL); 163 if (!cl) 164 return ERR_PTR(-ENOMEM); 165 166 vaddr = i915_gem_object_pin_map(hwsp->vma->obj, I915_MAP_WB); 167 if (IS_ERR(vaddr)) { 168 kfree(cl); 169 return ERR_CAST(vaddr); 170 } 171 172 i915_vma_get(hwsp->vma); 173 cl->hwsp = hwsp; 174 cl->vaddr = page_pack_bits(vaddr, cacheline); 175 176 i915_active_init(&cl->active, __cacheline_active, __cacheline_retire); 177 178 return cl; 179 } 180 181 static void cacheline_acquire(struct intel_timeline_cacheline *cl) 182 { 183 if (cl) 184 i915_active_acquire(&cl->active); 185 } 186 187 static void cacheline_release(struct intel_timeline_cacheline *cl) 188 { 189 if (cl) 190 i915_active_release(&cl->active); 191 } 192 193 static void cacheline_free(struct intel_timeline_cacheline *cl) 194 { 195 if (!i915_active_acquire_if_busy(&cl->active)) { 196 __idle_cacheline_free(cl); 197 return; 198 } 199 200 GEM_BUG_ON(ptr_test_bit(cl->vaddr, CACHELINE_FREE)); 201 cl->vaddr = ptr_set_bit(cl->vaddr, CACHELINE_FREE); 202 203 i915_active_release(&cl->active); 204 } 205 206 int intel_timeline_init(struct intel_timeline *timeline, 207 struct intel_gt *gt, 208 struct i915_vma *hwsp) 209 { 210 void *vaddr; 211 212 kref_init(&timeline->kref); 213 atomic_set(&timeline->pin_count, 0); 214 215 timeline->gt = gt; 216 217 timeline->has_initial_breadcrumb = !hwsp; 218 timeline->hwsp_cacheline = NULL; 219 220 if (!hwsp) { 221 struct intel_timeline_cacheline *cl; 222 unsigned int cacheline; 223 224 hwsp = hwsp_alloc(timeline, &cacheline); 225 if (IS_ERR(hwsp)) 226 return PTR_ERR(hwsp); 227 228 cl = cacheline_alloc(hwsp->private, cacheline); 229 if (IS_ERR(cl)) { 230 __idle_hwsp_free(hwsp->private, cacheline); 231 return PTR_ERR(cl); 232 } 233 234 timeline->hwsp_cacheline = cl; 235 timeline->hwsp_offset = cacheline * CACHELINE_BYTES; 236 237 vaddr = page_mask_bits(cl->vaddr); 238 } else { 239 timeline->hwsp_offset = I915_GEM_HWS_SEQNO_ADDR; 240 241 vaddr = i915_gem_object_pin_map(hwsp->obj, I915_MAP_WB); 242 if (IS_ERR(vaddr)) 243 return PTR_ERR(vaddr); 244 } 245 246 timeline->hwsp_seqno = 247 memset(vaddr + timeline->hwsp_offset, 0, CACHELINE_BYTES); 248 249 timeline->hwsp_ggtt = i915_vma_get(hwsp); 250 GEM_BUG_ON(timeline->hwsp_offset >= hwsp->size); 251 252 timeline->fence_context = dma_fence_context_alloc(1); 253 254 mutex_init(&timeline->mutex); 255 256 INIT_ACTIVE_FENCE(&timeline->last_request); 257 INIT_LIST_HEAD(&timeline->requests); 258 259 i915_syncmap_init(&timeline->sync); 260 261 return 0; 262 } 263 264 void intel_gt_init_timelines(struct intel_gt *gt) 265 { 266 struct intel_gt_timelines *timelines = >->timelines; 267 268 spin_lock_init(&timelines->lock); 269 INIT_LIST_HEAD(&timelines->active_list); 270 271 spin_lock_init(&timelines->hwsp_lock); 272 INIT_LIST_HEAD(&timelines->hwsp_free_list); 273 } 274 275 void intel_timeline_fini(struct intel_timeline *timeline) 276 { 277 GEM_BUG_ON(atomic_read(&timeline->pin_count)); 278 GEM_BUG_ON(!list_empty(&timeline->requests)); 279 GEM_BUG_ON(timeline->retire); 280 281 if (timeline->hwsp_cacheline) 282 cacheline_free(timeline->hwsp_cacheline); 283 else 284 i915_gem_object_unpin_map(timeline->hwsp_ggtt->obj); 285 286 i915_vma_put(timeline->hwsp_ggtt); 287 } 288 289 struct intel_timeline * 290 intel_timeline_create(struct intel_gt *gt, struct i915_vma *global_hwsp) 291 { 292 struct intel_timeline *timeline; 293 int err; 294 295 timeline = kzalloc(sizeof(*timeline), GFP_KERNEL); 296 if (!timeline) 297 return ERR_PTR(-ENOMEM); 298 299 err = intel_timeline_init(timeline, gt, global_hwsp); 300 if (err) { 301 kfree(timeline); 302 return ERR_PTR(err); 303 } 304 305 return timeline; 306 } 307 308 int intel_timeline_pin(struct intel_timeline *tl) 309 { 310 int err; 311 312 if (atomic_add_unless(&tl->pin_count, 1, 0)) 313 return 0; 314 315 err = i915_ggtt_pin(tl->hwsp_ggtt, 0, PIN_HIGH); 316 if (err) 317 return err; 318 319 tl->hwsp_offset = 320 i915_ggtt_offset(tl->hwsp_ggtt) + 321 offset_in_page(tl->hwsp_offset); 322 323 cacheline_acquire(tl->hwsp_cacheline); 324 if (atomic_fetch_inc(&tl->pin_count)) { 325 cacheline_release(tl->hwsp_cacheline); 326 __i915_vma_unpin(tl->hwsp_ggtt); 327 } 328 329 return 0; 330 } 331 332 void intel_timeline_enter(struct intel_timeline *tl) 333 { 334 struct intel_gt_timelines *timelines = &tl->gt->timelines; 335 336 /* 337 * Pretend we are serialised by the timeline->mutex. 338 * 339 * While generally true, there are a few exceptions to the rule 340 * for the engine->kernel_context being used to manage power 341 * transitions. As the engine_park may be called from under any 342 * timeline, it uses the power mutex as a global serialisation 343 * lock to prevent any other request entering its timeline. 344 * 345 * The rule is generally tl->mutex, otherwise engine->wakeref.mutex. 346 * 347 * However, intel_gt_retire_request() does not know which engine 348 * it is retiring along and so cannot partake in the engine-pm 349 * barrier, and there we use the tl->active_count as a means to 350 * pin the timeline in the active_list while the locks are dropped. 351 * Ergo, as that is outside of the engine-pm barrier, we need to 352 * use atomic to manipulate tl->active_count. 353 */ 354 lockdep_assert_held(&tl->mutex); 355 356 if (atomic_add_unless(&tl->active_count, 1, 0)) 357 return; 358 359 spin_lock(&timelines->lock); 360 if (!atomic_fetch_inc(&tl->active_count)) 361 list_add_tail(&tl->link, &timelines->active_list); 362 spin_unlock(&timelines->lock); 363 } 364 365 void intel_timeline_exit(struct intel_timeline *tl) 366 { 367 struct intel_gt_timelines *timelines = &tl->gt->timelines; 368 369 /* See intel_timeline_enter() */ 370 lockdep_assert_held(&tl->mutex); 371 372 GEM_BUG_ON(!atomic_read(&tl->active_count)); 373 if (atomic_add_unless(&tl->active_count, -1, 1)) 374 return; 375 376 spin_lock(&timelines->lock); 377 if (atomic_dec_and_test(&tl->active_count)) 378 list_del(&tl->link); 379 spin_unlock(&timelines->lock); 380 381 /* 382 * Since this timeline is idle, all bariers upon which we were waiting 383 * must also be complete and so we can discard the last used barriers 384 * without loss of information. 385 */ 386 i915_syncmap_free(&tl->sync); 387 } 388 389 static u32 timeline_advance(struct intel_timeline *tl) 390 { 391 GEM_BUG_ON(!atomic_read(&tl->pin_count)); 392 GEM_BUG_ON(tl->seqno & tl->has_initial_breadcrumb); 393 394 return tl->seqno += 1 + tl->has_initial_breadcrumb; 395 } 396 397 static void timeline_rollback(struct intel_timeline *tl) 398 { 399 tl->seqno -= 1 + tl->has_initial_breadcrumb; 400 } 401 402 static noinline int 403 __intel_timeline_get_seqno(struct intel_timeline *tl, 404 struct i915_request *rq, 405 u32 *seqno) 406 { 407 struct intel_timeline_cacheline *cl; 408 unsigned int cacheline; 409 struct i915_vma *vma; 410 void *vaddr; 411 int err; 412 413 might_lock(&tl->gt->ggtt->vm.mutex); 414 415 /* 416 * If there is an outstanding GPU reference to this cacheline, 417 * such as it being sampled by a HW semaphore on another timeline, 418 * we cannot wraparound our seqno value (the HW semaphore does 419 * a strict greater-than-or-equals compare, not i915_seqno_passed). 420 * So if the cacheline is still busy, we must detach ourselves 421 * from it and leave it inflight alongside its users. 422 * 423 * However, if nobody is watching and we can guarantee that nobody 424 * will, we could simply reuse the same cacheline. 425 * 426 * if (i915_active_request_is_signaled(&tl->last_request) && 427 * i915_active_is_signaled(&tl->hwsp_cacheline->active)) 428 * return 0; 429 * 430 * That seems unlikely for a busy timeline that needed to wrap in 431 * the first place, so just replace the cacheline. 432 */ 433 434 vma = hwsp_alloc(tl, &cacheline); 435 if (IS_ERR(vma)) { 436 err = PTR_ERR(vma); 437 goto err_rollback; 438 } 439 440 err = i915_ggtt_pin(vma, 0, PIN_HIGH); 441 if (err) { 442 __idle_hwsp_free(vma->private, cacheline); 443 goto err_rollback; 444 } 445 446 cl = cacheline_alloc(vma->private, cacheline); 447 if (IS_ERR(cl)) { 448 err = PTR_ERR(cl); 449 __idle_hwsp_free(vma->private, cacheline); 450 goto err_unpin; 451 } 452 GEM_BUG_ON(cl->hwsp->vma != vma); 453 454 /* 455 * Attach the old cacheline to the current request, so that we only 456 * free it after the current request is retired, which ensures that 457 * all writes into the cacheline from previous requests are complete. 458 */ 459 err = i915_active_ref(&tl->hwsp_cacheline->active, tl, &rq->fence); 460 if (err) 461 goto err_cacheline; 462 463 cacheline_release(tl->hwsp_cacheline); /* ownership now xfered to rq */ 464 cacheline_free(tl->hwsp_cacheline); 465 466 i915_vma_unpin(tl->hwsp_ggtt); /* binding kept alive by old cacheline */ 467 i915_vma_put(tl->hwsp_ggtt); 468 469 tl->hwsp_ggtt = i915_vma_get(vma); 470 471 vaddr = page_mask_bits(cl->vaddr); 472 tl->hwsp_offset = cacheline * CACHELINE_BYTES; 473 tl->hwsp_seqno = 474 memset(vaddr + tl->hwsp_offset, 0, CACHELINE_BYTES); 475 476 tl->hwsp_offset += i915_ggtt_offset(vma); 477 478 cacheline_acquire(cl); 479 tl->hwsp_cacheline = cl; 480 481 *seqno = timeline_advance(tl); 482 GEM_BUG_ON(i915_seqno_passed(*tl->hwsp_seqno, *seqno)); 483 return 0; 484 485 err_cacheline: 486 cacheline_free(cl); 487 err_unpin: 488 i915_vma_unpin(vma); 489 err_rollback: 490 timeline_rollback(tl); 491 return err; 492 } 493 494 int intel_timeline_get_seqno(struct intel_timeline *tl, 495 struct i915_request *rq, 496 u32 *seqno) 497 { 498 *seqno = timeline_advance(tl); 499 500 /* Replace the HWSP on wraparound for HW semaphores */ 501 if (unlikely(!*seqno && tl->hwsp_cacheline)) 502 return __intel_timeline_get_seqno(tl, rq, seqno); 503 504 return 0; 505 } 506 507 static int cacheline_ref(struct intel_timeline_cacheline *cl, 508 struct i915_request *rq) 509 { 510 return i915_active_add_request(&cl->active, rq); 511 } 512 513 int intel_timeline_read_hwsp(struct i915_request *from, 514 struct i915_request *to, 515 u32 *hwsp) 516 { 517 struct intel_timeline_cacheline *cl; 518 int err; 519 520 GEM_BUG_ON(!rcu_access_pointer(from->hwsp_cacheline)); 521 522 rcu_read_lock(); 523 cl = rcu_dereference(from->hwsp_cacheline); 524 if (i915_request_completed(from)) /* confirm cacheline is valid */ 525 goto unlock; 526 if (unlikely(!i915_active_acquire_if_busy(&cl->active))) 527 goto unlock; /* seqno wrapped and completed! */ 528 if (unlikely(i915_request_completed(from))) 529 goto release; 530 rcu_read_unlock(); 531 532 err = cacheline_ref(cl, to); 533 if (err) 534 goto out; 535 536 *hwsp = i915_ggtt_offset(cl->hwsp->vma) + 537 ptr_unmask_bits(cl->vaddr, CACHELINE_BITS) * CACHELINE_BYTES; 538 539 out: 540 i915_active_release(&cl->active); 541 return err; 542 543 release: 544 i915_active_release(&cl->active); 545 unlock: 546 rcu_read_unlock(); 547 return 1; 548 } 549 550 void intel_timeline_unpin(struct intel_timeline *tl) 551 { 552 GEM_BUG_ON(!atomic_read(&tl->pin_count)); 553 if (!atomic_dec_and_test(&tl->pin_count)) 554 return; 555 556 cacheline_release(tl->hwsp_cacheline); 557 558 __i915_vma_unpin(tl->hwsp_ggtt); 559 } 560 561 void __intel_timeline_free(struct kref *kref) 562 { 563 struct intel_timeline *timeline = 564 container_of(kref, typeof(*timeline), kref); 565 566 intel_timeline_fini(timeline); 567 kfree_rcu(timeline, rcu); 568 } 569 570 void intel_gt_fini_timelines(struct intel_gt *gt) 571 { 572 struct intel_gt_timelines *timelines = >->timelines; 573 574 GEM_BUG_ON(!list_empty(&timelines->active_list)); 575 GEM_BUG_ON(!list_empty(&timelines->hwsp_free_list)); 576 } 577 578 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST) 579 #include "gt/selftests/mock_timeline.c" 580 #include "gt/selftest_timeline.c" 581 #endif 582