xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_sseu.c (revision dff03381)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include <linux/string_helpers.h>
7 
8 #include "i915_drv.h"
9 #include "intel_engine_regs.h"
10 #include "intel_gt_regs.h"
11 #include "intel_sseu.h"
12 
13 void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices,
14 			 u8 max_subslices, u8 max_eus_per_subslice)
15 {
16 	sseu->max_slices = max_slices;
17 	sseu->max_subslices = max_subslices;
18 	sseu->max_eus_per_subslice = max_eus_per_subslice;
19 }
20 
21 unsigned int
22 intel_sseu_subslice_total(const struct sseu_dev_info *sseu)
23 {
24 	unsigned int i, total = 0;
25 
26 	if (sseu->has_xehp_dss)
27 		return bitmap_weight(sseu->subslice_mask.xehp,
28 				     XEHP_BITMAP_BITS(sseu->subslice_mask));
29 
30 	for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask.hsw); i++)
31 		total += hweight8(sseu->subslice_mask.hsw[i]);
32 
33 	return total;
34 }
35 
36 unsigned int
37 intel_sseu_get_hsw_subslices(const struct sseu_dev_info *sseu, u8 slice)
38 {
39 	WARN_ON(sseu->has_xehp_dss);
40 	if (WARN_ON(slice >= sseu->max_slices))
41 		return 0;
42 
43 	return sseu->subslice_mask.hsw[slice];
44 }
45 
46 static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
47 			int subslice)
48 {
49 	if (sseu->has_xehp_dss) {
50 		WARN_ON(slice > 0);
51 		return sseu->eu_mask.xehp[subslice];
52 	} else {
53 		return sseu->eu_mask.hsw[slice][subslice];
54 	}
55 }
56 
57 static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
58 			 u16 eu_mask)
59 {
60 	GEM_WARN_ON(eu_mask && __fls(eu_mask) >= sseu->max_eus_per_subslice);
61 	if (sseu->has_xehp_dss) {
62 		GEM_WARN_ON(slice > 0);
63 		sseu->eu_mask.xehp[subslice] = eu_mask;
64 	} else {
65 		sseu->eu_mask.hsw[slice][subslice] = eu_mask;
66 	}
67 }
68 
69 static u16 compute_eu_total(const struct sseu_dev_info *sseu)
70 {
71 	int s, ss, total = 0;
72 
73 	for (s = 0; s < sseu->max_slices; s++)
74 		for (ss = 0; ss < sseu->max_subslices; ss++)
75 			if (sseu->has_xehp_dss)
76 				total += hweight16(sseu->eu_mask.xehp[ss]);
77 			else
78 				total += hweight16(sseu->eu_mask.hsw[s][ss]);
79 
80 	return total;
81 }
82 
83 /**
84  * intel_sseu_copy_eumask_to_user - Copy EU mask into a userspace buffer
85  * @to: Pointer to userspace buffer to copy to
86  * @sseu: SSEU structure containing EU mask to copy
87  *
88  * Copies the EU mask to a userspace buffer in the format expected by
89  * the query ioctl's topology queries.
90  *
91  * Returns the result of the copy_to_user() operation.
92  */
93 int intel_sseu_copy_eumask_to_user(void __user *to,
94 				   const struct sseu_dev_info *sseu)
95 {
96 	u8 eu_mask[GEN_SS_MASK_SIZE * GEN_MAX_EU_STRIDE] = {};
97 	int eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice);
98 	int len = sseu->max_slices * sseu->max_subslices * eu_stride;
99 	int s, ss, i;
100 
101 	for (s = 0; s < sseu->max_slices; s++) {
102 		for (ss = 0; ss < sseu->max_subslices; ss++) {
103 			int uapi_offset =
104 				s * sseu->max_subslices * eu_stride +
105 				ss * eu_stride;
106 			u16 mask = sseu_get_eus(sseu, s, ss);
107 
108 			for (i = 0; i < eu_stride; i++)
109 				eu_mask[uapi_offset + i] =
110 					(mask >> (BITS_PER_BYTE * i)) & 0xff;
111 		}
112 	}
113 
114 	return copy_to_user(to, eu_mask, len);
115 }
116 
117 /**
118  * intel_sseu_copy_ssmask_to_user - Copy subslice mask into a userspace buffer
119  * @to: Pointer to userspace buffer to copy to
120  * @sseu: SSEU structure containing subslice mask to copy
121  *
122  * Copies the subslice mask to a userspace buffer in the format expected by
123  * the query ioctl's topology queries.
124  *
125  * Returns the result of the copy_to_user() operation.
126  */
127 int intel_sseu_copy_ssmask_to_user(void __user *to,
128 				   const struct sseu_dev_info *sseu)
129 {
130 	u8 ss_mask[GEN_SS_MASK_SIZE] = {};
131 	int ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices);
132 	int len = sseu->max_slices * ss_stride;
133 	int s, ss, i;
134 
135 	for (s = 0; s < sseu->max_slices; s++) {
136 		for (ss = 0; ss < sseu->max_subslices; ss++) {
137 			i = s * ss_stride * BITS_PER_BYTE + ss;
138 
139 			if (!intel_sseu_has_subslice(sseu, s, ss))
140 				continue;
141 
142 			ss_mask[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE);
143 		}
144 	}
145 
146 	return copy_to_user(to, ss_mask, len);
147 }
148 
149 static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
150 				    u32 ss_en, u16 eu_en)
151 {
152 	u32 valid_ss_mask = GENMASK(sseu->max_subslices - 1, 0);
153 	int ss;
154 
155 	sseu->slice_mask |= BIT(0);
156 	sseu->subslice_mask.hsw[0] = ss_en & valid_ss_mask;
157 
158 	for (ss = 0; ss < sseu->max_subslices; ss++)
159 		if (intel_sseu_has_subslice(sseu, 0, ss))
160 			sseu_set_eus(sseu, 0, ss, eu_en);
161 
162 	sseu->eu_per_subslice = hweight16(eu_en);
163 	sseu->eu_total = compute_eu_total(sseu);
164 }
165 
166 static void xehp_compute_sseu_info(struct sseu_dev_info *sseu,
167 				   u16 eu_en)
168 {
169 	int ss;
170 
171 	sseu->slice_mask |= BIT(0);
172 
173 	bitmap_or(sseu->subslice_mask.xehp,
174 		  sseu->compute_subslice_mask.xehp,
175 		  sseu->geometry_subslice_mask.xehp,
176 		  XEHP_BITMAP_BITS(sseu->subslice_mask));
177 
178 	for (ss = 0; ss < sseu->max_subslices; ss++)
179 		if (intel_sseu_has_subslice(sseu, 0, ss))
180 			sseu_set_eus(sseu, 0, ss, eu_en);
181 
182 	sseu->eu_per_subslice = hweight16(eu_en);
183 	sseu->eu_total = compute_eu_total(sseu);
184 }
185 
186 static void
187 xehp_load_dss_mask(struct intel_uncore *uncore,
188 		   intel_sseu_ss_mask_t *ssmask,
189 		   int numregs,
190 		   ...)
191 {
192 	va_list argp;
193 	u32 fuse_val[I915_MAX_SS_FUSE_REGS] = {};
194 	int i;
195 
196 	if (WARN_ON(numregs > I915_MAX_SS_FUSE_REGS))
197 		numregs = I915_MAX_SS_FUSE_REGS;
198 
199 	va_start(argp, numregs);
200 	for (i = 0; i < numregs; i++)
201 		fuse_val[i] = intel_uncore_read(uncore, va_arg(argp, i915_reg_t));
202 	va_end(argp);
203 
204 	bitmap_from_arr32(ssmask->xehp, fuse_val, numregs * 32);
205 }
206 
207 static void xehp_sseu_info_init(struct intel_gt *gt)
208 {
209 	struct sseu_dev_info *sseu = &gt->info.sseu;
210 	struct intel_uncore *uncore = gt->uncore;
211 	u16 eu_en = 0;
212 	u8 eu_en_fuse;
213 	int num_compute_regs, num_geometry_regs;
214 	int eu;
215 
216 	if (IS_PONTEVECCHIO(gt->i915)) {
217 		num_geometry_regs = 0;
218 		num_compute_regs = 2;
219 	} else {
220 		num_geometry_regs = 1;
221 		num_compute_regs = 1;
222 	}
223 
224 	/*
225 	 * The concept of slice has been removed in Xe_HP.  To be compatible
226 	 * with prior generations, assume a single slice across the entire
227 	 * device. Then calculate out the DSS for each workload type within
228 	 * that software slice.
229 	 */
230 	intel_sseu_set_info(sseu, 1,
231 			    32 * max(num_geometry_regs, num_compute_regs),
232 			    HAS_ONE_EU_PER_FUSE_BIT(gt->i915) ? 8 : 16);
233 	sseu->has_xehp_dss = 1;
234 
235 	xehp_load_dss_mask(uncore, &sseu->geometry_subslice_mask,
236 			   num_geometry_regs,
237 			   GEN12_GT_GEOMETRY_DSS_ENABLE);
238 	xehp_load_dss_mask(uncore, &sseu->compute_subslice_mask,
239 			   num_compute_regs,
240 			   GEN12_GT_COMPUTE_DSS_ENABLE,
241 			   XEHPC_GT_COMPUTE_DSS_ENABLE_EXT);
242 
243 	eu_en_fuse = intel_uncore_read(uncore, XEHP_EU_ENABLE) & XEHP_EU_ENA_MASK;
244 
245 	if (HAS_ONE_EU_PER_FUSE_BIT(gt->i915))
246 		eu_en = eu_en_fuse;
247 	else
248 		for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
249 			if (eu_en_fuse & BIT(eu))
250 				eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
251 
252 	xehp_compute_sseu_info(sseu, eu_en);
253 }
254 
255 static void gen12_sseu_info_init(struct intel_gt *gt)
256 {
257 	struct sseu_dev_info *sseu = &gt->info.sseu;
258 	struct intel_uncore *uncore = gt->uncore;
259 	u32 g_dss_en;
260 	u16 eu_en = 0;
261 	u8 eu_en_fuse;
262 	u8 s_en;
263 	int eu;
264 
265 	/*
266 	 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
267 	 * Instead of splitting these, provide userspace with an array
268 	 * of DSS to more closely represent the hardware resource.
269 	 */
270 	intel_sseu_set_info(sseu, 1, 6, 16);
271 
272 	/*
273 	 * Although gen12 architecture supported multiple slices, TGL, RKL,
274 	 * DG1, and ADL only had a single slice.
275 	 */
276 	s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
277 		GEN11_GT_S_ENA_MASK;
278 	drm_WARN_ON(&gt->i915->drm, s_en != 0x1);
279 
280 	g_dss_en = intel_uncore_read(uncore, GEN12_GT_GEOMETRY_DSS_ENABLE);
281 
282 	/* one bit per pair of EUs */
283 	eu_en_fuse = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
284 		       GEN11_EU_DIS_MASK);
285 
286 	for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
287 		if (eu_en_fuse & BIT(eu))
288 			eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
289 
290 	gen11_compute_sseu_info(sseu, g_dss_en, eu_en);
291 
292 	/* TGL only supports slice-level power gating */
293 	sseu->has_slice_pg = 1;
294 }
295 
296 static void gen11_sseu_info_init(struct intel_gt *gt)
297 {
298 	struct sseu_dev_info *sseu = &gt->info.sseu;
299 	struct intel_uncore *uncore = gt->uncore;
300 	u32 ss_en;
301 	u8 eu_en;
302 	u8 s_en;
303 
304 	if (IS_JSL_EHL(gt->i915))
305 		intel_sseu_set_info(sseu, 1, 4, 8);
306 	else
307 		intel_sseu_set_info(sseu, 1, 8, 8);
308 
309 	/*
310 	 * Although gen11 architecture supported multiple slices, ICL and
311 	 * EHL/JSL only had a single slice in practice.
312 	 */
313 	s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
314 		GEN11_GT_S_ENA_MASK;
315 	drm_WARN_ON(&gt->i915->drm, s_en != 0x1);
316 
317 	ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE);
318 
319 	eu_en = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
320 		  GEN11_EU_DIS_MASK);
321 
322 	gen11_compute_sseu_info(sseu, ss_en, eu_en);
323 
324 	/* ICL has no power gating restrictions. */
325 	sseu->has_slice_pg = 1;
326 	sseu->has_subslice_pg = 1;
327 	sseu->has_eu_pg = 1;
328 }
329 
330 static void cherryview_sseu_info_init(struct intel_gt *gt)
331 {
332 	struct sseu_dev_info *sseu = &gt->info.sseu;
333 	u32 fuse;
334 
335 	fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT);
336 
337 	sseu->slice_mask = BIT(0);
338 	intel_sseu_set_info(sseu, 1, 2, 8);
339 
340 	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
341 		u8 disabled_mask =
342 			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
343 			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
344 			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
345 			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
346 
347 		sseu->subslice_mask.hsw[0] |= BIT(0);
348 		sseu_set_eus(sseu, 0, 0, ~disabled_mask & 0xFF);
349 	}
350 
351 	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
352 		u8 disabled_mask =
353 			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
354 			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
355 			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
356 			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
357 
358 		sseu->subslice_mask.hsw[0] |= BIT(1);
359 		sseu_set_eus(sseu, 0, 1, ~disabled_mask & 0xFF);
360 	}
361 
362 	sseu->eu_total = compute_eu_total(sseu);
363 
364 	/*
365 	 * CHV expected to always have a uniform distribution of EU
366 	 * across subslices.
367 	 */
368 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
369 		sseu->eu_total /
370 		intel_sseu_subslice_total(sseu) :
371 		0;
372 	/*
373 	 * CHV supports subslice power gating on devices with more than
374 	 * one subslice, and supports EU power gating on devices with
375 	 * more than one EU pair per subslice.
376 	 */
377 	sseu->has_slice_pg = 0;
378 	sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
379 	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
380 }
381 
382 static void gen9_sseu_info_init(struct intel_gt *gt)
383 {
384 	struct drm_i915_private *i915 = gt->i915;
385 	struct intel_device_info *info = mkwrite_device_info(i915);
386 	struct sseu_dev_info *sseu = &gt->info.sseu;
387 	struct intel_uncore *uncore = gt->uncore;
388 	u32 fuse2, eu_disable, subslice_mask;
389 	const u8 eu_mask = 0xff;
390 	int s, ss;
391 
392 	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
393 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
394 
395 	/* BXT has a single slice and at most 3 subslices. */
396 	intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3,
397 			    IS_GEN9_LP(i915) ? 3 : 4, 8);
398 
399 	/*
400 	 * The subslice disable field is global, i.e. it applies
401 	 * to each of the enabled slices.
402 	 */
403 	subslice_mask = (1 << sseu->max_subslices) - 1;
404 	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
405 			   GEN9_F2_SS_DIS_SHIFT);
406 
407 	/*
408 	 * Iterate through enabled slices and subslices to
409 	 * count the total enabled EU.
410 	 */
411 	for (s = 0; s < sseu->max_slices; s++) {
412 		if (!(sseu->slice_mask & BIT(s)))
413 			/* skip disabled slice */
414 			continue;
415 
416 		sseu->subslice_mask.hsw[s] = subslice_mask;
417 
418 		eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s));
419 		for (ss = 0; ss < sseu->max_subslices; ss++) {
420 			int eu_per_ss;
421 			u8 eu_disabled_mask;
422 
423 			if (!intel_sseu_has_subslice(sseu, s, ss))
424 				/* skip disabled subslice */
425 				continue;
426 
427 			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
428 
429 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & eu_mask);
430 
431 			eu_per_ss = sseu->max_eus_per_subslice -
432 				hweight8(eu_disabled_mask);
433 
434 			/*
435 			 * Record which subslice(s) has(have) 7 EUs. we
436 			 * can tune the hash used to spread work among
437 			 * subslices if they are unbalanced.
438 			 */
439 			if (eu_per_ss == 7)
440 				sseu->subslice_7eu[s] |= BIT(ss);
441 		}
442 	}
443 
444 	sseu->eu_total = compute_eu_total(sseu);
445 
446 	/*
447 	 * SKL is expected to always have a uniform distribution
448 	 * of EU across subslices with the exception that any one
449 	 * EU in any one subslice may be fused off for die
450 	 * recovery. BXT is expected to be perfectly uniform in EU
451 	 * distribution.
452 	 */
453 	sseu->eu_per_subslice =
454 		intel_sseu_subslice_total(sseu) ?
455 		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
456 		0;
457 
458 	/*
459 	 * SKL+ supports slice power gating on devices with more than
460 	 * one slice, and supports EU power gating on devices with
461 	 * more than one EU pair per subslice. BXT+ supports subslice
462 	 * power gating on devices with more than one subslice, and
463 	 * supports EU power gating on devices with more than one EU
464 	 * pair per subslice.
465 	 */
466 	sseu->has_slice_pg =
467 		!IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1;
468 	sseu->has_subslice_pg =
469 		IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1;
470 	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
471 
472 	if (IS_GEN9_LP(i915)) {
473 #define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask.hsw[0] & BIT(ss)))
474 		info->has_pooled_eu = hweight8(sseu->subslice_mask.hsw[0]) == 3;
475 
476 		sseu->min_eu_in_pool = 0;
477 		if (info->has_pooled_eu) {
478 			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
479 				sseu->min_eu_in_pool = 3;
480 			else if (IS_SS_DISABLED(1))
481 				sseu->min_eu_in_pool = 6;
482 			else
483 				sseu->min_eu_in_pool = 9;
484 		}
485 #undef IS_SS_DISABLED
486 	}
487 }
488 
489 static void bdw_sseu_info_init(struct intel_gt *gt)
490 {
491 	struct sseu_dev_info *sseu = &gt->info.sseu;
492 	struct intel_uncore *uncore = gt->uncore;
493 	int s, ss;
494 	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
495 	u32 eu_disable0, eu_disable1, eu_disable2;
496 
497 	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
498 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
499 	intel_sseu_set_info(sseu, 3, 3, 8);
500 
501 	/*
502 	 * The subslice disable field is global, i.e. it applies
503 	 * to each of the enabled slices.
504 	 */
505 	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
506 	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
507 			   GEN8_F2_SS_DIS_SHIFT);
508 	eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0);
509 	eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1);
510 	eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2);
511 	eu_disable[0] = eu_disable0 & GEN8_EU_DIS0_S0_MASK;
512 	eu_disable[1] = (eu_disable0 >> GEN8_EU_DIS0_S1_SHIFT) |
513 		((eu_disable1 & GEN8_EU_DIS1_S1_MASK) <<
514 		 (32 - GEN8_EU_DIS0_S1_SHIFT));
515 	eu_disable[2] = (eu_disable1 >> GEN8_EU_DIS1_S2_SHIFT) |
516 		((eu_disable2 & GEN8_EU_DIS2_S2_MASK) <<
517 		 (32 - GEN8_EU_DIS1_S2_SHIFT));
518 
519 	/*
520 	 * Iterate through enabled slices and subslices to
521 	 * count the total enabled EU.
522 	 */
523 	for (s = 0; s < sseu->max_slices; s++) {
524 		if (!(sseu->slice_mask & BIT(s)))
525 			/* skip disabled slice */
526 			continue;
527 
528 		sseu->subslice_mask.hsw[s] = subslice_mask;
529 
530 		for (ss = 0; ss < sseu->max_subslices; ss++) {
531 			u8 eu_disabled_mask;
532 			u32 n_disabled;
533 
534 			if (!intel_sseu_has_subslice(sseu, s, ss))
535 				/* skip disabled subslice */
536 				continue;
537 
538 			eu_disabled_mask =
539 				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
540 
541 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & 0xFF);
542 
543 			n_disabled = hweight8(eu_disabled_mask);
544 
545 			/*
546 			 * Record which subslices have 7 EUs.
547 			 */
548 			if (sseu->max_eus_per_subslice - n_disabled == 7)
549 				sseu->subslice_7eu[s] |= 1 << ss;
550 		}
551 	}
552 
553 	sseu->eu_total = compute_eu_total(sseu);
554 
555 	/*
556 	 * BDW is expected to always have a uniform distribution of EU across
557 	 * subslices with the exception that any one EU in any one subslice may
558 	 * be fused off for die recovery.
559 	 */
560 	sseu->eu_per_subslice =
561 		intel_sseu_subslice_total(sseu) ?
562 		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
563 		0;
564 
565 	/*
566 	 * BDW supports slice power gating on devices with more than
567 	 * one slice.
568 	 */
569 	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
570 	sseu->has_subslice_pg = 0;
571 	sseu->has_eu_pg = 0;
572 }
573 
574 static void hsw_sseu_info_init(struct intel_gt *gt)
575 {
576 	struct drm_i915_private *i915 = gt->i915;
577 	struct sseu_dev_info *sseu = &gt->info.sseu;
578 	u32 fuse1;
579 	u8 subslice_mask = 0;
580 	int s, ss;
581 
582 	/*
583 	 * There isn't a register to tell us how many slices/subslices. We
584 	 * work off the PCI-ids here.
585 	 */
586 	switch (INTEL_INFO(i915)->gt) {
587 	default:
588 		MISSING_CASE(INTEL_INFO(i915)->gt);
589 		fallthrough;
590 	case 1:
591 		sseu->slice_mask = BIT(0);
592 		subslice_mask = BIT(0);
593 		break;
594 	case 2:
595 		sseu->slice_mask = BIT(0);
596 		subslice_mask = BIT(0) | BIT(1);
597 		break;
598 	case 3:
599 		sseu->slice_mask = BIT(0) | BIT(1);
600 		subslice_mask = BIT(0) | BIT(1);
601 		break;
602 	}
603 
604 	fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
605 	switch (REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)) {
606 	default:
607 		MISSING_CASE(REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1));
608 		fallthrough;
609 	case HSW_F1_EU_DIS_10EUS:
610 		sseu->eu_per_subslice = 10;
611 		break;
612 	case HSW_F1_EU_DIS_8EUS:
613 		sseu->eu_per_subslice = 8;
614 		break;
615 	case HSW_F1_EU_DIS_6EUS:
616 		sseu->eu_per_subslice = 6;
617 		break;
618 	}
619 
620 	intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
621 			    hweight8(subslice_mask),
622 			    sseu->eu_per_subslice);
623 
624 	for (s = 0; s < sseu->max_slices; s++) {
625 		sseu->subslice_mask.hsw[s] = subslice_mask;
626 
627 		for (ss = 0; ss < sseu->max_subslices; ss++) {
628 			sseu_set_eus(sseu, s, ss,
629 				     (1UL << sseu->eu_per_subslice) - 1);
630 		}
631 	}
632 
633 	sseu->eu_total = compute_eu_total(sseu);
634 
635 	/* No powergating for you. */
636 	sseu->has_slice_pg = 0;
637 	sseu->has_subslice_pg = 0;
638 	sseu->has_eu_pg = 0;
639 }
640 
641 void intel_sseu_info_init(struct intel_gt *gt)
642 {
643 	struct drm_i915_private *i915 = gt->i915;
644 
645 	if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50))
646 		xehp_sseu_info_init(gt);
647 	else if (GRAPHICS_VER(i915) >= 12)
648 		gen12_sseu_info_init(gt);
649 	else if (GRAPHICS_VER(i915) >= 11)
650 		gen11_sseu_info_init(gt);
651 	else if (GRAPHICS_VER(i915) >= 9)
652 		gen9_sseu_info_init(gt);
653 	else if (IS_BROADWELL(i915))
654 		bdw_sseu_info_init(gt);
655 	else if (IS_CHERRYVIEW(i915))
656 		cherryview_sseu_info_init(gt);
657 	else if (IS_HASWELL(i915))
658 		hsw_sseu_info_init(gt);
659 }
660 
661 u32 intel_sseu_make_rpcs(struct intel_gt *gt,
662 			 const struct intel_sseu *req_sseu)
663 {
664 	struct drm_i915_private *i915 = gt->i915;
665 	const struct sseu_dev_info *sseu = &gt->info.sseu;
666 	bool subslice_pg = sseu->has_subslice_pg;
667 	u8 slices, subslices;
668 	u32 rpcs = 0;
669 
670 	/*
671 	 * No explicit RPCS request is needed to ensure full
672 	 * slice/subslice/EU enablement prior to Gen9.
673 	 */
674 	if (GRAPHICS_VER(i915) < 9)
675 		return 0;
676 
677 	/*
678 	 * If i915/perf is active, we want a stable powergating configuration
679 	 * on the system. Use the configuration pinned by i915/perf.
680 	 */
681 	if (i915->perf.exclusive_stream)
682 		req_sseu = &i915->perf.sseu;
683 
684 	slices = hweight8(req_sseu->slice_mask);
685 	subslices = hweight8(req_sseu->subslice_mask);
686 
687 	/*
688 	 * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
689 	 * wide and Icelake has up to eight subslices, specfial programming is
690 	 * needed in order to correctly enable all subslices.
691 	 *
692 	 * According to documentation software must consider the configuration
693 	 * as 2x4x8 and hardware will translate this to 1x8x8.
694 	 *
695 	 * Furthemore, even though SScount is three bits, maximum documented
696 	 * value for it is four. From this some rules/restrictions follow:
697 	 *
698 	 * 1.
699 	 * If enabled subslice count is greater than four, two whole slices must
700 	 * be enabled instead.
701 	 *
702 	 * 2.
703 	 * When more than one slice is enabled, hardware ignores the subslice
704 	 * count altogether.
705 	 *
706 	 * From these restrictions it follows that it is not possible to enable
707 	 * a count of subslices between the SScount maximum of four restriction,
708 	 * and the maximum available number on a particular SKU. Either all
709 	 * subslices are enabled, or a count between one and four on the first
710 	 * slice.
711 	 */
712 	if (GRAPHICS_VER(i915) == 11 &&
713 	    slices == 1 &&
714 	    subslices > min_t(u8, 4, hweight8(sseu->subslice_mask.hsw[0]) / 2)) {
715 		GEM_BUG_ON(subslices & 1);
716 
717 		subslice_pg = false;
718 		slices *= 2;
719 	}
720 
721 	/*
722 	 * Starting in Gen9, render power gating can leave
723 	 * slice/subslice/EU in a partially enabled state. We
724 	 * must make an explicit request through RPCS for full
725 	 * enablement.
726 	 */
727 	if (sseu->has_slice_pg) {
728 		u32 mask, val = slices;
729 
730 		if (GRAPHICS_VER(i915) >= 11) {
731 			mask = GEN11_RPCS_S_CNT_MASK;
732 			val <<= GEN11_RPCS_S_CNT_SHIFT;
733 		} else {
734 			mask = GEN8_RPCS_S_CNT_MASK;
735 			val <<= GEN8_RPCS_S_CNT_SHIFT;
736 		}
737 
738 		GEM_BUG_ON(val & ~mask);
739 		val &= mask;
740 
741 		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
742 	}
743 
744 	if (subslice_pg) {
745 		u32 val = subslices;
746 
747 		val <<= GEN8_RPCS_SS_CNT_SHIFT;
748 
749 		GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
750 		val &= GEN8_RPCS_SS_CNT_MASK;
751 
752 		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
753 	}
754 
755 	if (sseu->has_eu_pg) {
756 		u32 val;
757 
758 		val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT;
759 		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
760 		val &= GEN8_RPCS_EU_MIN_MASK;
761 
762 		rpcs |= val;
763 
764 		val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT;
765 		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
766 		val &= GEN8_RPCS_EU_MAX_MASK;
767 
768 		rpcs |= val;
769 
770 		rpcs |= GEN8_RPCS_ENABLE;
771 	}
772 
773 	return rpcs;
774 }
775 
776 void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
777 {
778 	int s;
779 
780 	if (sseu->has_xehp_dss) {
781 		drm_printf(p, "subslice total: %u\n",
782 			   intel_sseu_subslice_total(sseu));
783 		drm_printf(p, "geometry dss mask=%*pb\n",
784 			   XEHP_BITMAP_BITS(sseu->geometry_subslice_mask),
785 			   sseu->geometry_subslice_mask.xehp);
786 		drm_printf(p, "compute dss mask=%*pb\n",
787 			   XEHP_BITMAP_BITS(sseu->compute_subslice_mask),
788 			   sseu->compute_subslice_mask.xehp);
789 	} else {
790 		drm_printf(p, "slice total: %u, mask=%04x\n",
791 			   hweight8(sseu->slice_mask), sseu->slice_mask);
792 		drm_printf(p, "subslice total: %u\n",
793 			   intel_sseu_subslice_total(sseu));
794 
795 		for (s = 0; s < sseu->max_slices; s++) {
796 			u8 ss_mask = sseu->subslice_mask.hsw[s];
797 
798 			drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
799 				   s, hweight8(ss_mask), ss_mask);
800 		}
801 	}
802 
803 	drm_printf(p, "EU total: %u\n", sseu->eu_total);
804 	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
805 	drm_printf(p, "has slice power gating: %s\n",
806 		   str_yes_no(sseu->has_slice_pg));
807 	drm_printf(p, "has subslice power gating: %s\n",
808 		   str_yes_no(sseu->has_subslice_pg));
809 	drm_printf(p, "has EU power gating: %s\n",
810 		   str_yes_no(sseu->has_eu_pg));
811 }
812 
813 static void sseu_print_hsw_topology(const struct sseu_dev_info *sseu,
814 				    struct drm_printer *p)
815 {
816 	int s, ss;
817 
818 	for (s = 0; s < sseu->max_slices; s++) {
819 		u8 ss_mask = sseu->subslice_mask.hsw[s];
820 
821 		drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
822 			   s, hweight8(ss_mask), ss_mask);
823 
824 		for (ss = 0; ss < sseu->max_subslices; ss++) {
825 			u16 enabled_eus = sseu_get_eus(sseu, s, ss);
826 
827 			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
828 				   ss, hweight16(enabled_eus), enabled_eus);
829 		}
830 	}
831 }
832 
833 static void sseu_print_xehp_topology(const struct sseu_dev_info *sseu,
834 				     struct drm_printer *p)
835 {
836 	int dss;
837 
838 	for (dss = 0; dss < sseu->max_subslices; dss++) {
839 		u16 enabled_eus = sseu_get_eus(sseu, 0, dss);
840 
841 		drm_printf(p, "DSS_%02d: G:%3s C:%3s, %2u EUs (0x%04hx)\n", dss,
842 			   str_yes_no(test_bit(dss, sseu->geometry_subslice_mask.xehp)),
843 			   str_yes_no(test_bit(dss, sseu->compute_subslice_mask.xehp)),
844 			   hweight16(enabled_eus), enabled_eus);
845 	}
846 }
847 
848 void intel_sseu_print_topology(struct drm_i915_private *i915,
849 			       const struct sseu_dev_info *sseu,
850 			       struct drm_printer *p)
851 {
852 	if (sseu->max_slices == 0) {
853 		drm_printf(p, "Unavailable\n");
854 	} else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) {
855 		sseu_print_xehp_topology(sseu, p);
856 	} else {
857 		sseu_print_hsw_topology(sseu, p);
858 	}
859 }
860 
861 void intel_sseu_print_ss_info(const char *type,
862 			      const struct sseu_dev_info *sseu,
863 			      struct seq_file *m)
864 {
865 	int s;
866 
867 	if (sseu->has_xehp_dss) {
868 		seq_printf(m, "  %s Geometry DSS: %u\n", type,
869 			   bitmap_weight(sseu->geometry_subslice_mask.xehp,
870 					 XEHP_BITMAP_BITS(sseu->geometry_subslice_mask)));
871 		seq_printf(m, "  %s Compute DSS: %u\n", type,
872 			   bitmap_weight(sseu->compute_subslice_mask.xehp,
873 					 XEHP_BITMAP_BITS(sseu->compute_subslice_mask)));
874 	} else {
875 		for (s = 0; s < fls(sseu->slice_mask); s++)
876 			seq_printf(m, "  %s Slice%i subslices: %u\n", type,
877 				   s, hweight8(sseu->subslice_mask.hsw[s]));
878 	}
879 }
880 
881 u16 intel_slicemask_from_xehp_dssmask(intel_sseu_ss_mask_t dss_mask,
882 				      int dss_per_slice)
883 {
884 	intel_sseu_ss_mask_t per_slice_mask = {};
885 	unsigned long slice_mask = 0;
886 	int i;
887 
888 	WARN_ON(DIV_ROUND_UP(XEHP_BITMAP_BITS(dss_mask), dss_per_slice) >
889 		8 * sizeof(slice_mask));
890 
891 	bitmap_fill(per_slice_mask.xehp, dss_per_slice);
892 	for (i = 0; !bitmap_empty(dss_mask.xehp, XEHP_BITMAP_BITS(dss_mask)); i++) {
893 		if (bitmap_intersects(dss_mask.xehp, per_slice_mask.xehp, dss_per_slice))
894 			slice_mask |= BIT(i);
895 
896 		bitmap_shift_right(dss_mask.xehp, dss_mask.xehp, dss_per_slice,
897 				   XEHP_BITMAP_BITS(dss_mask));
898 	}
899 
900 	return slice_mask;
901 }
902