1 // SPDX-License-Identifier: MIT 2 /* 3 * Copyright © 2019 Intel Corporation 4 */ 5 6 #include <linux/string_helpers.h> 7 8 #include "i915_drv.h" 9 #include "intel_engine_regs.h" 10 #include "intel_gt_regs.h" 11 #include "intel_sseu.h" 12 13 void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices, 14 u8 max_subslices, u8 max_eus_per_subslice) 15 { 16 sseu->max_slices = max_slices; 17 sseu->max_subslices = max_subslices; 18 sseu->max_eus_per_subslice = max_eus_per_subslice; 19 } 20 21 unsigned int 22 intel_sseu_subslice_total(const struct sseu_dev_info *sseu) 23 { 24 unsigned int i, total = 0; 25 26 if (sseu->has_xehp_dss) 27 return bitmap_weight(sseu->subslice_mask.xehp, 28 XEHP_BITMAP_BITS(sseu->subslice_mask)); 29 30 for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask.hsw); i++) 31 total += hweight8(sseu->subslice_mask.hsw[i]); 32 33 return total; 34 } 35 36 unsigned int 37 intel_sseu_get_hsw_subslices(const struct sseu_dev_info *sseu, u8 slice) 38 { 39 WARN_ON(sseu->has_xehp_dss); 40 if (WARN_ON(slice >= sseu->max_slices)) 41 return 0; 42 43 return sseu->subslice_mask.hsw[slice]; 44 } 45 46 static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice, 47 int subslice) 48 { 49 if (sseu->has_xehp_dss) { 50 WARN_ON(slice > 0); 51 return sseu->eu_mask.xehp[subslice]; 52 } else { 53 return sseu->eu_mask.hsw[slice][subslice]; 54 } 55 } 56 57 static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice, 58 u16 eu_mask) 59 { 60 GEM_WARN_ON(eu_mask && __fls(eu_mask) >= sseu->max_eus_per_subslice); 61 if (sseu->has_xehp_dss) { 62 GEM_WARN_ON(slice > 0); 63 sseu->eu_mask.xehp[subslice] = eu_mask; 64 } else { 65 sseu->eu_mask.hsw[slice][subslice] = eu_mask; 66 } 67 } 68 69 static u16 compute_eu_total(const struct sseu_dev_info *sseu) 70 { 71 int s, ss, total = 0; 72 73 for (s = 0; s < sseu->max_slices; s++) 74 for (ss = 0; ss < sseu->max_subslices; ss++) 75 if (sseu->has_xehp_dss) 76 total += hweight16(sseu->eu_mask.xehp[ss]); 77 else 78 total += hweight16(sseu->eu_mask.hsw[s][ss]); 79 80 return total; 81 } 82 83 /** 84 * intel_sseu_copy_eumask_to_user - Copy EU mask into a userspace buffer 85 * @to: Pointer to userspace buffer to copy to 86 * @sseu: SSEU structure containing EU mask to copy 87 * 88 * Copies the EU mask to a userspace buffer in the format expected by 89 * the query ioctl's topology queries. 90 * 91 * Returns the result of the copy_to_user() operation. 92 */ 93 int intel_sseu_copy_eumask_to_user(void __user *to, 94 const struct sseu_dev_info *sseu) 95 { 96 u8 eu_mask[GEN_SS_MASK_SIZE * GEN_MAX_EU_STRIDE] = {}; 97 int eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice); 98 int len = sseu->max_slices * sseu->max_subslices * eu_stride; 99 int s, ss, i; 100 101 for (s = 0; s < sseu->max_slices; s++) { 102 for (ss = 0; ss < sseu->max_subslices; ss++) { 103 int uapi_offset = 104 s * sseu->max_subslices * eu_stride + 105 ss * eu_stride; 106 u16 mask = sseu_get_eus(sseu, s, ss); 107 108 for (i = 0; i < eu_stride; i++) 109 eu_mask[uapi_offset + i] = 110 (mask >> (BITS_PER_BYTE * i)) & 0xff; 111 } 112 } 113 114 return copy_to_user(to, eu_mask, len); 115 } 116 117 /** 118 * intel_sseu_copy_ssmask_to_user - Copy subslice mask into a userspace buffer 119 * @to: Pointer to userspace buffer to copy to 120 * @sseu: SSEU structure containing subslice mask to copy 121 * 122 * Copies the subslice mask to a userspace buffer in the format expected by 123 * the query ioctl's topology queries. 124 * 125 * Returns the result of the copy_to_user() operation. 126 */ 127 int intel_sseu_copy_ssmask_to_user(void __user *to, 128 const struct sseu_dev_info *sseu) 129 { 130 u8 ss_mask[GEN_SS_MASK_SIZE] = {}; 131 int ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices); 132 int len = sseu->max_slices * ss_stride; 133 int s, ss, i; 134 135 for (s = 0; s < sseu->max_slices; s++) { 136 for (ss = 0; ss < sseu->max_subslices; ss++) { 137 i = s * ss_stride * BITS_PER_BYTE + ss; 138 139 if (!intel_sseu_has_subslice(sseu, s, ss)) 140 continue; 141 142 ss_mask[i / BITS_PER_BYTE] |= BIT(i % BITS_PER_BYTE); 143 } 144 } 145 146 return copy_to_user(to, ss_mask, len); 147 } 148 149 static void gen11_compute_sseu_info(struct sseu_dev_info *sseu, 150 u32 ss_en, u16 eu_en) 151 { 152 u32 valid_ss_mask = GENMASK(sseu->max_subslices - 1, 0); 153 int ss; 154 155 sseu->slice_mask |= BIT(0); 156 sseu->subslice_mask.hsw[0] = ss_en & valid_ss_mask; 157 158 for (ss = 0; ss < sseu->max_subslices; ss++) 159 if (intel_sseu_has_subslice(sseu, 0, ss)) 160 sseu_set_eus(sseu, 0, ss, eu_en); 161 162 sseu->eu_per_subslice = hweight16(eu_en); 163 sseu->eu_total = compute_eu_total(sseu); 164 } 165 166 static void xehp_compute_sseu_info(struct sseu_dev_info *sseu, 167 u16 eu_en) 168 { 169 int ss; 170 171 sseu->slice_mask |= BIT(0); 172 173 bitmap_or(sseu->subslice_mask.xehp, 174 sseu->compute_subslice_mask.xehp, 175 sseu->geometry_subslice_mask.xehp, 176 XEHP_BITMAP_BITS(sseu->subslice_mask)); 177 178 for (ss = 0; ss < sseu->max_subslices; ss++) 179 if (intel_sseu_has_subslice(sseu, 0, ss)) 180 sseu_set_eus(sseu, 0, ss, eu_en); 181 182 sseu->eu_per_subslice = hweight16(eu_en); 183 sseu->eu_total = compute_eu_total(sseu); 184 } 185 186 static void 187 xehp_load_dss_mask(struct intel_uncore *uncore, 188 intel_sseu_ss_mask_t *ssmask, 189 int numregs, 190 ...) 191 { 192 va_list argp; 193 u32 fuse_val[I915_MAX_SS_FUSE_REGS] = {}; 194 int i; 195 196 if (WARN_ON(numregs > I915_MAX_SS_FUSE_REGS)) 197 numregs = I915_MAX_SS_FUSE_REGS; 198 199 va_start(argp, numregs); 200 for (i = 0; i < numregs; i++) 201 fuse_val[i] = intel_uncore_read(uncore, va_arg(argp, i915_reg_t)); 202 va_end(argp); 203 204 bitmap_from_arr32(ssmask->xehp, fuse_val, numregs * 32); 205 } 206 207 static void xehp_sseu_info_init(struct intel_gt *gt) 208 { 209 struct sseu_dev_info *sseu = >->info.sseu; 210 struct intel_uncore *uncore = gt->uncore; 211 u16 eu_en = 0; 212 u8 eu_en_fuse; 213 int num_compute_regs, num_geometry_regs; 214 int eu; 215 216 if (IS_PONTEVECCHIO(gt->i915)) { 217 num_geometry_regs = 0; 218 num_compute_regs = 2; 219 } else { 220 num_geometry_regs = 1; 221 num_compute_regs = 1; 222 } 223 224 /* 225 * The concept of slice has been removed in Xe_HP. To be compatible 226 * with prior generations, assume a single slice across the entire 227 * device. Then calculate out the DSS for each workload type within 228 * that software slice. 229 */ 230 intel_sseu_set_info(sseu, 1, 231 32 * max(num_geometry_regs, num_compute_regs), 232 HAS_ONE_EU_PER_FUSE_BIT(gt->i915) ? 8 : 16); 233 sseu->has_xehp_dss = 1; 234 235 xehp_load_dss_mask(uncore, &sseu->geometry_subslice_mask, 236 num_geometry_regs, 237 GEN12_GT_GEOMETRY_DSS_ENABLE); 238 xehp_load_dss_mask(uncore, &sseu->compute_subslice_mask, 239 num_compute_regs, 240 GEN12_GT_COMPUTE_DSS_ENABLE, 241 XEHPC_GT_COMPUTE_DSS_ENABLE_EXT); 242 243 eu_en_fuse = intel_uncore_read(uncore, XEHP_EU_ENABLE) & XEHP_EU_ENA_MASK; 244 245 if (HAS_ONE_EU_PER_FUSE_BIT(gt->i915)) 246 eu_en = eu_en_fuse; 247 else 248 for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++) 249 if (eu_en_fuse & BIT(eu)) 250 eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1); 251 252 xehp_compute_sseu_info(sseu, eu_en); 253 } 254 255 static void gen12_sseu_info_init(struct intel_gt *gt) 256 { 257 struct sseu_dev_info *sseu = >->info.sseu; 258 struct intel_uncore *uncore = gt->uncore; 259 u32 g_dss_en; 260 u16 eu_en = 0; 261 u8 eu_en_fuse; 262 u8 s_en; 263 int eu; 264 265 /* 266 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS. 267 * Instead of splitting these, provide userspace with an array 268 * of DSS to more closely represent the hardware resource. 269 */ 270 intel_sseu_set_info(sseu, 1, 6, 16); 271 272 /* 273 * Although gen12 architecture supported multiple slices, TGL, RKL, 274 * DG1, and ADL only had a single slice. 275 */ 276 s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) & 277 GEN11_GT_S_ENA_MASK; 278 drm_WARN_ON(>->i915->drm, s_en != 0x1); 279 280 g_dss_en = intel_uncore_read(uncore, GEN12_GT_GEOMETRY_DSS_ENABLE); 281 282 /* one bit per pair of EUs */ 283 eu_en_fuse = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) & 284 GEN11_EU_DIS_MASK); 285 286 for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++) 287 if (eu_en_fuse & BIT(eu)) 288 eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1); 289 290 gen11_compute_sseu_info(sseu, g_dss_en, eu_en); 291 292 /* TGL only supports slice-level power gating */ 293 sseu->has_slice_pg = 1; 294 } 295 296 static void gen11_sseu_info_init(struct intel_gt *gt) 297 { 298 struct sseu_dev_info *sseu = >->info.sseu; 299 struct intel_uncore *uncore = gt->uncore; 300 u32 ss_en; 301 u8 eu_en; 302 u8 s_en; 303 304 if (IS_JSL_EHL(gt->i915)) 305 intel_sseu_set_info(sseu, 1, 4, 8); 306 else 307 intel_sseu_set_info(sseu, 1, 8, 8); 308 309 /* 310 * Although gen11 architecture supported multiple slices, ICL and 311 * EHL/JSL only had a single slice in practice. 312 */ 313 s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) & 314 GEN11_GT_S_ENA_MASK; 315 drm_WARN_ON(>->i915->drm, s_en != 0x1); 316 317 ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE); 318 319 eu_en = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) & 320 GEN11_EU_DIS_MASK); 321 322 gen11_compute_sseu_info(sseu, ss_en, eu_en); 323 324 /* ICL has no power gating restrictions. */ 325 sseu->has_slice_pg = 1; 326 sseu->has_subslice_pg = 1; 327 sseu->has_eu_pg = 1; 328 } 329 330 static void cherryview_sseu_info_init(struct intel_gt *gt) 331 { 332 struct sseu_dev_info *sseu = >->info.sseu; 333 u32 fuse; 334 335 fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT); 336 337 sseu->slice_mask = BIT(0); 338 intel_sseu_set_info(sseu, 1, 2, 8); 339 340 if (!(fuse & CHV_FGT_DISABLE_SS0)) { 341 u8 disabled_mask = 342 ((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >> 343 CHV_FGT_EU_DIS_SS0_R0_SHIFT) | 344 (((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >> 345 CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4); 346 347 sseu->subslice_mask.hsw[0] |= BIT(0); 348 sseu_set_eus(sseu, 0, 0, ~disabled_mask & 0xFF); 349 } 350 351 if (!(fuse & CHV_FGT_DISABLE_SS1)) { 352 u8 disabled_mask = 353 ((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >> 354 CHV_FGT_EU_DIS_SS1_R0_SHIFT) | 355 (((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >> 356 CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4); 357 358 sseu->subslice_mask.hsw[0] |= BIT(1); 359 sseu_set_eus(sseu, 0, 1, ~disabled_mask & 0xFF); 360 } 361 362 sseu->eu_total = compute_eu_total(sseu); 363 364 /* 365 * CHV expected to always have a uniform distribution of EU 366 * across subslices. 367 */ 368 sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ? 369 sseu->eu_total / 370 intel_sseu_subslice_total(sseu) : 371 0; 372 /* 373 * CHV supports subslice power gating on devices with more than 374 * one subslice, and supports EU power gating on devices with 375 * more than one EU pair per subslice. 376 */ 377 sseu->has_slice_pg = 0; 378 sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1; 379 sseu->has_eu_pg = (sseu->eu_per_subslice > 2); 380 } 381 382 static void gen9_sseu_info_init(struct intel_gt *gt) 383 { 384 struct drm_i915_private *i915 = gt->i915; 385 struct sseu_dev_info *sseu = >->info.sseu; 386 struct intel_uncore *uncore = gt->uncore; 387 u32 fuse2, eu_disable, subslice_mask; 388 const u8 eu_mask = 0xff; 389 int s, ss; 390 391 fuse2 = intel_uncore_read(uncore, GEN8_FUSE2); 392 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT; 393 394 /* BXT has a single slice and at most 3 subslices. */ 395 intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3, 396 IS_GEN9_LP(i915) ? 3 : 4, 8); 397 398 /* 399 * The subslice disable field is global, i.e. it applies 400 * to each of the enabled slices. 401 */ 402 subslice_mask = (1 << sseu->max_subslices) - 1; 403 subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >> 404 GEN9_F2_SS_DIS_SHIFT); 405 406 /* 407 * Iterate through enabled slices and subslices to 408 * count the total enabled EU. 409 */ 410 for (s = 0; s < sseu->max_slices; s++) { 411 if (!(sseu->slice_mask & BIT(s))) 412 /* skip disabled slice */ 413 continue; 414 415 sseu->subslice_mask.hsw[s] = subslice_mask; 416 417 eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s)); 418 for (ss = 0; ss < sseu->max_subslices; ss++) { 419 int eu_per_ss; 420 u8 eu_disabled_mask; 421 422 if (!intel_sseu_has_subslice(sseu, s, ss)) 423 /* skip disabled subslice */ 424 continue; 425 426 eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask; 427 428 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & eu_mask); 429 430 eu_per_ss = sseu->max_eus_per_subslice - 431 hweight8(eu_disabled_mask); 432 433 /* 434 * Record which subslice(s) has(have) 7 EUs. we 435 * can tune the hash used to spread work among 436 * subslices if they are unbalanced. 437 */ 438 if (eu_per_ss == 7) 439 sseu->subslice_7eu[s] |= BIT(ss); 440 } 441 } 442 443 sseu->eu_total = compute_eu_total(sseu); 444 445 /* 446 * SKL is expected to always have a uniform distribution 447 * of EU across subslices with the exception that any one 448 * EU in any one subslice may be fused off for die 449 * recovery. BXT is expected to be perfectly uniform in EU 450 * distribution. 451 */ 452 sseu->eu_per_subslice = 453 intel_sseu_subslice_total(sseu) ? 454 DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) : 455 0; 456 457 /* 458 * SKL+ supports slice power gating on devices with more than 459 * one slice, and supports EU power gating on devices with 460 * more than one EU pair per subslice. BXT+ supports subslice 461 * power gating on devices with more than one subslice, and 462 * supports EU power gating on devices with more than one EU 463 * pair per subslice. 464 */ 465 sseu->has_slice_pg = 466 !IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1; 467 sseu->has_subslice_pg = 468 IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1; 469 sseu->has_eu_pg = sseu->eu_per_subslice > 2; 470 471 if (IS_GEN9_LP(i915)) { 472 #define IS_SS_DISABLED(ss) (!(sseu->subslice_mask.hsw[0] & BIT(ss))) 473 RUNTIME_INFO(i915)->has_pooled_eu = hweight8(sseu->subslice_mask.hsw[0]) == 3; 474 475 sseu->min_eu_in_pool = 0; 476 if (HAS_POOLED_EU(i915)) { 477 if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0)) 478 sseu->min_eu_in_pool = 3; 479 else if (IS_SS_DISABLED(1)) 480 sseu->min_eu_in_pool = 6; 481 else 482 sseu->min_eu_in_pool = 9; 483 } 484 #undef IS_SS_DISABLED 485 } 486 } 487 488 static void bdw_sseu_info_init(struct intel_gt *gt) 489 { 490 struct sseu_dev_info *sseu = >->info.sseu; 491 struct intel_uncore *uncore = gt->uncore; 492 int s, ss; 493 u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */ 494 u32 eu_disable0, eu_disable1, eu_disable2; 495 496 fuse2 = intel_uncore_read(uncore, GEN8_FUSE2); 497 sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT; 498 intel_sseu_set_info(sseu, 3, 3, 8); 499 500 /* 501 * The subslice disable field is global, i.e. it applies 502 * to each of the enabled slices. 503 */ 504 subslice_mask = GENMASK(sseu->max_subslices - 1, 0); 505 subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >> 506 GEN8_F2_SS_DIS_SHIFT); 507 eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0); 508 eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1); 509 eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2); 510 eu_disable[0] = eu_disable0 & GEN8_EU_DIS0_S0_MASK; 511 eu_disable[1] = (eu_disable0 >> GEN8_EU_DIS0_S1_SHIFT) | 512 ((eu_disable1 & GEN8_EU_DIS1_S1_MASK) << 513 (32 - GEN8_EU_DIS0_S1_SHIFT)); 514 eu_disable[2] = (eu_disable1 >> GEN8_EU_DIS1_S2_SHIFT) | 515 ((eu_disable2 & GEN8_EU_DIS2_S2_MASK) << 516 (32 - GEN8_EU_DIS1_S2_SHIFT)); 517 518 /* 519 * Iterate through enabled slices and subslices to 520 * count the total enabled EU. 521 */ 522 for (s = 0; s < sseu->max_slices; s++) { 523 if (!(sseu->slice_mask & BIT(s))) 524 /* skip disabled slice */ 525 continue; 526 527 sseu->subslice_mask.hsw[s] = subslice_mask; 528 529 for (ss = 0; ss < sseu->max_subslices; ss++) { 530 u8 eu_disabled_mask; 531 u32 n_disabled; 532 533 if (!intel_sseu_has_subslice(sseu, s, ss)) 534 /* skip disabled subslice */ 535 continue; 536 537 eu_disabled_mask = 538 eu_disable[s] >> (ss * sseu->max_eus_per_subslice); 539 540 sseu_set_eus(sseu, s, ss, ~eu_disabled_mask & 0xFF); 541 542 n_disabled = hweight8(eu_disabled_mask); 543 544 /* 545 * Record which subslices have 7 EUs. 546 */ 547 if (sseu->max_eus_per_subslice - n_disabled == 7) 548 sseu->subslice_7eu[s] |= 1 << ss; 549 } 550 } 551 552 sseu->eu_total = compute_eu_total(sseu); 553 554 /* 555 * BDW is expected to always have a uniform distribution of EU across 556 * subslices with the exception that any one EU in any one subslice may 557 * be fused off for die recovery. 558 */ 559 sseu->eu_per_subslice = 560 intel_sseu_subslice_total(sseu) ? 561 DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) : 562 0; 563 564 /* 565 * BDW supports slice power gating on devices with more than 566 * one slice. 567 */ 568 sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1; 569 sseu->has_subslice_pg = 0; 570 sseu->has_eu_pg = 0; 571 } 572 573 static void hsw_sseu_info_init(struct intel_gt *gt) 574 { 575 struct drm_i915_private *i915 = gt->i915; 576 struct sseu_dev_info *sseu = >->info.sseu; 577 u32 fuse1; 578 u8 subslice_mask = 0; 579 int s, ss; 580 581 /* 582 * There isn't a register to tell us how many slices/subslices. We 583 * work off the PCI-ids here. 584 */ 585 switch (INTEL_INFO(i915)->gt) { 586 default: 587 MISSING_CASE(INTEL_INFO(i915)->gt); 588 fallthrough; 589 case 1: 590 sseu->slice_mask = BIT(0); 591 subslice_mask = BIT(0); 592 break; 593 case 2: 594 sseu->slice_mask = BIT(0); 595 subslice_mask = BIT(0) | BIT(1); 596 break; 597 case 3: 598 sseu->slice_mask = BIT(0) | BIT(1); 599 subslice_mask = BIT(0) | BIT(1); 600 break; 601 } 602 603 fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1); 604 switch (REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)) { 605 default: 606 MISSING_CASE(REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)); 607 fallthrough; 608 case HSW_F1_EU_DIS_10EUS: 609 sseu->eu_per_subslice = 10; 610 break; 611 case HSW_F1_EU_DIS_8EUS: 612 sseu->eu_per_subslice = 8; 613 break; 614 case HSW_F1_EU_DIS_6EUS: 615 sseu->eu_per_subslice = 6; 616 break; 617 } 618 619 intel_sseu_set_info(sseu, hweight8(sseu->slice_mask), 620 hweight8(subslice_mask), 621 sseu->eu_per_subslice); 622 623 for (s = 0; s < sseu->max_slices; s++) { 624 sseu->subslice_mask.hsw[s] = subslice_mask; 625 626 for (ss = 0; ss < sseu->max_subslices; ss++) { 627 sseu_set_eus(sseu, s, ss, 628 (1UL << sseu->eu_per_subslice) - 1); 629 } 630 } 631 632 sseu->eu_total = compute_eu_total(sseu); 633 634 /* No powergating for you. */ 635 sseu->has_slice_pg = 0; 636 sseu->has_subslice_pg = 0; 637 sseu->has_eu_pg = 0; 638 } 639 640 void intel_sseu_info_init(struct intel_gt *gt) 641 { 642 struct drm_i915_private *i915 = gt->i915; 643 644 if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) 645 xehp_sseu_info_init(gt); 646 else if (GRAPHICS_VER(i915) >= 12) 647 gen12_sseu_info_init(gt); 648 else if (GRAPHICS_VER(i915) >= 11) 649 gen11_sseu_info_init(gt); 650 else if (GRAPHICS_VER(i915) >= 9) 651 gen9_sseu_info_init(gt); 652 else if (IS_BROADWELL(i915)) 653 bdw_sseu_info_init(gt); 654 else if (IS_CHERRYVIEW(i915)) 655 cherryview_sseu_info_init(gt); 656 else if (IS_HASWELL(i915)) 657 hsw_sseu_info_init(gt); 658 } 659 660 u32 intel_sseu_make_rpcs(struct intel_gt *gt, 661 const struct intel_sseu *req_sseu) 662 { 663 struct drm_i915_private *i915 = gt->i915; 664 const struct sseu_dev_info *sseu = >->info.sseu; 665 bool subslice_pg = sseu->has_subslice_pg; 666 u8 slices, subslices; 667 u32 rpcs = 0; 668 669 /* 670 * No explicit RPCS request is needed to ensure full 671 * slice/subslice/EU enablement prior to Gen9. 672 */ 673 if (GRAPHICS_VER(i915) < 9) 674 return 0; 675 676 /* 677 * If i915/perf is active, we want a stable powergating configuration 678 * on the system. Use the configuration pinned by i915/perf. 679 */ 680 if (gt->perf.exclusive_stream) 681 req_sseu = >->perf.sseu; 682 683 slices = hweight8(req_sseu->slice_mask); 684 subslices = hweight8(req_sseu->subslice_mask); 685 686 /* 687 * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits 688 * wide and Icelake has up to eight subslices, specfial programming is 689 * needed in order to correctly enable all subslices. 690 * 691 * According to documentation software must consider the configuration 692 * as 2x4x8 and hardware will translate this to 1x8x8. 693 * 694 * Furthemore, even though SScount is three bits, maximum documented 695 * value for it is four. From this some rules/restrictions follow: 696 * 697 * 1. 698 * If enabled subslice count is greater than four, two whole slices must 699 * be enabled instead. 700 * 701 * 2. 702 * When more than one slice is enabled, hardware ignores the subslice 703 * count altogether. 704 * 705 * From these restrictions it follows that it is not possible to enable 706 * a count of subslices between the SScount maximum of four restriction, 707 * and the maximum available number on a particular SKU. Either all 708 * subslices are enabled, or a count between one and four on the first 709 * slice. 710 */ 711 if (GRAPHICS_VER(i915) == 11 && 712 slices == 1 && 713 subslices > min_t(u8, 4, hweight8(sseu->subslice_mask.hsw[0]) / 2)) { 714 GEM_BUG_ON(subslices & 1); 715 716 subslice_pg = false; 717 slices *= 2; 718 } 719 720 /* 721 * Starting in Gen9, render power gating can leave 722 * slice/subslice/EU in a partially enabled state. We 723 * must make an explicit request through RPCS for full 724 * enablement. 725 */ 726 if (sseu->has_slice_pg) { 727 u32 mask, val = slices; 728 729 if (GRAPHICS_VER(i915) >= 11) { 730 mask = GEN11_RPCS_S_CNT_MASK; 731 val <<= GEN11_RPCS_S_CNT_SHIFT; 732 } else { 733 mask = GEN8_RPCS_S_CNT_MASK; 734 val <<= GEN8_RPCS_S_CNT_SHIFT; 735 } 736 737 GEM_BUG_ON(val & ~mask); 738 val &= mask; 739 740 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val; 741 } 742 743 if (subslice_pg) { 744 u32 val = subslices; 745 746 val <<= GEN8_RPCS_SS_CNT_SHIFT; 747 748 GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK); 749 val &= GEN8_RPCS_SS_CNT_MASK; 750 751 rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val; 752 } 753 754 if (sseu->has_eu_pg) { 755 u32 val; 756 757 val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT; 758 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK); 759 val &= GEN8_RPCS_EU_MIN_MASK; 760 761 rpcs |= val; 762 763 val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT; 764 GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK); 765 val &= GEN8_RPCS_EU_MAX_MASK; 766 767 rpcs |= val; 768 769 rpcs |= GEN8_RPCS_ENABLE; 770 } 771 772 return rpcs; 773 } 774 775 void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p) 776 { 777 int s; 778 779 if (sseu->has_xehp_dss) { 780 drm_printf(p, "subslice total: %u\n", 781 intel_sseu_subslice_total(sseu)); 782 drm_printf(p, "geometry dss mask=%*pb\n", 783 XEHP_BITMAP_BITS(sseu->geometry_subslice_mask), 784 sseu->geometry_subslice_mask.xehp); 785 drm_printf(p, "compute dss mask=%*pb\n", 786 XEHP_BITMAP_BITS(sseu->compute_subslice_mask), 787 sseu->compute_subslice_mask.xehp); 788 } else { 789 drm_printf(p, "slice total: %u, mask=%04x\n", 790 hweight8(sseu->slice_mask), sseu->slice_mask); 791 drm_printf(p, "subslice total: %u\n", 792 intel_sseu_subslice_total(sseu)); 793 794 for (s = 0; s < sseu->max_slices; s++) { 795 u8 ss_mask = sseu->subslice_mask.hsw[s]; 796 797 drm_printf(p, "slice%d: %u subslices, mask=%08x\n", 798 s, hweight8(ss_mask), ss_mask); 799 } 800 } 801 802 drm_printf(p, "EU total: %u\n", sseu->eu_total); 803 drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice); 804 drm_printf(p, "has slice power gating: %s\n", 805 str_yes_no(sseu->has_slice_pg)); 806 drm_printf(p, "has subslice power gating: %s\n", 807 str_yes_no(sseu->has_subslice_pg)); 808 drm_printf(p, "has EU power gating: %s\n", 809 str_yes_no(sseu->has_eu_pg)); 810 } 811 812 static void sseu_print_hsw_topology(const struct sseu_dev_info *sseu, 813 struct drm_printer *p) 814 { 815 int s, ss; 816 817 for (s = 0; s < sseu->max_slices; s++) { 818 u8 ss_mask = sseu->subslice_mask.hsw[s]; 819 820 drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n", 821 s, hweight8(ss_mask), ss_mask); 822 823 for (ss = 0; ss < sseu->max_subslices; ss++) { 824 u16 enabled_eus = sseu_get_eus(sseu, s, ss); 825 826 drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n", 827 ss, hweight16(enabled_eus), enabled_eus); 828 } 829 } 830 } 831 832 static void sseu_print_xehp_topology(const struct sseu_dev_info *sseu, 833 struct drm_printer *p) 834 { 835 int dss; 836 837 for (dss = 0; dss < sseu->max_subslices; dss++) { 838 u16 enabled_eus = sseu_get_eus(sseu, 0, dss); 839 840 drm_printf(p, "DSS_%02d: G:%3s C:%3s, %2u EUs (0x%04hx)\n", dss, 841 str_yes_no(test_bit(dss, sseu->geometry_subslice_mask.xehp)), 842 str_yes_no(test_bit(dss, sseu->compute_subslice_mask.xehp)), 843 hweight16(enabled_eus), enabled_eus); 844 } 845 } 846 847 void intel_sseu_print_topology(struct drm_i915_private *i915, 848 const struct sseu_dev_info *sseu, 849 struct drm_printer *p) 850 { 851 if (sseu->max_slices == 0) { 852 drm_printf(p, "Unavailable\n"); 853 } else if (GRAPHICS_VER_FULL(i915) >= IP_VER(12, 50)) { 854 sseu_print_xehp_topology(sseu, p); 855 } else { 856 sseu_print_hsw_topology(sseu, p); 857 } 858 } 859 860 void intel_sseu_print_ss_info(const char *type, 861 const struct sseu_dev_info *sseu, 862 struct seq_file *m) 863 { 864 int s; 865 866 if (sseu->has_xehp_dss) { 867 seq_printf(m, " %s Geometry DSS: %u\n", type, 868 bitmap_weight(sseu->geometry_subslice_mask.xehp, 869 XEHP_BITMAP_BITS(sseu->geometry_subslice_mask))); 870 seq_printf(m, " %s Compute DSS: %u\n", type, 871 bitmap_weight(sseu->compute_subslice_mask.xehp, 872 XEHP_BITMAP_BITS(sseu->compute_subslice_mask))); 873 } else { 874 for (s = 0; s < fls(sseu->slice_mask); s++) 875 seq_printf(m, " %s Slice%i subslices: %u\n", type, 876 s, hweight8(sseu->subslice_mask.hsw[s])); 877 } 878 } 879 880 u16 intel_slicemask_from_xehp_dssmask(intel_sseu_ss_mask_t dss_mask, 881 int dss_per_slice) 882 { 883 intel_sseu_ss_mask_t per_slice_mask = {}; 884 unsigned long slice_mask = 0; 885 int i; 886 887 WARN_ON(DIV_ROUND_UP(XEHP_BITMAP_BITS(dss_mask), dss_per_slice) > 888 8 * sizeof(slice_mask)); 889 890 bitmap_fill(per_slice_mask.xehp, dss_per_slice); 891 for (i = 0; !bitmap_empty(dss_mask.xehp, XEHP_BITMAP_BITS(dss_mask)); i++) { 892 if (bitmap_intersects(dss_mask.xehp, per_slice_mask.xehp, dss_per_slice)) 893 slice_mask |= BIT(i); 894 895 bitmap_shift_right(dss_mask.xehp, dss_mask.xehp, dss_per_slice, 896 XEHP_BITMAP_BITS(dss_mask)); 897 } 898 899 return slice_mask; 900 } 901