xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_sseu.c (revision 31ab09b4218879bc394c9faa6da983a82a694600)
1 // SPDX-License-Identifier: MIT
2 /*
3  * Copyright © 2019 Intel Corporation
4  */
5 
6 #include "i915_drv.h"
7 #include "intel_engine_regs.h"
8 #include "intel_gt_regs.h"
9 #include "intel_sseu.h"
10 
11 void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices,
12 			 u8 max_subslices, u8 max_eus_per_subslice)
13 {
14 	sseu->max_slices = max_slices;
15 	sseu->max_subslices = max_subslices;
16 	sseu->max_eus_per_subslice = max_eus_per_subslice;
17 
18 	sseu->ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices);
19 	GEM_BUG_ON(sseu->ss_stride > GEN_MAX_SUBSLICE_STRIDE);
20 	sseu->eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice);
21 	GEM_BUG_ON(sseu->eu_stride > GEN_MAX_EU_STRIDE);
22 }
23 
24 unsigned int
25 intel_sseu_subslice_total(const struct sseu_dev_info *sseu)
26 {
27 	unsigned int i, total = 0;
28 
29 	for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask); i++)
30 		total += hweight8(sseu->subslice_mask[i]);
31 
32 	return total;
33 }
34 
35 static u32
36 _intel_sseu_get_subslices(const struct sseu_dev_info *sseu,
37 			  const u8 *subslice_mask, u8 slice)
38 {
39 	int i, offset = slice * sseu->ss_stride;
40 	u32 mask = 0;
41 
42 	GEM_BUG_ON(slice >= sseu->max_slices);
43 
44 	for (i = 0; i < sseu->ss_stride; i++)
45 		mask |= (u32)subslice_mask[offset + i] << i * BITS_PER_BYTE;
46 
47 	return mask;
48 }
49 
50 u32 intel_sseu_get_subslices(const struct sseu_dev_info *sseu, u8 slice)
51 {
52 	return _intel_sseu_get_subslices(sseu, sseu->subslice_mask, slice);
53 }
54 
55 u32 intel_sseu_get_compute_subslices(const struct sseu_dev_info *sseu)
56 {
57 	return _intel_sseu_get_subslices(sseu, sseu->compute_subslice_mask, 0);
58 }
59 
60 void intel_sseu_set_subslices(struct sseu_dev_info *sseu, int slice,
61 			      u8 *subslice_mask, u32 ss_mask)
62 {
63 	int offset = slice * sseu->ss_stride;
64 
65 	memcpy(&subslice_mask[offset], &ss_mask, sseu->ss_stride);
66 }
67 
68 unsigned int
69 intel_sseu_subslices_per_slice(const struct sseu_dev_info *sseu, u8 slice)
70 {
71 	return hweight32(intel_sseu_get_subslices(sseu, slice));
72 }
73 
74 static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
75 		       int subslice)
76 {
77 	int slice_stride = sseu->max_subslices * sseu->eu_stride;
78 
79 	return slice * slice_stride + subslice * sseu->eu_stride;
80 }
81 
82 static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
83 			int subslice)
84 {
85 	int i, offset = sseu_eu_idx(sseu, slice, subslice);
86 	u16 eu_mask = 0;
87 
88 	for (i = 0; i < sseu->eu_stride; i++)
89 		eu_mask |=
90 			((u16)sseu->eu_mask[offset + i]) << (i * BITS_PER_BYTE);
91 
92 	return eu_mask;
93 }
94 
95 static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
96 			 u16 eu_mask)
97 {
98 	int i, offset = sseu_eu_idx(sseu, slice, subslice);
99 
100 	for (i = 0; i < sseu->eu_stride; i++)
101 		sseu->eu_mask[offset + i] =
102 			(eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
103 }
104 
105 static u16 compute_eu_total(const struct sseu_dev_info *sseu)
106 {
107 	u16 i, total = 0;
108 
109 	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
110 		total += hweight8(sseu->eu_mask[i]);
111 
112 	return total;
113 }
114 
115 static u32 get_ss_stride_mask(struct sseu_dev_info *sseu, u8 s, u32 ss_en)
116 {
117 	u32 ss_mask;
118 
119 	ss_mask = ss_en >> (s * sseu->max_subslices);
120 	ss_mask &= GENMASK(sseu->max_subslices - 1, 0);
121 
122 	return ss_mask;
123 }
124 
125 static void gen11_compute_sseu_info(struct sseu_dev_info *sseu, u8 s_en,
126 				    u32 g_ss_en, u32 c_ss_en, u16 eu_en)
127 {
128 	int s, ss;
129 
130 	/* g_ss_en/c_ss_en represent entire subslice mask across all slices */
131 	GEM_BUG_ON(sseu->max_slices * sseu->max_subslices >
132 		   sizeof(g_ss_en) * BITS_PER_BYTE);
133 
134 	for (s = 0; s < sseu->max_slices; s++) {
135 		if ((s_en & BIT(s)) == 0)
136 			continue;
137 
138 		sseu->slice_mask |= BIT(s);
139 
140 		/*
141 		 * XeHP introduces the concept of compute vs geometry DSS. To
142 		 * reduce variation between GENs around subslice usage, store a
143 		 * mask for both the geometry and compute enabled masks since
144 		 * userspace will need to be able to query these masks
145 		 * independently.  Also compute a total enabled subslice count
146 		 * for the purposes of selecting subslices to use in a
147 		 * particular GEM context.
148 		 */
149 		intel_sseu_set_subslices(sseu, s, sseu->compute_subslice_mask,
150 					 get_ss_stride_mask(sseu, s, c_ss_en));
151 		intel_sseu_set_subslices(sseu, s, sseu->geometry_subslice_mask,
152 					 get_ss_stride_mask(sseu, s, g_ss_en));
153 		intel_sseu_set_subslices(sseu, s, sseu->subslice_mask,
154 					 get_ss_stride_mask(sseu, s,
155 							    g_ss_en | c_ss_en));
156 
157 		for (ss = 0; ss < sseu->max_subslices; ss++)
158 			if (intel_sseu_has_subslice(sseu, s, ss))
159 				sseu_set_eus(sseu, s, ss, eu_en);
160 	}
161 	sseu->eu_per_subslice = hweight16(eu_en);
162 	sseu->eu_total = compute_eu_total(sseu);
163 }
164 
165 static void gen12_sseu_info_init(struct intel_gt *gt)
166 {
167 	struct sseu_dev_info *sseu = &gt->info.sseu;
168 	struct intel_uncore *uncore = gt->uncore;
169 	u32 g_dss_en, c_dss_en = 0;
170 	u16 eu_en = 0;
171 	u8 eu_en_fuse;
172 	u8 s_en;
173 	int eu;
174 
175 	/*
176 	 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
177 	 * Instead of splitting these, provide userspace with an array
178 	 * of DSS to more closely represent the hardware resource.
179 	 *
180 	 * In addition, the concept of slice has been removed in Xe_HP.
181 	 * To be compatible with prior generations, assume a single slice
182 	 * across the entire device. Then calculate out the DSS for each
183 	 * workload type within that software slice.
184 	 */
185 	if (IS_DG2(gt->i915) || IS_XEHPSDV(gt->i915))
186 		intel_sseu_set_info(sseu, 1, 32, 16);
187 	else
188 		intel_sseu_set_info(sseu, 1, 6, 16);
189 
190 	/*
191 	 * As mentioned above, Xe_HP does not have the concept of a slice.
192 	 * Enable one for software backwards compatibility.
193 	 */
194 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50))
195 		s_en = 0x1;
196 	else
197 		s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
198 		       GEN11_GT_S_ENA_MASK;
199 
200 	g_dss_en = intel_uncore_read(uncore, GEN12_GT_GEOMETRY_DSS_ENABLE);
201 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50))
202 		c_dss_en = intel_uncore_read(uncore, GEN12_GT_COMPUTE_DSS_ENABLE);
203 
204 	/* one bit per pair of EUs */
205 	if (GRAPHICS_VER_FULL(gt->i915) >= IP_VER(12, 50))
206 		eu_en_fuse = intel_uncore_read(uncore, XEHP_EU_ENABLE) & XEHP_EU_ENA_MASK;
207 	else
208 		eu_en_fuse = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
209 			       GEN11_EU_DIS_MASK);
210 
211 	for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
212 		if (eu_en_fuse & BIT(eu))
213 			eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
214 
215 	gen11_compute_sseu_info(sseu, s_en, g_dss_en, c_dss_en, eu_en);
216 
217 	/* TGL only supports slice-level power gating */
218 	sseu->has_slice_pg = 1;
219 }
220 
221 static void gen11_sseu_info_init(struct intel_gt *gt)
222 {
223 	struct sseu_dev_info *sseu = &gt->info.sseu;
224 	struct intel_uncore *uncore = gt->uncore;
225 	u32 ss_en;
226 	u8 eu_en;
227 	u8 s_en;
228 
229 	if (IS_JSL_EHL(gt->i915))
230 		intel_sseu_set_info(sseu, 1, 4, 8);
231 	else
232 		intel_sseu_set_info(sseu, 1, 8, 8);
233 
234 	s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
235 		GEN11_GT_S_ENA_MASK;
236 	ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE);
237 
238 	eu_en = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
239 		  GEN11_EU_DIS_MASK);
240 
241 	gen11_compute_sseu_info(sseu, s_en, ss_en, 0, eu_en);
242 
243 	/* ICL has no power gating restrictions. */
244 	sseu->has_slice_pg = 1;
245 	sseu->has_subslice_pg = 1;
246 	sseu->has_eu_pg = 1;
247 }
248 
249 static void cherryview_sseu_info_init(struct intel_gt *gt)
250 {
251 	struct sseu_dev_info *sseu = &gt->info.sseu;
252 	u32 fuse;
253 	u8 subslice_mask = 0;
254 
255 	fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT);
256 
257 	sseu->slice_mask = BIT(0);
258 	intel_sseu_set_info(sseu, 1, 2, 8);
259 
260 	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
261 		u8 disabled_mask =
262 			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
263 			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
264 			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
265 			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
266 
267 		subslice_mask |= BIT(0);
268 		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
269 	}
270 
271 	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
272 		u8 disabled_mask =
273 			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
274 			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
275 			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
276 			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
277 
278 		subslice_mask |= BIT(1);
279 		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
280 	}
281 
282 	intel_sseu_set_subslices(sseu, 0, sseu->subslice_mask, subslice_mask);
283 
284 	sseu->eu_total = compute_eu_total(sseu);
285 
286 	/*
287 	 * CHV expected to always have a uniform distribution of EU
288 	 * across subslices.
289 	 */
290 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
291 		sseu->eu_total /
292 		intel_sseu_subslice_total(sseu) :
293 		0;
294 	/*
295 	 * CHV supports subslice power gating on devices with more than
296 	 * one subslice, and supports EU power gating on devices with
297 	 * more than one EU pair per subslice.
298 	 */
299 	sseu->has_slice_pg = 0;
300 	sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
301 	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
302 }
303 
304 static void gen9_sseu_info_init(struct intel_gt *gt)
305 {
306 	struct drm_i915_private *i915 = gt->i915;
307 	struct intel_device_info *info = mkwrite_device_info(i915);
308 	struct sseu_dev_info *sseu = &gt->info.sseu;
309 	struct intel_uncore *uncore = gt->uncore;
310 	u32 fuse2, eu_disable, subslice_mask;
311 	const u8 eu_mask = 0xff;
312 	int s, ss;
313 
314 	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
315 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
316 
317 	/* BXT has a single slice and at most 3 subslices. */
318 	intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3,
319 			    IS_GEN9_LP(i915) ? 3 : 4, 8);
320 
321 	/*
322 	 * The subslice disable field is global, i.e. it applies
323 	 * to each of the enabled slices.
324 	 */
325 	subslice_mask = (1 << sseu->max_subslices) - 1;
326 	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
327 			   GEN9_F2_SS_DIS_SHIFT);
328 
329 	/*
330 	 * Iterate through enabled slices and subslices to
331 	 * count the total enabled EU.
332 	 */
333 	for (s = 0; s < sseu->max_slices; s++) {
334 		if (!(sseu->slice_mask & BIT(s)))
335 			/* skip disabled slice */
336 			continue;
337 
338 		intel_sseu_set_subslices(sseu, s, sseu->subslice_mask,
339 					 subslice_mask);
340 
341 		eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s));
342 		for (ss = 0; ss < sseu->max_subslices; ss++) {
343 			int eu_per_ss;
344 			u8 eu_disabled_mask;
345 
346 			if (!intel_sseu_has_subslice(sseu, s, ss))
347 				/* skip disabled subslice */
348 				continue;
349 
350 			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
351 
352 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
353 
354 			eu_per_ss = sseu->max_eus_per_subslice -
355 				hweight8(eu_disabled_mask);
356 
357 			/*
358 			 * Record which subslice(s) has(have) 7 EUs. we
359 			 * can tune the hash used to spread work among
360 			 * subslices if they are unbalanced.
361 			 */
362 			if (eu_per_ss == 7)
363 				sseu->subslice_7eu[s] |= BIT(ss);
364 		}
365 	}
366 
367 	sseu->eu_total = compute_eu_total(sseu);
368 
369 	/*
370 	 * SKL is expected to always have a uniform distribution
371 	 * of EU across subslices with the exception that any one
372 	 * EU in any one subslice may be fused off for die
373 	 * recovery. BXT is expected to be perfectly uniform in EU
374 	 * distribution.
375 	 */
376 	sseu->eu_per_subslice =
377 		intel_sseu_subslice_total(sseu) ?
378 		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
379 		0;
380 
381 	/*
382 	 * SKL+ supports slice power gating on devices with more than
383 	 * one slice, and supports EU power gating on devices with
384 	 * more than one EU pair per subslice. BXT+ supports subslice
385 	 * power gating on devices with more than one subslice, and
386 	 * supports EU power gating on devices with more than one EU
387 	 * pair per subslice.
388 	 */
389 	sseu->has_slice_pg =
390 		!IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1;
391 	sseu->has_subslice_pg =
392 		IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1;
393 	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
394 
395 	if (IS_GEN9_LP(i915)) {
396 #define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
397 		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
398 
399 		sseu->min_eu_in_pool = 0;
400 		if (info->has_pooled_eu) {
401 			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
402 				sseu->min_eu_in_pool = 3;
403 			else if (IS_SS_DISABLED(1))
404 				sseu->min_eu_in_pool = 6;
405 			else
406 				sseu->min_eu_in_pool = 9;
407 		}
408 #undef IS_SS_DISABLED
409 	}
410 }
411 
412 static void bdw_sseu_info_init(struct intel_gt *gt)
413 {
414 	struct sseu_dev_info *sseu = &gt->info.sseu;
415 	struct intel_uncore *uncore = gt->uncore;
416 	int s, ss;
417 	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
418 	u32 eu_disable0, eu_disable1, eu_disable2;
419 
420 	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
421 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
422 	intel_sseu_set_info(sseu, 3, 3, 8);
423 
424 	/*
425 	 * The subslice disable field is global, i.e. it applies
426 	 * to each of the enabled slices.
427 	 */
428 	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
429 	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
430 			   GEN8_F2_SS_DIS_SHIFT);
431 	eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0);
432 	eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1);
433 	eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2);
434 	eu_disable[0] = eu_disable0 & GEN8_EU_DIS0_S0_MASK;
435 	eu_disable[1] = (eu_disable0 >> GEN8_EU_DIS0_S1_SHIFT) |
436 		((eu_disable1 & GEN8_EU_DIS1_S1_MASK) <<
437 		 (32 - GEN8_EU_DIS0_S1_SHIFT));
438 	eu_disable[2] = (eu_disable1 >> GEN8_EU_DIS1_S2_SHIFT) |
439 		((eu_disable2 & GEN8_EU_DIS2_S2_MASK) <<
440 		 (32 - GEN8_EU_DIS1_S2_SHIFT));
441 
442 	/*
443 	 * Iterate through enabled slices and subslices to
444 	 * count the total enabled EU.
445 	 */
446 	for (s = 0; s < sseu->max_slices; s++) {
447 		if (!(sseu->slice_mask & BIT(s)))
448 			/* skip disabled slice */
449 			continue;
450 
451 		intel_sseu_set_subslices(sseu, s, sseu->subslice_mask,
452 					 subslice_mask);
453 
454 		for (ss = 0; ss < sseu->max_subslices; ss++) {
455 			u8 eu_disabled_mask;
456 			u32 n_disabled;
457 
458 			if (!intel_sseu_has_subslice(sseu, s, ss))
459 				/* skip disabled subslice */
460 				continue;
461 
462 			eu_disabled_mask =
463 				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
464 
465 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
466 
467 			n_disabled = hweight8(eu_disabled_mask);
468 
469 			/*
470 			 * Record which subslices have 7 EUs.
471 			 */
472 			if (sseu->max_eus_per_subslice - n_disabled == 7)
473 				sseu->subslice_7eu[s] |= 1 << ss;
474 		}
475 	}
476 
477 	sseu->eu_total = compute_eu_total(sseu);
478 
479 	/*
480 	 * BDW is expected to always have a uniform distribution of EU across
481 	 * subslices with the exception that any one EU in any one subslice may
482 	 * be fused off for die recovery.
483 	 */
484 	sseu->eu_per_subslice =
485 		intel_sseu_subslice_total(sseu) ?
486 		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
487 		0;
488 
489 	/*
490 	 * BDW supports slice power gating on devices with more than
491 	 * one slice.
492 	 */
493 	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
494 	sseu->has_subslice_pg = 0;
495 	sseu->has_eu_pg = 0;
496 }
497 
498 static void hsw_sseu_info_init(struct intel_gt *gt)
499 {
500 	struct drm_i915_private *i915 = gt->i915;
501 	struct sseu_dev_info *sseu = &gt->info.sseu;
502 	u32 fuse1;
503 	u8 subslice_mask = 0;
504 	int s, ss;
505 
506 	/*
507 	 * There isn't a register to tell us how many slices/subslices. We
508 	 * work off the PCI-ids here.
509 	 */
510 	switch (INTEL_INFO(i915)->gt) {
511 	default:
512 		MISSING_CASE(INTEL_INFO(i915)->gt);
513 		fallthrough;
514 	case 1:
515 		sseu->slice_mask = BIT(0);
516 		subslice_mask = BIT(0);
517 		break;
518 	case 2:
519 		sseu->slice_mask = BIT(0);
520 		subslice_mask = BIT(0) | BIT(1);
521 		break;
522 	case 3:
523 		sseu->slice_mask = BIT(0) | BIT(1);
524 		subslice_mask = BIT(0) | BIT(1);
525 		break;
526 	}
527 
528 	fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
529 	switch (REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1)) {
530 	default:
531 		MISSING_CASE(REG_FIELD_GET(HSW_F1_EU_DIS_MASK, fuse1));
532 		fallthrough;
533 	case HSW_F1_EU_DIS_10EUS:
534 		sseu->eu_per_subslice = 10;
535 		break;
536 	case HSW_F1_EU_DIS_8EUS:
537 		sseu->eu_per_subslice = 8;
538 		break;
539 	case HSW_F1_EU_DIS_6EUS:
540 		sseu->eu_per_subslice = 6;
541 		break;
542 	}
543 
544 	intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
545 			    hweight8(subslice_mask),
546 			    sseu->eu_per_subslice);
547 
548 	for (s = 0; s < sseu->max_slices; s++) {
549 		intel_sseu_set_subslices(sseu, s, sseu->subslice_mask,
550 					 subslice_mask);
551 
552 		for (ss = 0; ss < sseu->max_subslices; ss++) {
553 			sseu_set_eus(sseu, s, ss,
554 				     (1UL << sseu->eu_per_subslice) - 1);
555 		}
556 	}
557 
558 	sseu->eu_total = compute_eu_total(sseu);
559 
560 	/* No powergating for you. */
561 	sseu->has_slice_pg = 0;
562 	sseu->has_subslice_pg = 0;
563 	sseu->has_eu_pg = 0;
564 }
565 
566 void intel_sseu_info_init(struct intel_gt *gt)
567 {
568 	struct drm_i915_private *i915 = gt->i915;
569 
570 	if (IS_HASWELL(i915))
571 		hsw_sseu_info_init(gt);
572 	else if (IS_CHERRYVIEW(i915))
573 		cherryview_sseu_info_init(gt);
574 	else if (IS_BROADWELL(i915))
575 		bdw_sseu_info_init(gt);
576 	else if (GRAPHICS_VER(i915) == 9)
577 		gen9_sseu_info_init(gt);
578 	else if (GRAPHICS_VER(i915) == 11)
579 		gen11_sseu_info_init(gt);
580 	else if (GRAPHICS_VER(i915) >= 12)
581 		gen12_sseu_info_init(gt);
582 }
583 
584 u32 intel_sseu_make_rpcs(struct intel_gt *gt,
585 			 const struct intel_sseu *req_sseu)
586 {
587 	struct drm_i915_private *i915 = gt->i915;
588 	const struct sseu_dev_info *sseu = &gt->info.sseu;
589 	bool subslice_pg = sseu->has_subslice_pg;
590 	u8 slices, subslices;
591 	u32 rpcs = 0;
592 
593 	/*
594 	 * No explicit RPCS request is needed to ensure full
595 	 * slice/subslice/EU enablement prior to Gen9.
596 	 */
597 	if (GRAPHICS_VER(i915) < 9)
598 		return 0;
599 
600 	/*
601 	 * If i915/perf is active, we want a stable powergating configuration
602 	 * on the system. Use the configuration pinned by i915/perf.
603 	 */
604 	if (i915->perf.exclusive_stream)
605 		req_sseu = &i915->perf.sseu;
606 
607 	slices = hweight8(req_sseu->slice_mask);
608 	subslices = hweight8(req_sseu->subslice_mask);
609 
610 	/*
611 	 * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
612 	 * wide and Icelake has up to eight subslices, specfial programming is
613 	 * needed in order to correctly enable all subslices.
614 	 *
615 	 * According to documentation software must consider the configuration
616 	 * as 2x4x8 and hardware will translate this to 1x8x8.
617 	 *
618 	 * Furthemore, even though SScount is three bits, maximum documented
619 	 * value for it is four. From this some rules/restrictions follow:
620 	 *
621 	 * 1.
622 	 * If enabled subslice count is greater than four, two whole slices must
623 	 * be enabled instead.
624 	 *
625 	 * 2.
626 	 * When more than one slice is enabled, hardware ignores the subslice
627 	 * count altogether.
628 	 *
629 	 * From these restrictions it follows that it is not possible to enable
630 	 * a count of subslices between the SScount maximum of four restriction,
631 	 * and the maximum available number on a particular SKU. Either all
632 	 * subslices are enabled, or a count between one and four on the first
633 	 * slice.
634 	 */
635 	if (GRAPHICS_VER(i915) == 11 &&
636 	    slices == 1 &&
637 	    subslices > min_t(u8, 4, hweight8(sseu->subslice_mask[0]) / 2)) {
638 		GEM_BUG_ON(subslices & 1);
639 
640 		subslice_pg = false;
641 		slices *= 2;
642 	}
643 
644 	/*
645 	 * Starting in Gen9, render power gating can leave
646 	 * slice/subslice/EU in a partially enabled state. We
647 	 * must make an explicit request through RPCS for full
648 	 * enablement.
649 	 */
650 	if (sseu->has_slice_pg) {
651 		u32 mask, val = slices;
652 
653 		if (GRAPHICS_VER(i915) >= 11) {
654 			mask = GEN11_RPCS_S_CNT_MASK;
655 			val <<= GEN11_RPCS_S_CNT_SHIFT;
656 		} else {
657 			mask = GEN8_RPCS_S_CNT_MASK;
658 			val <<= GEN8_RPCS_S_CNT_SHIFT;
659 		}
660 
661 		GEM_BUG_ON(val & ~mask);
662 		val &= mask;
663 
664 		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
665 	}
666 
667 	if (subslice_pg) {
668 		u32 val = subslices;
669 
670 		val <<= GEN8_RPCS_SS_CNT_SHIFT;
671 
672 		GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
673 		val &= GEN8_RPCS_SS_CNT_MASK;
674 
675 		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
676 	}
677 
678 	if (sseu->has_eu_pg) {
679 		u32 val;
680 
681 		val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT;
682 		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
683 		val &= GEN8_RPCS_EU_MIN_MASK;
684 
685 		rpcs |= val;
686 
687 		val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT;
688 		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
689 		val &= GEN8_RPCS_EU_MAX_MASK;
690 
691 		rpcs |= val;
692 
693 		rpcs |= GEN8_RPCS_ENABLE;
694 	}
695 
696 	return rpcs;
697 }
698 
699 void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
700 {
701 	int s;
702 
703 	drm_printf(p, "slice total: %u, mask=%04x\n",
704 		   hweight8(sseu->slice_mask), sseu->slice_mask);
705 	drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
706 	for (s = 0; s < sseu->max_slices; s++) {
707 		drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
708 			   s, intel_sseu_subslices_per_slice(sseu, s),
709 			   intel_sseu_get_subslices(sseu, s));
710 	}
711 	drm_printf(p, "EU total: %u\n", sseu->eu_total);
712 	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
713 	drm_printf(p, "has slice power gating: %s\n",
714 		   yesno(sseu->has_slice_pg));
715 	drm_printf(p, "has subslice power gating: %s\n",
716 		   yesno(sseu->has_subslice_pg));
717 	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
718 }
719 
720 void intel_sseu_print_topology(const struct sseu_dev_info *sseu,
721 			       struct drm_printer *p)
722 {
723 	int s, ss;
724 
725 	if (sseu->max_slices == 0) {
726 		drm_printf(p, "Unavailable\n");
727 		return;
728 	}
729 
730 	for (s = 0; s < sseu->max_slices; s++) {
731 		drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
732 			   s, intel_sseu_subslices_per_slice(sseu, s),
733 			   intel_sseu_get_subslices(sseu, s));
734 
735 		for (ss = 0; ss < sseu->max_subslices; ss++) {
736 			u16 enabled_eus = sseu_get_eus(sseu, s, ss);
737 
738 			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
739 				   ss, hweight16(enabled_eus), enabled_eus);
740 		}
741 	}
742 }
743 
744 u16 intel_slicemask_from_dssmask(u64 dss_mask, int dss_per_slice)
745 {
746 	u16 slice_mask = 0;
747 	int i;
748 
749 	WARN_ON(sizeof(dss_mask) * 8 / dss_per_slice > 8 * sizeof(slice_mask));
750 
751 	for (i = 0; dss_mask; i++) {
752 		if (dss_mask & GENMASK(dss_per_slice - 1, 0))
753 			slice_mask |= BIT(i);
754 
755 		dss_mask >>= dss_per_slice;
756 	}
757 
758 	return slice_mask;
759 }
760 
761