xref: /openbmc/linux/drivers/gpu/drm/i915/gt/intel_sseu.c (revision 29c37341)
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2019 Intel Corporation
5  */
6 
7 #include "i915_drv.h"
8 #include "intel_lrc_reg.h"
9 #include "intel_sseu.h"
10 
11 void intel_sseu_set_info(struct sseu_dev_info *sseu, u8 max_slices,
12 			 u8 max_subslices, u8 max_eus_per_subslice)
13 {
14 	sseu->max_slices = max_slices;
15 	sseu->max_subslices = max_subslices;
16 	sseu->max_eus_per_subslice = max_eus_per_subslice;
17 
18 	sseu->ss_stride = GEN_SSEU_STRIDE(sseu->max_subslices);
19 	GEM_BUG_ON(sseu->ss_stride > GEN_MAX_SUBSLICE_STRIDE);
20 	sseu->eu_stride = GEN_SSEU_STRIDE(sseu->max_eus_per_subslice);
21 	GEM_BUG_ON(sseu->eu_stride > GEN_MAX_EU_STRIDE);
22 }
23 
24 unsigned int
25 intel_sseu_subslice_total(const struct sseu_dev_info *sseu)
26 {
27 	unsigned int i, total = 0;
28 
29 	for (i = 0; i < ARRAY_SIZE(sseu->subslice_mask); i++)
30 		total += hweight8(sseu->subslice_mask[i]);
31 
32 	return total;
33 }
34 
35 u32 intel_sseu_get_subslices(const struct sseu_dev_info *sseu, u8 slice)
36 {
37 	int i, offset = slice * sseu->ss_stride;
38 	u32 mask = 0;
39 
40 	GEM_BUG_ON(slice >= sseu->max_slices);
41 
42 	for (i = 0; i < sseu->ss_stride; i++)
43 		mask |= (u32)sseu->subslice_mask[offset + i] <<
44 			i * BITS_PER_BYTE;
45 
46 	return mask;
47 }
48 
49 void intel_sseu_set_subslices(struct sseu_dev_info *sseu, int slice,
50 			      u32 ss_mask)
51 {
52 	int offset = slice * sseu->ss_stride;
53 
54 	memcpy(&sseu->subslice_mask[offset], &ss_mask, sseu->ss_stride);
55 }
56 
57 unsigned int
58 intel_sseu_subslices_per_slice(const struct sseu_dev_info *sseu, u8 slice)
59 {
60 	return hweight32(intel_sseu_get_subslices(sseu, slice));
61 }
62 
63 static int sseu_eu_idx(const struct sseu_dev_info *sseu, int slice,
64 		       int subslice)
65 {
66 	int slice_stride = sseu->max_subslices * sseu->eu_stride;
67 
68 	return slice * slice_stride + subslice * sseu->eu_stride;
69 }
70 
71 static u16 sseu_get_eus(const struct sseu_dev_info *sseu, int slice,
72 			int subslice)
73 {
74 	int i, offset = sseu_eu_idx(sseu, slice, subslice);
75 	u16 eu_mask = 0;
76 
77 	for (i = 0; i < sseu->eu_stride; i++)
78 		eu_mask |=
79 			((u16)sseu->eu_mask[offset + i]) << (i * BITS_PER_BYTE);
80 
81 	return eu_mask;
82 }
83 
84 static void sseu_set_eus(struct sseu_dev_info *sseu, int slice, int subslice,
85 			 u16 eu_mask)
86 {
87 	int i, offset = sseu_eu_idx(sseu, slice, subslice);
88 
89 	for (i = 0; i < sseu->eu_stride; i++)
90 		sseu->eu_mask[offset + i] =
91 			(eu_mask >> (BITS_PER_BYTE * i)) & 0xff;
92 }
93 
94 static u16 compute_eu_total(const struct sseu_dev_info *sseu)
95 {
96 	u16 i, total = 0;
97 
98 	for (i = 0; i < ARRAY_SIZE(sseu->eu_mask); i++)
99 		total += hweight8(sseu->eu_mask[i]);
100 
101 	return total;
102 }
103 
104 static void gen11_compute_sseu_info(struct sseu_dev_info *sseu,
105 				    u8 s_en, u32 ss_en, u16 eu_en)
106 {
107 	int s, ss;
108 
109 	/* ss_en represents entire subslice mask across all slices */
110 	GEM_BUG_ON(sseu->max_slices * sseu->max_subslices >
111 		   sizeof(ss_en) * BITS_PER_BYTE);
112 
113 	for (s = 0; s < sseu->max_slices; s++) {
114 		if ((s_en & BIT(s)) == 0)
115 			continue;
116 
117 		sseu->slice_mask |= BIT(s);
118 
119 		intel_sseu_set_subslices(sseu, s, ss_en);
120 
121 		for (ss = 0; ss < sseu->max_subslices; ss++)
122 			if (intel_sseu_has_subslice(sseu, s, ss))
123 				sseu_set_eus(sseu, s, ss, eu_en);
124 	}
125 	sseu->eu_per_subslice = hweight16(eu_en);
126 	sseu->eu_total = compute_eu_total(sseu);
127 }
128 
129 static void gen12_sseu_info_init(struct intel_gt *gt)
130 {
131 	struct sseu_dev_info *sseu = &gt->info.sseu;
132 	struct intel_uncore *uncore = gt->uncore;
133 	u32 dss_en;
134 	u16 eu_en = 0;
135 	u8 eu_en_fuse;
136 	u8 s_en;
137 	int eu;
138 
139 	/*
140 	 * Gen12 has Dual-Subslices, which behave similarly to 2 gen11 SS.
141 	 * Instead of splitting these, provide userspace with an array
142 	 * of DSS to more closely represent the hardware resource.
143 	 */
144 	intel_sseu_set_info(sseu, 1, 6, 16);
145 
146 	s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
147 		GEN11_GT_S_ENA_MASK;
148 
149 	dss_en = intel_uncore_read(uncore, GEN12_GT_DSS_ENABLE);
150 
151 	/* one bit per pair of EUs */
152 	eu_en_fuse = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
153 		       GEN11_EU_DIS_MASK);
154 	for (eu = 0; eu < sseu->max_eus_per_subslice / 2; eu++)
155 		if (eu_en_fuse & BIT(eu))
156 			eu_en |= BIT(eu * 2) | BIT(eu * 2 + 1);
157 
158 	gen11_compute_sseu_info(sseu, s_en, dss_en, eu_en);
159 
160 	/* TGL only supports slice-level power gating */
161 	sseu->has_slice_pg = 1;
162 }
163 
164 static void gen11_sseu_info_init(struct intel_gt *gt)
165 {
166 	struct sseu_dev_info *sseu = &gt->info.sseu;
167 	struct intel_uncore *uncore = gt->uncore;
168 	u32 ss_en;
169 	u8 eu_en;
170 	u8 s_en;
171 
172 	if (IS_ELKHARTLAKE(gt->i915))
173 		intel_sseu_set_info(sseu, 1, 4, 8);
174 	else
175 		intel_sseu_set_info(sseu, 1, 8, 8);
176 
177 	s_en = intel_uncore_read(uncore, GEN11_GT_SLICE_ENABLE) &
178 		GEN11_GT_S_ENA_MASK;
179 	ss_en = ~intel_uncore_read(uncore, GEN11_GT_SUBSLICE_DISABLE);
180 
181 	eu_en = ~(intel_uncore_read(uncore, GEN11_EU_DISABLE) &
182 		  GEN11_EU_DIS_MASK);
183 
184 	gen11_compute_sseu_info(sseu, s_en, ss_en, eu_en);
185 
186 	/* ICL has no power gating restrictions. */
187 	sseu->has_slice_pg = 1;
188 	sseu->has_subslice_pg = 1;
189 	sseu->has_eu_pg = 1;
190 }
191 
192 static void gen10_sseu_info_init(struct intel_gt *gt)
193 {
194 	struct intel_uncore *uncore = gt->uncore;
195 	struct sseu_dev_info *sseu = &gt->info.sseu;
196 	const u32 fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
197 	const int eu_mask = 0xff;
198 	u32 subslice_mask, eu_en;
199 	int s, ss;
200 
201 	intel_sseu_set_info(sseu, 6, 4, 8);
202 
203 	sseu->slice_mask = (fuse2 & GEN10_F2_S_ENA_MASK) >>
204 		GEN10_F2_S_ENA_SHIFT;
205 
206 	/* Slice0 */
207 	eu_en = ~intel_uncore_read(uncore, GEN8_EU_DISABLE0);
208 	for (ss = 0; ss < sseu->max_subslices; ss++)
209 		sseu_set_eus(sseu, 0, ss, (eu_en >> (8 * ss)) & eu_mask);
210 	/* Slice1 */
211 	sseu_set_eus(sseu, 1, 0, (eu_en >> 24) & eu_mask);
212 	eu_en = ~intel_uncore_read(uncore, GEN8_EU_DISABLE1);
213 	sseu_set_eus(sseu, 1, 1, eu_en & eu_mask);
214 	/* Slice2 */
215 	sseu_set_eus(sseu, 2, 0, (eu_en >> 8) & eu_mask);
216 	sseu_set_eus(sseu, 2, 1, (eu_en >> 16) & eu_mask);
217 	/* Slice3 */
218 	sseu_set_eus(sseu, 3, 0, (eu_en >> 24) & eu_mask);
219 	eu_en = ~intel_uncore_read(uncore, GEN8_EU_DISABLE2);
220 	sseu_set_eus(sseu, 3, 1, eu_en & eu_mask);
221 	/* Slice4 */
222 	sseu_set_eus(sseu, 4, 0, (eu_en >> 8) & eu_mask);
223 	sseu_set_eus(sseu, 4, 1, (eu_en >> 16) & eu_mask);
224 	/* Slice5 */
225 	sseu_set_eus(sseu, 5, 0, (eu_en >> 24) & eu_mask);
226 	eu_en = ~intel_uncore_read(uncore, GEN10_EU_DISABLE3);
227 	sseu_set_eus(sseu, 5, 1, eu_en & eu_mask);
228 
229 	subslice_mask = (1 << 4) - 1;
230 	subslice_mask &= ~((fuse2 & GEN10_F2_SS_DIS_MASK) >>
231 			   GEN10_F2_SS_DIS_SHIFT);
232 
233 	for (s = 0; s < sseu->max_slices; s++) {
234 		u32 subslice_mask_with_eus = subslice_mask;
235 
236 		for (ss = 0; ss < sseu->max_subslices; ss++) {
237 			if (sseu_get_eus(sseu, s, ss) == 0)
238 				subslice_mask_with_eus &= ~BIT(ss);
239 		}
240 
241 		/*
242 		 * Slice0 can have up to 3 subslices, but there are only 2 in
243 		 * slice1/2.
244 		 */
245 		intel_sseu_set_subslices(sseu, s, s == 0 ?
246 					 subslice_mask_with_eus :
247 					 subslice_mask_with_eus & 0x3);
248 	}
249 
250 	sseu->eu_total = compute_eu_total(sseu);
251 
252 	/*
253 	 * CNL is expected to always have a uniform distribution
254 	 * of EU across subslices with the exception that any one
255 	 * EU in any one subslice may be fused off for die
256 	 * recovery.
257 	 */
258 	sseu->eu_per_subslice =
259 		intel_sseu_subslice_total(sseu) ?
260 		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
261 		0;
262 
263 	/* No restrictions on Power Gating */
264 	sseu->has_slice_pg = 1;
265 	sseu->has_subslice_pg = 1;
266 	sseu->has_eu_pg = 1;
267 }
268 
269 static void cherryview_sseu_info_init(struct intel_gt *gt)
270 {
271 	struct sseu_dev_info *sseu = &gt->info.sseu;
272 	u32 fuse;
273 	u8 subslice_mask = 0;
274 
275 	fuse = intel_uncore_read(gt->uncore, CHV_FUSE_GT);
276 
277 	sseu->slice_mask = BIT(0);
278 	intel_sseu_set_info(sseu, 1, 2, 8);
279 
280 	if (!(fuse & CHV_FGT_DISABLE_SS0)) {
281 		u8 disabled_mask =
282 			((fuse & CHV_FGT_EU_DIS_SS0_R0_MASK) >>
283 			 CHV_FGT_EU_DIS_SS0_R0_SHIFT) |
284 			(((fuse & CHV_FGT_EU_DIS_SS0_R1_MASK) >>
285 			  CHV_FGT_EU_DIS_SS0_R1_SHIFT) << 4);
286 
287 		subslice_mask |= BIT(0);
288 		sseu_set_eus(sseu, 0, 0, ~disabled_mask);
289 	}
290 
291 	if (!(fuse & CHV_FGT_DISABLE_SS1)) {
292 		u8 disabled_mask =
293 			((fuse & CHV_FGT_EU_DIS_SS1_R0_MASK) >>
294 			 CHV_FGT_EU_DIS_SS1_R0_SHIFT) |
295 			(((fuse & CHV_FGT_EU_DIS_SS1_R1_MASK) >>
296 			  CHV_FGT_EU_DIS_SS1_R1_SHIFT) << 4);
297 
298 		subslice_mask |= BIT(1);
299 		sseu_set_eus(sseu, 0, 1, ~disabled_mask);
300 	}
301 
302 	intel_sseu_set_subslices(sseu, 0, subslice_mask);
303 
304 	sseu->eu_total = compute_eu_total(sseu);
305 
306 	/*
307 	 * CHV expected to always have a uniform distribution of EU
308 	 * across subslices.
309 	 */
310 	sseu->eu_per_subslice = intel_sseu_subslice_total(sseu) ?
311 		sseu->eu_total /
312 		intel_sseu_subslice_total(sseu) :
313 		0;
314 	/*
315 	 * CHV supports subslice power gating on devices with more than
316 	 * one subslice, and supports EU power gating on devices with
317 	 * more than one EU pair per subslice.
318 	 */
319 	sseu->has_slice_pg = 0;
320 	sseu->has_subslice_pg = intel_sseu_subslice_total(sseu) > 1;
321 	sseu->has_eu_pg = (sseu->eu_per_subslice > 2);
322 }
323 
324 static void gen9_sseu_info_init(struct intel_gt *gt)
325 {
326 	struct drm_i915_private *i915 = gt->i915;
327 	struct intel_device_info *info = mkwrite_device_info(i915);
328 	struct sseu_dev_info *sseu = &gt->info.sseu;
329 	struct intel_uncore *uncore = gt->uncore;
330 	u32 fuse2, eu_disable, subslice_mask;
331 	const u8 eu_mask = 0xff;
332 	int s, ss;
333 
334 	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
335 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
336 
337 	/* BXT has a single slice and at most 3 subslices. */
338 	intel_sseu_set_info(sseu, IS_GEN9_LP(i915) ? 1 : 3,
339 			    IS_GEN9_LP(i915) ? 3 : 4, 8);
340 
341 	/*
342 	 * The subslice disable field is global, i.e. it applies
343 	 * to each of the enabled slices.
344 	 */
345 	subslice_mask = (1 << sseu->max_subslices) - 1;
346 	subslice_mask &= ~((fuse2 & GEN9_F2_SS_DIS_MASK) >>
347 			   GEN9_F2_SS_DIS_SHIFT);
348 
349 	/*
350 	 * Iterate through enabled slices and subslices to
351 	 * count the total enabled EU.
352 	 */
353 	for (s = 0; s < sseu->max_slices; s++) {
354 		if (!(sseu->slice_mask & BIT(s)))
355 			/* skip disabled slice */
356 			continue;
357 
358 		intel_sseu_set_subslices(sseu, s, subslice_mask);
359 
360 		eu_disable = intel_uncore_read(uncore, GEN9_EU_DISABLE(s));
361 		for (ss = 0; ss < sseu->max_subslices; ss++) {
362 			int eu_per_ss;
363 			u8 eu_disabled_mask;
364 
365 			if (!intel_sseu_has_subslice(sseu, s, ss))
366 				/* skip disabled subslice */
367 				continue;
368 
369 			eu_disabled_mask = (eu_disable >> (ss * 8)) & eu_mask;
370 
371 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
372 
373 			eu_per_ss = sseu->max_eus_per_subslice -
374 				hweight8(eu_disabled_mask);
375 
376 			/*
377 			 * Record which subslice(s) has(have) 7 EUs. we
378 			 * can tune the hash used to spread work among
379 			 * subslices if they are unbalanced.
380 			 */
381 			if (eu_per_ss == 7)
382 				sseu->subslice_7eu[s] |= BIT(ss);
383 		}
384 	}
385 
386 	sseu->eu_total = compute_eu_total(sseu);
387 
388 	/*
389 	 * SKL is expected to always have a uniform distribution
390 	 * of EU across subslices with the exception that any one
391 	 * EU in any one subslice may be fused off for die
392 	 * recovery. BXT is expected to be perfectly uniform in EU
393 	 * distribution.
394 	 */
395 	sseu->eu_per_subslice =
396 		intel_sseu_subslice_total(sseu) ?
397 		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
398 		0;
399 
400 	/*
401 	 * SKL+ supports slice power gating on devices with more than
402 	 * one slice, and supports EU power gating on devices with
403 	 * more than one EU pair per subslice. BXT+ supports subslice
404 	 * power gating on devices with more than one subslice, and
405 	 * supports EU power gating on devices with more than one EU
406 	 * pair per subslice.
407 	 */
408 	sseu->has_slice_pg =
409 		!IS_GEN9_LP(i915) && hweight8(sseu->slice_mask) > 1;
410 	sseu->has_subslice_pg =
411 		IS_GEN9_LP(i915) && intel_sseu_subslice_total(sseu) > 1;
412 	sseu->has_eu_pg = sseu->eu_per_subslice > 2;
413 
414 	if (IS_GEN9_LP(i915)) {
415 #define IS_SS_DISABLED(ss)	(!(sseu->subslice_mask[0] & BIT(ss)))
416 		info->has_pooled_eu = hweight8(sseu->subslice_mask[0]) == 3;
417 
418 		sseu->min_eu_in_pool = 0;
419 		if (info->has_pooled_eu) {
420 			if (IS_SS_DISABLED(2) || IS_SS_DISABLED(0))
421 				sseu->min_eu_in_pool = 3;
422 			else if (IS_SS_DISABLED(1))
423 				sseu->min_eu_in_pool = 6;
424 			else
425 				sseu->min_eu_in_pool = 9;
426 		}
427 #undef IS_SS_DISABLED
428 	}
429 }
430 
431 static void bdw_sseu_info_init(struct intel_gt *gt)
432 {
433 	struct sseu_dev_info *sseu = &gt->info.sseu;
434 	struct intel_uncore *uncore = gt->uncore;
435 	int s, ss;
436 	u32 fuse2, subslice_mask, eu_disable[3]; /* s_max */
437 	u32 eu_disable0, eu_disable1, eu_disable2;
438 
439 	fuse2 = intel_uncore_read(uncore, GEN8_FUSE2);
440 	sseu->slice_mask = (fuse2 & GEN8_F2_S_ENA_MASK) >> GEN8_F2_S_ENA_SHIFT;
441 	intel_sseu_set_info(sseu, 3, 3, 8);
442 
443 	/*
444 	 * The subslice disable field is global, i.e. it applies
445 	 * to each of the enabled slices.
446 	 */
447 	subslice_mask = GENMASK(sseu->max_subslices - 1, 0);
448 	subslice_mask &= ~((fuse2 & GEN8_F2_SS_DIS_MASK) >>
449 			   GEN8_F2_SS_DIS_SHIFT);
450 	eu_disable0 = intel_uncore_read(uncore, GEN8_EU_DISABLE0);
451 	eu_disable1 = intel_uncore_read(uncore, GEN8_EU_DISABLE1);
452 	eu_disable2 = intel_uncore_read(uncore, GEN8_EU_DISABLE2);
453 	eu_disable[0] = eu_disable0 & GEN8_EU_DIS0_S0_MASK;
454 	eu_disable[1] = (eu_disable0 >> GEN8_EU_DIS0_S1_SHIFT) |
455 		((eu_disable1 & GEN8_EU_DIS1_S1_MASK) <<
456 		 (32 - GEN8_EU_DIS0_S1_SHIFT));
457 	eu_disable[2] = (eu_disable1 >> GEN8_EU_DIS1_S2_SHIFT) |
458 		((eu_disable2 & GEN8_EU_DIS2_S2_MASK) <<
459 		 (32 - GEN8_EU_DIS1_S2_SHIFT));
460 
461 	/*
462 	 * Iterate through enabled slices and subslices to
463 	 * count the total enabled EU.
464 	 */
465 	for (s = 0; s < sseu->max_slices; s++) {
466 		if (!(sseu->slice_mask & BIT(s)))
467 			/* skip disabled slice */
468 			continue;
469 
470 		intel_sseu_set_subslices(sseu, s, subslice_mask);
471 
472 		for (ss = 0; ss < sseu->max_subslices; ss++) {
473 			u8 eu_disabled_mask;
474 			u32 n_disabled;
475 
476 			if (!intel_sseu_has_subslice(sseu, s, ss))
477 				/* skip disabled subslice */
478 				continue;
479 
480 			eu_disabled_mask =
481 				eu_disable[s] >> (ss * sseu->max_eus_per_subslice);
482 
483 			sseu_set_eus(sseu, s, ss, ~eu_disabled_mask);
484 
485 			n_disabled = hweight8(eu_disabled_mask);
486 
487 			/*
488 			 * Record which subslices have 7 EUs.
489 			 */
490 			if (sseu->max_eus_per_subslice - n_disabled == 7)
491 				sseu->subslice_7eu[s] |= 1 << ss;
492 		}
493 	}
494 
495 	sseu->eu_total = compute_eu_total(sseu);
496 
497 	/*
498 	 * BDW is expected to always have a uniform distribution of EU across
499 	 * subslices with the exception that any one EU in any one subslice may
500 	 * be fused off for die recovery.
501 	 */
502 	sseu->eu_per_subslice =
503 		intel_sseu_subslice_total(sseu) ?
504 		DIV_ROUND_UP(sseu->eu_total, intel_sseu_subslice_total(sseu)) :
505 		0;
506 
507 	/*
508 	 * BDW supports slice power gating on devices with more than
509 	 * one slice.
510 	 */
511 	sseu->has_slice_pg = hweight8(sseu->slice_mask) > 1;
512 	sseu->has_subslice_pg = 0;
513 	sseu->has_eu_pg = 0;
514 }
515 
516 static void hsw_sseu_info_init(struct intel_gt *gt)
517 {
518 	struct drm_i915_private *i915 = gt->i915;
519 	struct sseu_dev_info *sseu = &gt->info.sseu;
520 	u32 fuse1;
521 	u8 subslice_mask = 0;
522 	int s, ss;
523 
524 	/*
525 	 * There isn't a register to tell us how many slices/subslices. We
526 	 * work off the PCI-ids here.
527 	 */
528 	switch (INTEL_INFO(i915)->gt) {
529 	default:
530 		MISSING_CASE(INTEL_INFO(i915)->gt);
531 		fallthrough;
532 	case 1:
533 		sseu->slice_mask = BIT(0);
534 		subslice_mask = BIT(0);
535 		break;
536 	case 2:
537 		sseu->slice_mask = BIT(0);
538 		subslice_mask = BIT(0) | BIT(1);
539 		break;
540 	case 3:
541 		sseu->slice_mask = BIT(0) | BIT(1);
542 		subslice_mask = BIT(0) | BIT(1);
543 		break;
544 	}
545 
546 	fuse1 = intel_uncore_read(gt->uncore, HSW_PAVP_FUSE1);
547 	switch ((fuse1 & HSW_F1_EU_DIS_MASK) >> HSW_F1_EU_DIS_SHIFT) {
548 	default:
549 		MISSING_CASE((fuse1 & HSW_F1_EU_DIS_MASK) >>
550 			     HSW_F1_EU_DIS_SHIFT);
551 		fallthrough;
552 	case HSW_F1_EU_DIS_10EUS:
553 		sseu->eu_per_subslice = 10;
554 		break;
555 	case HSW_F1_EU_DIS_8EUS:
556 		sseu->eu_per_subslice = 8;
557 		break;
558 	case HSW_F1_EU_DIS_6EUS:
559 		sseu->eu_per_subslice = 6;
560 		break;
561 	}
562 
563 	intel_sseu_set_info(sseu, hweight8(sseu->slice_mask),
564 			    hweight8(subslice_mask),
565 			    sseu->eu_per_subslice);
566 
567 	for (s = 0; s < sseu->max_slices; s++) {
568 		intel_sseu_set_subslices(sseu, s, subslice_mask);
569 
570 		for (ss = 0; ss < sseu->max_subslices; ss++) {
571 			sseu_set_eus(sseu, s, ss,
572 				     (1UL << sseu->eu_per_subslice) - 1);
573 		}
574 	}
575 
576 	sseu->eu_total = compute_eu_total(sseu);
577 
578 	/* No powergating for you. */
579 	sseu->has_slice_pg = 0;
580 	sseu->has_subslice_pg = 0;
581 	sseu->has_eu_pg = 0;
582 }
583 
584 void intel_sseu_info_init(struct intel_gt *gt)
585 {
586 	struct drm_i915_private *i915 = gt->i915;
587 
588 	if (IS_HASWELL(i915))
589 		hsw_sseu_info_init(gt);
590 	else if (IS_CHERRYVIEW(i915))
591 		cherryview_sseu_info_init(gt);
592 	else if (IS_BROADWELL(i915))
593 		bdw_sseu_info_init(gt);
594 	else if (IS_GEN(i915, 9))
595 		gen9_sseu_info_init(gt);
596 	else if (IS_GEN(i915, 10))
597 		gen10_sseu_info_init(gt);
598 	else if (IS_GEN(i915, 11))
599 		gen11_sseu_info_init(gt);
600 	else if (INTEL_GEN(i915) >= 12)
601 		gen12_sseu_info_init(gt);
602 }
603 
604 u32 intel_sseu_make_rpcs(struct intel_gt *gt,
605 			 const struct intel_sseu *req_sseu)
606 {
607 	struct drm_i915_private *i915 = gt->i915;
608 	const struct sseu_dev_info *sseu = &gt->info.sseu;
609 	bool subslice_pg = sseu->has_subslice_pg;
610 	u8 slices, subslices;
611 	u32 rpcs = 0;
612 
613 	/*
614 	 * No explicit RPCS request is needed to ensure full
615 	 * slice/subslice/EU enablement prior to Gen9.
616 	 */
617 	if (INTEL_GEN(i915) < 9)
618 		return 0;
619 
620 	/*
621 	 * If i915/perf is active, we want a stable powergating configuration
622 	 * on the system. Use the configuration pinned by i915/perf.
623 	 */
624 	if (i915->perf.exclusive_stream)
625 		req_sseu = &i915->perf.sseu;
626 
627 	slices = hweight8(req_sseu->slice_mask);
628 	subslices = hweight8(req_sseu->subslice_mask);
629 
630 	/*
631 	 * Since the SScount bitfield in GEN8_R_PWR_CLK_STATE is only three bits
632 	 * wide and Icelake has up to eight subslices, specfial programming is
633 	 * needed in order to correctly enable all subslices.
634 	 *
635 	 * According to documentation software must consider the configuration
636 	 * as 2x4x8 and hardware will translate this to 1x8x8.
637 	 *
638 	 * Furthemore, even though SScount is three bits, maximum documented
639 	 * value for it is four. From this some rules/restrictions follow:
640 	 *
641 	 * 1.
642 	 * If enabled subslice count is greater than four, two whole slices must
643 	 * be enabled instead.
644 	 *
645 	 * 2.
646 	 * When more than one slice is enabled, hardware ignores the subslice
647 	 * count altogether.
648 	 *
649 	 * From these restrictions it follows that it is not possible to enable
650 	 * a count of subslices between the SScount maximum of four restriction,
651 	 * and the maximum available number on a particular SKU. Either all
652 	 * subslices are enabled, or a count between one and four on the first
653 	 * slice.
654 	 */
655 	if (IS_GEN(i915, 11) &&
656 	    slices == 1 &&
657 	    subslices > min_t(u8, 4, hweight8(sseu->subslice_mask[0]) / 2)) {
658 		GEM_BUG_ON(subslices & 1);
659 
660 		subslice_pg = false;
661 		slices *= 2;
662 	}
663 
664 	/*
665 	 * Starting in Gen9, render power gating can leave
666 	 * slice/subslice/EU in a partially enabled state. We
667 	 * must make an explicit request through RPCS for full
668 	 * enablement.
669 	 */
670 	if (sseu->has_slice_pg) {
671 		u32 mask, val = slices;
672 
673 		if (INTEL_GEN(i915) >= 11) {
674 			mask = GEN11_RPCS_S_CNT_MASK;
675 			val <<= GEN11_RPCS_S_CNT_SHIFT;
676 		} else {
677 			mask = GEN8_RPCS_S_CNT_MASK;
678 			val <<= GEN8_RPCS_S_CNT_SHIFT;
679 		}
680 
681 		GEM_BUG_ON(val & ~mask);
682 		val &= mask;
683 
684 		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_S_CNT_ENABLE | val;
685 	}
686 
687 	if (subslice_pg) {
688 		u32 val = subslices;
689 
690 		val <<= GEN8_RPCS_SS_CNT_SHIFT;
691 
692 		GEM_BUG_ON(val & ~GEN8_RPCS_SS_CNT_MASK);
693 		val &= GEN8_RPCS_SS_CNT_MASK;
694 
695 		rpcs |= GEN8_RPCS_ENABLE | GEN8_RPCS_SS_CNT_ENABLE | val;
696 	}
697 
698 	if (sseu->has_eu_pg) {
699 		u32 val;
700 
701 		val = req_sseu->min_eus_per_subslice << GEN8_RPCS_EU_MIN_SHIFT;
702 		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MIN_MASK);
703 		val &= GEN8_RPCS_EU_MIN_MASK;
704 
705 		rpcs |= val;
706 
707 		val = req_sseu->max_eus_per_subslice << GEN8_RPCS_EU_MAX_SHIFT;
708 		GEM_BUG_ON(val & ~GEN8_RPCS_EU_MAX_MASK);
709 		val &= GEN8_RPCS_EU_MAX_MASK;
710 
711 		rpcs |= val;
712 
713 		rpcs |= GEN8_RPCS_ENABLE;
714 	}
715 
716 	return rpcs;
717 }
718 
719 void intel_sseu_dump(const struct sseu_dev_info *sseu, struct drm_printer *p)
720 {
721 	int s;
722 
723 	drm_printf(p, "slice total: %u, mask=%04x\n",
724 		   hweight8(sseu->slice_mask), sseu->slice_mask);
725 	drm_printf(p, "subslice total: %u\n", intel_sseu_subslice_total(sseu));
726 	for (s = 0; s < sseu->max_slices; s++) {
727 		drm_printf(p, "slice%d: %u subslices, mask=%08x\n",
728 			   s, intel_sseu_subslices_per_slice(sseu, s),
729 			   intel_sseu_get_subslices(sseu, s));
730 	}
731 	drm_printf(p, "EU total: %u\n", sseu->eu_total);
732 	drm_printf(p, "EU per subslice: %u\n", sseu->eu_per_subslice);
733 	drm_printf(p, "has slice power gating: %s\n",
734 		   yesno(sseu->has_slice_pg));
735 	drm_printf(p, "has subslice power gating: %s\n",
736 		   yesno(sseu->has_subslice_pg));
737 	drm_printf(p, "has EU power gating: %s\n", yesno(sseu->has_eu_pg));
738 }
739 
740 void intel_sseu_print_topology(const struct sseu_dev_info *sseu,
741 			       struct drm_printer *p)
742 {
743 	int s, ss;
744 
745 	if (sseu->max_slices == 0) {
746 		drm_printf(p, "Unavailable\n");
747 		return;
748 	}
749 
750 	for (s = 0; s < sseu->max_slices; s++) {
751 		drm_printf(p, "slice%d: %u subslice(s) (0x%08x):\n",
752 			   s, intel_sseu_subslices_per_slice(sseu, s),
753 			   intel_sseu_get_subslices(sseu, s));
754 
755 		for (ss = 0; ss < sseu->max_subslices; ss++) {
756 			u16 enabled_eus = sseu_get_eus(sseu, s, ss);
757 
758 			drm_printf(p, "\tsubslice%d: %u EUs (0x%hx)\n",
759 				   ss, hweight16(enabled_eus), enabled_eus);
760 		}
761 	}
762 }
763